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A B S T R A C T

Zero-shot classification refers to assigning a label to a text (sentence, paragraph, whole paper) without prior
training. This is possible by teaching the system how to codify a question and find its answer in the text.
In many domains, especially health sciences, systematic reviews are evidence-based syntheses of information
related to a specific topic. Producing them is demanding and time-consuming in terms of collecting, filtering,
evaluating and synthesising large volumes of literature, which require significant effort performed by experts.
One of its most demanding steps is abstract screening, which requires scientists to sift through various abstracts
of relevant papers and include or exclude papers based on pre-established criteria. This process is time-
consuming and subjective and requires a consensus between scientists, which may not always be possible.
With the recent advances in machine learning and deep learning research, especially in natural language
processing, it becomes possible to automate or semi-automate this task. This paper proposes a novel application
of traditional machine learning and zero-shot classification methods for automated abstract screening for
systematic reviews. Extensive experiments were carried out using seven public datasets. Competitive results
were obtained in terms of accuracy, precision and recall across all datasets, which indicate that the burden
and the human mistake in the abstract screening process might be reduced.
. Introduction

Review articles are common and crucial sources of knowledge
cross different domains. They provide a comprehensive study of an
rea (e.g. health-related topics, medical interventions, social sciences,
tc.) and serve as a rich source of information for researchers in the
espective field. In health sciences, but also in other domains such as
ocial sciences [1], a systematic review (SR) approach is often followed
o construct such comprehensive studies aiming to collect, summarise,
ritically evaluate, and synthesise knowledge. This practice is crucial to
eeping clinicians and medical experts informed of the latest develop-
ent in the field. The type of SR will depend on the research question

nd the type of data available to answer such questions. Based on the
ata, there are different approaches to conducting SRs [2]. Typical
xamples include the work presented by Aceves-Martins et al. [3],
here the authors consulted different databases for articles exploring

he relationship between obesity and oral health in Mexican children.
Most SR approaches consist of the following steps [4]:
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1. identify relevant databases of published peer-reviewed literature
2. use specific keywords and Boolean connectors to search for

potentially relevant papers
3. screen titles and abstracts retrieved from the searches
4. read full-text papers from relevant abstracts to identify those

meeting the inclusion criteria
5. extract, analyse and synthesise data from included full-text pa-

pers

Producing SRs is a demanding task in terms of collecting, filtering
and evaluating large volumes of literature. Typically, this task will re-
quire many steps performed by researchers. However, with the growing
amount of literature, and the recent advances in the domain of machine
learning (ML) and deep learning (DL) research, especially in the area of
natural language processing (NLP) [5], it becomes possible to automate
or semi-automate this task [6]. Several studies have been presented
showing how to use ML-based methods along with NLP techniques to
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automate or reduce the workload of producing systematic reviews [4].
A comprehensive review of the latest developments in the NLP area and
how it is applied to speed up the process of screening papers and other
tasks relevant to building SR can be found in O’Mara-Eves et al. [7]
and, most recently, by Blaizot et al. [8], Kebede et al. [9] and Khalil
et al. [10], with a particular focus on the latest software tools released
for this purpose.

Automatic screening and classification of literature are becoming
increasingly important, as they might be one of the key indicators of
a quality SR [11]. In automated literature classification tasks, first,
the text (e.g. abstract, title, or parts of the paper) is preprocessed
and transformed into a vector representation with corresponding labels
(e.g. relevant, not-relevant). Then, a supervised ML model is trained to
identify the relevant literature based on certain criteria. Typical models
include Support Vector Machine (SVM), Random Forest (RF), Neural
Networks (NNs) and others [12].

Various tools already exist in the public domain that aims at reduc-
ing the time to screen abstracts for inclusion in SRs. A typical example
is Abstrackr, which was also used by Gates et al. [13] to semi-automate
title and abstract screening to construct SRs. Interestingly, the authors
reported that performance in relation to workload saving varies based
on the screening tasks. Cleo et al. [14] presented an experimental study
to assess the usability and accessibility of four common tools that are
used to perform key steps in the creation of SRs and reported that all
the tools were found to be easy to use and helpful by participants.

Yu et al. [15] presented a method to create SR of genetic association
and human genome discoveries. The authors used SVM and Logistic
Regression (LR) to perform text classification, identify the relevant
literature, and reported comparable results to human performance
(97% recall, 98.3% specificity). However, low precision of 31.9% was
observed. Results also showed that SVM outperforms LR in this task.

Similarly, Cohen et al. [4] used supervised classification models to
reduce the workload required to review papers for inclusion in SRs
of drug class efficacy. In order to test their approach, the authors
built a dataset for testing using 15 review topics, used traditional-
based features representation to represent the data (e.g. bag-of-words)
and used a voting perception-based algorithm to train a classifier.
Interestingly, results showed that the classifier’s performance varies
from one topic to another.

Marshall et al. [16] trained an SVM, a convolutional neural network
(CNN) and an ensemble-based method on a set of titles and abstracts
of literature related to randomised controlled trials and compared their
methods against traditional database search filters. The authors re-
ported that ML-based approaches outperformed other traditional search
methods in identifying relevant papers.

Przybyla et al. [17] presented a large experimental study to create
SRs using a web-based tool called RobotAnalyst, that combines text-
mining and ML functionalities. The authors used more than 43,610
abstracts (mostly related to health topics) and reported significant gains
in terms of time needed to screen abstracts improvement over random
sampling.

In another large-scale experiment, Xiong et al. [18] used ML-based
methods to select and identify relevant papers out of a collection of
4177. The topics that were covered related to diabetes mellitus and its
association with atrial fibrillation. Results showed that the 29 studies
identified by ML-based methods were completely consistent with the
manual screening.

Karasalo et al. [19] presented a framework for horizon scanning, aim-
ing at discovering changes, and trends with the potential to influence
a particular area. Using general search criteria, the authors used a top-
down approach to scan and collect literature (from Thomson. Reuters
Web of Science). Then Gibbs Sampling Dirichlet Multinomial Mixture
(GSDMM) was used to cluster the collected literature into different
topics, and finally, articles within each cluster were ranked based on
scientific citation statistics (e.g. citations in a short period of time,
strong citation trend, being cited in top journals) to identify the most

significant contributions. i

2

To speed up the creation of SRs, Pradhan et al. [20] developed
a framework to extract quantitative data from relevant studies. The
authors used clinicalTrials.gov to evaluate the performance of the de-
eloped methods and reported 100% when compared with a manual
pproach. However, only three published reviews were used for testing.
ther most recent approaches found in the literature involve the fa-
ous Bidirectional Encoder Representations from Transformers (BERT)
odel, using a knowledge graph corpus specifically built for medical

ext classification in Chinese texts [21].
In this work, we propose a novel application of traditional ML

nd zero-shot classification methods for the task of automated abstract
creening for SR. Applying directly traditional ML methods to classify
atasets of abstracts for SR is not trivial as these datasets are very highly
mbalanced. Typically a small number of abstracts will be labelled for
nclusion in the SR, and the rest will be labelled to be excluded. In
his paper, we use a recent novel CDSMOTE method presented in [22]
o address the imbalanced problem and apply ML traditional methods.

e also propose a novel application of zero-shot text classification [23]
pproach to the problem of automated abstract screening for SR. This
ethod of classifying text does need any training. To improve further

he classification results, we explore and evaluate a hybrid approach,
here we combine zero-shot classification and traditional machine

earning algorithms. We conduct a number of experiments and evaluate
he proposed methods on several datasets from different SRs in diverse
reas of health sciences.

The structure of the paper is as follows. Section 2 presents the
roposed methods, Section 3 describes the prepossessing steps of con-
erting the abstract into text embeddings, datasets, and the CDSMOTE
ethod used to tackle the imbalance in the datasets, Section 4 covers

he experimental work, Section 5 provides the results and discussion,
nd Section 6 gives the conclusion.

. Methods

.1. Traditional ML methods

A wide range of supervised ML algorithms can be applied to map an
nstance 𝑥 to a particular class label 𝑦. In this paper, and based on the
xperiments carried out in the past by Fernández-Delgado et al. [24],
he aim is to use two widely adopted ML algorithms for classification:
andom Forest (RF) and Support Vector Machine (SVM). These meth-
ds need to be applied to classify abstracts for inclusion or exclusion in
n SR. Still, the abstract texts have to be first converted into vector
epresentations, which will be then used for training and testing by
he SVM and RF models. In the following lines, we will explain both
lassifiers and point out their strengths and weaknesses for the task at
and.

.1.1. Random Forests
RF is an ensemble classification and regression technique intro-

uced by Breiman et al. [25] that has proved to be a highly accurate
rediction and classification technique. The ensemble is designed to
rain more than one classifier, and then aggregate the predictions
f all models and perform predictions by majority voting. A good
nsemble needs models to be diverse enough and independent from
ach other to ensure good performance. Broadly speaking, diversifying
he ensemble can either include training more than one type of ML
lgorithm (e.g. SVM, LR, etc...) or alternatively, training one machine
earning algorithm on various and diverse subsets of the training set. RF
enerates a diversified ensemble using Bootstrap aggregating (bagging).
agging is a sampling method that samples data from the training set
ith replacement. With such an approach, an instance in the dataset

an be sampled more than for the same model. At the same time,
ther instances may not appear at all during the training process. It
s estimated that following this approach, more than 63% of unique

nstances from the training set will be used during the training process,



C.F. Moreno-Garcia, C. Jayne, E. Elyan et al. Decision Analytics Journal 6 (2023) 100162

e
o
m
U
K

2

c
s
a
m
I
r
s
s
h

2

t
a
c
u
s
s

e
c
g
c

while almost 37% of the instances will not be sampled at all, and
will be used to estimate the ‘‘out-of-bag’’ error. In addition, and to
ensure a more diversified ensemble RF at each node split, only a subset
of features is drawn randomly to assess the quality of each feature.
According to the winning solutions in kaggle.com, the state-of-the-art
nsemble methods are RF [25] and Gradient Boosting trees [26]. In
ne of the largest experiments ever carried out in literature [24], where
ore than 179 classifiers were used on 121 different datasets from the
CI repository [27], RF came first, followed by SVM with Gaussian
ernels.

.1.2. Support Vector Machine
SVM [28] is another supervised ML algorithm that boosts classifi-

ation accuracy by projecting the data points to a higher dimensional
pace, finding an optimal hyperplane that separates positive and neg-
tive classes. It has also proven its superiority over other classification
ethods in terms of speed, simplicity, and precision–recall balance.

n [27] and when compared to other widely adopted learning algo-
ithms, SVM with Gaussian kernel ranked second after RF without
tatistically significant difference. A recent SR of the literature [29]
hows that SVM is considered one of the most common approaches in
andling class imbalanced datasets.

.2. Zero-shot classification

In this paper, zero-shot text classification [23] refers to classifying
ext into a category without any training. The benefit of using this
pproach is that labels are not needed and with a single model, we can
ategorise text as belonging to different categories. Moreover, it allows
s to start the classification of abstracts without explicitly having to
plit part of the available data for training, which normally can take
ome relevant and informative data out of the testing section.

The proposed method is based on pre-trained natural language infer-
nce (NLI) models. A text is evaluated as whether it belongs to a specific
ategory or topic a hypothesis is constructed and a probability score is
enerated. One of the most popular models for zero-shot text classifi-
ation is the Hugging Face’s facebook/bart-large-mnli model, based on

the BART-large transformer architecture which has over 400 million
parameters [23]. A transformer architecture is based on a DL model us-
ing an encoder–decoder through a so-called attention mechanism [30].
Fig. 1 illustrates the transformer model architecture. Attention refers
to assigning more importance to certain features and less important
to others. The attention mechanism is used in the transformer ar-
chitecture to make features context-aware i.e. word embeddings that
capture the semantic relationships between different words taking into
account also the position of the sentence. Transformers were initially
designed to solve the problem of machine translation [31] or tasks that
transform an input sequence into an output sequence. Transformers
have become widely used for NLP problems, and are more popular
than the traditional sequence type models such as Recurrent Neural
networks (RNN) and long short-term memory (LSTM) [32]. The archi-
tecture of transformer-based models is shown in Fig. 1 and is based on
the groundbreaking work outlining the initial proposal of transformer
models [30]. The first examples of pre-trained transformer-based NLP
systems are Bidirectional Encoder Representations from Transformers
(BERT) and Generative Pre-trained Transformers (GPT), which were
trained with large language datasets, such as the Wikipedia Corpus and
Common Crawl, and can be fine-tuned for more specific tasks such as
image generation.

In this paper, we use the BART transformer encoder–decoder
(sequence-to-sequence) model [33] with a bidirectional (BERT-like)
encoder and an autoregressive (GPT-like) decoder. It is pre-trained for
the English language, which has proven to work well for text-related
tasks such as summarisation, translation and comprehension including

text classification [33]. Moreover, we use 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠, 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 and

3

Fig. 1. Transformer model architecture [30].

𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑟 = 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒(ε𝑧𝑒𝑟𝑜𝑠ℎ𝑜𝑡𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛ε, 𝑚𝑜𝑑𝑒𝑙 = ε𝑓𝑎𝑐𝑒𝑏𝑜𝑜𝑘∕𝑏𝑎𝑟𝑡-
𝑙𝑎𝑟𝑔𝑒−𝑚𝑛𝑙𝑖ε) parameters. The abstracts of the papers are passed to this
pipeline to classify into any of the specified categories or a primary
label. Notice the importance of how the primary label (category) is
defined, as it affects the inclusion or exclusion of the abstract. Using this
approach, we apply the zero-shot classification to the set of abstracts
for each topic and evaluate the performance using the true class
(include/exclude) by calculating the weighted precision, recall and F1
score. The model pipeline produces a score which is the probability
of the abstract belonging to the specified primary label. By setting
different thresholds for the probability, we evaluate the accuracy of
the prediction to assign an abstract to include or exclude a class. If
the probability score is set to a higher threshold then more abstracts
will be excluded. A high-level diagram of the zero-shot classification is
presented in Fig. 2.

2.3. Hybrid approach

For the hybrid approach, we combine the zero-shot classification
method explained in 2.2 and the traditional machine learning algo-
rithms RF and SVM. The main reason we used the hybrid method is
to improve the accuracy of the zero-shot classification but, at the same
time, greatly reduce the number of abstracts for manual screening. This
can help simulate how a systematic reviewer would use this method to
reduce workload. That is, first selecting a subset of abstracts for in-
clusion using the zero-shot classification to annotate them. Afterwards,
this smaller subset of abstracts can be manually screened and used to

train a supervised learning algorithm to be used for the entire dataset.
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Fig. 2. High-level diagram using zero-shot classification.

Fig. 3. High-level diagram using the hybrid approach.

To do so, we apply the zero-shot classification to the set of all abstracts
for a particular dataset. All that have scored more than a specific
threshold 𝜏 are identified as abstracts to be included, i.e. assigned label
1. If we set the threshold, 𝜏, of the probability too high, then only very
few abstracts will be labelled to be included. If it is set too low, the
manual labelling required will be higher. For the experiments in this
paper, we set the threshold to 0.5 to find out whether we can improve
on the zero-shot classification with some additional manual labelling.
We then assume that a manual process is applied to these abstracts
identified as included by the zero-shot classification. After that manual
labelling of this part of the dataset, we use it as a training set and apply
the traditional ML approach, i.e. convert the text of the abstracts into
vector representations and then train SVM and RF models. The trained
models are evaluated on the remaining dataset of abstracts identified
initially as excluded from the zero-shot classification by calculating the
weighted precision, recall and F1 score. It is important to note that this
approach performs the manual labelling abstract screening on a smaller
dataset than when we apply the traditional ML approach from the
beginning. The hybrid approach can be considered a fine-tuning of the
zero-shot classification. A high-level diagram of the hybrid approach is

presented in Fig. 3.

4

3. Data preparation

3.1. Text embeddings

To apply ML to classify the abstracts, these have to be represented
as numeric data. One way to convert text into vector representation
with numbers is to use one-hot encoding, i.e. associate a unique integer
number with every word and turn the integer index into a binary vec-
tor. This results in encoding a text with very high dimensional vectors
(i.e., the vocabulary size). Another way is to use text embeddings,
i.e. encoding words or phrases from a language vocabulary to vectors
of real numbers. Text embeddings encode very large vocabularies in
low-dimensional vectors learnt from data.

In this paper, we use widely established models for converting text
data into numerical representations based on Word2Vec algorithms
introduced by Mikolov et al. in [34,35]. We relied on the Python-based
implementation in the Gensim library [36] and embeddings based on
Global Vectors for Word Representation (GloVe), FastText and Doc2Vec
models. These three word embedding models are briefly explained in
the following lines.

3.1.1. GloVe
GloVe is an unsupervised learning algorithm for obtaining vector

representations for words. It is based on a global log bi-linear re-
gression model that combines global matrix factorisation and local
context window methods [37]. The GloVe model is trained on aggre-
gated global word–word co-occurrence matrix from a corpus which
captures the frequency of words that co-occur with one another in
a given corpus. GloVe6.b provides pre-trained word vectorisations
with 100, 200, 300 dimensions trained over large corpora, including
Wikipedia 2014, Gigaword 5 and Twitter content [37]. In this particu-
lar work, we use a word vectorisation with dimension 300. Using the
gensim.scripts.glove2word2vec method, we convert GloVe vectors into
the Word2Vec ones.

3.1.2. FastText
FastText is an open-source library for efficient learning of word rep-

resentations and sentence classification developed by Facebook [38].
FastText enables representing sentences with bag of words and bag of
n-grams and enriching word vectors with sub-word information. It can
be used to learn word vector embeddings with the additional ability to
obtain word vectors for out-of-vocabulary words.

3.1.3. Doc2Vec
Doc2Vec is a model that represents each document as a vector based

on Word2Vec. Doc2Vec is based on the paper Distributed Representa-
tions of Sentences and Documents Mikolov et al. [35]. The idea of the
Gensim Doc2Vec model is that a word vector is generated for each word,
and a document vector is generated for each document. The model
also trains weights for a softmax hidden layer. After training, when a
new document is presented, the vector representation is calculated after
training.

3.2. Datasets

To validate our inclusion/exclusion classification methodology, we
collected a total of five datasets from different SRs performed in diverse
health sciences domains. Most of the datasets (except for Aceves-
Martins2021, which is available in Doc2Vec format on our GitHub
demo [39]) can be obtained from here [40]. A summary of their
characteristics is presented in Table 1. We also include the question
that the experts were looking for during the abstract screening pro-
cess, the number of excluded and included studies, and finally, the
imbalance ratio (IR). We extracted the features to train and test the
classification algorithms for each of these abstract datasets, as described
in Section 3.1. For each dataset, we obtained 200 Doc2Vec features,

300 FastText features and 300 GloVe features.
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Table 1
Summary of the characteristics of the datasets used for experimentation.

Abv. Topic Question asked at abstract level to
include/exclude the manuscript

Excluded Included IR

Aceves-Martins2021 Oral health Was the study performed in Mexico (with
Mexican children)?

789 18 43.83

Bannach-Brown2016 Animal depression Does the study provide primary data of an
animal model of depression or depressive-like
phenotype with an appropriate control group?

1713 280 6.11

Cohen2006A Atypical antisychotics Where the patients in the study exposed to
(atypical) antisychotics?

757 363 2.08

Cohen2006C Calcium channel blockers Where the patients in the study exposed to
calcium channel blockers?

939 279 3.36

Cohen2006O Oral hypoglycemics Where the patients in the study exposed to
(oral) hypoglycemics?

364 139 2.61
3.3. Data balancing

The datasets in the problem of abstract screening are highly im-
balanced, i.e. only a small number of instances belong to one of
the classes of included abstracts. A common approach to address the
imbalanced dataset for classification is using the Synthetic Minority
Oversampling Technique (SMOTE) [41]. This method is designed to
synthesise new data points by interpolating neighbouring instances.
The method has been effective in handling class imbalance and has
been used across a wide range of real-world applications [42–44]. In
addition, various extensions have been proposed based on the original
methods, including DBSMOTE [45], SLSMOTE [46], MWMOTE [47]
and others. In this work, however, we opted for a more recent and novel
enhancement method called Class Decomposition SMOTE (CDSMOTE)
presented in [22]. CDSMOTE is based on two key ideas which are
commonly used in these settings; class-decomposition [48,49], and data
augmentation via SMOTE [41].

CDSMOTE works by under-sampling the majority class instances us-
ing unsupervised learning algorithms (e.g. kmeans) and over-sampling
the minority class instances based on some heuristics using SMOTE.
The motivation behind this choice is to minimise information loss,
which often happens due to other common undersampling methods.
This is mainly because under-sampling in CDSMOTE refers to clus-
tering the majority class instances into sub-clusters, which results in
less imbalanced datasets and, at the same time, provides more fine-
grained training to the learning algorithms. The CDSMOTE method
presented in [22] is comprised of two steps: (1) class decomposition
to redistribute the number of samples per class without losing any
sample and (2) oversampling the new minority class(es) to reduce the
dominance of the new majority class(es). Regarding the first step, class
decomposition can be broadly described as clustering class instances
into smaller groups employing unsupervised learning algorithms. As
a result, the dominance of a class can be greatly reduced without
losing any information. We use two methods for clustering kmeans
and DBSCAN, which we denote with CDSMOTE-kmeans and CDSMOTE-
DBSCAN, respectively. A detailed description of the algorithm can be
found in [22,50].

4. Experiment

We evaluated the performance of the following six settings using
the true class (include/exclude) for the abstracts by calculating the
weighted precision, recall and F1-score:

1. SVM classification on the datasets with 5-fold cross-validation.
The default Python SVM scikit-learn package parameters [51]
were used for the classifier.

2. RF classification on the datasets with 5-fold cross-validation. The
default Python RF scikit-learn package parameters [51] were
used for the classifier.
5

3. SVM classification trained with the labels generated by the
CDSMOTE method (as described in Section 3.3, tested using
the original labels) with 5-fold cross-validation. Default SVM
parameters were used, and for the CDSMOTE algorithm, we
present two alternatives: a) kmeans for the decomposition step
with 𝑘 = 2 and b) DBSCAN for the decomposition step with
𝑒𝑝𝑠 = 0.1

4. RF classification trained with the labels generated by the
CDSMOTE method (as described in Section 3.3, tested using the
original labels) with 5-fold cross-validation. Default RF parame-
ters were used, and for the CDSMOTE algorithm, we present two
alternatives: a) kmeans for the decomposition step with 𝑘 = 2
and b) DBSCAN for the decomposition step with 𝑒𝑝𝑠 = 0.1

5. Zero-shot classification with a primary label defined for each
dataset and as described in Section 2.2. In this case, there is
no need for a train/test split as the entire dataset is used to
validate the classification. Three different thresholds 𝜏 for the
probabilities to assign an abstract as belonging to the defined pri-
mary label were tested for each dataset (only the best three are
presented for each SR dataset). The primary labels are defined
as follows for the datasets used in the experiments:

• Aceves-Martins2021 - [children obesity Mexico]
• Bannach-Brown2016 - [animal depression]
• Cohen2006 A - [patients Atypical Antipsychotic]
• Cohen2006C - [calcium channel blockers clinical evidence]
• Cohen2006O - [exposed to oral hypoglycaemics]

6. zero-shot classification with a primary label followed by SVM
and RF to classify the result (i.e. the Hybrid approach described
in Section 2.3). Again, default package parameters [51] were
used for the SVM and RF classifiers, and the threshold used was
𝜏 = 0.5 for the probabilities. To tackle imbalance in the dataset
the standard class, imblearn.over_sampling. RandomOverSampler
was used before applying SVM and RF.

A guided sample of the code used in these experiments can be found
here [39].

5. Results and discussion

Table 2 shows the results of implementing methods 1 and 2 as
described in Section 4. Notice that the best results achieved within the
three types of extracted features are marked in bold. We notice here
that precision is typically better using SVM, while the recall is mostly
tied between the two classifiers. As a result, the F1 measure is best
for SVM. Moreover, we notice that, in general, the Doc2Vec extractor
yields the best performance overall. This initial study is useful for us
to understand what to expect as the more sophisticated methodologies
are applied.

Table 3 shows the results of classifying the SR datasets with the
CDSMOTE variants of the labels for the training data. This time, the
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Table 2
Results of implementing methods 1 and 2 (classification of original datasets). The best-aggregated results
achieved for each dataset and within each classifier are highlighted in bold.

Abv. Embedding SVM RF

Prec Rec F1 Prec Rec F1

Aceves-Martins2021
GloVe 0.959 0.979 0.969 0.959 0.977 0.968
FastText 0.959 0.979 0.969 0.959 0.979 0.969
Doc2Vec 0.964 0.957 0.96 0.959 0.979 0.969

Bannach-Brown2016
GloVe 0.739 0.859 0.795 0.738 0.859 0.794
FastText 0.739 0.859 0.794 0.739 0.859 0.794
Doc2Vec 0.875 0.877 0.876 0.739 0.859 0.795

Cohen2006A
GloVe 0.456 0.676 0.545 0.456 0.675 0.545
FastText 0.456 0.676 0.544 0.456 0.676 0.545
Doc2Vec 0.675 0.683 0.678 0.522 0.676 0.546

Cohen2006C
GloVe 0.594 0.77 0.671 0.594 0.77 0.671
FastText 0.594 0.77 0.671 0.594 0.77 0.671
Doc2Vec 0.708 0.713 0.711 0.594 0.77 0.671

Cohen2006O
GloVe 0.521 0.722 0.605 0.596 0.722 0.61
FastText 0.521 0.722 0.605 0.55 0.722 0.612
Doc2Vec 0.699 0.677 0.686 0.521 0.722 0.605
Table 3
Results of implementing methods 3 and 4 (classification of balanced datasets using CDSMOTE). The best-aggregated results achieved for each
dataset and within each classifier are highlighted in bold.

Abv. Embedding, CDSMOTE Parameters SVM RF

Prec Rec F1 Prec Rec F1

GloVe, kmeans = 2 0.877 0.834 0.851 0.927 0.921 0.921
GloVe, DBSCAN = 0.1 0.871 0.827 0.852 0.936 0.928 0.928
FastText, kmeans = 2 0.825 0.708 0.762 0.929 0.926 0.926
FastText, DBSCAN = 0.1 0.76 0.414 0.539 0.946 0.94 0.94
Doc2Vec, kmeans = 2 0.978 0.977 0.977 0.95 0.95 0.95

Aceves-Martins2021

Doc2Vec, DBSCAN = 0.1 0.983 0.982 0.982 0.964 0.962 0.962

GloVe, kmeans = 2 0.739 0.739 0.738 0.733 0.731 0.726
GloVe, DBSCAN = 0.1 0.725 0.724 0.723 0.747 0.745 0.745
FastText, kmeans = 2 0.312 0.559 0.401 0.753 0.754 0.752
FastText, DBSCAN = 0.1 0.601 0.497 0.554 0.754 0.753 0.752
Doc2Vec, kmeans = 2 0.872 0.871 0.871 0.817 0.808 0.803

Bannach-Brown2016

Doc2Vec, DBSCAN = 0.1 0.599 0.496 0.553 0.817 0.815 0.815

GloVe, kmeans = 2 0.586 0.582 0.561 0.642 0.641 0.637
GloVe, DBSCAN = 0.1 0.611 0.609 0.608 0.649 0.647 0.647
FastText, kmeans = 2 0.281 0.53 0.367 0.64 0.634 0.622
FastText, DBSCAN = 0.1 0.499 0.499 0.401 0.656 0.655 0.655
Doc2Vec, kmeans = 2 0.713 0.711 0.711 0.687 0.653 0.626

Cohen2006A

Doc2Vec, DBSCAN = 0.1 0.713 0.712 0.712 0.683 0.68 0.679

GloVe, kmeans = 2 0.619 0.612 0.594 0.642 0.626 0.603
GloVe, DBSCAN = 0.1 0.624 0.623 0.622 0.668 0.666 0.665
FastText, kmeans = 2 0.284 0.533 0.371 0.646 0.631 0.609
FastText, DBSCAN = 0.1 0.535 0.526 0.457 0.667 0.665 0.664
Doc2Vec, kmeans = 2 0.741 0.74 0.739 0.727 0.665 0.63

Cohen2006C

Doc2Vec, DBSCAN = 0.1 0.731 0.73 0.73 0.728 0.726 0.725

GloVe, kmeans = 2 0.657 0.641 0.625 0.673 0.671 0.671
GloVe, DBSCAN = 0.1 0.638 0.603 0.575 0.687 0.68 0.678
FastText, kmeans = 2 0.277 0.527 0.363 0.664 0.663 0.663
FastText, DBSCAN = 0.1 0.661 0.537 0.428 0.72 0.715 0.714
Doc2Vec, kmeans = 2 0.78 0.769 0.768 0.754 0.754 0.754

Cohen2006O

Doc2Vec, DBSCAN = 0.1 0.789 0.786 0.786 0.746 0.74 0.739
numbers marked in bold indicate the results that were better than
the experiments on the original versions (i.e. methods 1 and 2 shown
in Table 2). Notice that we can improve our results for all datasets
except for Bannach-Brown2016, where the difference was just 0.002
for all metrics used, and the recall of Cohen2006C, with a difference
of 0.3 with regards to the original dataset. Moreover, we find that
SVM with Doc2Vec features is the best available combination for
improved performance. Finally, we notice that for all datasets (except
for Bannach-Brown2016 and Cohen2006C for a slight margin), the use
of DBSCAN for the decomposition step was better than kmeans. This
indicates that these particular datasets may be more challenging for the
clustering algorithms and thus, the lack of improvement with respect
to the original versions.
6

Table 4 shows the results of applying methods 5 and 6, which are
based on the zero-shot classification method presented in this paper.
The results show that the hybrid approach outperforms the previous ap-
proaches (i.e. methods 1−4 shown in Tables 2 and 3) in most cases. The
hybrid approach shows the best possible results for all the datasets con-
sidered, except for the precision of Cohen2006C and the precision and
F1-measure of Cohen2006O. However, these differences are smaller
by a minimal margin with respect to their CDSMOTE counterparts.
Once again, the results suggest that the Doc2Vec and SVM combi-
nation yields the best results overall, except for Aceves-Martins2021
and Bannach-Brown2016, where the best results are obtained using RF
as the classifier, given by the larger size and amount of information
contained in the abstracts to be handled. Nonetheless, we have to
consider that for these methods, there is no need to split the dataset
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Table 4
Results of implementing methods 5 and 6 (zero-shot based). The best-aggregated results achieved for each dataset and within each method are
highlighted in bold.

Abv. Hybrid Method

zero-shot classification Threshold = 0.5

Embedding Threshold Prec Rec F1 Embedding, Classifier Prec Rec F1

GloVe, SVM 0.99 0.74 0.84Glove 0.2 0.978 0.726 0.822 GloVe, RF 0.99 0.96 0.97
FastText, SVM 0.99 0.89 0.94FastText 0.5 0.976 0.939 0.954 FastText, RF 0.99 0.95 0.97
Doc2Vec, SVM 0.99 0.93 0.96

Aceves-Martins2021

Doc2Vec 0.6 0.981 0.971 0.975 Doc2Vec, RF 0.99 0.99 0.99

GloVe, SVM 0.89 0.77 0.82GloVe 0.9 0.828 0.771 0.793 GloVe, RF 0.9 0.9 0.9
FastText, SVM 0.89 0.76 0.81FastText 0.8 0.832 0.708 0.749 FastText, RF 0.89 0.9 0.9
Doc2Vec, SVM 0.92 0.91 0.92

Bannach-Brown2016

Doc2Vec 0.5 0.835 0.612 0.671 Doc2Vec, RF 0.92 0.94 0.92

GloVe, SVM 0.1 0.32 0.15GloVe 0.02 0.698 0.375 0.271 GloVe, RF 0.62 0.64 0.63
FastText, SVM 0.1 0.32 0.15FastText 0.1 0.597 0.472 0.475 FastText, RF 0.63 0.65 0.64
Doc2Vec, SVM 0.73 0.74 0.73

Cohen2006A

Doc2Vec 0.2 0.567 0.501 0.517 Doc2Vec, RF 0.65 0.69 0.61

GloVe, SVM 0.73 0.64 0.67GloVe 0.2 0.667 0.573 0.605 GloVe, RF 0.72 0.77 0.73
FastText, SVM 0.72 0.64 0.66FastText 0.5 0.675 0.663 0.669 FastText, RF 0.73 0.78 0.74
Doc2Vec, SVM 0.74 0.75 0.75

Cohen2006C

Doc2Vec 0.6 0.669 0.678 0.674 Doc2Vec, RF 0.68 0.78 0.7

GloVe, SVM 0.73 0.75 0.74GloVe 0.3 0.678 0.431 0.422 GloVe, RF 0.75 0.78 0.76
FastText, SVM 0.72 0.71 0.71FastText 0.4 0.648 0.449 0.456 FastText, RF 0.69 0.64 0.66
Doc2Vec, SVM 0.78 0.8 0.78

Cohen2006O

Doc2Vec 0.5 0.649 0.508 0.531 Doc2Vec, RF 0.72 0.78 0.71
Table 5
Summary of the best results obtained for each dataset.

Abv. SVM CDSMOTE SVM Hybrid Method

Prec Rec F1 Prec Rec F1 Prec Rec F1

Aceves-Martins2021 0.959 0.979 0.969 0.983 0.982 0.982 𝟎.𝟗𝟗 𝟎.𝟗𝟗 𝟎.𝟗𝟗
Bannach-Brown2016 0.875 0.877 0.876 0.872 0.871 0.871 𝟎.𝟗𝟐 𝟎.𝟗𝟒 𝟎.𝟗𝟐
Cohen2006A 0.675 0.683 0.678 0.713 0.712 0.712 𝟎.𝟕𝟑 𝟎.𝟕𝟒 𝟎.𝟕𝟔
Cohen2006C 0.708 0.713 0.711 0.741 0.74 0.739 𝟎.𝟕𝟒 𝟎.𝟕𝟓 𝟎.𝟕𝟓
Cohen2006O 0.699 0.677 0.686 0.789 0.786 0.786 𝟎.𝟕𝟖 𝟎.𝟖 𝟎.𝟕𝟖
in training and testing; therefore, all samples are being used, which
means that there is more data in the testing set. Further hyperparameter
optimisation may improve these results, which will be considered in our
future work. Most important is to note that with zero-shot classification,
manual labelling is eliminated or with the hybrid approach reduced
significantly. Applying the hybrid approach requires some manual
labelling. The proportions of abstracts for each dataset that were man-
ually labelled, i.e. used for training of the SVM and RF models, are
Aceves-Martins2021 (7%), Bannach-Brown2016 (46%), Cohen2006 A
(44%), Cohen2006C (25%) and Cohen2006O (58%). These proportions
depend on the threshold 𝜏 chosen for the probability of which abstracts

ill be included after performing the zero-shot classification. The larger
he threshold, the smaller proportions of the abstracts will be marked
ith label 1 (i.e. to be included). The threshold 𝜏 in our experiment was

et to 0.5. In the traditional machine learning approach, the proportion
f the datasets used for training was 70%, i.e., the proportion that
equires manual labelling. The final summary of the results can be seen
n Table 5.

. Conclusion

In this paper, we applied traditional ML methods and zero-shot clas-

ification methods based on transformer DL architecture for automating

7

abstract screening of the SR process. We evaluated the performance
of these methods by conducting experiments using five datasets from
different SRs in diverse health science domains. We evaluated three
algorithms, GloVe, FastText and Doc2Vec, for converting the text of the
abstracts to vector representations. Tables 2−4 show that Doc2Vec text
embedding provides the best results, which is explained by the fact that
these vector representations can capture the semantics, i.e. the mean-
ing, of the input texts. Table 5 shows that the best results are obtained
using the hybrid method, which combines traditional ML and zero-shot
classification. The advantage of the hybrid method is that it allows the
use of unlabelled data in the initial step of scanning abstracts, thus
saving significant time and effort. Moreover, we can notice that for
the most recent datasets, namely Aceves-Martins2021 and Bannach-
Brown2016, we obtained results over 90% in all metrics (compared to
73% to 80% in the Cohen datasets), since these datasets were compiled
most recently, with larger information and from domains where authors
tend to write more information in a more systemic and organised man-
ner. In our future work, we will explore further levels of embeddings
(character, word, sentence, document) and attention mechanisms to
improve further the results and reduce further the need for manual
labelling. Beyond aiding in abstract screening for the SR process, the
methods presented in this paper could also be used for classification of
text in more general tasks, such as acceptance/rejection of manuscripts
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in terms of appropriateness to a given journal or conference, pre-
screening of legal documents related to a certain court case, amongst
others.
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