
Northumbria Research Link

Citation: Rafiq, Husnain (2022) Android malware detection using machine learning to
mitigate adversarial evasion attacks. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/51185/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

ANDROID MALWARE DETECTION USING MACHINE
LEARNING TO MITIGATE ADVERSARIAL EVASION

ATTACKS

HUSNAIN RAFIQ

PhD

2022

ANDROID MALWARE DETECTION USING MACHINE
LEARNING TO MITIGATE ADVERSARIAL EVASION

ATTACKS

HUSNAIN RAFIQ

A thesis submitted in partial fulfilment of the requirements of the

University of Northumbria at Newcastle for the degree of Doctor

of Philosophy

Department of Computer & Information Sciences

December 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents

of this dissertation are original. I also declare that this work has not been submitted in whole

or in part for consideration for any degree or qualification, to this or any other university. This

dissertation is my work and to the best of my knowledge, does not contain content which breaks

any law of copyrights, except as specified in the text and acknowledgments.

Name: Husnain Rafiq

Date: 7 December 2022

i

Dedications

I want to dedicate this thesis to my parents Muhammad Rafiq and Mussarat Rafiq, my wife

Sana Husnain, siblings, and my dear friend Irfan Ayub who always supported me during this

journey.

ii

Acknowledgements

I would like to thank Prof Dr Nauman Aslam and Dr Biju Issac for their valuable guidance,

support and encouragement at every step. Without their help, this research work would not have

been possible. I would also like to thank Prof Dr Muhammad Aleem, who motivated me to

pursue PhD after completion of my master’s degree.

I would like to extend my gratitude to Rizwan Hamid Randhawa and Dr Muhammad Khalid

for their support during the paper submission procedures. I would also like to thank my col-

leagues Rana Faisal Shahzad and Mohammad AlJaidi for their constant support and valuable

discussions.

iii

Abstract

In the current digital era, smartphones have become indispensable. Over the past few years,

the exponential growth of Android users has made this operating system (OS) a prime target

for smartphone malware. Consequently, the arms race between Android security personnel and

malware developers seems enduring. Considering Machine Learning (ML) as the core compo-

nent, various techniques are proposed in the literature to counter Android malware, however,

the problem of adversarial evasion attacks on ML-based malware classifiers is understated. ML-

based techniques are vulnerable to adversarial evasion attacks. The malware authors constantly

try to craft adversarial examples to elude existing malware detection systems. This research

presents the fragility of ML-based Android malware classifiers in adversarial environments and

proposes novel techniques to counter adversarial evasion attacks on ML-based Android malware

classifiers.

First, we start our analysis by introducing the problem of Android malware detection in adver-

sarial environments and provide a comprehensive overview of the domain. Second, we highlight

the problem of malware clones in popular Android malware repositories. The malware clones in

the datasets can potentially lead to biased results and computational overhead. Although many

strategies are proposed in the literature to detect repackaged Android malware, these techniques

require burdensome code inspection. Consequently, we employ a lightweight and novel strategy

based on package names reusing to identify repackaged Android malware and build a clones-free

Android malware dataset. Furthermore, we investigate the impact of repacked Android malware

on various ML-based classifiers by training them on a clones-free training set and testing on

a set of benign, non-repacked malware and all the malware clones in the dataset. Although

trained on a reduced train set, we achieved up to 98.7% F1 score. Third, we propose Cure-

Droid, an Android malware classification model trained on hybrid features and optimized using

a tree-based pipeline optimization technique (TPoT). Fourth, to present the fragility of Cure-

Droid model in adversarial environments, we formulate multiple adversarial evasion attacks to

iv

Abstract v

elude the model. Fifth, to counter adversarial evasion attacks on ML-based Android malware

detectors, we propose CureDroid*, a novel and adversarially aware Android malware classifi-

cation model. CureDroid* is based on an ensemble of ML-based models trained on distinct

set of features where each model has the individual capability to detect Android malware. The

CureDroid* model employs an ensemble of five ML-based models where each model is selected

and optimized using TPoT. Our experimental results demonstrate that CureDroid* achieves up

to 99.2% accuracy in non-adversarial settings and can detect up to 30 fabricated input features

in the best case. Finally, we propose TrickDroid, a novel cumulative adversarial training frame-

work based on Oracle and GAN-based adversarial data. Our experimental results present the

efficacy of TrickDroid with up to 99.46% evasion detection.

TABLE OF CONTENTS

Declaration i

Dedications ii

Acknowledgements iii

Abstract iv

CHAPTER 1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 3

1.3 Research Questions . 4

1.4 Research Contributions . 4

1.5 Thesis Structure . 6

1.6 Research Publications . 7

CHAPTER 2 Background 9

2.1 Introduction . 9

2.2 Overview of Android Ecosystem . 11

2.2.1 Android OS Architecture . 11

2.2.2 Android Application Structure . 13

2.2.3 Application Naming Conventions . 14

2.2.4 Reverse Engineering . 14

2.3 Android Malware Analysis Techniques . 15

2.3.1 Static Analysis . 17

2.3.1.1 Android characteristic-based method 17

2.3.1.2 Opcode-based method . 18

2.3.1.3 Program graph-based method 19

vi

2.3.1.4 Signature based methods: 19

2.3.2 Dynamic Analysis . 20

2.3.2.1 System calls based methods 20

2.3.2.2 Graph-based methods . 21

2.3.2.3 Resource consumption-based methods 22

2.3.2.4 Network traffic-based methods 23

2.3.3 Hybrid Analysis . 23

2.4 Android Malware Repackaging . 24

2.5 Adversarial Machine Learning . 27

2.5.1 Evasion Attacks on Android Malware Classifiers 29

2.5.2 Adversarial Defences on Android Malware Classifiers 31

2.5.3 Discussion . 34

2.6 Summary . 35

CHAPTER 3 Enhancing the ML-based Malware Classification by Detection and

Removal of Repacked Apps for Android Systems 36

3.1 Introduction . 36

3.2 Motivation . 39

3.3 Datasets . 42

3.3.1 Drebin . 43

3.3.2 AMD . 43

3.3.3 Androzoo . 43

3.3.4 Malware clones in datasets . 44

3.4 AndroMalPack . 46

3.4.1 Data pre-processing . 47

3.4.2 Features set modeling . 47

3.4.3 Learning Phase . 50

3.5 Experimental Results . 51

vii

3.5.1 Discussion . 56

3.6 Comparison . 58

3.7 AndroMalPack Dataset . 59

3.8 Summary . 61

CHAPTER 4 Evasion-aware Android malware detection model based on multiple

classifiers system 62

4.1 Introduction . 62

4.2 Motivation . 63

4.3 Dataset and Feature extraction . 66

4.3.1 Features set modeling . 67

4.4 CureDroid . 68

4.5 Adversarial Attacks . 71

4.5.1 Adversarial Strategies . 71

4.5.2 Attack on CureDroid . 76

4.6 A Countermeasure: CureDroid* . 77

4.6.1 Experimental Results . 78

4.7 Performance Comparison with state-of-the-art 83

4.8 Summary . 84

CHAPTER 5 An Oracle and GAN-based Cumulative Adversarial Training Tech-

nique to improve Evasion detection for Android Malware 86

5.1 Introduction . 86

5.2 Proposed Attacks Methodology . 88

5.2.1 Dataset and Feature Extractor . 88

5.2.2 ML Models Segment . 88

5.2.3 Evasion Attacks Generator . 90

5.2.3.1 Code Injection Attacks (CIA) 90

viii

5.2.3.2 GAN Adversarial Examples Attacks (GAEA) 90

5.3 Experimental Results and Analysis . 94

5.4 Summary . 100

CHAPTER 6 Conclusion and Future Work 102

6.1 Summary of Contributions . 102

6.2 Future Directions . 104

6.2.1 Automated Tools . 104

6.2.1.1 Churn GAN Generated Synthetic Data 105

6.2.1.2 Modification of APK . 105

6.2.2 Adversarially Robust Classifiers . 105

6.2.2.1 Scale CureDroid* . 105

6.2.2.2 Robust feature engineering 106

6.2.2.3 Image-based Adversarially Robust Classifiers 106

Glossary 107

References 109

Appendix CHAPTER A Bat Algorithm 135

Appendix CHAPTER B Firefly Algorithm 137

Appendix CHAPTER C Grey wolf optimizer 139

ix

x

LIST OF TABLES

Table 2.1 Overview of prominent dynamic features used in existing approaches 17

Table 2.2 Overview of prominent dynamic features used in existing approaches 21

Table 2.3 A Comparative Analysis of Techniques Related to Adversarial Attacks

and Defences on Android Malware Detectors 33

Table 3.1 Malware Samples in Drebin from Top 5 Families 39

Table 3.2 Fuzzy Hash-based Similarity Results 42

Table 3.3 Summary of selected Malware Datasets 44

Table 3.4 System Specifications 45

Table 3.5 Top 10 most reused packages in Datasets 46

Table 3.6 Train and test set splits for classifiers trained on clones free train sets 51

Table 3.7 Results of Classifiers Trained on Reduced Train sets 53

Table 3.8 Hyper-parameters for RF proposed by NIAs 55

Table 3.9 Results of AndroMalPack 55

Table 3.10 Results of classifiers on Datasets using Random 80/20 Train and Test Splits 56

Table 3.11 Comparison of AndroMalPack with related work 60

Table 4.1 Overview of Used feature 67

Table 4.2 Hyperparameters setting of Gradient Boosting Classifier for HybridDroid

Model 70

Table 4.3 Performance of CureDroid Model 71

xi

Table 4.4 TPOT model selection for Feature subsets 80

Table 4.5 Android malware classification results based on various feature subsets 81

Table 4.6 A comparison among different evasion techniques related to CureDroid* 84

Table 5.1 GAN Configuration 92

Table 5.2 Classification Results 96

xii

LIST OF FIGURES

Figure 2.1 Generic model of ML-based Android malware classification 10

Figure 2.2 Android OS Architecture 12

Figure 2.3 Android Application Package (APK) Reverse Engineering 15

Figure 2.4 Malware Analysis Taxonomy 16

Figure 2.5 Opcodes Extraction from APK 18

Figure 2.6 APK Repackaging 25

Figure 2.7 Types of Adversarial Attacks 27

Figure 2.8 Level of Attacker’s knowledge defined by Srndic and Laskov [113] where

O represents that adversary has no knowledge about the target system. 28

Figure 3.1 Generation of Fuzzy Hash 40

Figure 3.2 Quantity of Repacked malware in Datasets based on package names reusing 46

Figure 3.3 Block Diagram of AndroMalPack 48

Figure 3.4 ROC curves of classifiers trained on reduced train sets from Androzoo 54

Figure 3.5 Running time comparison of NIAs 57

Figure 3.6 Features extraction time comparison 58

Figure 4.1 Drebin ROC Plot 64

Figure 4.2 Feature Injection Attack 65

Figure 4.3 Evasion attack on Drebin 66

Figure 4.4 Block Diagram of CureDroid 70

xiv

Figure 4.5 Discriminating features in Android apps 73

Figure 4.6 Adversarial Attacks on CureDroid 77

Figure 4.7 Block Diagram of CureDroid* Model 79

Figure 4.8 Performance of CureDroid* in Adversarial settings 82

Figure 5.1 Evasion Attacks Methodology 89

Figure 5.2 Code Injection Attack 97

Figure 5.3 Results of GAEA 98

Figure 5.4 Evasion Rate 100

xv

Chapter 1

Introduction

1.1 Overview

As smartphones grow in usage, they are becoming an essential part of our daily lives. A re-

cent report revealed that US cell phone users spend over four hours and twenty minutes on their

phones each day [1]. The reason being, smartphones are crucial in a number of ways, includ-

ing communication, navigation, access to the internet, capturing experiences, storing data or

information and carrying out financial transactions. Smartphones have equipped users with var-

ious applications and generate a vast amount of sensitive data. Therefore, the security of these

devices is of prime concern.

Android dominates the mobile OS industry with more than 70% market share and over 2.8 bil-

lion active users which is significantly more than iPhone Operating System (iOS) or any other

mobile OS [2]. Apart from official Google play store, Android users can download apps from

third party app stores such as Samsung, Amazon and F-Droid. According to a recent report [3],

Google play store hosts more than 2.56 million Android applications (apps) with 142.9 billion

downloads in 2020 alone. Before an app is published on Google play stores, it is screened for

potential malware threats with a dynamic emulator environment called Google bouncer. In spite

1

CHAPTER 1. INTRODUCTION

of Google play store security, malware developers still find ways to manipulate it by exploiting

the vulnerabilities in the system. Furthermore, the open source nature of Android also makes

it possible for malware developers to upload malicious apps to the third party app stores. Con-

sequently, with the rise in Android OS usage, it has become popular amongst the smartphone

malware authors. Malware developers employ various techniques such as encryption [4], code

obfuscation [5], dynamic code upload [6] and application repackaging [7] to evade the existing

Android security mechanism.

Android security analysts are constantly working to address the issue of Android malware prop-

agation. Most of the existing anti-virus systems rely on signature-based detection [8], [9], [10].

A typical signature-based detection model analyses multiple segments of Android apps based on

network traffic, strings, byte code sequences and file hashes to locate patterns similar to known

malware samples. However, signature based detection is very fragile against evasion attacks.

An attacker can easily bypass a signature based detection technique by minimal effort such as

code encryption and application re-packaging [11]. On the other hand, behaviour-based de-

tection techniques tend to be more robust than signature-based detection models. Techniques

based on behaviour-based detection employ ML and deep learning (DL) to detect malware in

Android apps. Over the past decade, ML and DL has been widely used by researchers to clas-

sify malware and benign apps to mitigate Android malware attacks [12], [13], [14]. The ML and

DL models are trained on various features extracted from Android apps such as permissions,

Application Programming Interfaces (APIs), intents, network traffic, power usage and software

components to classify malware and benign apps. Numerous studies in the current literature

have demonstrated that advanced ML/DL-based defenses are not only capable of classifying

large amounts of malware and benign apps, but are also capable of detecting novel malware

samples [15].

2

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

A recent survey by AV-Test reports that the Android malware development peaked from 2015 to

2018, followed by a decreasing trend since 2018 [16]. Nonetheless, the amount of Android mal-

ware is still tremendous with over 2.64 million new Android malware developed in 2021 [16].

The phenomenal growth of Android malware is due to ease of malware cloning techniques such

as application repackaging. Machine learning has been utilized extensively in Android malware

classification tasks; however, the reliability of such techniques in adversarial environments is of

key concern. Interestingly, ML-based malware classification models can be easily manipulated

by using adversarial examples during training or testing phase [17], [18], [19]. The adversar-

ial attacks performed during training are known as poisoning attacks, whereas the adversarial

attacks performed during the testing phase refer to evasion attacks. To perform poisoning at-

tacks, the adversary corrupts the training data in order to compromise the training process. On

the other hand, evasion attacks are performed to evade the underlying ML model by carefully

crafting a malicious sample such that the model miss-classifies it during the testing phase. The

evasive samples are usually created by code obfuscation and injecting or removing discriminat-

ing features from the Android app [20].

Many ML-based solutions are proposed in the literature to defend against Android malware.

Although most of the techniques proposed in the literature report remarkable results, the secu-

rity of ML-based malware detectors is of concern. Since the critical assumption behind ML is

that the data used for the training phase represents the problem domain and deliberate modifica-

tions of data do not occur [21]; therefore, models built using ML are vulnerable to adversarial

attacks. Consequently, an ideal malware detector must be able to classify the adversarial exam-

ples correctly. The other significant aspect discussed in this research is emphasising the problem

of repacked malware in the Android malware datasets. Repacked/cloned samples in malware

repositories can potentially lead to biased classification results and computational expense in

terms of the feature extraction process [22] [23]. This research is an effort towards developing

3

CHAPTER 1. INTRODUCTION

ML-based accurate and adversarially-aware Android malware detection techniques trained on

clones-free datasets.

1.3 Research Questions

Inspired to address the challenges in developing accurate and adversarially robust Android mal-

ware detection techniques, the following research questions are formulated:

• RQ1: How often do malware samples in benchmark Android malware repositories re-

use package names, and can we consider them as clones/repacked versions of known

malware?

• RQ2: What is the impact of repacked malware on ML-based Android malware classi-

fiers?

• RQ3: How fragile are ML-based Android malware classifiers against adversarial evasion

attacks?

• RQ4: How can we harden the security of ML-based Android malware classifiers against

adversarial evasion attacks?

1.4 Research Contributions

The novel research contributions of this research are as follows:

• Research questions RQ1 and RQ2 are addressed. We first quantify the potential clones of

known malware within three benchmark Android malware datasets (Drebin [24], AMD

[25] and Androzoo [26]). We employ a simple yet effective method of comparing the

package names of the samples under observation with known malicious package names.

Furthermore, we propose the AndroMalPack model to investigate the impact of repacked

apps with identical package names on various machine learning models. AndroMalPack

4

CHAPTER 1. INTRODUCTION

extracts permissions, APIs and Intent-based features from Android apps in the datasets to

train the machine learning models. AndroMalPack removes all the repacked malware sam-

ples (based on package name reusing) from the training sets however, retains the repacked

malware in the test sets to measure the effectiveness of ML models. Although detecting

repacked malware based on package names is a lightweight approach and can be easily

evaded (by renaming the package), our target in this work is to quantify existing clones

in the benchmark datasets rather than detecting novel clones. AndroMalPack selects the

best performing ML model (Random Forrest) on reduced datasets and further tunes the

hyper-parameters by employing nature inspired algorithms (NIAs) to achieve improved

results. Finally, we publish a comprehensive dataset of repacked apps based on the identi-

cal package names in the Drebin, AMD, and AndroZoo datasets to foster the research on

the analysis of repacked Android malware.

• Research questions RQ3 and RQ4 are addressed. The primary concern is to highlight

and address the vulnerability of ML-based Android malware classifiers against adversar-

ial evasion attacks. First, we propose CureDroid, an Android malware classifier trained on

hybrid features and optimised using Tree-based pipeline optimization technique (TPoT).

Although CureDroid achieves a remarkable classification accuracy, we present the fragility

of the proposed model in adversarial settings. We design and develop mimicry attacks,

feature removal attacks, and feature injection in conjunction with feature elimination at-

tacks to evade CureDroid. Furthermore, to counter evasion attacks, we propose Cure-

Droid*, a novel and adversarially robust extension of CureDroid. CureDroid* employs

multiple representations of discriminating feature subsets from an extensive array of vari-

ous features rather than using one large feature set. The primary motivation for using the

single feature vector source partitioned into various subsets (APIs, intents, system calls

and permissions-based subsets of features) is to enable each representation to contribute

to training on separate classifiers. Consequently, multiple classifiers trained on differ-

ent Android app feature representations makes the attacker’s job challenging to evade the

5

CHAPTER 1. INTRODUCTION

malware detection model.

• Research question RQ4 is further addressed by exploring the effectiveness of adversarial

training as a defence strategy to counter adversarial evasion attacks on Android malware

detectors. First a case study is developed to evade multiple ML-based classifiers trained on

API calls-based features of Android apps. We employ mimicry attacks based on Oracle

and Generative Adversarial Networks (GANs)-based adversarial data to evade various

ML-based classifiers. Furthermore, we propose a novel and robust adversarial training

scheme called TrickDroid based on cumulative adversarial training of various ML-based

classifiers on Oracle and GAN based adversarial data to improve evasion detection.

1.5 Thesis Structure

• Chapter 2 provides a discussion on the background of the Android malware analysis and

detection domain in terms of the related works. First, we analyse the ML-based Android

malware detection techniques based on static, dynamic and hybrid analysis. Secondly,

we categorize the adversarial attacks based on target classifiers/techniques in Android

malware detection domain. We then investigate the defence proposed in literature against

adversarial attacks on Android malware detectors.

• Chapter 3 proposes AndroMalPack. Section 3.2 presents a brief background about An-

droid application repackaging. Section 3.3 provides the motivation for the study, Section

3.4 presents the details of datasets used and the statistics about potential repacked mal-

ware based on package names reusing. Section 3.5 presents AndroMalPack, an Android

malware classifier trained on clones free train sets and optimised using nature-inspired al-

gorithms. The experimental results are demonstrated in Section 3.6 and comparison with

related work is discussed in Section 3.7. Section 3.8 presents details about the published

dataset, and Section 3.9 concludes the chapter.

• Chapter 4 proposes CureDroid*, an ensemble classifiers-based Android malware classi-

6

CHAPTER 1. INTRODUCTION

fication model to mitigate adversarial evasion attacks. Section 4.2 discuses the motivation

for the study and Section 4.3 presents the details of hybrid featured dataset and feature

extraction process. Section 4.4 provides the details of the proposed CureDroid model and

evaluation results, section 4.5 gives a description of proposed adversarial evasion attacks

on CureDroid. Section 4.6 presents the CureDroid* model and an analysis of the results of

CureDroid*. Section 4.7 discusses the related work and Section 4.8 concludes the chapter.

• Chapter 5 proposes TrickDroid, a robust cumulative scheme for adversarial training. Sec-

tion 5.1 provides a comprehensive background of adversarial training techniques in ma-

chine learning domain. Section 5.2 presents the proposed attacks methodology and exper-

imental results are discussed in Section 5.3. Section 5.4 concludes the chapter.

• Chapter 6 concludes this thesis by discussing potential future work and open challenges.

1.6 Research Publications

Journal Papers:

[1] Husnain Rafiq, Nauman Aslam, Usman Ahmed, and Jerry Chun-Wei Lin. ”Mitigating Mali-

cious Adversaries Evasion Attacks in Industrial Internet of Things,” in IEEE Transactions on In-

dustrial Informatics, vol. 19, no. 1, pp. 960-968, Jan. 2023, doi: 10.1109/TII.2022.3189046.

[2] Husnain Rafiq, Nauman Aslam, Muhammad Aleem, Biju Issac and Rizwan Hamid Rand-

hawa. ”AndroMalPack: enhancing the ML-based malware classification by detection and re-

moval of repacked apps for Android systems”. Sci Rep 12, 19534 (2022). https://doi.org/10.1038/s41598-

022-23766-w

Conference Papers:

[1] Husnain Rafiq, Nauman Aslam, Biju Issac, and Rizwan Hamid Randhawa. ”An Investigation

on Fragility of Machine Learning Classifiers in Android Malware Detection,” IEEE INFOCOM

2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),

7

CHAPTER 1. INTRODUCTION

2022, pp. 1-6, doi: 10.1109/INFOCOMWKSHPS54753.2022.9798161.

[2] Husnain Rafiq, Nauman Aslam, Biju Issac and Rizwan Hamid Randhawa. ”On Impact

of Adversarial Evasion Attacks on ML-based Android Malware Classifier Trained on Hybrid

Features.” In 14th International Conference on Software, Knowledge, Information Management

and Applications (SKIMA), 2022. (Accepted)

8

Chapter 2

Background

2.1 Introduction

The application of machine learning has proven to be very effective in malware detection due

to remarkable classification accuracy and the ability to identify novel samples. In terms of An-

droid malware detection, numerous characteristics such as permission, intents, system calls, API

calls, and strings are extracted from Android applications and incorporated into feature vectors.

Furthermore, ML-based algorithms are trained on these feature vectors to predict the labels of

unknown data. A generic model representing the operation of any typical ML-based Android

malware classification system is depicted in Figure 2.1. Although ML-based malware detectors

can accurately categorize the malware and benign apps more than even a malware security an-

alyst, these techniques are vulnerable to maliciously crafted inputs. Therefore, the adversary

can purposefully fabricate malicious input in motivation to evade the ML-based classification

model. The strategies employed to deliberately mislead ML-based classification models are

called adversarial machine learning.

Due to the numerous applications of ML in various fields, a plethora of attack mechanisms

are proposed by researchers in order to demonstrate the fragility of ML-based classifiers [27],

9

CHAPTER 2. BACKGROUND

Figure 2.1: Generic model of ML-based Android malware classification

[28]. For example, in the field on computer vision, the authors in [29] demonstrated that a

medical image of a benign tumour could be easily manipulated to be classified as a malignant

tumour by injecting carefully crafted distortion. Likewise, the authors in [30] argue that medical

image-based classifiers are easier to evade than natural image-based classifiers. The reason is

that medical images generally have significant discriminating regions regarding class distribu-

tion. Consequently, a small perturbation in high attention segments can lead to misclassification.

Similarly, in the case of image processing in autonomous vehicles, an adversary can craft a sam-

ple such that it may appear to be a stop sign to the human eye. In contrast, the ML model can

be misled into classifying it as a passing sign [31]. Furthermore, the authors in [32] and [33]

demonstrated the adversarial attacks on learning-based PDF malware detectors to present the

vulnerabilities in ML-based learning models. In the case of the Windows operating system, a

recent survey by [28] presented an extensive review of practical adversarial attacks on ML-based

Windows malware detectors.

This work mainly focuses on state-of-the-art techniques for ML-based Android malware detec-

tion. We explore various malware detection techniques, adversarial attacks and potential defence

10

CHAPTER 2. BACKGROUND

mechanisms proposed in the literature related Android malware domain. In summary following

are the main contributions of this chapter:

• An in-depth analysis of the Android operating system and the structure of the Android

Application Package (APK) files is presented.

• In order to develop a taxonomy of the methodologies, we investigate the state-of-the-art

approaches relevant to the Android malware detection domain.

• A comprehensive review of the characteristics of Android applications used for ML-based

Android malware detection is provided.

• We investigate the reliability of ML-based Android malware detection in adversarial en-

vironments, considering the level of expertise possessed by the adversary.

• We categorize the strategies used for adversarial attacks against ML-based Android mal-

ware classifiers.

• We survey and categorize the adversarial defences proposed in the literature to counter

adversarial evasion attacks on Android malware classifiers.

2.2 Overview of Android Ecosystem

This section provides a brief background information on Android OS architecture, application

structure. naming conventions and APK reverse engineering process.

2.2.1 Android OS Architecture

Android is an open-source operating system based on the Linux kernel and is compatible with

a wide range of smart devices such as smartphones, television sets, smartwatches and tablets.

Figure 2.2 presents the standard architecture of Android OS. Since Android OS is based on the

open-source Linux kernel, developers can add new features, employ custom optimization, and

perform extreme configurations. Unlike the Linux kernel, which only allows system calls, the

11

CHAPTER 2. BACKGROUND

Figure 2.2: Android OS Architecture

Android framework communicates with underlying hardware through APIs. Consequently, a

Hardware abstraction layer (HAL) is implemented over the Linux kernel in order to establish

an interface for hardware and software communication in Andriod OS design. Android run-

time and native libraries are introduced on top of the HAL layer in Android OS architecture.

Furthermore, the Android runtime environment includes Dalvik Virtual Machine (DVM) and

essential libraries. DVM leverages core features of the Linux kernel, such as memory manage-

ment and threading, to ensure that many instances of Android apps run effectively. The native

libraries layer provides a set of libraries that enable access to the core features of Android OS,

12

CHAPTER 2. BACKGROUND

such as media, SSL, and SQLlite. The next layer in the Android OS architecture stack is the

Android application framework which provides Android developers with access to a wide range

of powerful Android APIs. Android APIs are a collection of classes and packages that allow de-

velopers to communicate with Android OS functions such as SMS management, telephony, and

Bluetooth. Finally, the top layer of the Android OS stack includes specific pre-installed system

applications such as email, alarm, browser and clock. Moreover, any additional third-party apps

installed through the official Google play store or third-party app stores are also included in the

application layer.

2.2.2 Android Application Structure

Android applications are generally written in Java programming language and published in a

compressed format known as an Android application package (APK). Smartphone users based

on Android OS can directly download and install apps from the official app store (Google play

store) or other third-party app stores such as Amazon and AppChina. Generally, Android APK

is made up of the following components:

• Dalvik byte code: Android applications are developed in Java and then compiled as .class

files (Dalvik byte code). The .class files are compressed into a single Dalvik executable

file named classes.dex, which is ultimately executed on the DVM.

• Manifest file: Android application consists of an AndroidManifest.xml file that contains

important information about the app’s components and structure. The AndroidMani-

fest.xml file contains information about the primary package name, permissions required

by the app, hardware components accessed by the app, activities, broadcast receivers,

services, intent filers, and software features required by the app.

• Resources: It contains all of the necessary resources required by the app such as pictures,

animations, layouts, and user interface. At build time, all of the needed resources are

compiled into the app.

13

CHAPTER 2. BACKGROUND

• Libraries: This folder contains all compiled external libraries that are utilised in the

application.

• Signatures: All Android apps have to be digitally signed before they can be published on

an app store. A digital signatures refers to a cryptographic hash which represents the app

developer.

2.2.3 Application Naming Conventions

Every Android app on the app store must have an app name and a unique package name. App

name refers to the app’s title that appears on the app store. It is not requisite for an app to

have a unique name as multiple apps on the Android official app store can be found sharing

the same name. On the other hand, the Android package name is the unique identity of an app

which is defined in AndroidManifest.xml file. Usually, the package name is the name of the

base package, which is created when the app is developed. The base package can have further

sub-packages containing java classes and activities. No two apps installed on the same device

can have identical package names [34]. If two apps with identical package names are installed

on the same device, the latter will override the previous one as an updated version. Malware

authors frequently upload cloned apps with the same package names and slight modifications to

trick antivirus systems which rely on hash-based detection.

2.2.4 Reverse Engineering

Android application package (APK) is a zipped archive that contains classes.dex file, Android-

Manifest.xml file, resources and libraries in compressed form. The zip archive contents are not

human-readable as the java classes are compressed into a single Dalvik executable (.dex) file.

However, it is possible to reverse engineer an APK file to extract java source code and corre-

sponding files using several tools. Figure 2.3 explains the steps required to reverse engineer an

APK. APK tool is used to unzip the APK file to extract classes.dex file. The classes.dex file is

then decompiled in form of java-archive .jar file by using dex2jar tool. The .jar produced by

14

CHAPTER 2. BACKGROUND

dex2jar tool contain java byte code in form of .class files which are still not human-readable.

Finally, a java decompiler tool such as JAD is used to decompile the .class files in the form of

java source code.

APK File

APK Tool

Dex2Jar

JAD

Source code

R
ev

er
se

 E
n

g
in

ee
ri

n
g

.dex file

.class file

Figure 2.3: Android Application Package (APK) Reverse Engineering

Reverse engineering of an Android application is typically carried out while performing static

analysis of an Android application. After the app has been reverse engineered, the malware

analyst can access the app’s source code and the manifest.xml file to retrieve various app char-

acteristics. An Android application’s source code is typically parsed to obtain data and features

like strings, network addresses, API calls, and function call graphs. In contrast, it is possible to

extract static features like permissions, filtered intents, package names, services, receivers and

hardware components from the manifest.xml file of an Android app.

2.3 Android Malware Analysis Techniques

Malware analysis is broadly classified into three major types 1) static analysis, 2) dynamic anal-

ysis, and 3) hybrid analysis. This section presents a taxonomy of Android malware analysis

techniques (Figure 2.4) with a brief description of each technique. Furthermore, we list the An-

droid application features employed for malware detection based on static and dynamic malware

15

CHAPTER 2. BACKGROUND

analysis techniques. The orange highlighted parts in Figure 2.4 refer to the techniques employed

in this work for Android malware analysis and detection.

Figure 2.4: Malware Analysis Taxonomy

16

CHAPTER 2. BACKGROUND

2.3.1 Static Analysis

Static analysis is the technique of analyzing malicious files without executing the application.

Static analysis involves analyzing an application’s source code or binary code to detect poten-

tially malicious activity. It allows an analyst to evaluate the static attributes of a malicious file,

such as strings, hashes, signatures, and metadata, to find patterns similar to known malware.

Since static analysis does not require to execute an application, it is inexpensive in terms of

computational cost and time. Static analysis is widely used in the ML-based Android malware

detection domain. Various discriminating features are extracted from malicious and benign An-

droid apps, and are employed for training and testing ML-based algorithms. Table 2.1 presents

the list of various features that can be extracted through static analysis to perform Android mal-

ware detection. Furthermore, in this sub-section, we briefly describe popular Android malware

detection techniques based on static analysis.

Table 2.1: Overview of prominent dynamic features used in existing approaches

Features Source Description Ref.

Permissions AndroidManifest.xml
Special privileges which an app requires
for execution.

[24], [35], [36],
[37], [38], [39]

API calls Source/byte code
API calls invoked by app extracted through
static analysis.

[35], [40], [24],
[36], [41], [42]

URLs Source code
URLs embedded as strings in source code
of an app.

[43], [24], [44]

Intents AndroidManifest.xml
Intent objects define specific actions to be
performed.

[45], [46], [24],
[47]

Opcodes Byte code
An instruction which define the operation
to be performed.

[48], [49], [50],
[51], [52], [53]

Strings Source Code
Strings such as names of functions, classes,
objects and variables.

[54], [55], [56],
[57]

Package Name AndroidManifest.xml
Name of the main package used to identify
a specific Android application.

[58], [59], [60]

App components AndroidManifest.xml
list of activities, services, receivers and
providers and for each app component.

[24], [61], [62],
[63]

2.3.1.1 Android characteristic-based method

In this method, multiple characteristics of Android apps are extracted using static analysis, and

ML-based models are trained to categorize Android malware and benign apps. Characteristics

17

CHAPTER 2. BACKGROUND

of Android apps refer to features extracted from AndroidManifest.xml file such as permissions,

intents and hardware components and features from source code such as API calls, n-grams and

URLs. Drebin [24], one of the most cited works in the Android malware detection domain,

employed a characteristics-based method for Android malware detection. Drebin performed

static analysis to extract multiple features from Android apps such as APIs, permissions, intents

and hardware components to train a linear Support Vector Machine (SVM) model in order to

categorize Android malware and benign apps. The evaluation results of Drebin report 94%

malware detection accuracy with a meagre false positive rate. Likewise authors in [35], [40],

[54], [36], [37], [38], [39] and [64] identified Android malware by using characteristic-based

methods.

Figure 2.5: Opcodes Extraction from APK

2.3.1.2 Opcode-based method

Opcodes-based methods for Android malware detection use a sequence of opcodes extracted

from Android apps to classify malicious and benign apps. The overview of opcode extraction

from Android apps is presented in Figure 2.5. Android application is deployed as a compressed

file (APK) which contains AndroidManifest.xml file, Dalvik executable (.dex) file and resources.

The .dex file contains application byte code and can be disassembled to extract multiple smali

files. Each smali file corresponds to a class in the form of assembly code generated by Dalvik

virtual machine (DVM). The smali code consists of human-readable instructions where each

instruction has opcodes and operands. The authors in [48] created a feature set by extracting

n-grams from opcode sequences from Android apps and applied ML-based algorithms for mal-

18

CHAPTER 2. BACKGROUND

ware detection. Yan et. al. [65] used Long Short-Term Memory (LSTM) technique to learn

the contextual semantics from raw opcode sequences extracted from Android apps in order to

identify malware. Furthermore, a recent study [53] demonstrated that opcode-based techniques

for malware detection can be utilized to detect obfuscated Android malware.

2.3.1.3 Program graph-based method

Graph-based methods for Android malware detection are used in both static and dynamic anal-

ysis techniques, based on the graph extraction method. In static analysis, Control Flow Graphs

(CFGs) are extracted from the source code of the Android app in order to detect malware. CFGs

represent a program’s hierarchical flow where a node refers to an instruction/statement, and an

edge represents the directed flow from one node to another. Graph-based methods are widely

employed in the Android malware detection domain as they can capture more semantic features

from the apps than characteristic and opcode-based methods. Fan et al. [66] employed a graph-

based method to construct frequent sub-graphs based on API calls to identify common behaviour

between the same Android malware families. Similarly, [67] extracted application similarity

graphs based on function calls and combined ML-based algorithms to detect Android malware.

Consequently, they achieved up to 95.5% accuracy on various Android malware datasets. Yang

et al. [68] proposed DGCNDroid, a deep graph convolutional network-based model by using

API call sequence extracted through static analysis. The model was evaluated using 11,120 apps

and achieved up to 98.2% malware detection accuracy.

2.3.1.4 Signature based methods:

Signature-based malware detection techniques consider footprints of different components of

an app, such as methods and classes in order to compare them with signatures of known mal-

ware. Although signature-based techniques have a very low false positive rate, these methods

are not robust against obfuscated malware, require regular updates and cannot detect zero-day

malware samples. AndroSimilar [58] considered a similarity hashing-based method to gener-

19

CHAPTER 2. BACKGROUND

ate signatures of Android apps in order to detect obfuscated malware samples; however, it only

achieved 63% accuracy. Zheng et al. proposed DroidAnalytics [60], a multi-level signature gen-

eration technique to detect repacked Android malware. DroidAnalytics had significant benefits

compared to traditional hash-based techniques (MD5, SHA1, SHA256) and could detect 2,475

malware samples belonging to 102 different families. Ngamwitroj et al. [69] employed a string

sequence of permissions and broadcast receivers of an Android app as a signature to detect An-

droid malware. They achieved 86.56% accuracy when tested on a 525 malicious and 122 benign

Android apps dataset.

2.3.2 Dynamic Analysis

Dynamic analysis involves executing an application in order to detect potential malicious activ-

ity. Since executing a malicious application may harm the host device, it is generally performed

in an isolated virtual environment [70] [71]. The dynamic analysis allows the analyst to study the

behaviour of an app by analyzing the registry, file system, resource consumption, processes and

network traffic in safe mode. Furthermore, dynamic analysis can capture the significant features

of an Android app, such as instruction sequences, API calls sequence and system calls. These

characteristics are further embedded into feature vectors to train ML-based classifiers. Table 2.2

presents the list of noticeable dynamic features used in various studies to detect Android mal-

ware. Since dynamic analysis requires the execution of an app in a controlled environment, it is

more expensive than static analysis in terms of resource and time consumption. Following is a

brief description of popular Android malware detection techniques based on dynamic analysis.

2.3.2.1 System calls based methods

As discussed in Section 2.2.1, all the apps in Android run on the application layer, while Android

OS is based on the Linux kernel. Whenever an app requires access to the core functionality of

the Linux kernel, such as power management or network connection, system calls are used

20

CHAPTER 2. BACKGROUND

Table 2.2: Overview of prominent dynamic features used in existing approaches

Feature Description Ref.
Used permissions
and API calls

Requested permissions and API calls traces extracted
through dynamic analysis.

[72], [73], [74],
[75]

Network traffic
These features include the data extracted from
network traffic logs, HTTP communications and
data from network packets.

[76], [77], [78],
[79], [80]

System calls
System calls are invoked in order to access the
core functionality of kernel. System call traces
can be extracted through dynamic analysis.

[81], [82], [83],
[84], [64], [85]

Battery life
Battery consumption of apps are profiled at
runtime in order to find malicious patterns

[86], [87], [88]

CPU utilization
This feature refers to the CPU utilization of
an app at runtime.

[89], [88], [90],
[91]

Memory usage
This feature captures the memory usage of a
particular app in order to find malicious patterns.

[88], [90], [89]

to shift the control from the application layer to the Linux kernel [81]. Likewise, control is

returned to the application layer from the kernel mode once the required task has been completed.

Canfora et al. [81] performed dynamic analysis to extract the sequence of system calls from the

Android apps for malware detection. They employed ML-based models to learn the associations

between system calls and achieved up to 97% malware detection accuracy on a dataset of 1000

benign and 1000 malicious Android apps. Similarly, Vidal et al. [82] employed a sequence of

boot system calls to develop a pattern recognition system in order to detect Android malware.

Consequently, they achieved up to 95.6% detection accuracy by evaluating Drebin [24] and

Genome [92] Android malware datasets.

2.3.2.2 Graph-based methods

In dynamic analysis, graph-based techniques are used to generate graphs from Android appli-

cations during execution time in order to perform malware detection. The extracted graphs are

further embedded into feature vectors, and ML algorithms are trained to categorize Android

malware and benign apps. Lin et al. [93] employed dependency graphs based on the dynamic

behaviour of an app as a feature to classify Android malware and benign apps. They used func-

21

CHAPTER 2. BACKGROUND

tion calls and the data dependency between function calls to construct dependency graphs. They

transformed the graphs into feature vectors in order to train a model based on SVM and cor-

rectly classified 213 out of 225 malware samples in their dataset. Pektaş et al. [94] generated

API call graphs from Android apps by performing dynamic analysis and transformed the graphs

into feature vectors to train a deep neural networks-based model. They evaluated the model

on a balanced dataset of 58,139 Android malware and benign apps and obtained up to 98.65%

accuracy. Surendran et al. [95] proposed GsDroid, a technique to represent Android apps as a

directed graph of sequenced system calls and combined ML-based algorithms to learn from ma-

licious patterns. GsDroid obtained up to 99% malware detection accuracy on various Android

malware datasets.

2.3.2.3 Resource consumption-based methods

A compromised device may exhibit specific patterns in terms of power consumption, CPU uti-

lization and memory usage; therefore, resource consumption-based methods consider these as a

feature to detect potential malware. Hongyu and Tang [87] considered the power consumption

of Android applications as a feature to detect malware. They profiled the power consumption of

different categories of apps, where each app was monitored for 5 minutes. Based on the profiled

data, they were able to detect 79 out of 100 malicious Android apps in the test set. Milosevic

et al. [89] extracted execution traces of CPU utilization and memory usage of Android apps

in order to detect malware and achieved 84% malware detection accuracy when evaluated on

Genome malware dataset[92]. Similarly, Shehu et al. [88] employed CPU utilization, memory

usage, battery and network consumption-based features of Android apps to generate fingerprints.

They evaluated the proposed technique on a limited dataset of obfuscated versions of known

malware and were able to detect all the obfuscated malware samples in the test set.

22

CHAPTER 2. BACKGROUND

2.3.2.4 Network traffic-based methods

Network traffic-based methods capture the network data to detect an Android app’s malicious

behaviour. Malik et al. proposed CREDROID [76], a pattern-based malware detection method

derived from network traffic logs. CREDROID analyzed the Android genome malware dataset

[92] and found that 63% of the malware samples in the dataset generate network traffic. Wang

et al. [77] considered the HTTP communication flows of Android apps in the form of text and

applied Natural language processing ((NLP) on text to develop an Android malware detection

model. They evaluated the model on a 31,706 benign and 5258 malicious Android apps dataset

and achieved 99.15% malware detection accuracy. A subsequent study by Wang et al. [78]

considered the URL addresses in the HTTP traffic of Android apps for malware detection. They

employed multi-view neural networks trained on URL data to formulate a malware detection

model and achieved 98% accuracy on the test set.

2.3.3 Hybrid Analysis

The hybrid analysis incorporates a combination of static and dynamic analysis techniques to ex-

tract various features from Android apps in order to detect malware. Static analysis is lightweight

and effective in detecting novel and repacked malware; however, it may fail in case of code

obfuscation and dynamic code loading. On the other hand, dynamic analysis captures the be-

haviour of an app at run time. It is more effective in detecting evasive malware but requires a

controlled environment and is a time-intensive task. Consequently, hybrid analysis is employed

to overcome the shortcomings of static and dynamic malware detection techniques. Kouliaridis

et al. proposed Androtomist [96], an automated tool based on hybrid analysis to monitor the be-

haviour of Android apps. Androtomist employed ensemble classifiers trained on a combination

of static and dynamic features of benign and malicious Android apps. When evaluated on three

different Android malware datasets, Androtomist outperformed various existing approaches for

Android malware detection.

23

CHAPTER 2. BACKGROUND

Arshad et al. proposed SAMADroid [97] a three-level Android malware detection technique

based on hybrid analysis. SAMADroid employed neural networks trained on a combination of

static and dynamic features and claimed malware detection accuracy of 99.07% on the Drebin

dataset [24]. Similarly, Tuan et al. proposed eGSDroid [98], a two-level Android malware

detection method based on hybrid analysis. The first level considered static analysis to indicate

sensitive components of Android apps, whereas the second stage employed dynamic analysis to

detect potential data leakage from sensitive components of apps. Although eDSDroid achieved

promising results, the evaluation was performed on a limited dataset of toy apps instead of real-

world applications. Maryam et al. proposed cHybriDroid [99], an Android malware classifier

based on the conjunction of static and dynamic features of Android apps. They employed tree-

based pipeline optimization technique (TPOT) [100] to formulate malware detection model and

achieved up to 96% malware detection accuracy on Drebin dataset [24].

2.4 Android Malware Repackaging

Application repackaging refers to reverse engineering an app, injecting custom functionality, and

re-assembling the app into deployable form. Malware developers commonly use application

repacking to inject malicious payloads into cloned versions of popular apps on the Android

platform. The process of Android application repackaging is shown in Figure 2.6. Following

are the main steps involved in the repackaging of an Android application:

• Download trending premium or free app from the mainstream app stores.

• Reverse engineer the app with disassemblers (as discussed in Section 2.2.4).

• Inject malicious payload into the app and update the AndroidManifest.xml and resources

file.

• Use ApkTool to reassemble and compile the app in the form of a deployable APK.

• Deploy the app in various third-party app stores.

24

CHAPTER 2. BACKGROUND

Figure 2.6: APK Repackaging

Apart from injecting malicious payloads in benign apps, malware developers often repack ex-

isting malware to evade antivirus systems. Most antivirus systems depend on known malware

signatures for malware detection [101]. The malicious signatures databases of the antivirus

systems are updated regularly. In the case of Android, a simple unpack and recompilation of

the application without any modifications results in a change of the entire signature [11]. Re-

assembling the app changes the organization of contents like classes, methods and variables in

the classes.dex file, which eventually affects the signature of the app. Consequently, attackers

regularly use the practice of simple recompilation to create exact clones of known malware to de-

ceive antivirus systems. Apart from malicious code injection and simple repackaging, attackers

also repack premium apps with custom advertisements and distribute them for free to generate

revenue.

Android malware repackaging has become a significant concern for security analysts over the

past few years. Currently, most antivirus systems rely on the signature-based detection [102, 8,

9]. In contrast, application repackaging or creating clones of Android malware have become a

common practice by attackers to evade such techniques. During the past few years, the research

community have shown prevalent interest in the detection of repacked and cloned malware by

employing alternative techniques [7]. Zhou et al. presented one of the preliminary studies

25

CHAPTER 2. BACKGROUND

on repacked malware in the Android malware domain and claimed that more than 80% of the

existing Android malware is repacked [92]. Likewise, DNADroid [103] was proposed to detect

potential clones of Android apps by using dependency graphs based on methods in the Android

app. Zheng et al. proposed DroidAnalytics [60], an Android malware detector based on a multi-

level signature generation technique with the ability to determine malware clones. ImageStruct

[104] and a similar work DroidEagle [105] leverage the similarity of images and UI layout

to detect potential clones and repacked malware in Android apps. DroidClone [106] rely on

the structure and reusing of code segments to detect repackaged apps and clones of Android

malware. Singh et al. employ a multi-view machine learning-based technique to detect repacked

Android malware [107] and report up to 97.46% accuracy using 15,297 malware samples.

Glanz et al. proposed CodeMatch [108], a technique based on advanced library detection and

fuzzy hashing to detect repacked Android apps. They applied the CodeMatch tool on various

Android app stores and revealed that 15% of the apps in the commercial app stores are repacked

versions of known apps. Ishii et al. [109] proposed Appraiser to perform a large-scale analysis of

cloned apps in Android app repositories. They evaluated 1.3 million apps from various Android

app stores and found that around 13% of the apps in third-party app stores are clones of existing

apps. Furthermore, they revealed that up to 70% of the cloned apps in third-party app stores

are repacked versions of known malware. Gaofeng et al. [110] proposed a technique to detect

repacked Android malware based on mobile edge computing. They employed the Density Peak

Cluster method on network traffic data to find the similarities between Android apps. As a result,

they detected up to 92% of the repacked apps in the dataset.

Alam et al. [111] proposed DroidClone to address the problem of clones in Android malware.

DroidClone employs MAIL, a novel language to identify control flow patterns in the program.

When evaluated on a dataset of 2050 malware and 2130 benign Android apps, DroidClone

achieved a detection rate of up to 94.2%. A recent study by Roopak Surendran [112] inves-

tigated the impact of semantically similar Android malware apps on various ML models. Suren-

26

CHAPTER 2. BACKGROUND

dran employed an opcode subsequence-based clustering technique to identify malware clones in

the Drebin dataset. The results show that the malware detection rate drops from 95% to 91%

when malware clones are removed from the dataset.

2.5 Adversarial Machine Learning

Figure 2.7: Types of Adversarial Attacks

As discussed earlier, researchers increasingly use ML-based techniques to develop countermea-

sures for Android malware. Since the key assumption behind ML is that the data used for the

training phase represents the problem domain and deliberate modifications of data do not occur

[21]; therefore, models built using ML are vulnerable to adversarial attacks. An attacker can de-

liberately formulate adversarial samples in order to evade the ML-based model [17], [18], [19].

Figure 2.7 presents a generalized model of adversarial attacks on a typical ML-based malware

detection system. Generally, adversarial Attacks on ML are classified into evasion attacks and

poisoning attacks. Evasion attacks are performed on trained models, whereas poisoning attacks

refer to corrupting the training data to compromise the training process. Since this work focuses

on adversarial evasion attacks, most techniques discussed in the literature review are related to

adversarial evasion attacks and defences on Android malware detectors.

27

CHAPTER 2. BACKGROUND

A critical component of adversarial attacks is the level of the attacker’s knowledge about the

target system. Srndic and Laskov [113] describe training data, feature set and classification

algorithm as the key components of any learning-based system. Consequently, knowledge about

these attributes plays a significant role for an adversary where obtaining all three is the best

scenario (Figure 2.8). Similarly, Biggio and Roli [114] defined the following three levels of the

attacker’s knowledge:

Figure 2.8: Level of Attacker’s knowledge defined by Srndic and Laskov [113] where O
represents that adversary has no knowledge about the target system.

Perfect knowledge (PK): this is the best case scenario for an attacker where the adversary

has the knowledge about the training data, the learning algorithm, features set and the hyper-

parameters setting of the classifier. The attacks performed with PK can also be referred to as

white box attacks as the attacker has complete knowledge about the underlying system.

Limited knowledge (LK): in this case, the attacker has partial knowledge about the target sys-

tem. The adversary may know about the learning algorithm but is unaware of the system’s in-

ternals, such as hyper-parameters settings of the classifiers and the training data. The adversary

might have partial or full knowledge about the dataset and features set in terms of the dataset.

In the worst case, the attacker can have knowledge of the particular feature subset considered

by the learning algorithm. The attacks performed with LK can also be referred to as grey box

attacks as the adversary has partial knowledge about the underlying system.

Zero knowledge (ZK): this is considered the worst-case scenario for an attacker as the adver-

28

CHAPTER 2. BACKGROUND

sary does not know the system, such as the learning algorithm, hyper-parameters setting and

the training data. The attacks performed with ZK are also referred to as black box attacks,

where the adversary probes the defence mechanism with random inputs in order to observe the

output.

2.5.1 Evasion Attacks on Android Malware Classifiers

In this section, we survey and categorise various evasion attacks proposed in the literature to

elude Android malware detectors.

Features manipulation: In this type of attack, the adversary manipulates the features of the ma-

licious app by either injecting or removing features to evade the malware detection model. Abaid

et al. applied a feature manipulation attack on Drebin [24], a mainstream Android malware clas-

sifier. They applied feature injection and removal in Android apps and reported an evasion rate

of up to 100% by manipulating a few features in the feature vector of malicious apps. Chen

et al. [115] employed feature manipulation to present the fragility of linear classifiers trained

on Android malware and benign apps against evasion attacks. As a result, they achieved up to

100% evasion by modifying up to 25 features. Grosse et al. [116] evaluated the impact of feature

manipulation on a neural network-based Android malware classifier. They aimed to preserve the

malicious semantics of samples while performing modifications in the feature vector. They eval-

uated the model on Drebin [24] dataset and achieved up to 63% evasion rate. Calleja et al. [117]

proposed LagoDroid, a framework to trick the RevealDroid [118] classifier into miss-classifying

the malware family. LagoDroid used a genetic algorithm to generate known malware variants

by adding several new features to the existing malware feature set while preserving the actual

semantics of the malware. As a result, LagoDroid achieved up to 98% evasion rate.

Transformation Attacks: These attacks aim to obfuscate the malicious behaviour of Android

apps to evade commercial antivirus tools. Rastogi et al. [11] proposed DroidChameleon to per-

form three different types of transformation attacks on Android apps. The attacks include trivial

29

CHAPTER 2. BACKGROUND

transformations, transformations detectable through static analysis and transformations, which

are non-detectable through static analysis. They evaluated the transformed apps on ten com-

mercial antivirus tools and demonstrated that antivirus systems are vulnerable to transformation

attacks. Meng et al. [119] demonstrated the vulnerability of 57 antivirus tools by applying 12

different transformation attacks on Android apps. Similarly, Faruki et al. [120] also demon-

strated the low resilience of commercial antivirus tools by performing code obfuscation-based

transformations in Android apps.

Gradient-based Attacks: These attacks are generally applied to DL-based classification mod-

els. They compute the gradient of the network loss function in relation to the input and perturb

the input to evade the classifier with minimal modifications. Grosse et al. [121] applied gradient

attack on neural network-based Android malware classifier trained on Drebin dataset [24]. As a

result, they achieved up to 80% evasion rate.

Mimicry Attacks : In this type of attack, the adversary highlights the discriminating features

of benign apps and injects those features into malicious apps to trick the classification algorithm

into producing false labels. Demontis et al. [122] employed mimicry attacks to evade SVM

trained on Drebin [24] dataset. As a result, they achieved up to 90% evasion rate. Similarly,

Cara et al. [20] formulated mimicry attacks using API calls-based data. They trained Multi-layer

perceptron (MLP) on API calls based on data extracted from benign and malicious apps. The

MLP model was then evaluated by providing adversarial examples generated through mimicry

attacks. The experimental results demonstrated that 80% of the adversarial samples evaded the

MLP model.

Reinforcement Learning-based Attacks: refers to adversarial attacks that employ reinforce-

ment learning to constantly add perturbations in malware samples to evade the classification

model. Rathore et al. [123] proposed black-box attacks based on Reinforcement learning (RL)

to modify malware samples to be classified as benign. They evaluated the ten ML-based models

against evasive malware and achieved up to 58% evasion rate. Similarly, Rathore et al. employed

30

CHAPTER 2. BACKGROUND

RL to add limited perturbations in Android malware while preserving the malicious semantics of

the malware. They evaluated the proposed evasion attacks on eleven permissions-based Android

malware detectors and achieved a 46% evasion rate. They also performed the RL-based evasion

attacks on eleven intents-based Android malware detectors and reported an evasion rate of up to

95%.

GANs-based Attacks: Generative Adversarial Networks (GANs) could be used to automat-

ically generate adversarial examples to trick ML classifiers. Zhang et al. [124] proposed An-

drOpGAN, a technique to generate adversarial examples of Android malware that achieved an

evasion rate of 99% against four malware detectors. Furthermore, Li et al. [125] proposed a

technique based on bi-objective GANs to generate a novel adversarial examples attack method

against Android malware classifiers. Salman et al. [126] used GANs to harden the security of

Android malware detectors through intents-based features.

2.5.2 Adversarial Defences on Android Malware Classifiers

In this section, we survey and categorise various defences proposed in the literature to counter

adversarial evasion attacks on Android malware classifiers.

Adversarial training: refers to training the learning algorithm with adversarial examples. Gen-

erating adversarial samples to train learning algorithms is an area of research that has gained

dominant interest in the research community [127]. Grosse et al. [121] adversarially trained

neural networks on adversarial data and significantly reduced evasion rates. Taheri et al. [128]

used five different evasion attack models on Android malware classifiers and used GANs to

formulate an adversarial training-based countermeasure against evasion attacks. The authors

in [128] claim that GAN-based adversarial training methods improve the evasion detection of

Android malware by up to 50%.

Robust feature selection: Adversarial attacks against machine learning-based classifiers are

carried out by modifying the attributes of the original application. Generally, the features with

31

CHAPTER 2. BACKGROUND

high frequency in a given class are perturbed to elude the classification model [129]. Adversar-

ial feature selection techniques contemplate removing easily manipulable characteristics from

feature vectors to make the evasion process more difficult for the adversary. Chen et al. [115]

proposed SecCLS, an adversarially robust feature selection technique. SecCLS selected fea-

tures of the Android app which are difficult to manipulate and eventually made the attacker’s

job harder to evade the classifier. Demontis et al. [122] proposed Secure SVM (SecSVM),

an adversarially robust extension of SVM. SecSVM employed more evenly distributed feature

weights instead of employing high-weighted features. The experimental results demonstrated

that SecSVM significantly increases the adversarial robustness of the classifier against evasion

attacks.

Ensemble classifiers: Generally, ensemble classifiers-based systems are employed to enhance

classification accuracy in non-adversarial settings. Ensemble classifiers generate a collaborative

decision (output label) based on criteria such as voting, bagging or individual decision. Calleja

et al. [117] proposed RevealDroid*, an ensemble of classifiers-based techniques to counter

adversarial evasion attacks. RevealDroid* incorporated multiple tree-based classifiers trained on

random feature sets extracted from the Android app. The experimental results of RevealDroid*

demonstrated a significant reduction in evasion rate.

32

C
H

A
PT

E
R

2.
B

A
C

K
G

R
O

U
N

D

Table 2.3: A Comparative Analysis of Techniques Related to Adversarial Attacks and Defences on Android Malware Detectors

Technique Year Dataset Source Features type Adversary Knowledge Attack Type Target Evasion Proposed Countermeasure
[130] 2015 Drebin N/A Black-box Transformation Commercial Antivirus systems up to 99% N/A
[121] 2016 Drebin Static White-box Gradient-based Neural networks 80% Adversarial training
[131] 2016 Drebin Static Black-box Mimicry Random Forrest up to 20% N/A
[132] 2017 Drebin Static Black-box Feature manipulation SVM up to 100% N/A
[133] 2017 Malware genome Static Black-box Transformation Commercial Antivirus systems up to 100% N/A
[115] 2017 Comodo Cloud Static Black-box Feature manipulation SVM up to 98% Secure SVM
[116] 2017 Drebin Static Black-box Feature manipulation Neural networks up to 69% Defensive distillation
[134] 2017 Comodo Cloud Static Black-box Mimicry SVM 83.97 Secure learning
[122] 2017 Drebin Static White-box Mimicry SVM up to 90% Secure learning
[135] 2018 Comodo Cloud Static White-box Feature manipulation Linear-SVM 82.12% Features engineering
[136] 2018 Drebin Static Black-Box Transformation Sec-SVM up to 90% Enhanced Sec-SVM
[137] 2018 Drebin Static Black-box Transformation Comercial Antivirus systems 51.31% N/A
[117] 2018 Drebin Static Black-box Feature manipulation RevealDroid 99.10% Ensemble classifiers
[138] 2018 App stores Dynamic Black-box Label Flipping Random forest up to 100% Adversarial training
[139] 2018 Drebin Static Black-box Gradient-based RF and SVM up to 99% N/A
[125] 2019 Androzoo Static Black-box GAN-based Firewall up to 95% N/A
[140] 2019 MamaDroid/Drebin Static Black-box Gradient-based Nueral Networks up to 60% Ensemble learning
[141] 2020 Androzoo/VirusTotal Static White-box Feature manipulation SVM/Sec-SVM up to 100% N/A
[20] 2020 Drebin/Contagio/HelDroid Static Black-box Mimicry Multi-layer Perceptron up to 80% N/A

[142] 2020 Drebin/AMD/VirusTotal Static Black-box Mimicry SVM up to 80% N/A
[124] 2020 N/A Static Black-box GAN-based Antivirus systems up to 44% N/A
[143] 2021 Drebin Static Black-box Feature manipulation DT/RF/MLP up to 60% N/A
[144] 2021 Androzoo Static Black-box Transformation Drebin/Sec-SVM 81.07% N/A
[145] 2021 Androzoo Static Black-box Feature manipulation Drebin/Sec-SVM up to 97% Attack efficient classifier
[146] 2021 Androzoo Static Black-box GAN-based/Mimicry DroidDetector/DeepclasssifyDroid up to 50% image-based classifier
[147] 2022 Androzoo/Amd Static Black-box Feature manipulation SVM/LR/RF up to 100% N/A
[148] 2022 N/A Static White-box Gradient-based Nueral Networks/RF/XGB up to 75% Adversarial training
[149] 2022 Static Drebin Black-box Feature manipulation DT/ND/LR/SVM/RF/DNNs up to 95.31% Adversarial training

,

33

CHAPTER 2. BACKGROUND

2.5.3 Discussion

Table 2.3 presents an overview of techniques related to adversarial attacks and defences on

Android malware classifiers. Most of the techniques mentioned in Table 2.3 use the Drebin

dataset [24] to conduct the experiments. Although Drebin is one of the most used datasets in

the Android malware detection domain [150], the apps collected in the Drebin dataset are from

a period of 2010 to 2012. Since the Android apps from 2010 till 2012 are compatible with the

obsolete versions of Android OS, the credibility of malware classifiers trained and tested on the

Drebin dataset is of concern. Therefore in this work, in addition to Drebin, we employ more

recent datasets such as AMD, KronoDroid and Androzoo. These datasets contain apps ranging

from 2010 to 2022.

Furthermore, most of the approaches presented in Table 2.3 employ static features to train the

corresponding malware classifiers and consider black-box attacks. Since this research focuses

on evading ML-based Android malware classifiers at test time, black-box attacks are considered.

Interestingly, it has been observed that a fair amount of the techniques mentioned in Table 2.3

target linear classifiers (particularly SVM) for evasion attacks. The reason being, linear classi-

fiers are more vulnerable to adversarial evasion attacks as compared to tree-based classifiers and

neural networks [132]. In this work, we also focus on evading the non-linear (XGB, RF and DT)

in addition to linear classifiers (SVM, LR and PT).

As shown in Table 2.3, apart from [132], [134], [138] [141], [124], [143] and [146], all of

the other techniques report more than 70% evasion rate on the target classifiers or Antivirus

systems. Consequently, these reported evasion rates highlight the grave concern of ML-based

Android malware classifiers in adversarial settings and provide a strong motivation to build

evasion-aware Android malware detectors. Apart from evading the target classifiers, half of

the techniques presented in Table 2.3 do not provide a countermeasure against evasion attacks.

Furthermore, four of the techniques that have proposed countermeasures ([121], [138], [148],

and [149]) employ adversarial training as a countermeasure against evasion attacks. Although

34

CHAPTER 2. BACKGROUND

adversarial training can provide security against one type of adversarial perturbations, it does

not guarantee adversarial defence against other types of adversarial attacks [151] [152]. A ro-

bust adversarial defence should have the potential to detect diverse perturbations rather than

focusing on a particular type of modification in the adversarial sample. This work aims to build

adversarially aware Android malware detection systems that can detect different types of evasive

malicious Android malware samples.

2.6 Summary

This chapter has provided a detailed overview of Android malware detection techniques. We

provided a comprehensive overview of the Android Ecosystem, emphasising Android OS ar-

chitecture, APK structure and reverse engineering process. We then presented a taxonomy of

Android malware detection techniques based on the state-of-the-art approaches proposed in the

literature. We identified and discussed the discriminating features of Android applications fre-

quently used for training ML-based Android malware detectors. Furthermore, we emphasised

the problem of adversarial evasion attacks on ML-based Android malware classifiers. We cate-

gorised and discussed various adversarial evasion attacks and defences proposed in the literature

on Android malware detection.

In this thesis, we focus on developing accurate and adversarially aware ML-based Android mal-

ware detection techniques. We emphasise the problem of repacked malware in benchmark

Android malware repositories and its impact on ML-based Android malware classifiers. Fur-

thermore, we demonstrate the fragility of various ML-based malware classifiers in adversarial

settings. Finally, we propose adversarial defences based on ensemble classifiers and adver-

sarial training to harden the security of ML-based Android malware classifiers against evasion

attacks.

35

Chapter 3

Enhancing the ML-based Malware

Classification by Detection and

Removal of Repacked Apps for

Android Systems

3.1 Introduction

A torrent of Android malware attacks (over 12 million) has emerged in the past few years [153].

Most of the time, attackers produce clones by repacking existing legitimate or malicious apps to

achieve the desired malevolent objectives [102]. According to some previous studies [92], 80%

of the mobile malware is repackaged. Since the Android apps are available to download from

public app stores such as the Google play store and other third-party app stores, an attacker can

easily retrieve the legitimate app, reverse engineer the app and inject malicious code. Then the

attacker can publish the modified version of the original app on public app stores [154]. This

kind of attack refers to a repackaging attack. The motivation behind application repackaging

36

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

is not always malicious. It has been observed that some developers get access to the source

code of premium apps, repack the apps and distribute the cloned version for free. This refers to

application plagiarism. The plagiarized version of premium apps is further used as a source of

income by incorporating paid advertisements and in-app purchases.

Numerous techniques have been proposed in literature [7] to detect Android repackaged mal-

ware. The machine learning (ML) being the core element of Android malware detection, most

of the techniques discussed in [7] focus on detecting the clones. However, to the best of our

knowledge, no such study has been conducted to investigate the affects of removing the repack-

aged apps from training datasets. As discussed before, many apps in the current repositories are

clones of existing malware. The classification results of ML-based algorithms highly depend

on the quality of the data used for the training process. In contrast, pre-processing the training

data is a burdensome and time-consuming task. In the case of Android, the apps need to be re-

verse engineered to extract features. Various tools are used to reverse engineer the Android apps

[155] whereas the time required for the reverse engineering process is dependent on the size of

the app. Since 2015, Google has increased the size limitation of Android apps from 50MB to

100MB [156] and with the growth of the size of apps, the cost of reverse engineering increased

even more. Moreover, the training time and optimization time required for ML algorithms are

also dependent on the size of the training dataset. Consequently, the repackaged apps in the

training sets of ML-based algorithms result in increased costs.

This chapter first highlights the problem of repackaged malware by finding the potential clones

of existing malware in 3 benchmark Android malware datasets. In order to quantify the occur-

rence of repacked malware in the datasets, we use a simple yet powerful strategy by matching

package names of samples under observation with known malicious package names. Then, we

investigate the impact of cloned apps based on the same package names on multiple machine

learning models. In order to do so, we propose the AndroMalPack model. AndroMalPack

extracts permissions, APIs and Intent-based features from the apps in the datasets to train the

37

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

machine learning models. AndroMalPack removes all the repacked malware samples (based on

package name reusing) from the training set. However, AndroMalPack retains the repacked mal-

ware in the test sets to measure the effectiveness of ML models. AndroMalPack employs seven

different machine learning models (support vector machines (SVM), linear regression (LR),

decision trees (DT), random forests (RF), xgboost (XGB), AdaBoost (AB) and k-nearest neigh-

bours (KNN)) with default hyper-parameters trained on the clones free train-sets. Furthermore,

AndroMalPack selects the best performing ML model on reduced datasets and further tunes the

hyper-parameters by employing nature-inspired algorithms (NIAs) to achieve even better results.

Three nature-inspired algorithms (bat algorithm, firefly algorithm and grey wolf optimizer) are

used to optimize the hyper-parameters of best performing classification algorithm. Finally, we

publish a comprehensive dataset of cloned apps based on the same package names in Drebin,

AMD and AndoZoo datasets to support further research in repacked malware analysis.

The key contributions of this chapter can be summarized as follows:

1. We quantify the potential clones of known malware based on package names reusing in 3

benchmark Android malware datasets (Drebin, AMD and Androzoo).

2. We propose AndroMalPack, a classifier trained on clones free datasets and optimized

using nature inspired algorithms by using permissions, APIs and intents-based features.

Contrary to traditional 80/20 train and test splits, AndroMalPack filters outs the repacked

malware (based on package name reusing) from training sets, whereas test sets contain

all repacked malware in addition to non-repacked and benign samples. Consequently,

AndroMalPack significantly reduces the training set size yet retains high classification

accuracy. Although trained on reduced train sets, AndroMalPack outperforms multiple

state of the art techniques in terms of classification results.

3. We publish a hash dataset of 389,995 repackaged apps based on package names reusing

in Drebin, AMD and Androzoo repositories to foster future research in repacked Android

malware analysis domain.

38

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.1: Malware Samples in Drebin from Top 5 Families

Malware Family Samples
FakeInstaller 821
OpFake 363
BaseBridge 330
Kmin 147
FakeDoc 132

3.2 Motivation

Our preliminary study on repacked malware started with investigating malware samples from the

Drebin dataset [24]. Drebin contains 5560 malware samples belonging to 117 different malware

families. We selected 1793 malware samples from the top 5 families to detect repacked malware

based on the number of samples in each family (Table 3.1). Furthermore, we reverse-engineered

the selected apps to extract multiple features like permissions, intents, hardware components, the

network address and package names. Interestingly, we found a massive repetition of the apps’

package names under analysis. Our findings reveal that 48.68% of the apps in the selected dataset

share some frequently used package names. Consequently, we churned out the apps which share

the same package names for further analysis. As discussed earlier, simple re-compilation of

Android apps (re-construction of classes.dex file) results in a significant change in the app’s

signature. Therefore, all the apps that share the same package names still have different hash

values, so a more robust signature generation technique is needed. Our target at this stage was

to develop a novel signature generation technique such that all samples with the same package

names should have identical signatures. Subsequently, instead of relying on calculating the hash

value of classes.dex file, we considered the hash generation for all the extracted source codes

of the apps. In an Android app, all the source code is present in the main package of the app.

Therefore, once the app is reverse-engineered, the hash of the main package is calculated.

Further analysis of apps sharing the same package names revealed that most share the same

source code with minor changes. Traditional hash generation algorithms like SHA1 [157] and

MD5 [158] take input from an arbitrary file and produce a fixed-length cryptographic hash as an

39

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

output. Calculating the SHA1 or MD5 hash of two identical files will always produce the same

output. Most antivirus systems maintain contemporary databases of MD5 and SHA1 hashes of

know malware. However, a minor change in the original malware results in a significant SHA1

or MD5 hash change. Therefore, instead of calculating SHA1 or MD5 hashes of the source

codes of the apps sharing the same package names, we considered using a more robust hashing

technique called SSDeep [159].

SSDeep is based on a Context-Triggered Piece-wise Hashing (CTPH) technique known as fuzzy

hashing. As shown in Figure 3.1, contrary to traditional hashing, CTPH segemnts a given input

in multiple blocks. Furthermore, the hash of each block is calculated and then concatenated to

form a final hash. Hence a slight change in the original file will affect some parts of the hash;

however, the other segments will remain the same. Consequently, given the fuzzy hashes of two

identical files, i.e. the original file and a file with some minor changes, the SSdeep algorithm can

provide the similarity score between two hashes. In order to calculate the similarity between two

hashes, SSDeep employs edit distance metric. Given two strings, the edit distance between them

corresponds to the minimum number of mutations required to change the first string into the

second, where a mutation refers to either updating, inserting, or removing a character [159]. In

contrast, SHA1 and MD5 hashes cannot compare the similarity between two hashes. Therefore,

we considered using fuzzy hashes. If there are minor changes in the cloned malware, we can

still get a similarity score by comparing it with known malware hashes.

Figure 3.1: Generation of Fuzzy Hash

Algorithm 1 presents our fuzzy hash-based methodology to detect repacked malware. Let D be

40

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

the dataset of the top 5 families from the Drebin dataset. We reverse engineer all the apps in D

to extract a set of distinct package names as DPN={Pn1, Pn2, Pn3, . . . Pnn}. Furthermore,

we randomly select one app from D for each package name in DPN, calculate its fuzzy hash

using the SSDeep algorithm and place it in a set FH. The set of fuzzy hashes FH and an APK

from D are provided as input to the Algorithm 1, whereas a similarity score is produced as

an output. We calculate the fuzzy hash of the source code of the given APK as the first step

(Algorithm 1, line 1). The hash of the APK is then compared with all the hashes in FH by using

the hash comparison utility of SSDeep algorithm (Algorithm 1, line 3). If the similarity score

at any point is greater than the threshold value, the APK is declared as repacked malware, and

the similarity score is returned (Algorithm 1, lines 4-6). The algorithm returns 0 if none of the

hashes in FH has a similarity score above the threshold. According to some previous studies,

if two files are almost similar, their SSdeep hashes have a similarity score ranging from 40% to

60% [160, 161, 162, 163]. Furthermore, we performed a case study by comparing the hashes of

known repacked apps and found that, in most cases, the SSdeep hash similarity value was above

70%. Therefore, in this study, the threshold value for experiments was set at 70% similarity

score.

Algorithm 1: Repacked Malware Detection using Fuzzy hash
Input: 𝐹𝐻 = {ℎ1, ℎ2, ℎ3 ℎ𝑛} and 𝐴𝑃𝐾
Output: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒

1: ℎ𝑎𝑠ℎ⇐ 𝑆𝑆𝐷𝑒𝑒𝑝𝐻𝑎𝑠ℎ(𝐴𝑃𝐾)
2: for 𝑎𝑙𝑙 𝑖 ∈ 𝐹𝐻 do
3: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ⇐ 𝑆𝑆𝐷𝑒𝑒𝑝𝑆𝑖𝑚(𝑖, ℎ𝑎𝑠ℎ)
4: if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
5: Return 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦
6: end if
7: end for
8: Return 0

Table 3.2 summarizes the results of repacked malware detection using fuzzy hashes. We used

873 malware samples from 5 families for experiments and found six frequently reused pack-

ages. Furthermore, we randomly selected one sample from each set of apps sharing the same

41

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.2: Fuzzy Hash-based Similarity Results

Package Name Family Samples Average Similarity Score
com.software.application FakeInstaller 234 10.6%
com.software.appinstaller FakeInstaller 193 66.8%
com.keji.danti BaseBridge 164 63.4%
com.extend.battery FakeDoc 120 44.1%
com.km.installer Kmin 65 72.3%
ad.notify1 Opfake 97 96.9%

package name and calculated its fuzzy hash. The fuzzy hash is then compared with hashes of

all the remaining samples, which share the same package names. The app is declared repacked

malware if its fuzzy hash has a 70% similarity score with any of the hashes in FH. As reported

in Table 3.2, the average detection rate based on fuzzy hashes of malware samples sharing the

same package name is 58.81%. Although the results from fuzzy hash-based detection are not

promising, however provided us with solid motivation for further analysis of repacked malware

based on package name reusing. Nonetheless, the results from fuzzy hash-based repacked mal-

ware detection support our premises that samples sharing the same package name are potential

clones of already known malware. Further in this chapter, instead of focusing on signature-based

detection, we employ machine learning-based algorithms to detect repacked malware based on

package name-based similarity. We further extend the scope of our work by employing another

two Android malware datasets to investigate malicious apps sharing identical package names.

We aim to develop an Android malware classifier that is trained on reduced datasets (clones free)

while preserving high detection accuracy.

3.3 Datasets

This section discusses the details of the datasets we explore for the presence of malware clones

based on the same package names. We use three well known Android malware datasets Drebin

[24], AMD [25] and Androzoo [26] for analysis. Table 3.3 presents the summary of the selected

malware datasets. Furthermore, this section quantifies repacked malware based on package

42

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

names reused in each dataset.

3.3.1 Drebin

The Drebin dataset was released in 2014 to foster research in Android malware detection do-

main. The Drebin dataset is publicly available and is one of the most cited works in the Android

malware domain [150]. Drebin contains 123,453 benign and 5560 malicious apps, including

all the apps from Android malware genome project [92] (one of the pioneer Android malware

datasets)

3.3.2 AMD

Android malware dataset (AMD) was released in 2017 and contains 24,553 Android malware

apps belonging to 71 different malware families. AMD consists of malware samples collected

from 2010 to 2016 and is one of the most extensive publicly available Android malware datasets.

3.3.3 Androzoo

Androzoo is a publicly available, regularly updated and most popular Android apps dataset cur-

rently being used in recent studies [164, 165]. Androzoo was released in 2016 with more than

3 million Android apps and is constantly being updated. By the end of the second quarter of

2021, Androzoo contains more than 15 million Android apps. The Android apps in Androzoo

are collected from several platforms like the Google app store, third-party Android app stores

and VirusShare. The Androzoo dataset’s apps are scanned and labelled for potential malware

using more than 60 antivirus tools. Androzoo provides meta-data for Android apps like size, up-

load date, signatures and package name in the form of an excel file which is regularly updated.

We considered 695,470 malware apps from the Androozoo dataset to analyse repacked malware

based on reusing package names. Our criteria for app selection from Androzoo was that each

app must be labelled as malware by at least ten antivirus tools.

43

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.3: Summary of selected Malware Datasets

Dataset Families Samples Date
Drebin 117 5560 2014
AMD 71 24,553 2017
Androzoo 1969 695,470 2016

3.3.4 Malware clones in datasets

As discussed in Section 3.2, our preliminary study on the Drebin dataset revealed the presence of

frequently reused package names amongst malware samples. Further investigation on samples

sharing the same package names showed that most share almost the same source code. This

motivation led us to further explore multiple well-known Android malware datasets and quantify

the samples sharing the same or similar package names. Although detecting repacked malware

based on package names is a lightweight approach and can be easily evaded, our target in this

work is to quantify existing clones in the dataset rather than detecting novel clones. The reason

is that the selected datasets are very popular amongst the research community, so the presence

of clones must be considered in future works to avoid biased results [22]. Furthermore, we

investigate our claim’s credibility that samples having the same package name are clones of

known malware. Based on the results of our initial attempt using fuzzy hashes has provided us

with reasonable ground to further investigate by incorporating ML-based algorithms.

Algorithm 2: Quantifying Repacked Malware in Datasets using Package Names
Input: 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = {𝐴𝑝𝑘1, 𝐴𝑝𝑘2, 𝐴𝑝𝑘3 𝐴𝑝𝑘𝑛}
Output: 𝐶𝑜𝑢𝑛𝑡 (𝑅𝑒𝑝𝑎𝑐𝑘𝑒𝑑 𝑀𝑎𝑙𝑤𝑎𝑟𝑒)

1: 𝑃𝑛𝑎𝑚𝑒𝑠 = {}
2: for 𝑎𝑙𝑙 𝑖 ∈ 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 do
3: 𝑃𝑎𝑐𝑘 𝑛𝑎𝑚𝑒 ⇐ 𝐴𝑛𝑑𝑟𝑜𝐺𝑢𝑎𝑟𝑑 (𝐴𝑝𝑘𝑖)
4: if 𝑃𝑎𝑐𝑘 𝑛𝑎𝑚𝑒 ∉ 𝑃𝑛𝑎𝑚𝑒𝑠 then
5: 𝑃𝑛𝑎𝑚𝑒𝑠 .𝐴𝑝𝑝𝑒𝑛𝑑 (𝑃𝑎𝑐𝑘 𝑛𝑎𝑚𝑒)
6: end if
7: end for
8: 𝑅𝑒𝑝𝑎𝑐𝑘𝑒𝑑 𝑀𝑎𝑙𝑤𝑎𝑟𝑒 ⇐ 𝑆𝑖𝑧𝑒(𝐷𝑎𝑡𝑎𝑠𝑒𝑡) − 𝑙𝑒𝑛(𝑃𝑛𝑎𝑚𝑒𝑠)
9: Return 𝑅𝑒𝑝𝑎𝑐𝑘𝑒𝑑 𝑀𝑎𝑙𝑤𝑎𝑟𝑒

44

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.4: System Specifications

Features Specifications
Processor Intel(R) Corei7, 2.60GHz, 6 Cores
GPU NVIDIA GeForce GTX 1650 Ti 4GB GDDR6
Cache size 12MB
RAM 16 GB DDR4-2933MH
Platform Windows 10

Algorithm 2 presents our methodology to quantify repacked malware in Drebin, AMD and An-

drozoo datasets based on package names reusing. A dataset is provided as an input to the Algo-

rithm 2, and the number of repacked malware based on reused package names is provided as an

output. We take an empty set 𝑃𝑛𝑎𝑚𝑒𝑠 (Algorithm 2, line 1) which is populated with the distinct

package names in the given dataset. Furthermore, we extract the package names of all the apps

in the given dataset using the Androguard tool (Algorithm 2, line 3). AndroGuard [166] is a

python-based tool which can extract multiple features from AndroidManifest.xml file of a given

APK. The extracted package name is then appended in the Package names list 𝑃𝑛𝑎𝑚𝑒𝑠 if not

already present in it (Algorithm 2, lines 4-6). Consequently, the list 𝑃𝑛𝑎𝑚𝑒𝑠 is populated with all

the distinct package names within the dataset. The algorithm then returns the number of samples

that reuse existing malicious package names.

We used the AndroGuard tool to extract package names of samples from Drebin and AMD

datasets. In contrast, Androzoo already provides information about the package names. The

metadata provided by Androzoo saved a fair amount of time as the Androguard tool performs

reverse engineering of an APK to extract features. The time required to reverse engineer an

app depends on the size of the app. It took 2.5 seconds on average to reverse engineer apps

from Drebin and AMD datasets to extract package names using the Androguard tool (System

specification shown in Table 3.4). Our experiments to find repacked malware samples based on

package names reused in Drebin, AMD and Androzoo datasets are shown in Figure 3.2. 52.3%

of the samples in Drebin and 29.4% of samples in the AMD dataset contain reused package

names. Compared to Drebin and AMD, the Androzoo dataset contains far more samples and

45

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

interestingly, 42.3% of them contain reused package names. Table 3.5 outlines the statistics

about each dataset’s top 10 most reused package names in malware samples.

Figure 3.2: Quantity of Repacked malware in Datasets based on package names reusing

Table 3.5: Top 10 most reused packages in Datasets

Drebin AMD Androzoo
Package Name Sample Package Name Samples Package Name Samples
com.software.application 234 com.soft.android.appinstaller 548 com.software.application 2114
com.soft.android.appinstaller 193 tk.jianmo.study 384 com.xgbuy.xg 1183
Jk7H.PwcD 117 com.software.application 274 com.soft.android.appinstaller 769
com.extend.battery 110 edu.raj.sphincter 255 ad.notify1 727
ad.notify1 97 jp.bravo.honda 150 com.qihoo.appstore 676
com.convertoman.proin 92 com.android.app 143 ch.nth.android.contentabo l01 sim univ 535
vbkoxh.cswnpr 83 org.slempo.service 143 com.nemo.vidmate 475
com.depositmobi 71 fl.affectionate 114 com.qiyi.video 416
com.software.app 54 de.granulocyte 101 nang.dv 408
com.km.launcher 52 org.zxformat 98 tk.jianmo.study 384

3.4 AndroMalPack

As discussed in Section 3.2, signature-based malware detection is very fragile against a sim-

ple mutation in original malware. Consequently, malware authors often repack existing mal-

ware with minimal modifications to trick antivirus systems relying on signature-based detection.

46

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Therefore, we employ ML-based algorithms to create a more robust solution for repacked mal-

ware detection. The motivation to use ML algorithms is to support our claim that malware

samples sharing the same package names in popular Android malware datasets are clones of

known malware. In this section, we propose AndroMalPack (Figure 3.3), an ML-based An-

droid malware classifier trained on clones free train sets and optimized using nature-inspired

algorithms (NIAs).

3.4.1 Data pre-processing

As shown in Figure 3.3, AndroMalPack is provided with a malicious Android apps dataset.

Instead of splitting the dataset into random train and test sets (the traditional approach), Andro-

MalPack extracts the apps’ package names to build the train and test sets. All the apps which

have reused package names are directly assigned to the test set, whereas 70% of the apps with

unique package names are assigned to the train set, and 30% are allocated to the test set. Con-

sequently, train and test set distribution by AndroMalPack confirms the exclusion of malware

samples sharing the same package names from the training set and eventually retains diversity

and perceptible reduction of training set size. Furthermore, the benign apps dataset apps are

randomly distributed 70% in the train set and 30% in the test set.

3.4.2 Features set modeling

After train and testing set splits, AndroMalPack extracts the features from the Android apps. We

extract three types of features by using static analysis on Android apps. Android permissions

and intent filters-based features are extracted from AndroidManifest.xml file, whereas API calls-

based features are extracted from the source code of the apps. Following is a brief description

of the extracted features:

Android Permissions: Android protects the privacy of the user by employing the permissions

model. Android programmers must declare the sensitive permissions required by the app in the

AndroidManifest.xml file. Once the app is installed on an Android device, it notifies the user

47

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Figure 3.3: Block Diagram of AndroMalPack

about sensitive permission that the app requires, such as access to contacts, camera or micro-

phone. The pattern of permissions required by an Android app can employed to detect malware

48

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

by employing ML-based algorithms. Numerous techniques in literature use the Android permis-

sions model to detect potential malware in Android apps [39, 41, 37]

Intent Filters: define the communication mechanism between different components of an An-

droid app. Intents are simple message objects that transfer the information between different

modules such as activities, content providers, services and broadcast receivers of an Android

app. The intent filters of an Android app are declared in AndroidManifest.xml file and can be

employed as a feature set to train ML algorithms in order to detect Android malware. Many tech-

niques in literature employ intent filters in addition to other features from AndroidManifest.xml

file for malware detection [46, 167, 168].

API calls: Android application programmable interfaces (APIs) are a set of specifications and

protocols that are used to build and integrate Android applications. API calls are invoked in apps

at run-time to perform different tasks like sending SMS and getting network information. API

calls-based features are efficient in malware detection and are used by many existing malware

detection techniques [169, 170].

The aforementioned features are employed to construct feature vectors from samples in the

datasets. We construct a binary encoded feature vector for each APK such that the presence of

a particular feature in the APK is marked as 1 in the feature vector whereas absence is marked

as 0. Algorithm 3 explains our methodology for feature set modeling. The Algorithm 3 takes

an APK, a list of unique permissions, a list of unique API calls and a list of unique intent filters.

APK tool is used to extract AndroidManifest.xml file of the given APK (Algorithm 3, line 1).

Permissions and intent filters-based features are then extracted from the AndroidManifest.xml

(Algorithm 3, line 2-3). Furthermore, we use the Androguard tool to extract all the API calls

from the given APK (Algorithm 3, line 4). Then we compare each permission in the unique

permissions list, and if a particular permission in the unique permissions list is present in the

extracted permissions set, the corresponding permissions vector bit is set to 1; otherwise, the bit

is assigned 0 value (Algorithm 3, line 5-11). The same process is applied to construct the intents

49

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Algorithm 3: Feature Set Modeling
Input: APK, 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑙𝑖𝑠𝑡) , 𝐴𝑃𝐼 (𝑙𝑖𝑠𝑡) , 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑖𝑠𝑡)
Output: Features Vector

1: 𝑚𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡.𝑥𝑚𝑙 ⇐ 𝐴𝑝𝑘 𝑇𝑜𝑜𝑙 (𝐴𝑃𝐾)
2: 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑠𝑒𝑡) ⇐ 𝑚𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡.𝑥𝑚𝑙

3: 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑠𝑒𝑡) ⇐ 𝑚𝑎𝑛𝑖 𝑓 𝑒𝑠𝑡.𝑥𝑚𝑙

4: 𝐴𝑃𝐼 𝑐𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) ⇐ 𝐴𝑛𝑑𝑟𝑜𝐺𝑢𝑎𝑟𝑑 (𝐴𝑃𝐾)
5: for 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑙𝑖𝑠𝑡) do
6: if 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑠𝑒𝑡) then
7: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) ⇐ 1
8: else
9: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) ⇐ 0

10: end if
11: end for
12: for 𝑒𝑎𝑐ℎ 𝑖𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑖𝑠𝑡) do
13: if 𝑖𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑠𝑒𝑡) then
14: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) ⇐ 1
15: else
16: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) ⇐ 0
17: end if
18: end for
19: for 𝑒𝑎𝑐ℎ 𝑎𝑝𝑖 ∈ 𝐴𝑃𝐼 (𝑙𝑖𝑠𝑡) do
20: if 𝑎𝑝𝑖 ∈ 𝐴𝑃𝐼 𝑐𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) then
21: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖) ⇐ 1
22: else
23: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖) ⇐ 0
24: end if
25: end for
26: 𝐹𝑉 ⇐ 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) , 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) , 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖))
27: Return 𝐹𝑉

vector (Algorithm 3, line 12-18) and the API calls vector (Algorithm 3, line 19-25). Finally,

the three vectors (Permissions, intent filters and API calls) are concatenated and returned by the

algorithm (Algorithm 3, line 26-27).

3.4.3 Learning Phase

AndroMalPack considers SVM, LR, DT, RF, XGB, AB and KNN to train ML models. Fur-

thermore, based on the classification results, the best performing model is selected and further

50

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

tuned using NIAs. We consider Bat algorithm (BA) [171], Grey wolf optimizer (GWO) [172]

and Firefly algorithm (FA) [173] to optimize the best performing model in motivation to achieve

even better classification results. Finally, the results obtained by AndroMalPack are compared

with classifiers trained on datasets without considering repacked malware to present the efficacy

of AndroMalPack.

3.5 Experimental Results

In this section, we report the evaluation results of AndroMalPack. Prompt from the analysis

performed in Section 2, contrary to traditional 80/20 train test splits of datasets, AndroMalPack

considers training the classifiers on reduced train sets. The reduced training set of each dataset

confirms the exclusion of malware samples sharing the same package names from the training set

and eventually retains diversity and perceptible reduction of training set size. Table 3.6 presents

the distribution of samples in train and test sets based on package names from Drebin, AMD and

Androzoo datasets. We considered all the samples from Drebin and AMD datasets; however, we

contemplated 25116 samples from the Androzoo dataset. As shown in Figure 3.2, the Androzoo

dataset contains 294,120 potential repacked malware samples, whereas the process of reverse

engineering to extract features from all these apps is expensive in terms of time and memory.

Therefore, we selected 14,939 samples with unique package names and 10,177 with reused

package names from the Androzoo dataset to reduce samples.

Table 3.6: Train and test set splits for classifiers trained on clones free train sets

Malware Total Malware Malware Samples Benign Samples Malware Samples Benign Samples
Dataset Samples in Train set in Train set in Test set in Test set
Drebin 5560 2704 4200 2856 1800
AMD 24553 15157 4200 9396 1800
Androzoo 25116 13039 4200 12077 1800

We evaluate the results based on the outcome of the confusion matrix. Confusion matrix sum-

maries the results of machine learning classifiers based on correct and incorrect predictions by

using the following metrics:

51

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

• True Positive (TP): signifies the number of malicious apps correctly classified by the ML

classifiers.

• False Positive (FP): signifies the number of benign apps classified as malware by the ML

classifier.

• True Negative (TN): signifies the number of malicious apps classified as benign by the

ML classifier.

• False Negative (FN): signifies the number of benign apps correctly classified by the ML

classifier

The performance metrics which we consider are accuracy (Eq.3.1), recall (Eq.3.2), precision

(Eq.3.3) and F1-score (Eq.3.4) derived from the confusion matrix.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 (3.1)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (3.2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (3.3)

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (3.4)

Table 3.7 presents the results of classifiers trained on reduced train sets with default hyper-

parameters settings. Apart from the performance on the Drebin dataset, RF outperforms SVM,

LR, DT, AB, XGB and KNN in terms of classification results. Although the classifiers are

trained on reduced train sets, whereas test sets contain all the repacked malware samples and

non-clone malware and benign apps, RF achieves high precision and recall scores. Similarly,

52

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.7: Results of Classifiers Trained on Reduced Train sets

SVM LR DT RF XGB AB KNN

Drebin

Accuracy 96.28 96.24 94.88 96.02 96.09 92.27 96.33
Recall 95.6 95.6 95.4 96.1 95.5 87.9 94.9
Precision 95.7 95.7 93.1 94.8 95.5 93.9 96.6
F-measure 95.7 95.7 94.2 95.5 95.5 90.8 95.8

AMD

Accuracy 96.61 96.26 96.43 96.89 95.85 94.61 95.43
Recall 97.4 97 97.6 97.9 97.4 95.5 96
Precision 97.7 97.7 97.4 97.8 96.8 96.9 97.6
F-measure 97.6 97.4 97.5 97.8 97.1 96.2 96.8

Androzoo

Accuracy 97 97.05 96.55 97.53 96.39 95.61 97.31
Recall 98.7 98.8 98.5 99.5 99.3 98.1 99.5
Precision 96.9 96.9 96.4 97 97.4 95.5 98
F-measure 97.8 97.8 97.5 98.2 97.4 96.8 98

Figure 3.4 depicts the receiver operating characteristic (ROC) curves derived from classifiers

trained on reduced train sets from Drebin, AMD and Androzoo datasets. The ROC curves plot

the false positive rate (FPR) on the x-axis, whereas the true positive rate (Recall) is plotted on

the y-axis. The ROC curves show remarkable results where RF yields the best results compared

to SVM, LR, DT, AB, XGB and KNN. Subsequently, to further enhance the performance of

AndroMalPack, we employ NIAs to determine the optimal hyper-parameters settings of the best-

performing classifier (RF). We consider BA [171] (see Appendix A), FA [173] (see Appendix

B) and GWO [172] (see Appendix C) for hyper-parameters tuning of RF.

53

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

a
D

re
bi

n
b

A
M

D

c
A

nd
ro

zo
o

Fi
gu

re
3.

4:
R

O
C

cu
rv

es
of

cl
as

si
fie

rs
tr

ai
ne

d
on

re
du

ce
d

tr
ai

n
se

ts
fr

om
A

nd
ro

zo
o

54

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.8: Hyper-parameters for RF proposed by NIAs

n estimators max depth min sample split max features
BA FA GWO BA FA GWO BA FA GWO BA FA GWO

Drebin 60 80 80 34 28 28 2 2 2 auto sqrt auto
AMD 60 80 80 36 38 38 2 2 2 sqrt sqrt sqrt
Androzoo 40 80 80 32 32 32 2 2 2 sqrt sqrt auto

Table 3.9: Results of AndroMalPack

Bat Algorithm Firefly Algorithm Grey Wolf Optimzer
Acc Recall Pre F1 Acc Recall Pre F1 Acc Recall Pre F1

Drebin 98.29 98.7 97.7 98.1 98.22 98.5 97.4 98 98.22 98.5 97.4 98
AMD 98.21 99.4 98.1 98.7 98.17 99.4 98.1 98.7 98.17 99.4 98.1 98.7
Androzoo 97.94 99.8 97.2 98.5 97.9 99.8 97.2 98.5 97.94 99.8 97.2 98.5

Table 3.8 present the optimal hyper-parameters setting for RF classifiers determined by NIAs

(BA, FA and GWO) based on Drebin, AMD and Androzoo datasets. Furthermore, Table 3.9

presents the classification results achieved by AndroMalPack, an Android malware classifier

based on RF and optimized using NIAs. Compared to the results of the RF classifier in Table

3.7, AndroMalPack remarkably strengthens the performance by employing NIAs to determine

the optimal setting of hyper-parameters. Furthermore, as shown in Table 3.9, in the case of each

dataset, RF optimized using BA performs slightly better than FA and GWO, whereas the result

obtained from FA and GWO are almost similar with a marginal difference. However, in addition

to classification results, we also consider the time complexity of NIAs as a performance metric

for AndroMalPack. Figure 3.5 depicts the time each NIA (BA, FA and GWO) takes to opti-

mize the RF hyper-parameters based on Drebin, AMD and Androozoo datasets. The population

size for each NIA was initialized with 50, and max iterations were set to 100. Subsequently,

BA outperforms FA and GWO in terms of time complexity and classification results. Never-

theless, the performance of FA and GWO is also convincing in terms of classification results;

however, compared to BA, FA and GWO take a significant amount of time to find the optimal

hyper-parameters in the case of each dataset (Figure 3.5). Therefore, AndroMalPack prefers BA

compared to FA and GWO for hyper-parameters optimization to enhance the performance of RF

for Android malware classification.

55

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.10: Results of classifiers on Datasets using Random 80/20 Train and Test Splits

SVM LR DT RF XGB AB KNN

Drebin

Accuracy 96.03 96.25 95.74 97.09 95.78 94.98 97.6
Recall 94.5 94.7 95.9 96.8 94.2 92.2 96.8
Precision 95.5 95.8 93.6 95.9 95.1 95.1 97.1
F-measure 95 95.3 94.7 96.4 94.7 93.6 97

AMD

Accuracy 97.71 97.81 97.59 98.27 97.56 95.86 98.04
Recall 98.6 98.7 98.5 99.5 99.1 97.3 99.3
Precision 98.4 98.3 98.3 98.2 97.7 97.2 98.1
F-measure 98.5 98.5 98.4 98.8 98.4 97.2 98.7

Androzoo

Accuracy 97.38 97.38 97.29 98.26 96.75 95.83 97.8
Recall 98.8 98.7 98.6 99.6 98.9 97.8 99.2
Precision 97.7 97.7 97.7 98.1 96.7 96.6 97.8
F-measure 98.2 98.2 98.2 98.8 97.8 97.2 98.5

Furthermore, we consider the traditional 80/20 random train test split regardless of repacked

malware in the datasets to compare the results with AndroMalPack. Table 3.10 shows the clas-

sification results obtained from classifiers based on 80/20 train and test sets split with 10-fold

cross-validation. Apart from the classification results from the Drebin dataset, the RF classifier

outperforms all the other classifiers in terms of accuracy, recall, precision and F1 score. Further-

more, compared to the classification results of AndroMalPack, the results obtained by classifiers

based on 80/20 random train test splits are subtle, with a marginal difference. Consequently, we

can conclude that removing repacked malware based on the same package names from training

sets does not significantly affect the classification results.

3.5.1 Discussion

The experimental results of AndroMalPack revealed that removing the malware samples shar-

ing the same package names from the training sets does not significantly impact classification

results. Similarly, to prove that malware samples sharing the same package names are repacked

versions of known malware, AndroMalPack assigns all samples with reused package names to

the test set in addition to benign apps and non-repacked malware. Interesting, AndroMalPack

56

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Figure 3.5: Running time comparison of NIAs

achieves up to 98% accuracy with the aforementioned train and test set distribution. Conse-

quently, the results reflect our claim that malware samples sharing the same package names

are clones of existing malware. Our Analysis of three benchmark Android malware datasets

(Drebin, AMD and Androzoo) revealed that a significant amount of malware samples in these

repositories are repacked (based on package name reusing). We emphasize that while perform-

ing Android malware analysis, repacked malware should be of concern. Repacked malware

creates an overhead in terms of time and computational expenses. Consequently, removing the

repacked malware can save a fair amount of time in the reverse engineering process to extract

features from Android apps.

In order to present the effectiveness of removing repacked malware from the datasets, we profile

the reverse engineering time to extract features based on two scenarios. In scenario 1, we con-

sider reverse-engineering the full dataset regardless of repacked malware, whereas, in scenario 2,

we remove the repacked malware and profile the reverse engineering time. As shown in Figure

3.6, the removal of repacked apps in Drebin, AMD and Androzoo datasets results in a significant

reduction in processing time. It took 2.5 seconds to extract APIs, intents, and permissions-based

features from an APK by employing the Androguard tool’s static analysis. On the other hand,

57

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Figure 3.6: Features extraction time comparison

dynamic analysis can take anywhere between 60 seconds and 10 minutes per APK to extract

features [174, 175, 75, 176]. Nevertheless, the evaluation results of AndroMalPack prove that

removing the repacked malware from training sets does not have a significant impact on classi-

fication results. Furthermore, as discussed in [177] and [22], the duplicates in datasets can cause

adverse effects on ML-based models by producing biased results. Consequently, we encourage

fellow researchers to consider repacked malware in Android malware datasets while performing

ML-based malware detection to train classifiers on reduced yet diverse data.

3.6 Comparison

This work focuses on a simple yet powerful strategy for repacked malware detection by using

package name-based similarity. We demonstrated that many apps in popular Android malware

repositories share common package names. Our further analysis revealed that apps sharing the

same package names are repackaged versions of existing malware. Similarly, most of the exist-

ing techniques focus on the detection of repacked and cloned malware using various techniques

and report that plethora of malware is repacked instead of being novel [7]. However, in the

58

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Android malware domain, apart from the study proposed by Zhao et al [22], no extensive study

has been conducted on the impact of duplicates on ML-based classifiers. Zhao et al. consid-

ered duplicates based on three distinct features (.dex code similarity, op-code sequence and API

calls). They evaluated them using four different datasets (Genome, Drebin, AMD and RmvDroid

[178]). Compared to Zhao et al., we considered a novel and more lightweight strategy (package

names based on similarity). Interestingly, in the case of the Drebin dataset, package names-based

similarity (52.3%) outperforms, .dex code similarity (35.9%) and op-code sequence (48.6%) in

[22] to detect malware clones, whereas API based similarity is almost similar to our approach

(52.4%). However, in the case of the AMD dataset, apart from .dex code similarity (21.8%),

Op-code (47.6%) and API calls based similarity (52.2%) outperforms package based similarity

(29.4%). Likewise, Irolla et al. use op-code similarity to quantify duplicates in Drebin dataset

[23]. Irolla et al. claim that 49.35% samples in the Drebin dataset are repackaged and question

the biased results of existing ML-based classifiers trained on the Drebin dataset. As compared to

[23], package name based repackaged malware detection is more lightweight and outperforms

Irolla et al. technique by finding 52.3% repacked malware in the Drebin dataset.

Furthermore, we propose AndroMalPack, an Android malware classifier trained on clones free

training sets and optimized using NIAs. The training sets of AndroMalPack exclude all the apps

which share common package names and consequently reduce the size of training data yet pre-

serve high classification results. Table 3.11 presents the detailed comparison of AndroMalPack

with recent Android malware detection techniques in literature.

3.7 AndroMalPack Dataset

In order to foster the research in the domain of repackaged Android malware analysis, we

publish a cryptographic hash-based dataset of repacked Android apps having the same pack-

age names (AndroMalPack dataset1). AndroMalPack dataset is distributed into three comma-

1https://github.com/hasnainrafique/AndroMalPack-Dataset

59

https://github.com/hasnainrafique/AndroMalPack-Dataset

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

Table 3.11: Comparison of AndroMalPack with related work

Technique ML-Model Features Dataset Accuracy Recall Precision F1 score

[179] Ensemble
Permissions and
source code

M0Droid 95.6 95.7 95.8 95.6

[43] Random Forrest
Permissions, APIs
and system calls

Custom 88.26 88.40 88.16 N/A

[180] Random Forrest
Permissions, APIs,
intents and hardware

Drebin 97.24 97 98 97

[181] Random Forrest API calls
Drebin 96 95 97 96
AMD 98 98 99 98

[182] CatBoost
Permissions and
op-code sequence

Drebin and
Custom

97.40 96.77 98.0 97.38

[183] Random Forrest
Permissions based
features

Androzoo 81.53 81.53 82.59 84.18

[42]
Profile hidden
Markov model

API calls Drebin 94.5 N/A 93.0 93.9

[184] SVM
Permission, intents
and byte-code

AMD 95.09 95.09 95.11 95.10

AndroMalPack Random Forrest
Permission, API calls
and Intents

Drebin 98.29 98.70 97.7 98.1
AMD 98.21 99.40 98.1 97.7
Androzoo 97.14 99.8 97.2 97.5

separated (.csv) files where each file contains cryptographic hashes of repacked apps from

Drebin, AMD and Androzoo datasets, respectively. Each file in the AndroMalPack dataset con-

tains two columns where the first column contains the hash of the app and the second column

contains the corresponding package name. The files are sorted in descending order based on

the number of frequently reused package names in each dataset. Since the access to Drebin,

AMD and Androzoo are protected by the owners, we do not provide the APK files. Access

to the datasets (Drebin, AMD and Androzoo) can be requested through an authorized source,

and our dataset of hash values can be employed to churn out repackaged apps based on pack-

age name reusing. Drebin and Androzoo datasets label each app with a SHA256 hash, whereas

AMD datasets label apps using MD5 hashes. Likewise, the AndroMalPack dataset uses SHA256

hashes for Drebin and Androzoo, whereas MD5 hashes for the AMD dataset to represent repack-

aged apps based on package name reusing.

60

CHAPTER 3. ENHANCING THE ML-BASED MALWARE CLASSIFICATION BY
DETECTION AND REMOVAL OF REPACKED APPS FOR ANDROID SYSTEMS

3.8 Summary

Malware authors often repack existing malware to deceive antivirus systems. Consequently,

many apps in popular Android malware datasets are clones of existing malware. This chap-

ter emphasizes the problem of repackaged Android malware in 3 benchmark Android malware

datasets. We leverage package names based on similarity to quantify repackaged malware in the

datasets and reveal 52.3% malware samples in Drebin, 29.8% of malware samples in AMD and

42.3% malware samples in Androzoo dataset reuse existing package names. Furthermore, we

investigate the impact of malware samples sharing the same package names on six ML-based

classifiers (SVM, LR, DT, RF, XGB, AB and KNN). Interestingly, our experimental results

demonstrate that removing malware samples sharing the same package names from training sets

of ML-classifiers does not significantly impact classification results. Consequently, we propose

AndroMalPack, an Android malware classifier based on RF, trained on clones free train sets and

optimized using nature-inspired algorithms. Although AndroMalPack is trained on reduced train

sets, it preserves remarkable classification results. Finally, we publish an AndroMalPack dataset

to foster the research on repackaged Android malware based on package names reusing. Andro-

MalPack dataset contains 389,995 cryptographic hashes of samples sharing the same package

names in the Drebin, AMD and Androzoo datasets.

61

Chapter 4

Evasion-aware Android malware

detection model based on multiple

classifiers system

4.1 Introduction

ML-based malware detection techniques have garnered a significant interest among malware

researchers due to their ability to identify novel samples. Various features are extracted from

malicious and benign Android applications (apps) using either static, dynamic or hybrid analy-

sis. Moreover, these features are transformed into feature vector sets and ML-based algorithms

are trained on these vectors to predict malware and benign applications. Although ML-based

malware detection techniques have demonstrated promising results, they are vulnerable to ad-

versarial evasion attacks [17, 18, 19].

This chapter focuses on highlighting the fragility of ML-based Android malware detectors in

adversarial settings and propose a countermeasure against evasion attacks. First, we present a

motivating case study by evading Drebin [24], one of the mainstream Android malware classi-

62

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

fiers, to demonstrate the fragility of ML-based Android malware classifiers. Secondly, we create

a hybrid featured balanced of 18,000 Android malware and 18,000 benign apps. Third, we pro-

posed CureDroid, an Android malware classifier trained on hybrid features and optimized using

the tree-based pipeline optimization technique (TPoT). Fourth, we examine the effectiveness

of CureDroid in adversarial settings by performing mimicry attacks (MA), feature removal at-

tacks (FRA) and mimicry with feature removal attacks (MFRA). Fifth, we propose CureDroid*,

an adversarially robust extesion of CureDroid. Contrary to training on a single feature vector

source, CureDroid* employs multiple classifiers trained on distinct logical subsets of feature

vectors extracted from Android apps. Finally, we investigate the performance of CureDroid* in

the adversarial setting and prove the effectiveness of the proposed model.

We summarise the main contributions of this chapter in the following aspects:

1. We propose CureDroid, an Android malware classification model trained on hybrid fea-

tures and optimized using tree-based pipeline optimization technique.

2. We evaluate CureDroid in adversarial settings. We perform mimicry attacks, feature

removal attacks and mimicry attacks in conjuction with feature removal to present the

fragility of ML-based Android malware detection models against adversarial evasion at-

tacks.

3. We propose CureDroid*, an adversarially robust extension of CureDroid. CureDroid*, is

a novel, scalable and adversarially aware Android malware classification model. Cure-

Droid* is based on an ensemble of ML-based models trained on distinct set of features

where each model has the individual capability to detect Android malware.

4.2 Motivation

As a preliminary study to investigate the fragility of Android malware detectors in adversarial

settings, we evaluate a case study by applying adversarial evasion attacks on Drebin [24], one

63

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

of the most cited works related to Android malware detection [150]. Drebin is a lightweight

on-device malware detector that extracts Android applications’ features through static analy-

sis. Drebin employs a publicly accessible dataset containing 5560 malicious and 123,453 be-

nign Android applications. Furthermore, Drebin extracts permissions, intents, API calls, net-

work addresses and hardware components-based features from the apps and embeds them into

a multi-dimensional feature vector space. Drebin trains Linear SVM on the extracted features

to categorise Android malware and benign apps. According to the authors, Drebin achieved up

to 94 percent malware detection accuracy with a very low false positive rate. Since Drebin is

not open-source, we build a similar model by training a linear SVM on the Drebin dataset with

the same feature set used in the Drebin classifier. Figure 4.1 uses ROC curve plots to depict the

results of our experiments to replicate Drebin.

Figure 4.1: Drebin ROC Plot

The purpose of this case study is to evade the classifier; therefore, we perform features injection

64

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

attack on the Drebin classifier. An overview of features injection attack is presented in Figure

4.2. As discussed in Section 2.5, once the adversary has the knowledge of the classifier and

is aware of the data used to train it (the best-case scenario), an attacker can easily circumvent

the classifier. The attacker can highlight top features from the training data based on a specific

classifier (linear SVM in the case of Drebin) and carefully mutate them to achieve evasion.

The attacker has the option of adding a new feature or removing one from the original feature

set. Drebin employs a binary features set, where 1 denotes the presence of a feature in the

application and 0 denotes its absence. Since removing a feature may alter the semantics of

malware, we solely rely on injecting new features into the app (i.e., by changing 0s to 1’s in the

feature vector). We find the top 20 features for the benign class based on linear SVM classifier

and then search for these top features in the feature vectors of malicious apps. If the feature is

missing, i.e. 0 in the malicious samples, we change it to 1. The method of adding features is

linear, i.e., we change the first top feature in all malicious samples from 0 to 1 and then test the

data against the model to determine the evasion rate. Subsequently, the second top feature is

altered and tested on the model, and the process is repeated for the remaining top 18 features.

Figure 4.2: Feature Injection Attack

As shown in Figure 4.3, our experiments on a dataset of 5560 malicious apps reveal that 48%

65

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

� � � � � � � � 	
 �� �� �� �� �� �� �� �� �	 �
 ��
���	�	����������

�

��

��

��

	�

���
��

�
	�

�
�
��
�

����������

Figure 4.3: Evasion attack on Drebin

of all malicious samples are evaded by just mutating one binary feature in the feature vector.

Furthermore, 86% of malware is evaded by just mutating two features, and interestingly, a 100%

evasion rate is achieved by mutating only three features in the original feature vector. Con-

sequently, this case study demonstrates the vulnerability of machine learning-based Android

malware classifiers in a adversarial environment. Furthermore, the findings of this case study

provide a tangible motivation for the development of an Android malware classifier that is not

only accurate but also resilient to adversarial evasion attacks.

4.3 Dataset and Feature extraction

We leverage the KronoDroid dataset [185] to access hybrid features extracted from 18,000 An-

droid malware and 18,000 benign apps. The dynamic features include the presence or absence

of 288 distinct system calls in Android apps. On the other hand, static features consist of permis-

sions and intents-based features. Since the KronoDroid data set does not contain API call-based

66

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.1: Overview of Used feature

Feature sets

Static features
Requested permissions
API calls
Filtered intents

Dynamic features System calls

features, therefore in order to make a diverse feature vector, we extract API call-based features

from real apps downloaded from the Androzoo dataset [26]. KronoDroid dataset labels each

app with a unique SHA256 hash value; therefore, we use the same hash values to collect actual

APK files from the AndroZoo dataset and append the extracted API calls with the feature sets

obtained KronoDroid dataset. We performed reverse engineering on the Android apps in the

dataset to extract API calls-based features. Android apps are programmed using Java and com-

piled in Dalvik byte code. However, it is possible to reverse engineer an APK in the form of java

code using various tools. The process of reverse engineer an Android app is discussed in detail

in Section 2.2.4. Table 4.1 lists the Android app features employed in this study.

A brief description of API calls, permissions and intents-based features is presented in Section

3.4.2. In order to build a diverse feature vector, we incorporate system calls in the feature vector

in addition to API call, intents and permissions. Android OS is based on the Linux kernel and

executes all the apps on the application layer. Whenever an app requires access to the core

functionality of the Linux kernel, such as power management or network connection, system

calls are used to shift the control from the application layer to the Linux kernel. Likewise, control

is returned to the application layer from the kernel mode once the required task is completed.

System calls traces can be extracted from Android apps by executing the app in a controlled

environment.

4.3.1 Features set modeling

We construct a binary encoded feature vector for each APK in the dataset to train ML-based

models. We mark a particular feature’s presence in the APK as 1 in the feature vector, whereas

67

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

absence is marked as 0. Algorithm 4 explains our methodology for feature set modeling. The

Algorithm 4 takes as input an APK, a list of unique permissions, a list of unique API calls, a

list of unique intent filters and a list of unique system calls. The next step in the algorithm is to

extract the permissions, intents, API calls and system calls-based features from each app in the

dataset and embed them in separate feature sets, respectively (Algorithm 4, line 1-4). Then we

compare each permission in the unique permissions list. If particular permission in the unique

permissions list is present in the extracted permissions set, the corresponding permissions vector

bit is set to 1; otherwise, the bit is assigned 0 value (Algorithm 4, line 5-9). The same process is

applied to construct the intents vector (Algorithm 4, line 10-14), the API calls vector (Algorithm

4, line 15-19) and the system calls vector (Algorithm 4, line 20-24). Finally, the four vectors

(Permissions, intent filters, API calls and System calls) are concatenated and returned by the

algorithm (Algorithm 3, line 25-27).

4.4 CureDroid

This section proposes CureDroid, an Android malware classifier trained on hybrid features and

optimised using the tree-based pipeline optimization technique (TPOT). Figure 4.4 presents the

block diagram of CureDroid model. CureDroid takes as an input a dataset of malicious and be-

nign Android apps and extracts permissions, intents, API calls and system calls-based features.

The most tedious part of ML is to select the best performing algorithm and tune the correspond-

ing hyperparameters. This process can be burdensome and time-intensive brute force search as

there are many ML algorithms (24 ML-algorithms in SK-learn Python library), and each algo-

rithm has numerous hyperparameters settings. Therefore, CureDroid employs TPoT [186], an

automated ML (Auto ML) tool for this task. TPoT is a genetic programming-based AutoML sys-

tem to optimize a series of features and ML models to produce maximum classification results

for supervised learning. TPoT leverages Scikit-Learn [187], a python programming language li-

brary, to access ML algorithms. Furthermore, the operators of the TPoT library correspond to the

68

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Algorithm 4: Feature Set Modeling
Input: 𝐴𝑃𝐾 , 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑙𝑖𝑠𝑡) , 𝐴𝑃𝐼 (𝑙𝑖𝑠𝑡) , 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑖𝑠𝑡) , 𝑆𝑦𝑠𝐶𝑎𝑙𝑙𝑠 (𝑙𝑖𝑠𝑡)
Output: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑉𝑒𝑐𝑡𝑜𝑟

1: 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑠𝑒𝑡) ← 𝐴𝑃𝐾

2: 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑠𝑒𝑡) ← 𝐴𝑃𝐾

3: 𝐴𝑃𝐼 𝑐𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) ← 𝐴𝑃𝐾

4: 𝑆𝑦𝑠𝐶𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) ← 𝐴𝑃𝐾

5: for 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 (𝑙𝑖𝑠𝑡) do
6: if 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∈ 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑠𝑒𝑡) then
7: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) ← 1
8: else
9: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) ← 0

10: end if
11: end for
12: for 𝑒𝑎𝑐ℎ 𝑖𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑙𝑖𝑠𝑡) do
13: if 𝑖𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝑛𝑡𝑒𝑛𝑡𝑠 (𝑠𝑒𝑡) then
14: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) ← 1
15: else
16: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) ← 0
17: end if
18: end for
19: for 𝑒𝑎𝑐ℎ 𝑎𝑝𝑖 ∈ 𝐴𝑃𝐼 (𝑙𝑖𝑠𝑡) do
20: if 𝑎𝑝𝑖 ∈ 𝐴𝑃𝐼 𝑐𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) then
21: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖) ← 1
22: else
23: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖) ← 0
24: end if
25: end for
26: for 𝑒𝑎𝑐ℎ 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 ∈ 𝑆𝑦𝑠𝐶𝑎𝑙𝑙𝑠 (𝑙𝑖𝑠𝑡) do
27: if 𝑠𝑦𝑠𝑐𝑎𝑙𝑙 ∈ 𝑆𝑦𝑠𝐶𝑎𝑙𝑙𝑠 (𝑠𝑒𝑡) then
28: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑆 𝑐𝑎𝑙𝑙𝑠) ← 1
29: else
30: 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑆 𝑐𝑎𝑙𝑙𝑠) ← 0
31: end if
32: end for
33: 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑉𝑒𝑐𝑡𝑜𝑟 ← 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑉𝑒𝑐𝑡𝑜𝑟 (𝑃𝑒𝑟𝑚) ,

𝑉𝑒𝑐𝑡𝑜𝑟 (𝐼𝑛𝑡) , 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑎𝑝𝑖) , 𝑉𝑒𝑐𝑡𝑜𝑟 (𝑆 𝑐𝑎𝑙𝑙𝑠))
34: Return 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑉𝑒𝑐𝑡𝑜𝑟

learning algorithm, features preprocessing and features selection algorithm. Gradient boosting

(GB) classifier was determined to be the optimal model for categorising Android malware and

69

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.2: Hyperparameters setting of Gradient Boosting Classifier for HybridDroid Model

Parameter Value
learning rate 0.1
max depth 6
max features 0.3
min samples leaf 11
n estimators 100
min samples split 4
subsample 0.65

benign apps when the TPoT optimization was applied to the hybrid featured dataset. Table 4.2

depicts the information about the selected model and corresponding hyperparameters settings

returned by the TPOT optimization technique in the CureDroid model.

Figure 4.4: Block Diagram of CureDroid

Table 4.3 presents the performance of CureDroid, an Android malware classifier trained on

70

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.3: Performance of CureDroid Model

Parameter Value
Accuracy 99.2
Precision 98.9
Recall 99.5
F1-score 99.2

hybrid features and optimized using a tree-based pipeline optimization technique. As shown in

Table 4.3, CureDroid achieves remarkable malware classification results (up to 99.2% accuracy).

Although CureDroid achieves high performance in classifying Android malware and benign

apps, our target is to develop an adversarial evasion aware classifier. Therefore in the next

section, we investigate the performance of CurDroid in adversarial environments and present

the fragility of high performing ML-based malware classifiers under evasion attacks.

4.5 Adversarial Attacks

In order to present the fragility of ML-based Android malware classifiers in adversarial envi-

ronments, we evaluate the proposed CureDroid model against adversarial evasion attacks in this

section.

4.5.1 Adversarial Strategies

In order to carry out an evasion attack, attackers would alter the characteristics of malicious

software to avoid detection. Algorithm 4 shows that an Android app may be represented as a

binary feature vector following the feature extraction process. In order to represent the change

made in the original application, the evasion attack typically involves adding or removing a bi-

nary from the vector [115]. In previous works such as [188], it has been suggested to randomly

perturb binary feature vectors to evaluate classifiers against adversarial evasion attacks. In [188],

the authors randomly fabricate up to 40 features in the binary vector and claim that the fabri-

cated samples do not significantly affect the performance of the proposed model. However, our

71

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

analysis suggests that contrary to the random perturbations in feature vectors, fabricating the dis-

criminating benign or malicious features significantly eludes the classification model. We first

identify the top discriminating features between malicious and benign apps within the dataset.

We identify a feature as discriminatory based on the frequency with which it appears in malware

and benign apps. Figure 4.5(a) presents the top ten discriminating features present in the ma-

licious Android apps, whereas Figure 4.5(b) presents top ten discriminating features present in

the benign apps within the dataset. Furthermore, using the discriminating features, we evaluate

the proposed CureDroid model in three different adversarial settings:

Mimicry Attack: refers to the process of injecting malicious apps with discriminating charac-

teristics of benign apps in order to force the classification system to generate invalid labels. The

pseudo-code of our mimicry attack is presented in Algorithm 5. Dataset of malicious Android

apps (M) and top 30 discriminating features from benign class (𝐹𝑇𝑜𝑝) are provided as input to

the algorithm. Then, we check the presence and absence of the features in 𝐹𝑇𝑜𝑝 within each

malicious app m in the dataset. Consequently, if a feature from 𝐹𝑇𝑜𝑝 is missing, i.e. 0 in the

malicious sample, we change it to 1 (Algorithm 5, lines 1-4). The process of adding the features

is carried out linearly i.e. we mutate 1 top feature in all the malicious samples from 0 to 1 and

test the samples on the model (Algorithm 5, line 6) to find out evasion rate. Subsequently, the

second top feature is mutated and then tested on the model and the same process is applied for

the top 30 discriminating features of benign apps.

72

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

a Malware Samples

b Benign Samples

Figure 4.5: Discriminating features in Android apps

73

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Algorithm 5: Mimicry Attack
Input: 𝑀 = {𝑚1, 𝑚2, 𝑚3 𝑚𝑛} and 𝐹𝑇𝑜𝑝 = {𝐹1, 𝐹2, 𝐹3𝐹30}
Output: 𝐸𝑅𝑎𝑡𝑒

1: for 𝑎𝑙𝑙 𝑖 ∈ 𝐹 do
2: for 𝑎𝑙𝑙 𝑗 ∈ 𝑀 do
3: if 𝑖 ∈ 𝑗 == 0 then
4: 𝑗 [𝐹 [𝑖]] ← 1
5: end if
6: 𝑀𝐸𝑣𝑎𝑑𝑒 ← 𝑗

7: end for
8: 𝐸𝑅𝑎𝑡𝑒 ← 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝑀𝐸𝑣𝑎𝑑𝑒)
9: end for

10: Return 𝐸𝑅𝑎𝑡𝑒

Feature Removal Attack (FRA): refers to the process of removing discriminating features of

malware from malicious apps. The pseudo-code for feature removal attack remains similar to

Algorithm 5 with some modifications. In the case of FRA, the input 𝐹𝑇𝑜𝑝 feature set consists of

the top 30 discriminating features of malicious apps. Apart from that, (Algorithm 5, line 3-4),

the opposite scenario is considered in the case of FRA, i.e. if a particular feature is present in

the malware, it is removed (change 1 to 0).

Mimicry with Feature Removal Attack (MFRA): refers to the process of simultaneously

adding and removing discriminating features from malware. At each step of MFRA, one dis-

criminating feature of benign apps is injected, and one discriminating feature of malicious apps

is eliminated from the malware. The pseudo-code of our MFRA is presented in Algorithm

6. Dataset of malicious Android apps (M), top 30 discriminating features form benign class

(𝐹𝐵𝑒𝑛𝑖𝑔𝑛) and top 30 discriminating features form malware class (𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒) are provided as

input to the algorithm. Then, we check the presence and absence of the features in 𝐹𝐵𝑒𝑛𝑖𝑔𝑛 and

𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒 within each malicious app m in the dataset. Consequently, if a feature from 𝐹𝐵𝑒𝑛𝑖𝑔𝑛

is missing, i.e. 0 in the malicious sample, we change it to 1 and if a feature from 𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒 is

present, i.e. 1 in the malicious sample, we change it to 0 (Algorithm 6, lines 5-6). The process

of injecting and eliminating the features in each app in the dataset is carried out linearly i.e. we

74

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

mutate one top malware and benign feature simultaneously in all the malicious samples and test

on the model (Algorithm 6, line 8) to find out evasion rate.

Algorithm 6: MFRA Algorithm
Input: 𝑀 = {𝑚1, 𝑚2, 𝑚3 𝑚𝑛}
𝐹𝐵𝑒𝑛𝑖𝑔𝑛 = {𝐹1, 𝐹2, 𝐹3𝐹30}
𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒 = {𝐹1, 𝐹2, 𝐹3𝐹30}
Output: 𝐸𝑅𝑎𝑡𝑒

1: for 𝑖 = 0 𝑡𝑜 30 do
2: for 𝑎𝑙𝑙 𝑗 ∈ 𝑀 do
3: if 𝐹𝐵𝑒𝑛𝑖𝑔𝑛 [𝑖] 𝑖𝑛 𝑗 𝑖𝑠 0 then
4: 𝑗 [𝐹𝐵𝑒𝑛𝑖𝑔𝑛 [𝑖]] ← 1
5: end if
6: if 𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒 [𝑖] 𝑖𝑛 𝑗 𝑖𝑠 1 then
7: 𝑗 [𝐹𝑀𝑎𝑙𝑤𝑎𝑟𝑒 [𝑖]] ← 0
8: end if
9: 𝑀𝐸𝑣𝑎𝑑𝑒 ← 𝑗

10: end for
11: 𝐸𝑅𝑎𝑡𝑒 ← 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝑀𝐸𝑣𝑎𝑑𝑒)
12: end for
13: Return 𝐸𝑅𝑎𝑡𝑒

In an ideal case, regardless of mimicry attack, FRA or MFRA, the adversarial settings should

preserve the semantics of the original malware. Compared to FRA and MFRA, mimicry attacks

are practically simpler to perform and preserve the semantics of the malicious app. Mimicry at-

tacks are performed by injecting discriminating features of benign apps into the malicious apps.

Practically, this can be achieved by adding functions in the source code that are never called,

adding source code after return statements, and including fake permissions in the manifest.xml

file.

On the other hand, FRA and MFRA is only feasible if the adversary can eliminate specific fea-

tures without compromising the malicious functionality of the app. Therefore, in practice FRA

and MFRA is complex to implement and may limit the functionality of the app. Some features

such as strings, services, receivers and providers are listed in manifest file and implemented as

java source code. These features can be renamed in order formulate feature elimination. Further-

75

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

more, an attacker can encode API calls and decode them dynamically using reflection in order to

imitate API calls removal. Nevertheless, in this study, we assume that the attacker has ability to

remove feature and therefore we evaluate the model in under all three adversarial settings.

4.5.2 Attack on CureDroid

We evaluate the proposed CureDroid model against mimicry attack, FRA and MFRA to inves-

tigate the adversarial robustness of the proposed model in terms of evasion rate. Evasion rate

is defined as the ratio of misclassified malware samples to the total malware samples in the test

set. Figure 4.6 presents the results of adversarial evasion attacks on the CureDroid model. The

results indicate that CureDroid is vulnerable to all three adversarial attacks. As shown in Figure

4.6, by injecting up to eight discriminating features of benign apps in malware, a mimicry attack

can attain up to 40% evasion rate. Since we limit the mimicry attack to 30 perturbations, the

maximum evasion rate achieved by mimicry attacks reached up to 59%.

In the case of FRA, the attack method achieved up to 55% evasion rate by removing ten features.

Likewise, the evasion rate increased up to 75% by removing 14 features. Finally, FRA achieved

a 100% evasion rate when 20 discriminating features were removed from the malware app. In

the case of MFRA, the adversarial attack achieved up to 45% evasion rate by just adding and

removing three features in the malicious apps. Furthermore, the evasion rate increased to 71%

after six iterations of MFRA and reached over 90% after nine iterations. Our experimental

results show that the MFRA is the most effective adversarial attack against CureDroid. The

reason is that MFRA simultaneously injects discriminating features of benign apps and removes

discriminating features of malicious apps from the malware at each iteration. Consequently,

at each iteration, MFRA significantly changes the distribution probability of malware towards

benign class, and as a result, the model misclassifies the sample.

76

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Figure 4.6: Adversarial Attacks on CureDroid

4.6 A Countermeasure: CureDroid*

In this section, we present CureDroid*, an adversarially robust extension of CureDroid*. In or-

der to create an adversarially robust ML-based classification system, generally, three approaches

are taken into consideration [114]: 1) adversarial training of the classifier; 2) combining several

classifiers to create an ensemble model and 3) hardening target classifiers against evasion at-

tacks. In this work, we focus on employing ensemble classifiers and making the attacker’s job

challenging to evade the malware detection model.

Figure 4.7 presents the block diagram of the CureDroid* model. Following is a step by step

explanation of the CureDroid* model:

• A dataset of Android malware and benign apps in the form of APK files is taken as input.

• The APK files from the dataset are reverse engineering in order to extract API calls, in-

77

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

tents, permissions and system calls-based features.

• Instead of just considering one mixed feature vector, CureDroid* considers subsets of fea-

tures (APIs, intents, permissions and system calls) and trains ML models on each subset

of features separately. The selection of ML-model and the hyperparameters settings is

determined by using TPoT.

• The final label generated by the CureDroid* is based on ’OR’ operation on the labels

produced by the each classifiers in the ensemble pipeline.

As discussed earlier, an attacker can perform mimicry, FRA and MFRA-based feature manip-

ulations to elude an ML-based malware detection system. A slight feature vector mutation can

result in the misclassification of a malicious app. CureDroid* model can be employed in order

to counter such attacks. Since CureDroid* employs multiple models trained on distinct feature

sets, therefore modifying a feature might affect the classification accuracy of a particular clas-

sifier in the ensemble (such as the intents classifier). However, the model will still be able to

detect the malware using other classifiers in the ensemble model (such as system calls, APIs

and permissions). Consequently, CureDroid* makes it challenging for the attacker to evade the

model as the adversary will need to elude all the classifiers in the ensemble model.

4.6.1 Experimental Results

The process of model selection and optimization for CureDroid* is performed using the tree-

based pipeline optimization technique (TPoT). The classifiers are trained on a dataset of 18,000

malware and 18,000 benign apps (discussed in Section 4.3).

78

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Fi
gu

re
4.

7:
B

lo
ck

D
ia

gr
am

of
C

ur
eD

ro
id

*
M

od
el

79

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.4: TPOT model selection for Feature subsets

Fe
at

ur
es

cla
ss

Cl
as

sifi
er

Hy
pe

r-p
ar

am
ete

rs
se

tti
ng

s

Sy
ste

m
ca

lls
Ex

tra
Tr

ee
s

bo
ot

str
ap

cr
ite

rio
n

m
ax

fe
atu

re
s

m
in

sa
m

pl
es

sp
lit

m
in

sa
m

pl
es

lea
f

n
es

tim
ato

rs
fa

lse
en

tro
py

0.6
5

4
1

10
0

AP
Ic

all
s

Pe
rc

ep
tro

n
alp

ha
lea

rn
in

g
ra

te
in

it
0.0

01
0.0

01
In

ten
ts

0.0
1

0.0
1

Pe
rm

iss
io

ns
Gr

ad
ien

tb
oo

sti
ng

m
ax

de
pt

h
m

ax
fe

atu
re

s
m

in
sa

m
pl

es
lea

f
m

in
sa

m
pl

es
sp

lit
su

bs
am

pl
e

n
es

tim
ato

rs
6

0.3
11

4
0.6

5
10

0
M

ix
fe

atu
re

s
XG

B
9

0.7
5

2
7

0.3
5

10
0

80

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.4 presents the details about selected classifiers and corresponding hyper-parameters set-

ting using TPoT. The ensemble model comprises five classifiers trained on system calls, API

calls, intents, permissions and mixed features independently. Table 4.5 presents the results of

classifiers in ensemble model in non-adversarial settings. The results indicate that all the clas-

sifiers in the ensemble model have individual potential to classify Android malware and benign

app with high accuracy. Since the final label generated by CureDroid* is based on OR opera-

tion on labels generated by the classifiers in the ensemble model, CureDroid* can achieve up to

99.2% malware classification accuracy in non-adversarial settings.

Table 4.5: Android malware classification results based on various feature subsets

Features set Accuracy Recall Precision F-measure
Permissions 96.1 96.2 96 96.1
API-calls 98.4 98. 98.9 98.4
Intents 86.6 79.5 92.2 85.4
System calls 87.5 87 87.5 87.3
Mix 99.2 99.5 98.9 99.2

Figure 4.8 presents the performance of the CureDroid* model in adversarial environments. We

perform mimicry attacks, FRA and MFRA on CureDroid* and compare its adversarial robust-

ness with the CureDroid model. The results indicate that compared to CureDroid, CureDroid*

significantly improves the security of the model against adversarial evasion attacks. The rea-

son is that CureDroid employs multiple classifiers, and each classifier in the ensemble model

is trained on distinct features. Therefore the adversary needs to elude all the classifiers in the

ensemble model in order to evade the model. As shown in Figure 4.8(a), the maximum evasion

rate achieved by mimicry attacks is 4% with up to 30 modifications in the malware features.

In contrast, the mimicry attack achieved up to 60% evasion rate in the case of the CureDroid

model.

81

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

a
M

im
ic

ry
A

tta
ck

b
FR

A

c
M

FR
A

Fi
gu

re
4.

8:
Pe

rf
or

m
an

ce
of

C
ur

eD
ro

id
*

in
A

dv
er

sa
ri

al
se

tti
ng

s

82

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Furthermore, Figure 4.8(b) depicts the performance of CureDroid* against FRA. The results

indicate that the evasion rate is significantly reduced compared to the CureDroid. CureDroid*

retains a 2% evasion rate when up to 6 features are modified and increases to 6% when up to

20 features are perturbed. FRA achieves a significant increase in evasion rate when more than

20 features are modified (up to 56%). Similarly, Figure 4.8(c) presents the results of MFRA on

CureDroid*. Compared to mimicry and feature removal attacks, CureDroid* is less effective in

the case of MFRA. Nevertheless, compared to CureDroid, CureDroid* significantly reduces the

evasion rate against MFRA. It retains a 20% evasion rate when up to eight iterations of MFRA

are completed. In comparison, 90% of the sample generated using MFRA evaded the CureDroid

model when up to 8 modifications were performed.

4.7 Performance Comparison with state-of-the-art

This section briefly discusses the state-of-the-art techniques related to the CureDroid* model.

We also perform a comparison of the related techniques with CureDroid*. Table 4.6 shows

the comparison results in terms of technique, publication year, target classifier/technique, the

dataset used, the technique’s evasion rate, and finally, whether the said approach provides a

countermeasure for evasion attack or not. As shown in the table 4.6, [140, 189, 190, 191] focuses

only on evading the existing techniques. Although these techniques achieve high evasion rates,

however authors have not provided any countermeasure to mitigate such attacks. Compared to

these techniques, our proposed evasion algorithms achieved a remarkable upto 90% evasion rate

on the target classifier. We also provide a countermeasure (CureDroid*) which can be employed

to mitigate such evasion attacks.

The authors in [121] and [117] have evaded target classifiers and proposed countermeasure tech-

niques to mitigate such attacks. Grosse et al. [121] performed evasion attacks on classifiers

based on deep neural networks. They achieved an evasion rate of up to 63% on the Drebin

dataset with an average of 20 perturbations in feature vectors. Grosse et al. also proposed two

83

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

Table 4.6: A comparison among different evasion techniques related to CureDroid*

References Year Target Dataset Evasion Rate Countermeasure
Android HIV [140] 2019 Drebin (SVM) Drebin 99% No
TLAMD [189] 2019 Random Forest Drebin 93% No
Harel [190] 2020 Drebin (SVM) Drebin 99% No
Mystiqe-S [191] 2017 Antivirus Custom 94% No
Grosse [121] 2016 Deep Learning Drebin 63% Yes
LagoDroid [117] 2018 RevealDroid Custom 97% Yes
CureDroid* 2022 CureDroid (GB) Drebin/AMD upto 90% Yes

countermeasure techniques for adversarial evasion attacks: distillation and classifier retraining.

However, none of the proposed defensive mechanisms provided promising results against eva-

sion attacks providing a maximum of 33% adversary detection in case of classifier retraining.

Furthermore, LagoDroid [117] evaded a recent classifier called RevealDroid [118] with an eva-

sion rate up to 97%. Authors in [117] also proposed a countermeasure called RevealDroid* to

mitigate evasion attacks on RevealDroid [118]. Although RevealDroid* performs well against

a small number of modifications, the performance of RevealDroid* declines if the number of

modifications is high. Moreover, RevealDroid* requires many ensemble classifiers to detect po-

tential evasion. The authors have employed an ensemble of 16 decision tree-based classifiers to

perform experiments. In contrast, we used an ensemble of 5 ML-based classifiers and achieved

high adversarial detection i.e. up to 30 modifications in case of MA, 21 modifications in case of

FRA and 9 modifications in case of MFRA in the actual feature vector.

4.8 Summary

In this chapter, we proposed CureDroid, an Android malware classifier trained on hybrid fea-

tures and optimized using a tree-based pipeline optimization technique. Although CureDroid

achieves a remarkable malware detection accuracy (up to 99.2%), we present the fragility of

the proposed technique in adversarial environments. We performed mimicry attacks, FRA and

MFRA, to evade CureDroid. Moreover, we propose CureDroid*, a TPoT-based adversarially

84

CHAPTER 4. EVASION-AWARE ANDROID MALWARE DETECTION MODEL BASED
ON MULTIPLE CLASSIFIERS SYSTEM

robust extension of CureDroid. CureDroid* consider multiple classifiers trained on the distinct

feature sets extracted from Android apps. A single feature vector is distributed into multiple

subsets such that an ML-based classifier trained on each distinct subset has the individual po-

tential to detect Android malware and benign apps. We performed an empirical case study to

evade CureDroid* using mimicry, FRA and MFRA and prove the effectiveness of CureDroid* in

adversarial settings. Our experiments indicate that CureDroid* significantly reduces the evasion

rate compared to CureDroid in adversarial settings.

85

Chapter 5

An Oracle and GAN-based Cumulative

Adversarial Training Technique to

improve Evasion detection for Android

Malware

5.1 Introduction

The adversarial evasion attacks are primarily dependent on the attacker’s insight to defender’s

feature set of training data [192]. The detection model makes a prediction based on ranked

features that can be a piece of sensitive information for the attacker. The attacker can make a

slight change into any of the top-ranked features to generate an adversarial sample [193], [121].

However, such attacks are based on the domain knowledge of the attacker. Although the Android

malware detectors can hide the underlying model, however, there are many publicly available

Android malware datasets that can help the attacker to get insights into the training data [190].

So there is a large gap to fill in research for adversarial evasion detection considering the publicly

86

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
available datasets while designing a sophisticated Android malware detector.

We highlight the fragility of ML classifiers such as support vector machine (SVM), logistic re-

gression (LR), perceptron (PT), decision tree (DT), random forest (RF) and xgboost (XGB) to

compare their effective candidacies for the adversarial malware detection. We have performed

Oracle and Generative Adversarial Network (GAN) based adversarial attacks against a practical

dataset called Drebin that is publicly available [24]. We propose a technique to generate ad-

versarial evasion examples that fool the classifiers mentioned above. It has been demonstrated

that the linear classifiers such as SVM, LR, and Perceptron (PT) are least effective in contrast to

their ensemble counterparts in the adversarial malware detection for Android. Since there is no

silver bullet defence against evasion attacks, therefore, only proactively knowing the attacker’s

manipulations could be cardinal to a robust defence strategy [192]. This is where the concept

of adversarial training could be exploited to form an effective and proactive defence [194]. We

propose a robust adversarial training scheme called TrickDroid based on cumulative adversarial

training of ensemble classifiers on Oracle and GAN based adversarial data to improve evasion

detection. Finally, we compare our results with adversarial training of individual Oracle and

GAN based attacks and adversarial training.

Following are the main contributions of this chapter:

1. We highlight the fragility of the ML classifiers against adversarial evasion attacks. We

perform mimicry attacks based on Oracle and Generative Adversarial Network (GAN)

against these classifiers using our proposed methodology.

2. We demonstrate by experiments that that among ML classifiers, the detection capability

of linear classifiers can be reduced as low as 0% by perturbing only up to 4 out of 315

extracted API features.

3. As a countermeasure, we propose TrickDroid, a cumulative adversarial training scheme

based on Oracle and GAN-based adversarial data to improve evasion detection.

87

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
5.2 Proposed Attacks Methodology

Our proposed methodology of evasion attacks is illustrated in Figure 5.1 which shows the key

components of the system. In the feature extraction module, we reverse engineer the Android ap-

plications to extract API-based features. The extracted features are further used to train multiple

ML classifier models. To evade the trained classifiers, we generate code injection and GAN-

based adversarial data in the adversarial samples generation module. The adversarial samples

are further tested on the existing pre-trained classifiers. Finally, we perform adversarial training

to harden the security of Android malware classifiers against adversarial evasion attacks.

5.2.1 Dataset and Feature Extractor

In this study, we use Drebin [24] as a benchmark dataset. The dataset is composed of 5560

malicious and 213,453 benign applications. We randomly select 5600 benign applications to

balance the dataset. Furthermore, we reverse engineer the Android application packages (APKs)

in the dataset to extract java source code. APKs are decompiled in the form of .dex and then

transformed into .jar files. The .jar files are then disassembled into java source code in order to

extract features. Static analysis is applied on the reverse-engineered code to extract API-based

features from the Android applications. API-based features tend to be strong behaviour-based

features for malware classification [18, 195]. A total of 315 unique API calls were found from

all of the applications in the dataset. Furthermore, each application in the dataset is transformed

into a feature vector of length 315. Each cell of the feature vector contains a binary value where

1 represents the presence of a specific feature and 0 represents its absence.

5.2.2 ML Models Segment

We use SVM, LR, PT, DT, RF and XGB classifiers on API-based features of APKs. All of

the classifiers use default hyper-parameters setting (provided in sklearn 1.0.1 python library),

whereas 10-folds are used for cross-validation. We randomly distribute the dataset into 80%

88

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

Figure 5.1: Evasion Attacks Methodology

training set and 20% testing set for each iteration for cross-validation. In order to present the

fragility of the Android malware classifiers, code injection and GAN-based adversarial evasion

attacks will be applied. Subsequently, we will perform adversarial training to harden the security

of models against such attacks.

89

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
5.2.3 Evasion Attacks Generator

In this section, we discuss our evasion attack strategies against pre-trained Android malware

classifiers. The first step is to train the ML classifiers on an API-based dataset. Once the

classifiers are trained, we apply code injection and GAN based evasion attacks on the classi-

fiers.

5.2.3.1 Code Injection Attacks (CIA)

To perform code injection attacks (CIA), we first find the top 20 most discriminating features

from benign Android applications from the dataset and then inject those one by one in the ma-

licious applications. It has been observed that many API-based features are frequently used and

are overlapping in both malicious and benign applications e.g. StartActvity(), GetDeviceId(),

GetActiveNetworkInfo() etc. However, some features are highly discriminating in the sense of

defining the class of Android applications, e.g. sendTextMessage() API is present in 1903 mali-

cious applications in the dataset, whereas only 42 benign applications call this API.

Algorithm 7 shows the pseudo-code of features injection attack. The dataset of malicious An-

droid apps M and top 20 features of benign class from Drebin 𝐹𝑇𝑜𝑝 are provided as input to the

algorithm. Once the top features are identified, we look for those in the feature vectors of mali-

cious apps. If a feature is missing, i.e. 0 in the malicious samples, we change it to 1 (Algorithm

7, lines 1-4). The process of adding the features is carried out linearly, i.e. we mutate 1 top

feature in all the malicious samples from 0 to 1 and test the samples on the model (Algorithm

7, line 6) to find out the evasion rate. Subsequently, the second top feature is mutated and then

tested on the model and the same process is applied for the top 20 features.

5.2.3.2 GAN Adversarial Examples Attacks (GAEA)

A GAN is a combination of two neural networks, among which one is called generator (G) and

the other is known as discriminator (D). (G) generates the data and (D) evaluates this generated

90

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
Algorithm 7: CIA Algorithm
Input: 𝑀 = {𝑚1, 𝑚2, 𝑚3 𝑚𝑛} and
𝐹𝑇𝑜𝑝 = {𝐹1, 𝐹2, 𝐹3𝐹20}
Output: 𝐸𝑅𝑎𝑡𝑒

1: for 𝑎𝑙𝑙 𝑖 ∈ 𝐹 do
2: for 𝑎𝑙𝑙 𝑗 ∈ 𝑀 do
3: if 𝑖 ∈ 𝑗 == 0 then
4: 𝑗 [𝐹 [𝑖]] ← 1
5: end if
6: 𝑀𝐸𝑣𝑎𝑑𝑒 ← 𝑗

7: end for
8: 𝐸𝑅𝑎𝑡𝑒 ← 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝑀𝐸𝑣𝑎𝑑𝑒)
9: end for

10: Return 𝐸𝑅𝑎𝑡𝑒

data. Both these networks are connected in a way that the loss of D is fed back to G while D’s

weights are not updated so that G can try to follow the real data probability distribution more

efficiently and fool the D. In this work, the primitive version of GAN, also called vanilla GAN

was used, to keep the experiments simplistic for estimating GANs potential for Android API

based data generation. There is a further research gap for the exploration of a suitable GAN

for the generation of Android API data. We leave this as future work. The generator model

G in original/vanilla GAN can be represented as G:z→ X where z is the normal distribution

from noise space and X is the real data distribution. The discriminator D:X → [0,1] model is

a classifier that outputs an estimate of probability how much the data coming from G, is real or

fake. The loss function of the combined model can be represented by Equation 5.1.

min
G

max
D
𝑉 (D,G) = E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [logD(𝑥)]+

E𝑧∼𝑝𝑧 (𝑧) [log(1 − D(G(𝑧)))]
(5.1)

Here, E stands for the probability estimation; 𝑥 and 𝑧 are the real and noise samples, respectively,

while 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑧 represent the probability distributions of real and noise data. The goal in

the mini-max game is to minimise the G loss in creating data similar to the real data. Since

91

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
Table 5.1: GAN Configuration

Parameter Value
Network Type Densely Connected Feed Forward
Number of Layers G: 5, D/C: 4
Input Layer Activations G: relu , D: relu
Output Layer Activations G: sigmoid , D: sigmoid
Batch Size 128
Multiplier(n) 128
Neurons in Input Layer G: 128 , D: 128
Neurons in Layer 1 G : 𝑛 × 1 = 128, D : 𝑛 × 2 = 256
Neurons in Layer 2 G : 𝑛 × 2 = 256, D : 𝑛 × 1 = 128
Neurons in Layer 3 G : 𝑛 × 3 = 384
Neurons in Output Layer G: 315, D/C: 1
Layer Regularization G,D: 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚
Optimizer Adam (beta 1=0.5, beta 2=0.9)
Loss Function binary cross entropy
Learning Rate 1e-5

the generator can not control the loss of D on real data but it can maximise the loss of D on

generated data G(𝑧). The loss function of G is given by Equation 5.2.

𝐽G (G) = E𝑧∼𝑝𝑧 (𝑧) [log(D(G(𝑧)))] (5.2)

Table 5.1 shows the hyperparameter settings for the GAN model. It can be observed from this

table that we used ’sigmoid’ in the output layer of G due to the reason that we wanted to generate

the API data in which the values need to be between 0 and 1.

We propose a GAN based methodology inspired by [196] that could mimic and generate the API

based APK feature set. We propose the GAN evaluation by tweaking the classifier two-sample

test (C2ST) [197] for G performance evaluation. The C2ST is a quantitative metric to compare

two different samples of data. In other words, if we have samples real APK API data (X𝑚)

and GAN APK API data (𝐺 (𝑧)), then we can assess if both samples have similar probability

92

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
Algorithm 8: C2ST Algorithm
Input: X𝑚 (real APK API samples), 𝐺 (𝑧) (GAN APK API samples), Classifier
Output: A(accuracy)

1: 𝑡𝑟 ← X𝑚 [0 : 𝑚(8/10)] ∪ 𝐺 (𝑧) [0 : 𝑚(8/10)]
2: 𝑡𝑠 ← X𝑚 [𝑚(8/10) : 𝑚] ∪ 𝐺 (𝑧) [𝑚(8/10) : 𝑚]
3: train ML classifier on 𝑡𝑟
4: test ML classifier on 𝑡𝑠
5: Return A = (TP + TN)/(TP + TN + FP + FN)

distributions. The more the distributions overlap, the more is the chance that GAN APK API

samples are realistic. The C2ST method has been shown in Algorithm 8. Here, A denotes the

accuracy after splitting the input m samples from (X) i.e. (X𝑚) into 80% train set 𝑡𝑟 and 20%

test set 𝑡𝑠. The accuracy A is computed as per the Equation 5.4.

The GAN evaluation used in GAEA is different from C2ST in the evaluation parameter. The

intuition is that the metric in C2ST, i.e. ’accuracy’, should be replaced with the evasion rate

(𝑒𝑅𝑎𝑡𝑒) if we want to reduce the false negatives in the classifier performance in post augmenta-

tion testing. The false negatives are the possible evasions that are already present in the test set,

which the classifiers are not trained on. Hence, the C2ST has been tweaked so that the objective

function becomes as given in the Equation 5.3. In Equation 5.3, ˆ𝑒𝑅𝑎𝑡𝑒 (𝑎𝑟𝑔𝑚𝑎𝑥) is the evasion

rate on 𝐷𝑡𝑒𝑠𝑡 which is test set, 𝑛𝑡𝑒𝑠𝑡 is the total number of samples in test set, 𝑧𝑖 are the samples

in test set, 𝑙𝑖 are the labels, 𝑓 (𝑧𝑖) is the conditional probability distribution 𝑝(𝑙𝑖 = 1|𝑧𝑖) and I is

the indicator function. The intuition is that if a GAN APK API data is very close in probability

distribution with a real APK API samples, then the evasion rate in Equation 5.3 should remain

close to 100%. This means that the classifier was totally evaded, or the sample was misclassified

as real APK API data. So if we use the evasion rate as the metric instead of accuracy, then we

can better minimise the false negatives due to the reason that accuracy includes the value for

false positives (FP) and true negatives (TN) given by Equation 5.4. Since our objective function

is to minimise false negatives in generator evaluation so we must choose the epochs in which

the evasion was the highest instead of accuracy being the lowest.

93

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

ˆ𝑒𝑅𝑎𝑡𝑒 (𝑎𝑟𝑔𝑚𝑎𝑥) =
1

𝑛𝑡𝑒𝑠𝑡

∑︁
𝑧𝑖 ,𝑙𝑖∈𝐷𝑡𝑒𝑠𝑡

I[I(𝑓 (𝑧𝑖) >
1
2
) = 𝑙𝑖] (5.3)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(5.4)

However, in the evasion rate, we only have true positives (TP) and false negatives (FN) as given

by Equation 5.5.

𝐸𝑣𝑎𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
(5.5)

In Algorithm 9, first of all, we need to extract the malicious real APK API samples X𝑚 from the

preprocessed train set T . Then we create GAN models and start training for 150 epochs in which

for the batch size of 128, in each batch iteration, 𝑥𝑖 is taken as a random batch from X𝑚. We use

the normal distribution of mean = 0 and standard deviation = 1 of the same size as of batch for

noise input to G. The G and D compute their gradients and update in backpropagation. After

each epoch, we generate data𝐺𝑧𝑖 of size equal toX𝑚 and add in a set U. Now, we can perform the

proposed method to evaluate the performance of G in terms of evasion rate 𝑒𝑅𝑎𝑡𝑒. We perform

10-fold train-test split with 70-30 ratio and compute the average evasion rate 𝑒𝑅𝑎𝑡𝑒𝑎𝑣𝑔 . After the

training is complete, we use the weights of the G for the epoch in which the value of 𝑒𝑅𝑎𝑡𝑒𝑎𝑣𝑔

was maximum and generate GAN APK API data 𝐺𝑧I𝑎𝑟𝑔𝑚𝑎𝑥 (𝑒𝑅𝑎𝑡𝑒) . The GAEA algorithm then

outputs the 𝐸𝑅𝑎𝑡𝑒 illustrated in Figure 5.4 the details of which will be mentioned in section

5.3.

5.3 Experimental Results and Analysis

In this section, we evaluate the performance of different ML classifiers against code injection

attacks (CIA) and GAN adversarial examples attacks (GAEA). Furthermore, we perform adver-

sarial training of ML classifiers on CIA called CIA Adversarial Training AT or ’CIA AT’ and

GAEA Adversarial Training or ’GAEA AT’ to improve the evasion detection of classical ML

classifiers and evaluate against evasion attacks. We also perform GAEA on classifiers trained

94

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

Algorithm 9: GAEA Algorithm
Input: T (preprocessed train set in csv format), batch size, epochs, batches, Classifier
Output: 𝐸𝑅𝑎𝑡𝑒

1: X𝑚 ∼ T
2: Create G and D models
3: for 𝑖 ∈ 𝑒𝑝𝑜𝑐ℎ𝑠 do
4: for 𝑗 ∈ 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do
5: 𝑥𝑖 ∼ X𝑚
6: 𝑧 𝑗 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒}
7: 𝑔𝑧 𝑗 ← E𝑧𝑖∼𝑝 (𝑧 𝑗)
8: \D 𝑗 ← \D 𝑗 − [∇\D 𝑗L(𝑥 𝑗)
9: \D 𝑗 ← \D 𝑗 − [∇\D 𝑗L(𝑔𝑧 𝑗)

10: \G 𝑗 ← \G 𝑗 − [∇\G 𝑗L(𝑧 𝑗)
11: end for
12: \G 𝑖 ← \G 𝑗
13: 𝑧𝑖 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑠𝑖𝑧𝑒𝑜 𝑓 (X𝑚) }
14: 𝐺𝑧𝑖 ← E𝑧𝑖∼𝑝 (𝑧)
15: U = X𝑚 ∪ 𝐺𝑧𝑖
16: for 𝑘 ∈ 10 do
17: split pointer = k
18: 𝑡𝑟 ← 80% of U
19: 𝑡𝑠 ← 20% of U
20: train Classifier on 𝑡𝑟
21: test Classifier on 𝑡𝑠
22: compute 𝑒𝑅𝑎𝑡𝑒
23: end for
24: Compute 𝑒𝑅𝑎𝑡𝑒𝑎𝑣𝑔
25: end for
26: 𝑧 ← N{𝑚𝑒𝑎𝑛=0,𝑠𝑡𝑑=1,𝑠𝑖𝑧𝑒=𝑁𝑜𝑟𝑚𝑎𝑙−𝑟𝑒𝑎𝑙 𝐴𝑃𝐾 𝐴𝑃𝐼𝑠𝑎𝑚𝑝𝑙𝑒𝑠

27: 𝐺𝑧I𝑎𝑟𝑔𝑚𝑎𝑥 (𝑒𝑅𝑎𝑡𝑒𝑎𝑣𝑔) ← E𝑧∼𝑝 (𝑧)
28: 𝐸𝑅𝑎𝑡𝑒 ← 𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 (𝐺𝑧I𝑎𝑟𝑔𝑚𝑖𝑛 (𝐸𝑅𝑎𝑡𝑒))
29: Return 𝐸𝑅𝑎𝑡𝑒

95

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
Table 5.2: Classification Results

Precision Recall F1-measure Accuracy
SVM 0.898 0.841 0.868 0.876
Logistic regression 0.891 0.840 0.865 0.872
Perceptron 0.717 0.914 0.804 0.783
Decision Tree 0.924 0.870 0.896 0.902
Random forest 0.927 0.881 0.904 0.908
Xgboost 0.897 0.831 0.862 0.871

with CIA AT and CIA on classifiers trained with GAN AT. Finally, we perform evasion attacks

on TrickDroid, a proposed adversarial training scheme on both CIA and GAEA based data and

record the evasion rate in Figure 5.4. We use an API-based dataset which is composed of 5560

malicious and 5600 benign Android applications for the experiments. The experiments were

performed on Dell G3 with 2.60GHz 6 core(s) processor, 16GB RAM and NVIDIA RTX 2060

GPU, running Windows 10.

In case of no adversarial attacks (NAT), we train the SVM, LR, PT, DT, RF and XGB classifiers

on default hyper-parameters settings with 10-folds cross-validation with a distribution of 80%

train set and 20% test set on each iteration. Table 5.2 presents the classification results obtained

by the classifiers trained on API-based features. Amongst all the other classifiers, RF yields

remarkable classification results with 90.8% accuracy. Figure 5.2 presents the results of CIA

where the x-axis presents the number of features injected, and the y-axis represents the evasion

rate. Consequently, linear classifiers SVM, LR and PT are affected the most with an evasion rate

of 100%, which means all the adversarial samples in the test set were evaded. In comparison,

DT was evaded the least with an evasion rate of 44.82. The evaluation of the CIA shows that

linear classifiers are very fragile against the CIA.

The next attack we performed was the GAEA on NAT classifiers. As shown in Figure 5.3, similar

to the CIA, in the case of GAEA, linear classifiers were affected the most with an evasion rate of

more than 85% in all cases, whereas DT was least affected as compared to all the other classifiers

with an evasion rate of 46.14%. As compared to CIA, GAEA have a slightly lower evasion rate

96

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

Figure 5.2: Code Injection Attack

with no classifier being evaded 100%. However, both of the attacks (CIA and GAEA) have

proved to be significantly effective in evading pre-trained classifiers on the Android malware

dataset.

As a countermeasure to mitigate the effects of evasion attacks, we retrain classifiers on adversar-

ial data and then evaluate those against evasion attacks. Firstly, we retrain the classifiers on code

injection attacks (CIA AT) and perform the evaluation. As shown in Algorithm 1, to perform

CIA, we inject the top features of benign Android applications in the malicious apps and eval-

uate those against pre-trained classifiers. We do so by first injecting the first top discriminating

feature of benign apps into the malicious apps in all of the test sets and evaluating it against the

classifiers. Furthermore, in addition to the first top feature, we inject the second top discrimi-

nating feature of the benign app in a malicious test set and perform the evaluation. The same

process is applied till the injection of the top 20 benign features in the malicious test set. As

discussed earlier, the CIA proved to be very effective to evade multiple ML classifiers. To per-

97

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

Figure 5.3: Results of GAEA

98

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
form retraining of classifiers on CIA, we generate an Oracle where for each malicious Android

app, we added 20 new modified samples. The first sample has one top benign feature injected,

the second sample has two benign top features injected and so on. Consequently, the size of

the training set increased by 20 folds (i.e. 5560 to 111200). Although the size of the training

set has dramatically increased, however, the CIA AT proved to be very effective. As a result of

adversarial training of existing classifiers on CIA data (CIA AT in Figure 5.4), the most evaded

classifier is XGB with only a 0.88% evasion rate.

In the next experiment, we perform GAEA Adversarial Training (GAEA AT) on the classifiers.

We generate 5500 samples similar to the original malicious data using the method as mentioned

in Section 5.2. We augmented the GAEA data with the original dataset. As shown in Figure 5.4,

classifiers trained on GAN adversarial examples (GAEA AT) perform remarkably well against

GAEA with a worst-case of 12.53% evasion rate achieved in the case of PT trained on GAEA.

All the other classifiers retrained on GAEA have an evasion rate of less than 10%. As compared

to CIA AT, it is worth mentioning here that GAN based adversarial sample attacks were min-

imised by just retraining the classifiers on 5500 adversarial samples; however, to avoid CIA, we

retrained classifiers on an Oracle of 111200 new samples as mentioned previously.

Furthermore, we perform experiments by performing GAEA on CIA AT and CIA on GAEA

AT to cross-validate the efficacy of the two adversarial training CIA AT and GAEA AT on

the classifiers. As shown in Figure 5.4, in case of performing CIA on GAN based adversarial

trained classifiers (CIA[GAEA AT]), all the linear classifiers (SVM, LR and PT) have been

evaded more than 85% whereas DT, XGB and RF perform very well with a worst-case evasion

rate of 17.85% in case of XGB. Consequently, by applying GAEA on classifiers trained on

code injection attacks (GAEA[CIA AT]), surprisingly, the results were opposite to CIA[GAEA

AT]. As shown in Figure 5.4, in the case of GAEA[CIA AT], all the linear classifiers performed

remarkably well with a worst-case evasion rate of 11.15% in the case of PT. Whereas DT, RF

and XGBoost were evaded more than 82% in all cases. As a final countermeasure, we train

99

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE

Figure 5.4: Evasion Rate

classifiers on both CIA AT and GAEA AT and call this adversarial training as TrickDroid. As

shown in Figure 5.4 (highlighted in the red colour text), TrickDroid remarkably works well

against both CIA[GAEA AT] and GAEA[CIA AT] with an evasion rate of no more than 0.51 in

the worst case.

5.4 Summary

The excessive use of Machine learning (ML) classifiers in Android malware detection demands

a greater degree of inherent security due to the threats of adversarial evasion attacks. In this

work, we highlight the fragility of classical ML classifiers against these types of attacks. After

performing Oracle and GAN adversarial examples based attacks on different ML classifiers on

a public Android dataset, we demonstrate an evasion rate of up to 100%. Our experiments

reveal that the linear classifiers are less robust as compared to their ensemble counterparts both

100

CHAPTER 5. AN ORACLE AND GAN-BASED CUMULATIVE ADVERSARIAL
TRAINING TECHNIQUE TO IMPROVE EVASION DETECTION FOR ANDROID

MALWARE
in Oracle and GAN based attacks. Furthermore, we present that despite adversarial training

against one attack type, the classifiers are still vulnerable to other attacks. Hence, in order

to further ruggedize the classifiers, we propose Trickdroid, a cumulative adversarial training

technique and demonstrate its efficacy with up to 99.46% evasion detection.

101

Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

Nowadays, smartphones can accomplish nearly all functions traditionally associated with per-

sonal computers. Android OS dominates the smartphone OS industry with more than 70%

market share. As a result of its widespread use, Android OS have become a prime target for

smartphone malware developers. Therefore, serious initiatives have been taken by the industry

and researchers to ensure the security of these smart devices. Security analysts have extensively

researched and successfully demonstrated ML-based Android malware detection techniques to

effectively mitigate the Android malware problem. Despite the impressive classification accu-

racy reported by ML-based techniques, they remain insufficient. The reason is that the design

process of these techniques does not usually consider adversarial scenarios. Consequently, a

carefully crafted perturbation in the malicious sample can result in misclassification.

In this thesis, the research begins by identifying the research gaps related to the design and de-

velopment of accurate and adversarially aware ML-based Android malware detectors. Based on

the research gaps, four research questions were identified. The RQ1 focused on the problem of

repacked malware in benchmark Android malware repositories. The RQ2 focused on quanti-

102

CHAPTER 6. CONCLUSION AND FUTURE WORK

fying the impact of repacked malware on ML-based Android malware detectors. RQ3 stressed

on investigating the fragility of high-performing ML-based Android malware classifiers against

adversarial evasion attacks. Finally, the RQ4 was related to designing and developing accurate

and adversarially robust ML-based Android malware classifiers.

In order to address the RQ1, Chapter 3 starts with quantifying the repacked malware in three

benchmark Android malware datasets (Drebin, AMD and Androzoo). The analysis of these

datasets revealed that 52.3% apps in Drebin, 29.8% apps in the AMD and 42.3% apps in the

Androzoo dataset reuse existing package names. Further analysis of the apps sharing the same

package names revealed that most of them share the same source code with minor modifica-

tions. A case study was then performed by employing fuzzy hashes to detect repacked Android

malware in benchmark Android malware repositories. Prompted by the motivating results of the

case study, ML-based techniques were further incorporated to build a more robust solution for

detecting repacked Android malware. The RQ2 was then addressed by investigating the impact

of repacked malware on ML-based Android malware detectors. In order to do so, we proposed

AndroMalPack, an Android malware classifier trained on clones free datasets and optimized us-

ing NIAs. Although trained on repacked/clones free train set, AndroMalPack achieved up to

98.7% F1-score.

Furthermore, Chapter 4 focused on addressing RQ3 and RQ4. First, we proposed CureDroid, an

Android malware classifier trained on hybrid features and optimized using a tree-based pipeline

optimization. CureDroid achieved a remarkable malware detection accuracy of up to 99.2%

on a dataset of 18,000 malicious and 18,000 benign Android apps. In order to address the

RQ3, we formulated three types of evasion attacks (mimicry attacks, FRA and MFRA) to evade

CureDroid. Consequently, it was demonstrated that although the CureDroid* classifier had high

classification accuracy in a non-adversarial setting, it is vulnerable to adversarial evasion attacks

(achieved up to 100% evasion rate). In order to build an adversarially aware classifier (to address

RQ4), we proposed CureDroid*. CureDroid* is based on multiple classifiers trained on the

103

CHAPTER 6. CONCLUSION AND FUTURE WORK

distinct feature sets extracted from Android apps. The experimental results proved that the

CureDroid* model mitigates the impact of adversarial attacks on ML-based malware classifiers.

CureDroid* was able to detect up to 30 perturbations in feature vectors while retaining high

malware classification accuracy.

Chapter 5 further addresses the RQ4 by exploring the effectiveness of adversarial training in

order to enhance the adversarial robustness of ML-based Android malware classifiers. First, six

different pre-trained ML-based classifiers were evaded by employing novel oracle and GAN-

based adversarial evasion attacks. The experiments revealed that linear classifiers such as SVM,

LR and PT are more vulnerable to adversarial attacks than their ensemble counterparts such as

RF, DT and XGB. Furthermore, adversarial training was performed on ML-based classifiers in

order to harden the security of ML-based Android malware classifiers against adversarial attacks.

The experimental results revealed that despite training the classifiers on one type of attack, they

were still vulnerable to the other type of attacks. Consequently, we proposed TrickDroid, a cu-

mulative adversarial training technique and demonstrated its efficacy with up to 99.46% evasion

detection.

6.2 Future Directions

There are twofold future directions that this work can inspire. The first type is related to de-

signing automated tools, and the other is designing more adversarial robust Android malware

classifiers. Following is a brief discussion about these two directions:

6.2.1 Automated Tools

Following are two types of automated tools that can be designed and implemented to foster

research in mitigating adversarial attacks on Android malware classifiers.

104

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2.1.1 Churn GAN Generated Synthetic Data

Generative adversarial networks (GANs) are employed to generate synthetic data which follows

the actual distribution. In terms of generating Android malware data that mimic real applications,

it is not always the case that the generated data preserves the malicious semantics. Therefore,

there is a need for an automated tool that can help in churning the GAN-generated data. The

tool can churn the data based on predefined rules such as checking if any discriminating features

are removed from the vector or too many features are injected into the vector.

6.2.1.2 Modification of APK

In order to train Ml-based algorithms on malicious and benign Android apps, the apps are con-

verted into the form of feature vectors. Generally, the feature vectors contain binary values

where 1 represents the presence of a feature and 0 represents the absence of a particular feature.

Furthermore, adversarial attacks are applied by perturbing the binary values in the feature vector

instead of making a change in real applications. Therefore, an automated tool is needed to parse

the changes in feature vectors and apply the modifications in the real APK. Once the app is

modified, it can leveraged by the malware analysts by testing the modified apps on commercial

antivirus tools on a large scale.

6.2.2 Adversarially Robust Classifiers

In this thesis, we have proposed techniques that can be employed to enhance the performance

of Android malware classifiers and counter evasion attacks. Following are some future direc-

tions that can be further explored to ruggedise the adversarial robustness of Android malware

detectors:

6.2.2.1 Scale CureDroid*

We proposed the CureDroid* model to mitigate adversarial evasion attacks on the Android mal-

ware classifiers. Although CureDroid* performs well against evasion attacks, the attacker can

105

CHAPTER 6. CONCLUSION AND FUTURE WORK

still elude the proposed system by evading all the classifiers in the ensemble model. The Cure-

Droid* model can be further scaled by identifying more feature subsets that have the individual

capability to classify malicious and benign Android applications. The novel feature subsets

will add more classifiers to the CureDroid* model. Consequently, it will harden the security

of the CureDroid* model as the attacker will need more effort to evade all the classifiers in the

ensemble model.

6.2.2.2 Robust feature engineering

Adversarial attacks against machine learning-based classifiers are carried out by modifying the

attributes of the original application. Generally, the features with high frequency in a given

class are perturbed to elude the classification model. An interesting future direction would be to

explore the effectiveness of removing easily manipulatable characteristics from feature vectors

to make the evasion process more difficult for the adversary. Furthermore, it would be worth

exploring the adversarial robustness of classifiers trained on random features from input data

rather than following the uniform pattern at each iteration.

6.2.2.3 Image-based Adversarially Robust Classifiers

The features extracted from the Android application can be transformed into multi-dimensional

feature vectors like those used for image classification tasks. An interesting future direction

can be to explore the effectiveness of image-based classification algorithms using Android data.

Numerous countermeasures are proposed in the literature to counter adversarial evasion attacks

on image-based classifiers [198]. Consequently, these countermeasures can be employed on

classifiers trained on images based on Android data, and adversarial effectiveness can be mea-

sured.

106

Glossary

AB AdaBoost. 38, 50

APIs Application Programming Interfaces. 2, 5, 12

APK Android Application Package. 11, 24

apps Applications. 1, 13

BA Bat algorithm. 51, 53

CFGs Control Flow Graphs. 19

CTPH Context-Triggered Piece-wise Hashing. 40

DL Deep learning. 2

DT Decision trees. 38, 50

DVM Dalvik Virtual Machine. 12, 13

FA Firefly algorithm. 51, 53

FN False Negative. 52

FP False Positive. 52

FRA Feature removal attacks. 63

107

Glossary

GANs Generative Adversarial Networks. 6

GB Gradient boosting. 69

GWO Grey wolf optimizer. 51, 53

HAL Hardware abstraction layer. 12

iOS IPhone Operating System. 1

KNN K-nearest neighbours. 38, 50

LR Linear regression. 38, 50

LSTM Long Short-Term Memory. 19

MA Mimicry attacks. 63

MFRA Mimicry with feature removal attacks. 63

ML Machine Learning. iv

MLP Multi-layer perceptron. 30

NIAs Nature inspired algorithms. 5, 51

NLP Natural language processing (. 23

OS Operating system. iv, 1, 2, 11

PT Perceptron. 87, 96, 99

RF Random forests. 38, 50

RL Reinforcement learning. 30, 31

108

Glossary

SVM Support Vector Machine. 18, 22, 50

TN True Negative. 52

TP True Positive. 52

TPoT Tree-based pipeline optimization technique. 5

XGB Xgboost. 38, 50

109

References

[1] S. O’Dea. Daily time spent on mobile phones in the u.s. 2019-2023, 2021. URL https:

//www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/. Ac-

cessed on 2022-09-25.

[2] David Curry. Smartphones os global market share, 2021. URL https://www.

businessofapps.com/data/android-statistics/. Accessed on 2022-09-25.

[3] Mansoor Iqbal. Apps download and usage statistics, 2021. URL https://www.

businessofapps.com/data/app-statistics/. Accessed on 2022-09-25.

[4] Pavol Zavarsky, Dale Lindskog, et al. Experimental analysis of ransomware on windows

and android platforms: Evolution and characterization. Procedia Computer Science, 94:

465–472, 2016.

[5] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto. Stealth

attacks: An extended insight into the obfuscation effects on android malware. Computers

& Security, 51:16–31, 2015.

[6] Stephen McLaughlin. On dynamic malware payloads aimed at programmable logic con-

trollers. In 6th USENIX Workshop on Hot Topics in Security (HotSec 11), 2011.

[7] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Rebooting research on detecting

repackaged android apps: Literature review and benchmark. IEEE Transactions on Soft-

ware Engineering, 2019.

110

https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/android-statistics/
https://www.businessofapps.com/data/app-statistics/
https://www.businessofapps.com/data/app-statistics/

REFERENCES

[8] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. A survey on malware

detection using data mining techniques. ACM Computing Surveys (CSUR), 50(3):1–40,

2017.

[9] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cavallaro.

The evolution of android malware and android analysis techniques. ACM Computing

Surveys (CSUR), 49(4):1–41, 2017.

[10] Hemant Rathore, Sanjay K Sahay, Piyush Nikam, and Mohit Sewak. Robust android mal-

ware detection system against adversarial attacks using q-learning. Information Systems

Frontiers, 23(4):867–882, 2021.

[11] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. Catch me if you can: Evaluating android

anti-malware against transformation attacks. IEEE Transactions on Information Forensics

and Security, 9(1):99–108, 2013.

[12] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. A survey of

android malware detection with deep neural models. ACM Computing Surveys (CSUR),

53(6):1–36, 2020.

[13] Vasileios Kouliaridis and Georgios Kambourakis. A comprehensive survey on machine

learning techniques for android malware detection. Information, 12(5):185, 2021.

[14] Asma Razgallah, Raphaël Khoury, Sylvain Hallé, and Kobra Khanmohammadi. A sur-

vey of malware detection in android apps: Recommendations and perspectives for future

research. Computer Science Review, 39:100358, 2021.

[15] Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller. Multi-view

deep learning for zero-day android malware detection. Journal of Information Security

and Applications, 58:102718, 2021.

[16] AV-Test. Android malware statistics, 2021. URL https://www.av-test.org/en/statistics/

malware/. Accessed on 2022-09-25.

111

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

REFERENCES

[17] Abdullah Al-Dujaili, Alex Huang, Erik Hemberg, and Una-May O’Reilly. Adversarial

deep learning for robust detection of binary encoded malware. In 2018 IEEE Security

and Privacy Workshops (SPW), pages 76–82. IEEE, 2018.

[18] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Make evasion harder:

An intelligent android malware detection system. In IJCAI, pages 5279–5283, 2018.

[19] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel

Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at

test time. In Joint European conference on machine learning and knowledge discovery in

databases, pages 387–402. Springer, 2013.

[20] Fabrizio Cara, Michele Scalas, Giorgio Giacinto, and Davide Maiorca. On the feasibility

of adversarial sample creation using the android system api. Information, 11(9):433,

2020.

[21] Pavel Laskov and Richard Lippmann. Machine learning in adversarial environments,

2010.

[22] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F Bissyandé, Jacques Klein,

and John Grundy. On the impact of sample duplication in machine-learning-based an-

droid malware detection. ACM Transactions on Software Engineering and Methodology

(TOSEM), 30(3):1–38, 2021.

[23] Paul Irolla and Alexandre Dey. The duplication issue within the drebin dataset. Journal

of Computer Virology and Hacking Techniques, 14(3):245–249, 2018.

[24] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and

CERT Siemens. Drebin: Effective and explainable detection of android malware in your

pocket. In Ndss, volume 14, pages 23–26, 2014.

[25] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep ground

112

REFERENCES

truth analysis of current android malware. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 252–276. Springer, 2017.

[26] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo:

Collecting millions of android apps for the research community. In 2016 IEEE/ACM

13th Working Conference on Mining Software Repositories (MSR), pages 468–471. IEEE,

2016.

[27] Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios Anas-

tasiadis, and George Loukas. A taxonomy and survey of attacks against machine learning.

Computer Science Review, 34:100199, 2019.

[28] Luca Demetrio, Scott E Coull, Battista Biggio, Giovanni Lagorio, Alessandro Armando,

and Fabio Roli. Adversarial exemples: A survey and experimental evaluation of practi-

cal attacks on machine learning for windows malware detection. ACM Transactions on

Privacy and Security (TOPS), 24(4):1–31, 2021.

[29] Samuel G Finlayson, Hyung Won Chung, Isaac S Kohane, and Andrew L Beam. Adver-

sarial attacks against medical deep learning systems. arXiv preprint arXiv:1804.05296,

2018.

[30] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, and Feng

Lu. Understanding adversarial attacks on deep learning based medical image analysis

systems. Pattern Recognition, 110:107332, 2021.

[31] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnera-

bilities in the machine learning model supply chain. arXiv preprint arXiv:1708.06733,

2017.

[32] Davide Maiorca, Battista Biggio, and Giorgio Giacinto. Towards adversarial malware

detection: Lessons learned from pdf-based attacks. ACM Computing Surveys (CSUR), 52

(4):1–36, 2019.

113

REFERENCES

[33] Yuanzhang Li, Yaxiao Wang, Ye Wang, Lishan Ke, and Yu-an Tan. A feature-vector

generative adversarial network for evading pdf malware classifiers. Information Sciences,

523:38–48, 2020.

[34] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratanto-

nio, Victor Van Der Veen, and Christian Platzer. Andrubis–1,000,000 apps later: A view

on current android malware behaviors. In 2014 third international workshop on building

analysis datasets and gathering experience returns for security (BADGERS), pages 3–17.

IEEE, 2014.

[35] Suleiman Y Yerima, Sakir Sezer, and Igor Muttik. High accuracy android malware de-

tection using ensemble learning. IET Information Security, 9(6):313–320, 2015.

[36] Abhishek Kumar Singh, CD Jaidhar, and MA Ajay Kumara. Experimental analysis of

android malware detection based on combinations of permissions and api-calls. Journal

of Computer Virology and Hacking Techniques, 15(3):209–218, 2019.

[37] Akshay Mathur, Laxmi Mounika Podila, Keyur Kulkarni, Quamar Niyaz, and Ahmad Y

Javaid. Naticusdroid: A malware detection framework for android using native and cus-

tom permissions. Journal of Information Security and Applications, 58:102696, 2021.

[38] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye. Significant

permission identification for machine-learning-based android malware detection. IEEE

Transactions on Industrial Informatics, 14(7):3216–3225, 2018.

[39] Luiz C Navarro, Alexandre KW Navarro, André Grégio, Anderson Rocha, and Ricardo

Dahab. Leveraging ontologies and machine-learning techniques for malware analysis into

android permissions ecosystems. Computers & Security, 78:429–453, 2018.

[40] Junfeng Yu, Qingfeng Huang, and CheeHoo Yian. Droidscreening: a practical framework

for real-world android malware analysis. Security and Communication Networks, 9(11):

1435–1449, 2016.

114

REFERENCES

[41] Moutaz Alazab, Mamoun Alazab, Andrii Shalaginov, Abdelwadood Mesleh, and Albara

Awajan. Intelligent mobile malware detection using permission requests and api calls.

Future Generation Computer Systems, 107:509–521, 2020.

[42] Satheesh Kumar Sasidharan and Ciza Thomas. Prodroid—an android malware detection

framework based on profile hidden markov model. Pervasive and Mobile Computing, 72:

101336, 2021.

[43] Hui-Juan Zhu, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, and Li Cheng.

Droiddet: effective and robust detection of android malware using static analysis along

with rotation forest model. Neurocomputing, 272:638–646, 2018.

[44] Ahmad Salah, Eman Shalabi, and Walid Khedr. A lightweight android malware classifier

using novel feature selection methods. Symmetry, 12(5):858, 2020.

[45] Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M Chen, and Yogachan-

dran Rahulamathavan. Pindroid: A novel android malware detection system using en-

semble learning methods. Computers & Security, 68:36–46, 2017.

[46] Fauzia Idrees and Muttukrishnan Rajarajan. Investigating the android intents and per-

missions for malware detection. In 2014 IEEE 10th International Conference on Wire-

less and Mobile Computing, Networking and Communications (WiMob), pages 354–358.

IEEE, 2014.

[47] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and Steven Fur-

nell. Androdialysis: Analysis of android intent effectiveness in malware detection. com-

puters & security, 65:121–134, 2017.

[48] Quentin Jerome, Kevin Allix, Radu State, and Thomas Engel. Using opcode-sequences

to detect malicious android applications. In 2014 IEEE international conference on com-

munications (ICC), pages 914–919. IEEE, 2014.

115

REFERENCES

[49] Gerardo Canfora, Andrea De Lorenzo, Eric Medvet, Francesco Mercaldo, and Cor-

rado Aaron Visaggio. Effectiveness of opcode ngrams for detection of multi family an-

droid malware. In 2015 10th International Conference on Availability, Reliability and

Security, pages 333–340. IEEE, 2015.

[50] Jianguo Jiang, Song Li, Min Yu, Gang Li, Chao Liu, Kai Chen, Hui Liu, and Weiqing

Huang. Android malware family classification based on sensitive opcode sequence. In

2019 IEEE Symposium on Computers and Communications (ISCC), pages 1–7. IEEE,

2019.

[51] Abdulbasit Darem, Jemal Abawajy, Aaisha Makkar, Asma Alhashmi, and Sultan Alanazi.

Visualization and deep-learning-based malware variant detection using opcode-level fea-

tures. Future Generation Computer Systems, 125:314–323, 2021.

[52] Abdurrahman Pektaş and Tankut Acarman. Learning to detect android malware via op-

code sequences. Neurocomputing, 396:599–608, 2020.

[53] Junwei Tang, Ruixuan Li, Yu Jiang, Xiwu Gu, and Yuhua Li. Android malware ob-

fuscation variants detection method based on multi-granularity opcode features. Future

Generation Computer Systems, 129:141–151, 2022.

[54] Zahoor-Ur Rehman, Sidra Nasim Khan, Khan Muhammad, Jong Weon Lee, Zhihan

Lv, Sung Wook Baik, Peer Azmat Shah, Khalid Awan, and Irfan Mehmood. Machine

learning-assisted signature and heuristic-based detection of malwares in android devices.

Computers & Electrical Engineering, 69:828–841, 2018.

[55] Wei Wang, Zhenzhen Gao, Meichen Zhao, Yidong Li, Jiqiang Liu, and Xiangliang Zhang.

Droidensemble: Detecting android malicious applications with ensemble of string and

structural static features. IEEE Access, 6:31798–31807, 2018.

[56] Justin Del Vecchio, Steven Y Ko, and Lukasz Ziarek. Representing string computations

116

REFERENCES

as graphs for classifying malware. In Proceedings of the IEEE/ACM 7th International

Conference on Mobile Software Engineering and Systems, pages 120–131, 2020.

[57] Caijun Sun, Hua Zhang, Sujuan Qin, Nengqiang He, Jiawei Qin, and Hongwei Pan. Dexx:

a double layer unpacking framework for android. IEEE Access, 6:61267–61276, 2018.

[58] Parvez Faruki, Vijay Ganmoor, Vijay Laxmi, Manoj Singh Gaur, and Ammar Bharmal.

Androsimilar: robust statistical feature signature for android malware detection. In Pro-

ceedings of the 6th International Conference on Security of Information and Networks,

pages 152–159, 2013.

[59] Wenjun Hu, Jing Tao, Xiaobo Ma, Wenyu Zhou, Shuang Zhao, and Ting Han. Migdroid:

Detecting app-repackaging android malware via method invocation graph. In 2014 23rd

International Conference on Computer Communication and Networks (ICCCN), pages

1–7. IEEE, 2014.

[60] Min Zheng, Mingshen Sun, and John CS Lui. Droid analytics: a signature based analytic

system to collect, extract, analyze and associate android malware. In 2013 12th IEEE

International Conference on Trust, Security and Privacy in Computing and Communica-

tions, pages 163–171. IEEE, 2013.

[61] Xin Wang, Dafang Zhang, Xin Su, and Wenjia Li. Mlifdect: Android malware detection

based on parallel machine learning and information fusion. Security and Communication

Networks, 2017, 2017.

[62] Fadi Mohsen, Halil Bisgin, Zachary Scott, and Kyle Strait. Detecting android malwares

by mining statically registered broadcast receivers. In 2017 IEEE 3rd International Con-

ference on Collaboration and Internet Computing (CIC), pages 67–76. IEEE, 2017.

[63] Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based de-

tection of android malware through static analysis. In Proceedings of the 22nd ACM SIG-

117

REFERENCES

SOFT international symposium on foundations of software engineering, pages 576–587,

2014.

[64] Roopak Surendran, Tony Thomas, and Sabu Emmanuel. A tan based hybrid model for

android malware detection. Journal of Information Security and Applications, 54:102483,

2020.

[65] Jinpei Yan, Yong Qi, and Qifan Rao. Lstm-based hierarchical denoising network for

android malware detection. Security and Communication Networks, 2018, 2018.

[66] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu.

Android malware familial classification and representative sample selection via frequent

subgraph analysis. IEEE Transactions on Information Forensics and Security, 13(8):

1890–1905, 2018.

[67] Tatiana Frenklach, Dvir Cohen, Asaf Shabtai, and Rami Puzis. Android malware detec-

tion via an app similarity graph. Computers & Security, 109:102386, 2021.

[68] Yang Yang, Xuehui Du, Zhi Yang, and Xing Liu. Android malware detection based on

structural features of the function call graph. Electronics, 10(2):186, 2021.

[69] Suparerk Ngamwitroj and Benchaphon Limthanmaphon. Adaptive android malware sig-

nature detection. In Proceedings of the 2018 International Conference on Communication

Engineering and Technology, pages 22–25, 2018.

[70] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and

Sahin Albayrak. An android application sandbox system for suspicious software detec-

tion. In 2010 5th International Conference on Malicious and Unwanted Software, pages

55–62. IEEE, 2010.

[71] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes

Hoffmann. Mobile-sandbox: having a deeper look into android applications. In Pro-

118

REFERENCES

ceedings of the 28th Annual ACM Symposium on Applied Computing, pages 1808–1815,

2013.

[72] Arvind Mahindru and Paramvir Singh. Dynamic permissions based android malware

detection using machine learning techniques. In Proceedings of the 10th innovations in

software engineering conference, pages 202–210, 2017.

[73] Altyeb Altaher and Omar Mohammed Barukab. Intelligent hybrid approach for android

malware detection based on permissions and api calls. International Journal of Advanced

Computer Science and Applications, 8(6):60–67, 2017.

[74] Jyoti Gajrani, Umang Agarwal, Vijay Laxmi, Bruhadeshwar Bezawada, Manoj Singh

Gaur, Meenakshi Tripathi, and Akka Zemmari. Espydroid+: Precise reflection analysis

of android apps. Computers & Security, 90:101688, 2020.

[75] Yubin Yang, Zongtao Wei, Yong Xu, Haiwu He, and Wei Wang. Droidward: an effective

dynamic analysis method for vetting android applications. Cluster Computing, 21(1):

265–275, 2018.

[76] Jyoti Malik and Rishabh Kaushal. Credroid: Android malware detection by network traf-

fic analysis. In Proceedings of the 1st acm workshop on privacy-aware mobile computing,

pages 28–36, 2016.

[77] Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao, and Mauro Conti.

Detecting android malware leveraging text semantics of network flows. IEEE Transac-

tions on Information Forensics and Security, 13(5):1096–1109, 2017.

[78] Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ke Ji, Lizhi Peng, Bo Yang, and Mauro

Conti. Deep and broad url feature mining for android malware detection. Information

Sciences, 513:600–613, 2020.

[79] Mehedee Zaman, Tazrian Siddiqui, Mohammad Rakib Amin, and Md Shohrab Hossain.

119

REFERENCES

Malware detection in android by network traffic analysis. In 2015 international confer-

ence on networking systems and security (NSysS), pages 1–5. IEEE, 2015.

[80] José Gaviria de la Puerta, Iker Pastor-López, Igone Porto, Borja Sanz, and Pablo Garcı́a

Bringas. Detecting malicious android applications based on the network packets gener-

ated. Neurocomputing, 456:629–636, 2021.

[81] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio. De-

tecting android malware using sequences of system calls. In Proceedings of the 3rd Inter-

national Workshop on Software Development Lifecycle for Mobile, pages 13–20, 2015.

[82] Jorge Maestre Vidal, Marco Antonio Sotelo Monge, and Luis Javier Garcı́a Villalba. A

novel pattern recognition system for detecting android malware by analyzing suspicious

boot sequences. Knowledge-Based Systems, 150:198–217, 2018.

[83] P Vinod, Akka Zemmari, and Mauro Conti. A machine learning based approach to detect

malicious android apps using discriminant system calls. Future Generation Computer

Systems, 94:333–350, 2019.

[84] Marko Dimjašević, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamaric. Evaluation of

android malware detection based on system calls. In Proceedings of the 2016 ACM on

International Workshop on Security And Privacy Analytics, pages 1–8, 2016.

[85] Xi Xiao, Shaofeng Zhang, Francesco Mercaldo, Guangwu Hu, and Arun Kumar Sanga-

iah. Android malware detection based on system call sequences and lstm. Multimedia

Tools and Applications, 78(4):3979–3999, 2019.

[86] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Para-

noid android: versatile protection for smartphones. In Proceedings of the 26th annual

computer security applications conference, pages 347–356, 2010.

[87] Hongyu Yang and Ruiwen Tang. Power consumption based android malware detection.

Electrical and Computer Engineerin, 2016.

120

REFERENCES

[88] Zigrid Shehu, Claudio Ciccotelli, Daniele Ucci, Leonardo Aniello, and Roberto Baldoni.

Towards the usage of invariant-based app behavioral fingerprinting for the detection of

obfuscated versions of known malware. In 2016 10th International Conference on Next

Generation Mobile Applications, Security and Technologies (NGMAST), pages 121–126.

IEEE, 2016.

[89] Jelena Milosevic, Miroslaw Malek, and Alberto Ferrante. A friend or a foe? detecting

malware using memory and cpu features. In SECRYPT, pages 73–84, 2016.

[90] Mohammed S Alam and Son T Vuong. Random forest classification for detecting android

malware. In 2013 IEEE international conference on green computing and communica-

tions and IEEE Internet of Things and IEEE cyber, physical and social computing, pages

663–669. IEEE, 2013.

[91] Fehmi Jaafar, Gagandeep Singh, and Pavol Zavarsky. An analysis of android malware

behavior. In 2018 IEEE International Conference on Software Quality, Reliability and

Security Companion (QRS-C), pages 505–512. IEEE, 2018.

[92] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolu-

tion. In 2012 IEEE symposium on security and privacy, pages 95–109. IEEE, 2012.

[93] Zimin Lin, Rui Wang, Xiaoqi Jia, Shengzhi Zhang, and Chuankun Wu. Classifying an-

droid malware with dynamic behavior dependency graphs. In 2016 IEEE Trustcom/Big-

DataSE/ISPA, pages 378–385. IEEE, 2016.

[94] Abdurrahman Pektaş and Tankut Acarman. Deep learning for effective android malware

detection using api call graph embeddings. Soft Computing, 24(2):1027–1043, 2020.

[95] Roopak Surendran, Tony Thomas, and Sabu Emmanuel. Gsdroid: Graph signal based

compact feature representation for android malware detection. Expert Systems with Ap-

plications, 159:113581, 2020.

121

REFERENCES

[96] Vasileios Kouliaridis, Georgios Kambourakis, Dimitris Geneiatakis, and Nektaria Potha.

Two anatomists are better than one—dual-level android malware detection. Symmetry, 12

(7):1128, 2020.

[97] Saba Arshad, Munam A Shah, Abdul Wahid, Amjad Mehmood, Houbing Song, and

Hongnian Yu. Samadroid: a novel 3-level hybrid malware detection model for android

operating system. IEEE Access, 6:4321–4339, 2018.

[98] Ly Hoang Tuan, Nguyen Tan Cam, and Van-Hau Pham. Enhancing the accuracy of static

analysis for detecting sensitive data leakage in android by using dynamic analysis. Cluster

Computing, 22(1):1079–1085, 2019.

[99] Afifa Maryam, Usman Ahmed, Muhammad Aleem, Jerry Chun-Wei Lin, Muhammad

Arshad Islam, and Muhammad Azhar Iqbal. chybridroid: A machine learning-based hy-

brid technique for securing the edge computing. Security and Communication Networks,

2020, 2020.

[100] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. Evaluation of

a tree-based pipeline optimization tool for automating data science. In Proceedings of the

genetic and evolutionary computation conference 2016, pages 485–492, 2016.

[101] Hemant Rathore, Sanjay K Sahay, Piyush Nikam, and Mohit Sewak. Robust android mal-

ware detection system against adversarial attacks using q-learning. Information Systems

Frontiers, pages 1–16, 2020.

[102] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. You shall not repack-

age! demystifying anti-repackaging on android. Computers & Security, page 102181,

2021.

[103] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the clones: Detecting cloned

applications on android markets. In European Symposium on Research in Computer Se-

curity, pages 37–54. Springer, 2012.

122

REFERENCES

[104] Sibei Jiao, Yao Cheng, Lingyun Ying, Purui Su, and Dengguo Feng. A rapid and scalable

method for android application repackaging detection. In International Conference on

Information Security Practice and Experience, pages 349–364. Springer, 2015.

[105] Mingshen Sun, Mengmeng Li, and John CS Lui. Droideagle: Seamless detection of

visually similar android apps. In Proceedings of the 8th ACM Conference on Security &

Privacy in Wireless and Mobile Networks, pages 1–12, 2015.

[106] Shahid Alam and Ibrahim Sogukpinar. Droidclone: Attack of the android malware clones-

a step towards stopping them. Computer Science and Information Systems, 18(1):35–35,

2020.

[107] Shirish Singh, Kushagra Chaturvedy, and Bharavi Mishra. Multi-view learning for

repackaged malware detection. In The 16th International Conference on Availability,

Reliability and Security, pages 1–9, 2021.

[108] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann, Johannes

Lerch, and Mira Mezini. Codematch: obfuscation won’t conceal your repackaged app.

In Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,

pages 638–648, 2017.

[109] Yuta Ishii, Takuya Watanabe, Mitsuaki Akiyama, and Tatsuya Mori. Appraiser: A large

scale analysis of android clone apps. IEICE TRANSACTIONS on Information and Sys-

tems, 100(8):1703–1713, 2017.

[110] Gaofeng He, Lu Zhang, Bingfeng Xu, and Haiting Zhu. Detecting repackaged android

malware based on mobile edge computing. In 2018 Sixth International Conference on

Advanced Cloud and Big Data (CBD), pages 360–365. IEEE, 2018.

[111] Shahid Alam and Ibrahim Sogukpinar. Droidclone: Attack of the android malware clones-

a step towards stopping them. Computer Science and Information Systems, 18(1):67–91,

2021.

123

REFERENCES

[112] Roopak Surendran. On impact of semantically similar apps in android malware datasets.

arXiv preprint arXiv:2112.02606, 2021.

[113] Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based classifier: A case

study. In 2014 IEEE symposium on security and privacy, pages 197–211. IEEE, 2014.

[114] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial

machine learning. Pattern Recognition, 84:317–331, 2018.

[115] Lingwei Chen, Shifu Hou, and Yanfang Ye. Securedroid: Enhancing security of machine

learning-based detection against adversarial android malware attacks. In Proceedings of

the 33rd Annual Computer Security Applications Conference, pages 362–372, 2017.

[116] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick Mc-

Daniel. Adversarial examples for malware detection. In European symposium on research

in computer security, pages 62–79. Springer, 2017.

[117] Alejandro Calleja, Alejandro Martı́n, Héctor D Menéndez, Juan Tapiador, and David

Clark. Picking on the family: Disrupting android malware triage by forcing misclas-

sification. Expert Systems with Applications, 95:113–126, 2018.

[118] Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight, obfuscation-resilient

detection and family identification of android malware. ACM Transactions on Software

Engineering and Methodology (TOSEM), 26(3):1–29, 2018.

[119] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, Annamalai Narayanan, Yang

Liu, Jie Zhang, and Tieming Chen. Mystique: Evolving android malware for auditing

anti-malware tools. In Proceedings of the 11th ACM on Asia conference on computer and

communications security, pages 365–376, 2016.

[120] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Manoj Singh Gaur, Mauro Conti, and

Muttukrishnan Rajarajan. Evaluation of android anti-malware techniques against dalvik

124

REFERENCES

bytecode obfuscation. In 2014 IEEE 13th International Conference on Trust, Security

and Privacy in Computing and Communications, pages 414–421. IEEE, 2014.

[121] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and Patrick Mc-

Daniel. Adversarial perturbations against deep neural networks for malware classification.

arXiv preprint arXiv:1606.04435, 2016.

[122] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel Arp, Konrad

Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes, machine learning can be

more secure! a case study on android malware detection. IEEE Transactions on Depend-

able and Secure Computing, 16(4):711–724, 2017.

[123] Hemant Rathore, Piyush Nikam, Sanjay K Sahay, and Mohit Sewak. Identification of ad-

versarial android intents using reinforcement learning. In 2021 International Joint Con-

ference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[124] Xuetao Zhang, Jinshuang Wang, Meng Sun, and Yao Feng. Andropgan: An opcode gan

for android malware obfuscations. In International Conference on Machine Learning for

Cyber Security, pages 12–25. Springer, 2020.

[125] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung. Adversarial-example

attacks toward android malware detection system. IEEE Systems Journal, 14(1):653–656,

2019.

[126] Salman Jan, Toqeer Ali, Ali Alzahrani, and Shahrulniza Musa. Deep convolutional gen-

erative adversarial networks for intent-based dynamic behavior capture. International

Journal of Engineering & Technology, 7(4.29):101–103, 2018.

[127] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Arms race in adversarial malware

detection: A survey. ACM Computing Surveys (CSUR), 55(1):1–35, 2021.

[128] Rahim Taheri, Reza Javidan, Mohammad Shojafar, P Vinod, and Mauro Conti. Can

125

REFERENCES

machine learning model with static features be fooled: an adversarial machine learning

approach. Cluster computing, 23(4):3233–3253, 2020.

[129] Xiangjun Li, Ke Kong, Su Xu, Pengtao Qin, and Daojing He. Feature selection-based

android malware adversarial sample generation and detection method. IET Information

Security, 15(6):401–416, 2021.

[130] Gerardo Canfora, Andrea Di Sorbo, Francesco Mercaldo, and Corrado Aaron Visaggio.

Obfuscation techniques against signature-based detection: a case study. In 2015 Mobile

systems technologies workshop (MST), pages 21–26. IEEE, 2015.

[131] Charles Smutz and Angelos Stavrou. When a tree falls: Using diversity in ensemble

classifiers to identify evasion in malware detectors. In NDSS, 2016.

[132] Zainab Abaid, Mohamed Ali Kaafar, and Sanjay Jha. Quantifying the impact of adversar-

ial evasion attacks on machine learning based android malware classifiers. In 2017 IEEE

16th international symposium on network computing and applications (NCA), pages 1–

10. IEEE, 2017.

[133] Mila Dalla Preda and Federico Maggi. Testing android malware detectors against code

obfuscation: a systematization of knowledge and unified methodology. Journal of Com-

puter Virology and Hacking Techniques, 13(3):209–232, 2017.

[134] Lingwei Chen, Shifu Hou, Yanfang Ye, and Lifei Chen. An adversarial machine learning

model against android malware evasion attacks. In Asia-Pacific Web (APWeb) and Web-

Age Information Management (WAIM) Joint Conference on Web and Big Data, pages

43–55. Springer, 2017.

[135] Lingwei Chen, Shifu Hou, Yanfang Ye, and Shouhuai Xu. Droideye: Fortifying secu-

rity of learning-based classifier against adversarial android malware attacks. In 2018

IEEE/ACM International Conference on Advances in Social Networks Analysis and Min-

ing (ASONAM), pages 782–789. IEEE, 2018.

126

REFERENCES

[136] Hongyi Chen, Jinshu Su, Linbo Qiao, and Qin Xin. Malware collusion attack against

svm: Issues and countermeasures. Applied Sciences, 8(10):1718, 2018.

[137] Melissa Chua and Vivek Balachandran. Effectiveness of android obfuscation on evading

anti-malware. In Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, pages 143–145, 2018.

[138] Mauro Conti Vinod P., Akka Zemmari. A machine learning based approach to detect

malicious android apps using discriminant system calls. Future Generation Computer

Systems, 2018.

[139] Marco Melis, Davide Maiorca, Battista Biggio, Giorgio Giacinto, and Fabio Roli. Ex-

plaining black-box android malware detection. In 2018 26th European Signal Processing

Conference (EUSIPCO), pages 524–528. IEEE, 2018.

[140] Xiao Chen, Chaoran Li, Derui Wang, Sheng Wen, Jun Zhang, Surya Nepal, Yang Xiang,

and Kui Ren. Android hiv: A study of repackaging malware for evading machine-learning

detection. IEEE Transactions on Information Forensics and Security, 15:987–1001, 2019.

[141] Fabio Pierazzi, Feargus Pendlebury, Jacopo Cortellazzi, and Lorenzo Cavallaro. Intrigu-

ing properties of adversarial ml attacks in the problem space. In 2020 IEEE Symposium

on Security and Privacy (SP), pages 1332–1349. IEEE, 2020.

[142] Michael Cao, Sahar Badihi, Khaled Ahmed, Peiyu Xiong, and Julia Rubin. On benign

features in malware detection. In 2020 35th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 1234–1238. IEEE, 2020.

[143] Hemant Rathore, Sanjay K Sahay, and Mohit Sewak. Are android malware detection mod-

els adversarially robust? poster abstract. In Proceedings of the 20th International Con-

ference on Information Processing in Sensor Networks (co-located with CPS-IoT Week

2021), pages 408–409, 2021.

127

REFERENCES

[144] Hamid Bostani and Veelasha Moonsamy. Evadedroid: A practical evasion at-

tack on machine learning for black-box android malware detection. arXiv preprint

arXiv:2110.03301, 2021.

[145] Harel Berger, Chen Hajaj, Enrico Mariconti, and Amit Dvir. Crystal ball: From innovative

attacks to attack effectiveness classifier. IEEE Access, 10:1317–1333, 2021.

[146] Asim Darwaish, Farid Naı̈t-Abdesselam, Chafiq Titouna, and Sumera Sattar. Robustness

of image-based android malware detection under adversarial attacks. In ICC 2021-IEEE

International Conference on Communications, pages 1–6. IEEE, 2021.

[147] G Renjith, P Vinod, and S Aji. Evading machine-learning-based android malware detector

for iot devices. IEEE Systems Journal, 2022.

[148] Hemant Rathore, Adithya Samavedhi, Sanjay K Sahay, and Mohit Sewak. Are malware

detection models adversarial robust against evasion attack? In IEEE INFOCOM 2022-

IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),

pages 1–2. IEEE, 2022.

[149] Hemant Rathore, Sujay C Sharma, Sanjay K Sahay, and Mohit Sewak. Are malware

detection classifiers adversarially vulnerable to actor-critic based evasion attacks? EAI

Endorsed Transactions on Scalable Information Systems, pages e74–e74, 2022.

[150] Vasileios Syrris and Dimitris Geneiatakis. On machine learning effectiveness for malware

detection in android os using static analysis data. Journal of Information Security and

Applications, 59:102794, 2021.

[151] Lukas Schott, Jonas Rauber, Matthias Bethge, and Wieland Brendel. Towards the first

adversarially robust neural network model on mnist. arXiv preprint arXiv:1805.09190,

2018.

[152] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple pertur-

bations. Advances in Neural Information Processing Systems, 32, 2019.

128

REFERENCES

[153] Raj Samani. Mcafee mobile threat report, 2020. URL https://www.mcafee.com/content/

dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf. Accessed on: 2022-09-25.

[154] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook Choi.

Adrob: Examining the landscape and impact of android application plagiarism. In Pro-

ceeding of the 11th annual international conference on Mobile systems, applications, and

services, pages 431–444, 2013.

[155] Yauhen Leanidavich Arnatovich, Lipo Wang, Ngoc Minh Ngo, and Charlie Soh. A com-

parison of android reverse engineering tools via program behaviors validation based on

intermediate languages transformation. IEEE Access, 6:12382–12394, 2018.

[156] Jie Zhang, Cong Tian, and Zhenhua Duan. An efficient approach for taint analysis of

android applications. Computers & Security, 104:102161, 2021.

[157] Donald Eastlake and Paul Jones. Us secure hash algorithm 1 (sha1), 2001.

[158] Ronald Rivest and S Dusse. The md5 message-digest algorithm, 1992.

[159] Jesse Kornblum. Identifying almost identical files using context triggered piecewise hash-

ing. Digital investigation, 3:91–97, 2006.

[160] Anitta Patience Namanya, Irfan U Awan, Jules Pagna Disso, and Muhammad Younas.

Similarity hash based scoring of portable executable files for efficient malware detection

in iot. Future Generation Computer Systems, 110:824–832, 2020.

[161] Frank Breitinger, Christian Winter, York Yannikos, Tobias Fink, and Michael Seefried.

Using approximate matching to reduce the volume of digital data. In IFIP International

Conference on Digital Forensics, pages 149–163. Springer, 2014.

[162] Hasnat Ali, Komal Batool, Muhammad Yousaf, Muhammad Islam Satti, Salman Naseer,

Saleem Zahid, Akber Abid Gardezi, Muhammad Shafiq, and Jin-Ghoo Choi. Security

129

https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf
https://www.mcafee.com/content/dam/consumer/en-us/docs/2020-Mobile-Threat-Report.pdf

REFERENCES

hardened and privacy preserved android malware detection using fuzzy hash of reverse

engineered source code. Security & Communication Networks, 2022.

[163] Vassil Roussev. An evaluation of forensic similarity hashes. digital investigation, 8:

S34–S41, 2011.

[164] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. Droidcat: Effective android

malware detection and categorization via app-level profiling. IEEE Transactions on In-

formation Forensics and Security, 14(6):1455–1470, 2018.

[165] Alimardani Hamidreza and Nazeh Mohammed. Permission-based analysis of android ap-

plications using categorization and deep learning scheme. In MATEC Web of Conferences,

volume 255, page 05005. EDP Sciences, 2019.

[166] Anthony Desnos and G Gueguen. Androguard-reverse engineering, malware and good-

ware analysis of android applications. URL code. google. com/p/androguard, 153, 2013.

[167] Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, Guillermo Suarez-Tangil, and Steven Fur-

nell. Androdialysis: Analysis of android intent effectiveness in malware detection. com-

puters & security, 65:121–134, 2017.

[168] Kartik Khariwal, Jatin Singh, and Anshul Arora. Ipdroid: Android malware detection

using intents and permissions. In 2020 Fourth World Conference on Smart Trends in

Systems, Security and Sustainability (WorldS4), pages 197–202. IEEE, 2020.

[169] Deqing Zou, Yueming Wu, Siru Yang, Anki Chauhan, Wei Yang, Jiangying Zhong, Shi-

han Dou, and Hai Jin. Intdroid: Android malware detection based on api intimacy analy-

sis. ACM Transactions on Software Engineering and Methodology (TOSEM), 30(3):1–32,

2021.

[170] Shahid Alam, Soltan Abed Alharbi, and Serdar Yildirim. Mining nested flow of dominant

apis for detecting android malware. Computer Networks, 167(00):107026, 2020.

130

REFERENCES

[171] Xin-She Yang. A new metaheuristic bat-inspired algorithm. In Nature inspired coopera-

tive strategies for optimization (NICSO 2010), pages 65–74. Springer, 2010.

[172] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer.

Advances in engineering software, 69:46–61, 2014.

[173] Xin-She Yang. Firefly algorithms for multimodal optimization. In International sympo-

sium on stochastic algorithms, pages 169–178. Springer, 2009.

[174] Andrea De Lorenzo, Fabio Martinelli, Eric Medvet, Francesco Mercaldo, and Antonella

Santone. Visualizing the outcome of dynamic analysis of android malware with vizmal.

Journal of Information Security and Applications, 50:102423, 2020.

[175] Krishna Sugunan, T Gireesh Kumar, and KA Dhanya. Static and dynamic analysis for

android malware detection. In Advances in Big Data and Cloud Computing, pages 147–

155. Springer, 2018.

[176] Lucky Onwuzurike, Mario Almeida, Enrico Mariconti, Jeremy Blackburn, Gianluca

Stringhini, and Emiliano De Cristofaro. A family of droids-android malware detection

via behavioral modeling: Static vs dynamic analysis. In 2018 16th Annual Conference on

Privacy, Security and Trust (PST), pages 1–10. IEEE, 2018.

[177] Miltiadis Allamanis. The adverse effects of code duplication in machine learning models

of code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New

Ideas, New Paradigms, and Reflections on Programming and Software, pages 143–153,

2019.

[178] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. Rmvdroid: towards a reliable android

malware dataset with app metadata. In 2019 IEEE/ACM 16th International Conference

on Mining Software Repositories (MSR), pages 404–408. IEEE, 2019.

[179] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Machine learning

131

REFERENCES

aided android malware classification. Computers & Electrical Engineering, 61:266–274,

2017.

[180] Md Shohel Rana, Sheikh Shah Mohammad Motiur Rahman, and Andrew H Sung. Eval-

uation of tree based machine learning classifiers for android malware detection. In Inter-

national Conference on Computational Collective Intelligence, pages 377–385. Springer,

2018.

[181] Hanqing Zhang, Senlin Luo, Yifei Zhang, and Limin Pan. An efficient android malware

detection system based on method-level behavioral semantic analysis. IEEE Access, 7:

69246–69256, 2019.

[182] Hongpeng Bai, Nannan Xie, Xiaoqiang Di, and Qing Ye. Famd: A fast multifeature

android malware detection framework, design, and implementation. IEEE Access, 8:

194729–194740, 2020.

[183] Jeffrey Mcdonald, Nathan Herron, William Glisson, and Ryan Benton. Machine learning-

based android malware detection using manifest permissions. In Proceedings of the 54th

Hawaii International Conference on System Sciences, page 6976, 2021.

[184] Abdelouahab Amira, Abdelouahid Derhab, ElMouatez Billah Karbab, Omar Nouali, and

Farrukh Aslam Khan. Tridroid: a triage and classification framework for fast detection

of mobile threats in android markets. Journal of Ambient Intelligence and Humanized

Computing, 12(2):1731–1755, 2021.

[185] Alejandro Guerra-Manzanares, Hayretdin Bahsi, and Sven Nõmm. Kronodroid: Time-

based hybrid-featured dataset for effective android malware detection and characteriza-

tion. Computers & Security, 110:102399, 2021.

[186] Randal S Olson and Jason H Moore. Tpot: A tree-based pipeline optimization tool for

automating machine learning. In Workshop on automatic machine learning, pages 66–74.

PMLR, 2016.

132

REFERENCES

[187] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learn-

ing research, 12:2825–2830, 2011.

[188] Usman Ahmed, Jerry Chun-Wei Lin, and Gautam Srivastava. Mitigating adversarial eva-

sion attacks of ransomware using ensemble learning. Computers and Electrical Engi-

neering, 100:107903, 2022.

[189] Xiaolei Liu, Xiaojiang Du, Xiaosong Zhang, Qingxin Zhu, Hao Wang, and Mohsen

Guizani. Adversarial samples on android malware detection systems for iot systems.

Sensors, 19(4):974, 2019.

[190] Harel Berger, Chen Hajaj, and Amit Dvir. When the guard failed the droid: A case study

of android malware. arXiv preprint arXiv:2003.14123, 2020.

[191] Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu Chen, Jun Sun, and Jie

Zhang. Auditing anti-malware tools by evolving android malware and dynamic loading

technique. IEEE Transactions on Information Forensics and Security, 12(7):1529–1544,

2017.

[192] Deqiang Li, Qianmu Li, Yanfang Ye, and Shouhuai Xu. Sok: Arms race in adversarial

malware detection. arXiv preprint arXiv:2005.11671, 2020.

[193] Felix Kreuk, Assi Barak, Shir Aviv-Reuven, Moran Baruch, Benny Pinkas, and Joseph

Keshet. Deceiving end-to-end deep learning malware detectors using adversarial exam-

ples. arXiv preprint arXiv:1802.04528, 2018.

[194] Deqiang Li and Qianmu Li. Adversarial deep ensemble: Evasion attacks and defenses

for malware detection. IEEE Transactions on Information Forensics and Security, 15:

3886–3900, 2020.

133

REFERENCES

[195] Shen Wang, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui,

Zhichun Li, Haifeng Chen, and S Yu Philip. Heterogeneous graph matching networks for

unknown malware detection. In IJCAI, pages 3762–3770, 2019.

[196] Rizwan Hamid Randhawa, Nauman Aslam, Mohammad Alauthman, Husnain Rafiq, and

Frank Comeau. Security hardening of botnet detectors using generative adversarial net-

works. IEEE Access, 9:78276–78292, 2021.

[197] David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. arXiv

preprint arXiv:1610.06545, 2016.

[198] Gabriel Resende Machado, Eugênio Silva, and Ronaldo Ribeiro Goldschmidt. Adversar-

ial machine learning in image classification: A survey toward the defender’s perspective.

ACM Computing Surveys (CSUR), 55(1):1–38, 2021.

134

Appendix A

Bat Algorithm

The bat algorithm is inspired by the echolocation behaviour of micro bats. Bats have extraor-

dinary capability to find prey, avoid obstacles and dIFferentiate between insects in the dark by

using sonar. BA is formulated by mimicking the characteristics of bats based on the following

rules:

• Bats use echolocation to estimate distance, find prey, avoid obstacles and distinguish be-

tween target by nature.

• Bats fly at a random velocity 𝑣𝑖 at position 𝑥𝑖 with fixed frequency 𝑓𝑚𝑖𝑛, varying wave

lenghts _ and loundness 𝐴𝑜 in order to search for potential prey. Bats have the capability

to automatically adjust the wavelength (or frequency) of their emitted pulse and can adjust

the pulse emission rate 𝑟 ∈ [0, 1] depending on the position of target.

• The loudness of Bats can vary from a large value 𝐴𝑜 to a constant minimum value 𝐴𝑚𝑖𝑛.

Based on the aforementioned rules, BA algorithm is presented in Algorithm 10.

135

APPENDIX A. BAT ALGORITHM

Algorithm 10: Bat Algorithm
Input: The objective function 𝑓 (𝑥), 𝑥 = {𝑥1, 𝑥2, 𝑥3 . . . 𝑥𝑑}
Output: Optimal position of bat 𝑥∗

1: Initialize the bat population at position 𝑥𝑖
𝑖 = {1, 2, 3 . . . 𝑛}

2: Define pulse frequency 𝑓𝑖 at 𝑠𝑖
3: initialize pulse rate 𝑟𝑖 and loudness 𝐴𝑖
4: while 𝑡 < 𝑚𝑎𝑥 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: generate new solutions by adjusting frequency 𝑓𝑖 , updating velocity 𝑣𝑖 and location 𝑥𝑖
6: if 𝑟𝑎𝑛𝑑 > 𝑟𝑖 then
7: select a solution among the best solutions
8: generate a local solution based on the selected solution
9: end if

10: generate a new solution by flying randomly
11: if 𝑟𝑎𝑛𝑑 < 𝐴𝑖 and 𝑓 (𝑥𝑖) < 𝑓 (𝑥∗) then
12: Accept the new solutions
13: Increase 𝑟𝑖 and 𝐴𝑖
14: end if
15: Rank the bats and find the current best 𝑥∗
16: end while
17: Return 𝑥∗

136

Appendix B

Firefly Algorithm

FA is a meta-heuristic algorithm for optimization problems inspired by the flashing patterns and

behavior of fireflies. Firefly algorithm is formulated by using following three rules:

• Fireflies are attracted to other fireflies based on the intensity of their brightness.

• The attractiveness and brightness of firefly decreases as it moves away from other fireflies.

Fireflies start to move randomly IF they are unable to find a brighter firefly.

• An objective function is used to determine the brightness of a particular firefly.

Based on the aforementioned rules, the pseudo code of FA is presented in algorithm 11.

137

APPENDIX B. FIREFLY ALGORITHM

Algorithm 11: Firefly Algorithm
Input: The objective function 𝑓 (𝑥), 𝑥 = {𝑥1, 𝑥2, 𝑥3 . . . 𝑥𝑑}
Output: brightest fireflies

1: Initialize the fireflies population 𝑥𝑖 , 𝑖 = {1, 2, 3 . . . 𝑛}
2: Define light the Intensity 𝐼 based on 𝑓 (𝑥)
3: Define the absorption coefficient 𝛾
4: while 𝑡 < 𝑚𝑎𝑥 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
5: for 𝑖 = 1 : 𝑛 (all n fireflies) do
6: for 𝑗 = 1 : 𝑖 (n fireflies) do
7: if 𝐼 𝑗 > 𝐼𝑖 then
8: move firefly i toward firefly j
9: end if

10: Vary attractiveness with distance r via exp(−𝛾𝑟)
11: Evaluate new solutions and update light intensity
12: end for
13: end for
14: Rank fireflies and find the current best
15: end while
16: Return brightest fireflies

138

Appendix C

Grey wolf optimizer

GWO is a meta-heuristic algorithm inspired by the social hierarchy and hunting strategy of grey

wolves. Grey wolves live in a pack of 5 to 12 and are divided in to 4 dIFferent classes (alpha,

beta, delta and omega) based on individual responsibilities. Alpha wolf is the head of the pack

(regardless of gender) and is responsible to organize, make decisions and lead the pack. Beta

wolf is second to the superior in the pack. It assists alpha wolf in decision making and has the

authority to take over the command in case of injury or senility of alpha wolf. Delta wolves are

the scouts and have the responsibility for security and hunting activities for the pack. Finally,

Omega wolves are the elders or the frail wolves. Mostly, they have the responsibility to take

care of the off springs. Grey wolves are known for their extraordinary technique for hunting by

employing following 3 steps:

• Track, tail and approach towards the prey.

• Encircle, harass and move towards the prey until it becomes to a stationary STATE.

• Simultaneously attack the prey .

139

APPENDIX C. GREY WOLF OPTIMIZER

Equation C.1 shows the mathematical representation of encircling the prey characteristics of

grey wolves.

𝑋 (𝑡 + 1) = 𝑋𝑝 (𝑡) − 𝐴.∥𝐶.𝑋𝑝 (𝑡) − 𝑋 (𝑡)∥ (C.1)

where X represents the position of the wolf, the current iteration is presented by t and 𝑋𝑝 is the

current location of the prey. The controlled coefficients A and C are calculated with the help of

equation C.2 and equation C.3

𝐴 = 2𝑎.𝑟1 − 𝑎 (C.2)

𝐶 = 2𝑎.𝑟2 (C.3)

where 𝑟1 and 𝑟2 are randomly generated during iterations from a range of [0, 1] respectively. The

controlled vector a linearly decreases from 2 to zero during the iterations as shown in equation

C.4.

𝑎(𝑡) = 2 − 2.(𝑡/𝑇) (C.4)

where T represents the maximum number of iterations. The other wolves in the pack update their

position based on the position of alpha (𝛼), beta (𝛽) and delta (𝛿) wolves as shown below:

𝐷𝛼 = ∥𝐶1 × 𝑋𝛼 − 𝑋 ∥ (C.5)

𝐷𝛽 = ∥𝐶2 × 𝑋𝛽 − 𝑋 ∥ (C.6)

𝐷 𝛿 = ∥𝐶3 × 𝑋𝛿 − 𝑋 ∥ (C.7)

140

APPENDIX C. GREY WOLF OPTIMIZER

𝑋1 = 𝑋𝛼 − 𝐴1.𝐷𝛼 (C.8)

𝑋2 = 𝑋𝛽 − 𝐴2.𝐷𝛽 (C.9)

𝑋3 = 𝑋𝛿 − 𝐴3.𝐷 𝛿 (C.10)

𝑋 (𝑡 + 1) = 𝑋1 + 𝑋2 + 𝑋3
3

(C.11)

where the distance of current wolf from 𝛼, 𝛽 and 𝛿 is represented by Equation C.5, Equation

C.6 and Equation C.7 respectively. Consequently, Equation C.8, Equation C.9 and Equation

C.10 present the position of remaining grey wolves based on the current location of 𝛼, 𝛽 and 𝛿.

Finally, Equation C.11 is used to calculate the updated the position of the wolf. Based on the

aforementioned explanation, the pseudo-code of GWO is presented in Algorithm 12.

Algorithm 12: Grey wolf optimizer Algorithm
Input: The objective function 𝑓 (𝑥), 𝑥 = {𝑥1, 𝑥2, 𝑥3 . . . 𝑥𝑑}
control coefficient a
number of iterations
Output: Optimal position of 𝑋𝛼

1: Initialize the grey wolves population 𝑥𝑖 , 𝑖 = {1, 2, 3 . . . 𝑛}
2: IdentIFy 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 based on objective function
3: while 𝑡 < 𝑚𝑎𝑥 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
4: for each grey wolf in pack do
5: compute A and Cby Eq. C.2 and C.3
6: Update the position of current wolf using 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿 by Eq.C.11
7: end for
8: Update a, A and C
9: Calculate the fitness of each wolf

10: Update 𝑋𝛼, 𝑋𝛽 and 𝑋𝛿
11: end while
12: Return Best solution 𝑋𝛼

141

	Declaration
	Dedications
	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Overview
	Problem Statement
	Research Questions
	Research Contributions
	Thesis Structure
	Research Publications

	Background
	Introduction
	Overview of Android Ecosystem
	Android OS Architecture
	Android Application Structure
	Application Naming Conventions
	Reverse Engineering

	Android Malware Analysis Techniques
	Static Analysis
	Android characteristic-based method
	Opcode-based method
	Program graph-based method
	Signature based methods:

	Dynamic Analysis
	System calls based methods
	Graph-based methods
	Resource consumption-based methods
	Network traffic-based methods

	Hybrid Analysis

	Android Malware Repackaging
	Adversarial Machine Learning
	Evasion Attacks on Android Malware Classifiers
	Adversarial Defences on Android Malware Classifiers
	Discussion

	Summary

	Enhancing the ML-based Malware Classification by Detection and Removal of Repacked Apps for Android Systems
	Introduction
	Motivation
	Datasets
	Drebin
	AMD
	Androzoo
	Malware clones in datasets

	AndroMalPack
	Data pre-processing
	Features set modeling
	Learning Phase

	Experimental Results
	Discussion

	Comparison
	AndroMalPack Dataset
	Summary

	Evasion-aware Android malware detection model based on multiple classifiers system
	Introduction
	Motivation
	Dataset and Feature extraction
	Features set modeling

	CureDroid
	Adversarial Attacks
	Adversarial Strategies
	Attack on CureDroid

	A Countermeasure: CureDroid*
	Experimental Results

	Performance Comparison with state-of-the-art
	Summary

	An Oracle and GAN-based Cumulative Adversarial Training Technique to improve Evasion detection for Android Malware
	Introduction
	Proposed Attacks Methodology
	Dataset and Feature Extractor
	ML Models Segment
	Evasion Attacks Generator
	Code Injection Attacks (CIA)
	GAN Adversarial Examples Attacks (GAEA)

	Experimental Results and Analysis
	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Directions
	Automated Tools
	Churn GAN Generated Synthetic Data
	Modification of APK

	Adversarially Robust Classifiers
	Scale CureDroid*
	Robust feature engineering
	Image-based Adversarially Robust Classifiers

	Glossary
	References
	Appendix Bat Algorithm
	Appendix Firefly Algorithm
	Appendix Grey wolf optimizer

