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Abstract

With the development of computer technology, artificial neural networks are becoming increasingly useful in 

the field of engineering geology and geotechnics. With artificial neural networks, the geomechanical properties 

of rocks or their behaviour could be predicted under different stress conditions. Slope failures or underground 

excavations in rocks mostly occurred through joints, which are essential for the stability of geotechnical 

structures. This is why the peak shear strength of a rock joint is the most important parameter for a rock mass 

stability. Testing of the shear characteristics of joints is often time consuming and suitable specimens for testing 

are difficult to obtain during the research phase. The roughness of the joint surface, tensile strength and vertical 

load have a great influence on the peak shear strength of the rock joint. In the presented paper, the surface 

roughness of joints was measured with a photogrammetric scanner, and the peak shear strength was determined 

by the Robertson direct shear test. Based on six input characteristics of the rock joints, the artificial neural 

network, using a backpropagation learning algorithm, successfully learned to predict the peak shear strength of 

the rock joint. The trained artificial neural network predicted the peak shear strength for similar lithological and 

geological conditions with average estimation error of 6 %. The results of the calculation with artificial neural 

networks were compared with the Grasselli experimental model, which showed a higher error in comparison 

with the artificial neural network model. 

 

Izvleček

Nevronske mreže postajajo z razvojem računalniške tehnologije vedno bolj uporabne tudi na področju 

inženirske geologije in geotehnike. Z nevronskimi mrežami lahko na osnovi večjega števila podatkov napovemo 

geomehanske lastnosti kamnine ali njihovo obnašanje v različnih napetostnih pogojih. Porušitve brežin ali 

podzemnih prostorov v kamninskem masivu se večinoma pojavijo po razpokah, zato so strižne lastnosti v razpokah 

ali prelomih bistvene za stabilnost geotehničnih objektov. Preiskave strižnih lastnosti so večinoma dolgotrajne, 

prav tako pa je pri vrtanju v fazi raziskav težko pridobiti primerne vzorce. Velik vpliv na velikost vrhunske 

strižne trdnosti ima hrapavost površine razpoke, natezna trdnost in vertikalna obremenitev. V predstavljenem 

članku je hrapavost površine razpok izmerjena s fotogravimetričnim skenerjem, vrhunska strižna trdnost pa je 

določena z Robertsonovo direktno strižno preiskavo. Na osnovi šestih vhodni karakteristik razpok in kamnine 

ter izmerjene strižne trdnosti z Robertsonovo preiskavo, lahko z naučeno nevronsko mrežo uspešno napovemo 

vrhunsko strižno trdnost po razpoki. Tako naučena nevronska mreža lahko dovolj natančno napove vrhunsko 

strižno trdnost za podobne litološke razmere in geološke pogoje, z upoštevanjem dokaj nizke napake, to je 6 %. 

Rezultate izračuna z nevronskimi mrežami smo primerjali z eksperimentalnim modelom, ki je v primerjavi z 

nevronskimi mrežami pokazal višjo napako napovedi vrhunske strižne trdnosti. 
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Introduction

The idea for artificial neural networks (ANN) 
is in the functioning of the human brain. The 
human brain is the central system of the human 
nervous system, composed from almost 10 billion 
biological neurons that are interconnected by 
synapses. The cellular body of a neuron receives 
input signals from many synapses with different 
electrical activity (Flood & Kartam, 1994, Bish-
op, 1995, Lopez et. al., 2022).

Scientists were therefore drawn to the idea 
of making a device that mimics the brain. These 
are made up of a huge number of cells intercon-
nected by thin “threads”. These cells are called 
neurons, and their connections or “threads” are 
called synapses. Neurons send electrical stimu-
li to each other through synapses. Synapses are 
characterized by differences in electrical con-
ductivity, which changes during learning. Thus, 
the knowledge acquired during learning is accu-
mulated in synapses or in their conductivity. If 
the sum of the signals arriving at an individual 
neuron via synapses is large enough, the ignition 
of an individual neuron occurs. This means that 
this neuron sends a signal to its output, which is 
transmitted through the synapses to other neu-
rons (Jain et al., 1996, Maio & Santillo, 2020).

The ANN tries to simulate the human brain 
activity and until now several applications are 
already known in rock mechanics field (Lawal 
& Kwon, 2021; Abdalla et al., 2015; Armaghani, 
2015; Hussain et al., 2019; Sarkar et al., 2010).

The shear behaviour of a jointed rock mass-
es depends on the shear characteristics of the 
discontinuities in the rock mass. To determine 
the shear strength in rock mass discontinuities 
many researchers developed experimental rela-
tionships between the roughness of the discon-
tinuities and the peak shear strength (Barton, 
1973; 1976; Barton and Choubey, 1977; Hoek and 
Brown, 1980; Hoek and Bray, 1981; Hoek, 2000; 
Huang et al., 1992; Patton, 1966; Pellet et al., 
2013).

Recently, scanners have been used as a non-de-
structive method to measure and characterise the 
joint surface in three dimensions. The roughness 
metric based on the three-dimensional morphol-
ogy was proposed by Grasselli (2001, 2002). An 
ATOS scanner was used for the accurate measure-
ment of the joint roughness. Details of the scanner 
characteristics are summarized in Table 1. Sev-
eral empirical relations were developed for deter-
mining the geometry of the joint surface, such as 
contact area A0, roughness parameter C and max-
imum dip angle Ɵ*

max (Grasselli & Egger, 2003). 
ANNs have already been used for prediction 

of the shear characteristics of rock samples in 
published papers. The shear strength of shale 
rock samples was predicted based on the mini-
mum and intermediate strength using a triaxi-
al test (Moshrefi et al., 2018). Back propagation 
multi-layer perceptron was used for learning. In-
fluence of heterogeneity on rock strength at dif-
ferent strain rates was predicted with an ANN, 
as well as parameters of crack inclination, dis-
tance, filling and strain rate (Jiang et al., 2021). 
Shear behaviour of clean rock discontinuities 
was studied including normal stress, dilation, 
horizontal displacement, asperity angle, ampli-
tude, joint rock compressive strength and friction 
angle of an intact sample. The ANN model fitted 
the measuring results better than some analyti-
cal models. Shear strength parameters were ob-
tained using shale samples, sheared in a triaxial 
cell. The input parameters were point load index, 
Brazilian tensile strength, ultrasonic velocity, 
Schmidt hammer test and friction angle as an 
output parameter (Armaghani et al., 2014). 

Drilling data and well logs were used for the 
uniaxial compressive strength prediction with 
ANN (Asadi, 2017). Porosity, density, penetration 
rate and P wave velocity were used to predict the 
uniaxial strength of rock between wells that are 
close to each other. For limestone the uniaxial 
strength was compared with the results of the 
ANN and regression analysis (Khanlari & Ab-
dilor, 2011).

Table 1. Characteristics of the scanner with camera (ATOS I).

Tabela 1. 3D skener s kamero (ATOS I).

Item Value

Measured Points 800.000

Measurement Time (seconds) 0.8

Measuring Area (mm²) 125 ×100 - 1000 × 800

Point Spacing (mm) 0.13-1.00

Measuring volume (mm3) 125 × 100 × 90 to 1000 × 800 × 800

Measuring points per individual scan 1032 × 776 pixels
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In the presented paper, the ANN was used 
for the peak shear strength prediction of the 
rock joints. The input parameters were tensile 
strength, basic shear angle and the morphologic 
parameters of the rock joints obtained from the 
3D scanner measurements. Results were com-
pared with the Robertson direct shear test for 
different rock samples.

Methods

Artificial Neural network model

The model of the ANN tries to simulate the 
behaviour of the human brain and nervous sys-
tem by its architecture. A detailed description 
of the ANNs is beyond the scope of this paper 
and can be found in many publications (Masters, 
1993; Jain et al., 1996; Almeida, 2002; Shahin et 
al., 2002). 

ANNs learn from the presented data and use 
these data to adjust their weights in an attempt 
minimise the model input variables and the cor-
responding outputs. The advantage of ANNs is 
that they do not need any prior knowledge about 
the relationship between the input-output varia-
bles. This is a benefit in comparison with most of 
the empirical and statistical methods. 

The basic unit of ANN is a neuron or node 
(Fig. 1). It receives input signals (x1 .. xn) and a 
bias value, which is always 1. In the neuron input, 
signals are multiplied with their weight values 
(w1 .. wn). The bias assures that even if all input 
signals are zero, there is activation in the neuron.  
The activation function (G(I)) is used for introduc-
ing the non-linearity to the ANN. 

      (1)

A typical ANN is composed of three different 
layers of neurons; one input layer, one or multiple 
hidden layers and one output layer. The simpli-
fied model is presented in Figure 2.

The input layer consists of neurons which re-
ceive information from input data. The number 
of neurons in the input layer depends on input 
data sources. For presented application the input 
neurons were; st (tensile strength), fb (basic fric-
tion angle) and scanning parameters A0 (maxi-
mum contact area), C (roughness parameter) and 
θmax* (maximum apparent dip angle).

The hidden layer contains a different number 
of neurons and is connected with the input and 
output layer with a linear or non-linear transfer 
function (Rashidian et al., 2013). The hidden lay-
er processes the information received from the 
input neurons, and passes it to the output layer. 

The output layer produces an appropriate re-
sponse to the given input. For presented ANN 
there is a single output neuron; measured shear 
peak shear stress (tp).

The propagation of information in ANNs 
starts at the input layer where the network is pre-
sented with a historical set of input data and the 
corresponding (desired) outputs. The back-prop-
agation algorithm, used in this paper, is the most 
widespread because it has a simple structure and 
clear mathematical meaning (Cybenko, 1989). It 
consists of two phases: forward and backward. 
In the forward phase, the training data set was 
introduced to the network and fed forward until 
a prediction was calculated. The final output is 
then compared to the target value and the error 
signal is calculated. In the backward phase, the 
error signal is back propagated in the network 
from the output layer to the input layer and the 

Fig. 1. Typical neuron in ANN.

Sl. 1. Značilen nevron v ANN.

Fig. 2. Structure of the BP artificial neural network.

Sl. 2. Struktura povratne nevronske mreže. 

 

𝐼𝐼𝐼𝐼 = 𝑤𝑤𝑤𝑤0 + 𝑤𝑤𝑤𝑤1𝑦𝑦𝑦𝑦1 + 𝑤𝑤𝑤𝑤2𝑦𝑦𝑦𝑦2 … . +𝑤𝑤𝑤𝑤𝑛𝑛𝑛𝑛𝑦𝑦𝑦𝑦𝑛𝑛𝑛𝑛  
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appropriate weight changes are calculated using 
a mathematical criterion that minimizes the er-
rors (Jain et al., 1996; Khandelwal et al., 2004).

Using these errors and a learning rule, the net-
work adjusts its weights until it can find a set of 
weights that calculate an input/output pair with 
the smallest error. This phase is called “learn-
ing” or “training”.  Once the training phase of 
the model has been successfully finished, the per-
formance of the trained model has to be validat-
ed using an independent validation set of data. 

For the presented application 70 % of the data 
were used for a training set and the rest for the 
testing. The test set measured how well the mod-
el learned based on the data from the learning 
phase. For validation, data are usually taken 
from the whole set when there are not enough ad-
ditional data for this procedure. 

Use of a 3D Scanner

For measuring rock joint surface roughness, 
an Advanced Topometric Sensor (ATOS I) was 
used (Fig. 3) which operates by combining mea-
suring principles of optical triangulation, pho-
togrammetry and fringe projection (Keller & 
Mendricky, 2015). With the help of a projector, 
different light-dark fringe patterns are produced 
by the measuring part. 

The ATOS system consists of three separate 
components: the fringe digital projector and two 
CCD cameras. The two cameras, separated by a 
fixed distance, operate on the basis of known rel-
ative orientation thus forming the basis for tri-
angulation. The fringe digital projector, located 
midway between both cameras, projects a struc-
tured light pattern onto the object to be scanned. 
During the scanning process, the coded fringe 
pattern undergoes a phase shift which means the 
pattern rapidly changes and is therefore nearly 
invisible to the human visual perception abilities. 
This pattern alteration process is recorded by the 
two CCD sensors with 3D coordinates calculated 
for each camera pixel by applying optical trans-
formation equations. The resulting highly-de-
tailed image consists of millions of measuring 
3D points which are acquired within a very short 
time (few seconds) without physically contacting 
the scanned surface. In the final step, the accom-
panying sensor software automatically generates 
a high-resolution point cloud which represents a 
precise 3D image of the scanned surface. Option-
ally, this point cloud can be further transformed 
into a surface model (using typical triangular or 
square grid templates (Fig. 4). In the figure the 

roughness of the rock joint surface measured 
from the share plane is presented.

The quality of surface measurements is obvi-
ously very important for the estimation of sur-
face roughness. The quality of the morphological 
model depends on the density of the measuring 
points, the measuring resolution and the preci-
sion with which these points can be located in 
space. The measuring area of the ATOS I system 
ranges from 125 × 100 mm2 to 1000 × 800 mm2 and 
the number of measuring points per individual 
scan reaching up to 1032 × 776 pixels.

Calculation methods of Grasselli model for the 
peak shear stress calculation 

Morphological parameters were calculated 
from scanning samples according to the Grassel-
li (2001) procedure (G01). The apparent dip an-
gle was used to calculate the three-dimensional 
morphology parameters (Fig. 5). The procedure is 
presented in equations 2 to 6. 

Fig. 3. The ATOS I 3D scanner and the sample.

Sl. 3. Skener ATOS I 3D in skenirani vzorec.

Fig. 4. Surface model of the rock joint.

Sl. 4. Skenirana površina razpoke.
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      (2)

      (3)

        (4)

       (5)

where m is the number of triangles, θ* is the 
apparent dip angle of the surface unit, α is the azi- 
muth, θ is the dip angle between the shear plane 
and the joint surface, t is the shear direction vec-
tor, n is the outward normal vector of the trian-
gle, n0 is the outward normal vector of the plane 
and n1 is the projection vector of n. The maxi-
mum contact area (A0) is calculated as follows:

      (6)

Where Am is the area of the rock joint and Al 
the contact area after the shear test.

The results from the ANN and from the Gras-
selli procedure were used for comparison. The 
peak shear strength of the samples was calculat-
ed according to the proposed criteria (Grasselli, 
2001) according to the eq. 7.

      (7)

where sn is the normal stress, st is tensile 
strength of the rock, fr basic angle of friction, 
θ*max is the maximum apparent dip angle of the 
surface unit, C is the roughness parameter, calcu-
lated using a best-fit regression function, which 
characterises the distribution of the apparent dip 
angles over the surface. Brazilian tests were done 
for tensile strength of the rock samples.

An average estimation error (Eave) was cal-
culated (Kulatilake et al., 1995) for both results 
(ANN and Grasselli model). 

      (8) 

Test procedure

Samples of different lithology were taken from 
the north part of Slovenia for a direct shear Rob-
ertson test. Samples had a diameter of less than 
10 cm and had a natural rock joint. They were 
tested under different vertical stress between 
0.1 and 0.4 MPa. Robertson direct shear tests 
were performed according to the ASTM D5607 
-16 standards and the final result of these tests 
was peak shear strength for every sample (tp). A 
shear test of basic friction angle was performed 
in a shear apparatus for every lithological type of 
rock (fr). Before the capsulation of the samples, 
the joints of the samples were scanned with the 
ATOS I scanner to obtain the morphological pa-
rameters. A data processing program, written in 
MatLab, was developed for the calculation of the 
rock joint morphological parameters according 
to Grasselli (2001).

Results 

The morphological parameters of the rock 
joints (A0, C, θ*max) were calculated as a result of 
scanning. The rest of the input parameters; sn, 
st, and fb, were obtained from the Robertson 
direct shear test. The morphological parameters 
and shear strength parameters are presented in 
Table 2.

Fig. 5. Geometrical identifica-
tion of apparent dip angle - θ*.

Sl. 5. Geometrična predstavi-
tev navideznega kota - θ*.

tan𝜃𝜃𝜃𝜃𝑠𝑠𝑠𝑠∗ = tan𝜃𝜃𝜃𝜃 (− cos α )      (2) 

cos 𝜃𝜃𝜃𝜃 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜
|𝑛𝑛𝑛𝑛||𝑛𝑛𝑛𝑛𝑜𝑜𝑜𝑜|      (3) 

cosα = 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛1
|𝑡𝑡𝑡𝑡||𝑛𝑛𝑛𝑛1|       (4) 

𝜃𝜃𝜃𝜃∗��� = 𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛1
|𝑡𝑡𝑡𝑡||𝑛𝑛𝑛𝑛1|

1
𝑚𝑚𝑚𝑚
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𝑠𝑠𝑠𝑠=1       (5) 

 

𝐴𝐴𝐴𝐴0 = 𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙
𝐴𝐴𝐴𝐴𝑚𝑚𝑚𝑚

     (6) 
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𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝑚𝑚𝑚𝑚
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Table 2. Input data for the peak shear strength calculation

Tabela 2. Vhodni podatki za izračun vrhunske strižne trdnosti

No Lithology
σt 

(MPa)
σn   

(MPa)
A0                
(-)

C                             
(-)

Ɵ*max  (°)
ϕb          
(°)

1 limestone 1.99 0.1 0.4147 17.03 86.86 24

2 limestone 1.99 0.3 0.5791 16.99 89.69 24

3 limestone 1.99 0.4 0.5499 28.75 75.55 24

4 limestone 1.99 0.4 0.1773 12.87 86.2 24

5 limestone 1.99 0.4 0.4859 20.87 82.807 24

6 limestone 1.99 0.3 0.4015 11.82 89.86 24

7 limestone 1.99 0.2 0.3953 27.92 86.95 24

8 limestone 1.99 0.4 0.4535 12.2 51.89 24

9 dolomite 2.17 0.15 0.3410 11.9 90 25

0 shale 0.3 0.4 0.5420 15.04 86.21 24

11 shale 0.3 0.2 0.4720 9.22 42.93 24

12 siltstone 2 0.1 0.4606 6.26 73.33 26

13 siltstone 2 0.4 0.2000 11.61 87.28 26

14 siltstone 2 0.4 0.3037 13.88 89.12 26

15 claystone 0.3 0.2 0.1200 19.98 84.74 20

16 claystone 0.3 0.2 0.4707 24.69 87.1 20

17 claystone 0.3 0.1 0.3459 13.27 89.9 20

18 sandstone 1 0.4 0.4613 11 79.25 30

19 claystone 0.3 0.1 0.4999 6.69 89.7 20

20 claystone 0.3 0.4 0.5020 9.4 84.24 24

21 siltstone /claystone 1 0.4 0.3655 28.62 89.9 24

22 claystone 0.3 0.4 0.3953 24.4 79.72 24

23 siltstone/ claystone 0.3 0.2 0.5105 9.25 89.05 24

24 siltstone 7.37 0.4 0.4238 15.05 89.71 30

25 dolomite 3.02 0.1 0.5829 6.46 79.12 30

26 dolomite 3.02 0.3 0.4821 7.21 82.08 30

27 siltstone 2 0.3 0.5153 12.46 84.87 30

28 dolomite 3.02 0.3 0.4821 7.21 82.09 30

29 dolomite 2.49 0.25 0.4126 6.06 90 28

30 claystone 0.3 0.4 0.4824 15.59 85.47 20

The prediction of peak shear stress (tp) with 
ANN and G01 model was performed in the next 
step. For both calculations the same input pa-
rameters were used (sn, st, A0, C, θ*max, fb). 

Results of the ANN model

Several ANN structures were used for the tp 
prediction, with a different number of neurons in 
the input layer, but the best results were achieved 
with the next structure: 

Input layer; 6 neurons (sn, st, A0, C, θ*max, fb)
Hidden layer, 29 neurons
Output layer, one neuron (tp)

For example, if we added residual shear angle 
(fr) and type of lithology to the presented 6 input 
neurons, the calculation made by the ANN did 
not converge to the minimum error.

A hyperbolic tangent transfer function was 
used as the activation function. We also used 
an sigmoidal function, but the average estima-
tion error (Eav) was almost the same. The trained 
ANN predicted the peak shear strength with 
quite a small average estimation error; Eav = 6 % 
(Table 2). A comparison between the predicted 
peak shear strength with the ANN and with the 
results from the laboratory Robertson test is pre-
sented in Figure 6. 
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Result of G01 model

Next calculation was done based on the G01 
model (eq. 8) and compared with the results ob-
tained from laboratory Robertson tests. The av-
erage estimation error between the Robertson 
tests and calculation with G01 model was much 
higher, Eav = 28 % (Table 3).

The comparison between the calculated peak 
shear strength with the G01 model and with the 
results from the laboratory Robertson test is pre-
sented in Figure 7. 

Fig. 6. Measured peak shear stress vs ANN predicted.

Sl. 6. Primerjava izmerjene vrhunske strižne trdnosti in  
izračunane z ANN.

Fig. 7. Measured peak shear stress vs G01 model.

Sl. 7. Primerjava izmerjene vrhunske strižne trdnosti in  
izračunane z G01 modelom.

Table 3. Results of peak shear strength calculation for ANN 
and G01 model.

Tabela 3. Rezultati izračuna vrhunske strižne trdnosti izra-
čunani z ABB in G01 modelom.

No
τp 

meas. 
(MPa)

τp
ANN
(MPa)

τp 
G01 

(MPa)
No

τp 
meas. 
(MPa)

τp 
ANN 
(MPa)

τp
G01

(MPa)

1 0.06 0.06 0.35 16 0.07 0.07 0.68

2 0.25 0.18 0.01 17 0.05 0.06 0.13

3 0.17 0.17 1.05 18 0.31 0.31 0.11

4 0.21 0.21 0.54 19 0.06 0.06 0.21

5 0.20 0.22 0.63 20 0.28 0.30 0.31

6 0.18 0.18 0.31 21 0.27 0.27 0.10

7 0.12 0.12 0.47 22 0.22 0.22 0.05

8 0.23 0.22 0.36 23 0.14 0.09 0.19

9 0.12 0.12 0.12 24 0.25 0.25 0.80

0 0.30 0.30 0.28 25 0.09 0.09 0.18

11 0.13 0.09 0.06 26 0.29 0.29 0.06

12 0.08 0.08 0.14 27 0.23 0.23 0.39

13 0.22 0.22 0.29 28 0.29 0.29 0.06

14 0.21 0.22 0.48 29 0.24 0.12 0.07

15 0.09 0.09 0.10 30 0.16 0.16 0.07

Eave 6% 28%

Discussion

The presented calculation was demonstrated 
by analysing 30 samples of jointed rock. The in-
put parameters for the Grasselli calculation (G01) 
and the ANN were the same. The peak shear 
stress depends on the normal stress under which 
the shear test is performed and because of this, 
the normal stress (sn) is one of the most impor-
tant parameters. Grasseli (2001) showed that A0, 

C and θ*max, are the most important morphologi-
cal parameters and tensile strength (st) and basic 
friction angle ϕb are the most important strength 
characteristics of the rock. 

The peak shear stress of the rock joints was 
measured in laboratory and then predicted with 
the ANN and with the G01 model. The results of 
both calculations are presented in Figure 8. Pre-
diction of peak shear stress with the ANN is very 
close to the measured results, while the calcula-
tions with the Grasselli model were much higher 
in comparison to the measured results for at least 
for 30 % of samples. 

Samples used in a comparable study (Gras-
selli, 2001) have larger dimensions, at least 
200 mm × 100 mm × 100 mm and were consolidat-
ed under a normal load higher than 1 MPa. In our 
case, samples were tested under the normal loads 
between 0.1 and 0.4 MPa. The use of smaller sam-
ples and lower vertical load are probably a reason 
for the higher average estimation error obtained 
with the G01 model. Such large samples are often 
difficult to obtain for testing. Samples are usual-
ly taken from boreholes and they have a maximal 
diameter of 10 cm and in this case the Robertson 
shear test is much more convenient. The result of 
the Robertson test was peak shear stress which 
was then calculated with the ANN and Grasselli 
model. 
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The calculation with the ANN reaches very 
good results; Eave was 6 %. The calculated Pear-
son coefficient was 0.93, which confirms a very 
high correlation between the measured peak 
shear stress and the predicted peak shear stress 
with ANN. The comparison between the calcu-
lated and measured peak shear strength is pre-
sented in Figure 8.

Results of more tests with different rock li-
thology have to be included in to the ANN in the 
future. Given the diverse lithological composition 
in Slovenia, it is necessary to include samples of 
metamorphic and igneous rocks. Also, the num-
ber of samples of soft rock has to be increased, 
because the main geotechnical problems usually 
occurred in soft rocks like shale or claystone.

Higher number of samples could assure that 
the trained ANN would be a useful tool in engi-
neering practice. 

Conclusions

Shear geomechanical characteristic are the 
most important factor in the stability of the joint-
ed rock mass. Usually the failure occurs along a 
fissure or a joint. Peak shear stress is the main 
parameter for a slope design, foundations or 
tunnel excavations. If it is exceeded, the failure 
could cause large damage to geotechnical struc-
tures. In the paper the technology of rock joint 
scanning was used for determining the morpho-
logical parameters of the joint roughness. Addi-
tional parameters were obtained from the Rob-
ertson direct shear test and tensile strength from 
the Brazilian test. Results showed that the ANN 
could successfully predict the peak shear with 
quite small error. The future research will be fo-
cused on analysing more samples with different 

lithology, especially soft rock, to make the ANN 
usable for wider engineering practice.
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