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A B S T R A C T

Recent advances in robotics and autonomous systems (RAS) have significantly improved the autonomy level
of unmanned surface vehicles (USVs) and made them capable of undertaking demanding tasks in various
environments. During the operation of USVs, apart from normal situations, it is those unexpected scenes,
such as busy waterways or navigation in dust/nighttime, impose most dangers to USVs as these scenes are
rarely seen during training. Such a rare occurrence also makes the manual collection and recording of these
scenes into dataset difficult, expensive and inefficient, with the majority of existing public available datasets
not able to fully cover them. One of many plausible solutions is to purposely generate these data using
computer vision techniques with the assistance from high-fidelity simulations that can create various desirable
motions/scenarios. However, the stylistic difference between the simulation images and the natural images
would cause a domain shift problem. Hence, there is a need for designing a method that can transfer the data
distribution and styles of the simulation images into the realistic domain. This paper proposes and evaluates
a novel solution to fill this gap using a Generative Adversarial Network (GAN) based model, ShipGAN, to
translate the simulation images into realistic images. Experiments were carried out to investigate the feasibility
of generating realistic images using GAN-based image translation models. The synthetic realistic images from
the simulation images were demonstrated to be reliable by the object detection and image segmentation
algorithms trained with natural images.
1. Introduction

The research of Uncrewed Surface Vessels or Unmanned Surface
Vehicles (USVs) is becoming increasingly important. Across various
application areas from search and rescue to environment monitoring,
USVs are proven to be reliable and flexible with the payload to carry
several sensors or some special equipment. As shown in Fig. 1, a model
of WAM-V 20 series USVs as well as a configurable USV platform
sponsored by Society of Maritime Industries (SMI) are presented. Both
vessels are equipped with GPS, Lidar, and cameras for perception and
navigation. In fact, when undertaking missions, a real-time and robust
environment perception system is the key to achieve autonomous nav-
igation and completing tasks for USVs. This is particularly important
when USVs are being increasingly deployed in extreme environments
for exploration and prospecting. For the perception system, robust
detection and recognition of any object on the water surfaces are
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essential for autonomous navigation as any object is likely to be an
obstacle causing a potential danger to the sailing ships.

Besides the common scenarios in the real world, USVs also need
to deal with complex situations, such as busy waterways and traffic in
dusk or at night. These situations hold great importance for operational
safety but unfortunately have not been well recorded and included in
the present maritime datasets with only limited amounts of videos or
images available. For example, Fig. 2 shows frames extracted from the
videos of the MODD2 dataset (Bovcon et al., 2018) and the Singapore
Maritime Dataset (Prasad et al., 2017) and they are captured by cam-
eras on a USV and onshore, respectively. These two datasets are widely
used in training the visual perception systems of USVs. However, it can
be seen that in most of the videos in these datasets, there is only one or
even no ship sailing at a visible speed. These scenarios are not sufficient
to train models which USVs can use to deal with emergency situations
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Fig. 1. (a) WAM-V 20 series USV (Marketing and Communication, 2022) (b)
Configurable USV platform sponsored by Society of Maritime Industries, UK.

Fig. 2. Example images from existing maritime datasets. (a), (b) are from the
MODD2 dataset (Bovcon et al., 2018) and (e), (f) are from the Singapore Maritime
Dataset (Prasad et al., 2017).

in busy waters. The desired images are similar to Fig. 2 in which several
boats are sailing concurrently (see Fig. 3).

To address such an issue, one possible solution is to collect the data
manually, which is however expensive or impossible in practice, as
hours or even days are possibly required to record one uncommon scene
which may only last for seconds. Or if we suppose that it is possible to
manoeuvre several boats to navigate in an area at the same time to
2

Fig. 3. An example image of busy waterways (News Isle Wight, 2013).

create different scenarios, it is still not practicable to deliberately and
manually generate some dangerous or extreme scenarios.

Another approach is the use of simulation to generate high-fidelity
scenarios which contain various ships’ motions and environmental
contexts. However, this is not a silver bullet with no compromises.
The most prominent issue is that the texture within the simulation
may not be visually realistic enough compared to real-world images.
Although some simulation software or engines, such as Unity 3D (Haas,
2014) and Unreal Engine 5 (Epic Games, 2022), have robust rendering
systems and realistic texture packs, they are computationally expensive
and require high standard computer configurations to output images
or videos with high graphic quality. This would still cause a prob-
lem in domain shift due to the data inefficiency limitation of deep
learning networks (Motiian et al., 2017; Saito et al., 2019). In general,
deep learning networks trained by millions of examples may provide
good performances within the current training domain but cannot
well generalize into new domains. In other words, when the training
set and the testing set for a deep learning network are in different
domains, the objects in the testing set could be incorrectly classified.
The consequence of this is that well-rendered simulation images may
visually look appealing, but they can still not fit the distribution of
realistic images, causing domain shifts when they are used for training
visual perception systems.

Hence, the core research challenge becomes how to efficiently and
effectively obtain a dataset that captures complex scenarios sharing
the same data distribution/domain with real images. In recent years,
domain transfer has been actively used as a solution to address this
challenge (Saito et al., 2019; Sun and Saenko, 2016; Peng et al.,
2018; Hoffman et al., 2016). When images in a simulation environment
can be transferred into a realistic domain, the generated images will
be able to contain artificial scenarios with visually realistic textures.
Generative Adversarial Networks (GANs) can be trained to achieve
image translation between different domains, and more specifically the
Cycle-Consistent Adversarial Networks, namely CycleGAN, is proposed
to accomplish unpaired image translation between two domains (Zhu
et al., 2017). For example, a horse in an image can be transferred into
a zebra by CycleGAN, and an apple can be transferred into an orange.
Therefore, we argue that the CycleGAN can also be used to translate an
image in a simulation domain into a realistic domain and transfer a 3D
model of a boat into a real boat. However, different to those attempts
made within the CycleGAN examples, the application of CycleGAN into
marine application requires considerations of maritime features such as
ocean waves, ship dynamics and ship-wave interactions.

Therefore, the aim of this paper is to generate synthetic images
of ships with enriched and realistic textures via a simulation-to-real
pipeline, which can translate ship images simulated in a virtual envi-
ronment into real scenarios. To achieve this goal, the paper has three
key objectives:

• To construct desired scenarios containing ships with all natural
physical effects. At this stage, the most important thing is to simu-
late the physically realistic ship motions including the interaction
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between the ships and the sea in a simulation environment with
no rendering or textures required. The scenario simulation is done
in Unity 3D, a graphic engine, in which real-world physics can be
simulated by its Scripting API.

• To generate visually realistic images that contain the constructed
scenarios obtained from the previous step. This generation task
can be accomplished by using generative models, such as Gener-
ative Adversarial Networks. In this paper, GAN-based approaches
are chosen to synthesize new realistic images with one to translate
the simulation images into natural images and the other one to
generate nighttime images.

• To evaluate the reliability in visual perception systems that can
be used for USVs. The synthetic images are expected to be vi-
sually realistic via inspection by our naked eyes and also, the
fake ships in the synthetic images should be able to ‘fool’ the
object detection models that are trained by real ship images. The
object detection algorithms, Yolov4 (Bochkovskiy et al., 2020)
and Detectron2 (Pham et al., 2020), are used to test the fidelity of
the synthetic images. It is anticipated that if the generated ships
can be detected as real ships with a high confidence score, they
can be used to train the visual perception systems for autonomous
systems.

The contributions of this paper can be summarized as follows.

• A GAN-based system, i.e., ShipGAN, has been proposed for syn-
thesizing realistic images of ships from Unity simulation models.
This is the very first attempt of converting simulation images
into realistic images by using generative adversarial networks in
maritime environments.

• Vivid ship movement scenarios have been created using Unity 3D
by considering interactions between ships and waves. A seamless
connection between Unity 3D and ShipCAN has been achieved to
facilitate sim-to-real translation.

• Enriched validation studies on the synthetic ship images have
been carried out using object detection and image segmentation
techniques. This ensures the reliability of the synthetic images in
practical applications.

. Related works

Generative Adversarial Networks(GANs) have one or multiple gen-
rators and discriminators that are improving together but also against
ach other. The generators aim to generate images that are as close
s possible to the images from the training sets and the discriminators
ry to distinguish the difference between the generated images and
he training images. Therefore, an ideal generator’s output distribution
ould be able to match that of the training data. GANs can be roughly

eparated into unsupervised and supervised approaches and both ap-
roaches can translate images between domains. For supervised GANs,
he training of the models requires paired training data from the source
nd target domains, while for unsupervised GANs the training data in
wo domains does not need to be related in any way. GANs are widely
sed in image style translation, data augmentation, and also medical
mages. For example, CycleGAN (Zhu et al., 2017), Pix2Pix (Isola et al.,
017) and UNIT (Liu et al., 2017) are three popular expended GANs
hat are used in converting image styles. There have been numerous
pplications of GANs and their extensions, such as that Bargshady et al.
2022), Jin et al. (2021) and Karlsson and Welander (2018) illustrate
he robustness and reliability of GANs in generating medical images.
esides, Zaher (2020), Arruda et al. (2019), Machiraju and Balasubra-
anian (2020) and Matsui and Ikehara (2021) show some examples

f the applications of GANs in weather and day-and-night conversion
or autonomous systems. However, these works focus on editing the
xisting scenarios using GANs rather than generating new scenarios,
nd they have very limited research on the complex situations for
3

utonomous systems, especially for maritime applications.
As stated in the previous section, simulation can be used to generate
any desired scenario and the problem left would be the domain shift
when fitting the models trained by the simulation images to the real
world. To address the domain shift, Peng and Saenko (2018) proposed
a Deep Generative Correlation Alignment Network(DGCAN) aligning
the images of 3D CAD models to some natural background images.
However, as the features of the adapted 3D models in the result images
are learnt from the background images, the distribution of the resultant
images does not match the real world and the domain shift is not
totally eliminated. Xu et al. (2021) proposed a data generation method
which can be a substitute for real data collection using the conditional
GAN, Pix2Pix, to translate the instance maps of the simulation scenarios
into realistic images. This work sufficiently eliminated the domain
shift problem when fitting the model training by the Pix2Pix-generated
images to the real world, but this method required a large amount of
paired training sets containing the real images and their corresponding
instance maps and semantic labels. What is more, in Xu et al. (2021),
obtaining the instance maps and semantic labels can be time-consuming
and hence reduce the efficiency of the whole system. Therefore, there
is a need for a direct converting method between the simulation images
and the realistic images to replace the real data collection.

Compared to the relevant works discussed in this section, ShipGAN
is a novel and reliable solution to generate visually realistic images
according to the desired scenarios constructed in a simulation environ-
ment. With CycleGAN, the simulation images are directly translated
into the realistic domain without the presence of instance maps and
semantic labels, and the training data do not need to be paired, which
reduces the complexity of data preparation. Most importantly, with
ShipGAN, it is possible for us to get as many realistic images as
possible by constructing the desired scenarios in simulation and then
inputting the simulation images into the trained models to generate the
corresponding images in the realistic domain.

3. ShipGAN methodology

3.1. System overview

To investigate the feasibility of converting Unity simulation images
into visually realistic images to generate scenarios that we are inter-
ested in for autonomous systems of USVs, GAN is used to synthesize
visually realistic images by referring to the models generated in Unity
3D. More specifically, a new network named as ShipGAN has been built,
which is based on CycleGAN models and are trained and tested for
image translation from simulation to real-world, and from daytime to
night, respectively.

ShipGAN can be separated into two main parts including (1) sim-
ulating the motion of boats in Unity 3D and (2) training the image
translation models. These two parts will be discussed with more details
later in this section. Fig. 4 provides a graphical illustration about
ShipGAN uses two separate CycleGAN models to achieve the translation
between simulation and realistic domain, i.e., translating simulation
images into the realistic daytime domain using Sim2Real CycleGAN and
translating the daytime domain into the night domain using Day2Night
CycleGAN.

Specific procedures to generate new ship images using ShipGAN are
as follows:

1. Constructing various scenes containing boats in Unity 3D.
2. Preparing the training dataset which has two sets of data with

one set containing the images of boats in the real domain and
the other set having the images in the unity simulation domain.
As the CycleGAN does not require the training images in two
different domains to correspond to each other, the real images
and the simulation images are not paired and their amounts do
not need to be exactly the same.

3. Using the training set in the previous step to train the Sim2Real

CycleGAN (highlighted in red in Fig. 4).
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Fig. 4. Illustration of the procedures of ShipGAN.

4. Using the trained Sim2Real to transfer different unity simulation
images into real domain.

5. Preparing the training dataset for Day2Night CycleGAN (high-
lighted in purple in Fig. 4).

6. Training and testing the Day2Night CycleGAN model.
7. Using the trained Day2Night model to translate daytime images

into night images.
8. The final step is to prove the reliability of the synthetic im-

ages by applying image segmentation and object detection al-
gorithms.

3.2. ShipGAN data generation

3.2.1. Simulation images of ships
Unity was used for creating ship models, and in this paper sailing

boats are primarily modelled. The 3D model was used to construct the
scenarios without any texture. The reason that the sailing boat was
chosen is that a real sailing boat has relatively fewer complex features
compared to other types of ships, which could effectively reduce the
difficulty of training the GAN models, especially for the unpaired image
translation CycleGAN.

There are five different types of motions for sailing boats used in
this study, as shown in Fig. 5. Each scene lasts 10 s. In Scene1 and
Scene2, the two sailing boats are sailing toward each other, while in
Scene1, there is an angle of 45 degrees between the courses of the two
sailing boats, and in Scene2, the two boats are sailing in the opposite
direction. In Scene3, there is only one sailing boat sailing from the right
to the left of the frame. In Scene4 and Scene5, Sailing Boat 2 is sailing
away from Sailing Boat 1, while Sailing Boat 1 is sailing toward Sailing
Boat 2, with angles of 45 degrees and 60 degrees between their courses
respectively.

The reasons for these five scenes to be constructed are that there are
different numbers of sailing boats and these five scenes contain various
positional relationships between the two boats. What is more, these five
scenarios cover situations where one ship is sailing alone, two ships are
travelling opposite each other, two ships are moving away from each
other, and two ships meet, etc. These situations can be used as the basis
to construct other different scenarios.

To make the motions of the sailing boats more physically realistic,
a wave object is generated by modelling the physical properties of the
ocean in unity scripts which have options to adjust the scale, direction
and speed of the wave. The mathematical model for generating the
wave object is partially based on Ditzel (2022). Four floating points
and a collision added around each sailing boat allow the sailing boats
to interact with the wave object, which is presented by the four green
spheres in Fig. 6. The displacements of the boats are achieved by the
animation options in Unity.
4

Fig. 5. Top views of the four scenes for training: (a) Top view of Scene 1; (b) Top
view of Scene 2; (c) Top view of Scene 3; (d) Top view of Scene 4. (e) Top view of
Scene 5 for testing.

The waves are assumed to be sinusoidal and different octaves with
different heights and scales can be added together without superposi-
tion. Mesh was created on the surface of the wave object. The position
vector of each vertex of the mesh is defined as (Ditzel, 2022):

𝑃 =
[

𝑥
𝑎 sin 𝑘(𝑥 − 𝑐𝑡)

]

(1)

where P is the position vector, which gives a sine wave along the
X dimension and 𝑎 denotes the amplitude of the wave which can be
manipulated. 𝑘 is a factor that relates to the wavelength and is defined
as

𝑘 = 𝜋
𝜆

(2)

where 𝑐 and 𝑡 represent the speed of the wave and a time offset
respectively.

When simulating the floating effect of the sailing boats on an ocean
surface, the air drag and water drag are defined and taken into account
as an offset. The poses of the sailing boats depend on the positions of
the four floating points, and the position vectors of the floating points
are calculated by adding the offsets caused by drags to the position
vectors of the connecting points of the wave to the floating points on
the boats. To implement the simulation of waves, a collision object was
inserted in Unity and meshes were constructed on that object. Then, the
effect of waves was actually the movements of the vertex of the meshes
which were modelled as sinusoid waves. The difference between this
work and Ditzel (2022) is that in Ditzel (2022), the boat is driven by
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Fig. 6. Physical effects of sailing boats in Unity simulation. (a) Side view of the sailing
boat with four floating points. (b) Top view of the sailing boat. (c) View of the sailing
boat and the waves effect.

its own motor which is controlled by the script, but in this work, the
motion of the sailing boat is determined by the position change between
key-frames. Overall, when the boats move in the simulation, alongside
the interaction between the boats and the wave, the sailing boat sways
from side to side as it goes up and down.

3.2.2. Real images of ships
In parallel to the simulation dataset, real images are also extracted

and used as inputs for ShipGAN. The real images of ships dataset con-
tain 100 real daytime images of sailing boats which have a maximum
of two sails to match the 3D model. Most images containing 1 sailing
boat are cropped to have the sailing boat in the centre so that the
training result will not be affected by features other than those of the
sky, ocean and sailing boats. Then these images are resized into the
size of 256 × 256. There are also 50 real night images of sailing boats.
However, due to the very limited number of images captured at the
midnight, images shot at sunset are also included in the training set as
long as there is an obvious change in the tune of the image compared
to the daytime images. Examples of real images of ships are shown in
Fig. 7.

3.3. Image translation

As described previously, the cornerstone of ShipGAN is the Cycle-
GAN (Zhu et al., 2017), which is a successful approach for unpaired
image-to-image translation using Generative Adversarial Network ar-
chitecture. The goal of CycleGAN is to learn the mapping models
between two domains, 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 and 𝐷𝑜𝑚𝑎𝑖𝑛𝐵, and the mapping be-
tween two domains is bi-directional. In this context, the underlying
mechanism of the CycleGAN is an extension to the basic GAN archi-
tecture which can train two generator models and two discriminator
models simultaneously. The main purpose of implementing CycleGAN
is for domain transfer and an overview of the structure of CycleGAN is
shown in Fig. 8.

Here we explain in details about how CycleGAN works for domain
transfer using simulation images and real images as per examples
in Fig. 8. Suppose there are two datasets, 𝐴 and 𝐵, containing the
simulation images and the real images respectively. The simulation
5

Fig. 7. Examples of real sailing boats images. (a) Daytime dataset. (b) Nighttime
dataset.

Fig. 8. Structure of CycleGAN with information flow from Domain A to Domain B and
then back to Domain A.

image in Dataset 𝐴 is denoted as 𝑎, and the real image in Dataset 𝐵
is denoted as 𝑏. A generator that takes a simulation image as input
and outputs a visually realistic image is desired, i.e. 𝐺(𝑎) = 𝑏′, 𝑎 ∈ 𝐴
and (⋅)′ denotes a data sample generated from a generator; and another
generator that can take a real image as input and translate that image
into simulation style should also be constructed, i.e. 𝐹 (𝑏) = 𝑎′, 𝑏 ∈ 𝐵.
To achieve this, two discriminators are needed to determine if the
generated images are close enough to the original style.

As shown in Fig. 8, Discriminator 𝐷𝐴 receives simulation images
sampled from Dataset 𝐴 and the fake generated simulation images from
the Generator 𝐹 and determines if an image is generated or comes from
Dataset 𝐴. Similarly, Discriminator 𝐷𝐵 receives real images sampled
from Dataset 𝐵 and the fake generated real images from the Generator
𝐺 and determines if an image is generated or comes from Dataset
𝐵. If the generator produces an image that is not similar enough to
an image in the dataset, the discriminator will assign it with a low
score (with a specified minimum of 0), and conversely, if the image
looks like an image in the dataset, the discriminator should reward
it with a high score (with a specified maximum of 1). Hence, the
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discriminator should always give an image from the dataset a high
score. Therefore, as with other GANs, the generators of a CycleGAN
should try to maximize the discriminator scores of the generated image,
which can be mathematically formulated as minimizing Adversarial
Losses.

3.4. Loss functions

3.4.1. Adversarial loss
The adversarial losses are applied to the generators in both di-

rections from 𝐴 to 𝐵 and from 𝐵 to 𝐴. The total adversarial loss
for CycleGAN is the sum of the losses in both directions and can be
expressed as (Zhu et al., 2017):

Loss𝐺𝐴𝑁 =GAN
(

𝐺,𝐷𝐵 , 𝐴, 𝐵
)

+ GAN
(

𝐹 ,𝐷𝐴, 𝐴, 𝐵
)

=𝐸𝑏∼𝐵
[

log𝐷𝐵(𝑏)
]

+ 𝐸𝑎∼𝐴
[

log
(

1 −𝐷𝐵(𝐺(𝑎))
]

+ 𝐸𝑎∼𝐴
[

log𝐷𝐴(𝑎)
]

+ 𝐸𝑏∼𝐵
[

log
(

1 −𝐷𝐴(𝐹 (𝑏))
]

(3)

The parameters of the discriminators, 𝐷𝐴 and 𝐷𝐵 , are fixed when
training the generator. The values of log𝐷𝐵(𝑏) and log𝐷𝐴(𝑎) are un-
changed and as 𝑎 and 𝑏 are from the training sets, their discriminator
scores should be close to 1. Hence, the objective of minimizing the
adversarial losses becomes maximizing the discriminator scores for the
generated images by both generators. The objective can be written as

𝐺∗ = argmin
𝐺

max
𝐷𝐵

GAN
(

𝐺,𝐷𝐵 , 𝐴, 𝐵
)

(4)

𝐹 ∗ = argmin
𝐹

max
𝐷𝐴

GAN
(

𝐹 ,𝐷𝐴, 𝐴, 𝐵
)

(5)

Inversely, when training the discriminator, the total adversarial
loss should be maximized. This is because the lower the score given
to the fake images, the better the discriminator. Therefore, for the
discriminators, the objective can be expressed as:

𝐷∗
𝐴 = argmax

𝐹
min
𝐷𝐴

GAN
(

𝐹 ,𝐷𝐴, 𝐴, 𝐵
)

(6)

𝐷∗
𝐵 = argmax

𝐺
min
𝐷𝐵

GAN
(

𝐺,𝐷𝐵 , 𝐴, 𝐵
)

(7)

3.4.2. Cycle consistency loss
The cycle consistency loss (Zhu et al., 2017) is a 𝐿1 Loss to describe

the difference between the original image and the reconstructed image
after the original image been transferred into 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 by the generator
𝐺 and transferred back to 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 by the generator 𝐹 . This loss term
encourages the generators to synthesize images with no change in their
contents before and after the domain transfer, i.e. 𝐹 (𝐺(𝑎)) = 𝑎. The
mathematical expression of the cycle consistency loss is:

cycle = E𝑎∼𝐴
[

‖𝐹 (𝐺(𝑎)) − 𝑎‖1
]

+ E𝑏∼𝐵
[

‖𝐺(𝐹 (𝑏)) − 𝑏‖1
]

(8)

If the cycle consistency loss is minimized to zero, this would gener-
ate an ideal result as:

𝐹 (𝐺(𝑎)) = 𝑎, 𝐺(𝐹 (𝑏)) = 𝑏 (9)

Applying this loss would guarantee the contents of the images to be
mostly unchanged during style translation. For example, in the cycle
of translating an image in 𝐷𝑜𝑚𝑎𝑖𝑛𝐴 to 𝐷𝑜𝑚𝑎𝑖𝑛𝐵 and then back to
𝐷𝑜𝑚𝑎𝑖𝑛𝐴 as shown in Fig. 8, the only premise for 𝐹 (𝐺(𝑎)) = 𝑎 to
hold is that 𝐺(𝑎) ≈ 𝑎 which means the contents of 𝐺(𝑎) should be
generally consistent with that of 𝑎, as the generator cannot reconstruct
𝑎 from 𝐺(𝑎) if 𝑎 and 𝐺(𝑎) are unrelated. Hence, the cycle consistency
loss ensures that the content of the images generated by the generator
remains largely the same.
6

3.4.3. Identity loss
CycleGAN also introduces a third loss term, i.e. identity loss. The

idea about identity loss comes from that ideally, if an image in 𝐷𝑜𝑚𝑎𝑖𝑛𝐴
is transferred into the same domain by the generator 𝐹 , the synthesized
image should be exactly identical to the input image, which can be
expressed as:

𝐺(𝑏) = 𝑏, 𝐹 (𝑎) = 𝑎 (10)

The identity loss is also 𝐿1 Loss just like the cycle consistency loss
and is given as:

identity (𝐺, 𝐹 ) = E𝑏∼𝐵
[

‖𝐺(𝑏) − 𝑏‖1
]

+ E𝑎∼𝐴
[

‖𝐹 (𝑎) − 𝑎‖1
]

(11)

3.4.4. Full objective
In total, there are four terms in the final loss function of CycleGAN,

two adversarial losses, one cycle consistency loss and one identity
loss. According to the functions of those losses, their contributions and
importance are different. Factors 𝜆1 and 𝜆2 are introduced to change
the contribution of each loss to the total loss. The full loss function
becomes:


(

𝐺, 𝐹 ,𝐷𝐴, 𝐷𝐵
)

= 𝐺𝐴𝑁
(

𝐺,𝐷𝐵 , 𝐴, 𝐵
)

+ 𝐺𝐴𝑁
(

𝐹 ,𝐷𝐴, 𝐵, 𝐴
)

+ 𝜆1𝑐𝑦𝑐𝑙𝑒(𝐺, 𝐹 )

+ 𝜆2identity (𝐺, 𝐹 )

(12)

The actual values of 𝜆1 and 𝜆2 are 10 and 0.5 respectively. A larger
𝜆1 will give better reconstruction loss, but the style of the image might
not be completely translated into another domain and there would only
be small changes in the translated images. A smaller 𝜆1 will allow the
model to make significant style changes to the translated images but
will also cause unnecessary artefacts. The value of 𝜆2 has less impact
on the performance of the model and it prevents artefacts.

4. Implementation details

All the training, testing, validation and evaluation work done in
this paper were carried out on Google Colaboratory, using Tesla V100-
SXM2-16 GB GPU.

4.1. Architecture of generator and discriminator

The architecture of ShipGAN is based on the CycleGAN (Zhu et al.,
2017). Fig. 9(a) shows a typical architecture of a generator. In the first
half of the structure is an auto-encoder containing two convolutional
layers which are followed by a batch normalization layer and an
activation function. The convolutional layer will downsample the input
spatial dimension by a factor of 2 and the number of channels is
multiplied by a factor of 2 by the second convolutional layer. In the
centre of the architecture, there is a residual block that contains two
3 × 3 convolutional layers with 256 filters on each layer for a 256 × 256
input image. The final part of this architecture will upsample the image
by a factor of 2 until the output image has the same size as the input
image.

The architecture of a discriminator is illustrated by Fig. 9(b). The
discriminator has a similar architecture as the convolutional neural
network(CNN) for classification. This type of discriminator is named
PatchGAN (Isola et al., 2017). After inputting an image to the Patch-
GAN, it will downsample the image by four or more convolutional
layers followed by batch normalization layers and activation functions.
The output of the PatchGAN would be the probability of the input
image being real and being fake.
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Fig. 9. Typical structure of CycleGAN’s (a) generator and (b) discriminator.

Table 1
Training parameters for Sim2Real Model.

n_epoch n_epoch_decay ngf ndf lr

300 200 128 128 0.0003

Table 2
Training parameters for Day2Night Model.

n_epoch n_epoch_decay ngf ndf lr

1600 400 128 128 0.0003

4.2. ShipGAN training

4.2.1. Sim2Real CycleGAN
The simulation images for training and validation are extracted

from the videos of Scene1 to Scene4. The ratio of the number of
training images and that of the validation images is 1:4. In other words,
extracting one frame every five frames as the training data and the rest
images are for testing. Scene5 does not take part in the training set so
it can be used to test the sim2real model trained. When training the
network, the parameters chosen for training the Sim2Real model are
given by Table 1.

𝑛_𝑒𝑝𝑜𝑐ℎ and 𝑛_𝑒𝑝𝑜𝑐ℎ_𝑑𝑒𝑐𝑎𝑦 are the number of epochs with the initial
learning rate and the number of epochs to linearly decay learning rate
to zero respectively, and 𝑙𝑟 is the initial learning rate (Junyanz, 2019).
𝑛𝑔𝑓 is the number of generator filters in the last convolutional layer
and 𝑛𝑑𝑓 is the number of discriminator filters in the first convolutional
layer. These two parameters determine the depth of the network. What
is more, the frequency for saving checkpoints and training outputs is
set to every epoch so that the training of each epoch can be monitored.

4.2.2. Day2Night CycleGAN
The training set of daytime images contains the synthesizing images

generated by the sim2real CycleGAN from the images of Scene1 to
Scene4 and also the real daytime sailing boat images, while night
images are all from the real domain. The synthesizing images translated
from simulation images of Scene5 do not take part in the training set
so that it can validate the day2night model trained. When training the
Day2Night model, the parameters are set as shown in Table 2.

5. Results and discussions

In this section, the results of image translation using ShipGAN are
presented including: (1) from the simulation domain to the realistic do-
main and (2) from the daytime domain to the night domain. In order to
demonstrate the reliability of the GAN-generated data for training and
validating the perception systems for USVs, object detection, instance
segmentation, and semantic segmentation algorithms are applied to the
synthesized images, respectively.
7

5.1. Evaluation metrics

To test if the generated images are real enough to fool the object
detection and image segmentation algorithms, the pre-trained models
trained by the COCO dataset (Lin et al., 2014) were used to detect the
sailing boats in the generated images.

5.1.1. Object detection, and instance and semantic segmentation
Semantic segmentation is a form of image segmentation that com-

bines object detection, object classification, localization and segmen-
tation tasks. Essentially, the task of semantic segmentation can be
referred to as image classification at the pixel level. The goal of seman-
tic segmentation is to take an image and generate an output such that
it contains a class label map where the pixel value of the input image is
transferred into a class label value. Instance Segmentation is also a form
of image segmentation and unlike semantic segmentation, instance
segmentation deals with both detecting objects and demarcating their
boundaries.

These two methods for image segmentation are widely used in
real-world scenarios such as autonomous driving systems and medical
imaging. Therefore, they are suitable for evaluating the GAN-generated
images of ships. If the fake ships can be detected and segmented from
the background and other objects by instance and semantic segmen-
tation model trained by images containing real ships, it means that
the synthetic images can be used in the training of the visual percep-
tion systems of autonomous ships. The performance of the generated
images on object detection will be tested by applying Yolov4 Object
Detection (Bochkovskiy et al., 2020) and Detectron2 (Pham et al.,
2020).

5.2. Simulation images to realistic images

5.2.1. Training
The upper rows of Fig. 10 are the unity simulation images in the

training set and the lower rows are the corresponding translated images
in the realistic domain. The figures on the left-hand side illustrate the
motions of the two sailing boats in the four scenes. The model used to
generate the results was trained for 1953 epochs and for about 361,000
steps.

The results indicate that after 1953 epochs of training, the network
has learned the features of the sky with clouds and the ocean. For the
moving sailing boats over frames, the features of the hulls and the sails
were extracted both in the simulation and the real images, so that the
corresponding areas can be transferred into the other domain. More
importantly, when translating the frame with two boats meeting and
one being partially blocked by the other, the two boats could still be
distinguished from each other. Besides, some more detailed features in
the real domain had also been extracted. Firstly, in addition to the
hulls and the sails, the sailing boats in the synthesized images also
have decks, windows and even sailors onboard. Secondly, when the two
boats overlap, the shadow of the boat in front falls on the boat being
blocked. Another detail to note is the reflections of the sailing boats on
the sea. All these features were extracted from the sailing boats in the
real images, as in the simulation images there are only objects without
texture and the reflection and refraction option of the wave was turned
off.

In Fig. 11, the loss curves of training the CycleGAN to translate
simulation images into realistic images indicate that the training pro-
cess has converged and the identity loss and consistency loss have been
minimized. The adversarial loss does not converge as the generator and
the discriminator are improving simultaneously.

5.2.2. Validation
Fig. 12 are the testing results and their corresponding input sim-

ulation images. From the results, it can be seen that the synthesized
images contain all the key features of the realistic training images as
expected, as the input images for testing belong to the same scenes of
the training set, and the only difference is the positions of the sailing
boats.
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Fig. 10. Training results of Scenes 1–4 images. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.
5.2.3. Generating real images
As the simulation images of Scene5 were totally held back from the

training process, it can be used to validate the trained model to see if
it is a good fit for the Unity simulation environment containing sailing
boat models. Fig. 13 shows the result of the validation set of data. In
Scene5, sailing boat 1 is undertaking the same motion as in Scene4,
while the angle between the courses of sailing boat 1 and sailing boat
2 is 60 degrees rather than 45 degrees.

Sailing boat 2 was translated into the real sailing boat as expected,
and sailing boat 2 was also translated into the realistic domain with
all the key features of a real sailing boat. This testing result indicates
that the trained CycleGAN model fits well to translate the sailing boat
models in the Unity simulation environment to the realistic domain.
8

5.2.4. Object detection, instance and semantic segmentation
To further validate the reliability of the GAN-generated images in

the visual perception algorithm, the object detection and image seg-
mentation algorithms are applied to the synthesized images, as in most
autonomous systems, the input images are pre-processed by objection
detection and image segmentation techniques. The Yolov4 Objective
Detection algorithm (Bochkovskiy et al., 2020) is used to detect the
fake ships in the generated images and Detectron2 (Pham et al., 2020)
is used for instance and semantic segmentation. In Fig. 14, each of the
four rows of images presents the result of detection and segmentation
for one frame from the translated Scene5, Scene4, Scene1 and Scene3
respectively.

The instance maps were produced according to the results of in-
stance segmentation, in which one colour represents one instance by
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Fig. 11. CycleGAN training losses (from simulation to real). (a) Adversarial loss. (b)
Identity loss. (c) Cycle-consistency loss.

the value of its ID. The instance segmentation results of the four syn-
thesized image examples in Fig. 14 indicate that the fake sailing boats
in the synthesized images can be detected by the instance segmentation
algorithm trained by the COCO Dataset. In other words, the key features
of the translated sailing boats are close to those features of real boats, so
the translated boats can be detected as real boats. In the same way, the
semantic segmentation results in Fig. 14 show that translated sailing
boats can be correctly classified as boats, as well as the sky and the sea
in the synthesized images were also classified accurately. Similarly, the
9

Table 3
Maximum confidence scores for detecting sailing boats in the synthesized images.

fake boats in the synthesized images can also be detected as boats by
the Yolov4 object detector trained by the COCO Dataset.

To further investigate how confident the detection algorithms were
about the detected object being a real boat, the confidence scores
were recorded. Table 3 states the maximum confidence scores when
detecting the two sailing boats in the four synthesized image examples.
In this confidence score table, all the maximum confidence scores for
both sailing boats are greater than 50% after applying the non-max
suppression algorithm.

After synthesized images were tested for the visual perception al-
gorithms, they were then brought into the real application of object
detection and tracking. Fig. 15 presents the result of applying object
tracking using the SORT tracking algorithm on the generated real im-
ages (Bewley et al., 2016). In Fig. 15, the green bounding box indicates
the Yolov4 detection result and the blue bounding box indicates the
prediction of the motion of the sailing boat in this frame based on the
detection result in the previous frames.

5.2.5. Analysis and discussion
Overall, the trained Sim2Real cycleGAN model can accurately trans-

late a Unity simulation image which contains sailing boats moving
in any direction into an image in the realistic domain. Also, the sky,
sea and sailing boats in the synthesized images can be detected by
the visual perception systems trained by the real image dataset in
the vast majority of cases. However, over-classification might happen
in the instance segmentation, i.e one synthesized sailing boat will
sometimes be recognized as two separate instances as shown in Fig. 14.
One possible factor that could cause this over-classification is the gap
between the sail and the hull of the sailing boat. The lack of connection
between the hull and the sail may cause the two parts to be classified
into two instances. What is more, it is noticed that there is a gap
between the two sails of the synthesized sailing boat, while there is not
such a gap in the Unity sailing boat model. The cause of this gap might
be the gap between the sails of the real sailing boats in the training
images, as in the real world, the sailing boats are driven by the wind
which can cause the sails to flutter and this will result in a gap between
the sails of a sailing boat.

5.3. Daytime images to night images

5.3.1. Training
Fig. 16 presents the daytime images, which are synthesized by the

trained Sim2Real CycleGAN presented in the previous section, and
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Fig. 12. Validation results of Scenes 1–4 images. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.

Fig. 13. Synthesized real domain images by translating Scene5 simulation images.
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Fig. 14. Results of applying (a) Instance segmentation, (b) Semantic segmentation, and
(c) Yolov4 object detection on the synthesized images.

Fig. 15. Bounding box of Sort object tracking on the sequenced synthesized images.
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the corresponding night images generated by the trained Day2Night
CycleGAN. By inspection, the sailing boats in the synthesized night
images have hulls, sails and also their reflections on the sea. What is
more, the sea level in the night images is clearly visible, although the
intensity of the synthesized images is low and the background is dark.

Fig. 17 gives the real daytime images for training and the corre-
sponding translated night images. The images on the upper row are
the input daytime images and the images below are the corresponding
synthetic night images. For the images in the realistic domain, the
contents of the images were kept unchanged and there was only a
change in tone from day to night.

The results are visually realistic and Fig. 18, the losses of the
training process of Day2Night CycleGAN, indicates that the training
process has converged.

5.3.2. Validation
In Fig. 19, the upper rows of images are the synthesized images

by the Sim2Real cycleGAN from Scene1 to Scene4 but are held back
from the training process, and the lower rows of images are the cor-
responding synthesized night images. As expected, the daytime images
are translated into night images with the key features that make sailing
boats visually realistic.

Fig. 19 shows the validation results of converting the images in
the real daytime domain into the night domain. Also as expected, the
contents are kept unchanged and only the tone was changed from
daytime style to night style, which is the same as the results of the
training process. This result indicates that the trained Day2Night fits
well with the synthesized Sim2Real images of Scene1 to Scene4 (see
Fig. 20).

5.3.3. Generated night images
After validation, the Sim2Real synthesized images of Scene5, which

were totally held back from training, were input to the trained
Day2Night CycleGAN and Fig. 21 presents those Sim2Real images and
the corresponding synthesized images in the night domain. From the
results, it can be seen that the same as the training and validation
results, the features of the sailing boats in the Day2Night synthesized
images match those corresponding features of the sailing boats in
the Sim2Real synthesized images in the daytime domain, such as the
hull, sails and the reflections on the sea. These results indicate that
the trained Day2Night CycleGAN model fits well with the Sim2Real
synthesized images even with those which have been held back from
training.

5.3.4. Yolov4 object detection
To investigate the reliability of the synthesized Night Domain im-

ages for the visual perception systems, Yolov4 object detection algo-
rithm was applied to the synthesized images. Fig. 22 shows the object
detection outcomes by applying Yolov4 object detector to the translated
night images in the realistic domain. Most fake sailing boats can be
detected as real boats by the Yolov4 detector, and this indicates that
the trained Day2Night model keeps most contents unchanged. The max-
imum confidence scores of the sailing boat detection in the synthesized
night images are above 70%. This result once again confirms that the
key features of the translated sailing boats in the synthesized images
can fool the Yolov4 object detector trained by the COCO dataset into
classifying the fake sailing boats as real ones.

Fig. 23 shows that in the synthesized night images translated from
the Sim2Real daytime images, some generated sailing are not recog-
nized as real boats.
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Fig. 16. Training results of Scenes 1–4 night images. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.
5.3.5. Analysis and discussion
In general, the daytime images in both the realistic domain and

the Sim2Real synthesized daytime domain can be translated into the
night domain by the trained Day2Night CycleGAN with all the key
features of the sailing boats. The reliability of synthesized night images
was proved, as the fake sailing boats in the synthesized images can be
classified as real boats by the Yolov4 object detector. However, there
12
are still some failure cases in which the generated sailing boats cannot
be detected, although visually there is no large difference between the
sailing boats that can be detected and those that cannot. This might
be caused by the lack of effective features of a real sailing boat in the
synthesized sailing boats, and some of those features are imperceptible
to the human eye. What is more, in the night images translated from
the Sim2Real daytime images, the white hulls are orange at night, while
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Fig. 17. Training results of real daytime images.

Fig. 18. CycleGAN training losses (from day to night).
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the white sails are in the same colour as the night sky but still retain
their outlines. The reason could be that in the training set, some sailing
boats at night with the same tone will have their sails lowered and
there are only hulls and masts left. Therefore, when translating the
daytime images into the night domain, the trained model tried to fit
the translated sailing boats to the real boats at night as similarly as
possible by giving the sails the colour of the night sky to make them
look like being lowered.

6. Conclusions and future works

This paper proposed a deep learning model, ShipGAN, based on the
cycle-consistent adversarial network to translate simulation images into
realistic images. Five scenarios containing sailing boats with all the
physical effects modelled were created in the Unity simulation engine.
Then, the frames extracted from the simulation videos and real images
of ships were used to train the ShipGAN model. The trained models
were validated and tested to generate the synthetic realistic images
from the simulation images. Finally, the synthetic images were eval-
uated by visual perception algorithms for their fidelity and reliability.
The results of the evaluation of the ShipGAN-generated realistic images
show that the fake ships are able to be detected as real ships with high
confidence scores (approximately 95%) and the sky, the ocean and the
ships can be successfully segmented from each other by applying image
segmentation algorithms trained by natural images. As the navigation
and perception systems of the autonomous ships contain pre-processing
using object detection and image segmentation, the evaluation result
also means that the ShipGAN-generated images of ships can be used
and are reliable for the training of autonomous vessels. What is more,
the generated dataset containing busy water and complex scenarios is
able to improve the ability of autonomous vessels in dealing with such
unusual cases when they are operating in the real world.

In conclusion, by the proposed ShipGAN, the Unity simulation
images of ships can be translated into realistic images that are not
only visually realistic but also are tested to be reliable with the object
detection and image segmentation algorithms. The ShipGAN can be
seen as a bridge between the simulation domain and the realistic
domain for images. By ShipGAN, the ships in images can be converted
between these domains.

This paper mostly focused on investigating the feasibility of con-
verting the simulation images into realistic images by using Generative
Adversarial Networks, and only one type of ship is included in this
paper. The proposed ShipGAN just opens the gateway leading to a new
method to create maritime datasets. Therefore, there are still some
works that can be done to improve the reliability of the synthesized
images for autonomous USV systems training. Some future works can
be suggested as:

• Translating images with complex textures: The range of boats could
be more varied, for example, cruises and yachts, which contain
more features to be extracted. However, the existing cycleGAN
structure might not be sufficient for those types of ships with more
complex textures. Therefore, inspired by the multidimensional
structure of the discriminator of pix2pixHD, the generator and
discriminator could be improved to be multidimensional as well
to handle features on different scales, so that more ships with
complex features can be generated to enrich the variety of ships
in the generated dataset.

• Generating images in a video sequence: The current model treats
every training image as an individual even if they belong to one
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Fig. 19. Validation results of Scenes 1–4 night images. (a) Scene 1. (b) Scene 2. (c) Scene 3. (d) Scene 4.
video. This results in that when using synthetic images to create
videos, some detailed features are not stable through the videos.
Therefore, some improvements can be done to feed the image
tensors to the network so that images in one video can be treated
as a whole.

• Learning the poses of the ships: Another improvement that can make
the motions of the ships more realistic in the synthetic images
14
is to combine another deep learning network that can learn the
poses of the ships when moving. As mentioned before, the current
approaches for image translation are mostly treating the images
as individuals, and no pose estimation is included in the training
process. This makes the motions of the ships in the synthetic
videos not so physically realistic. By taking the pose information
of the objects in the images into account as an additional feature
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Fig. 20. Validation results of real daytime images.

Fig. 21. Synthesized night domain images by translating Scene5 images.

Fig. 22. Synthesized night domain images by translating real daytime images.

Fig. 23. Results of applying Yolov4 object detection on the generated night images.

to learn, the model would be able to generate images containing
objects doing more physically realistic motions.
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