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Introduction: Most spinal cord injuries (SCI) result in lower extremities

paralysis, thus diminishing ambulation. Using brain-computer interfaces (BCI),

patients may regain leg control using neural signals that actuate assistive

devices. Here, we present a case of a subject with cervical SCI with

an implanted electrocorticography (ECoG) device and determined whether

the system is capable of motor-imagery-initiated walking in an assistive

ambulator.

Methods: A 24-year-old male subject with cervical SCI (C5 ASIA A)

was implanted before the study with an ECoG sensing device over the

sensorimotor hand region of the brain. The subject used motor-imagery

(MI) to train decoders to classify sensorimotor rhythms. Fifteen sessions of

closed-loop trials followed in which the subject ambulated for one hour on a

robotic-assisted weight-supported treadmill one to three times per week. We

evaluated the stability of the best-performing decoder over time to initiate

walking on the treadmill by decoding upper-limb (UL) MI.

Results: An online bagged trees classifier performed best with an accuracy

of 84.15% averaged across 9 weeks. Decoder accuracy remained stable

following throughout closed-loop data collection.

Discussion: These results demonstrate that decoding UL MI is a feasible

control signal for use in lower-limb motor control. Invasive BCI systems

designed for upper-extremity motor control can be extended for controlling

systems beyond upper extremity control alone. Importantly, the decoders

used were able to use the invasive signal over several weeks to accurately

classify MI from the invasive signal. More work is needed to determine the

long-term consequence between UL MI and the resulting lower-limb control.

KEYWORDS

brain-computer interface, electrocorticography, spinal cord injury, gait, lower-
extremity
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1 Introduction

Brain-computer interfaces (BCI) are a burgeoning
technology promising improved quality of life for individuals
affected by a broad range of neurological diseases or injuries
(Robinson et al., 2021). BCIs strive to achieve functional
improvements by circumventing the damaged nervous system
to enable control of external devices and systems. This control
has been demonstrated in brain-driven motor control, ranging
from control of exoskeletons (Benabid et al., 2019) or muscle
reanimation (Ajiboye et al., 2017) to control of motor intent-to-
text systems for improved communication (Willett et al., 2021).
In this capacity, BCIs seek to restore lost function as assistive
devices.

Many BCI systems have been explored as tools in both
able-bodied and motor-impaired subjects including those with
amyotrophic lateral sclerosis (Vansteensel et al., 2016; Speier
et al., 2017), stroke (Ang et al., 2015; Biasiucci et al., 2018),
and spinal cord injury (SCI; Bouton et al., 2016), among
others. With the need to address improved upper limb
(UL) control (Anderson, 2004), many BCI endeavors have
used neural signals to recreate reaching and grasp control
(Nakayashiki et al., 2014; Bouton et al., 2016; Ajiboye et al.,
2017; Benabid et al., 2019; Cajigas et al., 2021; Mencel et al.,
2021). However, lower-limb (LL) motor impairment is often
concomitant in these pathologies, and in the case of SCI,
essentially all cases of damage to the spinal cord result in
decreased function in the lower extremities. Though studies
have used BCI control signals for LL experiments (King et al.,
2013; Zhang et al., 2015; Qi et al., 2021; Zhao et al., 2022),
many developments in rehabilitation and assistive devices focus
primarily on UL control (Robinson et al., 2021). Additionally,
most LL BCI systems have used non-invasive recording methods
(Camargo-Vargas et al., 2021) at the expense of more reliable
brain data with better spatial resolution (Robinson et al.,
2021). Exploring invasive methods for how neural control
signals extracted from the brain relate to LL movement can
inform assistive device development and rehabilitation protocols
that target multiple disorders affecting gait and volitional
movement.

BCI applications for either assisting movement (He et al.,
2018) or engaging in LL rehabilitation (Camargo-Vargas et al.,
2021; Robinson et al., 2021) are varied in their approaches to
extracting, decoding, and analyzing signals from the brain and
are varied in the devices and systems these signals control. The
use of invasive signals to drive LL robotics and orthotics is
relatively new (Benabid et al., 2019), as prior to 2018 essentially
all LL studies in humans have utilized EEG signals (He et al.,
2018). The set of LL instructions most often presented to
subjects includes motor imagery commands to distinguish
between standing and walking (He et al., 2018), turning right
or left, and using imagined UL movements to drive wheelchair
control (Huang et al., 2012). Decoding architectures for these LL

instructions have included frequency-domain analysis (Huang
et al., 2012), machine learning (Jiang et al., 2015; Liu et al., 2017;
Vouga et al., 2017), and more recently deep-learning techniques
(Tortora et al., 2020; Hamid et al., 2022), yet many of these
decoding studies are performed in healthy human subjects rather
than their target subject populations who would benefit most
from LL assistive systems.

The role of BCI-driven assistive devices and rehabilitative
function is evolving. UL rehabilitation using BCI and functional
electrical stimulation (FES) following stroke is among the most
effective BCI rehabilitation paradigms demonstrated (Khan
et al., 2020) and also shows promise for LL rehabilitation
(Chung et al., 2015). LL BCI-FES rehabilitation for SCI
recently demonstrated promising feasibility (Shokur et al., 2018),
and though there are potential rehabilitation benefits using
exoskeletons (Donati et al., 2016) as well, more work in target
populations is required (Robinson et al., 2021).

Working with a subject, previously equipped with a fully
implanted neural interface system (Cajigas et al., 2021), we
tested the hypothesis that our subject could employ UL motor
imagery to initiate stepping motion on a weight-supported
gait rehabilitation treadmill better than inefficient performance
defined as 70% (Kübler et al., 2001).

2 Methods

2.1 Participant

The research participant in this study was a 22-year-old
right-handed male subject who was diagnosed with cervical
spinal cord injury (ASIA C5) due to a motor vehicle accident
5 years prior. The research subject’s participation in this study
was part of a clinical trial (ClinicalTrials.gov: NCT02564419) in
which they were enrolled.

2.2 Neural data acquisition

Neural data was collected from the research participant
using two four-contact strip electrodes (Resume II Leads,
Medtronic, Minneapolis, MN) that were surgically implanted
under the dura in the hand knob region of the sensorimotor
cortex approximately 4 months prior to ambulatory testing.
The leads were subcutaneously connected to a stimulus pulse
generator (Activa PC+S, Medtronic, Minneapolis, MN) capable
of recording electrocorticography (ECoG) potentials from the
lead contacts. The eight contacts were configured in bipolar
mode resulting in four channels of ECoG data (Figure 1A).
Internally, the device performed a 0.5–100 Hz band pass
pre-amplifier filter on recorded ECoG potentials for all channels.
The device allowed for the four channels to be configured as two
time-series channels (channels 1 and 3) sampled data at 200 Hz
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while the other two were power channels (channels 2 and 4) that
sampled the average power spectra of the signal between 4 Hz
and 36 Hz every 5 s.

The implanted pulse generator internally buffered the data
from all four channels at 400 ms intervals. These buffered
data were transmitted in packets and received using telemetry
(Nexus-D, Medronic, Minneapolis, MN) with a paddle antenna
externally positioned over the implanted generator. Packets
were programmatically collected using the Nexus-D API for
MATLAB.

2.3 Signal processing

Raw signals collected from the implanted device were
processed using MATLAB (MathWorks, Natick, MA). Data
were passed through a 1-Hz high pass 5th order infinite
impulse response filter to remove low-frequency drift. The
timing of motor-imagery instructions presented to the subject
was synchronized with the ECoG data acquisition by marking
the signal recording with a low amplitude stimulation pulse

delivered to the subject’s scalp. Features for motor imagery
classification were extracted from all four channels. For each
trial, seven features for each time-series channels 1 and 3 were
computed using MATLAB’s p spectrum function and averaging
power spectral values within predefined frequency bins: 1–8 Hz,
8–12 Hz, 18–26 Hz, 26–35 Hz, 35–45 Hz, 45–70 Hz, and
70–100 Hz (Figure 1B). One feature for each power channel
2 and 4 were computed by averaging the rectified signal output
over the course of a trial. Together, these features were used to
produce an M × N (M = number of trials, N = 16 features
were) that was used as input to train a range of distinct
classifiers including Random Forests (Breiman, 2001), K-Nearest
Neighbors (Cover and Hart, 1967), linear discriminant analysis,
a linear support vector machine (Cortes and Vapnik, 1995), and
an artificial neural network (Tshitoyan, 2021).

2.4 Experimental design

Prior to beginning data collection, the subject underwent tilt
table training to allow the subject to acclimate to a standing

FIGURE 1

Experimental setup for BCI-controlled ReoAmbulator. (A) Two 4-contact electrode strips were implanted over the hand region of the
sensorimotor cortex. The electrodes were configured in a bipolar mode resulting in four channels of ECoG data. (B) Features were extracted
by computing the mean spectral power of select frequency bins for each trial. These features were used for decoder training and testing. (C)
General flow diagram of information processing. (D) Motor imagery instructions were presented to the subject using a large display associated
with the ReoAmbulator. Signals collected during instruction presentation would be collected, processed, and decoded. Correctly decoded signals
triggered four to six gait cycles of walking on the ReoAmbulator system. (E) Session timeline overview. Each session began with three to four
blood pressure measurements to assess orthostatic hypotension followed by the experimental procedure with repeated blocks of 10 trials. Each
trial consisted of approximately 3 s of rest, 3 s of movement, followed by a hold period for treadmill stepping.
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position and prevent orthostatic hypotension. Across the
10 weeks of study, the study subject participated in 18 sessions.
At the beginning of each session, the subject’s blood pressure,
heart rate, and pulse oximetry were measured in sitting and
standing positions as a baseline to compare with measurements
taken between blocks of data collection. Each session was broken
up into 1–5 blocks of data collection periods. During each block,
the subject performed 10 trials of motor imagery. During each
trial, a pair of motor imagery instructions were displayed to the
subject on the monitor screen associated with the ReoAmbulator
(ReoAmbulator, Motorika, Mount Laurel, NJ; Figure 1C). For
each trial, the subject was instructed to think about resting the
dominant right hand for about 3 s followed by a motor imagery
instruction to think about the moving hand for another 3 s.
Following these instructions, the subject would take four to six
steps (Figure 1D).

Sessions were divided into open- and closed-loop sessions
wherein the first three sessions were open-loop sessions used
to collect data and verify our experimental paradigm, and
the subsequent 15 sessions were used for closed-loop sessions.
Each session consisted of four to five blocks of 10 trials each
(Figure 1E). At the beginning of each block of closed-loop
decoding sessions, the online classifier was first fit using motor
imagery data from the most recently collected two to five blocks,
corresponding to around 80 motor imagery observations. The
decoder was trained online, meaning it’s parameters were refit
after each trial. Thus, for online decoding, training data set was
defined as the prior 40–50 trials of data, and the test data set was
defined as the live data coming in during the 10 trials during
the block. Decoder performance was assessed by calculating the
accuracy as shown in Equation 1, where N is the total number
of motor imagery instructions, yi is the motor imagery prompt
shown to the subject, and ŷi is the predicted value from the
model.

Equation 1

Accuracy =
1
N

N∑
i

1 (yi = ŷi)

A series of other decoders were trained offline using the
same paradigm as the online decoder sessions. For each block
of closed-loop data that had been collected, each classifier was
trained with the same previous two to five blocks, then tested
using the data collected for the current block without being refit
for each motor-imagery trial.

2.5 Robot-assisted weight supported
treadmill training

During closed-loop sessions, decoded values were used
to trigger walking of a robot-assisted, body weight-supported
treadmill by sending rest and walk commands through a

customized microcontroller (ArduinoUno, Arduino, Italy). The
robotic treadmill was configured to walk at a speed of
0.6–1.7 km/h for four to six gait cycles before stopping. As the
robot was slowing down, another trial would begin issuing a
visual cue prompting the subject to think about moving the
dominant upper extremity. If a move state was correctly decoded
again, the robot would be triggered to resume stepping for an
additional four to six gait cycles.

2.6 Statistical analysis

Decoder accuracy was defined as the percentage of
correctly classified motor imagery states for any set of
motor imagery signal data (see Equation 1). Decoding
classifiers were trained using 5-fold cross validation. All
data were tested for normality using the Shapiro-Wilk
Test for normality. Univariate comparisons were computed
using the parametric student’s independent T-Test when data
was Gaussian, otherwise non-parametric Mann-Whitney U
test was performed. Similarly, for assessing variance across
conditions, one-way analysis of variance (ANOVA) was used
for Gaussian data, and the Kruskal-Wallis test was used as
the non-parametric counterpart. The significance level (α)
was set to 0.05. When post hoc multiple comparisons were
performed, Bonferroni correction was applied to the family-wise
error rate (α). Correlation between variables was tested
using Pearson’s product-moment correlation or Spearman’s
rank-order correlation for parametric and non-parametric
datasets respectively.

3 Results

3.1 Cardiovascular monitoring

The subject’s blood pressure, heart rate, and pulse oximetry,
were measured to monitor for adequate orthostatic response
to transferring into the standing position and were measured
at four time points during each session: (1) at the beginning
of each session in the sitting position; (2) once upright in
the weight-support harness; (3) immediately before starting
the experiment; and (4) sitting at the end of the experiment.
Changes in these measurements were relatively stable across
these time points. Significant fluctuations with moderate effect
size were only noted in heart rate (Figure 2A) between sitting
and standing positions (ANOVA F(3,60) = 3.47; p = 0.02;
η2 = 0.065, Tukey-HSD p=0.03), indicating that, predictably, as
blood pressure drops during standing, the subject’s heart rate on
average increased. No differences were found for mean arterial
pressure (ANOVA F(3,60) = 1.39, p = 0.25) and pulse oximetry
(ANOVA F(3,57) = 2.66, p = 0.057;) across the timing of sessions
(Figures 2B,C).
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FIGURE 2

Heart rate (A), pulse oximetry (B), and mean arterial pressure (C) measurements taken at four consecutive points (sitting in a wheelchair, upright
position in the ambulation harness, at the beginning of the daily session, and at the end of the daily session). Diamond markers indicate data
points that lie outside of 1.5 × IQR (Inter quartile range). ∗p = < 0.05.

3.2 BCI system performance

Iterative blocks of data were used to train and test an
array of motor-imagery classifiers including Random Forests
(Breiman, 2001), K-Nearest Neighbors (Cover and Hart, 1967),
linear discriminant analysis, a linear support vector machine
(Cortes and Vapnik, 1995), and an artificial neural network
(Tshitoyan, 2021). These models were trained on data from
the extracted features using 5-fold cross validation. Across the
15 closed-loop sessions, 580 trials were performed wherein
correctly decoded neural signals were used to trigger walking
on the system. The online bagged trees classifier performed
the best at 84.15% accuracy on average per week during the
study (Figure 3A), better than the standard BCI accuracy
criterion of 70% (Kübler et al., 2001; T = 8.362, p < 0.001).
Differences between each classifier were detected using one-way
ANOVA (F(5,48) = 4.195, p = 0.003, η2 = 0.304) and Tukey-HSD
post hoc for pairwise analysis. Post-hoc analysis demonstrated
that online bagged trees performed significantly better than
linear discriminant analysis (Tukey-HSD p = 0.0069). Online
decoding and bagged trees classifiers were able to distinguish
between the MI states consistently, while others had higher
error rates when decoding either the rest state alone or both
states (Figure 3B). With the online classifier performing best,
we assessed the association between time and accuracy and
found that performance remained stable across the 9 weeks of
close-loop study without the need for retraining (spearman’s
r =−0.01, p = 0.936, Figure 3C).

To determine whether end effector control had a
potential role in decoder performance, we compared decoder
performance when the subject was targeting LL gait tasks vs.

data previously collected while the subject was targeting UL
grasping tasks (Cajigas et al., 2021). Decoder performance
was significantly different (Mann-Whitney Test: U = 797.5,
p = 0.031) depending on whether MI was directed at UL grasp
tasks in contrast to the same signal being used to drive stepping
tasks (Figure 3D). In both cases the error rates for predicting
each MI state were balanced, meaning the online classifier could
accurately detect the movement state similar to the rest state in
both experiments.

3.3 Cardiovascular measures on BCI
performance

Cardiovascular dynamics, particularly blood pressure,
can affect the cortical activity and arousal (Duschek
and Schandry, 2007), potentially affecting the ability to
accurately decode motor-imagery states from EEG. Given
the variability in cardiovascular dynamics during sessions,
we examined associations between decoder accuracy and
cardiac measurements. Heart rate, pulse oximetry, and mean
arterial pressure metrics taken at the beginning of each session
(n = 18) were plotted against the average decoding accuracy
for a given session to determine whether cardiovascular
changes are associated with decoder performance. A nominal
negative association was found between accuracy and heart rate
(r = −0.174), pulse oximetry (r = −0.16), and mean arterial
pressure (r = −0.184) though none of these were statistically
significant (Figure 4).

Additionally, informal discussion with the subject
indicated that the subject seldomly became fatigued and
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FIGURE 3

(A) Decoder accuracy for decoding upper-limb (UL) motor-imagery (MI) for initiating stepping measured as a ratio of correctly decoded
instructions to the total number of instructions presented. Accuracy was measured in six classifiers: online bagged trees, offline bagged trees,
Fine K-Nearest Neighbors (kNN), Linear Discriminant Analysis (LDA), Linear Support Vector Machine (SVM), and an Artificial Neural Network (ANN).
Differences between each classifier were detected by ANOVA and Tukey-HSD post hoc for pairwise analysis. (B) Confusion matrices for each of
the six classifiers in panel (A). Integer values range from 0 to 580, which is the number of times each motor imagery instruction presented to
the subject over the 9 weeks of close-loop analysis in the study. (C) Accuracy performance of online bagged trees classifier over the course of
the 10 week study period. Gray dotted line indicates the mean value across all weeks (84.15%). The stability of the decoder was measured with
accuracy with respect to time and evaluated using Spearman’s correlation coefficient (r). (D) Differences in decoder performance, measured by
accuracy (%) and confusion matrices. In both instances, bagged-tree classifiers were trained on UL MI and outputs were used for triggering UL
FES in the previous study and for triggering gait stepping (LL) in this study (∗p < 0.05, ∗∗p < 0.01). Confusion matrices are normalized to true
values as the number of trials completed in this LL assessment differed from the number of trials in the previously performed UL study. Diamond
markers in all box plots indicate data points that lie outside of 1.5 × IQR.

that most difficulties arose from physical changes in
posture, and that completing motor-imagery tasks were
easily performed.

4 Discussion

In this study, we demonstrated the ability of a subject with
cervical SCI to accurately control the initiation of stepping
within a robotic exoskeleton. With adequate prior tilt-table
training, the subject was able to tolerate an upright posture
and use the currently implanted BCI system aimed at restoring

upper extremity control to also control stepping within a robotic
treadmill system. Much of the prior work in the BCI literature
focuses on upper-extremity control (Robinson et al., 2021),
thus implementing models of LL-driven BCI applications is
needed to elucidate current technological, methodological, and
scientific limitations of BCI in aiding movement reanimation
and restoration after paralysis. Additionally, among LL BCI
work, almost all studies have used non-invasive EEG (He et al.,
2018) and here we accomplished motor imagery decoding
through fully implanted ECoG electrodes. Importantly, as
individuals with SCI are potential users of BCI technology
(Anderson, 2004; Collinger et al., 2013), enabling LL control
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FIGURE 4

Relationship between online decoder accuracy and measured (A) heart rate, (B) pulse oximetry, and (C) mean arterial pressure. Each point
represents a closed-loop data session where the accuracy is an average across all trials and the cardiovascular metrics is the average of pre- and
post-session measurements. Linear regression between the variables was performed using Pearson’s product-moment correlation.

could benefit all patients with sustained SCI by expanding the
use of upper extremity motor-imagery to enable control of lower
extremity function.

With the electrodes implanted over the sensorimotor hand
region, the participant imagined motor movements of their
upper extremity to induce stepping of the lower extremity. This
demonstrates that the control signal used for UL movement can
be accurately decoded to initiate the LL control mechanism,
demonstrating versatile multi-functional use of the same signal
that could be used to engage in upper-extremity motor
control–an important characteristic that BCI users desire
(Huggins et al., 2015).

A unique component of BCI applications of ambulatory
exoskeletons and treadmills is the potential effects of
cardiovascular autonomic dysregulation on system performance
and patient tolerance. Understanding physiological changes
is important for LL control where patients’ cardiovascular
regulation is perturbed by transferring from a seated to a
standing position. In addition to orthostatic changes, simply
engaging in motor imagery activity has shown to have
cardiovascular effects (Collet et al., 2013; Peixoto Pinto et al.,
2017; Lanata et al., 2020), but whether this effect and its
influence on decoding performance persists in SCI patients,
especially in upright positions, is not fully elucidated. Despite
this, this study demonstrates that decoding is feasible and stable
for SCI patients in this setting, though more work is warranted
to determine the extent to which cardiovascular dynamics, body
position, and end effector motor imagery mismatch might affect
general neural signal decoding.

4.1 Limitations

Workshops within the BCI research community have
identified several performance measures for evaluating BCI

technology (Huggins et al., 2014; Thompson et al., 2014):
accuracy, including information transfer rate, decoding timing,
and latency. Though the participant successfully, and accurately,
triggered the gait cycles of the weight-supported treadmill,
engineering constraints on the ReoAmbulator limited the ability
to measure timing delays in the system; e.g., time to decode
and trigger the robotic exoskeleton. In this study, however,
our objective was to confirm the accurate decoding of motor-
imagery for gait control. Yet, as research in continuous control
of exoskeletons and assistive walking devices moves forward,
interpreting timing effects for translational use will be important
to determine and ensure continuous performance in long-term
studies.

The clinical efficacy of BCI rehabilitation paradigms relies
on a close relationship between robot-controlled movement
and movement intention (Robinson et al., 2021). The subject
in this work utilized motor imagery of the UL to drive control
of LL movements. Though useful from an assistive device
perspective, the mismatch of motor imagery and assisted motor
output becomes important from a rehabilitation perspective
considering the visual, proprioceptive, and sensorimotor
feedback effects on both rehabilitation outcomes and BCI
performance when temporally coupled to the intended
movement (Ramos-Murguialday et al., 2012; Frost et al.,
2015). Through this method of temporal coupling, BCI
research has shown promise to induce adaptive plasticity for
recovery (Ethier et al., 2015; Jovanovic et al., 2021). The mixed
paradigm in this study, however, makes elucidating the effects
of UL vs LL rehabilitation difficult. It will be important to
design studies to understand whether this mixed paradigm
for upper and lower extremity rehabilitation is effective
across patients.

Only one subject participated in this study to demonstrate
reliable decoding of lower-limb control from motor imagery.
Signal decoding relied on event-related desynchronization
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(ERD) and other spectral features, a phenomenon that is well
studied in both subjects with and without paralysis in UL
(Pfurtscheller, 1997; López-Larraz et al., 2015; Gant et al.,
2018) and LL control (Donati et al., 2016; Shokur et al.,
2018). Ultimately, whether accurate, prolonged decoding while
standing in SCI subjects can generalize to the broader SCI
population remains an important study topic for BCI research
targeting LL control. Yet, preliminary work from our group
demonstrated that ERDs were observed in individuals after
SCI and that this could be used as a reliable trigger when
observed via EEG (Gant et al., 2018). Therefore, the likelihood
that such a methodology can be used across individuals
is likely.

Our study paradigm obtained MI signals from the
subject by presenting instructions to the subject in a fixed
pattern (rest then move) and at fixed time intervals (3 s).
Subsequent work in our group has established real-time
decoding for UL control (Cajigas et al., 2021). This real-time
decoding can detect MI without the need to cue the
subject to begin performing MI by recognizing the temporal
patterns of specific MI states within the signal as it is
sampled. Future work will need to investigate real-time
decoding algorithms for BCIs targeting LL control. Such
real-time decoding for LL control will be necessary to enable
subjects to volitionally control ambulatory devices at will
and for longer durations beyond the time confined to cue
presentation.

5 Conclusion

BCIs may prove to be valuable assistive devices for motor
impaired individuals. Using four channels of ECoG signals from
a fully implanted BCI system enabled a patient with cervical
SCI to trigger walking on a weight-supported treadmill, and
the decoder’s performance persisted throughout the duration
of the study. Work is still needed to more rigorously evaluate
the long-term effects of gait-based BCI applications and to
determine their clinical implications as assistive devices, and in
rehabilitation protocols.
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