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Abstract 

 

 

In the natural waters, hundreds to thousands of chemicals co-exist as complex 

mixtures, which needs a holistic assessment of their health effects. Identifying and 

testing each individual chemicals in the environment is undoubtably an 

insurmountable challenge to ecotoxicological studies and an unrealistic approach to 

reveal mixture effect at environmental relevant concentration, which may require 

insight from toxicogenomic studies. In this thesis, a new way of understanding and 

potentially discovering solutions to the mixture effect problem of safeguarding the 

health of human populations and the environment from the unknown effects of real-

world chemical mixtures, specifically targeting pollutants of inland waters.  

In Chapter 1, the current status of environmental monitoring, its challenges and 

limitations by highlighting environmental sample classification and harmful chemical 

component prioritisation are described and discussed as the major issues.  

The conceptual framework of Precision Environmental Health is then proposed in 

Chapter 2, emphasising the importance of chemical mixture modes of action in the 

view of multi-omics. The Precision Environmental Health framework applies an 

omics-based bioassay approach to comprehensively characterise the effect of 

environmental chemical mixtures. The core of this framework focuses on the 

identification and interpretation of the molecular key event (mKE), which is 

responsive of foreign chemical exposure and indicative of potential adverse 

outcome. The mKEs are subsequently applied to classify the mixture effect and 

identify associated chemical components. This conceptual framework aims at 
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integrating the data-driven biological signatures generated by omics profiles and 

prior knowledge of gene functions and pathways of counterpart genetic model 

species. 

Chapter 3 explains and verifies the mathematical basis of the framework, which 

relies on multi-block correlation analysis. Two case studies are included to 

demonstrate this framework in action, and two chemical components (caffeine and 

carbamazepine) are selected as prove-of-concept. The Data-driven biological 

features are compared with prior knowledge and compared between two case, in 

order to prove the effectiveness and robustness of the mathematical assumption 

behind this framework. 

Derived from PEH framework, the mKE was used to group and classify the mixture 

effects of chemicals at environmentally relevant concentrations in two case studies, 

as gene clusters of highly variable genes in the transcriptomic profiles were 

identified and grouping pattern of gene clusters associated with chemical responses 

in Chapter 4 and further identify chemical component associated signatures that 

may reflect the chemicals’ modes of action in Chapter 5. In Chapter 4, expression-

based clustering analysis of five gene clusters revealed that the environmental 

chemical mixture of a single site (M16) induced relatively higher expression levels 

in stress response and cellular homeostasis, and these differences are significantly 

related to Dibenz[a,h]anthracene, Erythromycin and Trimethoprim in the Chaobai 

case study. In Chapter 5, similarity analysis of chemical profiles and transcriptomic 

profiles reveal similar grouping pattern, as expression-based clustering analysis of 

gene clusters revealed that distinctive transcriptomic profiles of two sites (D11 and 
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D12) reveal down-regulation of xenobiotic biodegradation and antioxidative 

response pathways. 

This thesis ends by highlighting in Chapter 6 the promise of Precision Environmental 

Health to address harm caused by real world chemical pollutants based on my 

findings and discusses need for future verification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 IV 

Acknowledgements 

 

 

Throughout my four years at the University of Birmingham (UoB), I have received a 

great deal of support and assistance.  

First and foremost, I would like to express my most profound appreciation to my 

committee. As my supervisor, Prof. John Colbourne inspires me with novel ideas 

and supports me with invaluable expertise in formulating the research topic. The 

completion of my thesis would not have been possible without the constant support 

and nurturing of John. I am also extremely grateful to my co-supervisor Prof. Ben 

Brown, who always provides me insightful suggestions on methodology and 

practical suggestions of machine learning modelling and biostatistics testing. I am 

deeply indebted to Prof. Mark Viant, who supports me in conducting my experiments 

and training in the metabolomic technique. I would like to extend my deepest 

gratitude to my co-supervisor Prof. Liang-hong Guo, who helps me in research and 

convenience in life when I was conducting my first case study at the Research 

Centre of Eco-Environmental Science (RCEES) and constructive advice on my 

thesis. I would like to thank Prof. Stuart Harrod sincerely. He provides expert advice 

on non-targeted chemical analysis and gives me opportunities to join the Network 

POPs Conference and build connections with researchers in this field.  

Secondly, I would like to acknowledge my colleagues from Environmental Genomics 

groups for their tremendous support and collaboration. Special thanks to Luisa, who 

always encourages me, shares her extraordinary experiences in experimental 

design with me, and invites me to work on the manuscript related to Daphnia gut 



 V 

microbiota. Many thanks to Tim, who supports me greatly with his experiences and 

expertise, helps me with my presentation and progress report, and especially 

provides the precious achieved data and samples from the Solutions project. I am 

grateful to Vignesh, who is always helpful and patient with my problems related to 

the Bluebear. Thanks also to Steve for his professional techniques in the molecular 

lab, which assures my progress. And thanks should also go to Caroline for his 

indispensable work and support in the Daphnia wet lab. And I am also grateful to 

Prof. Jan-Ulrich Kreft, who inspires me with valuable suggestions on my project and 

is willing to discuss with me during lunch break. Moreover, I would like to extend my 

sincere thanks to my collaborators at RCEES, namely Prof. Yao-hui Bai, Dr. Bin 

Wan, Dr. Wei-wei Ben, Dr.Meng Qiao, Dr. Wei Xiong, Dr. Guo-rui Liu, for their 

supports in scheduling fielding sampling, sharing data and opinions, and supporting 

organic extractions. 

I also had the great pleasure of working with Rosie, Marie, Hollie, Niamh, and 

Muhammad. Especially helpful to me during the first few weeks that Rosie and Marie 

kindly invited me to camp and helped me quickly integrate into the group. And Niamh 

always kindly explain the British culture and common sense of life to me. I’d also 

like to gratefully acknowledge the help of Cate, Julia, Judith, Jelena, Hanna, Julia, 

Sophia, Rolf and Martin for guiding me through metabolome training and data 

collection.  

最后的最后，我想要感谢我的父母一直以来给予我最大的鼓励和支持，让我能够有

机会完成自己的梦想，心无旁骛的从事科研工作。我也要感谢我的亲朋好友一直以

来给我的关心和帮助，尤其是在我不自信的时候。 



 VI 

于我而言，这四年来最最幸运的是遇到了我挚爱的家锐，不管是在科研还是生活中

他都是我最最坚实的后盾。即便在我最彷徨无助的时候，他也依然会提醒我我所不

自知的优秀之处。感谢他为我做的所有事！ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 VII 

Table of Contents 

 

 

Abstract…………………………………………………………………………..…...…..I 

Acknowledgement………………………………………………………………..…….IV 

Table of Contents…………………………………………………………………..…VII 

List of Figures…………………………………………………………………………...X 

List of Tables………………………………………………………………………….XIV 

List of Abbriviations…………………………………………………………………..XVI 

1 Effect Assessment of Environmental Chemical Mixtures……………………………1 

1.1 Abstract………………………………………………………………………..1 

1.2 Environmental chemical mixture problem…………………………………2 

1.3 Conventional methods and their limitations………………………………3 

1.4 The whole-mixture approach with omics-based bioassays……………12 

1.5 Conclusion…………………………………………………………………..19 

1.6 Reference……………………………………………………………………20 

2 Precision Environmental Health: a Framework for Effect Assessment of 

Environmental Chemical Mixtures……………………………………………………..25 

 2.1 Abstract………………………………………………………………………25 

 2.2 Introduction…………………………………………………………………..25 

 2.3 Overview of the PEH framework…………………………………………..30 

 2.4 Molecular key events as the core of PEH…………………………………33 

 2.5 Conclusion…………………………………………………………………...38 

 2.6 Reference……………………………………………………………………39 



 VIII 

3 Co-responsive Biological Features Characterise Chemical Component Associated 

Effects in the Environmental Mixtures…………………………………………………43 

 3.1 Abstract………………………………………………………………………43 

 3.2 Introduction…………………………………………………………………..44 

 3.3 Methods………………………………………………………………………48 

 3.4 Results………………………………………………………………………..61 

 3.5 Discussion……………………………………………………………………74 

 3.6 Conclusion…………………………………………………………………...83 

 3.7 Supplementary………………………………………………………………85 

 3.8 Reference…………………………………………………………………..101 

 3.9 Appendix 1…………………………………………………………………109 

 3.10 Appendix 2………………………………………………………………..117 

 3.11 Appendix 3………………………………………………………………...125 

 3.12 Appendix 4………………………………………………………………...129 

4 Chaobai Case Study…………………………………………………………………135 

 4.1 Abstract……………………………………………………………………..135 

 4.2 Introduction…………………………………………………………………136 

 4.3 Methods…………………………………………………………………….140 

 4.4 Results………………………………………………………………………147 

 4.5 Discussion………………………………………………………………….156 

 4.6 Conclusion………………………………………………………………….158 

 4.7 Supplementary……………………………………………………………..159 

 4.8 Reference………………………………………………………………..…174 

 4.9 Appendix 1………………………………………………………………….177 



 IX 

5 Danube Case Study………………………………………………………………….183 

 5.1 Abstract……………………………………………………………………..183 

 5.2 Introduction…………………………………………………………………184 

 5.3 Methods…………………………………………………………………….188 

 5.4 Results………………………………………………………………………195 

 5.5 Discussion………………………………………………………………….204 

 5.6 Conclusion………………………………………………………………….206 

 5.7 Supplementary……………………………………………………………..207 

 5.8 Reference…………………………………………………………………..216 

 5.9 Appendix 1………………………………………………………………….219 

6 Conclusion……………………………………………………………………………225 

 

 

 

 

 

 

 

 

 

 

 

 

 



 X 

List of Figures 

 

 

Chapter 1 

Figure 1. 1 Conventional and proposed approaches of chemical mixture effect 

assessment………………………………………………………………………………..1 

 

Chapter 2 

Figure 2. 1 The framework of Precision Environmental Health is conceptualised as 

a tiered approach………………………………………………………………………..35 

Figure 2. 2 The molecular key events (mKEs) in the PEH framework……………..40 

Figure 2. 3 Co-responsive modules associated with caffeine and carbamazepine.42 

 

Chapter 3 

Figure 3. 1 Concentration of caffeine and carbamazepine in surface water 

samples…………………………………………………………………………………..67 

Figure 3. 1 Chaobai case study: overrepresentation tests of selected KEGG 

pathways by permutation chi-square test……………………………………….……70 

Figure 3. 2 Danube case study: overrepresentation tests of selected KEGG 

pathways by (a) permutation chi-square test and (b) chi-square test……………….76 

Figure 3. 3 Caffeine metabolism in Daphnia magna…………………………………81 

Figure 3. 4 Carbamazepine metabolism in Daphnia magna………………………..83 

Figure 3. 5 Case comparison: pathway overrepresentation tests by permutation chi-

square test………………………………………………………………………………..85 



 XI 

Figure 3. 6 Danube case study: summary of the numbers of pathways identified in 

the chemical-associated co-responsive modules in transcriptome and 

metabolome……………………………………………………………………………...87 

Figure S3. 1 Chaobai case study: transcriptomic co-responsive network and 

module……………………………………………………………………………………94 

Figure S3. 2 Chaobai case study: sCCA analysis of relationship (a) between 

transcriptomic component and caffeine, and (b) between transcriptomic component 

and carbamazepine……………………………………………………………………..95 

Figure S3. 3 Chaobai case study: transcriptomics co-responsive modules are 

ranked by their module enrichment scores corresponding to their association with 

(a) caffeine and (b) carbamazepine concentrations in mixtures…………………….96 

Figure S3. 4 Danube case study: transcriptomic co-responsive network and 

modules…………………………………………………………………………………..97 

Figure S3. 5 Danube case study: metabolomic (polar positive) peaks co-responsive 

network and modules…………………………………………………………………....98 

Figure S3. 6 Danube case: metabolomic (polar negative) peaks co-responsive 

network……………………………………………………………………………...……99 

Figure S3. 7 Danube case study: sCCA analysis of relationship between omics 

features and two chemical compounds………………………………………………100 

Figure S3. 8 Danube case study: caffeine-associated co-responsive modules are 

ranked by their module enrichment scores………………………………………….101 

Figure S3. 9 Danube case study: carbamazepine-associated co-responsive 

modules are ranked by their module enrichment scores…………………………..102 



 XII 

Figure S3. 10 Case comparison: number of common genes between Chaobai 

transcriptomic modules and Danube transcriptomic modules…………………….103 

Figure S3. 11 Danube case study: summary of the numbers of pathways identified 

commonly in transcriptomic and metabolomic co-responsive modules…………..104 

 

Chapter 4 

Figure 4. 1 PCA plot of targeted chemicals in water samples of the Chaobai 

River……………………………………………………………………………………..150 

Figure 4. 2 Similarity analysis of transcriptomic profiles in the Chaobai 

case………………………………………………………………………………..……152 

Figure 4. 3 Overrepresentation analysis of xenobiotic metabolism-related pathways 

among the Chaobai River gene clusters……………………………………………..154 

Figure 4. 4 Correlation analysis between eigengenes of 14 gene clusters and 

chemical factors………………………………………………………………………..156 

Figure S4. 1 The eutrophication area of the Chaobai River………………………166 

Figure S4. 2 The sampling sites of the Chao River, the Bai River and the Chaobai 

River…………………………………………………………………………………….167 

Figure S4. 3 Distribution of PAHs in the Chaobai River……………………………..168 

Figure S4. 4 Distribution of organic micropollutants in the Chaobai River………169 

Figure S4. 5 Immobility rate of Daphnia magna after 48 hours exposure to filtered 

surface waters from the Chaobai River……………………………………………...170 

Figure S4. 6 Overview of Chaobai transcriptome data sets……………………….171 

Figure S4. 7 Robustness of transcriptomic gene clusters in the Chaobai case….172 

Figure S4. 8 Hierarchical clustering of gene expression in selected Chaobai gene 

clusters………………………………………………………………………………….173 

 

 



 XIII 

Chapter 5 

Figure 5. 1 PCA plot of targeted chemicals in water samples of the Danube 

River……………………………………………………………………………………..195 

Figure 5. 2 Similarity analysis of log2 fold change patterns in transcriptomic profiles 

of the Danube case…………………………………………………………………….197 

Figure 5. 3 Overrepresentation analysis of xenobiotic metabolism-related pathways 

among the selected Danube River gene clusters…………………………………..198 

Figure 5. 4 Hierarchical clusterings of transcriptomic profiles of selected Danube 

gene clusters……………………………………………………..…………………….201 

Figure 5. 5 Correlation analysis between eigengenes of 14 gene clusters and 

chemical factors……………..…………………………………………………….…...202 

Figure S5. 1 The sampling sites of the Danube River from which water samples 

were used in this present study………………………………………………...…….211 

Figure S5. 2 Overview of Danube transcriptome data sets……………………….212 

Figure S5. 3 Robustness of Danube gene clusters………………………………..213 

 

 

 

 

 

 

 

 

 



 XIV 

List of Tables 

 

 

Chapter 3 

Table 3. 1 Summary of the 137 pathways in the KEGG pathway database………..65 

Table S3. 1 Chaobai case study: transcriptomic co-responsive module gene lists 

mapping summary……………………………………………………………………….89 

Table S3. 2 Danube case study: transcriptomic co-responsive module gene lists 

mapping summary……………………………………………………………………….90 

Table S3. 3 Danube case study: metabolomic (polar positive) co-responsive module 

peak lists mapping summary……………………………………………………………91 

Table S3. 4 Danube case study: metabolomic (polar negative) co-responsive 

module peak lists mapping summary……………………….………………………...92 

Table S3. 5 Danube case study: metabolomic peaks in the metabolomic co-

responsive modules that are associated with both caffeine and carbamazepine…93 

 

Chapter 4 

Table S4. 1 Description of the sampling sites along the Chaobai River Basin……160 

Table S4. 2 Inorganic chemicals in surface water samples from the Chaobai River 

Basin…………………………………………………………………………………….161 

Table S4. 3 PAHs in surface water samples from the Chaobai River Basin………162 

Table S4. 4 Organic micropollutants in surface water samples from the Chaobai 

River Basin…………………...…………………………………………………………163 

Table S4. 5 Relative contribution of chemical factors to first two components in 

Chaobai case…………………………………………………………………………..164 

Table S4. 6 Summary of 14 gene clusters in the Chaobai case………………….165 



 XV 

 

Chapter 5 

Table S5. 1 Description of 12 selected sites along the Danube River Basin……205 

Table S5. 2 Nontargeted screening analysis of organic substances in surface water 

samples from the Danube River Basin………………………………………………206 

Table S5. 3 Relative contribution of chemical factors to first two principal 

components in Danube case…………….……………………………………………207 

Table S5. 4 Summary of 14 gene clusters in the Danube case…………………..208 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 XVI 

List of Abbreviations 

 

 

AAA  n-Acetyl-4-aminoantipyrine 

ABC  ATP-binding cassette (transporter) 

Ace  Acenaphthene 

ACF  Acesulfame 

Acy  Acenaphthylene 

Ant  Anthracene 

AOP  Adverse Outcome Pathway 

ATD  Atrazine-desethyl 

ATE  Atenolol 

ATR  Atrazine 

AZN  Azithromycin 

BaA  Benzo[a]anthrancene 

BaP  Benzo[a]pyrene 

BbF  Benzo[b]fluoranthene 

BEN  Bentazone 

BF  Bezafibrate 

BghiP  Benzo[g,h,i]perylene 

BkF  Benzo[k]fluoranthene 

BZT  1H-Benzotriazole 

CA  Concentration Addition 

CAF  Caffeine 



 XVII 

CBZ  Carbamazepine 

Chry  Chrysene 

CIP  Ciprofloxacin 

CLA  Clarithromycin 

COT  Cotinine 

CYP  Cytochrome P450 

DBA  Dibenz[a,h]anthracene 

DDC  10,11-Dihydro-10,11-dihydroxycarbamazepine 

DIMS   Direct Infusion Mass Spectrometry 

DOX  Doxycycline 

EC50  Half maximal effective concentration 

EDA  Effect-directed analysis 

ENR  Enrofloxacin 

ERY  Erythromycin 

Flua  Fluoranthene 

Fluo  Fluorene 

GC  Gas chromatography 

GPX  Glutathione peroxidase 

GST  Glutathione S-transferase 

HCA  Hierarchical clustering analysis 

HPLC  Ultra-performance liquid chromatography 

HRMS  High-resolution mass spectrometry 

IA  Independent Action 

IATA  Integrated Approaches of Testing and Assessment 



 XVIII 

IncdP  Indeno[1,2,3-cd]pyrene 

JDS  Joint Danube Survey 

km  kilometer 

LC  Liquid chromatography 

LOM  Lomefloxacin 

LOQ  Limit of quantification  

m/z  mass-to-charge ratio  

MBZ  5-Methyl-1H-benzotriazole 

MET  Metoprolol 

mKE  Molecular key event 

MoA  Mode of action 

MS  Mass spectrometer 

MTZ  Metazachlor 

Nap  Naphthalene 

nESI  Nano-electrospray ionisation assembly 

NOEL  No Observed Effect Level 

NOR  Norfloxacin 

NTS  Non-targeted screening 

OG  Ortholog group 

OTC  Oxytetracycline 

PAHs  Polycyclic aromatic hydrocarbons 

PEH  Precision Environmental Health 

PFOS  Perfluorooctanesulfonic acid 

Phe  Phenanthrene 



 XIX 

PROP  Propranolol 

Pyr  Pyrene 

RCEES Research Centre of Eco-Environmental Science 

ROX  Roxithromycin 

rpm  revolutions per minute 

sCCA  Sparse Canonical Correlation Analysis 

SDZ  Sulfadiazine 

SMR  Sulfamerazine 

SMX  Sulfamethoxazole 

SOD  Superoxide dismutase 

SPE  Solid-phase extraction 

TDS  Total dissolved solids 

TER  Terbuthylazine 

TET  Tetracycline 

TMP  Trimethoprim 

TOC  Total organic carbon 

TRA  Tramadol 

UFZ  Helmholtz Centre for Environmental Research 

WWTP Wastewater treatment plant  

 





 1 

1 Effect Assessment of Environmental Chemical Mixtures 

 

 

1.1 Abstract 

Chemical substances in the environment pose potential health effect on humans and 

the environment. Effect assessment of chemical substance is the basis of prioritising 

chemical substances for regulatory monitoring and management. This process 

includes obtaining and processing environmental samples (field sampling), describing 

the environmental chemical substances (chemical analysis), toxicological testing with 

bioanalytical approaches (toxicological bioassay), and identifying chemical substances 

that drive the overall toxicity (chemical prioritisation). In this chapter, conventional 

methods of effect assessment are discussed, and solutions that combine whole 

mixture approach and omics-based bioassays are proposed to facilitate the effect 

characterisation of the environmental chemical mixture (Figure 1.1). 

 

 

Figure 1. 1 Conventional and proposed approaches of chemical mixture effect assessment. 
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1.2 Environmental chemical mixture problem 

A growing number of chemicals are introduced into the aquatic environment year upon 

year (Rüdel et al., 2020). To date, there are more than 350,000 chemicals registered 

for commercial usage globally (Wang et al., 2020). A large number of these chemicals 

are making their way into the aquatic environment through emission and discharge 

(Villanueva et al., 2014), resulting in numerous possible combinations of those 

environmental chemicals co-occurring as complex mixtures (B. I. Escher et al., 2020). 

Environmental scientists and environmental policymakers realise that such 

environmental chemical mixtures pose potential threats to aquatic organisms and 

humans and aquatic ecosystems (Posthuma et al., 2019). According to the Lancet 

Commission report on pollution and health, chemical pollutants are associated with 

approximately 9 million premature deaths (Landrigan et al., 2018). Pollution has other 

severe health effects on human that are known, yet challenging to quantify, including 

neurotoxicity, developmental toxicity, reproductive toxicity and endocrine disruption 

(Silva et al., 2015). The environmental chemical mixtures are also disrupting 

ecosystems by causing growth inhibition, delayed or reduced reproduction and 

changes in biodiversity affecting various trophic level dynamics (Amoatey and Baawain, 

2019), which may further impair the sustainability of natural resources (Rhind, 2009). 

However, most of the chemicals are regulated at the individual compound level by the 

regulatory agencies for the protection of water quality and aquatic ecosystems. For 

example, only 76 priority substances and 17 substances within the watch list are under 

routine monitoring based on the 2013/39/EU Water Framework Directive in European 

countries (Kern, 2014); a total of 126 priority pollutants are under regulation of Clean 

Water Act in the United States (EPA 1991). Regulation on chemical mixtures is only 



 3 

implemented for specified groups of chemicals. For example, the EU Water Framework 

Directive specifies thresholds for chemical groups like cyclodiene pesticides, 

polyaromatic hydrocarbons (PAHs), perfluorooctane sulfonic acid and its derivates, 

and dioxin and dioxin-like compounds (Kern, 2014). In contrast, there is no current 

regulation on the mixture effect generated by multiple chemical substances of different 

chemical classes (Kortenkamp and Faust, 2018). Thus, to better understand and 

prevent the environmental chemical mixture problem, an exposure assessment of 

potential health effects should be considered in new policymaking to assure a “good 

state” of the aquatic environment. 

 

1.3 Conventional methods and their limitations 

Conventional methods for effect assessment of environmental chemical substances 

are mainly targeted, represented by targeted chemical measurement and pre-selected 

apical endpoints for toxicological bioassay (Brack et al., 2018).  

 

1.3.1 Chemical analysis 

Chemical substances in the environment exhibit various physiochemical structures and 

a wide range of concentrations and polarities; it is challenging to develop a holistic 

profiling method of all the chemical components in the environment by using a single 

chemical analytical platform. The gas chromatography (GC) is commonly applied to 

separate volatile and thermally stable compounds, while the liquid chromatography (LC) 

can separate non-volatile, semi-polar, and polar compounds, such as pesticides (e.g., 

organophosphorus, organochlorine and carbamate), pharmaceuticals, illicit drugs, and 

personal care products (Brack et al., 2016). Coupling the efforts of multiple technical 
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platforms targeting various characteristics may better resemble the complete picture 

of the environmental chemical mixture (Ulrich et al., 2019).  

Current environmental monitoring relies on targeted analysis, which aims at quantifying 

the pre-selected chemicals with a priori well-defined reference data (e.g., retention time, 

mass spectrum, and tandem mass spectrum). This procedure typically accounts for 

tens to hundreds of detectable substances and has been well accepted in many 

countries and practised for decades, such as the U.S.A surface water quality criteria 

(Stephan et al. 1985), the European framework for water policy 2000/60/EC (Todo and 

Sata 2002), and the UK water framework directive (DEFRA 2014). It must be noted 

that environmental chemical monitoring typified by the chosen substances, also known 

as prioritised chemicals, can only represent a tip of a chemical cocktail iceberg (Brack 

et al., 2018). Current chemical-based monitoring is limited to about 1 % of detectable 

substances, while a large number of chemical substances with potential toxicity may 

leak through regular monitoring as they are not on the priority list. Chemicals may be 

sometimes below the detection levels, leading to incomplete profiling of the 

environmental chemicals. Limited information of the total amounts, composition, and 

individual identities of the environmental chemical mixtures in the waters impedes an 

understanding of the scope and impact of the aquatic pollution problem, with timely 

and sufficient evidence to intervene (Altenburger et al., 2015).  

 

1.3.2 Toxicological bioassay for single chemical substance 

Toxicological bioassay depicts the levels of biological responses as a function of the 

concentration of the selected chemical substance. It aims at revealing the monotonic 

relationship between detected chemical substance and the toxicity potency within the 
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concentration range or dose frequency defined in the testing settings (Tsatsakis et al., 

2018). The prediction of toxicity level can thereby rely on measuring the concentration 

levels of the tested chemical substance. It is critical to address chemical effect 

assessment and predict the risk level of chemical substances at the environmental 

levels. However, the concentration range chosen in any toxicological bioassay may be 

limited from 5 to 7 concentration levels per study. Most of the testing is done to observe 

acute toxicity at relatively higher concentration levels far beyond environmental levels 

of exposure. Such a dose-response model might not have enough observations within 

the concentration range reflecting environmental levels, leading to an unreliable 

prediction of effects in the environment (Knillmann et al., 2018).  

The adverse effect of a chemical substance is assessed and characterised by the 

design of the bioassay. Such toxicity relevant bioassays are based on the variation in 

a specified biomarker (indicative gene, functional protein or metabolite) or a phenotypic 

trait. Related to xenobiotic metabolism, the biomarkers at receptor levels may include 

aryl hydrocarbon receptor activation (Brennan et al., 2015), pregnane X receptor 

activation (Lemaire et al., 2006), hormone receptor (like androgen and estrogen; 

Wilson, 2002), metabolism homeostasis (PPAR-γ nuclear peroxisome proliferator-

activated receptor-γ, Neale et al., 2017) (oxidative stress,(Farmen et al., 2010), 

photosynthesis inhibition (Muller et al., 2008), enzyme inhibition (like 

acetylcholinesterase inhibition, Ellman et al., 1961), DNA damage (Lee and Steinert, 

2003), protein depletion and lipid peroxidation (Baryla et al., 2000). While at the 

organismal level, the phenotypic traits may consist of embryo development (Zhang et 

al., 2003), population growth (de Almeida et al., 2017), and motility and feeding 

behaviour (Barata et al., 2008). The systemic response would be further summarised 
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as neurotoxicity (Tohyama, 2016), genotoxicity (Tabrez et al., 2011), mutagenicity 

(Hakura et al., 2021), immunotoxicity (Germolec et al., 2017), carcinogenicity (Cohen 

et al., 2019), endocrine disruption (Kwak et al., 2018), reproductive and development 

impairment (Sidorkiewicz et al., 2017). The harmful effects of chemicals detected in 

the environment are mainly assessed by toxicity testing in a single-compound-at-one-

time manner, and the bioassays are anchored and prescribed by a finite number of 

toxicological endpoints (Serra et al., 2020).  

 

1.3.3 Effect assessment of chemical mixture using a component-based approach 

Since the known chemical components in the environment are limited by the efforts of 

chemical analysis, the effects of detected chemical components are crucial for 

assessing the effect of environmental chemical mixture, which is known as the 

component-based approach. The component-based approach can be regarded as a 

mixture-wise extension of toxicological effect assessment. It is based on investigating 

the effects of combinations of a limited number of the detected chemical component in 

the environment chosen by their occurrences or concentration levels (Kumari and 

Kumar, 2020). Three assumptions of the component-based approach are:  

(1) The mixture of selected chemical compounds can approximate the effect of the 

chemical mixture in the environment, when the mixture effect is mainly 

contributed by the effects of bioactive components in a dose or effect addition 

way (Kumari and Kumar, 2020).  

(2) The dose-response relationships of selected chemical components can be 

established by full factorial design, and the mathematical prediction can be 

derived from individual chemical toxicity data (Altenburger and Greco, 2009). 
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(3) The combined effect of selected chemical components can be detectable and 

characterised as an array of modes of action contributed by each component 

(McCarty and Borgert, 2006).  

The selected chemical components then form an artificial chemical mixture. The 

toxicity potency of this artificial chemical mixture relies on two models, the 

Concentration Addition model (CA; Loewe and Muischnek 1926; Loewe S. 1927) and 

the Independent Action model (IA; Bliss C.I. 1939) (B. Escher et al., 2020). The 

prediction of the combined effect is calculated by the weighted sum of concentrations 

of individual chemical components that share a similar mode of action in the CA model 

or arithmetic sum of probabilities of the response of individual chemical components 

under a different mode of action in the IA model (Jonker et al., 2005). It is worth noting 

that these two models could approximate the real-world scenarios only if the following 

three premises are satisfied:  

(1) Joint effects are additive—all the components in the mixture collectively 

contribute to the mixture effect, and the combined effect can be formulated in 

an additive way, based on their concentrations (Kortenkamp, 2007).  

(2) Chemical interactions can be neglected—interactions between components, 

either by direct chemical-chemical interaction in the environmental media or 

toxicokinetic and toxicodynamic phases (Gao et al., 2020), do not affect the 

overall toxicity significantly.  

(3) The mode of action (MoA) of each chemical component is well defined and 

acknowledged—the knowledge of chemical-related biological responses with 

the indication of a potential adverse outcome (Meek et al., 2014) is available for 

all the components in the mixture; and the similarity of the MoA can be 
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determined by either shared MoA terms or similar responsive features 

(Spurgeon et al., 2010).   

Both models are widely applied and accepted (Altenburger et al. 2000, 2004, 2009, 

2012, 2013; Backhaus et al. 2003; Backhous and Faust 2012; Belden et al. 2007; Nina 

Cedergreen 2014); some studies even regard CA as the default model for mixture 

toxicity assessment (Backhaus et al. 2004; Syberg et al. 2009). Currently, the 

component-based approach is applied to study the mixture effect of selected chemical 

components with well-defined toxicity delivered by individual chemical toxicological 

bioassay and mathematical modelling. (Groten et al. 2001; Backhaus and Karlsson 

2014; Bopp et al. 2018). For instance, twelve well-defined chemicals are combined as 

two artificial mixtures with carefully selected concentration combinations. These 12 

chemical substances were widely detected in the Danube River and selected based 

on their MoAs in a European Union funded SOLUTIONs research project (Busch et al. 

2016). Twenty-one bioassays were then applied on these two artificial mixtures across 

multiple test species, from invertebrate (Daphnia magna) to vertebrate (Danio rerio and 

Oryzias latipes) and mammalian cell lines, to generate toxicological signatures of the 

mixture effects (Altenburger et al. 2018). This study was performed as a proof-of-

concept case study that the CA/IA model is able to describe the effects of active 

chemical component and their mixtures (Hashmi et al. 2018). The component-based 

approach may be used to estimate the independent, additive effect of selected 

chemical compounds and reveal the combined mixture effect drawn from the 

knowledge of MoAs.  

However, the component-based approach is woefully impractical at predicting natural 

environmental chemical mixtures. The number of chemical components included in a 
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component-based mixture study is usually limited to 2 - 20 compounds. It is impossible 

to assess every possible combination (binary, trinary or even higher-order) of all 

components (covering several concentration levels) in the environmental chemical 

mixtures; the total number of samples in a full-factorial design would be challenging 

and unrealistic to achieve. Moreover, chemicals may either be chosen based on 

regulatory concern or be limited to chemicals with well-defined MoAs. Even though the 

well-studied substances may be proven to be hazardous to human health, such a small 

set of substances may only represent a tiny portion of the actual environmental 

chemical mixture and may not characterise the overall complexity, thereby 

underestimating the combined effect of the corresponding environmental chemical 

mixtures (Cizmas et al. 2004). Finally, the potential low dose effects of compounds 

create another challenging issue for component-based studies. The artificial chemical 

mixtures at their environmental concentrations are unlikely to trigger an observable 

toxicological effect during acute exposures. To address this issue, artificial chemical 

mixtures may be enriched by increasing the environmentally relevant concentrations 

of their components (100- to 1000-fold) to trigger observable toxicity potency changes 

(Altenburger et al. 2018). However, enrichment of mixture concentrations faces the 

same dilemma of individual chemical-based toxicity testing by failing to represent 

toxicological effects under real world environmental scenarios. Based on individual 

chemical-based toxicity testing, the concentration level of a specific chemical that 

induces no observable effect may be identified, known as the No Observed Effect Level 

(NOEL). However, the nature of NOEL is a statistical term where the effect size is not 

significantly different from the control level. The combined effect of chemicals at low 

dose levels might deviate from CA/IA model or even be enhanced, known as synergism 
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(Jonker et al. 2005). A few studies have reported significant synergistic effects of a 

mixture consisting of chemicals at individual NOEL or low effect level (Walter et al. 

2002; Reffstrup et al. 2010; Hass et al. 2012; Orton et al. 2013; Kortenkamp A. 2008, 

2014), suggesting that by extrapolating mixture effect from higher-dose-range, 

substance-based concentration-effect data may underestimate the overall toxicity 

effect.  

Therefore, although effect assessment of chemical mixture with the component-based 

approach is easier to apply and verify, the mixture effect can be  

(1) highly biased by selected chemical components,  

(2) significantly underestimated if low dose synergic effects exist, and 

(3) cannot account for a large amount of unknown (without toxicity data) chemical 

components that exist in the environment nor cover potential harmful effects 

that are unintentionally neglected because of observations of a limited set of 

targeted endpoints.  

 

1.3.4 Effect assessment of chemical mixture using effect-directed analysis 

The effect-directed analysis (EDA) was proposed in the early 1980s to combine the 

efforts of chemical analysis, chemical mixture fractionation, and in vitro bioassays in a 

tiered approach in order to reduce mixture complexity and provide evidence of mixture 

toxicity and unknown causative toxic chemical substance in the environmental 

chemical mixture (Brack W. 2003; Brack and Burgess, 2011).  

For water samples, the sequential removal of the non-toxic chemical components 

(fractionation) is achieved by solid-phase extraction (SPE) and LC with specified 

physicochemical characteristics (Brack W. 2003). Several fractionation steps may be 
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included until the toxic components are isolated and verified by bioassays (Brack et al. 

2008; Brack et al. 2016). The associations between active components and toxic 

effects can thus be carefully established (Thomas et al. 2004), and the toxic chemical 

components can be identified and confirmed by further chemical analyses. For 

identifying the toxic driver at site or basin scale, EDA can feasibly deliver evidence of 

effects caused by a few individual chemicals or specific chemical classes, especially 

for a receptor-related effect like enzyme inhibition, metabolic failure, or endocrine 

disruption (Brack et al. 2018). It has been applied to analyse an organic extract from a 

Danube River water sample affected by untreated wastewater. The results revealed 

that selective fractionation contained compounds that may cause androgenic and 

estrogenic responses (Hashmi et al. 2018). Using a parallel fractionation approach, 

Muschket et al. (2018) also linked the likely cause of antiandrogenic activity to be 4-

methyl-7-diethylaminocoumarin and two derivatives. Latest development in high-

throughput bioassays for mutagenicity and endocrine disruption activities allow 

efficient identification of mutagen and androgen in the surface water and wastewater 

treatment plant effluents (Houtman et al. 2020; Zwart et al. 2020).  

As chemical mixture partitioning is the critical step in the EDA approach, issues related 

to extraction and effect confirmation have a considerable impact on the approach's 

success (Brack et al. 2016). For extracting multiple environmental samples in parallel, 

the recovery rate at extracting may differ between chemical compounds (Zhou et al. 

2017) and the co-eluting chemical compounds might be affected by the matrix effect 

(Benijts et al. 2004). Optimising the recovery rate during extraction is key to assure the 

recovery of the active toxic components in the fractions. Effect confirmation can only 

be performed after the substance identities have been confirmed by targeted analysis, 
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which requires further efforts and time for structure confirmation with the aid of a 

standard compound (Vughs et al. 2018). However, if the standard compound is not 

available (e.g., the substances to be confirmed is a transformed product due to sample 

processing), it remains impossible to confirm the main driver of the observed toxicity. 

 

Hence current methods for effect assessment of environmental chemical substances 

are limited by the capacity of targeted analysis and chemical identity confirmation and 

the choice of toxicological bioassays (limited apical endpoints).  

 

1.4 Preferred approaches (clarify the novelties proposed in the thesis)  

Given the limitations of current methods outlined above, a fundamentally novel solution 

should include a whole-mixture approach that would fully reveal the reality and 

complexity of environmental chemical mixture, combined with a non-targeted bioassay 

that would comprehensively capture the subtle biological responses that precisely 

represent biomolecular differences in the underlying mechanism of toxicity. 

 

1.4.1 The whole-mixture approach 

A whole-mixture approach to chemical effect assessment measures the environmental 

chemical mixtures at real world concentration levels and composition. It treats the 

whole chemical mixture in its entirety. The composition of the whole mixture could be 

the totality of the chemical substances in the environment treating used for toxicity 

testing or a sub-total of chemical components that possess similar physicochemical 

characteristics based on the selectivity of an extraction/enrichment method (Brack et al. 

2016; Mount and Hockett, 2000; Burgess et al. 2013). Yet, the relative abundance or 
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concentration of each component could also be incomplete. Advancements in 

analytical chemistry has enabled a wider analytical window.  

 

 

 

1.4.1.1 The non-targeted analysis of chemical mixture 

The state-of-art ionisation technique and high-resolution mass spectrometry (HRMS) 

promise greater performance in sensitivity, mass accuracy, mass resolution and mass 

range (Krauss et al. 2010; Hollender et al. 2017). The non-targeted analysis based on 

HRMS aims at describing the presence and composition of chemical substances 

without reference to prior information. It provides an opportunity of identifying unknown 

chemical substances that are not regularly included in any targeted analysis 

(Schymanski et al. 2014; Hernández et al. 2005; Aceña et al. 2015). The chemical 

profile generated by non-targeted analysis may be interpreted as a chemical fingerprint 

that is unique to a sample by virtue of its unique chemical composition. With non-

targeted analysis of micro-pollutants in water, comprehensive profiles of 546 pesticides 

and 1212 pharmaceuticals (Masiá et al. 2014), 760 petroleum metabolites (Mohler et 

al., 2013), or more than 1880 organic compounds (Hernández et al. 2015) in surface 

waters can be obtained by using advanced HRMS. Such screening method would 

assist in describing and understanding of the whole mixture. The whole-mixture 

approach may benefit from holistic chemical fingerprinting by combining target and 

non-target screening techniques (Gago-Ferrero et al. 2015; Ruff et al. 2015; Postigo 

et al. 2021) with multiple analytical platforms (Kortenkamp et al. 2019). Gago-Ferrero 

et al. (2015) conducted suspect screening on surfactants and pharmaceutical 
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metabolites, accompanied with non-targeted screening (NTS) on the unknown mass 

peaks in the wastewater. Ruff et al. (2015) performed target and non-targeted analysis 

of water samples from the Rhine River, which revealed quantitative measurements of 

302 substances and existence of two substances (Tizanidine and 1,3-Dimethyl-2-

imidazolidinone) that were never reported before. Postigo et al. (2021) described the 

quantities of 47 disinfection by-products (DBPs) in the drinking water with targeted 

analysis and tentatively identified 86 DBPs with NTS.  

Although the non-targeted analysis is promising in generating comprehensive chemical 

fingerprinting of the environmental chemical mixtures, costs in instruments and needs 

for expertise hinder larger-scale deployment of this technique. It may be difficult to 

define and describe the whole mixture of an environmental sample, which may be 

unstable over time when tests are performed. Factors such as time, pH, temperature, 

and sunlight may have a significant impact on the stability, solubility and volatility of 

the chemical components of a mixture. The chemical mixture may include components 

that are unidentifiable and unquantifiable. Some of the chemical substances could be 

temporary transformed products in the environment or metabolites during bio-mediated 

metabolism, which may not be described or detected before (La Farre et al. 2008; Celiz 

et al. 2009). Assays may be unable to detect chemical components that fall below 

detection levels or are loss during the sampling or extraction processes.  

 

1.4.1.2 The whole-mixture bioassays 

The whole-mixture approach can be also implemented in the bioassays. For example, 

Escher et al. (2014) combined 103 in vitro bioassays across multiple model species 

(human cell line, zebrafish, yeast, algae, etc.) to study the potential effects of 10 water 
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samples, revealing the feasibility of evaluating biological responses of the chemical 

mixture by applying a battery of in vitro bioassays; Blackwell et al. (2019) applied 69 

assays in a multiplexed way targeting a variety of metabolic pathways to study the 

potential effect of surface waters in the United States, indicating the potentially of high-

throughput screening bioassay. The diversity of readouts for toxicological testing in 

these two examples are exceptional (compared to other cases, citations), which 

indicates assessing the environmental water samples as a whole with a wider 

spectrum of toxicological bioassays can deliver rich information in toxicological 

signatures for discriminating subtle differences in the mixture effects of water samples. 

 

1.4.2 The omics-based bioassay 

Developments in the DNA sequencing platforms, high-resolution mass spectrometers, 

and computational capability contribute to the development of omics or multi-omics 

techniques that could reveal in-depth toxicological responses at the biomolecular level 

(Canzler et al. 2020; Sun et al. 2019). The in-depth measurements of gene composition 

(genome), gene expression (transcriptome), protein composition (proteome), 

metabolic activity (metabolome), and DNA methylation and histone modification 

(epigenome), may altogether offer simultaneously comprehensive measurements of 

the toxicological responses to chemical mixtures from a singular sample. Such non-

targeted, hypothesis-free approaches can thereby provide  

(1) systemic and holistic description of the response mechanism, which may 

further facilitate the discovery of critical molecular events related to chemical 

exposure (Stegeman et al. 2018); 
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(2) co-responsive or biologically related metabolic events linked to the same 

phenotype (Spurgeon et al. 2010), which sheds light on response mechanism 

of toxicologically relevant molecular processes (Groten et al. 2004). 

 

1.4.2.1 Transcriptome 

Transcriptome can reveal all the messenger RNAs in a biological test system to identify 

expressional genetic variations linked to exposed chemical compounds (Joseph P. 

2017). Take the transcriptome of ecotoxicological model species Daphnia magna as 

example. The transcriptomic profiles of Daphnia magna has been extensively used in 

characterising the biological responses to metals (Antczak et al. 2013; Brun et al. 2019), 

endocrine disruptors (Antczak et al. 2013; Jeong et al. 2013), pharmaceuticals 

(Antczak et al. 2013; Russo et al. 2018, Fuertes et al. 2019b), flame retardants 

(Scanlan et al. 2015), benzotriazoles (Giraudo et al. 2017), pesticide (Fuertes et al. 

2019a), herbicide (Suppa et al. 2020), and their simple mixtures (Garcia-Reyero et al. 

2012; Fuertes et al. 2019b; Brun et al. 2019). Only a few studies used transcriptomic 

profiles to depict the biological responses of environmental chemical mixtures (Garcia-

Reyero et al. 2012; Kim et al. 2017).  

 

1.4.2.2 Metabolome 

The metabolome can detect and profile metabolites in the biological system so as to 

describe xenobiotic-driven variations (Perhar and Arhonditsis 2015; Viant et al. 2019; 

Pomfret et al. 2020). Since 2010s, the metabolomic assay has been applied to reveal 

the mode of action of PAHs (Vandenbrouck et al. 2010), metals (Taylor et al. 2010; 

Poynton et al. 2011; Nagato et al. 2013; Li et al. 2015;), insecticides (Taylor et al. 2010; 
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Kovacevic et al. 2019), pharmaceuticals (Taylor et al. 2010; Wagner et al. 2017; 

Kovacevic et al. 2018; Wagner et al. 2018), fungicides (Kovacevic et al. 2016; Wagner 

et al. 2017; Kovacevic et al. 2019), perfluorooctanesulfonic acid (PFOS, Wagner et al. 

2017; Kariuki et al. 2017; Wagner et al. 2018; Kovacevic et al. 2019), 

organophosphates (Nagato et al. 2016; Kovacevic et al. 2018), bisphenol-A (Nagato 

et al. 2016; Garreta-Lara et al. 2021), flame retardant (Kovacevic et al. 2019), 

halogenated acetic acids (Labine and Simpson 2021), etc. A few studies reported 

unique metabolomic profiles of Daphnia magna under chemical mixture exposure, 

which were related to energy disruption represented by decrease in glucose (Wagner 

et al. 2018; Kovacevic et al. 2019). Wagner et al. (2019) tried to display wastewater 

effluents’ (before and after chlorination) impacts on Daphnia magna metabolome after 

48 hours exposure and revealed that exposure to chlorinated effluent may induce 

decreases in energy molecules, suggested that metabolome is sensitive enough to 

depict the mixture effect of environmental chemical mixtures that facilitates 

environmental biomonitoring. 

As omics-based bioassay provides unprecedented details of biological responses at 

the molecular level, such molecular profiles could be used to reveal the subtle 

differences in chemical mixture effects that improves our understanding of the effects 

of the environmental chemical mixture (Seeger et al. 2019). 

 

1.4.3 Chemical prioritisation based on the chemical mode of action 

Currently, the individual chemical toxicity testing provides information of toxic potency 

at certain concentration levels, which are used to identify potential key driver of the 

mixture effect of environmental chemical cocktails. The identified chemical 
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components are prioritised as the toxic candidates of concern, and thresholds may be 

subsequently set for regulatory monitoring and strict management, as part of water 

quality criteria and wastewater outlet standards (Daginnus et al. 2011; von der Ohe et 

al. 2011). The NORMAN network developed a prioritisation scheme for emerging 

environmental substances in European surface and drinking water with EDA approach 

at assessing European surface and drinking waters (Brack et al. 2012). The latest 

NORMAN list of emerging substances includes 967 compounds (http://www.norman-

network.net/?q=node/19), while with the newly developed non-targeted screening 

methods, this list will continuously grow (Dulio et al. 2018). But the knowledge of 

prioritised chemical substances generated by these conventional methods is quite 

limited and cannot meet the need for assessing the vast majority of environmental 

chemicals. 

With whole-mixture approach and omics-based bioassays, the resulting molecular 

profiles provide comprehensive mechanistic characterisation of the effect of chemical 

components and their mixture (Martins et al. 2019). The biological signatures 

generated by omics-bioassays with whole-mixture approach can be assembled as the 

MoA of mixture effect. The MoA of mixture effect can be applied in generating 

categorisation of the chemical mixtures (Sparks et al. 2015), proposing hypothesis of 

MoA of chemical component and interactions between chemical components (Ge et al. 

2015), and identifying robust biomarkers for environmental monitoring and risk 

assessment (Borgert et al. 2004).  

The integration of multiple omics (multi-omics) may help generalise the biological 

findings across multiple omics platform. It substantiates cohesive analysis of target 

pathways responding to foreign compounds and provides an opportunity to identify 
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incidental pathways that revealed the cellular processes from multiple perspectives 

(Norris et al. 2017). The integration of multiple omics can further clarify the 

relationships between the factor of interest (environmental factors or chemical 

pollutants or diseases) and genotype for discovering molecular mechanisms of 

biological responses towards a certain chemical component (Hasin et al. 2017; Canzler 

et al. 2019). As the integration of transcriptome and metabolome can facilitate the 

portray of post-transcription activities, it provides evidence in both gene expressional 

activity and functional metabolite activity under the same exposure condition (Kumar 

et al. 2016) for constructing gene-metabolite regulatory network.  

Hence, the MoA seems to be a promising approach to describe the differences in the 

effect of environmental chemical mixtures comprehensively and effectively. It may 

further assist in identifying unknown or undetected chemical component with 

considerable contribution to the mixture effect. 

 

1.5 Conclusion 

Current environmental monitoring and effect assessment was limited by substance-

wise adversity-based toxicological research. For assessing the effect of the 

environmental chemical mixture, a whole-mixture approach should be applied to 

establish a realistic exposure that represents the environmental scenarios for 

evaluating the dissimilarity among different mixtures, and an omics-based bioassay 

should be involved in order to reveal the systemic biological responses as the mixture 

effect.  
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2 Precision Environmental Health: a framework for effect 

assessment of environmental chemical mixtures 

 

 

2.1 Abstract 

Environmental chemical mixture problems pose potential health threats to human and 

dwelling organisms. For the need of better effect assessments of environmental 

chemical mixtures, a framework named Precision Environmental Health (PEH) serves 

the need of studying the relationships between the chemical mixtures in the 

environment and the biological responses of the testing objects in bioassays. The core 

of the PEH framework is to identify the molecular key events (mKEs) that are 

responsive to environmental chemical exposure and indicative of adversity. The 

conservation of mKEs across multiple species may facilitate cross-species 

extrapolation, so that the harmful impacts observed in the tested species can be 

translated to toxic potency in other non-tested species and further extend to ecotoxicity 

potency. This work describes the conceptual basis and key attributes of the PEH 

framework. 

 

2.2 Introduction 

In the aquatic environment, chemicals co-exist as complex mixtures and pose potential 

health threats to humans, natural resources, and ecosystems. To understand potential 

hazards of these complex chemical mixtures may need understanding of their 

composition and corresponding biological effects. Comprehensive profiling of the 
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environmental chemical mixtures requires chemical fingerprinting technique, such as 

non-targeted screening analysis with high resolution mass spectrometry (Hollender et 

al., 2017). However, it is still difficult and time-consuming to identify and clarify every 

single chemical peak in the profile (Pourchet et al., 2020). Chemical components like 

isomers or transformation products with limited structure information may cause 

uncertainty in peak annotation (Escher and Fenner, 2011). And it is also questionable 

to compare semi-quantified non-targeted data generated by different analytical 

pipelines and across multiple teams (Sobus et al., 2018). Even with a comprehensive 

profile of all the chemicals in the environment, effect assessment of the environmental 

chemical mixture heavily relies on toxicity testing records of individual chemical 

component (Heys et al., 2016; Syberg et al., 2009). Among over 191 million inorganic 

and organic chemical substances registered in the Chemical Abstracts Services (CAS; 

Chen et al., 2021), 26,147 chemicals were recorded as registered chemicals in the 

European REACH system with public available toxicity references (European 

Commission. Joint Research Centre. Institute for Health and Consumer Protection., 

2010) and 17,242 chemical substances were filed with toxicity observations in 

ECOTOX database established by US EPA (Villeneuve et al., 2019), which suggests 

no more than 0.01 % of the registered chemical were ever tested for their potential 

toxicities. Moreover, only a small fraction of the chemical substances are studied when 

it compares to the chemical substances being discharged into the environment 

(Hernández et al., 2019) and 158 chemical compounds were listed as prioritised 

chemical for environmental monitoring under the Water Framework Directive (Brack et 

al., 2017). One of the commonly applied approaches, the component-based approach, 

estimates the toxicity of mixtures within environmental samples based on the toxicity 
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of known, bioactive, detectable, and well-defined chemical components (Posthuma et 

al., 2019). However, since a significant proportion of the co-existing chemical 

components are unknown or unidentified in the natural environment, effect assessment 

based on such component-based approach is likely to fail at delivering a reasonable 

evaluation of the joint effects. 

An alternative way exploits the advantages of high-throughput omics technologies that 

assist systematic profiling of the biological effect at molecular level. Advanced 

techniques like high-throughput sequencing and high-resolution mass spectrometry 

are particularly promising at providing a cost-effective way to generate a multi-omics 

profile of biological responses from the same test system in favour of a mechanistic 

understanding of chemical effects (Dugourd et al., 2021; Larras et al., 2020). This has 

fuelled significant advancements in fields like system biology (Pinu et al., 2019) and 

precision medicine (Olivier et al., 2019); and it has also laid the foundation of the fast 

evolvement of toxicogenomic studies (Martins et al., 2019). The omics-based assays, 

including transcriptome and metabolome, aim at obtaining a holistic profile of all the 

biomolecular signals, such as DNA transcripts and metabolites in the biological system 

(Roede et al., 2014). Omics approaches are generally data-rich and unbiased, as they 

generate a global perspective of the molecular biological responses for further 

exploration without specifying potential responsive features to be interrogated 

beforehand (Martins et al., 2019). Each omics profile may represent an aspect of the 

complex biological responses that reveal a specified level of biological variations 

(Nguyen and Wang, 2020). Therefore, the omics technologies can characterise the 

chemical mixture effect as perturbation in the biological systems in greater details 

(Sturla et al., 2014). As increasing efforts focuses on improving acceptance of omics 
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bioassays in regulatory necessities (Mondou et al., 2020), research projects delivering 

omics-based signatures with broader content of hazard assessments undoubtably 

enrich the understanding of chemical toxicity (Escher et al., 2019).  

The effect characterisation of chemical mixtures can be achieved by an array of 

bioassays, including molecular profiling (omics data) and biochemical endpoints 

(biomarkers), that are indicative of metabolic mechanism and downstream perturbation 

(Leung, 2018). A critical challenge lies in establishing the associations between the 

chemical profiles and the corresponding biological responses, and ultimately 

translating the knowledge into application in chemical mixture risk assessment. For 

chemical profiles, the number of chemical features will be far more than the number of 

available samples, suggesting that the samples may never be able to cover all possible 

combinations of all the concentration levels of individual chemical components in the 

mixture. General concentration series exposure test with full factorial design cannot 

work its magic under these circumstances. For biological profiles, the information of 

individual biological features is so complicated that describing the variation patterns of 

each biological feature is unrealistic. Summarising the scatter variation patterns of 

features may fail to convey the major functional changes (such as activation or down-

regulation at the pathway level). Moreover, stablishing association between the 

chemical profiles and the corresponding biological profiles is a matrix-to-matrix 

correlation problem, where traditional univariate correlation analysis may fail to reveal 

the patterns when a set of chemical features intrigues variations in a set of biological 

features or pathways. Furthermore, it is difficult to translate the knowledge of resulting 

biological features of one tested species to another non-tested species. Thus, the 

Precision Environmental Health (PEH) framework was developed to address this 
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challenge (as Figure 2.1). Herein I describe the conceptual basis of the PEH 

framework and touch on several relevant topics to further substantiate the findings 

under this framework.  

 

 

Figure 2. 1 The framework of Precision Environmental Health is conceptualised as a tiered 

approach. Tier 1 focuses on establish the exposure tests on chemical mixture with 

comprehensive profiling of both chemical profiles and biological responses. Tier 2 exploits the 

structure of the biological responses in order to deliver the class and effect of chemical 

mixtures, further summarised as mode of action. Tier 3 investigates the potential associations 

between chemcial components and classes of mixture effect, which provides a list of chemical 

candidates that might be accountable for differences in the mixture effects. It faciltates a 

zooming-in strategy, from non-targeted to targeted. It may further establish the probalistic 

relationships between molecular signatures in short-term exposure to long-term effects, and 

even enable cross-species extrapolation based on the evolutionary conservation of the 

molecular mechanism shared by multiple species.  

 



 30 

2.3 Overview of the PEH framework 

The PEH is a conceptual framework aiming at characterising and classifying the 

mixture effects of environmental chemical exposure (as Figure 2.1). It is a three-tier 

approach that allows in-depth investigation of the effects of the environmental chemical 

mixtures.  

2.3.1 Tier one: exposure testing and profiles generation 

An environmental monitoring and assessment case study provides environmental 

samples, including samples collected from the natural environment, pre-processed the 

environmental sample (extraction and/or enrichment) (Schulze et al., 2017), and 

surrogate chemical mixture constructed in the laboratory with known components and 

at pre-determined concentration ratios (Hashmi et al., 2018). The exposure test for 

characterising chemical mixtures effect consists of comprehensive chemical profiling 

and systematic biological response measurements. Chemical profiling can be 

achieved by the joint efforts of suspect, targeted and non-targeted screening analysis  

to retrieve the composition and relative quantification measurements (Brunner et al., 

2020; Ccanccapa-Cartagena et al., 2019; Hollender et al., 2019). Suspect screening 

enables peak annotation against pre-established library of known chemical 

components (Gago-Ferrero et al., 2018), while nontargeted screening requires on-line 

chemical database for putative annotation of unknown chemical peaks (Hollender et 

al., 2017). Biological responses can be captured by various omics-based techniques 

at whole organismal level (Fuertes et al., 2019; Taylor et al., 2018) or at single cell 

level (Zhang et al., 2017). The omics assays for detecting perturbation in the testing 

organisms include transcriptomics, metabolomics, proteomics and epigenomics 
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(Canzler et al., 2020). Different omics assay can provide complementary view of the 

systematic responses (Tong et al., 2020). 

2.3.2 Tier two: biological responses analysis and data integration 

Biological response profiles can be analysed in two ways: at single feature level and 

as a set of multiple features. Analysis at single feature level clarifies the variation of 

specific feature, as it may behave in a concentration-dependent manner (Hou et al., 

2017). A set of features with a similar variation pattern can be identified as co-

responsive signals; for example, co-expression transcripts (Saha et al., 2017) and co-

accumulation metabolites (Sakurai et al., 2011). The co-responsiveness of biological 

signals establishes the bridge between intra-omics regulation (e.g. co-regulation within 

a functional pathway; Josyula et al., 2020) and data-driven modelling (e.g. co-

expression network analysis; Zhang and Horvath, 2005). Data integration of multi-

omics data allow the identification of inter-omics relationships; for example, transcripts 

and metabolites involved in the same functional pathway (Subramanian et al., 2020). 

Integration between omics data and phenotypic traits variation can establish the 

probabilistic relationships between genotype and phenotype (Costanzo et al., 2019), 

which facilitates prediction of adverse outcome at individual/population levels based 

on molecular responses at biomolecular level. 

The mixture effects are thereby characterised by systematic profiling of various omics-

features that re-constructed as multiple co-responsive sets (or modules in the network). 

The mixture effects are therefore classified based on the homogeneity of the biological 

responses of these co-responsive modules, as the class of mixture effect depends on 

the type of omics assay (biomolecular type), the coverage of the omics assay 

(biomolecular entirety), and the biological functions revealed by co-responsive 
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modules (biomolecular function). The classifier generated based on the activities and 

compositions of co-responsive modules facilitates environmental sample classification. 

While the effect of each class relies on functional analysis of co-responsive modules. 

Gene products and metabolites with the same or similar functions refer to annotations 

from gene ontologies (e.g., GO; Gene Ontology Consortium, 2004) and gene 

orthologies (e.g., orthoDB; Zdobnov et al., 2021). A pathway-level profile is further 

summarised for individual co-responsive module with pathway databases like KEGG 

(Kanehisa et al., 2007), Reactome (Fabregat et al., 2018), and PANTHER (Mi et al., 

2019). 

2.3.3 Tier three: chemical component accountability  

The associations between chemical components in the mixture and biological 

responses in the testing system are investigated for identifying the potential causal 

links between toxic components and corresponding perturbations in the bio-signals. 

The set of co-responsive features (either genes, their products, metabolites, or those 

combined) to chemical components (a single chemical substance, a set of chemical 

components, or a class of chemical compound) can be identified via multi-block 

correlation analysis (Tenenhaus and Tenenhaus, 2011). Suggested by correlation 

analysis, subsets of bio-features may be linearly correlated to the distribution of the 

selected chemical component (Mishra et al., 2021). Based on “Guilty-by-association” 

assumption (Girvan and Newman, 2002), features sharing similar response patterns 

(e.g. co-expression) may be co-regulated in the same sets of functional pathways, and 

the co-regulation can be suggested by network analysis generated in Tier two. 

Therefore, co-responsive features associated with a specific chemical component or 

class may use to characterise the corresponding biomolecular responses in the testing 
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organisms. As co-responsive features can be also used to predict adversities at higher 

biological levels, the chemical component or class (estimated to be) related to potent 

adverse outcome may be proposed in this step. Verification of biological impacts of 

these chemical component candidates substantiate the causal relationships between 

selected chemical components and corresponding effects suggested by the co-

responsive biomolecular features. 

The chemical component accountability can be established for both known and 

unknown chemical components in the mixtures. Accountability of unknown chemical 

components captured in the non-targeted analysis can be used as a data mining 

process that highlights potential toxicity drivers for downstream chemical annotation 

and bioassay verification.  

 

2.4 Molecular key events as the core of PEH 

The PEH focuses on identifying the mode of action (MoA) of chemical mixture, which 

is the knowledge term of the functional roles of the biological signatures representing 

a specific class of mixture effect. Such MoA is derived from empirical observations, 

which represents by a set of molecular key events (mKEs). An mKE is a set of co-

responsive features that are associate with specific chemical components (or classes) 

and indicative of potential adverse outcome (as Figure 2.2).  

2.4.1 System-biology perspective 

The mKE provides a system-based insight supported by knowledge of system biology, 

as the mKEs serve as the basic functional units that assist in representing mechanistic 

constitution of chemical-related perturbation at the system level. The mKE sets are 

generated within data-driven network (e.g. co-expression network; Deng et al., 2010), 
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and further verified by knowledge-based network (e.g. Reatome; Fabregat et al., 2018). 

The identification of mKE requires incorporating both the intra-omics structure 

delivered by single omics assay and the inter-omics connections delivered by multi-

omics assays. Namely, the mKE can be derived from single omics, for example, 

presenting as a set of co-regulating genes that might be functionally related; and it can 

be also derived from integration of multiple omics, for instance, presenting as a post-

transcriptional signature that consists of co-responsive transcripts and metabolites 

linked by the same sets of functional pathways.  

 

 

Figure 2. 2 The molecular key events (mKEs) in the PEH framework. The mKEs are co-

responsive features that provide perspectives from system biology, toxicogenomics and 

evolution biology. 
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2.4.2 Toxicogenomics perspective  

The mKE also provides the empirical observations supporting toxicogenomic studies. 

The features within a module of the co-expression network represent differentially 

expressed features with similar variation pattern under the chemical mixture exposure. 

The distinctive variation patterns of these features are closely related to differences 

among chemical mixture exposures, as the differentially expressed features may 

describe the perturbation in the biological system (Alexander-Dann et al., 2018). Such 

module consists of co-responsive features that may be induced by chemical mixture 

or involved in the metabolism of the chemical compounds. Thus, the mKE identified in 

the PEH framework are a set of co-responsive biological features that are differentially 

expressed under the chemical mixture exposure. Pathway analysis like 

overrepresentation analysis (Karp et al., 2021) and gene set enrichment analysis 

(Subramanian et al., 2005) may further assist biological interpretation of the functional 

roles of each mKE. For example, in a pilot project, the co-responsive modules 

associated with caffeine and carbamazepine in the river water samples were identified 

and functional pathways were summarised as pathway profiles (as revealed in 

Figure 2.3; Detail of this case study is described in Chapter 3).  

2.4.3 Evolution-biology perspective 

The features in each mKE can be re-annotated by its evolutionary conserved groups 

(e.g., ortholog groups for genetic models; Koonin, 2005) as a way to reveal its cross-

species consensus. Previous observations of protein-protein interaction in five model 

species revealed that orthologous pairs of interacting proteins are more likely to be co-

expressed (Tirosh and Barkai, 2005). Besides, the genes in a functional pathway may 

enhance their homogenous expression pattern (co-express or high correlation) under 
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specific conditions (Tegge et al., 2012). Theoretically, the co-responsive features of 

the mKE found in one testing species may be “conserved” across multiple species 

under similar exposure conditions. The “conservation” manner refers to features that 

are functionally conserved, with similar co-express pattern, and even under co-

regulation of inter-connected pathways. Therefore, the conservation characteristic of 

mKEs provides the knowledge base of cross-species extrapolation.  

2.4.4 Relation to Adverse Outcome Pathway (AOP) 

The mKE term is closely related to the adverse outcome pathway (AOP). As the 

chemical mode of action in AOP can be depicted as a molecular initiating event (MIE) 

and a series of key event (KEs) that may lead to an adverse outcome induced by a 

chemical compound (Ankley and Edwards, 2018). The mKEs here focus on biological 

variation at the molecular level, where subtle differences in the biological signatures 

can be used to predict the adverse outcome at higher biological levels (e.g. individual 

or population level). Unlike AOP, the mKEs in the PEH framework integrate multiple 

omics perspectives in order to reveal the systematic responses. 
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Figure 2. 3 Co-responsive modules associated with caffeine and carbamazepine. In the case 

study on Danube river water samples, 9 and 11 co-responsive modules were identified to be 

associated with caffeine and carbamazepine exposure, respectively. Pathways like xenobiotic 

metabolisms and caffeine metabolism are found in these selected modules, which suggested 

that the data-driven modelling can effectively identify pathways described in prior knowledge.  

 

2.4.5 Challenges and technical considerations 

(1) Whether the co-responsiveness within a specific omics profile is consistent across 

multiple case studies is still under study. The robustness of the co-responsive pattern 
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relate to a specific type of mixture effect may reflect the specificity and prediction 

capacity of the identified mKEs.  

(2) The relationships between mKEs associated with the same mixture effect is 

undefined. The relationships between mKEs can be further interpreted as inter-

connected sets of functional features, but whether there are subsequent co-regulation 

between mKEs is hard to prove.  

(3) The prediction model for short-term adversity can be established based on omics 

profiles and phenotypic traits; however, whether the long-term adversity can be 

predicted by omics profiles capture at early stages or in short-term exposure is still 

questionable. 

 

2.5 Conclusion 

The Precision Environmental Health, proposed here as a conceptual framework, can 

provide a valuable and pragmatic roadmap upon which prior knowledge and case-

based evidence can be integrated to systematically reveal the mode of action of 

mixture effect can be identified, and through which predictive and quantitative 

approaches to environmental monitoring can be improved and guide the design of local, 

or even national, the environmental regulatory policy. The PEH framework is 

developed to characterise and compare the joint effects of different environmental 

chemical mixtures, to establish the relationship between chemical mixtures and their 

modes of action, and to reveal the real-world exposure-related toxicological 

mechanisms of individual chemical components. This approach provides opportunities 

for optimising environmental monitoring and identifying harmful chemical component 

in the environment. The PEH framework is proposed to be: (1) a powerful approach for 
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locating pollution hot spots in field surveys as a means to group and classify 

environmental samples for further study; (2) a sufficient tool for characterising the 

effects of chemical mixtures by identifying the modes of action of mixture effects of the 

environmental samples; also (3) a promising IATA framework for pragmatical 

application of AOP scheme by identifying the MOAs of chemical components and 

potential toxicity driver in the chemical mixture.  
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3 Co-responsive biological features characterise chemical 

component associated effects in environmental mixtures 

 

 

3.1 Abstract 

In the aquatic environment, co-occurring chemicals leads to complex mixture effect 

that may pose health threats on living organisms and the ecosystem. Yet, for the 

design of mitigating strategies in the protection of human health and the environment, 

it is essential to reveal the effects of the chemical components within the mixture to 

identify potentially harmful substances. Here, I purpose a method to identify the co-

responsive biological features associated with exposure to chemical components 

detected in the surface waters at their environmental concentration levels, based on 

transcriptomics and metabolomics profiling in the exposed Daphnia magna. The 

method includes constructing co-expression network of transcriptomic and 

metabolomic features and establishing multi-block correlation models to identify co-

responsive features. Two well-studied chemical components, caffeine and 

carbamazepine, were selected for testing the effectiveness of this method to identify 

the features associated with the chemical component in quest. Datasets from two case 

studies, the Chaobai River and the Danube River, were included in this work and 

analysed in parallel, as a way to evaluate the robustness of the selected co-responsive 

features delivered by this method across two case studies. Overall, the co-responsive 

modules associated with one or both chemical components are biological plausibly 

associated with caffeine and carbamazepine, as both xenobiotic metabolism and 
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caffeine metabolism are enriched in the selected feature sets. The transcriptome-

based case comparisons revealed consistent conclusions over the two studies, 

although dissimilar sets of pathways were found to be associated with caffeine. Thus, 

this work presents and verifies a novel method that can reasonably identify the co-

responsive biological features associated with a chemical component in the 

environmental chemical mixtures, which may further assist the characterisation of 

chemical mode of action.  

 

3.2 Introduction 

Current approaches at identifying the chemical component effects mostly rely on 

individual chemical substance toxicity testing (Posthuma et al., 2019). The criteria for 

determining the potential hazards of the chemical components are anchored by a few 

selected toxicological endpoints. When bioassays are employed, these are typically 

assessing specific adverse outcome pathways (Neale et al., 2015), which can 

potentially overlook other potential, or even harmful, effects by such a screening 

process. It is unrealistic to test all the chemicals in the environment considering all 

possible combinations in a full-factorial design experiment, in order to reflect the 

relative contribution of each chemical component in the mixture to the joint mixture 

effect. The inherent challenge is to disentangle the environmental chemical mixture 

effect to detect and characterise the contribution of chemical components to the joint 

effect (Altenburger et al., 2019, 2015). 

The global biological responses from exposure to the chemical mixtures within the 

environment can be effectively captured by omics-based bioassays corresponding to 

the whole mixture. To be specific, the gene expression profile (transcriptome) and the 
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metabolomic profile (metabolome) jointly describe the composition and dynamics of 

transcripts and resulting metabolites responding to different environmental chemical 

mixtures. The co-varying features that share similar variation patterns across different 

experimental conditions may be co-regulated genes and/or metabolites that share 

condition-specific expression patterns to the same external pressure (Carter et al., 

2004; Stuart, 2003). Such co-varying features can be identified via co-varying network 

analysis, such as weighted co-expression gene network analysis (WGCNA; Langfelder 

and Horvath, 2007) and co-accumulation metabolite network analysis (Sakurai et al., 

2011). The modules comprising co-varying features here may be putative functional 

units associated with a few functional pathways and can be further applied to 

distinguish the distinctiveness of systemic biological responses corresponding to 

different experimental conditions (Orsini et al., 2018). The co-responsive modules 

establish the basis of structuralising the omics data into multiple co-varying sets that 

links the mathematical modelling (pairwise correlation of biological features) with 

functional relationships (co-regulation of biological features) (Josyula et al., 2020; 

Kustatscher et al., 2019). Chemical components in a mixture may affect the biological 

systems in an independent and additive way, as the molecular features that are 

associated with one specific chemical component in single substance-based exposure 

testing may be observed in the mixture exposure testing. If the chemical substance is 

bioactive and the associated features reveal concentration-dependent response, the 

linear combination of responses of these associated features may be also correlated 

to the concentration levels of the chemical components in the mixture. Such chemical-

associated features can be identified via multi-block correlation analysis, which 

identifies the linear combination of biomolecular features that are correlated with the 
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chemical components of interest within the chemical mixtures (Tenenhaus et al., 2014; 

Tenenhaus and Tenenhaus, 2011). The multi-block correlation analysis exemplified by 

the Canonical Correlation Analysis (CCA; Jun et al., 2018) studies the inter-connection 

between multiple data sources. The sparse version of Regularized Generalized 

Canonical Correlation Analysis (RGCCA/SGCCA) is particularly appropriate in this 

case as it may find the subset of biological features that are linearly correlated with the 

chemical component. In that case, those identified biomolecular features may be 

regarded as chemical-associated features, which provides the insight of association 

between biological responses and chemical factors. With the profiles of co-regulating 

features (co-varying modules) and chemical-associted features (sCCA selected 

features), modules with features that are identified as chemical-associated features 

are further regarded as co-responsive modules. Such co-responsive modules are 

significantly associated with chemical components of chemical mixtures and presented 

as functionally related features. 

Biological interpretation of the gene clusters may require comprehensive information 

of gene function and pathway. Although pathway databases like KEGG (Kanehisa et 

al., 2007) and Reactome (Jassal et al., 2019) include a large amount of annotated 

information of multiple model species, the functional annotation of the genomes of a 

few ecotoxicological model species (like Daphnia magna) is quite poor. A cross-

species extrapolation can be employed to annotate genes of the poorly defined species 

by referred to well-studied species based on their orthologs. The ortholog groups 

(OGs), which are evolutionarily conserved, can be useful in identifying functionally 

conserved proteins between any two species (Koonin, 2005). These phylogenetic-

based OGs (like OGs in orthoDB database; Zdobnov et al., 2021) may be the 
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biomolecular targets of bioactive chemical substances in the aquatic environment 

(Gunnarsson et al., 2008). The basic assumption of cross-species extrapolation is that 

the pathways that are functionally conserved between two species may consist of OGs 

that are shared by those two species to fulfil their function. Previous studies suggested 

that the essential regulatory genes may interact the same way in the kernel of the gene 

regulatory networks of Drosophila melanogaster and other invertebrates (Davidson 

and Erwin, 2006). These kernels networks may control and maintain the general 

functions of any organisms (Kim et al., 2013). And the ortholog-based protein-protein 

interaction network suggested that the connections between orthologs may preserve 

the same in different species (Lee et al., 2008). Thus, it is reasonable to assume that 

the OGs that fulfil an evolutionarily conserved pathway may also be conserved across 

multiple species, which is the premise of cross-species extrapolation. Based on this 

assumption, the OGs-pathway associations establish on one well-defined model 

species may be transferrable to another species. It is reasonable to annotate the 

undefined Daphnia genes in respect of their OGs that shared with the well-studied 

model species like Drosophila melanogaster. Daphnia magna and Drosophila 

melanogaster are both belongs to the same phylum Arthropoda. Comparative 

genomics studies on the genomes of Daphnia and Drosophila melanogaster already 

revealed that the functional protein sequences were highly conserved in circadian 

proteins (Tilden et al., 2011), C2H2 zinc-finger proteins (Seetharam and Stuart, 2013), 

and DNA-binding proteins (Kato et al., 2008), which suggested that it is feasible to use 

Drosophila melanogaster as a counterpart to reveal the biological functions of protein 

sequences conserved between Daphnia and Drosophila melanogaster. The OGs-

pathway associations in the Daphnia magna may be predicted by the OGs-pathway 
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associations defined in the well-studied genetic model species (Drosophila 

melanogaster). As the functions of unknown genes can be putatively annotated by the 

corresponding OGs’ function, the gene-pathway association can be thereby 

transformed into an OGs-pathway association. If the OGs composition of every 

pathway is unique, the OGs-pathway association can be used to (1) distinguish 

different pathways and (2) applied as the reference data, similar to gene sets serving 

as background knowledge in the pathway overrepresentation analysis (Khatri et al., 

2012).  

In this work, I propose a method that combines the co-varying network analysis and 

the multi-block correlation analysis to identify chemical component associated co-

responsive biological features. To test the effectiveness and rationale of this method, 

two chemical components, caffeine and carbamazepine, were selected as chemicals 

of interest. Two case studies were included to identify the associated effects of these 

two chemical components within the environmental chemical mixtures. The aim of this 

work is twofold: (1) to identify the co-responsive biological features associated with 

caffeine and carbamazepine in two case studies and compare the identified biological 

features by data-driven model (method proposed in this work) with prior knowledge 

(research papers and associated pathways); and (2) to compare results between two 

case studies in order to evaluate the robustness of the method. 

 
3.3 Methods 

3.3.1 Chemical component selection 

Over 40,000 organic compounds are regarded as emerging threats in the aquatic 

ecosystem (Sun et al., 2018). Most of these organic compounds are widely spread at 

low concentrations (Barbosa et al., 2016). Still, some unregulated organic compounds 
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are detected with relatively higher concentrations (Sousa et al., 2018); for example, 

caffeine and carbamazepine. Both caffeine and carbamazepine are widely detected in 

freshwater rivers worldwide (Bean et al., 2018; Mutiyar et al., 2018; Su et al., 2020; 

Yang et al., 2018) that both are often used as anthropogenic markers of municipal 

outlets (Cunningham et al., 2010; Silva et al., 2014). 

Caffeine is a xanthine alkaloid used as a stimulant within beverages (coffee and tea) 

or a psychoactive drug (Cappelletti et al., 2015). Caffeine is known to reduce oxidative 

stress and apoptosis by increasing the activity of antioxidants in human (Carelli-Alinovi 

et al., 2016; Kolahdouzan and Hamadeh, 2017). However, caffeine can cause 

reproduction inhibition and developmental delay in aquatic invertebrates (Rivetti et al., 

2015). The caffeine metabolism in human and bacteria is documented in KEGG 

(map00915; Kanehisa et al., 2007) and PharmGKB (Thorn et al., 2012). 

Carbamazepine is an antiepileptic drug applied in the medication of neuropathic pain 

(Tolou-Ghamari et al., 2013). It is persistent in the environment (Andreozzi, 2002) and 

may bioaccumulate in fish (Ramirez et al., 2009) and zooplankton (Nkoom et al., 2019). 

Carbamazepine is a medicine used to modulate the levels of neurotransmitters 

(Beutler et al., 2005). But carbamazepine at an environmental-relevant concentration 

level can cause oxidative stress (Nkoom et al., 2019) and act as an endocrine disruptor 

that may affect reproduction (Oropesa et al., 2016) and delay maturation (Dieterle et 

al., 2006). The carbamazepine metabolism in human and bacteria is also documented 

in KEGG (map00982, as part of “drug metabolism – cytochrome P450”; Kanehisa et 

al., 2007) and PharmGKB (Thorn et al., 2011). 
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3.3.2 Field sampling and targeted chemical analysis 

Two case studies were included in this work. The Chaobai River case study included 

30 surface water samples, and the Danube River case study included 12 organic 

extracts from river samples.  

The concentration levels of caffeine and carbamazepine of the Chaobai River water 

samples and of organic extracts from the Danube River were measured by targeted 

chemical analytical methods. In the Chaobai River case, the organic substances were 

extracted by SPE with Oasis HLB cartridges (500mg, 6ml, Waters, U.S.A.), eluted with 

methanol, dried under nitrogen at room temperature, and dissolved in 40% methanol 

solvent (v:v). Targeted analysis of caffeine and carbamazepine was conducted on the 

Agilent 1290 ultra-performance liquid chromatography (UPLC) system equipped with 

the Agilent 6420 Triple Quad mass spectrometer (MS). Details of extraction method 

and instrumental settings were described in (Ben et al., 2018; Su et al., 2020), 

respectively. 

In the Danube River case, over 500 L of surface water were pumped into the stainless-

steel tank filled with sorbents for neutral, anionic, and cationic ions for each site, 

according to the description in (Schulze et al., 2017). The SPE was performed on-site 

with the large volume solid phase extraction (LVSPE) device by the JDS3 team 

(Schulze et al., 2017). The elutes were dried under nitrogen and stored at -20 °C. The 

dried extracts were then shipped to the University of Birmingham, maintained in 

methanol, and stored -20 °C. The targeted analysis of organic substances was 

performed by ultra-high pressure liquid chromatography tandem mass spectrometry 

(UHPLC-MS-MS) coupled with a hybrid triple quadrupole linear ion trap mass 
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spectrometer (QqQ-LIT-MS). The instrument settings are described in Liška et al. 

(2015). 

3.3.3 Whole-mixture in vitro bioassay 

The whole-mixture in vitro bioassay with Daphnia magna as the test system were 

applied to both case studies. 

In the Chaobai River case study, 30 filtered water samples collected from the Chaobai 

River were used as exposure media. Each water sample treatment had three biological 

replicates, and the water sampled at site B01 (as reference level) had eight biological 

replicates. Each 5 ml glass vial was filled with 4.5 ml filtered water samples. Neonates 

of the same population of Daphnia magna (Bham2 strain) hatched within 24 hours 

were collected within 2 hours and attributed to each glass vial before the assay (5 

neonates per vial).  

In the Danube River case, 12 re-constructed borehole media injected by organic 

extracts from 12 sites of the Danube River were transferred to glass vials before the 

bioassay. Each treatment group had six biological replicates. And the negative control 

group had 24 biological replicates. The borehole media with 0.08 % methanol 

(methanol as the carrier of the organic extracts) was treated as the negative control in 

this case study. Each 20 ml glass vial was filled with 15 ml re-constructed borehole 

media. Neonates of the same population of Daphnia magna (Bham2 strain) hatched 

within 24 hours were collected within 2 hours and attributed to each glass vial before 

the bioassays (15 neonates per vial).  

Following OECD test guideline 202 (OECD 202), 48 hours exposure tests were 

conducted in the laboratory. After 48 hours of exposure, the number of immobilised 
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neonates was recorded. The exposed neonates were flash-frozen within liquid nitrogen 

and stored at -80 ℃ prior to total RNA and/or metabolites extraction.  

3.3.4 Multi-omics extraction 

For the Chaobai River case study, all the frozen tissues were homogenised within lysis 

buffer (included in the Agencourt RNAdvance Tissue Total RNA kit) using the 2020 

Genogrinder (SPEX SamplePrep, U.S.A.) at the speed of 1750 rpm for 45 seconds. 

Total RNA extraction was performed using the Agencourt RNAdvance Tissue Total 

RNA kit (Beckman Coulter, U.S.A.), following the manufacturer’s instructions. RNA 

was absorbed by magnetic beads, washed twice for rinsing salts, and eluted in 100 μl 

RNAse-free H2O. RNA concentrations were quantified by Nanodrop 8000 

Spectrophotometer (Labtech Ltd., U.K.). RNA qualities (integrity and purity) were 

measured on TapeStation 2200 (Agilent Technologies, U.S.A.). These RNA samples 

were stored at -80°C until cDNA library construction. 

For the Danube River case study, all the frozen tissues were homogenised within a 

methanol solution (640 μl methanol and 256 μl H2O) using the Genogrinder at the 

same speed (1750 rpm) for 90 seconds. One-third of the homogenate was used for 

transcriptome profiling, and the rest was used for metabolome profiling. The RNAs was 

isolated and purified using the same method as described above. The polar 

metabolites were extracted using the methanol: chloroform solution (methanol: 

chloroform: H2O = 2: 2: 1.8) as described previously (Wu et al. 2008). Briefly, the 

homogenate was added with 215 μl methanol, 640 μl chloroform and 405 μl H2O, and 

vortexed at a maximum speed of Vortex-Genie 2 (Scientific Industries, Inc., U.S.A.) for 

30 seconds. After 10 minutes of incubation on ice, the mixed solvents were centrifuged 

at 4000 rpm for 10 minutes. The upper layer supernatant containing polar metabolites 
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was transferred to two new 2 ml tubes, each with 400 μl. The polar aliquots were then 

dried in a Speed Vac Concentrator (Eppendorf, Germany) for 45-50 minutes and 

stored at -80°C until DIMS analysis. 

3.3.5 Transcriptome sequencing and pre-processing 

A cDNA library was generated for each sample from 150 ng RNA using NEBNext Ultra 

II Directional RNA Library Prep Kit for Illumina, following the manufacturer’s 

instructions. All of the sample libraries were normalised to the same molecular weight 

and pooled together using the adapter indices supplied by the manufacturer. RNA-seq 

sequencing was performed on the Hiseq4000 (Illumina, U.S.A) and DNBseq (MGI, 

China) at BGI for the Chaobai and Danube case, respectively. All the samples were 

run in two lanes in parallel to avoid potential systemic bias. The reads from both lanes 

were merged into one. The nucleotide sequence reads were trimmed in Trimmomatic 

(version 0.32; Bolger et al., 2014) to remove sequencing adapters and obtain 

sequences with phred scores of at least 30. FastQC was used to screen the overall 

sequence quality (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Then 

high-quality reads were mapped to the Daphnia magna transcriptome reference (Orsini 

et al., 2016) using Salmon (version 0.8.2; Patro et al., 2017). The mapped transcript 

reads were then processed in R (version 4.0.3). Reads with raw counts lower than ten 

were removed from the data set. The library sizes of all the samples were normalised 

by the size factor defined within the DESeq2 package (version 3.12), following the 

pipeline described in (Love et al., 2014). The log2 fold changes of individual genes per 

treatment level by comparing treatment conditions versus control levels (negative 

control mentioned earlier) were further calculated by the DESeq2 package in the 

Danube River case study. The normalised transcriptomics data in the Chaobai case 
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study and the log2 fold change patterns in the Danube case study were used in the 

downstream analysis. 

3.3.6 Metabolome profiling and pre-processing 

Each treatment sample had six biological replicates for each ion mode, and each ion 

mode had six negative controls (borehole media with 0.08 % methanol), six extraction 

blanks, and twenty-six quality control samples as recommended by (Kirwan et al., 

2014). The extraction blank sample reflects potential contamination of experimental 

processes, from extraction to loading, which contains the extraction solvents. The 

quality control reflects the stability of the system performance, which is a pooled 

sample of all the treatment samples with equal volumes (2 μl of re-suspended polar 

aliquots per sample). 

As described in section 3.3.4, there were two tubes of polar aliquots per sample. One 

tube was suspended in 30 μl methanol: H2O with 0.25 % formic acid (volume ratio 4:1) 

for mass-to-charge (m/z) detection under the positive ion mode (polarpos), and the 

other tube was suspended in 30 μl methanol: 25 mM aqueous ammonium acetate 

(volume ratio 4:1) for m/z detection under the negative ion mode (polarneg). Then, 

15 μl of each re-suspended sample was loaded onto two 384-well plates. The 

metabolomics profiling was performed by Direct Infusion Mass Spectrometry (DIMS), 

which consists of the LTQ-Orbitrap Elite mass spectrometer (MS; Thermo Fisher 

Scientific, Germany) being attached with a chip-based direct infusion nano-

electrospray ionisation assembly (nESI; Triversa, Advion Biosciences, U.S.A.). The 

DIMS for polar metabolites was conducted under both positive and negative ion modes 

separately. The DIMS settings followed the description in (Kirwan et al., 2014). And 

the SIM-stitching approach for obtaining metabolites ranging from 50 mass-to-charge 
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(m/z) and 620 m/z was applied to both ion modes, as described in (Southam et al., 

2017). Each sample was scanned four times as internal technical replicates. After 

collecting the mass spectra data, 72 and 70 treatment samples were successfully 

profiled for positive and negative ion mode, respectively.  

Since the total number of polarpos and polarneg samples were different, merging the 

two data sets into one may be problematic. For all remaining processes of this study, 

including the data analysis and integration, these two modalities from the metabolome 

are treated as separate data sets.  

All the mass spectra were processed by the DIMSpy pipeline implemented on the 

Galaxy (Ralf and Zhou, 2020), following the methods described by (Taylor et al., 2010). 

In short, m/z peaks were filtered by their detection among technical replicates (those 

shared by three out of four technical replicates were retained), and peak signals 

against extraction blanks (those with signal-to-noise ratio above 3.0 were also 

retained), and occurrences among all the samples (greater than 50 %). Missing values 

were imputed by the k-nearest neighbours (KNN) algorithm (Malarvizhi and Thanamani, 

2012). All the intensity values were transformed under probabilistic quotient 

normalisation (PQN; Dieterle et al., 2006) and generalised log transformation (glog; 

Parsons et al., 2007) to normalise the variance of peaks. The resulting data matrix was 

used for downstream analysis.  

The m/z peak annotation was achieved by a customised algorithm named BEAMSpy 

(v1.1.0, https://github.com/computational-metabolomics/beamspy), which performs 

in silico prediction of the molecular formula and putative annotation of the compound 

identity (Taylor et al., 2010). Briefly, the BEAMSpy predicts the molecular formula by 

the mass-to-charge (m/z) value of the polarpos/polarneg peak with an acceptable error 
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range of 5 ppm, and then maps the m/z value of the peak against reference 

compounds within the KEGG Compound database (Kanehisa et al., 2007) with 

consideration of the parent compound and their positive adducts ([M + H]+, [M + K]+, 

[M + Na]+) as well as negative adducts ([M - H]-, [M + Cl]-, [M + HAc - H]-, [M + K - 2H]-, 

[M + Na - 2H]-). The putatively annotated peak list was then used for functional 

interpretation and pathway analysis.  

3.3.7 Module identification 

The co-responsive networks were built from omics data of each case study based on 

the adjacency matrix (Singh and Sharma, 2012). As such, the features under 

investigation can either be genes or metabolites.  

For feature i and feature j, the adjacency matrix s!" was calculated as follows: 

s!" = ||	cor,x!, x"/	||	

where x! and x" were the (normalised) expression levels of feature i and feature j, and 

s!" represented the absolute value of the Pearson’s correlation coefficient of feature i 

and feature j. Due to the noisy nature of the omics data (Ma and Zhang, 2019), soft 

thresholding is utilised to retain the stronger correlation and suppress the weaker 

correlation caused by noise (Langfelder and Horvath, 2008; Zhang and Horvath, 2005). 

The soft thresholding was applied to generate a weighted adjacency a!"  matrix by 

calculating the following function: 

a!" =	 s!"
#	

where β was a value to power the s!".  

The goal of soft thresholding is to generate a resulting network that is believed to have 

a scale-free topology (Barabási and Oltvai, 2004), which is characterised by the degree 

distribution of the network following a power-law module: 
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𝑃(𝑘) 	= 	𝑎𝑘$% 

Where 𝑘  represents the number of connections of a node (or known as degree), 

𝑃(𝑘)	represents the fraction of nodes with 𝑘 degree in the network, 𝑎 is a constant 

variable. 

After log transformation, the 𝑙𝑜𝑔𝑃(𝑘) depends linearly on 𝑙𝑜𝑔𝑘 as following: 

𝑙𝑜𝑔𝑃(𝑘) 	= 	 (−𝛾)𝑙𝑜𝑔𝑎	 +	(−𝛾)𝑙𝑜𝑔𝑘 

So that it can be diagnostic of selecting a proper power β. By visualising the impact of 

β, ranging from 1 to 30, the mean degree and the goodness-of-fit (R2) of the linear 

model between 𝑙𝑜𝑔𝑘  and 𝑙𝑜𝑔𝑃(𝑘)	 of the resulting network were plotted against 

different β  values. The power β  is selected when the mean degree is closer to 5 

(Fortunato, 2010). 

The modules within the network were identified by the multi-level modularity 

optimisation algorithm (Blondel et al., 2008), and the quality of modularity was 

determined by the following algorithm: 

𝑄 =	
1
2𝑚BC𝐴&' 	− 	

𝑘&𝑘'
2𝑚 E

&,'

𝜎(𝑐& , 𝑐') 

where m equals the total number of links, A!" is the weight of the edge between gene i 

and gene j, k! equals the sum of weights of the edges linked to gene i, and c! is the 

community (module) the gene i is assigned to.  

3.3.8 Sparse Canonical Correlation Analysis and sparsity permutation 

Data integration consists of identifying correlated features among four data types: 

chemical distribution among samples, the transcriptomics data, and two modalities of 

metabolomic data (polarpos and polarneg). The correlations between the individual 

chemical distribution (caffeine or carbamazepine), transcriptomic features, and 
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metabolomic features were identified with sparse Canonical Correlation Analysis 

(sCCA) algorithm (Tenenhaus et al., 2014; Tenenhaus and Tenenhaus, 2011). The 

sCCA is applied to identify the subset of transcriptomic and metabolomic features 

linearly correlated to the chemical distribution pattern when projected to a common 

latent space. With a certain sparsity level (between 0 and 1), subsets of biomolecular 

features were selected from the transcriptomics data block and the two metabolomics 

data blocks. I assumed that at a small sparsity level, only a few dozens of features 

were included in the sCCA model, and those features were most likely to belong to the 

same module(s); by increasing the sparsity level, more features were included, as well 

as less correlated modules, so that based on the guilty by association (Piovesan et al., 

2015), all the other features within those modules were most likely associated with the 

chemical distribution pattern.  

To clarify the relationship between selected features from sCCA (responsive features) 

and module assignment, I performed sCCA with multiple sparsity levels (sparsity 

permutation) and recorded the selected feature sets corresponding to all the sparsity 

levels. For sparsity s, the module enrichment score was calculated as: 

Module	Enrichment	Score	(m) = 	 (
G),*
s )	 

where G),* is the G-statistics of likelihood ratio of sCCA selected features assigned to 

module m at the sparsity level s. Then I selected the modules based on their P-values 

(P-value < 0.01), then ranked the modules by their module enrichment scores so that 

the highest ranked modules were assumed to be most closely associated with the 

concentration distribution of the chemical compound.  



 59 

3.3.9 Cross-species extrapolation and pathway overrepresentation analysis  

The orthologous relationships between Daphnia magna and Drosophila melanogaster 

showed that 8018 Drosophila melanogaster genes have orthologs in 10228 Daphnia 

magna genes, belonging to 5301 ortholog groups (OGs) that defined at the Arthropoda 

taxonomic level as the most recent common ancestor, based on the orthoDB database 

(version 10.1; Kriventseva et al., 2019). Among them, 4042 Daphnia genes were 

annotated with both OGs and corresponding Drosophila melanogaster’s pathways 

information. Previous investigation revealed that all 137 Drosophila melanogaster 

pathways recorded in the KEGG Pathway database (version 96.0; Kanehisa et al., 

2007) have unique OGs pattern that can be used to distinguish different pathways. The 

OGs-pathway associations were thereby established based on OGs and pathways of 

Drosophila melanogaster, as summarised in Table 3.1. These 137 pathways consist 

of general metabolic pathways (64 %), genetic information processing (16 %), 

environmental information processing (9 %), cellular processes (7 %) and organismal 

systems (4 %).  

To perform a statistical overrepresentation test for the enrichment of pathways by 

exposure-responsive Daphnia genes, chi-square was normally used to estimate the 

significance levels for the difference between the observed frequency and the 

expected frequency (Zhou et al. 2017). The null hypothesis of the chi-square test is 

that the genes are normally distributed across all the known pathways. However, the 

frequency of ortholog groups may not follow a uniform distribution but instead follow a 

multinomial (categorical) distribution, resulting in inapplicability of a normal chi-square 

test. Moreover, it would be nearly impossible to establish the null distribution for 

ortholog groups as only 62 % of the Daphnia magna genes had OGs information. 
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Table 3. 1 Summary of the 137 pathways in the KEGG pathway database. 

Class Number of pathways a Number of OGs b 

Cellular processes 9 390 

Cell growth and death 2 46 

Transport and catabolism 7 344 

Environmental information processing 13 390 

Membrane transport 1 8 

Signal transduction 10 349 

Signalling molecules and interaction 2 33 

Genetic information processing 22 910 

Folding, sorting and degradation 7 271 

Replication and repair 7 142 

Transcription 3 139 

Translation 5 358 

Metabolism 88 2050 

Amino acid metabolism 13 200 

Biosynthesis of other secondary metabolites 1 2 

Carbohydrate metabolism 14 268 

Energy metabolism 3 106 

Global and overview maps 6 863 

Glycan biosynthesis and metabolism 13 133 

Lipid metabolism 12 160 

Metabolism of cofactors and vitamins 12 97 

Metabolism of other amino acids 7 60 

Metabolism of terpenoids and polyketides 2 29 

Nucleotide metabolism 2 78 

Xenobiotics biodegradation and metabolism 3 54 

Organismal systems 5 96 

Ageing 1 25 

Development and regeneration 1 20 

Environmental adaptation 1 8 

Immune system 1 27 

Sensory system 1 16 

Sum 137 3836 
a. The number of pathways recorded in the KEGG Pathway database. 
b. The number of ortholog groups (OGs) assigned to the pathways. 
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A permutation chi-square test was used instead (Beh and Lombardo 2014) to relax the 

requirement of a uniform distribution and help generate a robust estimation of 

significance (P-value) directly from resampling detected Daphnia magna genes 

annotated within ortholog groups. Thus, a permutation chi-square test was performed 

on each Daphnia magna re-annotated gene set for each pathway (with their 

corresponding OGs pattern) 100,000 times. The P-values of the permutation chi-

square tests were further corrected followed the Benjamini-Hochberg procedure 

(Benjamini and Hochberg, 1995) with a false discovery rate at 0.05.  

For the metabolomic co-responsive modules, the pathway overrepresentation test was 

performed by a chi-square test (McHugh, 2013) only with the putatively annotated 

peaks against the KEGG Compound database (v96.0), which linked to KEGG Pathway 

database. The P-values of the chi-square tests were also corrected following the 

Benjamini-Hochberg procedure with a false discovery rate at 0.05.  

 

3.4 Results 

3.4.1 Chemical distribution pattern in surface water samples 

As shown in Figure 3.1, the caffeine was detected within the chemical mixtures of 

waters collected from 29 of the 30 sampled sites from the Chaobai River, ranging from 

0 ng/L (B05) to 64.69 ng/L (M06). Carbamazepine was detected in 25 of 30 sampled 

sites of the Chaobai River, mostly downriver, ranging from 0 ng/L (B01, B03, B04, B05, 

C04) to 35.23 ng/L (M11) and averaging at 7.23 ng/L across all sites. In the Danube 

River, carbamazepine was detected in all 12 sites, ranging from 12 ng/L (D04) to 

37 ng/L (D06), with an average concentration level of 27.17 ng/L.  
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Figure 3. 1 Concentration of caffeine and carbamazepine in surface water samples. Sample 

sites distributed across the Chaobai River Basin and the Danube River Basin. Plots (a) and 

(b) show the distribution patterns of these two chemicals within the Chaobai River. Plots (c) 

and (d) show the same chemical distribution patterns within the Danube River. 

 

3.4.2 Chaobai River case study 

Transcriptomic co-responsive network 

In the Chaobai River case study, a total of 95 samples were included in the 

transcriptomic assays. Each sample had 12 million mapped transcript reads on 

average. Genes with average raw counts under ten were removed, leaving a total of 

14705 genes. These 14705 genes were used to construct the co-responsive network. 

The soft thresholding algorithm was utilised to suppress the weaker correlations 

among transcriptomic genes (noise). The power values were set to 23, the mean 

degree of the resulting network is approaching 5, and the linear regression model is 
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generated by log(Fraction of nodes) and log(degree), with an R2 value of 0.91 (Figure 

S3.1b), indicating that the resulting network is scale-free. Based on the multi-level 

modularity optimisation algorithm, a total of 25 modules (with more than 5 features) 

are identified from 5699 genes. The largest module (CB_0) consists of 1068 genes, 

and the smallest module (CB_24) consists of only 21 genes (detailed information listed 

in Table S3.1).  

Sparse CCA analysis between chemical and transcriptomic features 

The sCCA was applied to discover a subset of transcriptomic features that were linearly 

correlated with caffeine or carbamazepine concentrations in the mixture. As revealed 

in Figure S3.2, the subset of transcriptomic features can explain a portion of the total 

variance in the whole transcriptomic data, and simultaneously correlated with the 

chemical concentration values. The subset of transcriptomic features can explain 56.7 % 

of the total variance of the transcriptomic profiles and correlate with caffeine with a 

correlation coefficient of 0.525. At the same time, another subset of transcriptomic 

features can account for 10.2 % of the total variance of the transcriptomic profiles and 

correlate with carbamazepine with a correlation coefficient of 0.617. 

Chemical-associated co-responsive modules 

The co-responsive modules that are associated with caffeine are ranked based on their 

module enrichment scores and annotated with their corresponding levels of P-value, 

as shown in Figure S3.3a. At a P-value threshold of under 0.01, eight co-responsive 

modules are regarded as caffeine-associated modules, namely CB_0, CB_1, CB_2, 

CB_3, CB_4, CB_7, CB_15, and CB_20. Similarly, sixteen co-responsive modules are 

regarded as carbamazepine-associated modules, namely CB_0, CB_1, CB_2, CB_3, 
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CB_4, CB_5, CB_6, CB_7, CB_8, CB_9, CB_10, CB_11, CB_14, CB_19, CB_21, and 

CB_24, as shown in Figure S3.3b. 

Pathway overrepresentation analysis 

The statistical overrepresentation tests of Daphnia magna genes within functional 

pathways were performed by permutation chi-square test. The Daphnia magna genes 

that are mapped to orthologous D.melanogaster genes and the KEGG pathway 

database are summarised in Table S3.1. A total of 116 pathways are identified to be 

significantly enriched in at least one co-responsive module. The adjusted P-values of 

overrepresentation tests on the KEGG pathways in the 18 co-responsive modules 

associated with caffeine and/or carbamazepine are listed in Appendix 1. The adjusted 

P-values of overrepresentation tests on 20 selected pathways are plotted in Figure 3.2, 

which represent pathways of xenobiotic metabolisms, apoptosis and general metabolic 

pathways.  

 
Figure 3. 2 Chaobai case study: overrepresentation tests of selected KEGG pathways by 

permutation chi-square test. Selected pathways and modules are coloured based on (1) 

modules associated with both caffeine (CAF) and carbamazepine (CBZ) concentrations in 
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the mixtures (in purple), (2) modules associated with CAF (in red), and (3) modules 

associated with CBZ (in blue). The adjusted P-values are labelled as follows: P < 0.05, *; P < 

0.01, **; P < 0.001, ***; P < 0.0001, ****. 

 

Modules that are associated with both caffeine and carbamazepine 

As shown in Figure 3.2 and Appendix 1, there are six modules that fall within both 

caffeine- and carbamazepine-associated module lists, namely CB_0, CB_1, CB_2, 

CB_3, CB_4, and CB_7. Modules CB_0, CB_1, CB_2, CB_3 and CB_4 report 

extremely significant P-values (P-value lower than 0.00001) at enriching pathways 

related to carbohydrate metabolism, amino acid metabolism, lipid metabolism, glycan 

biosynthesis and metabolism, mRNA translation, DNA transcription, lysosome, 

peroxisome, and protein processing, suggested that these five modules may be 

responsible for general metabolism of cellular components (carbohydrate, amino acids, 

lipids and proteins) in response of external chemical exposure.  

At gene level, modules associated with caffeine and carbamazepine consist of 31 CYP, 

14 GST, and 44 ABC genes. Notably, two genes for xanthine dehydrogenase/oxidase 

(XDH) are found within module CB_7. Among the significantly enriched pathways in 

CB_7, there are various pathways known to be functionally related to xenobiotic 

metabolisms, such as pathways mediated by cytochrome P450, ABC transporter, drug 

metabolism, and glutathione metabolism. The caffeine metabolism is also found to be 

significantly enriched by genes within module CB_7.  

Modules that are associated with caffeine only 

Module CB_15 and module CB_20 are caffeine-specific co-responsive modules. 

Based on the overrepresentation tests, three pathways are significantly enriched by 

genes within module CB_15, namely arginine and proline metabolism, various types 
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of N-glycan biosynthesis, and protein processing in the endoplasmic reticulum. Except 

for two pathways mediated by cytochrome P450, seven other pathways are 

significantly enriched by genes within module CB_20. These pathways are tyrosine 

metabolism, pyruvate metabolism, glycolysis/gluconeogenesis, fatty acid degradation, 

retinol metabolism, phototransduction and endocytosis.  

Modules that are associated with carbamazepine only 

There are ten modules associated with carbamazepine and not to caffeine, namely 

modules CB_5, CB_6, CB_8, CB_9, CB_10, CB_11, CB_14, CB_19, CB_21 and 

CB_24. Most of the ten modules are associated with the biosynthesis of glycan, 

carbohydrate, amino acids, cofactors, and lipids. For example, genes from module 

CB_6 are shown to significantly enrich glycan biosynthesis pathways, histidine 

metabolism, arginine-proline metabolism, beta-alanine metabolism, and insect 

hormone biosynthesis; CB_9 is significantly enriching seventeen metabolic pathways 

related to carbohydrate, amino acid, cofactors, glycan and lipid; CB_10 may be 

composed of genes that function in glycan metabolism. The ten carbamazepine-

associated modules are also associated with pathways in neuroactive ligand-receptor 

interaction (CB_5), the apoptosis pathways and MAPK signalling pathway (CB_9), 

autophagy (CB_11, CB_19, CB_24), Toll and Imd signalling pathway (CB_14, CB_21), 

and signal transduction (CB_11, CB_24).  

At gene level, based on ortholog group functional annotation, carbamazepine-related 

features consist of 34 CYP, 16 GST, 46 ABC, 2 Glutathione peroxidase (GPX), 22 

Sulfotransferase (SF), and 6 Superoxide dismutase (SOD) Daphnia genes. There are 

also neuroactive ligand-receptors, such as neurotransmitter-gated ion-channel ligand-
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binding domain coding genes (13 genes), sodium channel proteins (2 genes) and 

sodium neurotransmitter symporters (11 genes). 

Generally, these ten carbamazepine-specific modules suggest the potential impact of 

carbamazepine exposure as apoptosis, glycan biosynthesis variation, neuroactive 

receptor binding, accompanied with effects on general metabolism.  

 

3.4.3 Danube River case study 

Transcriptomic co-responsive network 

In the Danube River case study, a total of 96 samples were included in the 

transcriptomic sequencing, which generated 6 million mapped reads per sample with 

an average mapping rate of 83 %. With the power value of 18, the mean degree of the 

weighted co-responsive network is close to 5, and the goodness-of-fit (R2) value is 0.92 

(Figure S3.4). Subsequently, based on the multi-level modularity optimisation 

algorithm, a total of 36 modules are identified from 4465 genes. The largest module 

(DA_0) was with 803 genes, and the smallest module (DA_35) was with 20 genes. The 

descriptions of 36 co-responsive modules are listed in Table S3.2.  

Metabolomic co-responsive network 

For the polar metabolite profiles, after data pre-processing by DIMSpy, 1285 peaks 

were detected and selected among 72 treatment samples under the detection of 

positive ion mode (polarpos shorts for polar-positive metabolite); 2331 peaks were 

detected and selected among 70 treatment samples under the detection of negative 

ion mode (polarneg shorts for polar-negative metabolite). These two metabolomic 

modalities were used for constructing the co-responsive networks separately.  
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For both polarpos (Figure S3.5) and polarneg (Figure S3.6), when the power is set at 

16, the resulting weighted correlation network is scale-free, with an R2 value of 0.96. 

Based on the multi-level modularity optimisation algorithm, a total of 56 modules are 

identified from 975 peaks of polarpos data set. The largest module (DAp_0) consists 

of 89 peaks and the smallest module (DAp_55) consists of 5 peaks (Table 5.3). Using 

the same method, a total of 70 modules are identified from 1958 peaks of polarneg 

data set. The largest module (DAn_0, 208) consists of peaks 40 times more the peaks 

included in the smallest module (DAn_65, 5). The total number of peaks, the number 

of peaks with chemical formulae and the number of peaks with KEGG putative 

annotation are summarised for each module in Table S3.3 and Table S3.4. 

Sparse CCA analysis between chemical, transcriptomic and metabolomics 

features 

The sCCA was applied to discover a subset of transcriptomic features and two subsets 

of metabolomic features (polarpos and polarneg) that were linearly correlated with 

caffeine or carbamazepine concentrations in the mixture. As revealed in Figure S3.7 

(a, c, e), the subset of transcriptomic features can explain 7.87 % of the total variance 

and correlate with caffeine with a correlation coefficient of -0.610. In the same sCCA 

model, the subset of polarpos features can explain 10.63 % of the total variance in 

polarpos dataset and correlate with caffeine (0.56). The subset of polarneg features 

selected in this model can explain 7.4 % of the total variance in the polarneg dataset 

and correlated with caffeine with a coefficient of -0.570. 

The plots b, d, and f in Figure S3.7 shows the correlation relationships between subsets 

of transcriptomic or metabolomic features selected by sCCA model and the 

concentration levels of carbamazepine. To be specific, the subset of transcriptomic 
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features account for 11.7 % of the total variance and correlate with carbamazepine 

with a coefficient of -0.550. The polarpos subset account for 19.0 % of the total 

variance and correlate to carbamazepine with a coefficient of -0.42. In the same sCCA 

model, the subset of polarneg features explain 22.6 % of the total variance and 

correlate with carbamazepine with a coefficient of 0.470.  

Chemical-associated co-responsive modules 

The co-responsive modules that are associated with caffeine are ranked based on their 

module enrichment scores, as shown in Figure S3.8. With consideration of a P-value 

threshold at 0.01, nine transcriptomic modules, (DA_1, DA _5, DA _11, DA _0, DA _13, 

DA _10, DA _2, DA _17 and DA_14), nine polarpos modules (DAp_45, DAp_55, 

DAp_18, DAp_2, DAp_4, DAp_10, DAp_12, DAp_0, DAp_14), and forteen polarneg 

modules (DAn_39, DAn_42, DAn_59, DAn_13, DAn_8, DAn_18, DAn_5, DAn_2, 

DAn_0, DAn_27, DAn_6, DAn_1, DAn_9, DAn_33) are regarded as caffeine-

associated modules. 

Similarly, the co-responsive modules that are carbamazepine-associated are ranked 

by their module enrichment scores, as shown in Figure S3.9. The carbamazepine-

related co-responsive modules are eleven transcriptomic modules (DA_1, DA_2, DA_0, 

DA_5, DA_8,DA_4, DA_30, DA_12, DA_7, DA_18, DA_22), nine polarpos modules 

(DAp_38, DAp_16, DAp_18, DAp_0, DAp_9, DAp_10, DAp_4, DAp_7, DAp_5), and 

fifteen polarneg modules (DAn_55, DAn_33, DAn_41, DAn_57, DAn_1, DAn_32, 

DAn_2, DAn_66, DAn_3, DAn_8, DAn_4, DAn_6, DAn_12, DAn_27, DAn_35), based 

on P-value thresholding at 0.01.  
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Pathway overrepresentation analysis 

For transcriptomic co-responsive modules, the statistical overrepresentation tests of 

Daphnia magna genes within functional pathways were performed by permutation chi-

square test. The Daphnia magna genes that can be mapped to orthologous 

D.melanogaster genes and KEGG Pathway database are summarised in Table S3.2. 

A total of 119 pathways are identified to be significantly enriched in at least one 

transcriptomic co-responsive module. The adjusted P-values of overrepresentation 

tests on the 119 KEGG pathways are listed in Appendix 2. The adjusted P-values of 

overrepresentation tests on the same 20 pathways are plotted in Figure 3.3a.  

For metabolomic co-responsive modules, the statistical overrepresentation tests of 

polar metabolite peaks (polarpos and polarneg) within functional pathways were 

performed by chi-square test. The polar metabolite peaks that have molecular formula 

and putative annotation based on KEGG Compound database are summarised in 

Table S3.3 and S3.4. Jointly, a total of 49 pathways are identified to be significantly 

enriched in at least one metabolomic co-responsive modules (polarpos and polarneg). 

The adjusted P-values of overrepresentation tests on the 49 pathways are listed in 

Appendix 3. The adjusted P-values of overrepresentation tests on the same 20 

pathways mentioned earlier are plotted in Figure 3.3b.  
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Figure 3. 3 Danube case study: overrepresentation tests of selected KEGG pathways by (a) 

permutation chi-square test and (b) chi-square test. The modules are selected from (a) 

transcriptomic and (b) metabolomic co-responsive modules. Selected pathways and modules 

are coloured based on (1) module associated with both caffeine (CAF) and carbamazepine 

(CBZ) concentrations in the mxitures (in purple), (2) module associated with CAF (in red), 

and (3) module associated with CBZ (in blue). The adjusted P-values are labelled as follows: 

P < 0.05, *; P < 0.01, **; P < 0.001, ***; P < 0.0001, ****. 
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Modules that are associated with both caffeine and carbamazepine 

There are four transcriptomic modules associated with both caffeine and 

carbamazepine, namely DA_0, DA_1, DA_2 and DA_5. Modules DA_0, DA_1 and 

DA_2 report extremely significant P-values (P-value lower than 0.00001) at enriching 

pathways related to glycan biosynthesis and steroid biosynthesis. Genes in the module 

DA_5 are significantly enriched in carbohydrate metabolism, amino acid metabolism, 

lipid metabolism, glycan biosynthesis and metabolism, cofactors and vitamins 

metabolism, and xenobiotic biodegradation by cytochrome P450. At gene level, these 

four modules consist of 34 CYP, 10 GST and 45 ABC genes.  

There are nine metabolic modules associated with both chemicals, namely DAp_0, 

DAp_4, DAp_10, DAn_0, DAn_1, DAn_2, DAn_6, DAn_8, and DAn_27. Metabolites in 

these nine modules are significantly enriched in drug metabolism by cytochrome P450 

(DAp_0), carbohydrate metabolism (DAn_0, DAn_6), Isoflavonoid biosynthesis 

(DAp_10, DAn_0, DAn_2, DAn_8), flavonoid biosynthesis (DAn_2, DAn_8), and type 

II polyketide products biosynthesis (DAp_10, DAn_8).At peak level, three peaks are 

putatively annotated as metabolites involved in xenobiotic metabolism (DAn_1 and 

DAn_8) and drug metabolism (DAp_0), listed in Table S3.5.  

Modules that are associated with caffeine only 

There are five transcriptomic modules associated with caffeine only, namely DA_10, 

DA_11, DA_13, DA_14 and DA_17. The caffeine metabolism pathway is reported to 

be significantly enriched only in DA_11. The insect hormone biosynthesis pathway is 

significantly enriched in DA_10 and DA_14. The module DA_10 is reported to be 

significantly enriched in a few pathways related to xenobiotic metabolism, glutathione 

metabolism, transcription, and protein folding. Genes in the module DA_13 may be 
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related to drug metabolism and apoptosis-related pathways. At gene level, the same 

two genes coding for xanthine dehydrogenase/oxidase (XDH) are found in module 

DA_11. 

For metabolomic profiles, there are four caffeine-specific metabolomic modules, 

namely DAp_2, DAn_5, DAn_13 and DAn_18. Among the polar positive peak set of 

DAp_2, there are three peaks putatively annotated as metabolites involved in the 

caffeine metabolism (Table S3.5), which substantiate the significant enrichment of 

caffeine metabolism pathway in module DAp_2. However, further confirmation of the 

chemical structure of the isomers will be needed to verify the structure of the caffeine 

metabolites in Daphnia magna. There are four peaks in DAn_5, one peak in DAn_13, 

and two peaks in DAn_18, which are tentatively annotated as metabolites involved in 

xenobiotic metabolism (Table 5.5); although the P-values of overrepresentation tests 

on xenobiotic metabolism with metabolites from modules DAn_13 and DAn_18 are not 

significant. On the contrary, flavonoid biosynthesis is reported to be significantly 

enriched in both DAn_13 and DAn_18.  

Modules that only related to carbamazepine 

Seven transcriptomic modules are only associated with carbamazepine, namely DA_4, 

DA_7, DA_8, DA_12, DA_18, DA_22, and DA_30. Modules DA_4, DA_7, DA_12, 

DA_22 and DA_30 are reported to be significantly enriched in pathways related to 

carbohydrate metabolism, amino acid metabolism, and lipid metabolism. The 

glycosphingolipid biosynthesis is significantly enriched in modules DA_4, DA_7, DA_8 

and DA_12. The xenobiotic metabolism pathways are significantly enriched in modules 

DA_12 and DA_30. And glutathione metabolism is significantly enriched in modules 

DA_12 and DA_18. Notably, apoptosis pathway is only reported to be enriching in 
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module DA_12; and the neuroactive ligand-receptor interaction is only reported to be 

significantly enriched in module DA_18.  

For metabolomics profiles, there are six metabolic modules particularly associated with 

carbamazepine, namely DAp_16, DAp_38, DAn_3, DAn_12, DAn_35, DAn_66. 

Module DAn_3 is significantly enriched in xenobiotic biodegradation pathway, and the 

DAn_35 is reported with significant enrichment in ABC transporters. Notably, one peak 

in the polarneg data set was putatively annotated as carbamazepine-o-quinone, which 

is involved in the carbamazepine-associated metabolomic module (DAn_17).  

 

3.5 Discussion 

3.5.1 Chemical associated co-responsive features integrated from 

transcriptomic and metabolomic  

In this study, two cases are included to investigate the chemical component (caffeine 

and carbamazepine) associated effect with newly developed methods. Integration of 

transcriptomic and metabolomic features is achieved by multi-block correlation 

modelling, which highlights the linear dependent relationships between a set of 

biological feature readouts and the concentration level of a specific chemical 

compound.  

Xenobiotic metabolism is a well-studied chemical detoxification pathway, which 

includes three phases: monooxygenases (cytochrome P450s, CYPs; Guéguen et al., 

2006), conjugation (i.e., glutathione, glutathione S-transferase and sulfotransferase; 

Townsend and Tew, 2003), and xenobiotic transport (i.e., multidrug resistance-

associated proteins; Xu et al., 2005). In both case studies, modules associated with 

both caffeine and carbamazepine consist of CYP, GST, and ABC genes, all of which 



 75 

play significant roles in xenobiotic detoxification and excretion Daphnia magna 

(Campos et al., 2014; Lee et al., 2019). These modules are characterised by xenobiotic 

processes mediated by ABC transporter, cytochrome P450 and glutathione 

metabolism, suggesting that the xenobiotic metabolic pathways mediated by ABC, 

CYPs and GST can be successfully captured by this new method, and the resulting 

features are align with prior knowledge on general chemical metabolism (Campos et 

al., 2014; Lee et al., 2019). 

Caffeine metabolism in Daphnia magna 

In both studies, transcriptomic co-responsive modules include two genes annotated as 

xanthine dehydrogenase/oxidase (XDH) (CB_7 in Chaobai case, DA_11 in Danube 

case), which are mediators for the biotransformation of dimethylxanthine into 

dimethyluric acid (Begas et al., 2007). In the Danube case, metabolomic co-responsive 

modules include features putatively annotated as metabolites involved in the caffeine 

metabolism, which further substantiate that the method can effectively identify caffeine 

metabolic associated features in both transcriptomic and metabolomic profiles. Based 

on prior knowledge, there are a few potential routes of caffeine metabolism (Figure 

3.4): (1) caffeine can be 1-demethylation as theobromine by CYP then transformed 

into 3,7-dimethyluric acid by xanthine oxidase; (2) Caffeine can be 3-demethylation as 

paraxanthine by CYP then transformed into 1,7-dimethyluric acid by xanthine oxidase 

or CYP; (3) Caffeine can be transformed to Paraxanthine then 1- or 7-Methylxanthine 

by CYP and subsequently to 1- or 7-Methyluric acid by xanthine oxidase; (4) Caffeine 

might be also catalysed C-8 oxidation by caffeine dehydrogenase (cdh). The first three 

potential routes are the same with the caffeine metabolism in human (Nehlig, 2018) 

and the fourth route is mediated by co-exist microbes (Summers et al., 2015; Yu et al., 
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2008). Structure confirmation of the m/z 167.055911 peak (putatively annotated as 1-

/3-/7-Methylxanthine) will be needed for further clarification of which metabolic process 

(route) is the major caffeine metabolic pathways in Daphnia magna. 

 

 
Figure 3. 4 Caffeine metabolism in Daphnia magna. The hypothetical metabolic process of 

caffeine is constructed based on KEGG (map00232), HMDB (SMP0000028) and the 

biomolecular features of caffeine-associated transcriptomic/metabolomic modules. The 

underlined genes are the genes detected in the caffeine-associated transcriptomic modules; 

the bold text within black-solid boxes are the putatively annotated metabolites in the caffeine-

associated metabolomic modules. The dashed lines characterise potential microbe-mediated 

reactions. Abbreviation: XDH, xanthine dehydrogenase/oxidase; CYP, cytochrome P450; 

cdh, caffeine dehydrogenase; ndmA, methylxanthine N1-demethylase; ndmC, 

methylxanthine N7-demethylase. 
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Apart from caffeine biodegradation pathway, pathways significantly enriched in these 

caffeine-specific modules suggest a potential impact of caffeine exposure on 

endoplasmic reticulum, endocytosis process, and by disrupting a critical pathway like 

pyruvate metabolism that may further link to gluconeogenesis. This finding suggests 

that the modes of action of caffeine may be concentration-dependent, as caffeine 

exposure at lower levels (below 65 ng/L) might lead to endocytosis inhibition (Gonzalez 

et al. 1990) via suppressing amyloid-beta protein precursor (Li et al. 2015). The 

pathways reported within these caffeine-associated modules imply that the impact of 

caffeine exposure may be stress-induced apoptosis (Saiki et al. 2011) and endocrine 

disturbance represented by variation in insect hormone synthesis (Coelho et al. 2015). 

Carbamazepine metabolism in Daphnia magna 

In both cases, transcriptomic co-responsive modules consist of drug metabolism-

related features. Based on ortholog group functional annotation, carbamazepine-

related features consist of CYP, GST, ABC, Glutathione peroxidase (GPX), 

Sulfotransferase (SF), and Superoxide dismutase (SOD) genes. The biochemical 

effects of carbamazepine are already known to induce oxidative stress in Daphnia 

magna, represented by significant suppression of SOD, catalase and glutathione 

reductase (Nkoom et al., 2019). Similar inhibition was also reported in the mussel 

Dreissena polymorpha under carbamazepine exposure for seven days (Contardo-Jara 

et al. 2011), the brachyuran crab Carcinus maenas under 50 μg/L carbamazepine for 

28 days (Aguirre-Martínez et al. 2013), the clam Ruditapes philippinarum under 9 μg/L 

carbamazepine for 28 days (Almeida et al. 2015), and the clam Corbicula flumniea 

under 10 and 50 μg/L of carbamazepine for 21 days (Aguirre-Martínez et al. 2015). 

Biotransformation related enzymes like GSTs and CYPs have significantly increased 
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expression after carbamazepine exposure (Pires et al. 2016), as CYPs are involved in 

hydroxylation and bioactivation of the carbamazepine (Pearce et al. 2002, 2008; 

Aguirre-Martínez et al. 2015, 2016) and GSTs catalyse the oxidation of carbamazepine 

(Vernouillet et al. 2010). As shown in Figure 3.5, for carbamazepine, the potential 

metabolic routes are that carbamazepine can be transformed to 2,3-

dihydroxycarbamazepine via carbamazepine-2,3-epoxide and 2-

hydroxycarbamazepine or 3-hydroxycarbamazepine, which are similar to the minor 

metabolic pathways reported in human (Kitteringham et al. 1996; Thorn et al. 2011). 

However, there is no other evidence to support the potential role of carbamazepine-o-

quinone detected in the Danube case, except for one study reported the 

carbamazepine-o-quinone as one of the metabolites detected in the sea anemones 

(Vitale et al. 2020). Future biochemical analysis will be needed to confirm the role of 

this metabolite and the metabolic processes proposed in this work.  

 

 
Figure 3. 5 Carbamazepine metabolism in Daphnia magna. The hypothetical metabolic 

process is constructed based on KEGG (map00982), HMDB (SMP0000634) and the features 

of carbamazepine-associated transcriptomic/metabolomic modules. The underlined genes 

are the genes in the carbamazepine-associated transcriptomic modules; the bold text within 

black-solid box is the putatively annotatted metabolite in the carbamazepine-associated 

metabolomic module. Abbreviation: CYP, cytochrome P450. 
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3.5.2 Transcriptome-based case comparison 

The robustness of this data-driven method in identifying the co-responsive features 

associated with caffeine and metabolism is assessed by comparing the genes of 

transcriptomic co-responsive modules independently identified in the Chaobai and 

Danube case. The shared number of Daphnia genes between the selected co-

responsive modules are shown in Figure S3.10. Pathway analysis of those shared 

Daphnia magna genes are summarised in Appendix 4 and plotted in Figure 3.6.  

For the modules that are associated with both chemicals, up to 356 Daphnia genes 

are common between CB_4 and DA_2, which are significantly enriched in pathways 

like mucin type O-glycan biosynthesis and glycosphingolipid biosynthesis. There are 

340 Daphnia gene shared by CB_3 and DA_1, which are also significantly enriched in 

glycosphingolipid biosynthesis. A total of 191 Daphnia genes are common between 

modules CB_2 and DA_5, which are significantly enriching glutathione metabolism, 

drug metabolism and xenobiotics metabolism by cytochrome P450, neuroactive ligand-

receptor interaction, carbohydrate metabolism, glycan biosynthesis, and lipid 

metabolism. For the modules that are associated with to carbamazepine not to caffeine, 

the 31 Daphnia genes shared by modules CB_6 and DA_7 share are significantly 

enriched in drug metabolism pathways, xenobiotic metabolism by cytochrome P450 

and glutathione metabolism. As listed above, the significantly enriched pathways of 

those intersect gene sets are similar to the significantly enriched pathways of those 

two modules being compared, suggested that the data-driven approach to identify 

molecular features associated with chemical component in the the mixture can identify 

the functional genes that are core to xenobiotic metabolism and other chemical 

exposure-related pathways.  
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However, there are no genes shared between any caffeine-associated modules 

(CB_15, CB_20; DA_10, DA_11, DA_13, DA_14, DA_17) from the two case studies. 

The discrepancy in the genes among these caffeine-specific modules might be due to 

major differences in the concentration levels of caffeine detected in the two rivers. As 

lower levels of caffeine exposure (below 65 ng/L in Chaobai River case) are found to 

be associated with endocytosis effect and higher levels of caffeine exposure (100-

310 ng/L in Danube River case) are associated with apoptotic activation, these results 

suggest that the modes of action of caffeine in the mixtures may be concentration 

dependent and the adverse outcomes are determined by the concentration levels 

(Saiki et al. 2011). It’s worthwhile to perform validation on the responsive patterns of 

caffeine at different concentration levels within natural chemical mixtures in order to 

substantiate the mode of action of caffeine in the environmental chemical mixture. 

 

 

Figure 3. 6 Case comparison: pathway overrepresentation tests by permutation chi-square test. 

The module pairs are selected from the transcriptomic co-responsive modules of Chaobai (CB) 

and Danube (DA) case. Selected module pairs are coloured based on (1) modules that are 
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both associated with caffeine (CAF) and carbamazepine (CBZ) concentrations in the mixtures 

(in purple), and (2) modules that are both associated with CBZ (in blue). The adjusted P-value 

are annotated as following: P > 0.05, ns; P < 0.05, *; P < 0.01, **; P < 0.001, ***; P < 0.0001, 

****.  

 

3.5.3 Comparison of transcriptomic and metabolomic co-responsive modules in 

the Danube River case study 

In the Danube River case study, the biological responses of the organic extracts from 

the Danube River were depicted by both transcriptome and metabolome. The identified 

pathways included in the selected co-responsive modules in the Danube case are 

compared between the two omics approaches to evaluate the insights provided by two 

types of omics assays.  

In general, the transcriptomic assays consist of more diverse information than the 

metabolomic assays. There are 119 pathways in 16 transcriptomic modules that are 

associated with caffeine and/or carbamazepine; but for metabolomic co-responsive 

modules, there are only 67 pathways in 37 selected modules that are associated with 

caffeine and/or carbamazepine. Those 16 selected transcriptomic modules mainly 

consist of genes involved in pathways of carbohydrate metabolism (17 %), amino acid 

metabolism (13 %), signal transduction (11 %), lipid metabolism (11 %), glycan 

biosynthesis and metabolism (8 %), xenobiotic biodegradation and metabolism (5 %), 

metabolism of cofactors and vitamins (5 %), transport and catabolism (5 %), and 

translation (4 %). While the 37 metabolomic modules mainly comprise of metabolites 

that participate in pathways of biosynthesis of secondary metabolites (30 %), 

carbohydrate metabolism (18 %), xenobiotic biodegradation and metabolism (6 %), 

and membrane transport (6 %). 
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For chemical associated co-responsive modules, the Venn diagrams (Figure S3.11) 

reveal that there is consistency between pathways identified in the transcriptomes and 

those in the metabolomes. For example, there are two pathways associated with both 

chemicals that are identified by both omics assays, which are drug metabolism via 

cytochrome P450, and starch and sucrose metabolism. Two pathways that are 

associated with caffeine only in both omics assays, which were caffeine metabolism, 

and metabolism of xenobiotics by cytochrome P450. There are 12 pathways that are 

commonly found in carbamazepine-associated co-responsive modules of two omics, 

which are seven carbohydrate metabolic pathways, two nucleotides metabolism 

pathways, xenobiotic metabolism, amino acid metabolism and signal transduction.  

The chemical-associated co-responsive modules identified by the two omics assays 

also consist of pathways that are complementary to each other. For example, for co-

responsive modules that are associated with caffeine only, the transcriptomic co-

responsive modules consist of genes from the pathways of aging, amino acid 

metabolism, transcription, translation, and signal transduction, while the metabolomic 

co-responsive modules consist of metabolites mostly participating in the metabolism 

and/or catabolism.  
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Figure 3. 7 Danube case study: summary of the numbers of pathways identified in the 

chemical-associated co-responsive modules in transcriptome and metabolome. Abbreviation: 

RNA for transcriptome, DIMS for metabolome, CAF for caffeine, CBZ for carbamazepine, 

both refers to caffeine and carbamazepine. 

 

3.6 Conclusion 

In this work, the co-responsive features of two well-studied chemical compounds, 

caffeine and carbamazepine, were investigated in two case studies. Omics-based 

bioassays, transcriptomic and metabolomic, were applied to generate systematic 

biological responses. Compared with prior knowledge, the method purposed here, 

which combines the multi-block correlation modelling and network analysis, can 
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effectively identify biological features that are reasonably related to caffeine or 

carbamazepine metabolism. The highly consistency in the transcriptomic co-

responsive features generated by two independent case studies indicate that the data-

drive approach proposed in this work can identify not only the general metabolic 

pathways but also potential concentration-dependent adverse effects, as constituents 

of the chemical mode of action. The integration of transcriptome and metabolome 

assists in constructing the hypothetical metabolic processes of caffeine and 

carbamazepine in Daphnia magna, but also provides a more comprehensive profiles 

that joint the benefits of complementary views of distinctive types of omics assays. 

Most importantly, it substantiated the practicality of the Precision Environmental Health 

framework in identifying chemical component molecular mode of actions. With the 

knowledge and evidence of chemical component related effect, it may be able to 

identify the harmful chemical component within the environmental chemical mixture, 

which is the premise of establishing a practical and efficient environmental monitoring 

and regulation to manage the pollutants that may lead to health threats. 
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3.7 Supplementary 

 

Table S3. 1 Chaobai case study: transcriptomic co-responsive module gene lists mapping 

summary. 

Module ID Number of genes a Genes with orthologs b Genes with orthologs and pathways c 
CB_0 1068 881 (83%) 514 (48%) 
CB_1 939 590 (63%) 204 (22%) 
CB_2 763 412 (54%) 165 (22%) 
CB_3 673 327 (49%) 78 (12%) 
CB_4 622 243 (39%) 55 (9 %) 
CB_5 305 213 (70%) 43 (14 %) 
CB_6 253 129 (51%) 45 (18%) 
CB_7 189 121 (64%) 55 (29%) 
CB_8 147 130 (88%) 97 (66%) 
CB_9 142 74 (52%) 20 (14%) 
CB_10 103 80 (78%) 21 (20%) 
CB_11 75 16 (21%) 7 (9%) 
CB_12 52 31 (60%) 13 (25%) 
CB_13 42 19 (45%) 8 (19%) 
CB_14 41 17 (42%) 3 (7%) 
CB_15 40 14 (35%) 5 (13%) 
CB_16 35 22 (63%) 5 (14%) 
CB_17 33 4 (12%) 2 (6%) 
CB_18 28 19 (68%) 9 (32%) 
CB_19 28 2 (7%) 1 (4%) 
CB_20 26 22 (85%) 12 (46%) 
CB_21 26 6 (23%) 3 (12%) 
CB_22 25 16 (64%) 11 (44%) 
CB_23 23 13 (57%) 4 (17%) 
CB_24 21 8 (38%) 2 (10%) 

a. The total number of Daphnia magna genes in each transcriptomic co-responsive module. 

b. The total number of Daphnia magna genes shared orthologous relationships with Drosophila 

melanogaster genes.  
c. The total number of Daphnia magna genes with Drosophila melanogaster orthologs and 

pathway information recorded in the KEGG database. 
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Table S3. 2 Danube case study: transcriptomic co-responsive module gene lists mapping 

summary. 

Module ID Number of genes a Genes with orthologs b Genes with orthologs and pathways c 
DA_0 803 396 (49%) 144 (18%) 
DA_1 553 293 (53%) 64 (12%) 
DA_2 508 198 (39%) 55 (11%) 
DA_3 470 323 (69%) 166 (35%) 
DA_4 269 164 (61%) 66 (25%) 
DA_5 235 154 (66%) 63 (27%) 
DA_6 207 170 (82%) 120 (58%) 
DA_7 189 83 (44%) 21 (11%) 
DA_8 182 116 (64%) 38 (21%) 
DA_9 114 75 (66%) 26 (23%) 
DA_10 93 55 (59%) 23 (25%) 
DA_11 79 43 (54%) 20 (25%) 
DA_12 66 33 (50%) 9 (14%) 
DA_13 59 36 (61%) 14 (24%) 
DA_14 49 28 (57%) 11 (22%) 
DA_15 45 24 (53%) 12 (27%) 
DA_16 42 26 (62%) 13 (31%) 
DA_17 41 22 (54%) 5 (12%) 
DA_18 39 20 (51%) 7 (18%) 
DA_19 33 22 (67%) 5 (15%) 
DA_20 32 17 (53%) 5 (16%) 
DA_21 30 17 (57%) 7 (23%) 
DA_22 28 20 (71%) 8 (29%) 
DA_23 28 18 (64%) 6 (21%) 
DA_24 27 11 (41%) 2 (7%) 
DA_25 25 19 (76%) 5 (20%) 
DA_26 24 13 (54%) 3 (13%) 
DA_27 23 13 (57%) 5 (22%) 
DA_28 23 17 (74%) 10 (44%) 
DA_29 23 14 (61%) 5 (22%) 
DA_30 22 18 (82%) 11 (50%) 
DA_31 22 15 (68%) 6 (27%) 
DA_32 21 3 (14%) 0 
DA_33 21 12 (57%) 4 (19%) 
DA_34 20 0 0 
DA_35 20 9 (45%) 3 (15%) 

a. The total number of Daphnia magna genes in each transcriptomic co-responsive module. 

b. The total number of Daphnia magna genes shared orthologous relationships with Drosophila 

melanogaster genes. 

c. The total number of Daphnia magna genes with Drosophila melanogaster orthologs and 

pathway information recorded in the KEGG database 
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Table S3. 3 Danube case study: metabolomic (polar positive) co-responsive module peak 

lists mapping summary. 

Module Number a Formulae b KEGG c Module Number Formulae KEGG 
DAp_0 89 27 23 DAp_28 10 2 2 
DAp_1 67 44 37 DAp_29 10 6 5 
DAp_2 62 35 28 DAp_30 10 7 5 
DAp_3 41 10 10 DAp_31 10 4 3 
DAp_4 40 24 17 DAp_32 10 4 4 
DAp_5 34 7 5 DAp_33 10 1 1 
DAp_6 32 19 16 DAp_34 9 3 2 
DAp_7 32 5 4 DAp_35 9 6 4 
DAp_8 31 21 17 DAp_36 9 5 4 
DAp_9 29 13 9 DAp_37 9 1 1 
DAp_10 28 21 15 DAp_38 8 4 2 
DAp_11 26 2 2 DAp_39 8 4 3 
DAp_12 26 12 10 DAp_40 8 2 2 
DAp_13 25 6 5 DAp_41 8 5 2 
DAp_14 22 10 8 DAp_42 8 1 1 
DAp_15 21 16 14 DAp_43 7 2 2 
DAp_16 20 0 1 DAp_44 7 0 0 
DAp_17 15 3 2 DAp_45 7 8 6 
DAp_18 15 7 6 DAp_46 6 6 3 
DAp_19 15 3 2 DAp_47 6 1 1 
DAp_20 14 0 0 DAp_48 6 5 3 
DAp_21 14 12 10 DAp_49 5 0 0 
DAp_22 12 2 2 DAp_50 5 0 0 
DAp_23 12 0 0 DAp_51 5 1 1 
DAp_24 12 9 8 DAp_52 5 5 4 
DAp_25 11 4 3 DAp_53 5 2 2 
DAp_26 10 2 2 DAp_54 5 5 5 
DAp_27 10 0 0 DAp_55 5 0 0 

a. The total number of peaks in polar positive ion datasets. 

b. The number of peaks that could be assigned empirical formulae. 

c. The number of peaks with putative annotation based on KEGG database. 
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Table S3. 4 Danube case study: metabolomic (polar negative) co-responsive module peak 

lists mapping summary. 

Module Number a Formulae b KEGG c Module Number Formulae KEGG 
DAn_0 208 75 72 DAn_35 12 8 8 
DAn_1 161 93 70 DAn_36 11 7 7 
DAn_2 145 49 39 DAn_37 11 10 10 
DAn_3 118 86 60 DAn_38 11 5 3 
DAn_4 71 24 23 DAn_39 11 9 6 
DAn_5 66 51 38 DAn_40 11 12 9 
DAn_6 59 47 31 DAn_41 10 4 4 
DAn_7 57 31 24 DAn_42 10 8 6 
DAn_8 53 92 45 DAn_43 10 10 6 
DAn_9 50 11 12 DAn_44 10 3 3 
DAn_10 46 31 24 DAn_45 9 3 2 
DAn_11 45 17 12 DAn_46 9 16 9 
DAn_12 44 41 27 DAn_47 9 6 6 
DAn_13 43 38 25 DAn_48 9 0 0 
DAn_14 37 25 17 DAn_49 9 12 7 
DAn_15 36 4 5 DAn_50 9 0 1 
DAn_16 34 6 6 DAn_51 9 8 4 
DAn_17 34 24 20 DAn_52 9 6 3 
DAn_18 32 39 21 DAn_53 8 4 3 
DAn_19 31 3 3 DAn_54 8 6 4 
DAn_20 29 23 19 DAn_55 8 0 1 
DAn_21 28 23 17 DAn_56 8 3 3 
DAn_22 25 12 9 DAn_57 7 3 2 
DAn_23 24 7 11 DAn_58 7 11 5 
DAn_24 23 17 10 DAn_59 6 7 4 
DAn_25 22 12 12 DAn_60 6 1 2 
DAn_26 21 9 8 DAn_61 6 5 4 
DAn_27 20 18 13 DAn_62 6 1 1 
DAn_28 19 17 13 DAn_63 6 3 2 
DAn_29 18 12 10 DAn_64 5 2 2 
DAn_30 16 19 12 DAn_65 5 2 3 
DAn_31 16 16 10 DAn_66 5 6 3 
DAn_32 15 8 3 DAn_67 5 8 5 
DAn_33 14 11 11 DAn_68 5 4 2 
DAn_34 13 23 10 DAn_69 5 5 3 

a. The total number of peaks in polar positive ion datasets. 

b. The number of peaks that could be assigned empirical formulae. 

c. The number of peaks with putative annotation based on KEGG database. 
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Table S3. 5 Danube case study: metabolomic peaks in the metabolomic co-responsive 

modules that are associated with both caffeine and carbamazepine. 

Module m/z KEGG ID Putative annotation Pathway 

DAp_0 314.981944 

C07643 4-hydroxycyclophosphamide 

Drug metabolism 
– cytochrome 
P450 

C07645 Aldophosphamide 

C16553 4-hydroxyifosfamidem 

C16556 Aldoifosfamide 

DAn_5 
378.026687 C16619 6-Thioguanosine monophosphate 

392.042435 C16620 6-Methylthioguanosine 
monophosphate 

DAn_17 303.019088 C16606 Carbamazepine-o-quinone 

DAn_1 321.067854 C14852 Benzo[a]pyrene-7,8-diol 

Metabolism of 
xenobiotics by 
cytochrome 
P450 

DAn_8 371.074978 C19590 

6-[2,3-dihydroxy-1-
(hydroxymethyl)propyl]-1,2-dihydro-7-
hydroxy-9-methoxy-
cyclopenta[c][1]benzopyran-3,4-dione 

DAn_5 

400.058901 C14862 2-S-glutathionyl acetate 

386.042701 C14871 s-(formylmethyl)glutathione 

369.076449 C14874 glutathione episulfonium ion 

307.090129 

C19489 1a,11b-Dihydro-4,9-
dimethylbenz[a]anthra[3,4-b]oxirene 

C19561 7-Hydroxymethyl-12-
methylbenz[a]anthracene 

C19604 7,12-Dimethylbenz[a]anthracene 5,6-
oxide 

DAn_13 258.066151 

C19563 4-[(Hydroxymethyl)nitrosoamino]-1-(3-
pyridinyl)-1-butanone 

C19566 4-Hydroxy-4-(methylnitrosoamino)-1-
(3-pyridinyl)-1-butanone 

C19602 4-(Methylnitrosamino)-1-(1-oxido-3-
pyridinyl)-1-butanone 

DAn_18 
252.099133 C19564 4-(Nitrosoamino)-1-(3-pyridinyl)-1-

butanone 

254.114784 C19581 alpha-[3-(Nitrosoamino)propyl]-3-
pyridinemethanol 

DAp_2 

153.040183 C00385 Xanthine 

Caffeine 
metabolism 

195.087058 C07481 Caffeine 

167.055911 

C16353 7- Methylxanthine 

C16357 3- Methylxanthine 

C16358 1- Methylxanthine 
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Figure S3. 1 Chaobai case study: transcriptomic co-responsive network and modules. In plot 

(a), the power value for soft thresholding is on the x-axis, the solid dots (Mean degree, y-axis 

on the left) represent the mean degree value of the network generated by the weighted 

adjacency matrix corresponding to a power value, and the hollow dots (Rsq, y-axis on the 

right) represent the goodness-of-fit (R2) value of the linear regression model built upon the 

log-transformed degree and log-transformed fraction of nodes. The power value is selected 

when the mean degree of the resulting network is closer to 5. Plot (b) shows the linear 

regression model with the log-transformed degree on the x-axis and the log-transformed 

fraction of nodes on the y-axis, with a power of 23. Plot (c) shows the number of genes of 25 

modules in the transcriptomic co-responsive network. 
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Figure S3. 2 Chaobai case study: sCCA analysis of relationship (a) between transcriptomic 

component and caffeine, and (b) between transcriptomic component and carbamazepine. The 

R2 value is calculated based on the Pearson correlation coefficient between 

caffeine/carbamazepine concentration values and the subset of transcriptomic features. 
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Figure S3. 3 Chaobai case study: transcriptomics co-responsive modules are ranked by their 

module enrichment scores corresponding to their association with (a) caffeine and (b) 

carbamazepine concentrations in mixtures. The modules on the x-axis are ordered by the value 

of the module enrichment score. The P-values of G statistics are stratified into five groups and 

annotated as follows: P > 0.05, ns (not significant); P < 0.05, *; P < 0.01, **; P < 0.001, ***; P 

< 0.0001, ****. 
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Figure S3. 4 Danube case study: transcriptomic co-responsive network and modules. In plot 

(a), the power value for soft thresholding is on the x-axis, the solid dots (Mean degree, y-axis 

on the left) represent the mean degree value of the network generated by the weighted 

adjacency matrix corresponding to a power value, and the hollow dots (Rsq, y-axis on the 

right) represent the goodness-of-fit (R2) value of the linear regression model built upon the 

log-transformed degree and log-transformed fraction of nodes. Plot (b) shows the linear 

regression model with the log-transformed degree on the x-axis and the log-transformed 

fraction of nodes on the y-axis, with a power of 18. Plot (c) shows the number of genes of 36 

modules in the transcriptomic co-responsive network. 
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Figure S3. 5 Danube case study: metabolomic (polar positive) peaks co-responsive network 

and modules. In plot (a), the power value for soft thresholdoing is on the x-axis, the solid dots 

(Mean degree, y-axis on the left) represent the mean degree value of the network generated 

by the weighted adjacency matrix corresponding to a power value, and the hollow dots (Rsq, 

y-axis on the right) represent the goodness-of-fit (R2) value of the linear regression model 

built upon the log-transformed degree and the log-transformed fraction of nodes. Plot (b) 

shows the linear regression model with the log-transformed degree on the x-axis and the log-

transformed fraction of nodes on the y-axis, with a power of 16. Plot (c) shows the number of 

metabolites (peaks) of 56 modules in the metabolomic co-responsive network. 
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Figure S3. 6 Danube case: metabolomic (polar negative) peaks co-responsive network. In 

plot (a), the power value for soft thresholdoing is on the x-axis, the solid dots (Mean degree, 

y-axis on the left) represent the mean degree value of the network generated by the 

weighted adjacency matrix corresponding to a power value, and the hollow dots (Rsq, y-axis 

on the right) represent the goodness-of-fit (R2) value of the linear regression model built upon 

the log-transformed degree and the log-transformed fraction of nodes. Plot (b) shows the 

linear regression model with the log-transformed degree on the x-axis and the log-

transformed fraction of nodes on the y-axis, with a power of 16. Plot (c) shows the the 

number of metabolites (peaks) of 70 modules in the metabolomic co-responsive network. 
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Figure S3. 7 Danube case study: sCCA analysis of relationship between omics features and 

two chemical compounds. Plots on the left panel show the correlations between 

concentration of caffeine and (a) transcriptomic selected features, (c) polarpos selected 

features, and (e) polarneg selected features. Plots on the right panel show the correlations 

between concentration of carbamazepine and (b) transcriptomic selected features, (d) 

polarpos selected features, and (f) polarneg selected features. 
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Figure S3. 8 Danube case study: caffeine-associated co-responsive modules are ranked by 

their module enrichment scores. The co-responsive modules are from (a) transcriptomic, (b) 

polarpos and (c) polarneg co-responsive networks. The modules on the x-axis are ordered 

by the value of module enrichment score. The P-values of G statistics are stratified into five 

groups and annotated as follows: P > 0.05, ns (not significant); P < 0.05, *; P < 0.01, **; P < 

0.001, ***; P < 0.0001, ****. 
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Figure S3. 9 Danube case study: carbamazepine-associated co-responsive modules are 

ranked by their module enrichment scores. The co-responsive modules are from (a) 

transcriptomic, (b) polarpos and (c) polarneg co-responsive networks. The modules on the x-

axis are ordered by the value of module enrichment score. The P-values of G statistics are 

stratified into five groups and annotated as follows: P > 0.05, ns (not significant); P < 0.05, *; 

P < 0.01, **; P < 0.001, ***; P < 0.0001, ****. 
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Figure S3. 10 Case comparison: number of common genes between Chaobai transcriptomic 

modules and Danube transcriptomic modules. Modules are coloured based on (1) modules 

that are associated with both caffeine (CAF) and carbamazepine (CBZ) concentrations in the 

mixture (in purple), (2) module that are associated with CAF only (in red), and (3) modules 

that are associated with CBZ only (in blue). 
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Figure S3. 11 Danube case study: summary of the numbers of pathways identified commonly 

in transcriptomic and metabolomic co-responsive modules. The venn diagrams show (a) the 

number of pathways in 16 transcriptomic modules and 37 metabolomic modules, (b) the 

number of pathways in the modules that are associated with both caffeine and 

carbamazepine, (c) the number of pathways in the modules that are associated with caffeine 

only, and (d) the number of pathways in the modules that are associated with carbamazepine 

only. 
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4 Chaobai case study 

 

 

4.1 Abstract 

Environmental chemical pollution severely threatens the health of humans and the 

environment. Yet, the problem is so complex that no solutions are available for 

protection without research that better understands the toxicity of chemicals as real-

world mixtures. The first step is to identify samples from the environment that may be 

hazardous, by assessing the toxicity of the sampled environment as a whole, while 

detecting its chemical constituents. Here the relative toxicity of waters sampled from 

the Chaobai River (China) are assessed based on gene expression of the model test 

species Daphnia magna. Two-steps hierarchical clustering was applied to cluster the 

transcriptomic data into multiple co-responsive gene clusters then group sampled 

waters within gene clusters. To characterise and classify the biological effect of 

exposure to the chemical mixture at environmental levels, the functional roles of gene 

clusters were determined by an ortholog-based pathway overrepresentation analysis. 

Results show that expression-based clustering analysis of five gene clusters revealed 

that the environmental chemical mixture of a single site (M16) induced relatively higher 

expression levels in stress response and cellular homeostasis, and these differences 

are significantly related to Dibenz[a,h]anthracene, Erythromycin and Trimethoprim. 

These results demonstrated the feasibility of classifying the biological effect of 

exposure to environmental chemical mixtures based on gene expression at 

environmental relevant levels. 
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4.2 Introduction 

Environmental chemical pollution is a global and persistent problem that threatens the 

health of living organisms and is a primary cause of biodiversity declines in natural 

ecosystems (Amoatey and Baawain, 2019; Landrigan et al., 2018; Vermeulen et al., 

2020). Chemical safety legislation is designed to minimise the adverse impacts of 

substances on humans and the environment by regulating those specific chemicals 

that pose a threat to life (European Chemical Agency (ECHA) and European Food 

Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC) 

et al., 2018; Fantke et al., 2020). For example, the surface water quality criteria in 

China (GB3838-2002) focus on monitoring pre-selected chemical substances in the 

environment (Su et al., 2017). Yet pollution control requires the development of a 

holistic effect assessment of chemical mixture in the environment, especially for those 

rivers receiving multiple sources of pollutants. One of the river, the Chaobai River 

(Beijing, China), receives both treated and untreated reclaimed water generated from 

the wastewater treatment plants, industrial outlets, and agricultural runoffs (He et al., 

2018). These pollutants, just to name a few, include large amounts of nutrients, metals, 

pharmaceuticals, polycyclic aromatic hydrocarbons (PAHs), which enter the river daily. 

The reclaimed water that originates from the treated wastewater contains a relatively 

high amount of nitrogen, phosphorus, salts, metals, un-removed organic compounds 

and pathogens compared to freshwater, which may lead to excessive loads of nutrient 

or eutrophication (Yu et al., 2020), increases in soil salinity (Chen et al., 2013b), and 

potential contamination in groundwater (Chen et al., 2013a). Varying in time, the 

effluents of the wastewater treatment plant (WWTP) may also contain a variety of 

pharmaceuticals and a high amount of antibiotic (Iwane et al., 2001) that are not 
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completely removed by the sewage treatment process (Eggen et al., 2014; Falås et al., 

2016), which may pose a potentially harmful effect on aquatic species. In the populated 

area, the incomplete combustion of biomass and fossil fuel also contribute to the 

emission of PAHs (Qian et al., 2017), which may induce genotoxicity in non-targeted 

aquatic species (Yu, 2002). Multiple-source pollutants from domestic, agricultural, and 

industrial activities could also pose threats to ecosystem stability, as the chemical 

pollutants may determine the structure of zooplankton communities (Xiong et al., 2017). 

For these reasons and concerns for human health and the environment in this region, 

the Chaobai River system is an ideal model to study the potential biological effects of 

river waters with multiple-source pollutants.  

To evaluate the joint effect of pollutants in the natural river, omics-based bioassays 

that interrogate the global effects of chemicals on biomolecular pathways linked to 

health can be applied to capture the biological signatures of chemical toxicity at the 

molecular level. For example, gene expression profiles measured by the transcriptome 

are able to uncover adversity-related functional pathways under the joint chemical 

mixture exposure conditions that result in observed adversity (Watanabe et al., 2008). 

Transcriptome profiling has successfully characterised the biological responses to 

chemicals and environmental mixtures in zebrafish embryos (Wang et al., 2018), 

Atlantic eels (Baillon et al., 2015), oysters (Lüchmann et al., 2015), and waterfleas 

(Orsini et al., 2016). By interpreting the transcriptome, enriched biomolecular pathways, 

including metabolic pathways, which are responsive to chemical exposure, can be 

further characterised. For example, environmental chemicals may induce alternation 

in inter-correlated biological processes, such as xenobiotic metabolism and stress 

response. Xenobiotic metabolism is responsible for detoxification and 
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biotransformation of exogenous substances, which is represented by biomarkers that 

are diagnostic of these pathways, such as cytochrome P450 (CYP), ATP-binding 

cassette transporter (ABC), glutathione S-transferase (GST), and glutathione 

peroxidase (GPX) (Hassan et al., 2015)(Hassan et al. 2015). In transcriptomes, 

pronounced expression in these biomarkers might be interpreted as activation of 

xenobiotic defence (Liu et al., 2017). Exposure to environmental chemicals might also 

trigger oxidative stress responses; enhanced expression of glutathione reflects 

activated antioxidant defence (Regoli and Giuliani, 2014). Bioactivity of glutathione, 

GST and glutathione reductase play important roles in neutralising reactive oxygen 

species and avoiding further damage caused by exogenous compounds (Oliveira et 

al., 2015), which are considered as the biomarkers of oxidative stress response in 

Daphnia magna (Barata et al., 2005). These are but a few examples of detecting 

toxicity based on the observed changes in the expression of a defined set of genes, 

whose functions are sufficiently well understood to permit an assessment of exposure-

related adversity to substances in the environment. But transcriptomes are rich in data, 

representing global changes in gene expression that can be harnessed for a more 

systemic and pathway-based understanding of molecular toxicology. 

To classify the biological effects of environmental chemicals based on toxicity 

pathways, unsupervised learning methods like clustering may be used to identify 

groups of co-variant genes (gene-based clustering) or groups of homogeneous 

samples (sample-based clustering). Genes that share similar expression patterns are 

often assumed to be under the control of shared regulatory pathways, and therefore 

functionally related and biologically relevant (Gasch et al., 2000). Hierarchical 

clustering algorithms like DIANA and the Hierarchical Ordered Partitioning and 
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Collapsing Hybrid (HOPACH, Pollard, 2005) methods generate a hierarchical 

clustering tree, which identifies gene clusters within the transcriptome. The reasons 

that the HOPACH algorithm might outcompete the DIANA algorithm is that the DIANA 

requires manual selection of a height value for cutting the tree to determine the number 

of clusters in a hierarchical clustering tree, which can be problematic (Slonim, 2002); 

while the HOPACH automatically finds the optimal number of gene clusters from their 

expression patterns at each level of the clustering tree based on the Median Split 

Silhouette criterium, resulting in a robust clustering pattern. Further sample-based 

clustering analysis may characterise the grouping patterns of each gene cluster so that 

the structure of the gene expression data can be revealed in greater details. As each 

gene cluster may consist of genes of similar function, the grouping patterns of the gene 

clusters may assist in distinguishing the general differences in the overall 

transcriptomic profiles with respect to their biological roles, so that the functions 

potentially perturbed by the environmental chemicals may be revealed at a systematic 

level. Biological interpretation of the gene clusters may require comprehensive 

information of gene function and pathway. A cross-species extrapolation can be 

employed to annotate genes of the poorly defined species by referred to well-studied 

species based on their orthologs. As the functions of unknown genes can be putatively 

annotated by the corresponding OGs’ function, the gene-pathway association can be 

thereby transformed into an OGs-pathway association. If the OGs composition of every 

pathway is unique, the OGs-pathway association can be used to (1) distinguish 

different pathways and (2) applied as the reference data, similar to gene sets serving 

as background knowledge in the pathway overrepresentation analysis. 
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The Chaobai River is selected as the natural river system, I combined targeted 

chemical analysis of river water with non-targeted transcriptomics measurements of 

exposure-related effects on Daphnia magna using sampled surface river samples from 

30 sites along the Chaobai River Basin. The biological effects of these natural surface 

waters were assessed without pre-concentration or extraction of chemicals. The 

specific objectives of this study are to (1) identify gene clusters within the transcriptome, 

and (2) functionally annotated the gene clusters via pathway overrepresentation 

analysis, and finally (3) characterise the joint effect of the environmental chemical 

mixture through the grouping pattern of gene clusters.  

 

4.3 Methods 

4.3.1 Site description and sampling regime 

The Chaobai river is the 2nd largest river in Beijing, having a total length of 458 

kilometres (km). It is a vital drinking water resource in the Hebei-Beijing-Tianjin region 

that covers 13,846 km2 (Wang et al., 2009) and sustains a human population of 100.8 

million (Sun et al., 2019). The Chaobai River starts at the confluence of two headwaters 

called the Bai River and the Chao River, which both originate from the mountainous 

area in Hebei province, converge at Miyun of Beijing and join as the Chaobai river. The 

Chaobai River flows through the populated urban area in Beijing and the agricultural 

region in Tianjin, then flows into the Pacific Ocean at Bohai gulf. The whole river basin 

has several water sources. One of the water sources, the reclaimed water from Wenyu 

River, contributes to 38 billion m3 of water into the Chaobai River per year (Huang et 

al., 2010), assisting in the government-initiated restoration of the eco-environment and 

at refilling the groundwater. Another source is the effluents of wastewater treatment 
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plants along the river that accounts for 9.2 billion m3 of water into the Chaobai River 

annually (Su et al., 2020). The river also receives industrial outlets in the urban area 

and agricultural runoffs in the farmland. Several reaches of the river have severe 

eutrophication problem (Figure S4.1), which is another long-lasting problem for citizens 

and the river ecology. The flow velocity is nearly zero in the mainstream of the Chaobai 

River (He et al. 2017). There are over 20 dams across the whole basin to regulate the 

flows in the upstream and distribute surface waters to the irrigation-intensive area. 

Along the whole river basin, thirty sites were selected for field sampling, including 

seven sites in the Bai River, six sites in the Chao River and seventeen sites in the 

Chaobai River (Figure S4.2). The GPS locations of sampling sites are summarised in 

Table S3.1.  

All surface water samples were collected in the middle of the river (if there is a bridge) 

or 1 – 2 meter offshore and stored in Duran amber glass bottles in September 2017. 

Water samples for the needs of chemical analysis were collected simultaneously: 

500 ml for salts and heavy metals measurement, 4L for PAHs detection, and 3L for 

organic micropollutants extraction and measurement (especially pharmaceuticals). 

The pH and total dissolved solids (TDS) were measured on-site, while the total organic 

carbon (TOC) was measured in the laboratory within two weeks. All water samples 

were transported at room temperature (19 - 23 °C), filtered with 0.7 μm glass fibre 

membrane filters (GF/F, Whatman, U.S.A) and stored at four °C before chemical 

analysis. And 1 L of the water samples were collected for the exposure experiment. 

4.3.2 Chemical analysis 

For generating the chemical profiles of the chemical mixtures in the water samples 

collected from the Chaobai River, chemical analysis was performed by targeted 
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analysis. The targeted analysis consisted of quantitative measurements for (1) salts 

and metals that are included in the regulatory monitoring under the Environmental 

quality standard of surface water (GB 3838-2002); (2) 16 polycyclic aromatic 

hydrocarbons (PAHs) that are priority compounds for regulation by the US 

Environmental Protection Agency (Keith L.H. 2015) but not included in the current 

surface water quality standards in China (GB 3838-2002); and (3) 22 organic 

micropollutants, including caffeine and 21 widely-occurred pharmaceuticals in China 

(Su et al. 2020), that are also not included in the current standards (GB 3838-2002). 

These three groups of chemicals can reveal the basic status of nutrient and salts in the 

river waters and potential pollutants from the urban runoffs or WWTP outlets. The 

methods applied for targeted analysis of these three groups of chemical substances 

are listed below.  

Salts and metals 

Water samples were filtered with 0.7 μm glass fibre membrane filters (GF/F, Whatman, 

U.S.A) and stored at 4 ℃ before measurement. The total nitrogen (TN), ammonia 

(NH4), nitrate (NO3), and total phosphorus were determined using the methods 

described in Liao et al. (2019). The rest were determined by methods described in 

Xiong et al. (2017). The detailed information of salts and metals were listed in 

Table S4.2.  

PAHs  

For measurements of prioritised polycyclic aromatic hydrocarbons (PAHs), filtered 

water samples were extracted with C18 cartridges (500mg, 6ml, Supelco) and HLB 

cartridges (500mg, 6ml, Waters), then eluted with the organic solvent. The internal 

standards (100 ng/L) were injected into each sample before instrumental analysis. 
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Targeted analysis of 16 prioritised PAHs was conducted on the Agilent 7890A gas 

chromatography (GC) equipped with a 5795C mass spectrometry (MS) detector with 

electrospray ionisation (EI) sources in the selective ion monitoring mode. The 

instrument setting followed the description in Qiao et al. (2014, 2020). The limits of 

quantifications for 16 PAHs are listed in Table S4.3.  

Organic micropollutants 

As for organic micropollutants, water samples were filtered with 0.7 μm glass fibre 

membrane filters (GF/F, Whatman, U.S.A) and spiked with 100 ng internal standards 

(Sulfamethazine-13C6, Ofloxacin-D3, Caffeine-13C3). The organic substances were 

extracted by SPE with Oasis HLB cartridges (500mg, 6ml, Waters, U.S.A.), eluted with 

methanol, dried under nitrogen at room temperature, and dissolved in 40% methanol 

solvent (v:v). Targeted analysis of 22 organic micropollutants was conducted on the 

Agilent 1290 ultra-performance liquid chromatography (UPLC) system equipped with 

the Agilent 6420 Triple Quad mass spectrometer (MS). The extraction method and 

instrumental settings were described in Ben et al. (2018) and Su et al. (2020), 

respectively. Limits of quantification (LOQ) for 22 organic micropollutants were listed 

in Table S4.4.  

4.3.3 Sample preparation and bioassay 

A total of 30 water samples were collected from the Chaobai River, filtered with 0.7 μm 

glass fibre membrane (GF/F, Whatman, USA) and stored at 20 ℃ in the dark in 

preparation of the bioassay with Daphnia neonates. Each water sample had three 

biological replicates except for B01 with eight replicates, resulting in a total of 95 

samples in the Chaobai case study. 



 144 

For the bioassay, water samples from case one and treatment media from case two 

were transferred to glass vials before the bioassay. Exposure tests were conducted 

using Daphnia magna (Bham2 strain) neonates according to OECD guideline 202 

(OECD 202). Neonates hatched within 24 hours were exposed to filtered Chaobai 

River waters or spike-in borehole waters (spike with organic extracts from Danube 

River) for 48 hours without feeding. After the 48 hours of exposure, the number of 

immobilised neonates were recorded, and all the exposed neonates were collected, 

flash-frozen within liquid nitrogen and stored at -80 ℃ before RNA extraction.  

4.3.4 Total RNA extraction and transcriptome sequencing 

For the Chaobai River case study, the frozen pooled neonates for each biological 

replicate contained 5 exposed neonates. Frozen pooled neonates were homogenised 

in GenoGrinder (SPEX SamplePrep, U.S.A.) for 45  seconds at the speed of 1750 rpm. 

Total RNA extraction was performed using the Agencourt RNAdvance Tissue Total 

RNA kit (Beckman Coulter, U.S.A.), as the total RNA was captured onto magnetic 

beads, washed twice for removing unwanted salts, and eluted in 100 μl RNAse-free 

H2O, following the manufacturer’s instructions. The concentration of total RNA 

concentrations was quantified by Nanodrop 8000 Spectrophotometer (Labtech Ltd., 

U.K.). The quality of extracted total RNA, both integrity and purity, was measured on 

TapeStation 2200 (Agilent Technologies, U.S.A.). A cDNA library was generated for 

each sample from 150 ng of RNA using NEBNext Ultra II Directional RNA Library Prep 

Kit for Illumina, following the manufacturer’s instructions. All of the sample libraries 

were then normalised to the same molecular weight and pooled together using the 

adapter indices supplied by the manufacturer. Transcriptome sequencing (RNA-seq) 

was performed on the Hiseq4000 (Illumina, U.S.A.) at BGI.  
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4.3.5 Sequence pre-processing 

Reads from the two case studies were processed separately. Raw reads were firstly 

trimmed in Trimmomatic (version 0.32; Bolger et al. 2014) to remove sequencing 

adapter and obtain sequences with phred scores of more than 30. FastQC (version 

0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) were used to 

screen the overall sequence quality. Transcript reads were mapped to an established 

transcriptome reference database (Orsini et al. 2016) using Salmon (Version 0.8.2; 

Patro et al. 2017). The quasi-mapping function of Salmon was used with GC and 

positional bias correction. For each sample, both paired ends from two lanes were run 

together. Then the mapped transcript reads were processed in R (version 4.0.3). Low 

count reads (reads with raw count lower than 10) and outlier samples were identified 

and removed from the data set. The read counts were normalised by the size factor 

defined in the DESeq2 package (version 1.30.0; Love et al. 2014) in this study.. 

4.3.6 Similarity analysis of transcriptomic and chemical profiles 

Normalised gene counts and targeted chemical concentrations in the Chaobai River 

case study were used for similarity analysis. Principal component analysis (PCA; 

Konishi T. 2015) was used to reveal the overall similarity based on the first two principal 

components, which explained a considerable proportion of the overall variance. 

Hierarchical clustering analysis (HCA; Eisen et al. 1998) was conducted based on the 

Euclidean distance with the ward.D2 clustering method. Pearson correlation coefficient 

was calculated in pairwise treatment levels to reveal the co-variation (another 

perspective of similarity) of any two treatment levels.  
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4.3.7 Gene cluster identification 

The highly variable genes were selected by scran package with the normalised gene 

counts of both case studies (version 1.18.7; Lun et al. 2016). Selected genes were 

clustered by Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH) 

algorithm in the hopach package (version 2.52.0; Pollard and Van Der Laan 2003) on 

R. Cosine distance was chosen to capture the similarity between any two genes, as 

suggested in Eisen et al. (1998). Sample bootstrapping was performed to confirm the 

variability of the composition of gene clusters. The median value of genes belonging 

to the gene cluster was used as the reference value. For each pseudo-replication, 

samples were randomly selected to generate a new cluster pattern based on the gene 

cluster reference values. The gene cluster assignments were recorded. The 

frequencies of genes assigned to each cluster were summarised from the records of 

10,000 repeats. Gene clusters were further used for clustering the samples based on 

Euclidean distance measurement with the ward.D2 clustering method.  

4.3.8 Pathway analysis of co-responsive modules 

As described in Chapter 3, a cross-species KEGG pathway overrepresentation test 

was performed for Daphnia magna gene set pathway analysis. The Daphnia magna 

genes in the transcriptomic co-responsive modules were re-annotated by their 

corresponding ortholog group IDs, based on the orthologous relationships between 

Daphnia magna and Drosophila melanogaster from the OrthoDB database (v10.1; 

Kriventseva et al. 2019). A permutation chi-square test was performed over 100,000 

iterations to generate a robust P-value estimation directly from resampling detected 

Daphnia genes annotated with ortholog groups. The P-values of the permutation chi-
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square tests were further corrected following the Benjamini-Hochberg procedure with 

a false discovery rate at 0.05 (Benjamini and Hochberg 1995).  

4.3.9 Correlation analysis of eigengenes and chemical components 

The eigengene of each gene cluster is the first principal component of the gene cluster 

matrix. Pearson correlation coefficients were calculated between each eigengene and 

individual chemical, in order to identify close associations between chemical 

component and gene clusters.  

 

4.4 Results 

4.4.1 Chemical analysis 

(1) Distribution of PAHs in Chaobai River – US EPA prioritised PAHs were measured 

using surface water samples collected from 30 sites along the Chaobai River Basin 

(Figure S4.3). The indeno[1,2,3-cd]pyrene (IncdP) were under detection levels among 

all the sites. The naphthalene (Nap), acenaphthylene (Acy) and benzo[k]fluoranthene 

(BkF) detected the highest concentration levels at site B07, which is near the urban 

wastewater outlet. Dibenz[a,h]anthracene (DBA) detected 16.72 ng/L at site M16, 

which is also close to the municipal wastewater treatment plant (WWTP) outlet. The 

highest levels of acenaphthene (Ace), pyrene (Pyr), chrysene (Chry), 

benz[a]anthrancene (BaA) were detected at site M06; and the highest levels of 

fluorene (Fluo), phenanthrene (Phe), fluoranthene (Flua), benzo[a]pyrene (BaP) and 

benzo[g,h,i]perylene (BghiP) were detected at site M08; these two sites are located in 

the urban area close to megacity Beijing (population over 21.54 million). 

(2) Distribution of organic micropollutants in Chaobai River – A total of 21 organic 

substances were measured using surface water samples collected from 30 sites along 
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the Chaobai River Basin (Figure S4.4). The tetracycline (TCN) was under detection 

levels among all 30 sites, and the atenolol (ATN), chlortetracycline (CTC), norfloxacin 

(NOR), oxytetracycline (OTC), propranolol (PROP), and sulfamerazine (SMR) could 

be only detected in one site along the river. Among 21 organic substances, caffeine 

(CAF), carbamazepine (CBZ) and erythromycin (ERY) were detected in more than 50% 

of all sampling sites (29, 25 and 27 sites, respectively) along the Chaobai River. The 

CAF could be detected in 29 sites ranging from 2.1 to 64.7 ng/L, observing its highest 

level at site M06. The CBZ could be detected in 25 sites ranging from 0.4 to 35.2 ng/L, 

with the highest concentration level at site M11 and the second highest (34.2 ng/L) at 

site M01. The ERY could be detected in 27 sites and reached the highest level (593.7 

ng/L) at site M16 and the second-highest level (311.2 ng/L) at site M17, which are the 

lowest two sites in the Chaobai River and close to the municipal WWTP outlet.  

(3) Similarity analysis of targeted chemicals – The principal component analysis (PCA) 

plot reveals the general similarity of measured chemicals among 30 water samples in 

the Chaobai River case. It is obvious that site B07, C03 and M06 are different from the 

rest. Table S4.5 summarise the relative contribution of each chemical factor to the first 

two components. The variance of the first component is largely contributed by organic 

chemicals (BF, CLA, ROX, and SMX) and salts (PO4 and TP); while the variance of 

the second component is largely contributed by heavy metals (Cr, Cu, Fe, Ni, and Zn) 

and organic micropollutants (CIP, ENR, and LOM). Thus, the differences between M06 

and the rest 29 water samples is closely related to the concentration differences of BF, 

CLA, ROX, SMX, PO4 and TP; while the difference between C03 and the rest is 

contributed by Cr, Cu, Fe, Ni, Zn, CIP, ENR and LOM. 
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Figure 4. 1 PCA plot of targeted chemicals in water samples of the Chaobai River. The 

sampling site names are described in Table S4.1 and Figure S4.2. 

 

4.4.2 Immobility rate of 48 hours exposure 

The immobility rate of exposed Daphnia is plotted in Figure S4.5. After 48 hours of 

exposure, only the water sample from site C04 observed a 20% immobility rate (1 out 

of 5 neonates immobilised, the same among three biological replicates). Water 

samples from sites C05, M02, M03, M05, and M10 also recorded a 6.7% of immobility 

rate (1 out of 5 neonates immobilised in 1 biological replicate). The rest 24 water 

samples did not induce any immobilised neonates after 48 hours of exposure.  
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4.4.3 RNAseq data pre-processing 

Although the transcriptome can be interpreted at the level of alternative splice variants 

of genes, for this study, all the successfully mapped transcriptome data were 

summarised at the gene level (Figure S4.6). With an average mapping rate of 98.13%, 

RNA sequencing of each sample produced 12 million reads, on average. Genes with 

raw read counts under 10 were also removed from the downstream analysis, leaving 

a final total of 14,705 genes for my investigations.  

4.4.4 Similarity analysis of the transcriptomics profiles 

To demonstrate the overall similarity of the transcriptomics profiles (Figure 4.2), 

principal component analysis (PCA) was performed using the mean values of the 

14,705 genes of individual river treatments. Figure 4.2a shows both the first principal 

component (explaining 91.3 % of the total variance) and the second component (2.2 % 

of the total variance) could clearly distinguish M16 samples from the others. The 

hierarchical clustering dendrogram plot in Figure 4.2b was generated by ward.D2 

clustering method based on Euclidean distance. Similar to the PCA plot, M16 formed 

a unique branch apart from the other clustered samples, based on gene expression 

similarities. A pairwise Pearson correlation coefficient matrix shown in Figure 4.2c 

revealed that most of the sites in the Chaobai River induced highly similar 

transcriptomic profiles (coefficient larger than 0.8) in the exposed daphnids except for 

M16 and M17.  
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Figure 4. 2 Similarity analysis of transcriptomic profiles in the Chaobai case. (a) Score plot of 

Principal Component Analysis, (b) Dendrogram of Hierarchical Clustering Analysis, and (c) 

Heatmap of pairwise Pearson correlation coefficient (coef). Sample site locations are shown 

in Figure S4.2. 
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4.4.5 Gene cluster identification 

A total of 2796 genes were identified as highly variable genes with the scran package. 

A total of 27 gene clusters were generated by the HOPACH algorithm, including 13 

smaller clusters (each cluster consists of 1 to 4 genes) and 14 larger clusters (each 

cluster consists of 25 to 756 genes). Among them, cluster C8000 was the largest 

consisting of 756 genes (27 %), followed by cluster C6200 (622 genes, 22 %) and 

cluster C3000 (325 genes, 12 %). The detailed information of 14 larger gene clusters 

is listed in Table S4.6.  

The robustness of the gene clustering pattern was evaluated by sample bootstrapping, 

and the reappearance frequencies of gene clusters are plotted in Figure S4.7. Most of 

the 14 larger gene clusters were relatively stable. The average reappearance 

frequencies were all above 50 % except for cluster C4401; cluster C1200, C5200, and 

C9000 had average reappearance frequencies levels greater than 87 %. In brief, the 

gene clustering pattern is considered to be robust, as most of the gene clusters 

consisted of stable members verified in the bootstrapping analysis.  

4.4.6 Functional analysis of gene cluster 

The statistical overrepresentation tests for gene sets forming clusters were performed 

by permutation chi-squared tests. This analysis was conducted to investigate whether 

the membership of similarly expressed genes in each cluster is reflective of their 

functions within known KEGG pathways. The adjusted P values of all KEGG pathways 

are listed in Appendix 1. The adjusted P values of pathways related to xenobiotic 

metabolism are plotted in Figure 4.3. 

Figure 4.3 shows that xenobiotic biodegradation and metabolism pathways were 

significantly enriched in clusters C2351, C3000, C7000 and C8000. The ABC 
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transporter related to transmembrane transportation was significantly enriched in 

C7000 and C5200. The antioxidant defence system, which includes glutathione and 

ascorbate, was also over-represented in C2351, C3000 and C7000. The functional 

roles of genes within C2351, C3000, C5200, C7000 and C8000 might be similar as 

they consist of functional genes related to xenobiotic detoxification processes.  

In addition to the pathway enrichment results for the six clusters in Figure 10, 

autophagy-related pathways were significantly enriched in C1120, C2100 and C5100. 

Metabolic pathways related to the metabolism of carbohydrate, lipid, glycan, and 

protein processing were also reported as significantly enriched in C2100 (Appendix 1), 

suggesting that C1120, C2100 and C5100 might be related to turnover of cellular 

components and maintaining cellular homeostasis.  

 

 
Figure 4. 3 Overrepresentation analysis of xenobiotic metabolism-related pathways among 

the Chaobai River gene clusters. The significance levels of selected pathways are shown in 

the plot with their negative logarithms (-log10) of the adjusted P values. 
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4.4.7 Clustering pattern of xenobiotic-related gene clusters 

The HCA plots of 14 gene clusters and a combined set of 13 other gene clusters are 

shown in Figure S4.8. Among them, gene clusters C2100, C2351, C3000, C4401, and 

C7000 revealed distinctive expression pattern in M16 compared to the other sites, 

which reflects the gene-centric pattern shown in Figure 4.2a. As mentioned earlier, 

gene clusters C2351, C3000 and C7000 are signalling the xenobiotic metabolic 

functions, and C2100 is associated with cellular homeostasis. Thus, the clustering 

pattern of these five gene clusters suggested that the chemical mixture within the 

sampled waters from site M16 induced a distinctive transcriptomics profile which might 

be related to higher expression levels (compared against site B01) in xenobiotic 

degradation pathways and potential cellular damage that require faster turnover of 

cellular construct molecules. 

4.4.8 Correlation analysis between eigengenes of 14 gene clusters and chemical 

factors 

The eigengene is the first principal component of the gene cluster matrix. As genes in 

each gene cluster share similar variation pattern across all the samples, Based on the 

Pearson correlation between eigengenes and chemical factors. It is clear that cluster 

C4401 associated with most of the chemical factors, including salts (NO2, TN, PO4, 

TP), Mn, PAHs (Ace, Pyr, BaA, Chry) and organic chemicals (ATE, AZN, BF, CLA, 

ERY, MET, ROX, SDZ, SMX, TMP). Cluster C2351, C3000, and C7000 are 

significantly correlated with DBA, ERY and TMP. Cluster C2100 is significantly 

associated with PAHs (Fluo, Phe, Flua, DBA) and CTC. 
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Figure 4. 4 Correlation analysis between eigengenes of 14 gene clusters and chemical 

factors. The color code corresponds to the absolute value of Pearson correlation coefficient 

values. The asterisks highlight the significant correlation with P values lower than 0.05. 
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4.5 Discussion 

In the Chaobai River case, 65 chemicals and transcriptomic profiles of exposed 

daphnids are measured after 48 hours exposure. However, the general similarity 

analysis of chemical factors and transcriptomic profiles reveal different grouping 

pattern. One of the reasons is that the targeted chemical profiles is limited to tens of 

chemical component, which may not be adequate to reveal the overall differences of 

the water samples. Another possibility is that the concentration levels of most of the 

chemicals are not exceed their corresponding EC50 levels (refer to Table S4.3 and 

S4.4), and they are not efficient to induce observable variations in immobility rate 

(Figure S4.5), suggesting they may not be responsible for the differences observed in 

the transcriptomes. 

PCA plot of transcriptomic profiles reveals that sampled water from site M16 induced 

obvious variations in the xenobiotic metabolism pathway and potentially trigger 

oxidative stress responses in the exposed Daphnia neonates after 48 hours of 

exposure. Specifically, the expression pattern of clusters C2351, C3000 and C7000 in 

Daphnia’s response to water sampled at M16 revealed obviously higher transcripts 

levels in genes participating in xenobiotic biodegradation, compared against 

expression profiles of site B01. Correlation analysis further suggested that the 

differences between M16 and the rest might be related to DBA, ERY and TMP, which 

is partially suggested by the PCA analysis of the targeted chemical profiles (Table 

S4.5).  

Targeted chemicals measurements of site M16 reveal that relatively high levels of 

phenanthrene (PHE, 110.12 ng/L), dibenz[a,h]anthrancene (DBA, 16.72 ng/L), 

erythromycin (ERY, 593.68 ng/L), trimethoprim (TMP, 132.18 ng/L) were detected at 
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this sampling site, compared against site B01. Previous studies revealed similar 

expression patterns of exposed organisms to either individual chemicals or chemical 

mixtures containing those four chemical compounds. The PHE induced alternations in 

xenobiotic related genes in aquatic amphipods by the up-regulations of CYP and GST 

but no significant changes in the expression of ABC, PHE also activated stress 

response genes such as heat shock protein in the amphipod Lepeophtheirus salmonis 

(Shatilina et al. 2020), which is also a malacostraca crustacean. Although there are 

only a few past studies investigating gene expression changes from exposure to DBA 

(Labib et al. 2016) or part of the mixture treatment (Labib et al. 2017; Liu et al. 2019; 

Sun et al. 2021), past studies suggested that DBA shared similar mode of action with 

PAH mixtures (Sun et al. 2021) and may trigger signalling pathways (such as p53, 

apoptosis, cell cycle, AhR, circadian rhythm) and xenobiotic metabolic pathways (Labib 

et al. 2017). Recent studies revealed that the mechanism of action of ERY includes 

growth inhibition of algae by down-regulating DNA replication, interrupting carbon 

assimilation and chlorophyll-a biosynthesis, and reducing detoxification activities in 

xenobiotic metabolism (Machado and Soares 2019; Guo et al. 2021). TMP may 

suppress reproduction in Daphnia magna at the concentration level of 13 mg/L (Dalla 

Bona et al. 2015), which is 100,000 higher than the concentration levels observed at 

site M16 (132 ng/L) and hardly comparable to the environmental chemicals’ exposure 

scenario described in the Chaobai case. Thus, the activation of xenobiotic related 

genes and potentially oxidative stress responses might be related to the relatively high 

concentrations of PHE, DBA, and ERY. Further investigation of the organic substances 

by non-targeted screening assay will be needed to identify the chemical components 

that trigger oxidative stress in the exposed Daphnia. 
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4.6 Conclusion 

In this Chaobai River case study, transcriptomic profile is used to characterise the 

effects of environmental chemical mixtures from a natural river in China. Genes 

clusters support the differences between site M16 and the rest are closely related to 

xenobiotic metabolism and stress response. And these clusters are significantly 

correlated to organic chemicals like DBA, ERY and TMP.  
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4.7 Supplementary 

Tables and Figures  

Table S4. 1 Description of the sampling sites along the Chaobai River Basin. 

Table S4. 2 Inorganic chemicals in surface water samples from the Chaobai River 

Basin. 

Table S4. 3 PAHs in surface water samples from the Chaobai River Basin. 

Table S4. 4 Organic micropollutants in surface water samples from the Chaobai River 

Basin. 

Table S4. 5 Relative contribution of chemical factors to first two components in Chaobai 

case. 

Table S4. 6 Summary of 14 gene clusters in the Chaobai case. 

Figure S4. 1 The eutrophication area of the Chaobai River. 

Figure S4. 2 The sampling sites of the Chao River, the Bai River and the Chaobai River. 

Figure S4. 3 Distribution of PAHs in the Chaobai River. 

Figure S4. 4 Distribution of organic micropollutants in the Chaobai River. 

Figure S4. 5 Immobility rate of Daphnia magna after 48 hours exposure to filtered 

surface waters from the Chaobai River. 

Figure S4. 6 Overview of Chaobai transcriptome data sets. 

Figure S4. 7 Robustness of transcriptomic gene clusters in the Chaobai case. 

Figure S4. 8 Hierarchical clustering of gene expression in selected Chaobai gene 

clusters. 
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Table S4. 1 Description of the sampling sites along the Chaobai River Basin. Chemical 

attributes at each site were measured on-site from 19th to 22nd September in 2017. 

Site Longitude(E) Latitude(N) Reach pH 
TDS a 

(mg/L) 

TOC b 

(mg/L) 

B01 116.624 40.730 Bai river 8.19 312.8 1.26 

B02 116.775 40.654 Bai river 8.32 190.4 1.21 

B03 116.782 40.632 Bai river 8.49 148.2 1.06 

B04 116.796 40.613 Bai river 8.28 312.7 1.63 

B05 116.802 40.565 Bai river 8.02 278.0 2.03 

B06 116.847 40.408 Bai river 8.23 138.7 1.90 

B07 116.836 40.370 Bai river 8.27 93.4 2.53 

C01 117.162 40.694 Chao river 8.13 447.0 1.28 

C02 117.127 40.680 Chao river 8.24 316.3 1.24 

C03 117.177 40.650 Chao river 7.95 420.9 1.66 

C04 116.996 40.438 Chao river 8.00 478.6 1.74 

C05 116.911 40.391 Chao river 7.97 488.9 2.14 

C06 116.837 40.348 Chao river 8.26 206.9 5.87 

M01 116.817 40.348 Chaobai river  8.09 718.2 6.37 

M02 116.678 40.136 Chaobai river  8.12 453.8 3.46 

M03 116.732 40.102 Chaobai river  8.29 337.5 6.08 

M04 116.765 40.046 Chaobai river  8.33 462.3 8.56 

M05 116.763 39.971 Chaobai river  8.14 199.6 4.33 

M06 116.781 39.908 Chaobai river  7.34 485.7 4.79 

M07 116.842 39.857 Chaobai river  7.93 652.0 3.75 

M08 116.973 39.785 Chaobai river  7.98 629.9 3.48 

M09 117.129 39.738 Chaobai river  8.38 327.3 2.64 

M10 117.209 39.710 Chaobai river  7.92 569.9 3.90 

M11 117.290 39.680 Chaobai river  8.10 272.8 2.78 

M12 117.388 39.610 Chaobai river  7.89 441.2 3.58 

M13 117.479 39.470 Chaobai river  8.28 342.5 2.95 

M14 117.504 39.390 Chaobai river  8.11 418.4 3.75 

M15 117.578 39.278 Chaobai river  8.19 252.3 5.75 

M16 117.661 39.155 Chaobai river  7.60 916.3 7.90 

M17 117.734 39.110 Chaobai river  8.58 927.4 3.65 

a. TDS, total dissolved solids. 
b. TOC, total organic carbon. 
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Table S4. 2 Inorganic chemicals in surface water samples from the Chaobai River Basin. 

Parameter Unit Occurrence a Range b LOQ c 

Ammonia (NH3) mg/L 22 0-1.43 (M10) 0.02 

Nitrate (NO3) mg/L 30 0.07-7.74 (M01) 0.004 

Nitrite (NO2) mg/L 14 0-0.69 (M06) 0.004 

Total N (TN) mg/L 29 0-16.14 (M06) 0.01 

Phosphate (PO4) mg/L 8 0-1.43 (M06) 0.01 

Total P (TP) mg/L 10 0-1.44 (M06) 0.01 

Sodium (Na) mg/L 30 3.35-170.44 (M17) 0.005 

Calcium (Ca) mg/L 30 16.16-44.10 (C01) 0.011 

Potassium (K) mg/L 30 1.11-28.36 (M01) 0.020 

Magnesium (Mg) mg/L 30 4.93-29.33 (M17) 0.013 

Sulphate (SO4) mg/L 30 17.78-125.41 (M17) 0.75 

Chloride (Cl) mg/L 30 5.08-247.07 (M17) 0.15 

Arsenic (As) μg/L 30 0.69-7.01 (M17) 0.01 

Chromium (Cr) μg/L 30 2.48-97.30 (C03) 0.01 

Copper (Cu) μg/L 30 0.07-44.90 (C03) 0.01 

Iron (Fe) μg/L 30 26.3-414.0 (C03) 0.01 

Manganese (Mn) μg/L 30 0.04-119.00 (M06) 0.01 

Nickel (Ni) μg/L 30 0.33-10.40 (C03) 0.01 

Zinc (Zn) μg/L 30 4.48-112.00 (C03) 0.01 

a. The number of sites with detectable and quantifiable measurements. 

b. Zero measurement means under the limit of quantification (LOQ). 

c. LOQ, limit of quantification. 
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Table S4. 3 PAHs in surface water samples from the Chaobai River Basin. 

Parameter 
Occ 

a 

Range b  

(ng/L) 

LOQ 

(ng/L) 

EC50 c 

(mg/L) 

Reference 

Naphthalene (Nap) 28 0-34.55 (B07) 11.46 7.92 Ha 2019 

Acenaphthylene (Acy) 28 0-4.25 (B07) 1.24 / / 

Acenaphthene (Ace) 28 0-6.07 (M06) 1.54 1.275 Munoz 1993 

Fluorene (Fluo) 28 
0-47.32 

(M08) 

4.52 1.34 Ha 2019 

Phenanthrene (Phe) 28 
0-246.47 

(M08) 

15.30 0.46 Ha 2019 

Anthracene (Ant) 28 
0-22.69 

(M07) 

1.67 0.095 Munoz 1993 

Fluoranthene (Flua) 28 
0-73.8 (M08) 0.70 0.106 Clement 

2000 

Pyrene (Pyr) 28 
0-42.67 

(M06) 

0.65 0.058 Ha 2019 

Benz[a]anthrancene (BaA) 28 
0-81.30 

(M06) 

2.04 0.0015 Lampi 2006 

Chrysene (Chry) 28 
0-160.22 

(M06) 

3.93 / / 

Benzo[b]fluoranthene (BbF) 24 
0-26.20 
(M12) 

2.22 0.12 Lampi 2006 

Benzo[k]fluoranthene (BkF) 16 0-15.83 (B07) 0.04 / / 

Benzo[a]pyrene (BaP) 26 
0-34.07 

(M08) 

0.62 0.0016 Lampi 2006 

Indeno[1,2,3-cd] pyrene (IncdP) 0 / 1.10 / / 

Dibenz[a,h]anthracene (DBA) 28 
0-16.72 

(M16) 

0.19 0.0016 Lampi 2006 

Benzo[g,h,i]perylene (BghiP) 28 0-2.75 (M08) 1.26 0.0010 Lampi 2006 

a. Occ, occurrence, the number of sites with detectable and quantifiable measurements. 

b. Zero measurement means under the limit of quantification (LOQ). 

c. EC50, concentration that induces 50 % immobility rate of Daphnia after 48 hours exposure. 
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Table S4. 4 Organic micropollutants in surface water samples from the Chaobai River Basin. 

Parameter CAS Occ a Range b  

(ng/L) LOQ EC50c 

(mg/L) Reference 

Atenolol (ATE) 29122-68-7 1 0-5.84 (M06) 1.82 / / 

Azithromycin (AZN) 83905-01-5 3 0-4.99 (M06) 0.34 3.23 Kuzmanovic 
2014 

Bezafibrate (BF) 41859-67-0 13 0-10.86 (M06) 0.41 240 Duarte 
2019 

Caffeine (CAF) 58-08-2 29 0-64.69 (M06) 1.40 1079 Lomba 
2020 

Carbamazepine (CBZ) 298-46-4 25 0-35.23 (M11) 0.36 9.53 Tongur 
2020 

Clarithromycin (CLA) 81103-11-9 3 0-4.60 (M06) 0.74 >2 Baumann 
2016 

Erythromycin (ERY) 114-07-8 27 0-593.68 (M16) 0.86 8.617 Kuzmanovic 
2014 

Metoprolol (MET) 37350-58-6 10 0-52.73 (M06) 1.08 133 Moermond 
2016 

Roxithromycin (ROX) 80214-83-1 5 0-29.48 (M06) 0.63 74.3 Choi 2008 
Sulfadiazine (SDZ) 68-35-9 4 0-22.62 (M06) 1.31 97.28 Liu 2016 
Sulfamethoxazole (SMX) 57-68-1 12 0-260.20 (M06) 1.37 189.2 Kim 2007 
Trimethoprim (TMP) 738-70-5 16 0-132.18 (M16) 0.69 167 Choi 2008 

Ciprofloxacin (CIP) 85721-33-1 3 0-7.42 (C03) 0.79 >100 
Załęska-
Radziwiłł 

2011 
Chlortetracycline (CTC) 64-72-2 1 0-1.58 (M08) 0.99 >400 Kim 2010 

Doxycycline (DOX) 564-25-0 5 0-18.69 (M17) 1.03 156 Fernandez 
2004 

Enrofloxacin (ENR) 93106-60-6 6 0-6.62 (C03) 0.55 45.8 Kim 2010 
Lomefloxacin (LOM) 98079-51-7 2 0-5.09 (C03) 0.52 166 Luo 2018 
Norfloxacin (NOR) 70458-96-7 1 0-3.87 (C06) 1.12 / / 

Oxytetracycline (OTC) 79-57-2 1 0-2.09 (B07) 0.93 >400 Zounková 
2011 

Propranolol (PROP) 526-66-6 1 0-4.99 (M12) 0.66 2.19 Nielsen 
2018 

Sulfamerazine (SMR) 127-79-7 1 0-4.96 (C06) 1.62 205 Jung 2008 

Tetracycline (TET) 60-54-8 0 - 1.37 8.16 Havelkova 
2016 

a. The number of sites with detectable and quantifiable measurements. 

b. Zero measurement means under the limit of quantification (LOQ). 
c. EC50, concentration that induces 50 % immobility rate. 
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Table S4. 5 Relative contribution of chemical factors to first two components in Chaobai 

case. 

 Standardized  Standardized 
 PC1 (28.41%) PC2 (14.85%)  PC1 (28.41%) PC2 (14.85%) 

NH3 0.37 0.01 As 0.95 0.02 
NO3 0.00 2.62 Cr 0.09 9.36 
NO2 4.21 0.06 Cu 0.00 9.57 
TN 3.11 2.00 Fe 0.08 9.63 

PO4 5.42 0.03 Mn 4.69 0.46 
TP 5.44 0.02 Ni 0.98 7.72 

TOC 0.69 0.06 Zn 0.01 9.36 
Na 0.93 0.06 ATE 4.96 0.03 
Ca 0.03 3.34 AZN 4.96 0.05 
K 0.92 0.08 BF 5.44 0.03 

Mg 0.05 1.25 CAF 1.53 0.15 
SO4 0.00 2.33 CBZ 0.58 0.01 
Cl 0.67 0.11 CLA 5.17 0.08 

Nap 0.00 0.31 ERY 0.52 0.01 
Acy 1.14 2.60 MET 4.62 0.10 
Ace 3.53 1.87 ROX 5.18 0.05 
Fluo 2.03 1.25 SDZ 4.60 0.11 
Phe 1.99 0.66 SMX 5.29 0.07 
Ant 2.39 0.01 TMP 1.02 0.00 
Flua 2.05 0.56 CIP 0.03 8.51 
Pyr 3.37 1.10 CTC 0.23 0.01 
BaA 3.52 0.58 DOX 0.01 0.08 
Chry 4.66 0.78 ENR 0.00 8.43 
BbF 0.04 0.95 LOM 0.00 8.89 
BkF 0.00 0.63 NOR 0.05 0.15 
BaP 1.05 1.50 OTC 0.05 1.53 
DBA 0.04 0.58 PROP 0.00 0.05 

BghiP 1.25 0.00 SMR 0.05 0.15 
a. Abbreviations are described in Table S4.2, S4.3, S4.4. 
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Table S4. 6 Summary of 14 gene clusters in the Chaobai case. 

Module ID Number of genes a Genes with orthologs b Genes with orthologs and pathways c 
C1120 25 6 2 
C1200 131 23 4 
C2100 58 22 5 
C2200 84 26 6 
C2351 73 35 4 
C3000 325 162 29 
C4401 75 21 4 
C5100 62 18 8 
C5200 194 63 14 
C6100 148 39 17 
C6200 622 243 79 
C7000 129 75 25 
C8000 756 365 132 
C9000 86 18 9 

a. The total number of Daphnia genes in the gene cluster. 

b. The number of Daphnia genes with orthologs in Drosophila melanogaster at the Arthropoda 

level in the gene cluster, the corresponding proportion listed in the parentheses. 

c. The number of Daphnia genes with Drosophila melanogaster ortholog and KEGG pathway 
information. 
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Figure S4. 1 The eutrophication area of the Chaobai River. The image was taken on 20th 

September 2017 from a sampling site (M08) contributing to this study. 
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Figure S4. 2 The sampling sites of the Chao River, the Bai River and the Chaobai River. The 

headwaters originate from the Yunwu Mountains northeast of Beijing (sites B01-B06 and 

sites C01-C05), of which the region covered are regarded as a mountainous area. Recycled 

urban wastewaters (treated and untreated) enter the river between sites B07/C06 and M11, 

of which the region covered are regarded as urban area. There are two major WWTP outlets 

near B07-C06-M01 and M16. Agricultural runoff enters the river between sites M12 and M17, 

of which the region covered are labelled as agricultural area. 
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Figure S4. 3 Distribution of PAHs in the Chaobai River. The abbreviations of the PAHs are 

referred to in Table S4.3. The sites are described in Figure S4.2. 
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Figure S4. 4 Distribution of organic micropollutants in the Chaobai River. The abbreviations 

of the organic micropollutants are referred to in Table S4.4. The sites are described in Figure 

S4.2. 
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Figure S4. 5 Immobility rate of Daphnia magna after 48 hours exposure to filtered surface 

waters from the Chaobai River. The sites are described in Table S4.1 and Figure S4.2. 
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Figure S4. 6 Overview of Chaobai transcriptome data sets. (a) the total number of read 

counts in each sample; (b) the total number of genes in each sample; (c) the percentage of 

genes with null count in each sample; (d) over-representative genes in transcriptome profiles.  
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Figure S4. 7 Robustness of transcriptomic gene clusters in the Chaobai case. After 10,000 

times bootstrap resampling of the genes. The frequencies of individual genes assigning to 

the same gene cluster are plotted as a boxplot representing the first-second-third quartiles of 

the frequencies, with scatter points representing individual genes’ reappearance frequencies. 

 

 

 

 

 

0

25

50

75

100

C1120 C1200 C2100 C2200 C2351 C3000 C4401 C5100 C5200 C6100 C6200 C7000 C8000 C9000
Gene Cluster

R
ea

pp
ea

ra
nc

e 
Fr

eq
ue

nc
y 

(%
)



 173 

 

Figure S4. 8 Hierarchical clustering of gene expression in selected Chaobai gene clusters. 

All the gene counts were log10 transformed. 
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5 Danube Case Study 

 

 

5.1 Abstract 

Organic micropollutants in the natural rivers have great impact on the health of humans 

and nontargeted species. To identify harmful chemical component in the environment 

by assessing the biological effects of the sampled environment is a complicate problem. 

Here the relative toxicity of organic chemical components in the waters sampled from 

the Danube River (Europe) were assessed based on gene expression of exposed 

model test species, Daphnia magna. Unsupervised method like clustering was applied 

to cluster the transcriptomic data into multiple co-responsive gene clusters then group 

sampled waters within gene clusters. The functional roles of gene clusters were 

determined by an ortholog-based cross-species extrapolation method with pathway 

overrepresentation analysis. In this case study, similarity analysis of chemical profiles 

and transcriptomic profiles reveal similar grouping pattern, as expression-based 

clustering analysis of gene clusters revealed that distinctive transcriptomic profiles of 

two sites (D11 and D12) reveal down-regulation of xenobiotic biodegradation and 

antioxidative response pathways.  

These results demonstrated the feasibility of classifying the biological effect of 

exposure to environmental chemical mixtures and assessing the joint effects of specific 

compounds based on gene expression with a whole-mixture approach. 
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5.2 Introduction 

Organic micropollutants raise considerable concerns as complex environmental 

pollutants pose health threats on both human and wildlife (Brunsch, 2021). Statistics 

report from EUROSTAT in 2020 revealed that more than 50 % of the total chemical 

production in European countries are environmentally harmful compounds 

(EUROSTAT, 2020). Previous environmental monitoring showed that organic 

micropollutants detected in the parts of the Danube River induce estrogenic activation, 

xenobiotic metabolism (pregnane X receptor), ligan-dependent transcription factor 

activation (aryl hydrocarbon receptor), inflammation (NF-kB-bla) and oxidative stress 

(Neale et al., 2015), where various in vivo test systems are used to detect toxicological 

effects from exposure to the water. Minor genotoxicity was detected in the lower reach 

of the Danube River water samples via umuC testing with prior S9 activation (Kittinger 

et al., 2016). The DNA damage was also detected in mussels from the middle reach 

of the Danube River, which were thought to be affected by untreated wastewater 

effluents associated with the distribution of polycyclic aromatic hydrocarbons, dioxin 

and emerging pollutants (Oxazepam, Chloridazon-desphenyl) (Kolarević et al., 2016). 

Seventeen pesticides and contaminants derived from wastewater were detected in 

invertebrates (gammarids) collected from the Danube River (Inostroza et al., 2016). 

The measured concentration of emerging pollutants like perfluorooctanesulfonic acid 

(PFOS, new priority substance of the WFD, 2013/39/EU, EU, 2013) and diclofenac 

(pharmaceutical, new priority substance of the WFD) exceeded the environmental 

quality standard threshold in the upper (JDS20, the upper reach of D01 in Figure S5.1) 

and lower (JDS58, between D09 and D10 in Figure S5.1) reach, respectively (Loos et 

al., 2017). Thus, organic micropollutants from multiple sources, especially wastewater 



 185 

treatment plants, are believed to pose a health hazard on target and nontarget aquatic 

organisms.  

To evaluate the joint effect of an environmental chemical mixture in a holistic way, 

omics-based bioassays can be applied to capture the biological signatures of chemical 

effects at the molecular level and interrogate the global effects of chemicals on 

biomolecular pathways linked to health. Environmental chemicals may induce 

alternation in inter-correlated biological processes, such as xenobiotic metabolism and 

stress response. Xenobiotic metabolism is responsible for detoxification and 

biotransformation of exogenous substances, which is represented by biomarkers that 

are diagnostic of these pathways, such as cytochrome P450 (CYP), ATP-binding 

cassette transporter (ABC), glutathione S-transferase (GST), and glutathione 

peroxidase (GPX) (Hassan et al., 2015). In transcriptomes, pronounced expression in 

these biomarkers might be interpreted as activation of xenobiotic defence (Campos et 

al., 2014). Exposure to environmental chemicals might also trigger oxidative stress 

responses; enhanced expression of glutathione reflects activated antioxidant defence 

(Regoli and Giuliani, 2014). Bioactivity of glutathione, GST and glutathione reductase 

play important roles in neutralising reactive oxygen species and avoiding further 

damage caused by exogenous compounds (Oliveira et al., 2015), which are 

considered as the biomarkers of oxidative stress response in Daphnia magna (Barata 

et al., 2005).  

To classify the biological effects of environmental chemicals based on toxicity 

pathways, unsupervised learning methods like clustering may be used to identify 

groups of co-variant genes (gene-based clustering) or groups of homogeneous 

samples (sample-based clustering). Genes that share similar expression patterns are 
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often assumed to be under the control of shared regulatory pathways, and therefore 

functionally related and biologically relevant (Gasch et al., 2000). Hierarchical 

clustering algorithms like DIANA and the Hierarchical Ordered Partitioning and 

Collapsing Hybrid (HOPACH, Pollard, 2005) methods generate a hierarchical 

clustering tree, which identifies gene clusters within the transcriptome. The reasons 

that the HOPACH algorithm might outcompete the DIANA algorithm is that the DIANA 

requires manual selection of a height value for cutting the tree to determine the number 

of clusters in a hierarchical clustering tree, which can be problematic (Slonim, 2002); 

while the HOPACH automatically finds the optimal number of gene clusters from their 

expression patterns at each level of the clustering tree based on the Median Split 

Silhouette criterium, resulting in a robust clustering pattern. Further sample-based 

clustering analysis may characterise the grouping patterns of each gene cluster so that 

the structure of the gene expression data can be revealed in greater details.  

The co-responsive clusters establish the basis of structuralising the omics data into 

multiple co-varying sets that links the mathematical modelling (pairwise correlation of 

biological features) with functional relationships (co-regulation of biological features) 

(Josyula et al., 2020; Kustatscher et al., 2019). Chemical components in a mixture may 

affect the biological systems in an independent and additive way, as the molecular 

features that are associated with one specific chemical component in single substance-

based exposure testing may be observed in the mixture exposure testing. If the 

chemical substance is bioactive and the associated features reveal concentration-

dependent response, the linear combination of responses of these associated features 

may be also correlated to the concentration levels of the chemical components in the 

mixture. Such chemical-associated features can be identified via multi-block 
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correlation analysis, which identifies the linear combination of biomolecular features 

that are correlated with the chemical components of interest within the chemical 

mixtures (Tenenhaus et al., 2014; Tenenhaus and Tenenhaus, 2011). The multi-block 

correlation analysis exemplified by the Canonical Correlation Analysis (CCA; Jun et al., 

2018) studies the inter-connection between multiple data sources. The sparse version 

of Regularized Generalized Canonical Correlation Analysis (RGCCA/SGCCA) is 

particularly appropriate in this case as it may find the subset of chemical features that 

are linearly correlated with the individual gene cluster. In that case, those identified 

chemical features may be associated the gene cluster, which provides the insight of 

association between biological responses and chemical factors. 

As each gene cluster may consist of genes of similar function, the grouping patterns 

of the gene clusters may assist in distinguishing the general differences in the overall 

transcriptomic profiles with respect to their biological roles, so that the functions 

potentially perturbed by the environmental chemicals may be revealed at a systematic 

level. Biological interpretation of the gene clusters may require comprehensive 

information of gene function and pathway. A cross-species extrapolation can be 

employed to annotate genes of the poorly defined species by referred to well-studied 

species based on their orthologs. As the functions of unknown genes can be putatively 

annotated by the corresponding OGs’ function, the gene-pathway association can be 

thereby transformed into an OGs-pathway association. If the OGs composition of every 

pathway is unique, the OGs-pathway association can be used to (1) distinguish 

different pathways and (2) applied as the reference data, similar to gene sets serving 

as background knowledge in the pathway overrepresentation analysis. 
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The Danube River is selected for this case study. I combined targeted chemical 

analysis of river water with non-targeted transcriptomics and metabolomics 

measurements of exposure-related effects on Daphnia magna using sampled surface 

river samples from 12 sites along the Danube River Basin. The biological effects of 

these organic extracts were assessed at environmental relevant levels. The specific 

objectives of this investigation are to (1) identify gene clusters within the transcriptome, 

and (2) functionally annotated the gene clusters via pathway overrepresentation 

analysis, and finally (3) identify associations between chemical profiles and gene 

clusters with sparse CCA modelling.  

 

5.3 Methods 

5.3.1 Site description 

The Danube River is 2850 km long, which ranks the second in Europe. The Danube 

River Basin is more than 800,000 km2 and sustains over 80 million people along the 

river (Liška et al. 2015). It is an essential source of drinking water in 10 countries in 

Central and Eastern Europe. This transborder river originates from the Black Forest in 

Germany, flows through or touches the borders of Bavaria, Austria, Slovakia, Hungary, 

Croatia, Serbia, Romania, Bulgaria, Moldova and Ukraine, then empties into the Black 

Sea via the Danube Delta in Romanis. The river water stems from the glaciers and 

precipitation of the Alps and the Carpathian Mountains with additional freshwater from 

its tributaries (like the Sava River, the Tisza River and the Drava River), and effluents 

from municipal wastewater treatment plants (WWTPs) along the river. As the Danube 

River flows through populated areas, organic micropollutants like pharmaceuticals, 
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pesticides, personal care products and industrial compounds are discharged from 

wastewater treatment plants, urban runoffs and agricultural outlets.  

5.3.2 Sampling regime 

The environmental samples used in the Danube River case study are from the Joint 

Danube Survey 3 (JDS 3), which was the most significant river research expedition 

ever conducted in 2013 (Liška et al. 2015). Water sampling was completed in the 

JDS 3 from 13th August to 25th September in 2013. The stretch of the Danube River 

investigated in this study was 2581 km long, which flowed across eight countries of 

Central and Eastern Europe. A total of 68 sites were sampled during this expedition 

from the upper, middle and lower reaches of the river, mostly in the mainstream and 

major tributaries; only 12 of them were selected in this case study. The sampling map 

of 12 selected sites are revealed in Figure S5.1, and the detailed information is listed 

in Table S5.1. Over 500 L of surface water were pumped into the stainless-steel tank 

filled with sorbents for neutral, anionic, and cationic ions for each site, according to the 

description in Schuzle et al. (2017). The SPE was performed on-site with the large 

volume solid phase extraction (LVSPE) device by the JDS3 team (Schulze et al., 2017). 

The elutes were dried under nitrogen and stored at - 20 °C. The dried extracts were 

then shipped to the University of Birmingham, maintained in methanol and stored 

- 20 °C. 

5.3.3 Chemical analysis 

The chemical profiles in the Danube case only account for the profiles of organic 

chemical mixtures in the water samples. Targeted chemical analysis was performed 

on the same water samples for the polar organic substances, including pesticides, 

pharmaceuticals and their transformed products. 
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Non-targeted screening analysis of organic substances was performed by Ultimate 

3000 LC system (Thermo Scientific) with a quadrupole-Orbitrap MS (QExactive Plus, 

Thermo Scientific), according to Hashmi et al. (2019). Valid peak lists were generated 

by MZmine 2.21 (Pluskal et al., 2010). All the non-targeted screening data were 

provided by collaborators in the SOLUTIONs project (Escher et al. 2014), thanks to Dr 

Tobias Schulze from Helmholtz Centre for Environmental Research (UFZ). Among 

these peaks, 91 organic micropollutants were quantified refer to internal standards 

(semi-quantification). The detailed information of these 91 semi-quantified organic 

substances is listed in Table S5.2. 

5.3.4 Daphnia strain and culture conditions 

The Daphnia magna (Bham2 strain) isolate was once again used in this study, 

permitting consistency with the Chaobai Case study for comparative analyses. This 

isolate has been maintained for more than ten years by the Environmental Genomic 

Groups at the University of Birmingham. The culture medium was prepared by filtering 

borehole water through charcoal and maintaining it at 20 ± 1℃	overnight before use. 

The borehole water was collected near the channel flowing through the Edgbaston 

campus of the University of Birmingham (52°27'20.08"N, 1°55'43.81"W). The stock 

culture of Daphnia magna (Bham2) was incubated in the borehole waters at 20 ± 1℃ 

with a photoperiod of 14h: 10h (light: dark). The main food source was Chlorella 

vulgaris Beijerinck (1890) strain 211/11B, which was fed 0.5 mg per 10 daphnids per 

day. Neonates of Daphnia magna, which hatched within 12-24 h from the 2nd to 3rd 

broods of the same 900 matured Daphnia population, were collected for exposure 

testing. 

 



 191 

5.3.5 Organic chemical mixture exposure of neonates 

The organic chemical mixtures of each river water samples were used for my exposure 

experiments. Organic extracts from 12 selected sites were maintained in methanol and 

stored at - 40 ℃. Based on previous results listed in Table S5.1, extracts from all 12 

sites except for D02 (EC50 at 83x) had an EC50 value over REF 100x; no immobility 

incidences were recorded at the REF 1x (original environmental level). The relative 

enrichment factor (REF, Escher et al. 2014) refers to the ratio between the volume of 

extracted river water and the volume of re-suspended solvent; for example, REF 100 

means enriching the concentration level 100 times the environmental level. All the 

organic extracts were diluted in borehole media to generate a stock solution of REF 1x 

(reproducing the environmental level). And the amount of methanol solvent within the 

exposure solutions was normalised to 0.08 % (v: v). The borehole media with 0.08 % 

methanol (v: v) was referred as the reference (negative control) level in this case, as 

methanol being the carrier of the organic chemical mixtures.  

For each treatment group, fifteen neonates were transferred to a 20 ml glass vial with 

15 ml exposure solutions (spike-in borehole media); and each treatment group had six 

biological replicates. The control treatment (borehole media with 0.08% methanol) had 

twenty-four biological replicates. After 48h exposure, all the exposed neonates were 

flash-frozen with liquid nitrogen and stored at -80 ℃ before transcriptome and 

metabolome extraction. A total of 96 samples were prepared for downstream multi-

omics profiling.  

5.3.6 Total RNA extraction and transcriptome sequencing 

For the Danube River case study, the frozen pooled neonates for each biological 

replicate contained 15 exposed neonates. Frozen pooled neonates were homogenised 
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in GenoGrinder (SPEX SamplePrep, U.S.A.) for 90  seconds at the speed of 1750 rpm. 

Total RNA extraction was performed using the Agencourt RNAdvance Tissue Total 

RNA kit (Beckman Coulter, U.S.A.), as the total RNA was captured onto magnetic 

beads, washed twice for removing unwanted salts, and eluted in 100 μl RNAse-free 

H2O, following the manufacturer’s instructions. The concentration of total RNA 

concentrations was quantified by Nanodrop 8000 Spectrophotometer (Labtech Ltd., 

U.K.). The quality of extracted total RNA, both integrity and purity, was measured on 

TapeStation 2200 (Agilent Technologies, U.S.A.). A cDNA library was generated for 

each sample from 150 ng of RNA using NEBNext Ultra II Directional RNA Library Prep 

Kit for Illumina, following the manufacturer’s instructions. All of the sample libraries 

were then normalised to the same molecular weight and pooled together using the 

adapter indices supplied by the manufacturer. Transcriptome sequencing (RNA-seq) 

was performed on the DNBseq at BGI.  

5.3.7 Sequence pre-processing 

Reads from the two case studies were processed separately. Raw reads were firstly 

trimmed in Trimmomatic (version 0.32; Bolger et al. 2014) to remove sequencing 

adapter and obtain sequences with phred scores of more than 30. FastQC (version 

0.11.9; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) were used to 

screen the overall sequence quality. Transcript reads were mapped to an established 

transcriptome reference database (Orsini et al. 2016) using Salmon (Version 0.8.2; 

Patro et al. 2017). The quasi-mapping function of Salmon was used with GC and 

positional bias correction. For each sample, both paired ends from two lanes were run 

together. Then the mapped transcript reads were processed in R (version 4.0.3). Low 

count reads (reads with raw count lower than 10) and outlier samples were identified 
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and removed from the data set. The read counts were normalised by the size factor 

defined in the DESeq2 package (version 1.30.0; Love et al. 2014) in this case. The 

log2 fold changes of individual genes per treatment level were further calculated by the 

DESeq2 package against control level (negative control). 

5.3.8 Similarity analysis of transcriptomic and chemical profiles 

Log2 fold changes of transcripts and concentration levels of targeted chemicals were 

used for similarity analysis. Principal component analysis (PCA; Konishi T. 2015) was 

used to reveal the overall similarity based on the first two principal components, which 

explained a considerable proportion of the overall variance. Hierarchical clustering 

analysis (HCA; Eisen et al. 1998) was conducted based on the Euclidean distance with 

the ward.D2 clustering method. Pearson correlation coefficient was calculated in 

pairwise treatment levels to reveal the co-variation (another perspective of similarity) 

of any two treatment levels.  

5.3.9 Gene cluster identification 

The highly variable genes were selected by scran package with the normalised gene 

counts of both case studies (version 1.18.7; Lun et al. 2016). Selected genes were 

clustered by Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH) 

algorithm in the hopach package (version 2.52.0; Pollard and Van Der Laan 2003) on 

R. Cosine distance was chosen to capture the similarity between any two genes, as 

suggested in Eisen et al. (1998). Sample bootstrapping was performed to confirm the 

variability of the composition of gene clusters. The median value of genes belonging 

to the gene cluster was used as the reference value. For each pseudo-replication, 

samples were randomly selected to generate a new cluster pattern based on the gene 

cluster reference values. The gene cluster assignments were recorded. The 
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frequencies of genes assigned to each cluster were summarised from the records of 

10,000 repeats. Gene clusters were further used for clustering the samples based on 

Euclidean distance measurement with the ward.D2 clustering method.  

5.3.10 Pathway analysis of co-responsive modules 

A cross-species KEGG pathway overrepresentation test was performed for Daphnia 

magna gene set pathway analysis. The Daphnia magna genes in the transcriptomic 

co-responsive modules were re-annotated by their corresponding ortholog group IDs, 

based on the orthologous relationships between Daphnia magna and Drosophila 

melanogaster from the OrthoDB database (v10.1; Kriventseva et al. 2019). A 

permutation chi-square test was performed over 100,000 iterations to generate a 

robust P-value estimation directly from resampling detected Daphnia genes annotated 

with ortholog groups. The P-values of the permutation chi-square tests were further 

corrected following the Benjamini-Hochberg procedure with a false discovery rate at 

0.05 (Benjamini and Hochberg 1995).  

5.3.11 Correlation analysis of eigengenes and chemical components 

The eigengene of each gene cluster is the first principal component of the gene cluster 

matrix. Pearson correlation coefficients were calculated between each eigengene and 

individual chemical, in order to identify close associations between chemical 

component and gene clusters.  

5.3.12 Sparse CCA modelling of chemical components and gene clusters 

The correlations between the individual chemical and transcriptomic features were 

identified with sparse Canonical Correlation Analysis (sCCA) algorithm (Tenenhaus et 

al., 2014; Tenenhaus and Tenenhaus, 2011). The sCCA is applied to identify the 

subset of transcriptomic features linearly correlated to the chemical distribution pattern 
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when projected to a common latent space. With a certain sparsity level (between 0 and 

1), subsets of chemical features were selected. I assumed that only a few chemical 

features (with similar mode of action) were associated with individual gene cluster 

(functional unit). The loading values of selected chemical components were plotted so 

that chemical components that are consistently selected are proposed to be associated 

with the gene clusters and pathways within. 

 

5.4 Results 

5.4.1 Chemical analysis 

The principal component analysis (PCA) plot reveals the general similarity of measured 

chemicals among 12 water samples in the Danube River case. It is obvious that site 

D11 and D12 are different from the rest. Table S5.3 summarise the relative contribution 

of each chemical factor to the first two components. Of the first component, 46 % of 

the total variance is contributed by 14 organic chemicals (ACF, BP4, CBZ, CDZ, DHC, 

FAA, HEX, MBT, MEC, MLC, MLCE, PNZ, PSA, SUC), which may account for the 

differences between D11 and the rest. Of the second component, 44 % of the total 

variance is contributed by the other 9 organic micropollutants (BEN, CAR, CPP, DIA, 

MFM, OXA, SIM, SMX, TBH)., which may account for the differences between D12 

and the rest. 
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Figure 5. 1 PCA plot of targeted chemicals in water samples of the Danube River. The 

sampling site names are described in Table S5.1 and Figure S5.1. 

 

5.4.2 Immobility rate of 48 hours exposure 

None of the tested water samples observed immobilised neonates after 48 hours of 

exposure. 

5.4.3 Similarity analysis of the transcriptomics variations 

The mapped transcriptomics data that were obtained from the Danube River 

experiments are summarised at the gene level (Figure S5.2). With an average mapping 

rate of 83 %, each sample retrieved 6.61 million reads, on average. By removing low 

count genes and outlier samples, a total of 13,670 genes were selected for the 
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downstream analysis. To evaluate the similarity of the transcriptomic variations 

induced by organic extracts from the 12 sites, principal component analysis was 

performed based on the log2 fold change profiles of 12 site treatments (Figure 5.2a). 

The PCA plot showed that both the first (63.8 % of total variance) and the second 

(14.3 %) principal components could clearly distinguish D11 and D12 from the rest of 

the ten sites, suggesting the organic mixtures collected from the lowest reaches of the 

Danube River induce different transcriptomics variation in the exposed daphnids 

compared to the upper reaches of the river. The HCA plot (Figure 5.2b) also reveals a 

similar pattern as the D11 and D12 sampling sites formed a unique branch apart from 

the others. The pairwise Pearson correlation coefficient matrix (Figure 5.2c) revealed 

relatively lower similarity among the upstream sites (average at 0.56) but higher 

similarity between two downstream sites, D11 and D12 (0.83).  

5.4.4 Identify gene clusters of the highly variable genes 

Again, by using the scran package, 1451 genes were identified as highly variable 

genes. The gene clusters of these highly variable genes were identified by the 

HOPACH algorithm, produced a total of 99 clusters based on the observed similarities 

in the log2 fold change pattern of selected genes, including 85 smaller clusters and 14 

larger clusters (containing more than 20 genes). Among 14 larger clusters, cluster 

D4000 was the largest consisting of 150 genes, followed by cluster D3100 (136 genes) 

and cluster D7100 (134 genes). The detailed information of 14 genes clusters is listed 

in Table S5.4.  
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Figure 5. 2 Similarity analysis of log2 fold change patterns in transcriptomic profiles of the 

Danube case. (a) Score plot of Principal Component Analysis, (b) Dendrogram of 

Hierarchical Clustering Analysis, and (c) Heatmap of pairwise Pearson correlation 

coefficients (coef). Sample site locations are shown in Figure S5.1. 

 

The robustness of the gene clustering pattern was also evaluated by sample 

bootstrapping for 10,000 iterations, and the gene reappearance frequencies are plotted 

in Figure S5.3. Among those 14 larger clusters, most of the gene clusters had a large 
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portion of genes with relatively higher reappearance frequencies. For example, cluster 

D2200, D5000 and D1440 had relatively higher average reappearance frequency 

levels, at 87 %, 82 % and 80 %, respectively. By contrast, clusters D1270, D7100, and 

D7200 only had the average reappearance frequencies of 34 %, 26 %, and 23 %, 

respectively. 

5.4.5 Functional analysis of gene clusters 

The adjusted P values of overrepresentation tests on all KEGG pathways are listed in 

Appendix 1. The adjusted P values of pathways related to xenobiotic metabolism are 

summarised and plotted in Figure 5.3.  

 

 

Figure 5. 3 Overrepresentation analysis of xenobiotic metabolism-related pathways among 

the selected Danube River gene clusters. The significance levels of selected pathways are 

shown in the plot with their negative logarithms (-log10) of the adjusted P values 
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pathway was reported to be significantly enriched by genes from D6200. The ABC 

transporter related to transmembrane transportation was significantly enriched by 

genes within clusters D4000, D6200, D7100 and D7200. Genes that function in the 

antioxidant defence system represented by glutathione metabolism were 

overrepresented in clusters D1270, D4000, D5000, and D7200. Thus, the functional 

role of genes within clusters D1270, D2300, D3300, D4000, D5000, D6200, D7100 

and D7200 might be closely related to xenobiotic detoxification and oxidative stress 

response.  

In addition to the pathway enrichment results for the six clusters in Figure 5.3, 

autophagy-related pathways were significantly enriched in clusters D2100, D5000 and 

D6200. Pathways related to glycan biosynthesis and amino acid metabolism were also 

found to be significantly enriched by genes within cluster D2100 (Appendix 2). Fatty 

acid degradation and serine metabolism were also found to be significantly enriched 

by genes within cluster D5000. Jointly the results suggested that clusters D2100, 

D5000 and D6200 might be related to the turnover of cellular substances like amino 

acids and fatty acids. 

5.4.6 Clustering pattern of xenobiotic-related gene clusters 

The HCA plots of 14 gene clusters and a combined set of 13 other gene clusters are 

shown in Figure 5.4. Extracts from sampled waters from the D12 site drastically 

induced down-regulation (negative log2 fold change values) in gene clusters D2100, 

D2200, D2300, D3100, D3200, D3300 and D5000, while D11 shared a similar 

regulation pattern with D12 in gene clusters D2100, D2200, D2300, D4000 and D6200. 

Down-regulation in D2100, D2300, D3300, D4000, D5000 and D6200 suggested a 

reduced expression level of xenobiotic biodegradation pathways and potent inhibition 
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of antioxidant defence pathways, the distinctive transcriptomics profiles induced by 

organic extracts from D11 and D12 might be associated with lower levels of xenobiotic 

metabolism compared to the other sites. While comparing the expressional patterns of 

D11 and D12, cluster D1270 reveal different patterns. 

5.4.7 Correlation analysis between eigengenes of 14 gene clusters and chemical 

factors 

The eigengene is the first principal component of the gene cluster matrix. As genes in 

each gene cluster share similar variation pattern across all the samples, As revealed 

in Figure 5.5. it is obvious that cluster D1270 associated with five organic pollutants, 

including CAR, CHL, CPP, DIA, and SIM. Cluster D2100 and D2200 are significantly 

correlated with DPP. While D2300, D4000 and D6200 are not significantly correlated 

with any of these organic pollutants. 
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Figure 5. 4 Hierarchical clusterings of transcriptomic profiles of selected Danube gene 

clusters. All the genes were represented by their log2 fold change (logFC) values 
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Figure 5. 5 Correlation analysis between eigengenes of 14 gene clusters and chemical 

factors. The color code corresponds to the absolute value of Pearson correlation coefficient 

values. The asterisks highlight the significant correlation with P values lower than 0.05. 
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5.5 Discussion 

In this study, organic micropollutant mixtures extracted from 12 water samples 

collected from the Danube River were used as exposure and transcriptomic profiles of 

exposed waterflea (Daphnia magna) were measured to characterise the biological 

effects. Similarity analysis of chemical profiles and transcriptomic profiles reveal similar 

grouping pattern, as two sites in the downstream (D11 and D12) reveal dissimilar 

chemical compositions and transcriptomic profiles (log2 fold changes) against the rest 

sites.  

To be specific, the organic extracts from sampled waters of D11 and D12 induced 

down-regulate xenobiotic metabolic activities and potent inhibition of antioxidant 

defence compared to the other sites, represented by the negative log2 fold change 

(down-regulation compared against the control level) in six gene clusters significantly 

enriched in xenobiotic metabolism. Chemical measurements revealed that relatively 

higher levels of Sulfamethoxazole (SMX, 25 ng/L), Atrazine (ATZ, 11 ng/L), 

Terbutylazine (TER, 14 ng/L), Bentazone (BEN, 35 ng/L), and Metazachlor (MTZ, 26 

ng/L) were detected in D11; while Carbamazepine (CBZ, 12 ng/L), 1H-Benzotriazole 

(BZT, 82 ng/L), 5-Methyl-1H-Benzotriazole (MBZ, 87 ng/L), Acesulfame (ACF, 410 

ng/L), Atrazine (ATZ, 6 ng/L), Cotinine (COT, 23 ng/L), n-Acetyl-4-aminoantipyrine 

(AAA, 80 ng/L) were detected in D12. The composition of detectable substances 

among these 16 organic pollutants was highly dissimilar, even though the similarity of 

the overall transcriptomic profiles of D11 and D12 was relatively high (Pearson 

correlation coefficient at 0.83, in Figure 4.11c), suggested that the dissimilarities in the 

chemical compositions (among the 16 detected organic substances) might not induce 

observable differences in overall transcriptomic expression patterns. Based on the 
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EC50 values listed in Table 3.7 (Chapter 3), none of these organic substances exceeds 

their EC50 levels, which may partially explain the zero-immobility rate observed after 

48 hours of exposure.  

Multivariate association analysis between chemical features and gene clusters are 

revealed by sparse CCA modelling. To be specific, D1270 is significantly correlated to 

carbaryl (carbamate insecticide), chlorophene (biocide and preservatives in cosmetics), 

chlorpropham (herbicide), diazinon (insecticide), and Simazine (herbicide). While 

D2100 and D2200 is significantly correlated with diphenylphosphate (an additive for 

paints and coating). Previous studies revealed that pharmaceuticals like CBZ are 

known endocrine disruptors at 10 to 200 μg/L (Oropesa et al. 2016). My results agreed 

with a previous study that the expression levels of features related to glutathione 

metabolism are reduced after 48-hour exposure to CBZ (Nkoom et al. 2019). The 

activity of glutathione reductase, which relies on the glutathione as substrate, might 

also be reduced as Daphnia was overwhelmed by the CBZ-related stress (Li et al. 

2009). However, a previous study reported that ATZ at environmentally relevant levels 

(4 to 8 μg/L) triggered up-regulation of glutathione metabolism and xenobiotic 

metabolism after 96-hour exposure (Schmidt et al. 2017). The disagreement between 

my observation and theirs might be related to the differences in concentration levels of 

ATZ. The EC50 level of SMX was at 205.2 mg/L for 48 hours of exposure (Jung et al. 

2008), and chronic exposure of SMX at 10 μg/L (accompanied with four other 

antibiotics) may affect the sex ratio of the first brood (Flaherty and Dodson 2005). 

However, in my studies, the highest concentration level was far below the EC50 levels, 

which might not induce a detrimental effect on the sex ratio. Thus, it is still unclear 

which organic substances may be the cause of the downregulation in the xenobiotic 
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metabolism compared against the control level. Further investigation of the organic 

substances accounted effects will be needed to identify the combinations of organic 

chemical components that may trigger lower levels of xenobiotic activities in the 

exposed Daphnia. 

 

5.6 Conclusion 

In this Danube River case study, transcriptomic profile is used to characterise the 

effects of environmental chemical mixtures from a natural river in China. Genes 

clusters support the differences between site D11 and D12 and the rest are closely 

related to xenobiotic metabolism and stress response. And these clusters are 

significantly correlated to different concentration levels of biocides. Further verification 

study will be needed to confirm the relative contribution of biocides, which may help 

define acceptable environmental exposure levels. 
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5.7 Supplementary 

Tables and Figures 

Table S5. 1 Description of 12 selected sites along the Danube River Basin. 

Table S5. 2 Nontargeted screening analysis of organic substances in surface water 

samples from the Danube River Basin. 

Table S5. 3 Relative contribution of chemical factors to first two principal components 

in Danube case. 

Table S5. 4 Summary of 14 gene clusters in the Danube case. 

Figure S5. 1 The sampling sites of the Danube River from which water samples were 

used in this present study. 

Figure S5. 2 Overview of Danube transcriptome data sets. 

Figure S5. 3 Robustness of Danube gene clusters. 
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Table S5. 1 Description of 12 selected sites along the Danube River Basin. Site ID is the 

water sample labels used in this current study. JDS ID is the water sample labels used by the 

Joint Danube Survey 3 expedition. 

Site ID JDS ID Sampling site Reach 
REF a 

EC50 b 

D01 JDS27 Hercegszanto Upper > 200 

D02 JDS32 Novi Sad upstream Middle 83 

D03 JDS36 
Tisa downstream/  

Sava upstream (Belegis) 
Middle > 200 

D04 JDS37 Sava Middle 139 

D05 JDS39 Pancevo downstream Middle > 200 

D06 JDS44 Irongate reservoir (Golubac/Koronin) Lower 101 

D07 JDS53 Zimnicea downstream/Svishtov Lower > 200 

D08 JDS55 Jantra downstream Lower > 200 

D09 JDS57 Ruse downstream/Giurgiu Lower > 200 

D10 JDS60 Chiciu/Silistra Lower > 200 

D11 JDS64 Prut Lower > 200 

D12 JDS67 Sulina Lower 167 

a. REF stands for relative enrichment factor, and it is calculated by the relative enrichment 

factor as the ratio between the extracted water volume and the elution volume (Escher et 

al. 2013). 

b. EC50 stands for effective REF-based concentration level that induces 50% immobility rate 

in Daphnia magna exposure experiments.  
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Table S5. 2 Nontargeted screening analysis of organic substances in surface water samples 

from the Danube River Basin. EC50 values are recorded in ECOTOX knowledge database. 

Chem
ID ChemName CAS EC50 

(mg/L) 
Chem

ID ChemName CAS EC50 
(mg/L) 

DHC 10,11-Dihydro-10-
hydroxycarbamazepine 

29331-
92-8 / ENA Enalapril 75847-

73-3 0 

DDC 10,11-Dihydro-10,11-dihydroxy-
carbamazepine 

58955-
93-4 / ERY Erythromycin 114-07-8 207.83 

BZT 1H-Benzotriazole 95-14-7 15.8 GEN Genistein 446-72-0 0 

CAB 
2-(2-

(Chlorophenyl)amino)benzaldehyd
e 

71758-
44-6 0 GES Gestoden 60282-

87-3 0 

MTBT 2-(Methylthio)benzothiazole 615-22-5 0 HEX Hexa(methoxymethyl)me
lamine 

68002-
20-0 0 

BTA 2-Benzothiazolesulfonic acid 941-57-1 0 ISO Isoproturon 34123-
59-6 1 

HCBZ 2-Hydroxycarbamazepine 68011-
66-5 0 KET Ketoprofen 22071-

15-4 0 

NSA 2-Naphthalenesulfonic acid 120-18-3 0 LEN Lenacil 2164-08-
1 0 

DPA 2,4-Dichlorphenoxyacetic acid 94-75-7 0 LID Lidocaine 137-58-6 0 

DTP 2,4-Dinitrophenol 51-28-5 4.39 LOR Lorazepam 846-49-1 0 

FAP 4-Formyl-antipyrine 950-81-2 0 MCPA MCPA 94-74-6 180 

MBT 5-methyl-1H-benzotriazole 136-85-6 51.6 MEC Mecoprop 93-65-2 0 

ACF Acesulfame 33665-
90-6 0 MEF Mefenamic acid 61-68-7 0 

AMP Acetamiprid 135410-
20-7 50 MFM Metformin 657-24-9 64 

ASM Acetyl-Sulfamethoxazole 21312-
10-7 0 MLC Metolachlor 51218-

45-2 4.25 

ATR Atrazine 1912-24-
9 4.6 MLCE Metolachlor ESA 171118-

09-5 0 

BEN Bentazone 25057-
89-0 0 MET Metoprolol 37350-

58-6 0 

BP3 Benzophenone-3 131-57-7 0 AAA N-Acetyl-4-
aminoantipyrine 83-15-8 0 

BP4 Benzophenone-4 4065-45-
6 0 FAA N-Formyl-4-

aminoantipyrine 
1672-58-

8 0 

BTZ Benzothiazole 95-16-9 0 OXA Oxazepam 604-75-1 0 

BF Bezafibrate 41859-
67-0 75.79 NIT p-Nitrophenol 100-02-7 4.7 

BPS Bisphenol S 80-09-1 0 TOL p-Toluenesulfonamide 70-55-3 0 

CAF Caffeine 58-08-2 177.8 PFA Perfluoroheptanoic acid 375-85-9 1019 

CBZ Carbamazepine 298-46-4 77.7 PNZ Phenazone 60-80-0 0.117 

CAR Carbaryl 63-25-2 0.00225 PSA Phenylbenzimidazole 
sulfonic acid 

27503-
81-7 0 

CBD Carbendazim 10605-
21-7 0.0876 PMT Prometryn 7287-19-

6 9.7 

BET Cetirizine 83881-
51-0 0 PPZ Propyphenazone 479-92-5 0 

CDZ Chloridazon 1698-60-
8 0 ROX Roxithromycin 80214-

83-1 0 

CHL Chlorophene 120-32-1 0.59 SCA Salicylic acid 69-72-7 870 

CTL Chlorotoluron 15545-
48-9 0 SIM Simazine 122-34-9 1 

CPP Chlorpropham 101-21-3 3.7 SUC Sucralose 56038-
13-2 0 

CHO Cholic acid 81-25-4 0 SFT Sulfamethazine 57-68-1 31.4 

CLA Clarithromycin 81103-
11-9 8.16 SMX Sulfamethoxazole 723-46-6 96.7 

CFA Clofibric acid 882-09-7 72 SFP Sulfapyridine 144-83-2 0 
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COT Cotinine 486-56-6 0 TBN Tebuconazole 107534-
96-3 2.88 

CRE creatinine 60-27-5 0 TER Terbuthylazine 5915-41-
3 21.2 

CYC Cyclamate 100-88-9 0 TBH Terbuthylazine-2-
hydroxy 

66753-
07-9 0 

DAI Daidzein 486-66-8 0 TTG Tetraglyme 143-24-8 0 

DEET DEET 134-62-3 75 TRA Tramadol 27203-
92-5 0 

DNT Denatonium 3734-33-
6 0 TBP Tri(butoxyethyl)phosphat

e 78-51-3 0 

DRS Desethylatrazine 6190-65-
4 35.6 TCS Triclosan 3380-34-

5 0.0998 

DIA Diazinon 333-41-5 0.00052 TTC Triethylcitrate 77-93-0 0 

DIC Diclofenac 15307-
86-5 67 TGL Triglyme 112-49-2 0 

DMP Dimethylaminophenazone 58-15-1 0 TMP Trimethoprim 738-70-5 92 

DPP Diphenylphosphate 838-85-7 0 TPO Triphenylphosphine 
oxide 791-28-6 0 

DIU Diuron 330-54-1 7.2     
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Table S5. 3 Relative contribution of chemical factors to first two principal components in 

Danube case. 

  Standardized   Standardized 
  PC1 (31.56%) PC2 (16.64%)   PC1 (31.56%) PC2 (16.64%) 

AAA 0.82 0.00 FAA 3.24 0.80 
ACF 3.41 0.08 FAP 0.12 0.03 
ASM 0.55 1.86 GEN 0.47 1.26 
ATD 0.05 1.41 GES 0.27 0.72 
ATR 0.05 0.03 HCBZ 2.47 1.30 
BEN 0.22 5.28 HEX 3.44 0.28 
BET 0.88 1.62 ISO 2.56 0.28 
BP4 3.29 0.24 KET 0.13 0.24 
BPS 0.79 0.01 LEN 0.12 1.19 
BTA 2.79 0.05 LID 0.35 0.24 
BZT 1.50 2.44 MBT 3.35 0.37 
CAB 0.09 0.04 MCPA 0.98 0.04 
CAF 0.00 0.85 MEC 3.41 0.25 
CAR 0.12 5.78 MEF 1.09 2.58 
CBD 0.39 2.43 MET 2.38 0.01 
CBZ 3.10 0.29 MFM 0.38 5.69 
CDZ 3.20 0.01 MLC 3.12 0.20 
CHL 0.12 5.78 MLCE 3.45 0.13 
CLA 2.29 0.52 MTBT 0.69 0.03 
COT 0.08 0.39 MTZ 2.08 0.04 
CPP 0.12 5.78 NSA 1.55 0.73 
CRE 0.09 0.72 OXA 1.43 3.85 
CTL 2.99 0.79 PMT 0.23 1.86 
CYC 1.50 0.80 PNZ 3.12 0.24 
DAI 0.67 0.04 PSA 3.33 0.03 
DDC 0.38 2.18 SCA 1.37 0.01 
DEET 2.32 0.21 SFP 1.37 0.01 
DHC 3.17 0.11 SFT 0.17 0.41 
DIA 0.12 5.78 SIM 0.12 5.78 
DIC 0.65 0.22 SMX 1.07 3.29 
DIU 0.89 0.83 SUC 3.64 0.07 
DMP 0.01 0.44 TBH 0.53 3.19 
DNT 0.89 1.62 TER 0.01 2.83 
DPA 0.31 1.44 TGL 1.00 0.79 
DPP 0.91 2.26 TMP 0.70 0.25 
DRS 0.45 2.19 TOL 2.96 0.69 
DTP 0.33 0.37 TPO 0.01 2.33 
ENA 1.03 0.13 TRA 1.98 2.91 
ERY 0.08 0.01 TTG 0.64 0.01 
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Table S5. 4 Summary of 14 gene clusters in the Danube case. 

Module ID Number of genes a Genes with orthologs b Genes with orthologs and pathways c 
D1270 24 17 9 
D1440 62 35 14 
D2100 34 17 3 
D2200 68 15 3 
D2300 81 38 5 
D3100 136 66 11 
D3200 83 30 2 
D3300 105 53 9 
D4000 150 47 14 
D5000 99 17 4 
D6200 80 26 10 
D7100 134 66 28 
D7200 110 61 19 
D8000 125 28 9 
a. The total number of Daphnia genes in the gene cluster. 

b. The number of Daphnia genes with orthologs in Drosophila melanogaster at the Arthropoda 

level in the gene cluster. 

c. The number of Daphnia genes with Drosophila melanogaster ortholog and KEGG pathway 
information. 
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Figure S5. 1 The sampling sites of the Danube River from which water samples were used in 

this present study. Sites D01 to D06 locate in the middle stretch, while sites D07 to D12 

locate in the lower stretch. Among these sites, the first five sites (D01 to D05) located in 

Croatia, D06 on the border between Serbia Monten and Romania, four sites (D07 to D10) on 

the border between Romania and Bulgaria, the last two sites (D11 and D12) the border 

between Romania and Ukraine. 
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Figure S5. 2 Overview of Danube transcriptome data sets. (a) the total number of read 

counts in each sample; (b) the total number of genes in each sample; (c) the percentage of 

genes with null count in each sample; (d) over-representative genes in transcriptome profiles. 

 

0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

C
K0

1
C

K0
2

C
K0

3
C

K0
4

C
K0

5
C

K0
6

C
K0

7
C

K0
8

C
K0

9
C

K1
0

C
K1

1
C

K1
2

D
01

A1
D

01
A2

D
01

A3
D

01
A4

D
01

A5
D

01
A6

D
02

A1
D

02
A2

D
02

A3
D

02
A4

D
02

A5
D

02
A6

D
03

A1
D

03
A2

D
03

A3
D

03
A4

D
03

A5
D

03
A6

D
04

A1
D

04
A2

D
04

A3
D

04
A4

D
04

A5
D

04
A6

D
05

A1
D

05
A2

D
05

A3
D

05
A4

D
05

A5
D

05
A6

D
06

A1
D

06
A2

D
06

A3
D

06
A4

D
06

A5
D

06
A6

D
07

A1
D

07
A2

D
07

A3
D

07
A4

D
07

A5
D

07
A6

D
08

A1
D

08
A2

D
08

A3
D

08
A4

D
08

A5
D

08
A6

D
09

A1
D

09
A2

D
09

A3
D

09
A4

D
09

A5
D

09
A6

D
10

A1
D

10
A2

D
10

A3
D

10
A4

D
10

A5
D

10
A6

D
11

A1
D

11
A2

D
11

A3
D

11
A4

D
11

A5
D

11
A6

D
12

A1
D

12
A2

D
12

A3
D

12
A4

D
12

A5
D

12
A6

SampleID

Li
br

ar
y 

Si
ze

a

0

5000

10000

15000

20000

C
K0

1
C

K0
2

C
K0

3
C

K0
4

C
K0

5
C

K0
6

C
K0

7
C

K0
8

C
K0

9
C

K1
0

C
K1

1
C

K1
2

D
01

A1
D

01
A2

D
01

A3
D

01
A4

D
01

A5
D

01
A6

D
02

A1
D

02
A2

D
02

A3
D

02
A4

D
02

A5
D

02
A6

D
03

A1
D

03
A2

D
03

A3
D

03
A4

D
03

A5
D

03
A6

D
04

A1
D

04
A2

D
04

A3
D

04
A4

D
04

A5
D

04
A6

D
05

A1
D

05
A2

D
05

A3
D

05
A4

D
05

A5
D

05
A6

D
06

A1
D

06
A2

D
06

A3
D

06
A4

D
06

A5
D

06
A6

D
07

A1
D

07
A2

D
07

A3
D

07
A4

D
07

A5
D

07
A6

D
08

A1
D

08
A2

D
08

A3
D

08
A4

D
08

A5
D

08
A6

D
09

A1
D

09
A2

D
09

A3
D

09
A4

D
09

A5
D

09
A6

D
10

A1
D

10
A2

D
10

A3
D

10
A4

D
10

A5
D

10
A6

D
11

A1
D

11
A2

D
11

A3
D

11
A4

D
11

A5
D

11
A6

D
12

A1
D

12
A2

D
12

A3
D

12
A4

D
12

A5
D

12
A6

SampleID

G
en

e 
N

um
be

r

b

0

10

20

30

40

C
K0

1
C

K0
2

C
K0

3
C

K0
4

C
K0

5
C

K0
6

C
K0

7
C

K0
8

C
K0

9
C

K1
0

C
K1

1
C

K1
2

D
01

A1
D

01
A2

D
01

A3
D

01
A4

D
01

A5
D

01
A6

D
02

A1
D

02
A2

D
02

A3
D

02
A4

D
02

A5
D

02
A6

D
03

A1
D

03
A2

D
03

A3
D

03
A4

D
03

A5
D

03
A6

D
04

A1
D

04
A2

D
04

A3
D

04
A4

D
04

A5
D

04
A6

D
05

A1
D

05
A2

D
05

A3
D

05
A4

D
05

A5
D

05
A6

D
06

A1
D

06
A2

D
06

A3
D

06
A4

D
06

A5
D

06
A6

D
07

A1
D

07
A2

D
07

A3
D

07
A4

D
07

A5
D

07
A6

D
08

A1
D

08
A2

D
08

A3
D

08
A4

D
08

A5
D

08
A6

D
09

A1
D

09
A2

D
09

A3
D

09
A4

D
09

A5
D

09
A6

D
10

A1
D

10
A2

D
10

A3
D

10
A4

D
10

A5
D

10
A6

D
11

A1
D

11
A2

D
11

A3
D

11
A4

D
11

A5
D

11
A6

D
12

A1
D

12
A2

D
12

A3
D

12
A4

D
12

A5
D

12
A6

SampleID

N
ul

l c
ou

nt
 p

er
ce

nt
ag

e 
(%

)

c

7b
EV

m
00

96
01

EV
m

00
96

01
bE

Vm
00

96
01

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
ap

m
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
m

a7
bE

Vm
02

07
97

m
a7

bE
Vm

00
96

01
pm

a7
bE

Vm
02

07
97

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

bE
Vm

00
96

01
ap

m
a7

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

pm
a7

bE
Vm

00
96

01
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
pm

a7
bE

Vm
00

96
01

pm
a7

bE
Vm

02
07

97
Vm

00
96

01
pm

a7
bE

Vm
00

96
01

a7
bE

Vm
00

96
01

7b
EV

m
00

96
01

bE
Vm

00
96

01
m

a7
bE

Vm
02

07
97

D
ap

m
a7

bE
Vm

00
96

01
D

ap
m

a7
bE

Vm
02

08
31

a7
bE

Vm
00

96
01

ap
m

a7
bE

Vm
00

96
01

D
ap

m
a7

bE
Vm

02
07

97
bE

Vm
00

96
01

a7
bE

Vm
00

96
01

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

Vm
00

96
01

a7
bE

Vm
00

96
01

pm
a7

bE
Vm

00
96

01
7b

EV
m

00
96

01
EV

m
00

96
01

D
ap

m
a7

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

7b
EV

m
00

96
01

D
ap

m
a7

bE
Vm

00
96

01
bE

Vm
00

96
01

7b
EV

m
00

96
01

a7
bE

Vm
02

07
97

pm
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
7b

EV
m

00
96

01
a7

bE
Vm

00
96

01
m

a7
bE

Vm
00

96
01

ap
m

a7
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
bE

Vm
00

96
01

D
ap

m
a7

bE
Vm

00
96

01
EV

m
00

96
01

pm
a7

bE
Vm

00
96

01
EV

m
00

96
01

a7
bE

Vm
00

96
01

7b
EV

m
02

07
97

D
ap

m
a7

bE
Vm

02
08

31
pm

a7
bE

Vm
02

07
97

D
ap

m
a7

bE
Vm

02
07

97
m

a7
bE

Vm
00

96
01

ap
m

a7
bE

Vm
00

96
01

D
ap

m
a7

bE
Vm

02
08

31
ap

m
a7

bE
Vm

00
96

01
D

ap
m

a7
bE

Vm
00

96
01

bE
Vm

00
96

01
pm

a7
bE

Vm
00

96
01

a7
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
pm

a7
bE

Vm
00

96
01

pm
a7

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
pm

a7
bE

Vm
00

96
01

m
a7

bE
Vm

00
96

01
EV

m
00

96
01

bE
Vm

00
96

01
a7

bE
Vm

00
96

01
7b

EV
m

00
96

01
ap

m
a7

bE
Vm

02
07

97
D

ap
m

a7
bE

Vm
02

07
97

bE
Vm

00
96

01
D

ap
m

a7
bE

Vm
02

07
97

7b
EV

m
00

96
01

0

10

20

B0
1.

1
B0

1.
2

B0
1.

3
B0

1.
4

B0
1.

5
B0

1.
6

B0
1.

7
B0

1.
8

B0
2.

1
B0

2.
2

B0
2.

3
B0

3.
1

B0
3.

2
B0

3.
3

B0
4.

1
B0

4.
2

B0
4.

3
B0

5.
1

B0
5.

2
B0

5.
3

B0
6.

1
B0

6.
2

B0
6.

3
B0

7.
1

B0
7.

2
B0

7.
3

C
01

.1
C

01
.2

C
01

.3
C

02
.1

C
02

.2
C

02
.3

C
03

.1
C

03
.2

C
03

.3
C

04
.1

C
04

.2
C

04
.3

C
05

.1
C

05
.2

C
05

.3
C

06
.1

C
06

.2
C

06
.3

M
01

.1
M

01
.2

M
01

.3
M

02
.1

M
02

.2
M

02
.3

M
03

.1
M

03
.2

M
03

.3
M

04
.1

M
04

.2
M

04
.3

M
05

.1
M

05
.2

M
05

.3
M

06
.1

M
06

.2
M

06
.3

M
07

.1
M

07
.2

M
07

.3
M

08
.1

M
08

.2
M

08
.3

M
09

.1
M

09
.2

M
09

.3
M

10
.1

M
10

.2
M

10
.3

M
11

.1
M

11
.2

M
11

.3
M

12
.1

M
12

.2
M

12
.3

M
13

.1
M

13
.2

M
13

.3
M

14
.1

M
14

.2
M

14
.3

M
15

.1
M

15
.2

M
15

.3
M

16
.1

M
16

.2
M

16
.3

M
17

.1
M

17
.2

M
17

.3

SampleID

Pe
rc

en
ta

ge
 (%

)

d



 215 

 

 

 

 

 

Figure S5. 3 Robustness of Danube gene clusters. After 10,000 times bootstrap resampling 

of the genes. The frequencies of individual genes assigning to the same gene cluster are 

plotted as a boxplot representing the first-second-third quartiles of the frequencies, with 

scatter points representing individual genes’ reappearance frequencies. 
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6 Conclusion 

 

 

Aquatic environmental pollution is a complex and long-lasting problem. The potential 

health effects of complex chemical mixtures are alarming thereby requiring novel 

approaches that can reduce the complexity of mixture toxicology by taking advantage 

of data-driven methodologies at identifying potential pollution hotspots in the 

environment and identifying potentially harmful chemical substance for monitoring and 

regulation. These were the primary goals of this thesis 

The Precision Environmental Health framework that I proposed in Chapter 2 is a 

viable solution to solve the puzzle of identifying environmental mixture effects for 

effective pollution control. Within this framework, non-targeted investigations of 

chemical mixtures and biomolecular signatures of environmental exposures are its two 

basic components (Figure 2.1), to assemble a holistic assessment of the 

environmental chemical mixture that may reflect the realistic environmental exposure 

scenarios. The multilevel approach to reveal the mode of action of mixture effect via 

molecular key events (Figure 2.2) and further the modes of action of chemical 

components of this mixture provides the required evidence for classifying the mixture 

and identifying harmful components. 

Conventional approaches, such as individual chemical toxicity testing with targeted 

adversity, are unable at establishing toxicity testing results that reflects realistic 

environmental exposure scenarios, and the component-based toxicity testing are ruled 

by reductionism that includes manually constructing artificial mixtures that are 

insufficient for studying the complex environmental chemical mixture with limited 
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information of the chemical composition and component identities. The work I 

presented in my thesis is focused on developing a practical approach that reflects the 

nature of the environmental chemical mixture—by treating it as an entity. The whole-

mixture approach is the key component that ensures the environmental chemical 

mixtures under study mirrors the chemical mixtures detected in the environment, and 

the concentration levels of the chemical mixtures remain the same as the original 

environmental levels. Two kinds of the environmental chemical mixture were 

investigated, as in the Chaobai River case, the whole mixture referred to the filtered 

unconcentrated river waters, while in the Danube River case, the whole-mixture 

referred to the organic mixtures extracted from the river waters (re-diluted to their 

original environmental concentration levels). Theoretically, the whole-mixtures I used 

in these two case studies consisted of most of, or at least a considerable amount of, 

the chemical components that can be captured from the real-world environment. 

Although the stability of chemical components within the mixtures during the pre-

processing and exposure testing still need further validation, this approach is under 

considerate and comparable processes of treating and maintaining the water samples, 

which is feasible to apply in the short-term exposure testing (i.e., 48 hours).  

The omics-based approaches are also highlighted in three chapters as such non-

targeted assays may provide a systematic perspective of the biological responses that 

are free of prior expectation (of adversity). It is feasible to apply a single omics 

approach to characterise the subtle differences in effects of environmental chemical 

mixtures, for example Chaobai case study in Chapter 4 and Danube case study in 

Chapter 5. And the strength of applying the multi-omics approach at characterising the 

modes of action of the chemical components in the mixture, not only the directly related 
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metabolic pathways but also the associated downstream adverse effect, is 

emphasised in Chapter 3. The integration of multi-omics may provide an 

interconnected and complementary view of the same biological processes from 

different types of biomolecular readouts (different omics) that further achieve the 

mechanistic understanding of the biological responses.  

Data analysis that establishes co-varying characteristics of the biological features 

(gene clusters in Chapter 4 and 5) and co-responsive characteristics of the biological 

network (gene modules in Chapter 3) stratify the omics profiles into a limited number 

of functional groups, so that the biological roles of the functional groups can be 

interpreted, and the variation patterns of the functional subgroups can be visualised 

and understood. The data-driven approach that relies on pairwise correlation 

analysis (Pearson correlation between eigengene and chemical factors in Chapter 4 

and 5) and multi-view learning (sCCA in Chapter 5) can model the correlations 

between several data sources and identify co-responsive biomolecular features that 

are associated with chemical data. Notably, in the Chaobai case, 

Dibenz[a,h]anthracene, Erythromycin and Trimethoprim are associated with distictive 

expressional patterns in xenobiotic activities. In the Danube case, gene clusters that 

define the differences between D11/D12 and the rest account for mild external stress 

levels while one specific gene cluster significantly associate with five biocides (carbaryl, 

chlorophene, chlorpropham, diazinon, and Simazine. Further investigation on these 

selected gene clusters may be the basis for biomarkers of specific subsets of chemical 

components, which are assumed to be the driving factors in the environmental 

chemical mixture. Regulation of environmental chemical mixture is always challenging. 

A promising way is to reveal potential toxicity driver among thousands of chemical 
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components. One character of the toxicity driver is that the concentration levels of that 

chemical components are high enough to be bioactive and capable of inducing 

(contributing) to the toxicity observed under the whole mixture exposure. This can be 

verified by artificial chemical mixture exposure v.s. single chemical compound 

exposure, so that the relative contribution of identified toxicity driving component can 

be revealed. Another character of the toxicity driver is critical to the adverse outcome, 

that is to say, by removing the toxicity driver, no adverse outcome or comparable 

adversity is observed. Once the toxicity driver of environmental chemical mixture is 

revealed and verified, the regulator can further monitor the small subset of toxicity 

driver and set regulation on the acceptable concentration levels in the environment. 

Biological interpretation of the gene sets of a premier model species (like Daphnia 

magna) was accomplished by making reference to gene and pathway homologies to 

functional and exquisitely well annotated genes in the other well-annotated genetic and 

biomedical model species (like Drosophila melanogaster). Such cross-species 

extrapolation was here achieved by referring to evolutionarily conserved ortholog 

groups that are shared by both species despite their deep evolutionary divergence. A 

hypothesis of the pathway construction is purposed as the ortholog groups are the 

essential elements that define a pathway and reveal its functionality. The premise of 

this hypothesis is that the ortholog group patterns are unique in each pathway (defined 

in the knowledge-based pathway databases, like KEGG or Reactome) and conserved 

across multiple species. Investigation on the KEGG pathway database provided 

preliminary reference data for extrapolating general (potentially conserved) pathways 

in Daphnia magna from Drosophila melanogaster. The permutation chi-square test is 

subsequently applied to fulfil the need for a statistical overrepresentation test. This 
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cross-species pathway extrapolation method is novel and important in that (1) it 

facilitates pathway analysis of gene sets from the responsive genome of any test 

species for (eco)toxicology by making reference to the superior annotated genomes of 

biomedical based on the orthology of genes and pathways that are shared by common 

ancestry; (2) it assists at identifying chemical-responsive pathways that are conserved 

across multiple species (even human); (3) it implies chemical-induced adverse 

outcomes via conserved functional pathways that are shared across multiple species 

thereby indicating potential exposure hazards to the health of animals beyond the 

target test species. Future verification of this cross-species pathway analysis will be 

needed as a sound reference database like that can assist at establishing 

environmental effect assessment based on evolutionarily conserved pathways that are 

shared by multiple species in the environment, including those that are also necessary 

for human health. 

The framework of Precision Environmental Health is not only theoretically sound but 

also practically feasible. Two approaches applied on two independent case studies 

(Chapter 4 and 5) present the proof-of-concept that the framework can be applied on 

the case-based investigations of (1) characterising and classifying the effect of 

environmental chemical mixtures by the omics-based assays of the test system and 

(2) identifying the modes of action of the chemical components in the mixture as a 

basis for identifying harmful component that may contribute to adverse effect in the 

mixture.  

Future verification work remains challenging in applying this framework in regular 

environmental monitoring and chemical prioritisation process. The major challenge is 

the development of a meta study that covers a large number of natural water samples 
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and a more comparable bioassay. Such a study will verify that the responsive 

signatures generated by a single case study can generate robust signatures that may 

be diagnostic of the harmful chemical components (case comparison in Chapter 5). 

With a substantial amount of chemical components detected in the natural 

environments investigated by the omics assays, the modes of action of detected (or 

even identified) chemical components will further provide the basis of molecular 

classification of the chemical effect, which may assist better identification of the harmful 

chemical substances.  

 


