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Abstract
Control flow of quantum programs is often divided into two different classes: classical

and quantum. Quantum programs with classical control flow have their conditional

branching determined by the classical outcome of measurements, and these collapse

quantum data. Conversely, quantum control flow is coherent, i.e. it does not perturb

quantum data; quantum walk-based algorithms are practical examples where coherent

quantum feedback plays a major role. This dissertation has two main contributions:

(i) a categorical study of coherent quantum iteration and (ii) the introduction of weak

while loops.

(i) The objective is to endow categories of quantum processes with a traced monoidal

structure capable of modelling iterative quantum loops. To this end, the trace of a mor-

phism is calculated via the execution formula, which adds up the contribution of all

possible paths of the control flow. Haghverdi’s unique decomposition categories are

generalised to admit additive inverses and equipped with convergence criteria using

basic topology. In this setting, it is possible to prove the validity of the execution for-

mula as a categorical trace on certain categories of quantum processes. Among these

there are categories of quantum processes over finite dimensional Hilbert spaces (as

previously shown by Bartha), but also certain categories of quantum processes over

infinite dimensional Hilbert spaces, such as a category of time-shift invariant quantum

processes over discrete time.

(ii) A weak while loop is a classical control flow primitive that offers a trade-off

between the collapse caused on each iteration and the amount of information gained.

The trade-off may be adjusted by tuning a parameter and, in certain situations, it is

possible to set its value so that we may control the algorithm without sacrificing its

quantum speed-up. As an example, it is shown that Grover’s search problem can be

implemented using a weak while loop, maintaining the same time complexity as the

standard Grover’s algorithm (as previously shown by Mizel). In a more general setting,

sufficient conditions are provided that let us determine, with arbitrarily high probabil-

ity, a worst-case estimate of the number of iterations the loop will run for.
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Non-technical Summary
If you have ever followed a recipe from a cookbook, it is likely you have encountered

an unbounded loop: these have the form “bake the soufflé until it turns golden”. It is

a loop since you keep doing the same action — baking — for an extended duration

of time and it is unbounded since the actual amount of time you will bake for has not

been specified; it may take longer on less powerful ovens. Writing a program is very

similar to telling a computer how to follow a recipe: you specify the steps to solve a

problem so that the computer “bakes” the solution for you. Quantum computers are no

different, you still need to give them a recipe; however, quantum computer scientists

have generally been shy in their use of unbounded loops in quantum recipes. The main

motivation behind this thesis is to argue that unbounded loops in quantum computer

science may be more interesting than they are usually credited for.

When following the instruction “bake the soufflé until it turns golden” you are

repeatedly peeking at the soufflé to decide whether or not it is time to turn off the

oven; a classical computer would do the same. However, quantum computers deal

with quantum data which is very delicate in the sense that the simple act of measuring

it alters it: as if peeking at your quantum soufflé would spoil it. Then, how can you

possibly know when the soufflé is ready? It turns out that how “badly” the soufflé is

spoiled depends on how “intensively” you peeked at it. One of the contributions of

this thesis is the discussion of a general procedure that let us play with this trade-off

and come out on top: we can keep an eye on the soufflé so we detect when it is ready

without spoiling it badly.

The soufflé in the previous metaphor was meant to represent quantum data, but the

nature of our decision making was still classical: we either turned off the oven or let it

bake for a little longer. Quantum physics allows us to do something crazier: we may

entangle the state of the soufflé with the state of the oven. If we engineer the right

entanglement, the scenario where the oven is still on while the soufflé is burning will

simply be unfeasible. Then, we no longer need to control the oven ourselves, avoiding

the risk of spoiling the soufflé by peeking at it. Previous works in the literature have

attempted to formalise these ideas in mathematical terms that would help us better un-

derstand these “fully quantum” unbounded loops. In this thesis I make contributions

to this line of research, discussing a mathematical framework where these “fully quan-

tum” unbounded loops are proven to be well-defined and consistent with the theory.
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Chapter 1

Introduction

This thesis studies quantum iteration using multiple technical results on traced monoidal

categories, Hausdorff topology, the Fourier transform and weak quantum measure-

ments. For the sake of completeness, a brief introduction to each of these fields of

study is provided where relevant throughout the text. Thus, the thesis is self-contained

in the sense that no prior knowledge is required from the reader. This stylistic choice

results in a rather long text with multiple sections on introductory material. These sec-

tions have been labelled as (Preamble) in their title (also appearing in the index) so that

readers experienced in the subject may skip them without risk of missing out on novel

contributions. A glossary has been provided at the end of the text, linking technical

nomenclature to the page it is defined in.

This first chapter serves as the introduction to the thesis. Section 1.1 provides a

brief introduction to quantum computing and, in particular, a discussion of the state of

the art in the field of control flow of quantum programs — the field of study that this

thesis contributes to. Sections 1.2 and 1.3 summarise the contributions of this thesis

along with its structure and enumerate previous works we build upon. Sections 1.4

and 1.5 provide a brief introduction to category theory and examples of categories

relevant to quantum computing.

1.1 Brief introduction to quantum computing

The information held in the memory of a computer at any given time is known as its

state. A programmer provides a computer with instructions on how it must manipulate

its state so that, at the end of the process, the resulting state encodes the solution to the

problem the programmer is interested in. Thus, there are three essential aspects that

1



2 Chapter 1. Introduction

need to be captured by any mathematical framework used to discuss computation:

• the collection of possible states the computer can be in,

• the collection of transformations that we may apply to such states and

• how information may be retrieved from the computer’s state.

The collection of possible states of a quantum computer is described as a Hilbert space

H . Information may be retrieved from a quantum state by applying a measurement;

however, unlike in classical computing, measuring perturbs the quantum state being

observed. To apply a measurement, we must first choose a decomposition of H into

orthogonal subspaces:

H ∼=
⊕
i∈I

Hi

with projections πi : H → Hi. When the measurement is applied to a state v ∈ H

it becomes one of the states in the collection {πi(v)}i∈I , up to normalisation; with

the probability of the i-th outcome determined by ||πi(v)||2. Consequently, vectors

v ∈ H describing quantum states are required to be unit vectors ||v|| = 1, so that the

probabilities of all possible measurement outcomes add up to one. The rest of the

vectors in H are understood as ‘unnormalised’ states.

Notation 1.1.1. Given two vectors v, u ∈ H , their inner product is denoted 〈u|v〉; the

widespread convention in quantum computing is to define the inner product to be linear

in the second argument (and anti-linear in the first one). In the bra-ket notation, vectors

are denoted as ‘kets’ |x〉 ∈ H where xmay be any arbitrary label, e.g. |0〉, |1〉, |ψ〉 ∈ H .

For each vector |ψ〉 ∈ H we define its ‘bra’ to be the linear map 〈ψ| : H → C defined

as follows:

〈ψ|(v) = 〈ψ |v〉.

For any two vectors |ψ〉, |ϕ〉 ∈ H we define the linear map |ψ〉〈ϕ| : H → H to be:

|ψ〉〈ϕ|(v) = 〈ϕ|v〉 · |ψ〉.

To manipulate their state, quantum computers may apply coherent operations on

their state space H . The term ‘coherent’ means that no loss of quantum information

occurs when applying the operation; formally, this is captured by the requirement that

coherent operations are invertible. The coherent operations that may be applied on a

quantum state space H are unitary linear maps f : H → H , whose inverse is given

by their adjoint. In some situations — for instance, after applying a measurement —
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we may be certain that the computer’s state is in a closed subspace H0 ⊂ H; then, it

is reasonable to consider the restriction of a unitary f : H → H to f |H0
: H0 → H .

Such a linear map f |H0
is no longer surjective and, consequently, it cannot be unitary;

however, it still is an isometry (and, hence, it has a left inverse). The requirement that

the computer’s operations are isometries guarantees that ||f(v)|| = ||v|| for any v ∈ H ,

so that unit vectors (i.e. normalised states) are mapped to unit vectors.

Recall that, for any n ∈ N, all Hilbert spaces of dimension n are isomorphic to

each other, the zero-dimensional space is just {0} and the one dimensional space is the

field C. Thus, C2 can be seen as the smallest nontrivial Hilbert space and, as such,

it plays a special role in quantum computing: that of representing the state space of

a qubit, the smallest unit of quantum memory. It is customary to fix an orthonormal

basis |0〉, |1〉 ∈ C2 and refer to these as the ‘classical states’ of the qubit, whereas any

linear combination:

|ψ〉 = α|0〉+ β|1〉

is referred to as a superposition of |0〉 and |1〉. Given two quantum memories whose

state spaces are H and H ′, the space of states that the two together can store is the

tensor product H ⊗ H ′. For instance, the state space provided by two qubits is C2 ⊗
C2 ∼= C4 whose classical states are now denoted by the orthonormal basis

{|0〉⊗|0〉, |0〉⊗|1〉, |1〉⊗|0〉, |1〉⊗|1〉}

whose vectors are often denoted using the shorthand |01〉 := |0〉⊗|1〉. All unit vectors

inH⊗H ′ represent physically realisable states, but recall that not all vectors in a tensor

product are of the form |ϕ〉⊗|φ〉, i.e. the canonical bilinear map p : H×H ′ → H⊗H ′

is not surjective. States |ψ〉 ∈ H ⊗ H ′ that are not in the image of p are known as

entangled states; the term is a direct reference to the fact that |ψ〉 6∈ im(p) implies that

the state of the two quantum memories cannot be represented by describing the state

of each one in isolation.

Instead of dealing with arbitrary Hilbert spaces H and arbitrary unitary operators

H → H , quantum computer scientists often work at a level of abstraction closer to the

real-world quantum computer. The memory of a standard quantum computer is com-

prised of a finite number n of qubits that it can maintain and manipulate at any given

time and, consequently, the state space of a real-world quantum computer is a finite-

dimensional Hilbert space C2n . Quantum computers support the direct application of

only a selection of unitary maps often comprised of:
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• a finite set of unitary maps acting on single qubits C2 → C2 that, under com-

position, generates a group G2 that is a dense subset of SU(2) — in the sense

that, for any f ∈ SU(2) and any ε > 0 there is an element g ∈ G2 such that

||f − g||op < ε — and

• a finite set (often a singleton set) of unitary maps acting on two qubits C4 → C4

that, along with G2 and under composition and tensor product generates a dense

subset of SU(2n), so that any arbitrary unitary operation on the state space of n

qubits may be implemented up to arbitrary precision.

Moreover, quantum computers support measurement of qubits in their {|0〉, |1〉} basis

which, paired with the ability to approximate any unitary map, enables us to perform

any arbitrary measurement.

1.1.1 Control flow of quantum programs

A program specifies a list of operations that a computer is instructed to perform. The

program’s control flow dictates the order in which such operations ought to be applied;

the ordering is often made to depend on the computer’s state during the program’s

execution. For instance, the control flow may branch according to a decision making

process within the program — thus, applying a sequence of operations or another —

or it may loop and repeat a segment of the program until a condition is met. Program-

ming languages offer specialised instructions, known as control primitives, that let the

programmer specify the control flow of the program; common examples are if-then-

else statements, while loops, recursion, etc. When designing programming languages

for quantum computers, two fundamentally different notions of control flow may be

considered.

Classical control flow. All decision making is dictated by the outcome of measure-

ments, i.e. classical information. This paradigm is simple to realise on physical devices

— it may be realised by a quantum chip controlled by a classical computer. Its mathe-

matical formalisation is well understood, since it shares much in common with formal

methods for programming languages in classical computer science (see Section 3.2.1).

Its main drawback is that, due to the use of measurements, quantum information is

irreversibly lost whenever a control primitive needs to be evaluated.
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Quantum control flow. The motivation behind this paradigm comes from the re-

alisation that conditional control primitives may be performed coherently, i.e. in a

reversible manner — and, consequently, without loss of quantum information. The

canonical example is the construction of a quantumly controlled unitary ΛU : C4 →
C4 defined by linear extension of:

ΛU(|0〉 ⊗ |ψ〉) = |0〉 ⊗ |ψ〉 ΛU(|1〉 ⊗ |ψ〉) = |1〉 ⊗ U |ψ〉

where U : C2 → C2 is an arbitrary unitary and |ψ〉 ∈ C2 an arbitrary state. The unitary

ΛU applies U on the second qubit if the first qubit is in state |1〉 and does nothing if it

is in state |0〉; furthermore, when the first qubit is in a superposition |φ〉 = α|0〉+β|1〉,
we obtain the following behaviour:

ΛU(|φ〉 ⊗ |ψ〉) = α(|0〉 ⊗ |ψ〉) + β(|1〉 ⊗ U |ψ〉)

so that both options — either applying U or not — coexist in a superposition. Under

reasonable assumptions (e.g.P describes a unitary process), we may define a condi-

tional control primitive in quantum programming languages:

i f q ∈ K then do P

that applies the subprogram P on every state q in the closed subspace K, does nothing

on the orthogonal complement of K and, on any other vector, acts accordingly to the

linear extension — for instance, ΛU would be described by setting P to apply U on

the second qubit and define K as the subspace of vectors of the form |1〉 ⊗ −. The

next natural step is to consider quantumly controlled iterative loops; unfortunately, the

requirement that the computation is reversible creates some major obstacles. Assume

a programming language offers a control primitive

do P w h i l e q ∈ K

whose behaviour is described by the following recursive definition:1

do P

i f q ∈ K then
do P w h i l e q ∈ K

so that subprogram P will be repeatedly applied on any linear component of the state

that lands in K. There are three important issues with this iterative control primitive,

which have been noted in multiple previous works.

1The choice of defining a ‘do-while’ primitive instead of the more common ‘while-do’ is not acci-
dental and will be made clear in Section 5.1 of the concluding chapter.
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• A formal issue. As pointed out by Bădescu and Panangaden [8], it is not clear

whether the map H → H induced by the iterative primitive would converge at

all. Moreover, for the formalism to be considered physically sound, we would

require that the solution is unitary and that the map giving the denotational se-

mantics of the ‘do-while’ primitive be continuous in a topological sense — i.e.

that small changes to P would not cause abrupt changes in the behaviour of the

loop.

• A physical issue. Some linear components of the input state will have P applied

to them more times than others. Evidently, applying subprogram P twice will

take more time than applying it once, which means that different terms in the

linear combination may not be ‘synchronised’ in time. However, vectors in the

Hilbert space H are understood as the state of the quantum computer at a par-

ticular time-step and, hence, the physical intuition of this iterative loop is not

properly captured in the mathematical formalism.

• A functionality issue. To amend the physical issue, Ying, Yu and Feng [56]

propose to introduce an auxiliary qubit on each iteration, generating a chain of

qubits of unbounded length that records the ‘history’ of each term in the su-

perposition. However, as Linden and Popescu discuss in [40] this causes linear

components with different histories to no longer interact with each other, as their

distinct histories make them orthogonal, and unitary operations send orthogo-

nal states to orthogonal states. This prevents any interference between different

branches of the control flow, making it effectively classical.

The formal issue was partially resolved in [10]: Bartha shows that the category of

unitary maps is traced with respect to the execution formula; we may interpret this as

saying that, if the body of the do-while loop (subprogram P ) describes a unitary H →
H , then the result of aggregating all possible control flow branches of the quantum

loop yields a unitary. However, Bartha’s approach makes use of pseudoinverses, which

complicates the study of whether the iterative primitive is continuous.2 The physical

issue may be resolved by adding a notion of time to the formalism, in the manner

discussed in Section 3.4; the crucial distinction with the proposal from Ying et al. [56]

is that their locally generated ‘history’ is replaced with a global notion of ‘time-line’.

States at different time-steps may not interfere with each other, but the same time-step

2In this work we do not manage to prove that it is in fact continuous, but our framework is more
amenable to conduct such a study, as discussed in Remark 3.3.17.
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may be reached via multiple paths in the control flow, and such paths will interact with

each other; thus, the functionality issue is prevented.

One of the main objectives of the thesis is to formalise this argument, laying out the

groundwork for formal semantics of programming languages with quantum iteration.

In particular, Chapters 2 and 3 will introduce a categorical framework that Section 5.1

will argue to be appropriate for this task. The discussion in Chapters 2 and 3 is highly

abstract and technical, but the ideas are rooted in physical intuitions drawn from the

computational model of quantum walks, which is briefly introduced in the following

section.

1.1.2 Quantum walks: an example of coherent quantum feedback

Let G = (V,E) describe a graph on a finite set of vertices V and a set of edges

E ⊆ V × V such that if (u, v) ∈ E then (v, u) ∈ E, i.e. the graph is undirected. For

each v ∈ V let Ev be the following set of edges:

Ev = {(u, v) ∈ E | u ∈ V },

let ∆: V → N be the function that yields the degree of a vertex, ∆(v) = |Ev|, and

let Hv be the finite-dimensional Hilbert space spanned by taking Ev as an orthonormal

basis. Fix a collection of unitary maps {fv : Hv → Hv}v∈V to be the set of coins of

the walk. A quantum walk is determined by the pair (G, {fv}V ) and it describes the

evolution of a quantum state in the Hilbert space H = ⊕v∈VHv as follows:

• let C : H → H be the coin operator defined as the direct sum

C =
⊕
v∈V

fv;

• let S : H → H be the shift operator defined as the linear extension of

S|u, v〉 = |v, u〉

for each (u, v) ∈ E, with |u, v〉 being its corresponding unit vector in H;

• for any state |ψ〉 ∈ H , after t ∈ N time-steps the state becomes:

(SC)t|ψ〉.
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An illustrative physical interpretation of quantum walks is to view the graph G as

the layout of an experiment, where each vertex determines a linear optics device (e.g.

lenses, mirrors, beamsplitters, etc.) and edges describe the path a photon can take from

one device to another. For each (u, v) ∈ E, the state |u, v〉 ∈ H is interpreted to

indicate the presence of a photon located somewhere between the device at vertex u

and the one at vertex v. A linear combination

|ψ〉 =
∑

(u,v)∈E

αu,v|u, v〉

describes a single photon in a superposition of locations. The action of the device

at vertex v on an incoming photon is described by the unitary operator fv and the

coin operator C simply arranges all of the coins fv into a single linear map. The

shift operator S conveys the structure of the graph, ensuring that the output that fv
leaves at edge (u, v) is, on the next time-step, an input to fu. Quantum walks are not

limited to describe experiments on linear optics and, in general, may be understood to

be describe arbitrary quantum processes, similarly to how Markov chains and random

walks describe stochastic processes [2]. In the abstract case, instead of a photon we

use the term walker to refer to the entity traversing the graph.

The control flow of any program may be described as a graph, where vertices cor-

respond to the different instructions in the program and edges indicate the possible

control flow paths between them. The state of the control flow during execution may

be described as a quantum walk on such a graph, where the position of the walker

indicates the branch of the control flow (or superposition of branches) that is currently

being computed. Crucially, the graph describing a quantum walk may have cycles, and

these make it so that the walker (or a linear term within its superposition) may visit the

same vertex any arbitrary number of times, thus representing a loop in the control flow.

Notice that both of the operators C and S describing the quantum walk’s evolution

are unitary and, therefore, reversible. Consequently, quantum walks are a physically

realisable framework that supports coherent feedback of quantum processes and, in

particular, it can be understood to model quantum (coherent) control flow of programs.

However, there are two caveats: first, the graph describing the control flow of a pro-

gram is directed while the graph of a quantum walk is undirected; fortunately, the

requirement that G is undirected is only a matter of convention (which simplifies the

quantum walk’s definition) and directed quantum walks may be defined, as long as we

guarantee that the in-degree and out-degree of each vertex coincides, so that its coin

may be a unitary. The second caveat is that programs are supposed to have inputs and
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(
fBA fBU

fUA fUU

)
A B

U U

|ψ〉

two steps later7−−−−−−→
(
fBA fBU

fUA fUU

)
A

B

U U

|ψba〉|ψbua〉

|ψuua〉

Figure 1.1: A state |ψ〉 is given as input to a quantum iterative process; two time-steps

later, the state is in a superposition |ψba〉 + |ψbua〉 + |ψuua〉 where |ψba〉 = fBA|ψ〉,
|ψbua〉 = fBUfUA|ψ〉 and |ψuua〉 = fUUfUA|ψ〉. The term |ψba〉 ‘leaves’ the system a

step earlier than |ψbua〉.

outputs so that they may be composed, but quantum walks are defined on closed graphs

and there is no immediate notion of composition for them. A way around this is to de-

fine open quantum walks: quantum walks on graphs with special vertices marked as

either ‘input’ or ‘output’ so that the walker may enter or leave the graph through them.

But then, some linear term of the walker’s state may leave the graph at time-step t,

while other terms may not leave until a later time-step t′ > t (see Figure 1.1). Thus, to

discuss the input-output behaviour of open quantum walks we must extend the Hilbert

space H to describe states over time; a way to do so for arbitrary quantum states and

processes is described in Section 3.4.

Open quantum walks may also be defined over continuous time [52] and, in order

to describe their composition with ease, their input-output behaviour is described in

the frequency domain; this insight motivates much of Section 3.4. Both continuous-

time and discrete-time open quantum walks have been shown to be universal models

of quantum computation [16, 42], in the sense that any unitary operation may be ap-

proximated to arbitrary precision by combining a finite variety of resources. Multiple

quantum algorithms have been defined in terms of quantum walks (see [3] and the sur-

vey from [47]), which may be seen as evidence of the power of coherent feedback in

quantum computing. In practice, a quantum algorithm described via a quantum walk

is implemented in a quantum computer using simulation techniques such as the ones

described in [19].

1.2 Contributions and structure of the thesis

This thesis has two main contributions, both relevant in quantum computing; the first

one in the field of quantum control flow and the second one in the field of classical
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control flow of quantum programs.

• The first contribution is on the formal study of iterative quantum loops by means

of categorical traces on categories of quantum processes. In particular, the thesis

focuses on the execution formula, which aggregates all of the possible paths of

the quantum control flow. It is shown that both the category of finite-dimensional

Hilbert spaces and contractions and the category of linear shift invariant contrac-

tions (as introduced in Section 3.4) are totally traced with respect to the execution

formula. To do so, Haghverdi’s unique decomposition categories [28] are gen-

eralised and equipped with convergence criteria based on basic topology. These

contributions are presented in Chapters 2 and 3.

• The second contribution is the proposal of a classical control flow primitive —

the weakly measured while loop — that offers a trade-off between decoherence

due to measurement and information gained. It is argued that this primitive offers

a restricted ability to monitor a quantum state as it evolves; sufficient conditions

for such a monitoring to be compatible with quantum speed-up are discussed.

These contributions are presented in Chapter 4, which reproduces the contents

of the published work [5].

More details on the motivation and structure of these chapters is given in the following

subsections. Chapter 5 concludes the thesis and proposes further work in both of these

lines of research.

1.2.1 Categorical study of iterative quantum loops

Haghverdi’s unique decomposition categories [28] have been used to model iterative

loops in classical computer science. These categories rely on a notion of addition of

morphisms that does not admit additive inverses. Unfortunately, additive inverses are

a fundamental aspect of categories of quantum processes, as they capture destructive

interference, which is one of the key aspects of quantum theory. Chapter 2 proposes

a generalisation of the additive structure on Haghverdi’s categories, so that additive

inverses are allowed. A connection to topological groups is made, which will be es-

sential to prove the main results in Chapter 3. Multiple categories capturing subtle

differences in the notion of infinitary addition are presented, and their relationship is

exhibited in terms of adjunctions.
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Chapter 3 builds upon the results of the previous chapter to provide a version of

Haghverdi’s unique decomposition categories equipped with convergence criteria us-

ing basic topology. In this setting, it is possible to prove the validity of the execution

formula as a categorical trace on certain categories of quantum processes. Among

these there are categories of quantum processes over finite-dimensional Hilbert spaces

(as previously shown by Bartha [10] for the case of isometries and unitaries), but also

certain categories of quantum processes over infinite-dimensional Hilbert spaces, such

as the category of time-shift invariant quantum processes over discrete time (introduced

in Section 3.4). The latter result lays the groundwork for the design of categorical se-

mantics for quantum programming languages supporting (coherent) quantum iterative

loops. What such a language and its semantics may look like is sketched in Section 5.1

of the concluding chapter; in essence, the discrete time line needs to be formalised in

the semantics and managed as transparently as possible.

1.2.2 Weakly measured while loops

Weakly measured while loops are proposed and discussed in Chapter 4. A weakly

measured while loop is a classical control flow primitive that offers a trade-off be-

tween the collapse of the quantum state caused on each iteration and the amount of

information gained. The trade-off may be adjusted by tuning a parameter and, in cer-

tain situations, it is possible to set its value so that quantum speed-up is achieved. As

an example, it is shown that Grover’s search problem can be implemented using a weak

while loop, maintaining the same time complexity as the standard Grover’s algorithm.

In a more general setting, sufficient conditions are provided that let us determine, with

arbitrarily high probability, a worst-case estimate of the number of iterations a weakly

measured while loop will run for, thus allowing us to study the worst-case time (and

query) complexity of quantum algorithms that use this primitive.

1.3 Publications and previous work

In this section we enumerate the main works from the literature this thesis builds upon;

these will be discussed in more detail when relevant throughout the thesis and, in

particular, in the last section of each chapter. In this section we also point out the

publications that have come out from this PhD thesis and discuss where novel results

presented here may lead to new publications.



12 Chapter 1. Introduction

Categories for infinitary addition. This topic is explored in Chapter 2 and builds

upon the notion of Σ-monoids proposed by Haghverdi [28] and results and proof strate-

gies introduced by Hoshino [33] regarding the category of Σ-monoids. We also con-

sider Hausdorff commutative monoids but only use concepts and results appearing in

standard introductory texts on general topology. During the process of connecting Σ-

monoids with Hausdorff commutative monoids we took inspiration from Higgs’ work

on Σ-groups [32].

Categorical study of quantum iteration. This topic is explored in Chapter 3 and

builds upon the unique decomposition categories of Haghverdi [28] and their refine-

ment due to Hoshino [33]. We provide a new proof for a result shown by Bartha [10]

— that FdIsometry (and, more generally, FdContraction) is totally traced using

the execution formula — and, to do so, we use some lemmas from Bartha’s work along

with the kernel-image trace introduced by Malherbe, Scott and Selinger [44]. The tran-

sition from FdContraction to the category of time-shift invariant quantum processes

over discrete time LSI≤ is achieved using well-known results on the Fourier transform

that can be found in introductory texts on signal processing and engineering.

Our result that the execution formula in LSI≤ is a valid categorical trace is novel.

We believe this result may be used to provide semantics for programming languages

with quantum control flow (see Section 5.1 for a toy language). In the coming months

we will work on preparing these results in a format suitable for publication.

Weakly measured while loops. This topic is explored in Chapter 4 and builds upon

the notion of weak measurement (see [14] for an introduction). Previous work by

Mizel [46] proposed an algorithm that is fundamentally the same as the weakly mea-

sured Grover algorithm we present in Chapter 4. What distinguishes our work from

Mizel’s is that we propose a programming primitive — the κ-while loop — and lay

the foundations of weakly controlled quantum iteration for the purpose of quantum

algorithms, presenting the case of Grover’s search as a proof of concept. The results

discussed in Chapter 4 were accepted as a journal publication [5].

Universal properties of partial quantum maps. This topic is tangential to the the-

sis and, as such, it is not discussed in this text. However, it is worth mentioning that a

collaboration with Kaarsgaard and Heunen took place during the final year of my PhD

studies, yielding a manuscript [6] that was accepted at the International Workshop on
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Quantum Physics and Logic (QPL 2022). In this project we succeeded in describ-

ing how the category of finite-dimensional C∗-algebras and completely positive trace

non-increasing maps can be obtained after applying a sequence of constructions char-

acterised by universal properties which start from the category of finite-dimensional

Hilbert spaces and unitary maps FdUnitary.

1.4 Preliminaries on category theory (Preamble)

This section is included for the sake of completeness and to introduce the notation

used. The reader is not assumed to have prior knowledge of category theory; however,

the section may be too dense in concepts for an uninitiated reader. There are multiple

books providing a pedagogical introduction to category theory and, among them, the

book by Heunen and Vicary [31] is a particularly good match for this thesis, consid-

ering both its focus on monoidal categories and the discussion of their relevance in

quantum computer science. For the concepts of (co)limits and adjunctions, the book

by Leinster [38] is recommended.

Composition (of processes, devices, programs, functions, etc.) is a fundamental

operation often taken for granted. Given two functions f : A → B and g : B → C,

their composite g ◦ f is obtained by applying f to the input, then g to the result:

(g ◦ f)(a) = g(f(a)). (1.1)

If we see − ◦ − as a binary operation over the set of functions, we find that it is not a

total function: not all pairs of functions can be composed together. At its most basic

level, a category is an axiomatisation of composition.

Definition 1.4.1. A category C is comprised of a collection of objects Ob(C) and, for

each pair of objects A,B ∈ Ob(C), a collection of morphisms C(A,B), together with

a composition operation

◦ : C(B,C)×C(A,B)→ C(A,C)

for all A,B,C ∈ Ob(C) satisfying the following axioms.

• Identities: For every object A, there is a special morphism idA ∈ C(A,A) so

that for all A,B ∈ Ob(C) and for all f ∈ C(A,B),

f ◦ idA = f = idB ◦ f. (1.2)
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• Associativity: For allA,B,C,D ∈ Ob(C) and all f ∈ C(A,B), g ∈ C(B,C)and

h ∈ C(C,D),

(h ◦ g) ◦ f = h ◦ (g ◦ f). (1.3)

For any morphism f ∈ C(A,B) we refer to f : A → B as its type. To reduce clutter,

A ∈ C is often used to indicate that A is an object of C.

Example 1.4.2. The category Set has sets as objects and each Set(A,B) is the set of

all functions of domain A and codomain B. Composition of functions (g ◦ f)(a) =

g(f(a)) is clearly associative and its identities idA : A → A are the usual identity

functions.

Example 1.4.3. The category Rel has sets as objects and each Rel(A,B) is the set of

all relations between set A and set B, i.e. Rel(A,B) is the powerset of A × B. The

composite ofR : A→ B and S : B → C is given as follows:

S ◦ R = {(a, c) ∈ A× C | ∃b ∈ B, aRb and bSc}.

Composition is clearly associative and identities are relations idA = {(a, a) | a ∈ A}.

Example 1.4.4. The category Mon has monoids as objects and each Mon(A,B) is

the set of all monoid homomorphisms from A to B. Composition and identities are

inherited from Set. Similarly, there is a category CMon of commutative monoids,

a category Grp of groups and a category Ab of abelian groups, all of which have

monoid homomorphisms as their morphisms.

Example 1.4.5. Fix a field K; the category VectK has vector spaces over the field

K as objects and each VectK(V, U) is the set all linear maps from the vector space

V to the vector space U . Composition is inherited from Set, along with identities.

Whenever Vect appears in this text without subscript it should be understood that

K = C.

Remark 1.4.6. There is some subtlety hidden in the word collection in the definition

of a category. If we consider the example of the category Set, we cannot say that

Ob(Set) is a set itself, as we would run into Russell’s paradox.3 The way out of this

conundrum is to define some sort of hierarchy of collections, where what we com-

monly refer to as a set is at the base level, and the collection of all sets is one step

3Loosely speaking, if it were a set, it would be the “set containing all sets”. Thus, it would need to
be contained in itself, which creates a great deal of problems.
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up the ladder. A category where the collection of objects is actually a set is called a

small category. Similarly, it can happen that a category C satisfies that for all objects

A,B ∈ C, the collection C(A,B) is actually a set; then C is said to be a locally small

category. Set, Rel and Vect are all locally small categories, but not small. All of the

categories discussed in this thesis are locally small. When working with locally small

categories, we refer to each set C(A,B) as a hom-set.

Definition 1.4.7. Let C be a category. A diagram is a graph where the vertices are

objects in C and the arrows are morphisms in the direction determined by their type.

For instance,

A B

C

f

g h
.

A commuting diagram satisfies that composing all morphisms along a path results in

the same morphism obtained along any other path between the same endpoints. In

particular, the diagram above commutes if and only if f = h ◦ g.

From the examples above, it is reasonable to consider a notion of mapping be-

tween categories so that, for instance, we may say that all monoid homomorphisms are

functions, and that all functions are relations.

Definition 1.4.8. Let C and D be two categories. A functor F : C→ D is comprised

of a mapping between objects so that if A ∈ C then F (A) ∈ D, and a mapping

between morphisms so that if f ∈ C(A,B) then F (f) ∈ D(F (A), F (B)). For it to be

a functor, F must preserve composition and identities:

F (g ◦ f) = F (g) ◦ F (f)

F (idA) = idF (A).

A faithful functor satisfies that the mapping C(A,B) → D(F (A), F (B)) is injective

for each pair of objectsA,B ∈ C. A full functor satisfies that the mapping C(A,B)→
D(F (A), F (B)) is surjective for each pair of objects A,B ∈ C.

Example 1.4.9. There is a faithful functor Mon→ Set that sends each monoid to its

underlying set, and each homomorphism to its underlying function. Because compo-

sition in Mon is defined in the same manner as in Set, proving that this is a functor is

trivial.
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Example 1.4.10. There is a full and faithful functor Ab → CMon that sends each

abelian group to its underlying monoid — which will automatically be commutative

— and acts as the identity on morphisms. The morphisms in Ab are the same as those

in CMon, so it is trivial to show that this is indeed a functor.

Example 1.4.11. There is a faithful functor Set → Rel that sends each set to itself

and each function f : A→ B to its graph, i.e. to the relation:

Rf = {(a, b) ∈ A×B | f(a) = b}.

The graph of the identity function matches the identity relation; it is easy to check that

composition is preserved.

Definition 1.4.12. Let C and D be categories. We say that C is a subcategory of

D if and only if Ob(C) is a subcollection of Ob(D) and C(A,B) is a subcollection

of D(A,B) for each pair of objects A,B ∈ C and composition and identities in C

coincide with those in D. If C is a subcategory of D then there is a canonical faithful

functor C ↪→ D that acts as the identity on objects and morphisms. If the functor is

also full, we refer to C as a full subcategory of D.

Example 1.4.13. Set is a subcategory of Rel. Both CMon and Grp are full subcat-

egories of Mon. Ab is a full subcategory both of CMon and Grp.

The usefulness of functors goes beyond the simple case of embedding a category

into a larger one; intuitively, a functor F : C → D indicates that there is a way to go

from C to D preserving the structure in the category C. Currently, the structure of

a category is only determined by its composition but, soon enough, richer flavours of

categories will be discussed and, along them, there will be refined notions of functors

preserving the new structure.

It will often be useful to discuss how pairs of functors F : C→ D and G : C→ D

are related, this is done via natural transformations.

Definition 1.4.14. Let C and D be categories, let F : C → D and G : C → D be

functors. A natural transformation F α−→ G is a collection of morphisms αA : F (A)→
G(A) for each A ∈ C such that the following diagram commutes for every f ∈
C(A,B),

F (A) G(A)

F (B) G(B)
αB

αA

F (f) G(f)
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We say α is a natural isomorphism if, additionally, all morphism αA are invertible.4

An important concept in category theory is the notion of limit; their definition

is sketched below. For a proper introduction to categorical limits see Chapter 5 of

Leinster’s book [38].

Definition 1.4.15. Let C be a category. For any arbitrary diagram in C (see Defini-

tion 1.4.7), let {Ai ∈ C}i∈I be the set of objects in it, e.g.

A0

A1 A2.
f ′

f

A cone is an object X ∈ C along with a set of morphisms {gi : X → Ai}i∈I such that,

when these are included in the diagram, e.g.

X A0

A1 A2
f ′

fg1

g0

g2

it is satisfied for each i ∈ I that all paths from X to Ai yield the same morphism. A

categorical limit is a cone {hi : L → Ai}i∈I such that for any other cone {gi : X →
Ai}i∈I there is a unique morphism m : X → L satisfying gi = hi ◦m for all i ∈ I .

The limit of certain diagrams have special names; for instance, for any two objects

A,B ∈ C the limit of the diagram

A B

is a categorical product and, for any two morphisms f, g : A → B, the limit of the

diagram

A B
f

g

is known as an equalizer. In general, not every diagram in a category C has a limit;

when it does, we say that C is a complete category. A colimit is the dual notion of a

limit, defined by inverting the direction of all morphisms in Definition 1.4.15. The dual

of a product is a coproduct and the dual of an equalizer is a coequalizer. An object that

is both a product and a coproduct and satisfies certain additional algebraic identities is

known as a biproduct.
4A morphism f : A → B is invertible if there is another morphism g : B → A in the category such

that g ◦f = idA and f ◦g = idB . Such a morphism g is often denoted f−1 and referred to as the inverse
of f . It is straightforward to check that inverses are unique.
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1.4.1 Monoidal categories

We will often find that ‘sequential’ composition of morphisms − ◦ − is not the only

reasonable notion of composition that may be considered. The notion of ‘parallel’

composition is formalised in monoidal categories.

Definition 1.4.16. Let C be a category, let ⊗ : C ×C → C be a functor and let I be

an object in C. The triple (C,⊗, I) is a monoidal category if there are natural isomor-

phisms α, λ and ρ — known respectively as associator, left unitor and right unitor —

such that the diagrams below commute for all choices of objects A,B,C,D ∈ C. We

refer to ⊗ as the monoidal product and I as the monoidal unit.

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,C

ρA⊗idB idA⊗λB

(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)αA,B⊗C,D

αA⊗B,C,D

αA,B,C⊗idD

αA,B,C⊗D

idA⊗αB,C,D

The requirement that ⊗ : C × C → C is a functor imposes an interchange law

between ◦ and ⊗:

(g ⊗ k) ◦ (f ⊗ h) = (g ◦ f)⊗ (k ◦ h). (1.4)

The intuition behind this equation is provided in Figure 1.2. The first of the commuting

diagrams above imposes that the object I acts as the unit of ‘parallel’ composition

−⊗−, whereas the second commuting diagram imposes that ⊗ is associative.

Remark 1.4.17. By convention, morphisms in monoidal categories are represented

pictorially as in Figure 1.2. Morphisms are depicted as labelled boxes connected via

wires when composed (using ◦) and, when combined using the monoidal product, the

morphisms are drawn one on top of the other. Thanks to the coherence theorem of

monoidal categories (see Section 1.3.4 from [31]), we may prove facts about mor-

phisms in a monoidal category C by manipulating the pictorial representation of their
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=

f

h

g

k

f

h

g

k

Figure 1.2: Pictorial representation of the interchange law (1.4). It does not matter

whether we first compose in parallel or sequentially, the result is the same.

morphisms. This is known as the graphical calculus; its main advantage is that associ-

ators, unitors and the interchange law (1.4) become trivial when represented pictorially,

removing unnecessary verbosity from definitions and proofs.

Example 1.4.18. Let × : Set × Set → Set be the functor acting on objects as the

Cartesian product of sets. On morphisms f : A → B and g : C → D, the functor

yields a function f × g that maps each (a, c) ∈ A × C to (f(a), g(c)) ∈ B ×D. Let

{•} be an arbitrary singleton set; then, (Set,×, {•}) is a monoidal category.

Example 1.4.19. Let +: Set × Set → Set be the functor acting on objects as the

disjoint union of sets. On morphisms f : A → B and g : C → D, the functor yields a

function f + g that maps each a ∈ A to f(a) and each c ∈ C to g(c). It can be shown

that (Set,+,∅) is a monoidal category.

Definition 1.4.20. Given two vector spacesA,B ∈ VectK , their tensor productA⊗B
is a vector space characterised (up to isomorphism) by the property that there is a

bilinear map5 p : A×B → A⊗B such that, for any other bilinear map f : A×B → C,

there is a unique linear map g : A⊗B → C making the diagram

A×B A⊗B

C

p

f

g

commute in Set. For any two linear maps f : A → B and g : C → D, the map

f⊗g : A⊗C → B⊗D is defined as the linear extension of the map a⊗c 7→ f(a)⊗g(c).

Example 1.4.21. Let ⊗ : VectK × VectK → VectK be the functor acting as the

tensor product on vector spaces and linear maps. It can be shown that (VectK ,⊗, K)

is a monoidal category.
5A bilinear map is a map f : A × B → C such that, for all a ∈ A and all b ∈ B, both f(a,−) and

f(−, b) are linear.
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Definition 1.4.22. Given two vector spaces A,B ∈ VectK , their direct sum A⊕B is

the vector space on the Cartesian product of their underlying sets, with coordinate-wise

addition and scalar multiplication. For any two linear maps f : A→ B and g : C → D,

the linear map f ⊕ g : A⊕ C → B ⊕D is defined as follows:

(f ⊕ g)(a, c) = (f(a), g(c)).

Example 1.4.23. Let ⊕ : VectK × VectK → VectK be the functor acting as the

direct sum of vector spaces and linear maps and let {0} be the zero-dimensional vector

space. It can be shown that (VectK ,⊕, {0}) is a monoidal category.

We have seen two distinct monoidal structures both for Set and Vect. Both

monoidal structures in Vect are relevant to this thesis, with the ⊗-monoidal struc-

ture being the usual focus in the literature of categorical quantum mechanics [31, 18].

However, when discussing the control flow of programs, the monoidal structure in-

duced by the direct sum is the one to take the spotlight and, hence, the one that will be

most relevant to this thesis.

Definition 1.4.24. Let (C,⊗, I) be a monoidal category and let σ be a natural isomor-

phism with components

σA,B : A⊗B → B ⊗ A.

We say C is a braided monoidal category if σ satisfies the coherence axioms given

below. We refer to σ as braiding and represent it pictorially as the crossing of wires;

the coherence axioms are represented pictorially as:

= =
A

B

C

B

C

A

σA,C

σA,B
A

B

C

B

C

A

σA,B⊗C

A

B

C

C

A

B

σA,C

σB,C

A

B

C

C

A

B

σA⊗B,C

We say C is a symmetric monoidal category if, additionally, σ−1
A,B = σB,A for all pairs

of objects.

Both Set and Vect are symmetric monoidal categories with either of the monoidal

structures discussed in the examples above. Along each new flavour of categories

comes a refined notion of structure-preserving functor.

Definition 1.4.25. Let (C,⊗C, IC) and (D,⊗D, ID) be monoidal categories and let

F : C→ D be a functor. Let µ be a natural transformation with components

µA,B : F (A)⊗D F (B)→ F (A⊗C B)
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and let µI : ID → F (IC) be a morphism in D. We say (F, µ) is a lax monoidal func-

tor when µ commutes with the associators and unitors of C and D in an appropriate

way, made precise in reference texts (see equations (1.29) and (1.30) from [31]) and

omitted here for brevity. If µI and all µA,B are isomorphisms we say that (F, µ) is a

strong monoidal functor. Similarly, a braided monoidal functor is a monoidal functor

(F, µ) : C → D between braided monoidal categories such that if σ is the braiding in

C then F (σ) is the braiding in D. A symmetric monoidal functor is a braided monoidal

functor between symmetric monoidal categories.

There are many other flavours of categories, each of them adding more structure

by introducing new operations and axioms. Category theorists define and classify dif-

ferent flavours of categories, they describe how different categories are related to each

other and, most importantly, they study how properties arise from the structure that is

imposed.

1.4.2 Enriched category theory

In this thesis, it will often be required to combine the contribution of two morphisms

f, g : A → B to describe another morphism of type A → B. Abstractly, for some

category C, this can be framed as requiring that each collection of morphisms C(A,B)

is endowed with an operation

+: C(A,B)×C(A,B)→ C(A,B)

making each hom-set (C(A,B),+) a commutative monoid. When hom-sets are en-

dowed with a mathematical structure and composition interacts nicely with it, we say

C is an enriched category, formally defined below.

Definition 1.4.26. Let (V,⊗, I) be a monoidal category. A V-enriched category C

is comprised of a collection of objects Ob(C) and, for each pair of objects A,B ∈
Ob(C) a hom-object C(A,B) ∈ Ob(V). Composition and identities in C are deter-

mined by morphisms in V,

◦A,B,C : C(B,C)⊗C(A,B)→ C(A,C)

1A : I → C(A,A)

satisfying the following commuting diagrams in V, which ensure that composition in
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C is associative and that the identities are its units.

(C(C,D)⊗C(B,C))⊗C(A,B) C(B,D)⊗C(A,B)

C(A,D)

C(C,D)⊗ (C(B,C)⊗C(A,B)) C(C,D)⊗C(A,C)

α

◦B,C,D ⊗ id

id⊗◦A,B,C

◦A,B,D

◦A,C,D

C(A,B)⊗C(A,A) C(A,B) C(B,B)⊗C(A,B)

C(A,B)⊗ I I ⊗C(A,B)

◦A,A,B ◦A,B,B

id⊗ 1A ρ λ
1B ⊗ id

An immediate example of an Ab-enriched category is Vect; the proof is sketched

in Example 1.4.27 below. The monoidal structure in Ab must be chosen with care:

even though the cartesian product of groups provides a valid monoidal structure, it is

not the appropriate one to be used for the enrichment.6 Instead, the monoidal category

to be used is (Ab,⊗,Z) where ⊗ is the tensor product of abelian groups and Z is the

group of integers with addition. The explicit definition of this tensor product can be

found in [53]; for the purposes of this thesis, it suffices to say that A⊗ B is special in

that the set of linear maps in Ab(A⊗ B,C) is in one-to-one correspondence with the

set of functions f : A×B → C satisfying

f(a, b+ b′) = f(a, b) + f(a, b′), f(a, 0) = 0,

f(a+ a′, b) = f(a, b) + f(a′, b), f(0, b) = 0.
(1.5)

Example 1.4.27. Vect is an Ab-enriched category where for any two linear maps

f, g : U → V their addition is defined pointwise, i.e. for all u ∈ U :

(f + g)(u) = f(u) + f(v).

Indeed, this operation is associative and commutative, there is a linear map sending

every vector to the zero vector — thus acting as the addition’s neutral element — and

every linear map f has an additive inverse u 7→ −f(u), making the set of all linear

maps U → V an abelian group. Importantly, asking that composition in Vect is a
6Given two abelian groups A and B, their cartesian product A × B has its group operation defined

as (a, b) + (a′, b′) = (a+ a′, b+ b′). If we used this monoidal structure for enrichment, we would have
that

h ◦ (f + g) = ◦(h, f + g) = ◦((h, f) + (0, g)) = h ◦ f + 0

which is not the correct way composition and addition of linear maps interact.
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morphism in Ab along with (1.5) implies that composition distributes over addition,

as expected:

h ◦ (f + g) = h ◦ f + h ◦ g,

(f + g) ◦ h = f ◦ h+ g ◦ h.

Chapter 2 will define multiple Σ∗ categories capturing the notion of infinitary sum;

an appropriate notion of tensor product of objects in these categories will be given in

Section 2.1.5. Then, Chapter 3 will define Σ∗-enriched categories and use their notion

of infinitary sum of morphisms to formalise iterative loops.

1.4.3 Adjunctions

Example 1.4.9 discussed the existence of a functor Mon → Set that ‘forgets’ the

monoid structure, sending monoids and homomorphisms to their underlying sets and

functions. A similar forgetful functor CMon→ Set exists as well; we may entertain

the idea of a functor on the opposite direction Set → CMon as described in the

following example.

Example 1.4.28. Let A be an arbitrary set and let F (A) be the collection of all fi-

nite multisets of elements in A. There is a functor F : Set → CMon that maps

each set A to the commutative monoid on the set F (A) with disjoint union as its

monoid operation: disjoint union is associative and commutative, with ∅ ∈ M(A)

acting as its neutral element. Each function f : A → B is lifted to a monoid ho-

momorphism F (f) : F (A) → F (B) that maps each multiset {a, b, . . .} ∈ F (A) to

{f(a), f(b), . . .} ∈ F (B). It is trivial to check that F (g ◦ f) = F (g) ◦ F (f) and

F (idA) = idF (A) so F is indeed a functor.

This functor F : Set → CMon satisfies a powerful property: it is left adjoint

to the canonical forgetful functor G : CMon → Set. The concept of categorical

adjunction is defined below in terms of the initial object of a comma category.

Definition 1.4.29. Let A, B and C be arbitrary categories and let F : A → C and

G : B→ C be arbitrary functors. The comma category (F⇒G) is defined as follows:

• objects are triples (A, h,B) where A and B are objects in A and B respectively

and h : F (A)→ G(B) is a morphism in C;
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• morphisms (A, h,B) → (A′, h′, B′) are pairs (f, g) where f : A → A′ is a

morphism in A and g : B → B′ is a morphism in B such that the diagram

F (A) F (A′)

G(B) G(B′)

F (f)

G(g)

h h′

commutes.

Let 1 be the category with a single object and a single morphism; for any arbitrary

object A ∈ C we may define a functor A : 1 → C that maps the unique object in 1

to A and maps its unique morphism to idA. Let G : D → C be a functor; the comma

category (A⇒ G) is used often throughout the thesis. To reduce clutter, objects of

(A⇒G) are denoted by pairs (h,B) — since the domain of h is guaranteed to be A

— and morphisms (idA, g) are simply denoted g.

Definition 1.4.30. Let C and D be categories, let 1C : C→ C be the identity functor

and let F : C→ D and G : D→ C be arbitrary functors. We say that F is left adjoint

to G, denoted F a G, if there is a natural transformation 1C
η−→ GF such that, for

every A ∈ C, the object (ηA, F (A)) of the comma category (A⇒G) is initial — i.e.

for each object (h,B) ∈ (A⇒G) there is a unique morphism (ηA, F (A)) → (h,B).

The triple (F,G, η) is known as an adjunction, with η being its unit; equivalently, we

say that G is right adjoint to F .

Unwrapping the definition we find that a unique morphism (ηA, F (A)) → (h,B)

exists if and only if there is a unique morphism h̄ : F (A) → B in D that makes the

diagram

A G(B)

GF (A)

h

ηA G(h̄)

commute.

Example 1.4.31. Let F : Set → CMon be the functor from Example 1.4.28 and let

G : CMon → Set be the canonical forgetful functor; there is an adjunction F a G.

For every set A, the function ηA : A → GF (A) maps each a ∈ A to {a} ∈ GF (A);

it is straightforward to check that 1Set
η−→ GF is a natural transformation. Let (B,+)
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be an arbitrary commutative monoid; for any function f : A→ B the requirement that

the diagram

A G(B)

GF (A)

f

ηA G(f̄)

commutes implies that f̄ must map each ηA(a) = {a} to f(a). Moreover, the require-

ment that f̄ is a monoid homomorphism implies that

f̄({a, a′}) = f̄({a} ] {a′}) = f̄({a}) + f̄({a′}) = f(a) + f(a′).

This may be extended to any element in F (A), i.e. any finite multiset of elements in

A. Such a monoid homomorphism f̄ is well-defined and it is the unique one satisfying

the commuting diagram above so, indeed, (F,G, η) is an adjunction.

Example 1.4.32. The canonical embedding functor G : Ab ↪→ CMon from Exam-

ple 1.4.10 has a left adjoint F : CMon→ Ab explicitly defined below.

• Let (A,+) be a commutative monoid and define an equivalence relation ∼ such

that for all pairs (a+, a−), (b+, b−) ∈ A× A:

(a+, a−) ∼ (b+, b−) ⇐⇒ ∃z ∈ A s.t. a+ + b− + z = b+ + a− + z.

• F (A) is the abelian group ((A× A)/∼,+′) where

[(a+, a−)] +′ [(b+, b−)] = [(a+ + b+, a− + b−)].

It can be shown that the result of +′ is independent of the choice of represen-

tatives and, hence, it is well-defined. Then, F (A) is an abelian group whose

neutral element is [(0, 0)], while the inverse of any [(a+, a−)] is [(a−, a+)].

• Let f : A → B be a monoid homomorphism, then F (f) is the monoid homo-

morphism that maps each [(a+, a−)] ∈ F (A) to [(f(a+), f(a−))] ∈ F (B).

For each A ∈ CMon the morphism ηA : A → GF (A) maps each a ∈ A to [(a, 0)] ∈
F (A). Let (B,+) be a group; for any monoid homomorphism f : A → G(B), the

corresponding group homomorphism f̄ : F (A)→ B is

f̄ [(a+, a−)] = g(a+)− g(a−). (1.6)

It is straightforward to check that η is a natural transformation and that f̄ is the unique

group homomorphism such that f = G(f̄) ◦ ηA, implying that F a G.
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The functor FG : Ab → Ab obtained by ‘forgetting’ the existence of inverses —

via G : Ab ↪→ CMon — then recovering them using F : CMon → Ab yields the

original abelian group up to isomorphism. This is the case whenever a full and faithful

functor has a left adjoint. In particular, the embedding functor of every full subcategory

is full and faithful; thus, full subcategories whose embedding has a left adjoint are of

particular interest.

Definition 1.4.33. Let C be a category and let D be a subcategory of C with G : D ↪→
C being its corresponding embedding. We say D is a reflective subcategory of C if G

is full and it has a left adjoint.

Thus, Ab is a reflective subcategory of CMon. Multiple examples of reflective

subcategories will be discussed in Chapter 2.

In Examples 1.4.31 and 1.4.32 the existence of a left adjoint has been proven by

defining it explicitly. However, it is sometimes convenient to establish the existence

of an adjunction via non-constructive means since, when working at a higher level

of abstraction, cumbersome details may be avoided. A powerful tool to this end is

the general adjoint functor theorem, which is introduced below. The statement of this

result (and its proof) make use of the concept of categorical limit and complete cat-

egories; these were introduced in Definition 1.4.15 and are covered in depth in most

books on basic category theory (for instance, see Chapter 5 from [38]).

Definition 1.4.34. Let C be a category. A weakly initial set is a set S of objects in C

satisfying that for every object B ∈ C there is at least one morphism A→ B such that

A ∈ S.7

Lemma 1.4.35. Let C be a complete locally small category with a weakly initial set.

Then C has an initial object.

Proof. See Lemma A.1 from the book on basic category theory by Leinster [38].

The previous lemma is the main technical result used in the proof of the general

adjoint functor theorem. Moreover, the lemma will be relevant on its own in Sec-

tion 2.1.5.

Theorem 1.4.36. Let G : D→ C be a functor. Assume that D is complete and locally

small and that for each object A ∈ C the comma category (A⇒ G) has a weakly

initial set. Then,

G has a left adjoint ⇐⇒ G preserves limits.
7It is essential that it is an actual set, i.e. a small collection.
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Proof. (Sketch). A detailed proof can be found in the appendix of the book on basic

category theory by Leinster [38]. One direction is immediate since every right adjoint

functor preserves limits (see Theorem 6.3.1 from [38]). To prove the other direction,

we assume that G preserves limits; then, D being complete implies that the comma

category (A ⇒ G) is complete (see Lemma A.2 from [38]) and, since D is locally

small, it follows that (A⇒ G) is locally small. Then, for all A ∈ C the existence

of a weakly initial set in (A ⇒ G) implies that (A ⇒ G) has an initial object, as

established by Lemma 1.4.35. According to Corollary 2.3.7 from [38] if for all A ∈ C

the comma category (A⇒G) has an initial object then a functor F : C → D and a

natural transformation 1C
η−→ GF exist such that (F,G, η) is an adjunction.

In general, it is preferable to provide constructive proofs when attainable since they

tend to be more illustrative. Unfortunately, for some of the left adjoint functors whose

existence is established in Chapter 2 an explicit definition could not be achieved and

their existence is instead proven via the general adjoint functor theorem.

1.5 Categories in quantum computer science (Pream-

ble)

As discussed in Section 1.1, the state of a quantum computer is described by a vector

in a Hilbert space and operators are described by linear maps. Therefore, the following

categories are of great importance in quantum computing.

Definition 1.5.1. Let Hilb be the category whose objects are complex Hilbert spaces

and whose morphisms are bounded linear maps. Let Contraction be the subcat-

egory of Hilb obtained by restricting morphisms to (weak) contractions; a linear

map f : A → B between normed vector spaces is a (weak) contraction if it satisfies

||f(a)||B ≤ ||a||A for all a ∈ A.8 Let Isometry be the subcategory of Contraction

obtained by restricting morphisms to isometries; a linear map f : A → B between

normed vector spaces is an isometry if for all a ∈ A it satisfies ||f(a)||B = ||a||A.

Let Unitary be the subcategory of Isometry obtained by restricting morphisms to

unitaries; a linear map is unitary if it is a surjective isometry.

Evidently, there is a chain of faithful functors:

Unitary ↪→ Isometry ↪→ Contraction ↪→ Hilb→ Vect.

8A strict contraction f satisfies ||f(a)||B < ||a||A for all nonzero a ∈ A. In this thesis, the term
‘contraction’ refers to weak contractions unless stated otherwise.



28 Chapter 1. Introduction

Considering that real-world quantum computers have finite memory, quantum com-

puter science tends to deal with categories whose objects are finite-dimensional vector

spaces.

Definition 1.5.2. Let FdHilb be the full subcategory of Hilb obtained by restricting

objects to finite-dimensional Hilbert spaces. Similarly, let FdContraction, FdIsometry

and FdUnitary be the corresponding full subcategories of Contraction, Isometry

and Unitary, respectively.

All of these categories can be given a monoidal structure in terms of the (orthogo-

nal) direct sum of Hilbert spaces.

Definition 1.5.3. For any two Hilbert spaces A,B ∈ Hilb, let A ⊕ B be their direct

sum, made into a Hilbert space by the inner product 〈(a, b) |(a′, b′)〉 = 〈a|a′〉+ 〈b|b′〉.

Proposition 1.5.4. Let C be either Hilb, Contraction, Isometry, Unitary or the

finite-dimensional version of any of them. Then, (C,⊕, {0}) is a symmetric monoidal

category.

Proof. It is straightforward to check that ⊕ is a valid monoidal product and that the

zero-dimensional Hilbert space {0} is its monoidal unit so that (Hilb,⊕, {0}) is a

symmetric monoidal category. Let f : A → B and g : C → D be morphisms in

Contraction; then, for all a ∈ A and c ∈ C:

||(f ⊕ g)(a, c)||2B⊕D = ||f(a)||2B + ||g(c)||2D ≤ ||a||
2
A + ||c||2C = ||(a, c)||2A⊕C

implying that f ⊕ g is a morphism in Contraction. Thus, (Contraction,⊕, {0})
is a symmetric monoidal subcategory of (Hilb,⊕, {0}). Similarly, if f and g are

isometries then f ⊕ g is an isometry, and if both f and g are surjective (so that they

are unitary) then f ⊕ g is also surjective and, hence, unitary. Consequently, both

(Isometry,⊕, {0}) and (Unitary,⊕, {0}) are symmetric monoidal subcategories

of (Contraction,⊕, {0}). Evidently, each of the subcategories where objects are

finite-dimensional are symmetric monoidal as well.

For all objects A,B ∈ Hilb the object A ⊕ B ∈ Hilb is a biproduct. In contrast,

A ⊕ B is not a biproduct in Contraction (nor in its subcategories), since the diag-

onal morphism a 7→ (a, a) is not a contraction; but A ⊕ B is still a coproduct both

in Contraction and Isometry. In Unitary, A ⊕ B is not even a coproduct, since

injections A→ A⊕ B are not surjective and, hence, not unitary. Even though A⊕ B
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is not a product in Contraction, the projection A ⊕ B → A from Hilb is still a

morphism in Contraction; Haghverdi [28] and other authors have noticed that this

is sufficient for morphisms in Contraction to have a unique matrix decomposition

(more on this in Chapter 3). This hints at the importance of Contraction in quantum

computing: even though strict contractions are not physical operations, every isome-

try and unitary is a morphism in Contraction and the entries in their block matrix

decomposition are (possibly strict) contractions.

Apart from the monoidal structure induced by direct sum, Hilb can be given a

monoidal structure using tensor product of Hilbert spaces.

Proposition 1.5.5. Let A,B ∈ Hilb and let A � B be the tensor product of their

underlying vector spaces made into an inner product space by defining

〈a� b|a′ � b′〉 = 〈a |a′〉 · 〈b|b′〉.

The inner product in A � B induces a norm, making it a metric space. The metric

completion of A� B (see Theorem 43.7 from [48]) is a Hilbert space denoted A⊗ B
whose inner product is the canonical extension of that of A�B.9

The monoidal category (Hilb,⊗,C) captures the notion of combining the state

spaceA,B ∈ Hilb of two distinct quantum memories into a single state spaceA⊗B ∈
Hilb (see Section 1.1). In contrast, (Hilb,⊕, {0}) is the monoidal structure that cap-

tures the notion of parallel composition arising in quantum walks (see Section 1.1.2)

and the orthogonal decomposition of a state space with respect to a predicate (see Sec-

tion 1.1). Consequently, (Hilb,⊕, {0}) is the appropriate monoidal category to use

when discussing control flow of quantum programs.

1.5.1 Beyond coherent quantum operations

Measurements are not coherent operations — projections are generally not invertible

— and the outcome they yield is probabilistic. A general mathematical framework

where measurements and coherent operations are described on equal footing needs

to capture not only ‘pure’ quantum states |ψ〉 ∈ H but, more generally, probability

distributions of quantum states.

Let H be a finite-dimensional complex Hilbert space and let B(H) be the vector

space of bounded linear mapsH → H; in the general framework, a state is represented

9If A and B are finite-dimensional, A⊗B = A�B.
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by a density operator ρ ∈ B(H): a positive semi-definite map that satisfies tr(ρ) =

1.10 Let |ψ〉 ∈ H be a unit vector and let ρ ∈ B(H) be a positive density operator;

then it is guaranteed that:

0 ≤ 〈ψ|ρ|ψ〉 ≤ 1.

Moreover, for any orthonormal basis of H , say {ψi}i∈I , the trace of ρ satisfies:

tr(ρ) =
∑
i∈I

〈ψi|ρ|ψi〉 = 1.

The value 〈ψi|ρ|ψi〉 ∈ [0, 1] for each i ∈ I describes the probability of obtaining

the pure quantum state |ψi〉 as the result of measuring ρ in the chosen basis. In this

framework:

• all pure quantum states |ϕ〉 ∈ H may be represented as density operators |ϕ〉〈ϕ| ∈
B(H) and, more generally,

• for any finite set of pure states {|ϕi〉 ∈ H}i∈I and any probability distribution

p : I → [0, 1] assigned to them,

ρ =
∑
i∈I

p(i) · |ϕi〉〈ϕi|

is a density operator. We refer to these as mixed quantum states.

Given two Hilbert spaces H and K, any density operator in the vector space

B(H) ⊕ B(K) is a pair (ρ, ρ′) where ρ ∈ B(H) and ρ′ ∈ B(H) are positive semi-

definite operators satisfying tr(ρ) + tr(ρ′) = 1. Thus, density operators (ρ, ρ′) ∈
B(H) ⊕ B(K) describe mixed states that are known to be either in B(H) with prob-

ability tr(ρ) or in B(K) with probability tr(ρ′). Notice that B(H) ⊕ B(K) is strictly

contained in B(H ⊕ K); in particular, pure states |φ〉〈φ| ∈ B(H ⊕ K) are not in

B(H) ⊕ B(K). Thus, in certain situations — such as after applying a measurement

that projects a state to either H or K — we will use B(H)⊕B(K) to indicate that we

are certain that the state is a probabilistic mixture of quantum states.

Remark 1.5.6. The state spaces we are interested in are direct sums⊕i∈IB(Hi) where

{Hi}i∈I is a finite collection of finite-dimensional Hilbert spaces. Any such space can

be made into a C∗-algebra by defining its multiplication to be composition of maps and

defining its involution to yield the adjoint of a map. In fact, any finite-dimensional C∗-

algebra is isomorphic to the one defined from some ⊕i∈IB(Hi) as above. Thus, when

10Recall that, ifH is a complex Hilbert space then positive semi-definiteness implies self-adjointness.
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managing non-coherent operations, the convention in quantum computing is to use

C∗-algebras as the state spaces. However, the extra structure that a C∗-algebra carries

is not relevant to this thesis and, hence, no knowledge of C∗-algebras is required to

follow it. For the purposes of this thesis, it suffices to think of a finite-dimensional

C∗-algebra as a direct sum ⊕i∈IB(Hi).

Given a pair of finite-dimensional C∗-algebras A and B, the linear maps A → B

that are physically meaningful are those that map states to states, i.e. density opera-

tors to density operators. These are the so-called completely positive trace-preserving

(CPTP) maps:

• a positive map A → B sends positive semi-definite operators in A to positive

semi-definite operators in B;

• a positive map f : A → B is completely positive if for every finite-dimensional

C∗-algebra C it is satisfied that f ⊗ idC : A⊗ C → B ⊗ C is a positive map;

• a trace-preserving map f : A→ B satisfies tr(f(ρ)) = tr(ρ) for every ρ ∈ A.

A common example of a positive map that is not completely positive is the map

B(H)→ B(H) sending each operator to its matrix transpose.

Definition 1.5.7. The category CPTP has finite-dimensional C∗-algebras as objects

and CPTP maps as morphisms. The triple (CPTP,⊕, Z) is a symmetric monoidal

category, where ⊕ is the direct sum of C∗-algebras and CPTP maps and Z is the zero-

dimensional C∗-algebra (i.e. Z = B({0}) = {0}).

Similarly to how the category of (weak) contractions will be useful to discuss the

entries of ‘block matrices’ describing morphisms in Isometry and Unitary, it is

useful to define a category of completely positive (weak) trace-reducing maps so that

CPTP embeds in it.

Definition 1.5.8. The category CPTR has finite-dimensional C∗-algebras as objects

and completely positive (weak) trace-reducing maps as morphisms; a map f : A→ B

is (weak) trace-reducing if it satisfies that tr(f(ρ)) ≤ tr(ρ) for all ρ ∈ A.11 The triple

(CPTR,⊕, {0}) is a symmetric monoidal category.

11A strict trace-reducing map f satisfies tr(f(ρ)) < tr(ρ) for all ρ ∈ A. In this thesis, the term
‘trace-reducing’ refers to weak trace-reducing maps unless stated otherwise.





Chapter 2

Categories for infinitary addition

Let (X,+) be an arbitrary commutative monoid. By applying + multiple times, we

can add up any finite number of elements and, thanks to associativity and commu-

tativity, the result will be unambiguous. However, standard monoids fall short if we

are interested in adding up an infinite collection of elements. For instance, not every

infinite sequence of real numbers is summable: to assign a result to a series we must

verify that its sequence of partial sums converges. The first section of this chapter in-

troduces Σ-monoids, a generalisation of monoids whose monoid operation is partially

defined and aggregates (possibly infinite) collections of elements. The second section

provides a brief introduction to topological monoids: these are monoids endowed with

extra structure that lets us define a general notion of convergence and, consequently,

formalise infinite sums. It will be shown that certain class of topological monoids

— Hausdorff commutative monoids — provides an abundant number of examples of

Σ-monoids.

The notion of strong Σ-monoid presented in this chapter was originally proposed

by Haghverdi [28]; other flavours of Σ-monoids are proposed in this chapter, and their

relation to each other is described in terms of adjunctions between their categories.

Moreover, it is shown that the tensor product of Σ-monoids is well-defined, thus allow-

ing us to define categories enriched over Σ-monoids; this will be essential in Chapter 3.

Definition 2.0.1. A family of elements inX is an indexed multiset {xi ∈ X}i∈I , where

I is an arbitrary countable set.1 Two families {xi}i∈I and {xj}j∈J are the same if there

is a bijection φ : I → J such that for all i ∈ I it satisfies xi = xφ(i). The collection of

all families of elements in X is denoted X∗.

1Being an indexed multiset, there may be distinct indices i, j ∈ I with xi = xj .

33
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Proposition 2.0.2. For any set X , the collection X∗ is a (small) set.

Proof. We can represent a multiset {xi ∈ X}i∈I as a set {(xi, i) | i ∈ I} ⊆ X × I .

Since the indexing set I of a family is countable by definition, there is an injection

from X∗ to the collection of all countable sets. The collection of all countable sets is

small, hence, X∗ is small.

Notation 2.0.3. The shorthand notation {xi}I identifies indices with the lowercase of

the letter denoting the indexing set. When the indexing set is not specified, all ele-

ments of the family are explicitly given within curly brackets, for instance, {x} is the

singleton family and {a, b, c} is a finite family containing three elements. When ex-

plicit reference to the elements of the family is not necessary, a family may be denoted

with a bold font variable x ∈ X∗. A family {xj}J is a subfamily of another {xi}I if

there is an injection φ : J → I such that xj = xφ(j) for each j ∈ J . Hence, there is a

partial order ⊆ on X∗ so that x′ ⊆ x iff x′ is a subfamily of x. Union, disjoint union

and intersection of families are defined with respect to the corresponding operations

on their indexed sets.2 Let f : X → Y be a function and x = {xi}I a family in X∗;

the shorthand fx refers to the family {f(xi)}I in Y ∗.

Notation 2.0.4. For partial functions f : A ⇀ B, g : A′ ⇀ B, the Kleene equality

f(a) ' g(a′) indicates that f(a) is defined if and only if g(a′) is defined and, when

they both are, their results agree. In particular, f(a) ' b implies that f(a) is defined

and is equal to b. The equals sign f(a) = b is only used in the presence of partial

functions when the context has already established that f(a) is defined.

2.1 Σ-monoids

The notion of strong Σ-monoid that will be presented in this section was originally

proposed by Haghverdi [28], although similar mathematical structures predate it: for

instance, the partially additive monoids from Manes and Arbib [45] or the Σ-groups of

Higgs [32]. Haghverdi [28] and Hoshino [33] have discussed how certain categories

enriched in strong Σ-monoids may be used to capture iteration; this line of work is the

main focus of Chapter 3. However, strong Σ-monoids are too restrictive for our appli-

cation: Proposition 2.1.12 shows that these forbid the existence of additive inverses,

which are essential in quantum computing since they capture destructive interference.
2Whenever an index i appears in both x and y, their corresponding elements xi and yi must be equal

for union and intersection to be well-defined.
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In this section, a weaker version of Σ-monoids is proposed which admits additive in-

verses.

A Σ-monoid is a set X together with a partial function Σ: X∗ ⇀ X describing an

infinitary operation which satisfies certain axioms to ensure commutativity, associativ-

ity and existence of a neutral element.

Definition 2.1.1. Let X be a set and let Σ: X∗ ⇀ X be a partial function. We say

x ∈ X∗ is a summable family if Σx is defined. The pair (X,Σ) is a weak Σ-monoid if

the following axioms are satisfied.

• Singleton. For all x ∈ X the family {x} is summable with Σ{x} ' x.

• Neutral element. (i) There is an element 0 ∈ X such that Σ∅ ' 0.

(ii) Let x ∈ X∗ be a family and let x∅ be its subfamily of elements other than 0;

if x is summable then x∅ is summable as well.

• Bracketing. Let {xj}J be an indexed set of finite summable families xj ∈ X∗

and let x = ]Jxj; then:

Σx ' x =⇒ Σ{Σxj}J ' x.

• Flattening. Let {xj}J be an indexed set of summable families xj ∈ X∗ whose

indexing set J is finite and let x = ]Jxj; then:

Σ{Σxj}J ' x =⇒ Σx ' x.

In this definition, the axioms of commutative monoids have been lifted to the infini-

tary case. Bracketing and flattening together capture associativity and commutativity.

Notice that these are not exactly dual to each other: bracketing assumes that each fam-

ily xj is finite, whereas flattening admits infinite families xj but assumes there is only

a finite number of them. As will be established in Proposition 2.1.12, the flattening

axiom’s requirement that J is finite is necessary for weak Σ-monoids to admit additive

inverses. On the other hand, the bracketing axiom’s requirement that each family xj is

finite is necessary so that every Hausdorff commutative monoid is a weak Σ-monoid

whose summable families are precisely those that converge according to the topology

(see Proposition 2.2.37). The following proposition establishes that 0 ∈ X acts as the

neutral element of the Σ-monoid.
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Proposition 2.1.2. Let (X,Σ) be a weak Σ-monoid with Σ∅ = 0. Let x ∈ X∗ be a

family such that Σx ' x for some x ∈ X . Let 0 ∈ X∗ be a (possibly infinite) family

whose elements are all 0; then Σ(x ] 0) ' x. Conversely, let x∅ ⊆ x be the subfamily

of elements other than 0; then Σx∅ ' x.

Proof. Since Σ∅ = 0, the family 0 may be equivalently defined as

0 = {Σ∅,Σ∅, . . .}

and, due to bracketing, Σ0 ' 0. Moreover, for any element x ∈ X , the singleton axiom

imposes that Σ{x} ' x and, clearly, {x} = {x} ]∅ so according to bracketing:

Σ{x} ' x =⇒ Σ{Σ{x},Σ∅} ' x.

Using the singleton axiom and the definition of the neutral element, the right hand

side can be rewritten as Σ{x, 0} ' x. Then, it follows that Σ{Σx,Σ0} ' x and the

flattening axiom implies that Σ(x ] 0) ' x, proving the first part of the claim.

On the other hand, we may partition any summable family x ∈ X∗ into its sub-

family x∅ and its subfamily 0 so that x = x∅ ] 0. Since the neutral element axiom

imposes that x∅ is summable, there is some x′ ∈ X such that Σx∅ ' x′ and, since

Σ0 ' 0 and Σ{x′, 0} ' x′ have been established above, we may apply flattening to

obtain Σx ' x′. But Σx ' x by assumption, so it follows that x = x′ and Σx∅ ' x,

as claimed.

Example 2.1.3. Let ± be the set {0,+,−} and, for each family x ∈ ±∗, let n+(x)

(and n−(x)) be the number of occurrences of + (respectively, of −). Define a partial

function Σ: ±∗ ⇀ ± as follows:

Σx =



0 if n+(x) <∞ and n+(x) = n−(x)

+ if n+(x) <∞ and n+(x) = n−(x) + 1

− if n+(x) <∞ and n+(x) = n−(x)− 1

undefined otherwise.

(2.1)

Then, (±,Σ) is a weak Σ-monoid.

Proof. Both neutral element and singleton axioms are trivial to check; flattening is also

straightforward: if each xj is summable, then each n+(xj) is finite and

n+(]Jxj) =
∑
J

n+(xj)



2.1. Σ-monoids 37

holds, where the right hand side is a finite sum of natural numbers since J is finite.

The same can be said of n−, so the difference between n+ and n− stays the same after

flattening. To see how bracketing is satisfied, recall that both the family x and each

xj are assumed to be summable. For all j ∈ J , the sum Σxj is either 0, + or −, so

we may partition J into J0, J+ and J− depending on this result. Notice that J+ and

J− must be finite sets, otherwise x = ]Jxj would have an infinite number of nonzero

elements and would not be summable. Then, a simple counting argument determines

that: if Σx = 0 then |J+| = |J−|, if Σx = + then |J+| = |J−|+ 1 and if Σx = − then

|J+| = |J−| − 1. Therefore, it follows that the family {Σxj}J is summable, and the

result agrees with that of Σx, thus satisfying the bracketing axiom.

Example 2.1.4. Let X be a set and let P = P(X) be its power set. For any x ∈ X ,

define nx : P ∗ → N ∪ {∞} as follows:

nx({Ai}I) = |{i ∈ I | x ∈ Ai}|. (2.2)

Define a partial function Σ: P ∗ ⇀ P as follows:

Σ{Ai}I =

{x ∈ X | nx({Ai}I) odd} if ∀x ∈ X, nx({Ai}I) <∞

undefined otherwise.
(2.3)

Then, (P,Σ) is a weak Σ-monoid.

Proof. Notice that on finite families Σ corresponds to symmetric difference of sets.

Singleton and neutral element axioms are trivial and flattening follows from associa-

tivity and commutativity of the symmetric difference of sets. Bracketing can be verified

by realising that nx({Ai}I) is odd if and only if, for every partition I = ]JIj , there is

an odd number of odd nx({Ai}Ij ).

Particularly relevant to this thesis is the fact that every Hausdorff commutative

monoid is a weak Σ-monoid. This is established in Section 2.2 along with a brief in-

troduction to general topology and Hausdorff commutative monoids. Many examples

arise from this result; one of the simplest among them is given below.

Example 2.1.5. Let (R,+) be the standard Hausdorff commutative monoid of real

numbers. According to Proposition 2.2.37, we may define a partial function Σ: R∗ ⇀
R so that (R,Σ) is a weak Σ-monoid. Indeed, such Σ corresponds to the usual notion

of absolute convergence of series.
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In the same spirit that monoid homomorphisms are functions preserving the monoid

structure, Σ-homomorphisms are functions that preserve summable families.

Definition 2.1.6. Let (X,Σ) and (Y,Σ′) be weak Σ-monoids. A function f : X → Y

is a Σ-homomorphism if for every family x ∈ X∗ and every x ∈ X:

Σx ' x =⇒ Σ′fx ' f(x).

Example 2.1.7. Let (±,Σ) and (R,Σ) be the weak Σ-monoids from Examples 2.1.3

and 2.1.5 respectively. The function f : ± → R given by:

f(0) = 0 f(+) = 1 f(−) = −1

is a Σ-homomorphism.

Notice that in the weak Σ-monoid (±,Σ) from Example 2.1.3 the family {+,+,−}
is summable whereas its subfamily {+,+} is not. Similarly, we may define a weak

Σ-monoid ([0, 1],Σ) whose Σ function is the same as in (R,Σ) when the result is

in the interval [0, 1] and it is undefined otherwise. Once again, {0.75, 0.5,−0.25} is

summable whereas its subfamily {0.75, 0.5} is not. This idea of defining a weak Σ-

monoid from an existing one by restricting the underlying set is generalised by the

following lemma.

Lemma 2.1.8. Let (Y,Σ) be a weak Σ-monoid and let X be a set. Let f : X → Y be

an injective function such that 0 ∈ im(f). Define a partial function Σf : X∗ ⇀ X as

follows:

Σfx =

x if ∃x ∈ X s.t. Σfx ' f(x)

undefined otherwise.

Then, (X,Σf ) is a weak Σ-monoid and f : X → Y is a Σ-homomorphism.

Proof. The definition of Σf is unambiguous thanks to the requirement that f is injec-

tive. Neutral element and singleton axioms in (X,Σf ) are trivially derived from those

in (Y,Σ). Let {xj}J be an indexed set where each xj ∈ X∗ is a summable family in

(X,Σf ) and let x = ]Jxj , evidently, fx = ]Jfxj (see Notation 2.0.3). Assume that

each family xj is finite, then the following sequence of implications proves bracketing:

Σfx ' x ⇐⇒ Σfx ' f(x) (definition of Σf )

=⇒ Σ{Σfxj}J ' f(x) (bracketing in Y )

⇐⇒ Σ{f(Σfxj)}J ' f(x) (xj summable and def. of Σf )

⇐⇒ Σf{Σfxj}J ' x (definition of Σf ).
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Finally, flattening of (X,Σf ) can be proven following a similar argument, this time

using flattening in (Y,Σ). Thus, it has been shown that (X,Σf ) is a weak Σ-monoid; to

check that f : X → Y is a Σ-homomorphism realise that, by definition, x is summable

if and only if fx is summable, so it is immediate that Σfx ' x implies Σfx '
f(x).

The remainder of this section will study the category of weak Σ-monoids and cer-

tain important full subcategories of it, including that of the strong Σ-monoids discussed

by Haghverdi [28].

Definition 2.1.9. Let Σw be the category whose objects are weak Σ-monoids and

whose morphisms are Σ-homomorphisms.

Proposition 2.1.10. The category Σw is complete.

Proof. First, we show that Σw has all equalizers. Let X and Y be weak Σ-monoids

and let f, g : X → Y be Σ-homomorphisms. Define the subset E = {x ∈ X | f(x) =

g(x)}; the inclusion e : E → X is injective and 0 ∈ E due to f(Σ∅) = g(Σ∅). Then,

according to Lemma 2.1.8, E can be endowed with a weak Σ-monoid structure:

Σex =

x if ∃x ∈ E s.t. Σex ' e(x)

undefined otherwise
(2.4)

so that e : E → X is a Σ-homomorphism. Consequently, (E,Σe) is a cone in Σw and,

since E is an equalizer in Set, for any other cone (A,Σ′) with a Σ-homomorphism

h : A → X there is a unique function m : A → E such that h = e ◦ m. Therefore,

to prove that (E,Σe) is an equalizer in Σw we only need to show that m is a Σ-

homomorphism. For any summable family a ∈ A∗ we have that Σha ' h(Σ′a) due

to h being a Σ-homomorphism and since (A,Σ′) is a cone fh(Σ′a) = gh(Σ′a) so

h(Σ′a) ∈ E or, more precisely, m(Σ′a) ∈ E. It then follows from h = em that

Σema ' em(Σ′a) so, by definition of Σe, the family ma is summable in E and m is a

Σ-homomorphism.

Next, we show that Σw has all small products. Let {(Xi,Σ
i)}I be a small collection

of objects in Σw. Endow the set ×IXi with the following partial function:

Σ×(xi)i∈I =

(Σixi)i∈I if ∀i ∈ I, xi is summable

undefined otherwise.
(2.5)
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Then, (×IXi,Σ
×) is a weak Σ-monoid; the proof is straightforward. It is imme-

diate that projections are Σ-homomorphisms, so this is a cone for the discrete di-

agram {(Xi,Σ
i)}I . Moreover, ×IXi is the categorical product in Set so, for any

other cone (A,Σ′) with Σ-homomorphisms hi : A → Xi, there is a unique function

m : A → ×IXi so that each hi factors through m. To prove that (×IXi,Σ
×) is a

categorical product in Σw it only remains to show that this unique function m is a

Σ-homomorphism. If a is summable in A, then each hia is summable in Xi and, by

definition, Σ×(hia)i∈I is summable in ×IXi. Each hi is equal to πi ◦ m where πi is

the corresponding projection, so it is immediate that Σ×ma ' m(Σ′a) and m is a

Σ-homomorphism.

A category with all equalizers and small products is complete, so Σw is complete

as claimed.

2.1.1 Important full subcategories of Σw

Different flavours of Σ-monoids are introduced in this subsection. The differences

between them are with respect to the partiality of Σ, i.e. new axioms are introduced

that require more families to be summable. The first to be introduced is the notion of

Σ-monoid proposed by Haghverdi [28].

Definition 2.1.11. A strong Σ-monoid is a weak Σ-monoid (X,Σ) that satisfies the

following extra axioms.

• Subsummability. Let {xi}I be a summable family; for every subset J ⊂ I the

subfamily {xj}J is also summable.

• Strong bracketing. Let {xj}J be an indexed set where each xj ∈ X∗ is a

summable family and let x = ]Jxj; then:

Σx ' x =⇒ Σ{Σxj}J ' x.

• Strong flattening. Let {xj}J be an indexed set where each xj ∈ X∗ is a summable

family and let x = ]Jxj; then:

Σ{Σxj}J ' x =⇒ Σx ' x.

Notice that the preconditions of finiteness required in the standard bracketing and

flattening axioms are removed, thus making the axioms stronger. It is straightforward
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to check that this definition is equivalent to that of Haghverdi [28]. In Haghverdi’s

definition, strong bracketing, strong flattening and subsummability are condensed into

a single axiom, and the neutral element axiom of weak Σ-monoids is omitted since it

follows immediately from subsummability — notice that the empty family is a trivial

subfamily. Importantly, the following proposition establishes that strong flattening

forbids the existence of inverse elements.

Proposition 2.1.12 (Haghverdi [28]). Let (X,Σ) be a strong Σ-monoid. If a family

x ∈ X∗ satisfies Σx ' 0, then every element a ∈ x is the neutral element a = 0.

Proof. Let x be a family such that Σx ' 0 and choose an arbitrary element a ∈ x.

Define the following infinite families:

z = x ] x ] . . .

a = {a} ] z

Due to strong flattening, neutral element and singleton axioms:

Σz ' Σ{Σx,Σx, . . . } ' Σ{0, 0, . . . } ' 0

Σa ' Σ{Σ{a},Σz} ' Σ{a, 0} ' a

However, both families z and a contain the same elements: a countably infinite number

of copies of each element in x. Being the same family, it is immediate that Σa ' Σz

which implies a = 0. This arguments holds for each element a ∈ x, proving the

claim.

Since weak Σ-monoids do admit inverses, it is relevant to consider the notion of

Σ-groups. It is straightforward to check that the axioms of Σ-groups defined below

are equivalent to those proposed by Higgs [32]. However, Higgs’ Σ-groups are more

general since Higgs’ notion of families are not restricted to be countable, unlike ours

(see Definition 2.0.1).

Definition 2.1.13. A finitely total Σ-monoid is a weak Σ-monoid where every finite

family is summable. A Σ-group is a finitely total Σ-monoid where, for every x ∈ X ,

there is an element −x ∈ X satisfying Σ{x,−x} = 0 and where the function that

maps each x ∈ X to −x is a Σ-homomorphism.

Remark 2.1.14. Notice that every finitely total Σ-monoid (X,Σ) is trivially a com-

mutative monoid (X,+, 0) where x + y is defined to be Σ{x, y} for every x, y ∈ X
and 0 = Σ∅; both associativity and commutativity follow from the combination of
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bracketing and flattening. Similarly, every Σ-group is trivially an abelian group and,

hence, the inverse of an element in a Σ-group is unique. Moreover, thanks to the in-

verse mapping being a Σ-homomorphism, any summable family x ∈ X (even infinite

ones) have an ‘inverse’ −x obtained by applying the inverse mapping to each of its

elements so that:

0 = Σ{Σx,−(Σx)} = Σ{Σx,Σ−x}.

For each of these flavours of Σ-monoids we may consider a full subcategory of Σw

as defined below.

Definition 2.1.15. Let Σs, Σft and Σg be the full subcategories of Σw obtained by

restricting the class of objects to strong Σ-monoids, finitely total Σ-monoids and Σ-

groups, respectively. For brevity, these subcategories together with Σw are referred to

as Σ∗ categories.

Since strong Σ-monoids do not admit inverses (see Proposition 2.1.12) it is clear

that Σ-groups and strong Σ-monoids are disjoint subclasses of weak Σ-monoids. The

hierarchy of inclusions between Σ∗ categories can be summarised by the existence of

the following full and faithful embedding functors:

Σs ↪→ Σw Σg ↪→ Σft ↪→ Σw. (2.6)

Proposition 2.1.16. All of the Σ∗ categories are complete. All of the embedding func-

tors from (2.6) create limits.

Proof. Proposition 2.1.10 already established the claim for Σw. Whenever the objects

in the diagram are in Σs, it is straightforward to check that the construction from Propo-

sition 2.1.10 — both for equalizers and small products — yields a strong Σ-monoid

and, hence, provides a cone in Σs. The inclusion functor Σs ↪→ Σw reflects limits, by

virtue of being full and faithful; therefore, Σs is complete. The same argument applies

to Σft and Σg so they are all complete, as claimed. Since all Σ∗ categories are com-

plete and the embedding functors reflect limits, it is immediate that they also preserve

them and, hence, all of the embedding functors from (2.6) create limits.

The following subsections establish that Σs, Σft and Σg are not only full subcate-

gories of Σw but reflective ones — i.e. there is a left adjoint to each of the embedding

functors in (2.6).
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2.1.2 Σs is a reflective subcategory of Σw

The left adjoint to the canonical embedding Σs ↪→ Σw is explicitly constructed in

Proposition 2.1.18. The key insight is that the strong versions of bracketing and flat-

tening can be recovered by defining a congruence ∼ and quotienting the set of all

families with respect to it. Then, we ought to find the ‘smallest’ strong Σ-monoid de-

fined on this quotient set that satisfies the universal property of the adjunction. The

following lemma is instrumental to find such a ‘smallest’ strong Σ-monoid.

Lemma 2.1.17. Let {(Xi,Σ
i)}I be a collection of strong Σ-monoids. Define a partial

function Σ∩ : (∩IXi)
∗ ⇀ ∩IXi as follows:

Σ∩x =

x if ∀i ∈ I, Σix ' x

undefined otherwise.

Then, (∩IXi,Σ
∩) is a strong Σ-monoid.

Proof. Whenever a family x is summable in Σ∩, it must be summable in Σi for all

i ∈ I and, considering that each (Xi,Σ
i) is a strong Σ-monoid, it follows that every

subfamily of x is summable in every Σi and, hence, it is summable in Σ∩ so that

subsummability is satisfied. Similarly, strong bracketing and strong flattening in Σ∩

follow from those in each Σi and the neutral element and singleton axioms are trivially

satisfied. Consequently, (∩IXi,Σ
∩) is a strong Σ-monoid.

Proposition 2.1.18. There is a left adjoint functor to the embedding Σs ↪→ Σw.

Proof. Let G : Σs ↪→ Σw denote the canonical embedding; its left adjoint F : Σw →
Σs is defined explicitly. Let X ∈ Σw be an arbitrary weak Σ-monoid and define a

relation on X∗ such that for any two families x,x′ ∈ X∗, we have that x  x′ iff

there is a partition of x into subfamilies x = ]Jxj such that each (possibly infinite)

subfamily xj is summable and such that x′ is the family of their sums x′ = {Σxj}J .

The relation is reflexive since any family may be partitioned into its singleton sub-

families. Let ∼ be the equivalence closure of  ; then, x ∼ x′ iff there is a zig-zag

chain of relations such as:

a1 a3 . . . an

x a2 . . . x′

Notice that ∼ is a congruence with respect to arbitrary disjoint union, i.e. it satisfies:

∀j ∈ J, xj ∼ x′j =⇒ ]Jxj ∼ ]Jx′j (2.7)



44 Chapter 2. Categories for infinitary addition

since a zig-zag chain from ]Jxj to ]Jx′j may be obtained by composing the chains

relating each subfamily xj to x′j . Let A be the quotient set X∗/∼ and let q : X → A

be the function that maps each x ∈ X to the equivalence class [{x}] ∈ A.

Let Y ∈ Σs be an arbitrary strong Σ-monoid and let f : X → G(Y ) be an arbitrary

Σ-homomorphism. Define on Y ∗ as above; since f is a Σ-homomorphism we have

that x x′ implies fx fx′ and, consequently,

x ∼ x′ =⇒ fx ∼ fx′. (2.8)

Moreover, in a strong Σ-monoid y  y′ implies Σy ' Σy′, since if y is summable

then y′ is summable due to strong bracketing whereas if y′ is summable then y is

summable due to strong flattening. Consequently, we have that for any two families

x,x′ ∈ X∗:
x ∼ x′ =⇒ Σfx ' Σfx′. (2.9)

Let Af be the subset of A defined as follows:

Af = {[x] ∈ A | fx is summable in Y }.

Notice that, for any equivalence class [x] ∈ Af , each of its families x′ ∈ [x] satisfies

that fx′ is summable, due to the implication (2.9) and the fact that fx is summable.

Let Σf : A∗f ⇀ Af be the following partial function:

Σf{[xi]}I =

[]Ixi] if []Ixi] ∈ Af

undefined otherwise.

Notice that this definition is independent of the choice of representatives thanks to ∼
being a congruence (2.7). We must check that (Af ,Σ

f ) is a strong Σ-monoid.

• Singleton. Singleton families are trivially summable.

• Subsummability. If {[xi]}I ∈ A∗f is summable then ]Ifxi is summable in Y

and so is ]Jfxj for any J ⊆ I due to subsummability in Y . Thus, {[xj]}J is

summable in Af and Σf satisfies subsummability.

• Neutral element. Follows immediately from subsummability.

• Strong flattening. Let I be an arbitrary set partitioned into I = ]JIj and, for

each j ∈ J , let {[xi]}Ij be a summable family in Af , i.e. Σf{[xi]}Ij ' []Ijxi].
Assume that the family {[]Ijxi]}J ∈ A∗f is summable, i.e. Σf{[]Ijxi]}J '
[]J(]Ijxi)]; then, due to associativity and commutativity of ] we have that

]Ixi = ]J(]Ijxi) and, hence, []Ixi] ∈ Af so that {[xi]}I is summable in Af .
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• Strong bracketing. As in the case of flattening, this axiom follows from associa-

tivity and commutativity of disjoint union.

Let S be the set of all such strong Σ-monoids (Af ,Σ
f ).3 Let F (X) be the strong

Σ-monoid obtained as the intersection of all the members of S as per Lemma 2.1.17.

Let ηX : X → GF (X) be the function that maps each x ∈ X to [{x}]; such an

equivalence class is present in everyAf , so it is present in F (X). Notice that ηX is a Σ-

homomorphism: if x = {xi}I ∈ X∗ is summable, then x {Σx} and [x] = [{Σx}],
hence,

Σ∩{ηX(xi)}I ' []I{xi}] = [x] = [{Σx}] = ηX(Σx).

On morphisms f : X → X ′, let F (f) be the function that maps [x] ∈ F (X) to [fx] ∈
F (X ′); this is a Σ-homomorphism thanks to (2.8). It is straightforward to check that

this construction yields a functor F : Σw → Σs and a natural transformation η whose

components ηX were defined above.

It remains to check that F is left adjoint toG. Fix some arbitraryX ∈ Σw, Y ∈ Σs

and f ∈ Σw(X,G(Y )). There is a unique Σ-homomorphism f̄ : F (X) → Y making

the diagram

X G(Y )

GF (X)

f

ηX G(f̄)

commute: the requirement that f = G(f̄) ◦ ηX imposes that f̄ maps each ηX(x) =

[{x}] to f(x); the requirement that f̄ is a Σ-homomorphism imposes that, for any

arbitrary equivalence class [{xi}I ] ∈ F (X),

f̄ [{xi}I ] = f̄ []I{xi}] = f̄(Σ∩{ηX(xi)}I) = Σ{f(xi)}I .

The value of such a Σ-homomorphism f̄ is uniquely determined and, thus, it has been

shown that F is left adjoint to G, as claimed.

Since Σs is a full subcategory of Σw it follows that Σs is a reflective subcategory

of Σw. Let X be a weak Σ-monoid containing a pair of elements a, b ∈ X such that

Σ{a, b} ' 0. The family x = {a}N]{b}N that contains an infinite number of copies of

a and b satisfies that x {a}, x {0} and x {b} depending on how we partition

it. Then, [{a}] = [{0}] = [{b}], implying ηX is not injective and, in fact, every element

3Even though f : X → G(Y ) ranges over all Y ∈ Σs, each Af is by definition a subset of A which
is small since X∗ is small (see Proposition 2.0.2), hence, S is a (small) set.
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of X that has an additive inverse is mapped to the neutral element [{0}] of F (X). This

is to be expected since, according to Proposition 2.1.12, strong Σ-monoids cannot have

additive inverses.

2.1.3 Σft is a reflective subcategory of Σw

The canonical embedding Σft ↪→ Σw has a left adjoint. In this case, an explicit con-

struction of the free finitely total Σ-monoid has not been achieved; instead, the proof

uses the general adjoint functor theorem.

Proposition 2.1.19. There is a left adjoint functor to the embedding Σft ↪→ Σw.

Proof. Let G : Σft ↪→ Σw denote the canonical embedding. It is immediate that Σft

is locally small since there is a faithful forgetful functor Σft → Set. According to

Proposition 2.1.16, the category Σft is complete and the embedding functor G pre-

serves limits. It remains to show that, for any X ∈ Σw, the comma category (X⇒G)

has a weakly initial set; then, the existence of a left adjoint will follow from the gen-

eral adjoint functor theorem (see Theorem 1.4.36). Let Y ∈ Σft be an arbitrary finitely

total Σ-monoid and let f : X → G(Y ) be an arbitrary Σ-homomorphism. Let Z be the

following subset of X∗:

Z = {x ∈ X∗ | fx is summable in Y }

and let ∼ be the equivalence relation on Z where:

x ∼ x′ ⇐⇒ Σfx = Σfx′.

Let Af be the quotient set Z/∼ and let f̄ : Af → Y be the injective function that

maps each [x] ∈ Af to Σfx. According to Lemma 2.1.8, there is a partial function

Σf̄ : A∗f ⇀ Af induced by f̄ :

Σf̄{[xj]}J =

[x] if ∃[x] ∈ Af s.t. Σ{f̄ [xj]}J ' f̄ [x]

undefined otherwise.

which, by virtue of f̄ being injective, satisfies that (Af ,Σ
f̄ ) is a weak Σ-monoid. Using

the definition of f̄ we obtain the following equivalent definition of Σf̄ :

Σf̄{[xj]}J =

[x] if ∃x ∈ Z s.t. Σ{Σfxj}J ' Σfx

undefined otherwise.
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The definition is independent of the choice of representatives since Z is comprised of

families whose image under f is summable and ∼ relates those that sum up to the

same value in Y . Recall that each xj is in Z by definition and, consequently, each

fxj is summable; then, when J is a finite set the family {Σfxj}J is summable thanks

to Y being finitely total and Σ{Σfxj}J ' Σ(]Jfxj) due to flattening. Therefore,

whenever J is finite we have that:

Σf̄{[xj]}J ' []Jxj]

implying that every finite family is summable in Σf̄ so that (Af ,Σ
f̄ ) ∈ Σft.

Let q : X → G(Af ) be the function that maps each x ∈ X to [{x}]. Assume

that x = {xi}I ∈ X∗ is summable, then fx is summable in Y due to f being a

Σ-homomorphism; thus, x ∈ Z and q is a Σ-homomorphism:

q(Σx) = [{Σx}] (def. of q)

= [x] (f(Σx) = Σfx)

' Σf̄{[{xi}]}I (Σfx = Σ{Σ{f(xi)}}I)

= Σf̄{q(xi)}I . (def. of q)

According to Lemma 2.1.8, the function f̄ : Af → Y is also a Σ-homomorphism

and it is straightforward to check that f = G(f̄) ◦ q. Thus, it has been shown that

for every object (f, Y ) in the comma category (X ⇒ G) there is an object (q, Af )

such that a morphism f̄ : (q, Af ) → (f, Y ) exists. Let S be the collection of all such

(q, Af ) objects; notice that S is a (small) set since each Af is the quotient of a subset

of X∗ (which is itself small, Proposition 2.0.2), so the collection of all such Af is

small and, for each of them, there is only a small collection of partial functions A∗f ⇀

Af . Consequently, S is a weakly initial set in the comma category (X⇒G) and the

claim that G has a left adjoint follows from the general adjoint functor theorem (see

Theorem 1.4.36).

Since Σft is a full subcategory of Σw it follows that Σft is a reflective subcategory

of Σw. The proof given above follows the same strategy that Hoshino [33] used to show

that the category of totally defined strong Σ-monoids is a reflective subcategory of Σs.

It is reasonable to think that a constructive proof may be achieved using the following

strategy: given any weak Σ-monoid (X,Σ), let (X,+) be the partially commutative

monoid obtained by defining x+x′ ' Σ{x, x′} and let (Y,+′) be its free commutative

monoid constructed via the left adjoint to CMon ↪→ PCM (see [34]); then, we
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may attempt to extend (Y,+′) to a Σ-monoid where the only infinite families that are

summable are those required for ηX : (X,Σ) → (Y,Σ′) to be a Σ-homomorphism,

plus the ones imposed by bracketing and flattening. Such a strategy was attempted

but, unfortunately, it was not clear whether quotienting the underlying set Y would

be necessary to guarantee that different bracketings of the same infinite family would

agree in their sum and, if quotienting is required, verifying that the definition of Σ′

is independent of the choice of representatives becomes exceedingly subtle and it was

not pursued further.

2.1.4 Σg is a reflective subcategory of Σft

The canonical embedding Σg ↪→ Σft has a left adjoint. An explicit construction of

the free Σ-group has not been achieved; instead, the proof uses the general adjoint

functor theorem. The proof is a combination of the Grothendieck group construction

(Example 1.4.32) and the proof of Proposition 2.1.19 from the previous subsection.

Proposition 2.1.20. There is a left adjoint functor to the embedding Σg ↪→ Σft.

Proof. Let G : Σg ↪→ Σft denote the canonical embedding. It is immediate that Σg

is locally small, since there is a faithful forgetful functor Σg → Set. According to

Proposition 2.1.16, the category Σg is complete and the embedding functor G pre-

serves limits. It remains to show that, for any X ∈ Σft, the comma category (X⇒G)

has a weakly initial set; then, the existence of a left adjoint will follow from the general

adjoint functor theorem (see Theorem 1.4.36). Let Y ∈ Σg be an arbitrary Σ-group

and let f : X → G(Y ) be an arbitrary Σ-homomorphism. Let Z be the following

subset of X∗ ×X∗:

Z = {(p,n) ∈ X∗ ×X∗ | fp and fn are summable in Y }

and let ∼ be the equivalence relation on Z where:

(p,n) ∼ (p′,n′) ⇐⇒ Σ{Σfp,−(Σfn)} = Σ{Σfp′,−(Σfn′)}.

Let Af be the quotient set Z/∼ and let f̄ : Af → Y be the injective function defined

as follows for every equivalence class [(p,n)] ∈ Af :

f̄ [(p,n)] = Σ{Σfp,−Σfn}.

According to Lemma 2.1.8, there is a partial function Σf̄ : A∗f ⇀ Af induced by f̄ :

Σf̄{[(pj,nj)]}J =

[(p,n)] if ∃(p,n) ∈ Z s.t. Σ{f̄ [(pj,nj)]}J ' f̄ [(p,n)]

undefined otherwise.
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which, by virtue of f̄ being injective, satisfies that (Af ,Σ
f̄ ) is a weak Σ-monoid. Next,

we show that every family {(pj,nj) ∈ Af}J such that J is finite is a summable family.

Notice that, by definition of Af , if (pj,nj) ∈ Af for all j ∈ J then fpj and fnj are

summable in Y and, due to J being finite and Y finitely total, {fpj}J and {fnj}J are

summable as well. It follows that:

Σ{f̄ [(pj,nj)]}J = Σ{Σ{Σfpj,−Σfnj}}J (def. f̄ )

' Σ{Σ{Σfpj}J ,Σ{−Σfnj}J} (flattening, then bracketing)

' Σ{Σ(]Jfpj),−Σ(]Jfnj)} (inversion Σ-hom. and flattening)

= f̄ [(]Jpj,]Jnj)] (def. f̄ )

where the first ' follows from the fact that J is finite so that Σ{Σ{aj,−bj}}J can be

first flattened into a sum of a finite family and then bracketed into Σ{Σ{aj}J ,Σ{−bj}J}.
According to the definition of Σf̄ , the above implies that

Σf̄{[(pj,nj)]}J ' [(]Jpj,]Jnj)]

so that every finite family in A∗f is summable. Finally, for every element [(p,n)] ∈ Af
the element [(n,p)] ∈ Af acts as its inverse; to check this, notice that the neutral

element ofAf is [(∅,∅)] which satisfies f̄ [(∅,∅)] = 0 and let a = Σfp and b = Σfn

so that:

Σ{f̄ [(p,n)], f̄ [(n,p)]} = Σ{Σ{a,−b},Σ{b,−a}} (def. of f̄ )

= Σ{a,−b, b,−a} (flattening in Y )

= Σ{Σ{a,−a},Σ{b,−b}} (bracketing in Y )

= Σ{0, 0} = 0 (inverses in Y )

thus, Σf̄{[(p,n)], [(n,p)]} = [(∅,∅)]. It is straightforward to check that:

Σf̄{[(pj,nj)]}J ' [(p,n)] ⇐⇒ Σf̄{[(nj,pj)]}J ' [(n,p)]

so that the inverse mapping is a Σ-homomorphism. Thus, it has been established that

(Af ,Σ
f̄ ) is a Σ-group.

Let q : X → G(Af ) be the function that maps each x ∈ X to [({x},∅)]. It is

straightforward to check that q is a Σ-homomorphism since for every summable family

x = {xi}I ∈ X∗ it follows that:

q(Σx) = [({Σx},∅)] = [(x,∅)] ' Σf̄{q(xi)}I .
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According to Lemma 2.1.8, the function f̄ : Af → Y is also a Σ-homomorphism

and it is straightforward to check that f = G(f̄) ◦ q. Thus, it has been shown that

for every object (f, Y ) in the comma category (X ⇒ G) there is an object (q, Af )

such that a morphism f̄ : (q, Af ) → (f, Y ) exists. Let S be the collection of all such

(q, Af ) objects; notice that S is a (small) set since each Af is a quotient of a subset

of X∗ (which is itself small, Proposition 2.0.2), so the collection of all such Af is

small and, for each of them, there is only a small collection of partial functions A∗f ⇀

Af . Consequently, S is a weakly initial set in the comma category (X⇒G) and the

claim that G has a left adjoint follows from the general adjoint functor theorem (see

Theorem 1.4.36).

Since Σg is a full subcategory of Σft it follows that Σg is a reflective subcategory

of Σft. A constructive proof may perhaps be achieved by adapting the construction of

the Grothendieck group (see Example 1.4.32) to infinitary addition Σ. Unfortunately,

as in the case of the left adjoint to Σft ↪→ Σw, it is unclear whether quotienting would

be necessary to guarantee that the bracketing axiom is satisfied and, if quotienting is

required, proving well-definedness of Σ becomes exceedingly subtle.

2.1.5 Tensor product of Σ-monoids

The results in this section are adapted from those in the appendix of Hoshino’s work

on the category of strong Σ-monoids [33]. The proofs presented here are more detailed

and apply to all of the Σ∗ categories but, in essence, the strategy they follow is due to

Hoshino.

Proposition 2.1.16 already established that each Σ∗ category has small products;

denote the terminal object as ({0},Σ) ∈ Σ∗ whose Σ is the unique total function of its

type. Consequently, Σ∗ can be given a Cartesian monoidal structure.

Proposition 2.1.21. For each Σ∗ category, let × : Σ∗ × Σ∗ → Σ∗ be the functor

mapping each pair of objects to their categorical product and each pair of morphisms

to the universal morphism that makes the following diagram

X X × Y Y

Z Z ×W W

πl

πl

πr

πr

gf

commute. Then, each (Σ∗,×, {0}) is a symmetric monoidal category.
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Proof. This construction is well-known for categories with finitary products. Unitors

are given by projections and associators are given by the fact that both (X × Y ) × Z
and X × (Y × Z) are categorical products of the collection {X, Y, Z}, so they are

isomorphic. The (symmetric) braiding is given by the fact that X × Y and Y × X

are both products and, therefore, isomorphic. All coherence diagrams follow from the

universal properties of categorical products and terminal object.

Unfortunately such a Cartesian monoidal structure is not suitable for our purposes:

we are interested in defining a monoidal structure on each Σ∗ category so that cate-

gories enriched over Σ∗ satisfy that their composition distributes over addition. As

discussed in Section 1.4.2, to do so we need that each of the Σ∗ categories has ten-

sor products and use these to define their monoidal structure. Such is the goal of this

section, which begins by defining the notion of Σ-bilinear function.

Definition 2.1.22. For each Σ∗ category, let X, Y, Z ∈ Σ∗ be arbitrary objects and

let f : X × Y → Z be a function. We say f is a Σ-bilinear function if f(x,−) and

f(−, y) are Σ-homomorphisms for all x ∈ X and all y ∈ Y . Let ΣX,Y
∗ (Z) be the set

of all Σ-bilinear functions of type X × Y → Z.

Remark 2.1.23. It immediately follows from the definition of a Σ-bilinear function

f : X × Y → Z that f(x, y) = 0 if x = 0 or y = 0:

f(x, 0) = f(x,Σ∅) = Σ∅ = 0.

Furthermore, if x ∈ X has an inverse then f(Σ{x,−x}, y) = f(0, y) = 0 and, due to

f being Σ-bilinear:

Σ{f(x, y), f(−x, y)} ' 0.

When the codomain Z is a Σ-group the uniqueness of the inverse element implies

−f(x, y) = f(−x, y) and similarly −f(x, y) = f(x,−y) if y ∈ Y has an inverse.

For each Σ∗ category and every pair of objects X, Y ∈ Σ∗ there is a functor

ΣX,Y
∗ : Σ∗ → Set that maps each object Z ∈ Σ∗ to the set of Σ-bilinear functions

ΣX,Y
∗ (Z) and maps each Σ-homomorphism f : Z → W to a function ΣX,Y

∗ (Z) →
ΣX,Y
∗ (W ) that maps each h ∈ ΣX,Y

∗ (Z) to the Σ-bilinear function f ◦ h.

Lemma 2.1.24. For all X, Y ∈ Σw, the functor ΣX,Y
w : Σw → Set preserves limits.

Proof. Let Z,W ∈ Σw be arbitrary objects, let f, g ∈ Σw(Z,W ) be arbitrary Σ-

homomorphisms and letE ∈ Σw be their equalizer constructed as in Proposition 2.1.10.
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Recall that E ⊆ Z and z ∈ E implies f(z) = g(z) so it is clear that any h ∈ ΣX,Y
w (E)

satisfies f ◦ h = g ◦ h. Conversely, if a Σ-bilinear function h : X × Y → Z satis-

fies f ◦ h = g ◦ h then, for every element z ∈ im(h), it holds that f(z) = g(z), so

im(h) ⊆ E. Therefore, ΣX,Y
w (E) is precisely the subset of ΣX,Y

w (Z) such that for all

h ∈ ΣX,Y
w (E),

ΣX,Y
w (f)(h) = f ◦ h = g ◦ h = ΣX,Y

w (g)(h)

i.e. ΣX,Y
w (E) is an equalizer of the diagram in Set. Thus, ΣX,Y

w preserves equalizers.

Let Z×W ∈ Σw be the categorical product of two weak Σ-monoids and let πl and

πr be the corresponding projections. Since the categorical product in Set is given by

the Cartesian product, there is a unique function m making the following diagram

ΣX,Y
w (Z ×W )

ΣX,Y
w (Z) ΣX,Y

w (Z)×ΣX,Y
w (W ) ΣX,Y

w (W )

Σ
X,Y
w (πl)

πl

m
Σ
X,Y
w (πr)

πr

commute in Set. Such a functionmmaps every Σ-bilinear function f ∈ ΣX,Y
w (Z×W )

to the pair of Σ-bilinear functions (πl ◦ f, πr ◦ f). Conversely, there is a function

u : ΣX,Y
w (Z)×ΣX,Y

w (W )→ ΣX,Y
w (Z×W ) mapping each pair of Σ-bilinear functions

(g, h) to the function given below:

k(x, y) = (g(x, y), h(x, y))

for every x ∈ X and y ∈ Y . Notice that u is well-defined since k is a Σ-bilinear

function:

k(Σx, y) = (g(Σx, y), h(Σx, y)) = (Σg(x, y),Σh(x, y))

= Σ×(g(x, y), h(x, y)) = Σ×k(x, y)

where g(x, y) is a shorthand for the family obtained after applying g(−, y) to each

element in x. It is straightforward to check that u ◦ m = id and m ◦ u = id so

that ΣX,Y
w (Z × W ) is isomorphic to ΣX,Y

w (Z) × ΣX,Y
w (W ). Thus, it follows that

ΣX,Y
w (Z × W ) is a categorical product and ΣX,Y

w preserves binary products. It is

straightforward to generalise this argument to small products and, hence, ΣX,Y
w pre-

serves small products.

A functor that preserves equalizers and small products and whose domain is a com-

plete category automatically preserves all limits. Therefore, ΣX,Y
w preserves limits, as

claimed.



2.1. Σ-monoids 53

Corollary 2.1.25. For every Σ∗ category and every pair of objects X, Y ∈ Σ∗ the

functor ΣX,Y
∗ : Σ∗ → Set preserves limits.

Proof. The previous lemma establishes the claim for Σw. For the rest of the Σ∗ cat-

egories, it is evident that the corresponding functor ΣX,Y
∗ is equal to the composition

Σ
U(X),U(Y )
w ◦ U where U is the embedding functor Σ∗ ↪→ Σw. Proposition 2.1.16

established that U preserves limits, so it follows that ΣX,Y
∗ preserves limits.

Lemma 2.1.26. The comma category ({•} ⇒ ΣX,Y
w ) has an initial object. Such an

initial object will be denoted (p,X ⊗ Y ).

Proof. The category Σw is complete (see Proposition 2.1.10) and Lemma 2.1.24 es-

tablishes that the functor ΣX,Y
w preserves limits. Consequently, the comma category

({•}⇒ΣX,Y
w ) is complete (see Lemma A.2 from [38]) and, since Σw is locally small, it

follows that the comma category is locally small. Then, according to Lemma 1.4.35, it

suffices to provide a weakly initial set to prove that the comma category ({•}⇒ΣX,Y
w )

has an initial object. The elements of such a weakly initial set ought to be functions

of type {•} → ΣX,Y
w (A) for some A ∈ Σw; but a function with singleton domain

simply selects an element in its codomain, so it is equivalent to think of the weakly

initial set as a collection of Σ-bilinear functions X × Y q−→ A. Let S be the collection

of all Σ-bilinear functions with domain X ×Y and whose codomain may be any weak

Σ-monoid whose underlying set is a quotient of a subset of (X × Y )∗. Notice that S

is small since all quantifiers in its definition are with respect to fixed sets X and Y and

(X × Y )∗ is small (see Proposition 2.0.2).

Let W ∈ Σw and let f : X × Y → W be a Σ-bilinear function. Define a subset

Z ⊆ (X × Y )∗ as follows:

Z = {z ∈ (X × Y )∗ | fz is summable}

and define an equivalence relation ∼ on Z where:

z ∼ z′ ⇐⇒ Σfz = Σfz′.

Define a function f̄ : Z/∼ → W so that each equivalence class [z] ∈ Z/∼ is mapped

to Σfz; it is straightforward to check that f̄ is injective and, moreover, [∅] ∈ Z/∼, so

the neutral element 0 ∈ W is in the image of f̄ . Therefore, according to Lemma 2.1.8,

Z/∼ may be endowed with a partial function Σf̄ defined as follows for every family

{[zi]}I ∈ (Z/∼)∗:

Σf̄{[zi]}I =

[z] if ∃[z] ∈ Z/∼ s.t. Σ{f̄ [zi]}I ' f̄ [z]

undefined otherwise
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so that (Z/∼,Σf̄ ) is a weak Σ-monoid and f̄ is a Σ-homomorphism. Finally, define

the function q : X × Y → Z/∼ as the composite

q = X × Y {−}−−→ Z
[−]−→ Z/∼

where {−} is the function mapping each (x, y) ∈ X × Y to the singleton family

({(x, y)}) and [−] is the quotient map. It is straightforward to check that f = f̄ ◦ q
and, for any x ∈ X and any summable family {yi}I ∈ Y ∗,

Σ{f̄ q(x, yi)}I = Σ{f(x, yi)}I ' f(x,Σ{yi}I) = f̄ q(x,Σ{yi}I)

since f is Σ-bilinear, implying that the family {q(x, yi)}I is summable in (Z/∼,Σf̄ )

with:

Σf̄{q(x, yi)}I ' q(x,Σ{yi}I).

A similar result holds if we fix y ∈ Y instead and let x ∈ X∗ be an arbitrary summable

family, thus, q is a Σ-bilinear function.

In summary, it has been shown that Z/∼ is an object in Σw and thatX×Y q−→ Z/∼
is a Σ-bilinear function, hence, an element of S. Moreover, f̄ is a Σ-homomorphism

and f = f̄◦q, implying that f̄ is a valid morphism from q to f in in the comma category.

This construction may be reproduced for any Σ-bilinear function f : X × Y → W , so

it follows that S is a weakly initial set. Thus, Lemma 1.4.35 establishes that the comma

category ({•}⇒ΣX,Y
w ) has an initial object, as claimed.

Lemma 2.1.27. For each Σ∗ category, the comma category ({•} ⇒ ΣX,Y
∗ ) has an

initial object. Such an initial object will be denoted (p,X ⊗ Y ).

Proof. We must show that whenever X , Y and W are objects in certain Σ∗ category,

the weak Σ-monoid (Z/∼,Σf̄ ) defined in the previous lemma is in fact an object in the

same Σ∗ category. Such a result has already been established for Σw in the previous

lemma.

Assume W ∈ Σs; then, Σf̄ satisfies strong bracketing and strong flattening, the ar-

gument being the same as that for (weak) bracketing and flattening (see Lemma 2.1.8):

these follow directly from their counterpart in W since Σf̄ is defined if and only if

the sum in W is defined. Let {[zi]}I be an arbitrary summable family in (Z/∼)∗; by

definition of Σf̄ , the fact that it is summable implies that the family {f̄ [zi]}I ∈ W ∗

is summable or, equivalently, the family {Σfzi}I ∈ W ∗ is summable. Then, due to

strong flattening in W , we know that ]Ifzi is summable and, thanks to subsummabil-

ity in W , the subfamily ]Jfzj is summable for every J ⊆ I . It then follows from
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strong bracketing in W that the subfamily {Σfzj}J is summable or, equivalently,

{f̄ [zj]}J is summable. Thus, every subfamily of {[zi]}I is summable, implying that

Σf̄ satisfies subsummability. Consequently, if W ∈ Σs then Z/∼ ∈ Σs.

Assume W ∈ Σft and let {[zi]}I be an arbitrary finite family in (Z/∼)∗. Notice

that {Σfzi}I is a summable family due to W being finitely total. Since I is finite and

each fzi is summable (due to the definition of Z), the flattening axiom in W implies

that ]Ifzi is summable:

Σ(]Ifzi) ' Σ{Σfzi}I .

Consequently, ]Ifzi ∈ Z and

Σf̄{[zi]}I ' []Izi]

implying that every finite family in Z/∼ is summable. Consequently, if W ∈ Σft then

Z/∼ ∈ Σft.

Assume that both X and W are Σ-groups and recall that −f(x, y) = f(−x, y)

(see Remark 2.1.23). For every element z = {(xi, yi)}I of Z let −z be the family

{(−xi, yi)}I ; notice that−z is in Z as well since its image under f is summable in W :

Σ{f(−xi, yi)}I = Σ{−f(xi, yi)}I ' −Σ{f(xi, yi)}I = −Σfz (2.10)

where the' step follows from the inversion map being a Σ-homomorphism as required

for W to be a Σ-group. For every [z] ∈ Z/∼ there is an inverse element [−z] ∈ Z/∼
since:

Σ{f̄ [z], f̄ [−z]} = Σ{Σfz,−Σfz} = 0.

Such an inversion map [z] 7→ [−z] is well-defined since it is immediate from (2.10)

that z ∼ z′ implies −z ∼ −z′. It remains to show that the inversion map in Z/∼ is a

Σ-homomorphism. Assume {[zi]}I is a summable family in (Z/∼)∗; this implies the

existence of a family z ∈ Z such that:

Σ{f̄ [zi]}I ' f̄ [z].

But it is immediate from (2.10) that f̄ [−z′] = −f̄ [z′] for all z′ ∈ Z, thus:

Σ{f̄ [−zi]}I = Σ{−f̄ [zi]}I ' −Σ{f̄ [zi]}I ' −f̄ [z] = f̄ [−z]

and, hence, Σf̄{[−zi]}I ' [−z]. Consequently, the inversion map in Z/∼ is a Σ-

homomorphism and we conclude that, if W ∈ Σg and X ∈ Σg (or Y ∈ Σg) then

Z/∼ ∈ Σg.
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In summary, it has been shown that if X , Y and W are all objects from the same

Σ∗ category and f : X × Y → W is a Σ-bilinear function, then (Z/∼,Σf̄ ) as con-

structed in Lemma 2.1.26 is an object in the same Σ∗ category. Then, thanks to Propo-

sition 2.1.16 and Corollary 2.1.25 it is straightforward to check that the argument from

the previous lemma holds for any Σ∗ category, concluding the proof.

The previous lemma establishes the existence of an object X ⊗ Y known as the

tensor product and a Σ-bilinear function p : X × Y → X ⊗ Y that let us uniquely

represent any Σ-bilinear function f : X×Y → Z as a Σ-homomorphism f̄ : X⊗Y →
Z so that f = f̄ ◦ p. In the case of Σ-groups, a constructive proof may perhaps be

achieved by adapting the construction of the tensor product in abelian groups (see [53])

to infinitary addition Σ. Unfortunately, as in the case of the left adjoint to Σft ↪→
Σw (see Section 2.1.3), it is unclear whether quotienting the underlying set would

be necessary to guarantee that the bracketing axiom is satisfied and, if quotienting is

required, proving well-definedness of Σ becomes exceedingly subtle.

The goal of the rest of this section is to show that every Σ∗ category has a (closed

symmetric) monoidal structure given by this tensor product. However, the monoidal

structure is somewhat different for each of these categories; this is illustrated by the

differences in the definition of their tensor unit, given below.

Definition 2.1.28. Let S : N∗ → N ∪ {∞} be the standard sum of families of natural

numbers. For each category Σ∗, define the tensor unit I ∈ Σ∗ as follows:

• in Σw, let I = {0, 1} along with Σn = Sn if Sn ≤ 1 and otherwise undefined;

• in Σs, let I and its Σ be the same as in Σw;

• in Σft, let I = N along with Σn = Sn if Sn is finite and otherwise undefined;

• in Σg, let I = Z along with Σn = (Sm+n) + (Sm−n) if Sm+n and Sm−n

are finite and otherwise undefined; where m+ maps all negative integers to 0 and

m− maps all positive integers to 0.

It is immediate to check that each of these tensor units are well-defined Σ-monoids

in their respective categories. These definitions are accompanied by functions lX : I ×
X → X and rx : X × I → X for every X ∈ Σ∗, defined as follows:

lX(n, x) = Σ{
n times︷ ︸︸ ︷
x, x, . . .}

rX(x, n) = Σ{
n times︷ ︸︸ ︷
x, x, . . .}

(2.11)
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except for Σg where, if n < 0, then the corresponding family is of |n| copies of −x
instead. It is immediate that lX(−, x) is a Σ-homomorphism. To show that lX(n,−) is

also a Σ-homomorphism, let x = {xi}I ∈ X∗ be an arbitrary summable family; then,

since n is finite we may apply flattening followed by bracketing to obtain:

l(n,Σx) = Σ{
n times︷ ︸︸ ︷

Σx, . . .} ' Σ{Σ{
n times︷ ︸︸ ︷

xi, xi, . . .}}I = Σ{l(n, xi)}I .

Therefore, lX is a Σ-bilinear function and a similar argument holds for rX . Moreover,

it is straightforward to check that l and r are natural transformations since for any

Σ-homomorphism f : X → Y ,

l(id× f)(n, x) = l(n, f(x)) = Σ{
n times︷ ︸︸ ︷

f(x), . . .} = f(Σ{
n times︷︸︸︷
x, . . .}) = fl(n, x).

Corollary 2.1.29. For any Σ∗ category, let lX and rX be the Σ-bilinear functions

defined in (2.11) and let a be the associator from the Cartesian monoidal structure on

each Σ∗. Then, the following diagram commutes:

(X × I)× Y X × (I × Y )

X × Y X × Y

X ⊗ Y

p p

r×id id×l

a

Proof. For all Σ∗ categories, the claim follows from the following:

p(id× lY )(x, n, y) = p(x,Σ{
n times︷︸︸︷
y, . . .}) = Σ{

n times︷ ︸︸ ︷
p(x, y), . . .} = p(rX × id)(x, n, y)

due to p being a Σ-bilinear function.

These Σ-bilinear functions l and r will be used to define the unitors of the monoidal

structure given by ⊗. The associator is trickier since the Σ-homomorphism represen-

tation of a ‘Σ-trilinear’ function is not yet clear. The following two lemmas deal with

this, proving that the object (X⊗Y )⊗Z along with the ‘Σ-trilinear’ function p◦(p×id)

can take up the role of the ternary tensor product. To do so, we must first introduce a

Σ-monoid structure on sets of Σ-homomorphisms.

Lemma 2.1.30. For every Σ∗ category and objects X, Y ∈ Σ∗, the hom-set [X, Y ] =

Σ∗(X, Y ) may be endowed with a partial function Σ→ : [X, Y ]∗ ⇀ [X, Y ] so that

[X, Y ] ∈ Σ∗.
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Proof. The partial function Σ→ is defined in the same manner for all of the Σ∗ cat-

egories; it is defined pointwise, using the Σ from Y . For every family f = {fi}I ∈
[X, Y ]∗ and every x ∈ X let f(x) be a shorthand for the family {fi(x)}I ∈ Y ∗ and

define a partial function sf : X ⇀ Y as follow for every x ∈ X:

sf (x) =

y if ∃y ∈ Y s.t. Σf(x) ' y

undefined otherwise.

Define the partial function Σ→ : [X, Y ]∗ ⇀ [X, Y ] as follows for every f ∈ [X, Y ]∗:

Σ→f =

sf if sf ∈ [X, Y ]

undefined otherwise.

Recall that all Σ-homomorphisms are total functions, so the condition sf ∈ [X, Y ]

imposes that Σf(x) is defined for all x ∈ X . We now show that if Y is an object in a

Σ∗ category then ([X, Y ],Σ→) is an object in the same category.

Assume Y ∈ Σw; it is immediate that for every singleton family {f} ∈ [X, Y ]∗ the

corresponding function s{f} maps every x ∈ X to f(x), so Σ→{f} ' f as required by

the singleton axiom. Similarly, it is immediate that the function s∅ maps every x ∈ X
to the neutral element 0 ∈ Y , so the empty family is summable in ([X, Y ],Σ→), with

the neutral element being s∅. Moreover, let f ∈ [X, Y ]∗ be a summable family and let

f∅ be the subfamily where all occurrences of s∅ have been removed; it is immediate

that f∅ is summable since s∅ only contributes to the sum of f(x) ∈ Y ∗ by adding a 0,

which may be disregarded thanks to the neutral element axiom in Y . Consequently,

the neutral element axiom is satisfied by Σ→; it remains to prove the bracketing and

flattening axioms. Let {fj ∈ [X, Y ]∗}J be a collection of summable families and let

f = ]J fj . Assume that fj is a finite family for every j ∈ J and assume that f is

summable; to prove bracketing we must show that the family g = {Σ→fj}J ∈ [X, Y ]∗

is summable and sg = sf . This is straightforward since for every x ∈ X we have that:

sg(x) = Σ{(Σ→fj)(x)}J = Σ{Σfj(x)}J ' Σf(x) = sf (x)

where the' step corresponds to bracketing in Y . Therefore, sg ∈ [X, Y ] is implied by

sf ∈ [X, Y ] — which holds due to f being summable — and, hence, g = {Σ→fj}J is

summable with its sum matching that of f . Flattening is proven via the same argument,

this time using flattening in Y instead of bracketing. Consequently, if Y ∈ Σw then

[X, Y ] ∈ Σw.
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Assume Y ∈ Σs; then, the same argument that established bracketing and flatten-

ing in [X, Y ] can be used to prove strong bracketing and strong flattening in [X, Y ] via

the corresponding axioms from Y . Moreover, if f is summable and h is a subfamily

of f , it follows from subsummability in Y that sh is a total function. To prove that Σ→

satisfies subsummability, we must show that sh is a Σ-homomorphism; this follows

from strong flattening and strong bracketing in Y , as described below. Let h = {hj}J
and let {xi}I ∈ X∗ be an arbitrary summable family; then:

sh(Σ{xi}I) = Σ{hj(Σ{xi}I)}J (definition of sh)

' Σ{Σ{hj(xi)}I}J (hj ∈ [X, Y ])

' Σ{hj(xi)}I×J (strong flattening in Y and ]JI ∼= I × J)

' Σ{Σ{hj(xi)}J}I (strong bracketing in Y and sh total)

= Σ{sh(xi)}I (definition of sh)

so sh ∈ [X, Y ] and h is summable, implying that subsummability is satisfied. Conse-

quently, if Y ∈ Σs then [X, Y ] ∈ Σs.

Assume Y ∈ Σft; it is immediate from Y being finitely total that, for every finite

family h ∈ [X, Y ]∗, the function sh is total. Once again, to prove that h is summable in

[X, Y ] we must show that sh is a Σ-homomorphism; this can be achieved via the same

argument used above to prove subsummability but, in this case, only (weak) flattening

and bracketing are required since h is assumed to be a finite family. Consequently, if

Y ∈ Σft then [X, Y ] ∈ Σft.

Assume Y ∈ Σg and let f ∈ [X, Y ]. Due to Y having inverses, we can define a

function that maps every x to −f(x), call it −f . Since the inversion map in Y is a

Σ-homomorphism and so is f , it is trivial to check that −f ∈ [X, Y ]. Thanks to Σ→

being defined pointwise, it is straightforward to check that Σ→{f,−f} is the function

sending every x to 0 ∈ Y — i.e. the neutral element s∅ in [X, Y ] — and the inversion

map f 7→ −f is a Σ-homomorphism. Consequently, if Y ∈ Σg then [X, Y ] ∈ Σg.

In conclusion, it has been shown that ([X, Y ],Σ→) is an object in the same Σ∗

category as Y , proving the claim.

We may now make use of the Cartesian closed structure in Set together with the

definition of tensor product in Σ∗ categories to lift the universal property of the binary

tensor product to the ternary case.

Definition 2.1.31. For each Σ∗ category, let X, Y, Z,W ∈ Σ∗ be arbitrary objects and

let f : X×Y ×Z → W be a function. We say f is a Σ-trilinear function if f(x, y,−),



60 Chapter 2. Categories for infinitary addition

f(x,−, z) and f(−, y, z) are Σ-homomorphisms for every choice of x ∈ X , y ∈ Y

and z ∈ Z.

Lemma 2.1.32. For every Σ∗ category and objects X, Y, Z,W ∈ Σ∗, let f : (X ×
Y ) × Z → W be an arbitrary Σ-trilinear function. Then, there is a unique Σ-

homomorphism (X ⊗ Y )⊗ Z → W making the diagram

(X × Y )× Z W

(X ⊗ Y )⊗ Z

f

p◦(p×id)

commute in Set.

Proof. For every Σ∗ category and objects Z,W ∈ Σ∗, define a function ev : [Z,W ]×
Z → W that maps each pair (h, z) to h(z). Let h ∈ [Z,W ] be an arbitrary Σ-

homomorphism and z = {zi}I ∈ Z an arbitrary summable family, then:

ev(h,Σz) = h(Σz) ' Σhz = Σ{ev(h, zi)}I .

Similarly, let h = {hi}I ∈ [Z,W ]∗ be an arbitrary summable family and fix an arbi-

trary z ∈ Z, then:

ev(Σ→h, z) = ev(sh, z) = sh(z) = Σ{hi(z)}I = Σ{ev(hi, z)}I .

Therefore, ev is a Σ-bilinear function. Let f : (X × Y ) × Z → W be a Σ-trilinear

function. Since Set is Cartesian closed, there is a unique function Λf : X × Y →
[Z,W ] making the diagram

[Z,W ]× Z

(X × Y )× Z W
f

Λf×id ev (2.12)

commute in Set. The function Λf maps each pair (x, y) ∈ X × Y to the function

f(x, y,−), which is a Σ-homomorphism since f is Σ-trilinear; we now show that Λf

is Σ-bilinear. Fix x ∈ X and let y = {yi}I ∈ Y ∗ be an arbitrary summable family;

then, for every z ∈ Z:

Σ{Λf(x, yi)(z)}I = Σ{f(x, yi, z)}I (definition of Λf )

' f(x,Σy, z) (f is Σ-trilinear)

= Λf(x,Σy)(z) (definition of Λf )
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with Λf(x,Σy) a Σ-homomorphism, as previously discussed. Therefore,

Σ→{Λf(x, yi)}I ' Λf(x,Σy).

The same can be said for summable families x ∈ X∗ if y ∈ Y is fixed instead, hence,

Λf is a Σ-bilinear function.

Since both Λf and ev are a Σ-bilinear functions, the diagram

[Z,W ]× Z

(X ⊗ Y )× Z (X × Y )× Z W

(X ⊗ Y )⊗ Z

f

Λf×id
ev

p×id

Λf×id

p

commutes in Set with each dashed arrow denoting uniqueness. The top right triangle is

diagram (2.12) which was already established to commute. Because Λf is a Σ-bilinear

function, Lemma 2.1.27 implies that the top left triangle commutes, where Λf is a

Σ-homomorphism. Considering that ev is a Σ-bilinear function, it is straightforward

to check that ev ◦ (Λf × id) is also a Σ-bilinear function; then Lemma 2.1.27 implies

that the outer edges of the diagram commute, with the corresponding unique function

(X⊗Y )⊗Z → W being a Σ-homomorphism. Consequently, the triangle at the bottom

of the diagram commutes. Notice that if we were to find another Σ-homomorphism

g : (X ⊗ Y )⊗Z → W making the bottom triangle commute, such g would also make

the outer edges of the diagram commute but, according to Lemma 2.1.27, there is only

one such Σ-homomorphism. Therefore, the Σ-homomorphism (X ⊗ Y ) ⊗ Z → W

from the claim has been shown to exist and be unique, completing the proof.

It is straightforward to check that the same argument allows us to factor any Σ-

trilinear function f : X × (Y × Z) → W through p ◦ (id × p) so that there is a

unique Σ-homomorphism characterising f , i.e. both (X ⊗ Y )⊗ Z and X ⊗ (Y ⊗ Z)

are ternary tensor products. Finally, it is time to define the monoidal structure on the

tensor product.

Definition 2.1.33. For every Σ∗ category and Σ-homomorphismX
f−→ Z and Y

g−→ W ,

let f⊗g, λ, ρ and α be defined as the unique Σ-homomorphisms making the following

diagrams commute:

X × Y Z ×W I ×X X X × I X

X ⊗ Y Z ⊗W I ⊗X X ⊗ I

f×g

p p

f⊗g

l

p
λ ρ

r

p
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(X × Y )× Z X × (Y × Z)

(X ⊗ Y )⊗ Z X ⊗ (Y ⊗ Z).

a

p◦(id×p)p◦(p×id)

α

Theorem 2.1.34. Every Σ∗ category is a monoidal category with monoidal product ⊗
and monoidal unit I .

Proof. On objects X, Y ∈ Σ∗, the functor − ⊗ − yields X ⊗ Y and, on morphisms

f and g, it yields the unique Σ-homomorphism f ⊗ g given in the definition above;

it is straightforward to check that this is indeed a functor, thanks to functoriality of

the Cartesian product and the universal property of X ⊗ Y . Unitors λ and ρ and

associators α are given in the definition above. The triangle equation follows from

Corollary 2.1.29 after lifting all occurrences of × to ⊗ using p, whereas the pentagon

equation follows from the pentagon equation of the Cartesian monoidal structure on

Σ∗ along with naturality of a. Naturality of λ, ρ and α follows from naturality of l, r

and a. The inverse of α is induced from the inverse of a and the universal property of

X⊗ (Y ⊗Z). The inverse of λ is somewhat trickier: let i : X → I×X be the function

that maps each x ∈ X to (1, x); it is immediate that l◦ i = id, and λ◦p◦ i = id follows

from the definition of λ. On the other hand:

p(1, l(n, x)) = p(1,Σ{
n times︷︸︸︷
x, . . .}) ' Σ{

n times︷ ︸︸ ︷
p(1, x), . . .} ' p(n, x)

so, p ◦ i ◦ l = p and, by definition of λ, we have p ◦ i ◦ λ ◦ p = p; this means that

the Σ-bilinear function p may be characterised by the Σ-homomorphism p̄ = p ◦ i ◦ λ
but, trivially, p̄ = id and due to uniqueness of p̄ we conclude that (p ◦ i) ◦ λ = id.

Therefore, the Σ-homomorphism p◦ i is the inverse of λ and we may define the inverse

of ρ by similar means. This completes the proof that (Σ∗,⊗, I) is a monoidal category

for every Σ∗ category.

Corollary 2.1.35. For every Σ∗ category, (Σ∗,⊗, I, [−,−]) is a closed symmetric

monoidal category.

Proof. The symmetry of the monoidal structure is derived from that of the Cartesian

monoidal structure, lifted using p. The closure follows from a similar argument to

Lemma 2.1.32, but replacing each appearance of × with ⊗ and lifting through p so

that all Σ-bilinear functions may be represented as Σ-homomorphisms and, hence, the

diagrams can be made to commute in Σ∗.
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2.2 Topological monoids

This section is meant to provide a brief introduction to the notions of topology that will

be relevant to the thesis, namely, Hausdorff monoids, nets, limit points, continuous

functions and their interaction with limits. For an in-depth introduction to topology

see the book by John L. Kelley [37].

2.2.1 Brief introduction to general topology (Preamble)

Topological monoids are monoids whose underlying set has some additional structure,

known as a topology. Sets with a topology are known as topological spaces; these are

formally defined below.

Definition 2.2.1. Let X be a set and let τ be a subset of the power set P(X). The pair

(X, τ) is said to be a topological space and τ its topology if the following conditions

are satisfied:

• the sets ∅ and X are in τ ;

• for any U, V ∈ τ , the intersection U ∩ V is in τ ;

• for any arbitrary (possibly infinite) indexed set {Ui ∈ τ}i∈I ,⋃
i∈I

Ui ∈ τ.

Let (X, τ) be a topological space; an element U ∈ τ is known as an open set and, if

x ∈ U , we say that U is an open neighbourhood of x. Elements in X are known as

points.

Although highly abstract, this definition has a down to earth interpretation which

is helpful to keep in mind. An open neighbourhood of a point x ∈ X is, as the name

suggests, a subset of points in X that are perceived as being ‘near’ x. Let U and V

be two open neighbourhoods of a point x; if U ⊆ V , we say that no point in U is

farther away from x than x is from the farthest point in V . Hence, a topology — being

a collection of open neighbourhoods — provides a loose hierarchy of vicinity between

points. A common way to define a topology on a set X is to provide a base for it: a

collection of subsets of X from which the topology is unambiguously generated.

Definition 2.2.2. Let X be set. A base for a topology on X is a subset B ⊆ P(X)

such that
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• for each element x ∈ X , there is at least one B ∈ B such that x ∈ B, and

• for all B1, B2 ∈ B and all x ∈ X ,

x ∈ B1 ∩B2 =⇒ ∃B′ ∈ B s.t. x ∈ B′ and B′ ⊆ B1 ∩B2.

Each base B generates a topology on X , defined as the set of all unions (including

infinite ones) of elements in B.

Let τ and τ ′ be two topologies on the same set X . We say that τ is a coarser

topology than τ ′ when τ ⊆ τ ′, and strictly coarser when the containment is strict. We

may show that a topology is coarser than another by studying their bases, as established

below.

Proposition 2.2.3. Let τ and τ ′ be topologies onX and let B and B′ be bases for them,

respectively. Then, τ ⊆ τ ′ iff for each x ∈ X and each B ∈ B:

x ∈ B =⇒ ∃B′ ∈ B′ s.t. B′ ⊆ B and x ∈ B′.

Proof. Assume τ ⊆ τ ′; then automatically B ∈ τ ′, but B′ generates τ ′, so it must be

that B can be obtained as the union of elements in B′ and, in particular, if x ∈ B then

there must be a B′ ∈ B′ such that B′ ⊆ B and x ∈ B′. To prove the other direction,

let U ∈ τ be an arbitrary open set and recall that, because B generates τ , there must be

a family {Bx ∈ B}x∈U such that each Bx satisfies x ∈ Bx and Bx ⊆ U ; consequently:

U =
⋃
x∈U

Bx.

Then, by assumption, for each Bx there is a B′x ∈ B′ such that B′x ⊆ Bx and x ∈ B′x.

Then, it follows that B′x ⊆ U and all elements x ∈ U are accounted for, so that:

U =
⋃
x∈U

B′x

which implies that U ∈ τ ′. Since this argument holds for every U ∈ τ we conclude

that τ ⊆ τ ′, completing the proof.

A Hausdorff space is a topological space where we may discern any two distinct

points by studying their neighbourhoods.

Definition 2.2.4. A Hausdorff space is a topological space (X, τ) satisfying the Haus-

dorff separation condition; namely, for any two points x, y ∈ X:

x 6= y =⇒ ∃U, V ∈ τ s.t. x ∈ U, y ∈ V and U ∩ V = ∅. (2.13)
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Example 2.2.5. The collection of all open intervals (a, b) of real numbers is a base

for the standard topology on R. This topological space is Hausdorff: let x, y ∈ R and

assume x < y; for ε = y−x
2

the open neighbourhoods (x− ε, x+ ε) and (y − ε, y + ε)

are disjoint and, hence, the Hausdorff separation condition is satisfied.

Example 2.2.6. Every metric space is a Hausdorff space. Let (X, d) be a metric space.

A ball centered at x ∈ X with radius ε ∈ R is a subset of X defined as follows:

Bx,ε = {y ∈ X | d(x, y) < ε}.

The collection of all balls for every choice of center and radius forms a base. This is

a Hausdorff space: if x 6= y choose ε = d(x,y)
2

, then the open neighbourhoods Bx,ε

and By,ε are disjoint. Moreover, every normed vector space is a metric space with its

distance function induced by the norm

d(u, v) = ||u− v||

and, hence, every normed vector space is a Hausdorff space.

As it is usual whenever a mathematical structure is defined, it is useful to provide

a notion of mapping between topological spaces that, in some sense, preserves the

topological structure. Such is the role of continuous functions, defined below.

Definition 2.2.7. Let (X, τX) and (Y, τY ) be two topological spaces. A function

f : X → Y is said to be continuous at point x ∈ X if for every open neighbourhood

V of f(x) there is an open neighbourhood U of x such that f(U) ⊆ V .4 Furthermore,

f : X → Y is said to be a continuous function if it is continuous at every point x ∈ X .

Example 2.2.8. Endow R with the standard topology, as in Example 2.2.5. The func-

tion f : R → R defined as f(x) = 2x is continuous: for any x and any open set

V = (f(x) − a, f(x) + b) with a, b > 0, the open set U = (x − a
2
, x + b

2
) satisfies

f(U) ⊆ V . In fact, the standard notion of a continuous function studied in analysis

coincides with the topological notion when R is endowed with the standard topology.

Example 2.2.9. Let τ and τ ′ be two topologies on the same set X . If τ ⊆ τ ′ then

the identity function (X, τ ′) → (X, τ) is continuous. If the containment is strict τ ⊂
τ ′ then the identity function on the opposite direction (X, τ) → (X, τ ′) cannot be

continuous.
4The shorthand f(U) refers to the set {f(u) | u ∈ U}.
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Although this is not the usual definition of a continuous function given in most in-

troductory texts on topology, it is equivalent to the standard one, as shown in Theorem

3.1 from [37]. The definition given in this text is a better fit for the arguments that will

appear later in this chapter. Thanks to the following proposition, we may prove that a

function is continuous by studying the open sets in the base of the codomain.

Proposition 2.2.10. Let (X, τX) and (Y, τY ) be two topological spaces and let B be

a base for τY . A function f : X → Y is continuous at point x ∈ X iff for all B ∈ B
containing f(x) there is an open neighbourhood U of x such that f(U) ⊆ B.

Proof. If f is continuous at x and B ∈ B is an open neighbourhood of f(x), the

existence of the required open neighbourhood U is immediate. To prove the other

direction, assume U exists for everyB as stated in the claim. Recall that every open set

in τY is the union of a collection of elements inB, hence, for every open neighbourhood

V of f(x) there is at least one element B ∈ B such that B ⊆ V and f(x) ∈ B. By

assumption, there is an open neighbourhood U of x such that f(U) ⊆ B so we may

conclude that f(U) ⊆ V , proving that f is continuous at x.

Proposition 2.2.11. There is a category Top whose objects are topological spaces

and whose morphisms are continuous functions. There is a full subcategory TopHaus

of Top, obtained by restricting objects to Hausdorff spaces.

Proof. It is straightforward to prove that if f : A → B and g : B → C are continu-

ous functions then g ◦ f is a continuous function as well. Identity functions between

the same topological spaces are continuous (see Example 2.2.9). Associativity and

identity axioms follow immediately from those of Set. These arguments are indepen-

dent of whether objects are Hausdorff spaces or general topological spaces, thus, both

Top and TopHaus are categories, and it is straightforward to check that the embedding

TopHaus ↪→ Top is a full functor.

Whenever a set can be injectively mapped into a topological space, we may endow

it with the subspace topology: the coarsest topology that makes the injection continu-

ous.

Definition 2.2.12. Let (Y, τ) be a topological space, let X be an arbitrary set and let

f : X → Y be an injective function. The subspace topology on X induced by f is

defined as follows:

τf = {f−1(V ) | V ∈ τ}
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where f−1(V ) = {x ∈ X | f(x) ∈ V }. It is trivial to check that f : (X, τf ) → (Y, τ)

is continuous.

It is straightforward to show that, if Y is Hausdorff, the subspace topology τf is

also Hausdorff.

2.2.2 Nets and limit points (Preamble)

In this thesis, topology is used to discuss convergence so that, eventually, we may say

that an infinite sum is defined if and only if it converges. The notion of convergence is

often linked to sequences but, in the study of general topology, it is more advantageous

to discuss it in terms of nets. Nets are a generalisation of sequences that are better

behaved in the context of topological spaces, in the sense that there are important

results (for instance, Proposition 2.2.19) which hold for nets but are not necessarily

true for sequences.

Definition 2.2.13. Let D be a nonempty set and let ≤ be a partial order on it. The pair

(D,≤) is said to be a directed set if for every pair of elements a, b ∈ D, there is an

upper bound, i.e. there is an element c ∈ D such that a ≤ c and b ≤ c. A net is a

function whose domain is a directed set. A net in X is a net whose codomain is X .

Example 2.2.14. Let {xi}i∈N be a family indexed by the natural numbers, i.e. a se-

quence. The order ≤ of natural numbers makes (N,≤) a directed set and, hence, the

function mapping each i ∈ N to xi is a net.

Example 2.2.15. Let (A,≤) and (B,4) be two directed sets. Define (A × B,v) to

be the partially ordered set where (a, b) @ (a′, b′) iff both a ≤ a′ and b 4 b′. It is

straightforward to check that (A × B,v) is a directed set, as its upper bounds can be

defined with respect to those from (A,≤) and (B,4).

Example 2.2.16. Let X be a set and let x ∈ X∗ be an arbitrary family. Let F(x) be

the collection of all finite subfamilies of x. Evidently, (F(x),⊆) is a partially ordered

set and, for any two x′,x′′ ∈ F(x), it is clear that x′ ∪ x′′ ∈ F(x) so their union acts

as their upper bound.

Let x ∈ R∗ be a family of real numbers. Let (F(x),⊆) be the directed set defined

in Example 2.2.16. There are multiple examples of nets in R with domain F(x), for

instance, σ(x′) =
∑

x′ and µ(x′) =
∏

x′. Importantly, every element x′ ∈ F(x) is

finite by definition, so these sums and products are guaranteed to be well-defined.

It is time to define limit points, which formalise the notion of convergence.
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Definition 2.2.17. Let (D,≤) be a directed set and let d ∈ D be an arbitrary element.

Let (D|d,≤) be the directed set where:

D|d = {d′ ∈ D | d ≤ d′}.

Let X be a topological space; a point x ∈ X is a limit point of a net α : D → X ,

written

α→ x

if and only if for each open neighbourhood U of x there is an element d ∈ D such that

α(D|d) ⊆ U .

If we are given a base for the topology, we are only required to check the open sets

in the base to prove a net has a limit point.

Proposition 2.2.18. Let α : D → X be a net and let B be a base for a topology in X .

A point x ∈ X is a limit point of α iff for each B ∈ B such that x ∈ B there is an

element d ∈ D satisfying that for all α(D|d) ⊆ B.

Proof. If x is a limit point of α, the existence of the required d ∈ D is guaranteed

by definition for every open neighbourhood of x, including those in B. To prove the

other direction, recall that any open set in the topology is the union of a collection of

elements in B. Therefore, for any open neighbourhood U of x, there must be at least

one element B ∈ B such that x ∈ B and B ⊆ U . Take this B and assume we can

obtain a d ∈ D so that α(D|d) ⊆ B; then, trivially α(D|d) ⊆ U . We may do this for

every open neighbourhood U of x so, indeed, α→ x as claimed.

The following proposition establishes that continuous functions are precisely the

functions that preserve convergence.

Proposition 2.2.19. Let X and Y be topological spaces and let f : X → Y be a

function. The function f is continuous iff for all x ∈ X and every net α : D → X:

α→ x =⇒ f ◦ α→ f(x).

Proof. Assume f is continuous. Let V be an arbitrary open neighbourhood of f(x);

because f is continuous, there is an open neighbourhood U of x such that f(U) ⊆ V .

Let α→ x and take d ∈ D so that α(D|d) ⊆ U ; it follows that f(α(D|d)) ⊆ V and so

f ◦ α→ f(x).

To prove the other direction, we show that if f is not continuous then there is a

net α such that α → x but f(x) is not a limit point of f ◦ α. To define such a net,
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let Dx be the set of open neighbourhoods of x; then, (Dx,⊇) is a directed set whose

upper bounds are given by intersection. By assumption, f is not continuous at some

x ∈ X , hence, for some open neighbourhood V of f(x) all open neighbourhoods

U ∈ Dx contain a point xU ∈ U such that f(xU) 6∈ V . Define a net α : Dx → X

assigning to each U ∈ Dx such a point xU . This net satisfies α → x since, for any

open neighbourhood U of x, it holds that α(Dx|U) ⊆ U since every U ′ ∈ Dx|U is,

by definition of Dx|U , contained in U . However, for all U ∈ Dx the definition of

xU makes it so that (f ◦ α)(U) = f(xU) is not in V ; thus, the open neighbourhood

V prevents f(x) from being a limit point of f ◦ α. Therefore, it is not satisfied that

α→ x =⇒ f ◦ α→ f(x) and the proof by contrapositive is complete.

Finally, it is useful to define the notion of subnet.

Definition 2.2.20. Let (A,≤) and (B,4) be directed sets. A net β : B → X is a subnet

of α : A → X if there is a function m : B → A such that the following conditions are

satisfied:

• the net β factors through α, i.e. β = α ◦m;

• m is isotone, i.e. for all b, b′ ∈ B, if b 4 b′ then m(b) ≤ m(b′);

• m(B) is cofinal in A, i.e. for every a ∈ A there is a b ∈ B satisfying a ≤ m(b).

The first two conditions are straightforward: we are embedding the partial order

of B into that of A while making sure that α and β match. The third condition pre-

vents B from being a truncated version of A that omits all of A’s larger elements; this

precaution is necessary so that subnets enjoy the following property.5

Proposition 2.2.21. Let α : A→ X and β : B → X be nets in a topological space X .

If β is a subnet of α then:

α→ x =⇒ β → x.

Proof. Let m : B → A be a function witnessing that β is a subnet of α. Assume

α → x, i.e. for every open neighbourhood U of x, there is an element a ∈ A such

that α(A|a) ⊆ U . Choose some b ∈ B that satisfies a ≤ m(b); such an element is

guaranteed to exists thanks to m(B) being cofinal in A. Due to m being isotone we

5In Section 2.3 of [37] Kelley does not require the mediating function m to be isotone. However,
this is a common requirement in many reference texts on topology (for instance, see Exercise 8 of the
supplementary material from Chapter 3 of Munkres’s book [48]) since it simplifies many results on limit
points of subnets.
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have that m(B|b) ⊆ A|a and, hence, α(m(B|b)) ⊆ U . But β = α ◦m so β(B|b) ⊆ U ,

implying β → x as claimed.

The proposition below characterises the limits in the subspace topology.

Proposition 2.2.22. Let (Y, τ) be a topological space, let X be an arbitrary set and

f : X → Y an injective function. Assign to X the subspace topology induced by f

(see Definition 2.2.12); then, for any net α : D → X:

α→ x ⇐⇒ f ◦ α→ f(x).

Proof. One direction is immediate from f being continuous by definition of the sub-

space topology. The other direction follows from the fact that, for every open neigh-

bourhood U ∈ τf of x, there is an open set V ∈ τ such that U = f−1(V ) by definition

of the subspace topology. Then, if f ◦ α→ f(x), there is an element d ∈ D such that

f(α(D|d)) ⊆ V ; thus, α(D|d) ⊆ f−1(V ), implying α→ x.

In general, limit points need not be unique, but they are if the net is defined in a

Hausdorff space, as established below.

Proposition 2.2.23. Let α be a net in a Hausdorff space. Then, α has at most one limit

point.

Proof. Let (D,≤) be a directed set and X a Hausdorff space. Assume both x, y ∈ X
are limit points of α : D → X . Let Ux and Uy be open neighbourhoods of x and y

respectively. Take dx ∈ D such that α(D|dx) ⊆ Ux; do the same for Uy, obtaining

dy ∈ D. Because D is a directed set, we may take an upper bound of dx and dy, call

it d. It follows that α(d) is both in Ux and Uy and, hence, Ux ∩ Uy 6= ∅. This holds

for any two open neighbourhoods of x and y so, according to the Hausdorff condition,

they must be equal.

When working with a Hausdorff space X , the notation

lim
d∈D

α(d) ' x

will be used to indicate that the net α : D → X has x as its (unique) limit point, and

we may use limα to refer to such a point.



2.2. Topological monoids 71

2.2.3 Hausdorff commutative monoids

A Hausdorff monoid is a monoid whose underlying set comes equipped with a Haus-

dorff topology and whose monoid operation is continuous. Let (X,+) be a monoid;

since the monoid operation has the type +: X × X → X , to discuss continuity we

must first assign a topology to X ×X .

Definition 2.2.24. Let {(Xi, τi)}I be a collection of topological spaces. Let ×IXi be

the Cartesian product of the underlying sets and let B× be the collection of sets of the

form ×IUi such that Ui ∈ τi for each i ∈ I and the subset {i ∈ I | Ui 6= Xi} is finite.

The product topology τ× is the one generated from the base B×.

This definition makes the topological space (×IXi, τ×) a categorical product in

Top and in TopHaus. In essence, this means that τ× is the coarsest topology that can

be assigned to the Cartesian product while satisfying that its projections are continuous

functions. Since ×IXi is a categorical product in Set, every net α : D → ×IXi is

uniquely determined by a collection of nets {αi : D → Xi}I obtained by composing

α with the appropriate projection. Let (αi)I be a shorthand for a net α in ×IXi and,

similarly, let (xi)I ∈ ×IXi denote a tuple of dimension |I| where xi ∈ Xi for each

i ∈ I .

Proposition 2.2.25. Let {(Xi, τi)}I be an indexed set of topological spaces and let

(αi)I : D → ×IXi be an arbitrary net. Then,

(αi)I → (xi)I ⇐⇒ ∀i ∈ I, αi → xi.

Proof. One direction follows from Proposition 2.2.19 since projections πi : ×I Xi →
Xi are continuous. For the other direction assume that αi → xi for all i ∈ I; this

implies that for every open neighbourhood U ∈ τi of xi there is an element di ∈ D

such that αi(D|di) ⊆ U . Let ×IVi be an open neighbourhood of (xi)I in the base B×
(see Definition 2.2.24) and define the following subset of I:

J = {i ∈ I | Vi 6= Xi}

which is guaranteed to be finite due to the definition of B×. For each j ∈ J obtain

an element dj ∈ D such that αj(D|dj ) ⊆ Vj and let d̂ be an upper bound for the

collection {dj}J — such an upper bound exists because J is finite. Clearly, it holds

that αi(D|d̂) ⊆ Vi for all i ∈ I , either because i ∈ J or because Vi = Xi; hence,

(αi(D|d̂))I ⊆ ×IVi. This applies to every open neighbourhood of (xi)I in the base B×
so that Proposition 2.2.18 implies that (αi)I → (xi)I , concluding the proof.
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In particular, this allows us to characterise continuous function X × Y → Z as

limit-preserving functions on both coordinates.

Proposition 2.2.26. Let X , Y and Z be topological spaces and let f : X × Y → Z be

a function; then, f is continuous iff for every net (α, β) : D → X × Y the following is

satisfied:

α→ x and β → y =⇒ f(α, β)→ f(x, y). (2.14)

Proof. According to Proposition 2.2.19, f is continuous if and only if for every net

(α, β) : D → X × Y the following is satisfied:

(α, β)→ (x, y) =⇒ f ◦ (α, β)→ f(x, y). (2.15)

Assume α → x and β → y; then, Proposition 2.2.25 implies that (α, β) → (x, y)

so, if f is continuous, f ◦ (α, β) → f(x, y) and the implication (2.14) is satisfied.

Conversely, assume (α, β) → (x, y) and recall that Proposition 2.2.25 works in both

directions, so it implies α → x and β → y. Then, if (2.14) is satisfied, it imposes

f ◦ (α, β) → f(x, y); therefore, (2.15) holds for every net (α, β) in X × Y , implying

that f is continuous.

Finally, we have all the ingredients to define topological monoids and, in particular,

Hausdorff commutative monoids.

Definition 2.2.27. Let (X, τ) be a topological space and let (X,+) be a monoid. We

say (X, τ,+) is a topological monoid if +: X ×X → X is continuous. A Hausdorff

commutative monoid is a topological monoid where (X, τ) is Hausdorff and (X,+)

is commutative. A Hausdorff abelian group is a Hausdorff commutative monoid

(X, τ,+) where (X,+) is an abelian group and the inversion map x 7→ −x is con-

tinuous.

Example 2.2.28. The set R of real numbers with the standard topology (see Exam-

ple 2.2.5) and the standard addition forms a Hausdorff commutative monoid — in fact,

a Hausdorff abelian group.

Proposition 2.2.29. Every normed vector space is a Hausdorff abelian group.

Proof. As discussed in Example 2.2.6, every normed vector space V is a Hausdorff

space and, by virtue of being a vector space, it is an abelian group with respect to

addition. For every pair of vectors v, u ∈ V and every open neighbourhood U of

v + u there is some ε > 0 such that Bv+u,ε ⊆ U where Bv+u,ε is the ball of radius ε
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and center v + u. It follows from the triangle inequality of the norm that every pair

of vectors v′ ∈ B
v,
ε
2

and u′ ∈ B
u,
ε
2

satisfies v′ + u′ ∈ Bv+u,ε and, consequently,

+(B
v,
ε
2
, B

u,
ε
2
) ⊆ U , implying that + is continuous. The fact that the inversion map is

continuous can be shown by similar means, completing the proof.

Definition 2.2.30. Let HausCMon be the category whose objects are Hausdorff

commutative monoids and whose morphisms are continuous monoid homomorphisms.

Let HausAb be the full subcategory of HausCMon whose objects are restricted to

Hausdorff abelian groups.

It is well known that CMon, Ab and TopHaus are complete categories and the

forgetful functor from each of these to Set preserves limits. This can be used to show

that HausCMon and HausAb are complete categories, as established below.

Proposition 2.2.31. Both HausCMon and HausAb are complete categories.

Proof. First, we show that HausCMon has equalizers. For every pair of Haus-

dorff commutative monoids (X, τX ,+X) and (Y, τY ,+Y ) and every pair of morphisms

f, g ∈ HausCMon(X, Y ), define the subset E = {x ∈ X | f(x) = g(x)} with in-

clusion e : E ↪→ X and let τe be the subspace topology:

τe = {e−1(U) | U ∈ τX} = {U ∩ E | U ∈ τX}.

It is generally known — and a simple exercise to show — that (E, τe) along with the

continuous function e is an equalizer of f and g in TopHaus. Let +E : E × E → E be

the restriction of +X to inputs in E; again, it is general knowledge that (E,+E) along

with the monoid homorphism e is an equalizer of f and g in CMon. Consequently,

e : E → X is a continuous monoid homomorphism and (E, τe,+E) is both a Haus-

dorff space and a commutative monoid; to show that thisE is a Hausdorff commutative

monoid we must prove that +E is continuous. Recall that +X is continuous by defini-

tion, so for any x, x′ ∈ E and any open neighbourhood V ∈ τX of x+ x′, we may find

U,W ∈ τX such that +X(U,W ) ⊆ V ; notice that +E(U ∩ E,W ∩ E) ⊆ V ∩ E and

every open set in τe is of the form −∩E, so +E is continuous and E ∈ HausCMon.

Since E is the equalizer of f and g in Set, it follows that E is a cone in HausCMon.

Moreover, for any other cone A ∈ HausCMon, the morphism h : A→ X will factor

through the unique function m : A → E due to the fact that E is an equalizer in Set.

It only remains to show that such a unique function m is a morphism in HausCMon;

this is immediate sincem is the mediating morphism both in TopHaus and CMon, im-

plying that m is a continuous monoid homomorphism. In conclusion, we have shown
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that that HausCMon has equalizers. To prove that HausAb has equalizers as well

we simply need to show that the inversion map in (E, τe,+E) is continuous; this fol-

lows immediately from the corresponding property in the Hausdorff abelian group X .

Next, we show that HausCMon has small products. Let {(Xi, τi,+i)}I be a

small collection of objects in HausCMon. Define +× by applying the corresponding

+i to each coordinate; (×IXi,+i) is a small product in CMon. Define the product

topology τ× as in Definition 2.2.24; it is well-known that (×IXi, τ×) is a small prod-

uct in TopHaus. It follows that projections are continuous monoid homomorphisms

and we must show that +× is continuous. Every open neighbourhood in the base B×
for the product topology is of the form ×IVi where Vi ∈ τi for each i ∈ I; con-

sequently, we may find Ui, U
′
i ∈ τi so that +i(Ui, U

′
i) ⊆ Vi for each i ∈ I due to

each +i being continuous. Then, it is immediate that the condition from Proposi-

tion 2.2.10 is satisfied, implying that +× is continuous. Thus, it has been shown that

(×IXi, τ×,+×) is a Hausdorff commutative monoid and, evidently, a cone of the dis-

crete diagram in HausCMon; it remains to show that it is a limit. For any other cone

A ∈ HausCMon, each morphism hi : A → Xi will factor through the unique func-

tion m : A → ×IXi due to the fact that ×IXi is a categorical product in Set. It only

remains to show that such a unique function m is a morphism in HausCMon; this

is immediate since m is the mediating morphism both in TopHaus and CMon, im-

plying that m is a continuous monoid homomorphism. In conclusion, we have shown

HausCMon has small products. To prove that HausAb has small products as well

we simply need to show that the inversion map in (×IXi, τ×,+×) is continuous; this

follows immediately from the corresponding property in each Hausdorff abelian group

Xi.

A category with equalizers and small products is complete, so both HausCMon

and HausAb are complete categories, as claimed.

As promised in Section 2.1, every Hausdorff commutative monoid (X, τ,+) can

be given a partial function Σ: X∗ ⇀ X such that (X,Σ) is a finitely total Σ-monoid

whose summable families are precisely those that converge according to the topology.

Definition 2.2.32. Let (X, τ,+) be a Hausdorff commutative monoid. For any fam-

ily x ∈ X∗, let (F(x),⊆) be the directed set of finite subfamilies of x (see Exam-

ple 2.2.16) and let σ : F(x)→ X be the net that maps each finite subfamily x′ ∈ F(x)

to the sum of its elements, obtained after a finite number of applications of +. The ex-
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tended monoid operation Σ: X∗ ⇀ X is defined as follows:

Σx =

x if limσ ' x

undefined otherwise.

We require (X,+) to be a commutative monoid so that associativity and commuta-

tivity guarantee that the net σ is well-defined: otherwise the result would depend on the

arbitrary order in which the elements from the finite family are combined. The space

is required to be Hausdorff so that when σ converges the result is unique.6 The fol-

lowing lemmas prove the axioms of finitely total Σ-monoids for the extended monoid

operation.

Lemma 2.2.33. Let (X, τ,+) be a Hausdorff commutative monoid and let Σ be its

extended monoid operation. If x ∈ X∗ is a finite family, then Σx is defined and it

equals the sum of its elements, obtained after a finite number of applications of +.

Proof. Let σ : F(x)→ X be the net that maps each finite subfamily x′ ∈ F(x) to the

sum of its elements, obtained after a finite number of applications of +. When x is

finite it is the largest element in F(x). Thus, F(x)|x = {x} and σ(x) trivially satisfies

being the limit point of σ, regardless of the topology. By definition, Σx ' limσ so we

conclude that Σx ' σ(x), as claimed.

Lemma 2.2.34. Let (X, τ,+) be a Hausdorff commutative monoid and let Σ be its

extended monoid operation. Let x ∈ X∗ be an arbitrary family and let x∅ be its

subfamily of elements other than 0; if x is summable then x∅ is summable as well.

Proof. Let σ : F(x)→ X be the net of finite partial sums of x and let σ∅ : F(x∅)→ X

be the corresponding net for the family x∅. If Σx ' x it follows from the definition

of Σ that limσ ' x, i.e. for every open neighbourhood U of x there is a finite sub-

family x′ ∈ F(x) such that σ(F(x)|x′) ⊆ U . Then, it is straightforward to check that

σ∅(F(x∅)|x′∅) ⊆ U as well since for all x′ ∈ F(x) we have that σ(x′) = σ∅(x
′
∅) due

to 0 being the neutral element of +.

Lemma 2.2.35. Let (X, τ,+) be a Hausdorff commutative monoid and let Σ be its

extended monoid operation. Let {xj}J be a collection of summable families where

|J | <∞ and let x = ]Jxj; then:

Σ{Σxj}J ' x =⇒ Σx ' x. (2.16)
6A topological space is Hausdorff iff each net in the space converges to at most one point; see

Chapter 2, Theorem 3 from Kelley’s book [37].
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Proof. Let σ : F(x) → X be the net that maps each finite family x′ ∈ F(x) to the

sum of its elements. Similarly, let σj : F(xj) → X be the corresponding net for each

j ∈ J ; the claim assumes that each xj is summable, hence, the limit point limσj exists

for each j ∈ J . Assume that J = {0, 1}; the general case will follow straightforwardly.

In this case, the implication (2.16) simplifies to:

limσ0 + limσ1 ' x =⇒ limσ ' x.

Assume that, indeed, limσ0 + limσ1 ' x; unfortunately, we cannot apply con-

tinuity of + since σ0 and σ1 are defined with respect to to different directed sets.

Define a function m : F(x) → F(x0) given by m(x′) = x′ ∩ x0; clearly, m is iso-

tone and, for each y ∈ F(x0) it is trivially satisfied that y ⊆ m(y). Thus, the net

σ̂0 : F(x)→ X given by σ̂0 = σ0 ◦m0 is a subnet of σ0 and Proposition 2.2.21 implies

that lim σ̂0 ' limσ0. We may define σ̂1 in the same manner and it is immediate that:

lim σ̂0 + lim σ̂1 ' x.

Since both σ̂0 and σ̂1 are now defined on the same directed setF(x), Proposition 2.2.26

implies that lim (σ̂0 + σ̂1) ' x. It is straightforward to check that, due to associativity

and commutativity of +, the nets σ and σ̂0 + σ̂1 are, in fact, the same function. Con-

sequently, it has been shown that limσ ' x; this establishes the claim in the case that

|J | = 2.

If J is empty or it is a singleton set, the claim follows immediately. If |J | > 2 we

may repeat the argument above as many times as necessary to aggregate all subfami-

lies; this process will eventually be completed since the claim assumes J is finite.

Lemma 2.2.36. Let (X, τ,+) be a Hausdorff commutative monoid and let Σ be its

extended monoid operation. Let {xj}J be a collection of finite families and let x =

]Jxj; then:

Σx ' x =⇒ Σ{Σxj}J ' x. (2.17)

Proof. Since each family xj is finite, Lemma 2.2.33 establishes that Σxj ' xj for

some xj ∈ X . Let σ̂ : F(J) → X be the net that maps each finite subset J ′ ∈ F(J)

to the sum of the finite family {xj}J ′ . Notice that, by definition, Σ{Σxj}J ' lim σ̂ so

our goal is to show that Σx ' x implies lim σ̂ ' x.

Assume that Σx ' x and let σ : F(x) → X be the net that maps each finite

subfamily x′ ∈ F(x) to the sum of its elements; then, limσ ' x. Define a function

m : F(J)→ F(x) as follows:

m(J ′) = ]J ′xj.
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The result of m(J ′) is a finite family since J ′ is finite and the claim assumes that

each xj is a finite family. It is evident that m is isotone and, for each finite subfamily

x′ ∈ F(x) we may define a finite subset Ĵ ∈ F(J) as follows:

Ĵ = {j ∈ J | x′ ∩ xj 6= ∅}

so that x′ ⊆ m(Ĵ) is trivially satisfied. Moreover, notice that σ̂ = σ ◦ m; since all

families involved are finite the identity follows from associativity and commutativity

of +. Consequently, σ̂ is a subnet of σ and Proposition 2.2.21 implies that lim σ̂ ' x.

As discussed above, this means that Σ{Σxj}J ' x, completing the proof.

Proposition 2.2.37. Let (X, τ,+) be a Hausdorff commutative monoid and let Σ be

its extended monoid operation; then, (X,Σ) is a finitely total Σ-monoid.

Proof. Every finite family is summable according to Lemma 2.2.33. In particular,

the empty family is summable and we have that Σ{x,Σ∅} ' x + Σ∅. Moreover,

according to Proposition 2.1.2, we have Σ{x,Σ∅} ' x for all x ∈ X . If we combine

these two results and let x = 0 we obtain 0 + Σ∅ = 0 which, due to (X,+, 0) being

a monoid, results in Σ∅ = 0. Thus, the neutral element of the monoid is the neutral

element of the Σ-monoid and Lemma 2.2.34 completes the proof of the neutral element

axiom. The singleton axiom follows trivially from Lemma 2.2.33, flattening is proven

in Lemma 2.2.35 and bracketing is proven in Lemma 2.2.36.

Remark 2.2.38. Since Hausdorff abelian groups are a subclass of Hausdorff commu-

tative monoids that have additive inverses, it is immediate from Proposition 2.1.12

that Hausdorff commutative monoids need not satisfy strong flattening. The question

of whether or not Hausdorff commutative monoids satisfy strong bracketing is more

subtle. The main obstacle is that, at some point, we must prove that for some net

σ : F(J)×F(x)→ X the following implication holds:

lim
F(J)×F(x)

σ ' x =⇒ lim
J ′∈F(J)

(
lim
F(x)

σ(J ′,−)

)
' x.

In essence, we need to obtain the limit of a net σ̂ : F(J) → X that maps each fi-

nite subset J ′ ∈ F(J) to the limit point limσ(J ′,−). Unfortunately, since in the

case of strong bracketing the families xj are allowed to be infinite, the argument via

the construction of a subnet from the proof of Lemma 2.2.36 cannot be used — the

function m(J ′) = ]J ′xj need not yield families in F(x). On the other hand, even

though limF(J)×F(x) σ ' x guarantees that for every open neighbourhood U of x we
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may find (J ′,x′) such that σ(F(J)×F(x)|(J ′,x′)) ⊆ U , this does not imply that

limσ(J ′,−) ∈ U since U need not be closed. In fact, proving that an iterated limit

limA limB α exists and coincides with the double limit limA×B α is generally a subtle

matter. Theorem 4 from Chapter 2 in [37] shows that if limA limB α exists we may

define a directed set A×BA such that

lim
(a,f)∈A×BA

α(a, f(a)) ' lim
a∈A

lim
b∈B

α(a, b)

but, in order to get from the left hand side to limA×B α, it appears we would need that

for each open neighbourhood U of limA limB α the (possibly infinite) set {fU(a′) |
a′ ≥ aU} had an upper bound — where (aU , fU) ∈ A × BA is the point such that all

(a′, f ′) ≥ (aU , fU) satisfy α(a′, f ′(a′)) ∈ U .

Continuous monoid homomorphisms between Hausdorff commutative monoids

become Σ-homomorphisms between the Σ-monoids induced by their extended monoid

operation.

Lemma 2.2.39. Let X and Y be Hausdorff commutative monoids and let f : X → Y

be a continuous monoid homomorphism. Then, for every x ∈ X∗ and x ∈ X:

Σx ' x =⇒ Σfx ' f(x).

Proof. Let σ : F(x) → X be the net of finite partial sums of x and assume that

Σx ' x. Then limσ ' x and, due to f being continuous, Proposition 2.2.19 im-

plies that lim (f ◦ σ) ' f(x). Considering that f is a monoid homomorphism, it is

straightforward to check that f ◦ σ is equivalent to the net assigned to fx. It follows

that Σfx ' f(x), proving the claim.

Definition 2.2.40. There is a faithful functor G : HausCMon → Σft that equips

each Hausdorff commutative monoid with the extended monoid operation from Defi-

nition 2.2.32 and acts as the identity on morphisms.

Clearly, G is faithful: f and G(f) are the same function, so it is obvious that f 6= g

implies G(f) 6= G(g). However, G is not full as illustrated by the following example.

Example 2.2.41. Let A ∈ HausCMon with underlying set {0} ∪ [1,∞), discrete

topology and the standard addition over the real numbers. Let B ∈ HausCMon

with the same underlying set {0} ∪ [1,∞) along with standard addition, but whose

topology is given by the base of open sets comprised of the singleton {0} along with

every interval [x, x+ ε) for each x ∈ [1,∞] and each ε > 0.
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Notice that Σ on both G(A) and G(B) is only defined on families with a finite

number of nonzero elements; the reason being that all nonzero elements are ≥ 1 so

infinite sums of these always diverge. Since both G(A) and G(B) have the same

summable families, it is immediate that G(A) = G(B). Then, if we consider the

identity function on the underlying sets id : B → A we get that:

• id : G(B) → G(A) is a valid morphism in Σft (indeed, it is the identity mor-

phism);

• since G acts as the identity on morphisms, if the morphism id : G(B) → G(A)

were to be in the image of the map HausCMon(B,A) → Σft(G(B), G(A)),

we would need id : B → A to be continuous;

• however, id : B → A is not continuous since the topology ofB is strictly coarser

than that of A.

Therefore, G : HausCMon→ Σft is not full.

Similarly, there is a faithful functor HausAb → Σg since the requirement that

the inversion map is continuous implies that it is a Σ-homomorphism; we expect this

functor not to be full either. The following subsection establishes that both this functor

and HausCMon → Σft have a left adjoint. But first, the following remark briefly

discusses whether HausAb-enriched categories are well-defined and what their rele-

vance is with respect to categories in quantum quantum computer science.

Remark 2.2.42. Every Hilbert space is a Hausdorff abelian group and (FdHilb,⊗, I)

is a closed symmetric monoidal category, so its hom-sets are Hilbert spaces and, con-

sequently, FdHilb could potentially be perceived as a HausAb-enriched category.

This is possible because the standard tensor product of vector spaces — when applied

to finite-dimensional Hilbert spaces — is already complete. However, the matter be-

comes more subtle when we consider the hom-sets of Hilb, since these are no longer

Hilbert spaces, even though they are Hausdorff abelian groups using the strong opera-

tor topology from Definition 3.2.22. However, tensor products in HausAb are a very

subtle matter [22] and it is well-known [24] that there is no tensor product⊗ for which

(HausAb,⊗, I) is a monoidal category, implying that HausAb-enriched categories

are not well-defined.

Furthermore, in the case of FdContraction, hom-sets are not even (total) monoids,

so HausCMon-enriched categories (even if they were well-defined) would be too
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restrictive for our purposes. Fortunately, the fact that every (Σ∗,⊗, I) category is

monoidal (see Section 2.1.5) along with the functor HausAb → Σg can be used

to realise Hilb as a Σg-enriched category. Then, due to Lemma 2.1.8, the hom-sets

of Contraction — which are restrictions of the hom-sets of Hilb — are weak Σ-

monoids, realising Contraction as a Σw-enriched category. Consequently, Chap-

ter 3 will deal with Σ∗-enriched categories whose Σ function on hom-sets is defined in

terms of the extended monoid operation of a Hausdorff abelian group.

2.2.4 The left adjoint to HausCMon→ Σft

The functor G : HausCMon → Σft described in the previous section has a left ad-

joint. An explicit construction has not been achieved; instead, the proof uses the gen-

eral adjoint functor theorem.

Lemma 2.2.43. The functor G : HausCMon→ Σft preserves limits.

Proof. First, we show that G preserves equalizers. Let X and Y be two Hausdorff

commutative monoids and let f, g ∈ HausCMon(X, Y ); the equalizer of f and g

in HausCMon is defined in Proposition 2.2.31. Its underlying set E = {x ∈ X |
f(x) = g(x)} is the same as that of the equalizer of G(f) and G(g) in Σft (see Propo-

sition 2.1.10). Moreover, the extended monoid operation induced by the topology

assigned to E ∈ HausCMon coincides with the Σ function from the equalizer in

Σft. To show this, recall that E is endowed with the subspace topology induced by

e : E ↪→ X so, according to Proposition 2.2.22, every family x ∈ E∗ whose net of

finite partial sums is denoted σ : F(x)→ E satisfies:

limσ ' x ⇐⇒ lim e ◦ σ ' e(x)

Since e is a monoid homomorphism it follows from the definition of the extended

monoid operation that the partial function Σ′ : E∗ ⇀ E in G(E) satisfies

Σ′x ' x ⇐⇒ Σex = e(x)

where Σ is the extended monoid operation assigned to G(X). The latter two-way

implication uniquely characterises the Σ function (2.4) of the equalizer in Σft. Thus,

both constructions yield the same Σ-monoid, implying G preserves equalizers.

Similarly, the categorical product in HausCMon of a small collection of objects

{Xi ∈ HausCMon}I and the categorical product of {G(Xi)}I in Σft coincide in



2.2. Topological monoids 81

their underlying sets and projections. To prove that G preserves small products, it

suffices to show that the extended monoid operation assigned by G to the product in

HausCMon coincides with the Σ function of the product in Σft. Let {xi ∈ X∗i } be

a collection of families and let σi : F(xi) → Xi be their corresponding net of finite

partial sums; Proposition 2.2.25 establishes that:

lim (σi)I ' (xi)I ⇐⇒ ∀i ∈ I, limσi ' xi.

Since addition in×IXi is defined coordinate-wise, it follows from the definition of the

extended monoid operation that the partial function Σ′ in G(×IXi) satisfies

Σ′(xi)I ' (xi)I ⇐⇒ ∀i ∈ I, Σixi ' xi

where Σi is the extended monoid operation assigned to each G(Xi). The latter two-

way implication uniquely characterises the Σ function (2.5) of the categorical product

in Σft. Thus, both constructions yield the same Σ-monoid, implyingG preserves small

products.

A functor that preserves equalizers and small products and whose domain is a com-

plete category automatically preserves all limits. Therefore, G preserves limits.

Proposition 2.2.44. There is a left adjoint to the functor G : HausCMon→ Σft.

Proof. It is immediate that HausCMon is locally small since there is a faithful for-

getful functor HausCMon → Set. According to Proposition 2.2.31, the category

HausCMon is complete and Lemma 2.2.43 establishes that the functor G preserves

limits. It remains to show that, for any X ∈ Σft, the comma category (X ⇒ G)

has a weakly initial set; then, the existence of a left adjoint will follow from the gen-

eral adjoint functor theorem (see Theorem 1.4.36). Let S be the collection of all Σ-

homomorphisms X
q−→ G(A) where A may be any Hausdorff commutative monoid on

a quotient of X . Notice that S is small since all quantifiers in its definition are with

respect to a fixed set X .

Let Y be an arbitrary Hausdorff commutative monoid and let f : X → G(Y ) be

a Σ-homomorphism. Recall that every function can be factored through its image as

follows:

f = X
q−→ X/∼ f̄−→ im(f)

u−→ G(Y )

where x ∼ x′ iff f(x) = f(x′); moreover, q is surjective, f̄ is bijective and u is injec-

tive. Recall that G(Y ) has the same underlying set as Y , so im(f) ⊆ Y and, thanks

to u and f̄ being injective, we may define a subspace topology τΣ on X/∼ induced by
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uf̄ . The composite uf̄ : X/∼ → Y is continuous and (X/∼, τΣ) is Hausdorff. Notice

that ∼ satisfies the following for every a, a′, b, b′ ∈ X:

a ∼ a′ and b ∼ b′ =⇒ Σ{a, b} ∼ Σ{a′, b′}.

due to f being a Σ-homomorphism and X being finitely total:

f(Σ{a, b}) = Σ{f(a), f(b)} = Σ{f(a′), f(b′)} = f(Σ{a′, b′}).

Therefore, the operation +Σ : X/∼×X/∼ → X/∼ defined as follows:

[a] +Σ [b] = [Σ{a, b}]

is well-defined and it is trivial to show that it forms a commutative monoid, with the

equivalence class [0] being its neutral element. Moreover, the composite uf̄ : X/∼ →
Y is a monoid homomorphism:

uf̄([a] +Σ [b]) = f(Σ{a, b}) = Σ{f(a), f(b)} = f(a) + f(b) = uf̄ [a] + uf̄ [b]

where + is the monoid operation from Y and Σ{f(a), f(b)} = f(a) + f(b) by defi-

nition of the extended monoid operation from Y . To prove that +Σ is continuous first

notice that for every two nets α, β : D → X the following is satisfied:

lim qα ' [a] and lim qβ ' [b]

=⇒ lim fα ' f(a) and lim fβ ' f(b) (uf̄ continuous, f = uf̄q)

=⇒ lim (fα + fβ) ' f(a) + f(b) (+ is continuous)

=⇒ lim f(Σ{α, β}) ' f(Σ{a, b}) (Σ-homomorphism, X ∈ Σft)

=⇒ limuf̄ [Σ{α, β}] ' uf̄ [Σ{a, b}] (f = uf̄q)

=⇒ lim [Σ{α, β}] ' [Σ{a, b}]. (def. τΣ, Proposition 2.2.22)

Notice that every net α′ : D → X/∼ may be (non-uniquely) characterised by a net

α : D → X such that α′ = qα since q is surjective. Thus, according to Propo-

sition 2.2.26 and the chain of implications above, the function +Σ = [Σ{−,−}] is

continuous and it follows that (X/∼, τΣ,+Σ) is a Hausdorff commutative monoid. Fi-

nally, we must show that the quotient map q : X → G(X/∼) is a Σ-homomorphism.

Let x ∈ X∗ be a summable family and let σf : F(fx) → Y and σq : F(qx) → X/∼
be the nets of finite partial sums of fx ∈ Y ∗ and qx ∈ (X/∼)∗ respectively. Let

m : F(qx) → F(fx) be the function that maps each subfamily qx′ ∈ F(qx) to the

subfamily fx′ = uf̄qx′; it is evident that m is isotone. For each fx′ ∈ F(fx) it
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is immediate that fx′ ⊆ m(qx′) so that m(F(qx)) is cofinal in F(fx). Moreover,

uf̄σq = σf ◦ m so that uf̄σq is a subnet of σf . The following chain of implications

establishes that q is a Σ-homomorphism:

Σx ' x =⇒ Σfx ' f(x) (Σ-homomorphism f )

=⇒ limσf ' f(x) (def. Σ in G(Y ))

=⇒ lim (uf̄ ◦ σq) ' uf̄q(x) (uf̄σq subnet, f = uf̄q)

=⇒ limσq ' q(x) (def. τΣ, Proposition 2.2.22)

=⇒ Σqx ' q(x). (def. Σ in G(X/∼))

In summary, it has been shown that X/∼ is a Hausdorff commutative monoid and

that X
q−→ G(X/∼) is an element in S. Moreover, f = uf̄ ◦ q and uf̄ is a continuous

monoid homomorphism, providing a morphism (q,X/∼) → (f, Y ) in the comma

category. This construction can be reproduced for every Y ∈ HausCMon and every

Σ-homomorphism f : X → G(Y ). Consequently, S is a weakly initial set in the

comma category (X ⇒ G) and the claim that G has a left adjoint follows from the

general adjoint functor theorem (see Theorem 1.4.36).

Corollary 2.2.45. There is a left adjoint to the functor G : HausAb→ Σg.

Proof. The claim follows from the same argument used in the previous proposition

with the exception that, in this case, we must prove that (X/∼, τΣ,+Σ) is a Hausdorff

abelian group. It has already been established that X/∼ ∈ HausCMon, so we only

need to prove that inverses exist in X/∼ for each element and that the inversion map

is continuous. Since in this case X is a Σ-group, the existence of inverses in X/∼ is

immediate, where the inverse of every [x] ∈ X/∼ is [−x]. To prove that the inversion

map [x] 7→ [−x] is continuous, first notice that for every net α : D → X the following

is satisfied:

lim qα ' [a] =⇒ lim fα ' f(a) (uf̄ continuous, f = uf̄q)

=⇒ lim (−fα) ' −f(a) (continuous inversion map in Y )

=⇒ lim f(−α) ' f(−a) (group homomorphism f )

=⇒ limuf̄ [−α] ' uf̄ [−a] (f = uf̄q)

=⇒ lim [−α] ' [−a]. (def. τΣ, Proposition 2.2.22)

Recall that every net α′ : D → X/∼ may be (non-uniquely) characterised by a net

α : D → X such that α′ = qα since q is surjective. Thus, according to Proposi-
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tion 2.2.19 and the chain of implications above, the inversion map in X/∼ is contin-

uous and it follows that (X/∼, τΣ,+Σ) is a Hausdorff abelian group, completing the

proof.

2.3 Related work

The main goal of this chapter was to lay the groundwork for Chapter 3 which builds

upon Σ∗-enriched categories to formalise iteration in a categorical setting. Such was

the objective of Haghverdi’s work on unique decomposition categories [28], which are

an instance of Σs-enriched categories that will take a central role in the next chapter.

To this end, Haghverdi introduced a notion of Σ-monoids that has been generalised

in Section 2.1 of this thesis. On the other hand, Section 2.2 is, for the most part,

an introduction to general topology and Hausdorff commutative monoids; the main

contribution in it being the construction of a functor HausCMon→ Σft that extends

the monoid operation to infinitary inputs using the notion of convergence of nets from

general topology. A brief discussion of a selection of works closely related to the

contents of this chapter is provided below.

Haghverdi [28]. Haghverdi’s (strong) Σ-monoids are defined in terms of two ax-

ioms: the unary sum axiom and the partition-asociativity axiom. The former cor-

responds precisely to the singleton axiom from weak Σ-monoids (Definition 2.1.1)

whereas the latter is equivalent to the combination of the axioms of subsummabil-

ity, strong bracketing and strong flattening (Definition 2.1.11). Separating partition-

associativity into its two directions of implication (i.e. strong bracketing and strong

flattening) allow us to weaken each of them in a different way. The motivation behind

the weakening of flattening is evident from a close inspection of Proposition 2.1.12,

since it is strong flattening on infinite collections of families what prevents the ex-

istence of additive inverses. On the other hand, the motivation of the weakening of

bracketing comes from the desire to capture Hausdorff commutative monoids as in-

stances of weak Σ-monoids (see Remark 2.2.38).

Hoshino [33]. Hoshino continued Haghverdi’s line of work on Σs-enriched unique

decomposition categories. In [33], Hoshino proved that the category of total strong

Σ-monoids (i.e. those where Σ is a total function) is a reflective subcategory of strong

Σ-monoids. This was achieved via a non-constructive argument using the general ad-
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joint functor theorem and its strategy is reproduced in Section 2.1.3 to prove that the

embedding Σft ↪→ Σw has a left adjoint. Interestingly, the proof of Proposition 2.1.18

which establishes that Σs is a reflective subcategory of Σw can be used (virtually with-

out alteration) to give a constructive proof of Hoshino’s result; in this case, the inter-

section construction from Lemma 2.1.17 is no longer necessary. Moreover, the proof

of the existence of a monoidal structure given by the tensor product on every Σ∗ cat-

egory (Section 2.1.5) follows the same strategy Hoshino used in [33] to prove such a

result for the particular case of Σs.

Higgs [32]. The Σ-groups defined in this thesis are equivalent to a subclass of Higgs’

notion of Σ-groups; in particular, to those where the set of summable families is re-

stricted to contain countable families only. Thus, the weak Σ-monoids introduced in

Section 2.1 are general enough to capture two disjoint notions of infinitary monoids:

Haghverdi’s strong Σ-monoids (which cannot have inverses) and Higgs’ Σ-groups

(which must have inverses). To verify that the axioms in Higgs’ definition of Σ-

groups [32] coincides with ours, notice that the neutral element axiom and the singleton

axiom of weak Σ-monoids appear explicitly in Higgs’ definition as axioms (Σ1) and

(Σ2) respectively, whereas finite totality is imposed by Higgs by requiring that the Σ-

group (X,Σ) contains an abelian group. The bracketing axiom of weak Σ-monoids is

Higgs’ (Σ4) axiom, whereas Higgs’ (Σ3) axiom corresponds to flattening and is stated

as follows (paraphrased using this thesis’ notation):

Σx ' x and Σx′ ' x′ =⇒ Σ(x ] −x′) ' x− x′.

Since flattening of weak Σ-monoids only discusses addition of finite collection of fam-

ilies and since Σ-groups are required to be finitely total, Higgs’ axiom implies flatten-

ing. Moreover, when x = ∅, Higgs’ axiom implies that every summable family x′ has

a counterpart −x′ so that Σ(−x′) ' −(Σx′). Thus, Higgs combines in a single ax-

iom both the flattening axiom of weak Σ-monoids and the requirement that the inverse

mapping is a Σ-homomorphism. With these remarks in mind, it is straightforward to

check that Higgs’ definition of Σ-groups is equivalent to the definition presented in

this thesis.

On another note, the realisation that Hausdorff abelian groups can be captured as

instances of Σ-groups is briefly mentioned in the introduction of Higgs’ paper [32],

although no explicit proof is provided. It seems that such a result does not hold if Σ-

groups are required to satisfy strong bracketing (see Remark 2.2.38) and it was Higgs’
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definition that revealed the subtle weakening to bracketing that enables us to define

a functor HausAb → Σg. For the purposes of this thesis, it is sufficient to study

the connection between Σ-monoids and Hausdorff commutative monoids; but Higgs

was interested in the more general framework of net groups.7 Higgs proved that every

Σ-group is a net group and, moreover, the corresponding embedding functor has a

right adjoint. This is somewhat dual to the result from Section 2.2.4 where the functor

realising every Hausdorff abelian group as a Σ-group — via a Σ function defined in

terms of the convergence of certain net — is shown to have a left adjoint.

7A net group is an abelian group (X,+) equipped with a relation → between nets α in X and
elements x ∈ X , along with some axioms that make it reasonable to interpret α → x as the statement
‘the net α converges to x’ without the use of topology.



Chapter 3

Categorical study of quantum iteration

This chapter builds upon the previous one to introduce Σ∗-enriched categories and

study categorical traces on them. In particular, we are interested in proving the va-

lidity of the execution formula as a categorical trace in certain categories of quantum

processes. The execution formula is closely related to the notion of iteration in com-

puter science and, in fact, the main motivation behind this chapter is to provide the

categorical foundations to study unbounded quantum iterative loops.

This chapter is structured as follows: Section 3.1 introduces the framework of

traced monoidal categories along with standard examples of categorical traces, includ-

ing the execution formula; Section 3.2 introduces Haghverdi’s unique decomposition

categories and builds upon them to provide a framework capable of capturing quantum

iteration; Section 3.3 proves that (FdContraction,⊕, ex) is a totally traced category,

where ex corresponds to the execution formula; Section 3.4 introduces a particular

category of quantum processes over time and shows that the execution formula is a

well-defined categorical trace on it; finally, Section 3.5 discusses related work.

3.1 Traced monoidal categories (Preamble)

Assume (C,⊗, I) is a monoidal category whose morphisms f : A→ B may be inter-

preted as processes that receive input of type A and yield output of type B; Section 1.5

provides examples of such categories in the context of quantum processes. If we wish

to formalise the notion of an iterative process within the category C we need to define

87
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an operation that connects the output of a process back to one of its inputs:

f
A B

U U

7→ f
A B

U U

(3.1)

More precisely, we need a map of type C(A⊗U,B⊗U)→ C(A,B) for allA,B, U ∈
C – which we will refer to as the trace operator — and, as usual, we ought to impose a

set of axioms that ensure this trace operator interacts nicely with composition and the

monoidal structure. Such a framework is captured by traced monoidal categories, orig-

inally proposed by Joyal, Street and Verity [36] and whose definition is given below.

Traced monoidal categories are not limited to iterative loops; for instance, Section 3.1.3

provides an example of a traced monoidal category that captures the notion of calcu-

lating the trace of a matrix, which has little in common with the notion of iteration.

Consequently, for the purposes of this thesis it will be necessary to find an appropri-

ate definition of the trace operator that captures iteration; such will be the role of the

execution formula, as discussed in Section 3.1.1.

Definition 3.1.1. Let (C,⊗, I) be a symmetric monoidal category and let there be a

family of maps

TrUA,B : C(A⊗ U,B ⊗ U)→ C(A,B)

for all A,B, U ∈ C. The mapping TrUA,B may be represented pictorially as in (3.1)

and, for the sake of brevity, the subscript is often omitted, writing TrU instead. C is a

traced monoidal category if the following axioms are satisfied.

• Naturality. For all morphisms f : A⊗U → B ⊗U , g : A′ → A and h : B → B′

in C,

f
g

AA′ h
B B′

U U

= f
g

AA′ h
B B′

U U

h ◦ TrU(f) ◦ g = TrU((h⊗ idU) ◦ f ◦ (g ⊗ idU)).

• Dinaturality. For all morphisms f : A⊗ U → B ⊗ U ′ and g : U ′ → U in C,

f
A B

U gU′ U

= f
A B

g UU′ U′

TrU((idB ⊗ g) ◦ f) = TrU
′
(f ◦ (idA ⊗ g)).
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• Superposing. For all morphisms f : A⊗ U → B ⊗ U and g : C → D in C,

f
A B

U U

g
C D

=
f

A B

U U

g
C D

g ⊗ TrU(f) = TrU(g ⊗ f).

• Vanishing I. For all morphisms f : A⊗ I → B ⊗ I in C,

f
A B

I I

= f
A B

I I

TrI(f) = ρ ◦ f ◦ ρ−1.

• Vanishing II. For all morphisms f : A⊗ U ⊗ V → B ⊗ U ⊗ V in C,

f

A B

V V

U U =
f

A B

U ⊗ V U ⊗ V

TrU(TrV (f)) = TrU⊗V (f).

• Yanking. For all objects U ∈ C where σU,U is the symmetric braiding,

U U

U U

= U U

TrU(σU,U) = idU .

In this thesis, traced monoidal categories are denoted by a triple (C,⊗,Tr) where

Tr is the collection of all trace operators TrUA,B and the monoidal unit is omitted when

unambiguous. In certain cases of interest to this thesis, the trace operator TrUA,B cannot

be defined for all morphisms in its domain. Haghverdi and Scott [29] proposed a

generalisation of traced categories where the trace operator need not be total. To define

these, the Kleene equality is used (see Notation 2.0.4) so that, for two partial functions

f and g, the expression f(a) ' g(a′) indicates that f(a) is defined iff g(a′) is defined

and their results agree.
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Definition 3.1.2. Let (C,⊗, I) be a symmetric monoidal category and let there be a

family of partial maps

TrUA,B : C(A⊗ U,B ⊗ U) ⇀ C(A,B)

for all A,B, U ∈ C. C is a partially traced category if the following axioms are

satisfied.

• Naturality. For all f : A⊗ U → B ⊗ U , g : A′ → A and h : B → B′,

TrU(f) defined =⇒ h ◦ TrU(f) ◦ g ' TrU((h⊗ idU) ◦ f ◦ (g ⊗ idU)).

• Dinaturality. For all f : A⊗ U → B ⊗ U ′ and g : U ′ → U ,

TrU((idB ⊗ g) ◦ f) ' TrU
′
(f ◦ (idA ⊗ g)).

• Superposing. For all f : A⊗ U → B ⊗ U and g : C → D,

TrU(f) defined =⇒ g ⊗ TrU(f) ' TrU(g ⊗ f).

• Vanishing I. For all f : A⊗ I → B ⊗ I ,

TrI(f) ' ρ ◦ f ◦ ρ−1.

• Vanishing II. For all f : A⊗ U ⊗ V → B ⊗ U ⊗ V ,

TrV (f) defined =⇒ TrU(TrV (f)) ' TrU⊗V (f).

• Yanking. For all objects U ∈ C,

TrU(σU,U) ' idU .

Any traced monoidal category (C,⊗,Tr) as given in Definition 3.1.1 is, evidently,

an instance of a partially traced category where all operators TrUA,B are totally defined;

consequently, we refer to these as totally traced categories. The PhD thesis of Octavio

Malherbe [43] and its accompanying paper [44] are valuable references on partially

traced categories. The following proposition is due to Malherbe and collaborators, and

it lets us induce a partial trace on C from the partial trace of another category D.
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Proposition 3.1.3 (Malherbe [43], Proposition 4.3.1). Let F : C → D be a faithful

strong symmetric monoidal functor with (D,⊗,Tr) a partially traced category and

(C,⊗) a symmetric monoidal category. For every morphism f ∈ C(A ⊕ U,B ⊕ U)

define:

T̂r
U

(f) =

g if ∃g ∈ C(A,B) s.t. TrF (U)(µ−1
B,UF (f)µA,U) ' F (g)

undefined otherwise.

Then, (C,⊗, T̂r) is a partially traced category.

Proof. (Sketch). For simplicity, assume F is strict monoidal (i.e. µ is the identity); for

a detailed proof in the general case see [43], Proposition 4.3.1. First, notice that T̂r is

well-defined: if g ∈ C(A,B) exists such that TrF (U)(F (f)) ' F (g) then such g is

unique due to F being faithful. To check each axiom of partially traced categories we

proceed as follows:

• assume T̂r
U

(f) is defined and appears on the left (or right) hand side of one of

the axioms;

• by definition, F (T̂r
U

(f)) = TrF (U)(F (f)) and we may use that D is partially

traced to derive the existence of the right (or left) hand side of the axiom in D;

• since F is a strict symmetric monoidal functor, the left (and right) hand side of

the axiom can be rewritten as F being applied to the corresponding left (and

right) hand side of the axiom in C;

• since F is faithful it follows that the axiom in C is satisfied.

Consequently, (C,⊗, T̂r) is a partially traced category, as claimed.

3.1.1 The execution formula

The execution formula is a candidate for a categorical trace in multiple categories rel-

evant in computer science [45, 28, 33]. The primary goal of this section is to explain

how the execution formula captures the notion of iterative loops and identify the re-

quirements that a category must meet so that the execution formula may be defined on

it.

In the picture below, the box labelled f may be interpreted as a physical device

with input ports A and U and output ports B and U whose U -ports have been joined
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together; arrows have been added to clarify the direction of information flow within

the wires.

f
A
>

B
>

U U

<

(3.2)

Once the connection between the U -ports is made, any input on A may only leave

through B, but before doing so, it may traverse the loop an arbitrary number of times.

If we intend to describe the relationship between inputs on A and outputs on B, we

must aggregate the contribution of all of these possible paths; that is the key idea

behind the execution formula. To formalise this in a monoidal category (C,⊕, Z) the

following conditions must be satisfied:

• morphisms f : A⊕ U → B ⊕ U must admit a characterisation in terms of com-

ponents fY X : X → Y for each X ∈ {A,U} and Y ∈ {B,U}, so that we may

study the different paths from A to B in isolation, for instance:

A
fBA−−→ B,

A
fUA−−→ U

fUU−−→ U
fUU−−→ U

fBU−−→ B,

etc. — this can be achieved by requiring A ⊕ B to be a biproduct for all ob-

jects A,B ∈ C but, as we will see in Section 3.2, certain categories without

biproducts may also satisfy this condition;

• there must be a notion of infinite summation of morphisms, so that the contribu-

tion of all paths may be aggregated — this can be achieved by requiring that C

is a category enriched over Σ-monoids, as discussed in Chapter 2.

In such a situation, the execution formula may be informally presented as:

exU(f) = fBA +

∞∑
n=0

fBUf
n
UUfUA

for any morphism f : A ⊕ U → B ⊕ U . The abstract diagram from (3.2) can be

interpreted to depict any process f whose component fUU may be applied an arbitrary

number of times; if these processes are described by computer programs, we recover

the notion of iteration from computer science (more on this in Section 3.2.1). When the

execution formula provides a valid categorical trace some works in the literature [1]

refer to it as a “particle-style” trace.



3.1. Traced monoidal categories (Preamble) 93

Whenever a category C is traced with respect to the execution formula, we are

guaranteed that C captures a well-behaved notion of iteration, in the sense that it satis-

fies the axioms of traced monoidal categories and, hence, the execution formula inter-

acts nicely with both composition and the symmetric monoidal structure. But, perhaps

surprisingly, proving that the execution formula is a categorical trace is not a simple

matter, and the study of unique decomposition categories, initiated by Haghverdi [28],

aims to characterise what must be required of C for this to be the case. This chapter

builds upon the framework of unique decomposition categories to formalise the notion

of iteration on categories of quantum processes. But, before doing so, we discuss other

candidates for trace operators on categories of quantum processes and how these relate

to iteration.

3.1.2 The kernel-image trace

As discussed in the previous section, the execution formula may only be defined in a

category enriched over Σ-monoids since there is an infinite number of execution paths

that need to be aggregated. This section discusses a couple of closely related trace

operators, defined on categories enriched over abelian groups.

Definition 3.1.4. An additive category is an Ab-enriched category that has all finite

biproducts. Every additive category C has a canonical monoidal structure (C,⊕, 0)

where ⊕ is the canonical extension of binary biproducts to a monoidal product and 0

is a zero object.

Notation 3.1.5. For a morphism f : A ⊕ B → C ⊕D it is useful to refer to its com-

ponents using the subscript shorthand fCA, in this case referring to the morphism

fCA = A
ι−→ A⊕B f−→ C ⊕D π−→ C

where ι and π are the injection and projection morphisms of the biproduct. The order of

the subscripts facilitates the readability of composition: for another morphism h : X →
A⊕ B, we may compose fCA ◦ hAX and it is immediate to read, from right to left, the

objects that the morphism factors through.

Haghverdi and Scott [29] studied the following partial trace, which may be defined

on every additive category.
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Proposition 3.1.6 (Haghverdi and Scott [29]). Every additive category (C,⊕, 0) is

partially traced, where its trace operator TrUA,B is defined as follows:

TrUA,B(f) =

fBA + fBU(idU−fUU)−1fUA if idU−fUU is invertible

undefined otherwise.

The proof of this result has been omitted for brevity and can be found in [29]. This

Haghverdi-Scott trace is somewhat similar to the execution formula, especially in the

light of the following well-known identity on the real numbers |r| < 1:
∞∑
n=0

rn = (1− r)−1.

However, there is a caveat: the Haghverdi-Scott trace of morphisms such as the identity

f = idA⊕U is undefined since

idU − fUU = idU − πU ◦ idA⊕U ◦ ιU = idU − idU = 0

is clearly not invertible. This is somewhat odd since TrU(idA⊕U) ' idA ⊕ TrU(idU)

according to the superposing axiom and, even though TrU(idU) is undefined as well, its

type is 0 → 0 suggests that it may naturally be defined as the zero morphism. In such

a scenario, the superposing axiom would yield TrU(idA⊕U) ' idA which matches the

intuition behind iteration since tracing idA⊕U would create an isolated loop on U that no

input can reach. Indeed, Malherbe, Scott and Selinger [44] proposed a generalisation

of the Haghverdi-Scott trace where identities and other morphisms that would ‘leave

an isolated loop’ can be traced.

Definition 3.1.7 (Malherbe et al. [44]). Let C be an additive category. A morphism

f : A ⊕ U → B ⊕ U in C is said to have a trace witnessed by morphisms i : A → U

and k : U → B if the diagram

A U

U B

i

fUA

fBU

k

id−fUU

commutes. Whenever it does, we write (k, i) 
 TrU(f) and define TrU(f) : A → B

as follows:

TrU(f) = fBA + k ◦ fUA = fBA + fBU ◦ i

and otherwise we leave TrU(f) undefined. The collection of all such partial functions

TrU : C(A ⊕ U,B ⊕ U) ⇀ C(A,B) for all objects A,B, U ∈ C is known as the

kernel-image trace.
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Proposition 3.1.8 (Malherbe et al. [44], Proposition 3.17). Any additive category is

partially traced using the kernel-image trace.

We write Trki when we wish to distinguish the kernel-image trace from other traces

available on the same category. The following proposition justifies the name given to

the kernel-image trace.

Proposition 3.1.9 (Malherbe et al. [44], Remark 3.16). A morphism f : A ⊕ U →
B ⊕ U in Vect satisfies (k, i) 
 TrU(f) for some morphisms k ∈ Vect(U,B) and

i ∈ Vect(A,U) iff the following inclusions hold:

im(fUA) ⊆ im(id−fUU)

ker(id−fUU) ⊆ ker(fBU).
(3.3)

Proof. Assume that (k, i) 
 TrU(f) is satisfied; this implies the existence of a mor-

phism i : A → U such that fUA = (id−fUU) ◦ i and, hence, u ∈ im(fUA) implies

u ∈ im(id−fUU). Similarly, since a morphism k : U → B satisfying fBU = k◦(id−fUU)

exists, it follows that for any u ∈ U such that (id− fUU)(u) = 0 we must have

fBU(u) = 0. Therefore, (k, i) 
 TrU(f) implies both inclusions (3.3).

Conversely, assume that both of inclusions (3.3) are satisfied and let h = id−fUU .

Decompose h as follows:1

h = U
q−→ U/ker(h)

h′−→ im(h)
m−→ U

where U/ker(h) is the quotient space induced by the equivalence relation ∼ where:

u ∼ v ⇐⇒ (u− v) ∈ ker(h)

and q is its quotient map. The linear map h′ sends equivalence classes [u] ∈ U/ker(h)

to h(u); this is well-defined since [u] = [v] implies h(u − v) = 0 and hence h(u) =

h(v). It can be shown that h′ is bijective, q is surjective and m is injective. Conse-

quently, h′ ◦ q is surjective, so there is at least one linear map r : im(h)→ U acting as

its right inverse, (h′ ◦ q) ◦ r = id. Similarly, m ◦ h′ is injective, so there is at least one

linear map l : U → U/ker(h) acting as its left inverse, l ◦ (m ◦ h′) = id. Now, since

we assumed that im(fUA) ⊆ im(h) we may decompose fUA as follows:

fUA = A
f ′
UA−−→ im(h)

m−→ U.

1This decomposition is available in every abelian category, which Vect is an example of.
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Let i = r ◦ f ′UA; it is immediate that:

(id−fUU) ◦ i = (m ◦ h′ ◦ q) ◦ (r ◦ f ′UA) = m ◦ f ′UA = fUA.

On the other hand, since we assumed that ker(h) ⊆ ker(fBU) we may decompose fBU
as follows:

fBU = U
q−→ U/ker(h)

f ′
BU−−→ B.

Let k = f ′BU ◦ l; it is immediate that:

k ◦ (id−fUU) = (f ′BU ◦ l) ◦ (m ◦ h′ ◦ q) = f ′BU ◦ q = fBU .

Therefore, the kernel-image inclusions (3.3) imply (k, i) 
 TrU(f).

Corollary 3.1.10. A morphism f : A ⊕ U → B ⊕ U in FdHilb satisfies (k, i) 


TrU(f) for some morphisms k ∈ FdHilb(U,B) and i ∈ FdHilb(A,U) iff the kernel-

image inclusions (3.3) hold.

Proof. The claim can be proven using the argument from the previous proposition.

However, we must check that the linear maps i and k defined in the second part of

the proof are bounded. But this is immediate since every linear map between finite-

dimensional spaces is bounded.

The case of Hilb is more complicated. On one hand, (Hilb,⊕, {0}) is an additive

category, so it follows from Proposition 3.1.8 that (Hilb,⊕,Trki) is a partially traced

category. On the other hand, it appears that the kernel-image inclusions (3.3) are not

sufficient for a morphism f in Hilb to be traceable. This is because when the domain

and codomain are infinite-dimensional the image of f need not be a closed subspace,

which causes problems when attempting to prove the existence and boundness of i

and k as constructed in the proof of Proposition 3.1.9. Taking this into account, the

following proposition establishes sufficient conditions for f to be traceable.

Proposition 3.1.11. For any f ∈ Hilb(A⊕ U,B ⊕ U), if

• it satisfies the kernel-image inclusions (3.3) and

• im(id−fUU) is a closed subspace,

then (k, i) 
 TrU(f) for some morphisms k ∈ Hilb(U,B) and i ∈ Hilb(A,U).
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Proof. (Sketch). As in the proof of Proposition 3.1.9, let h = id−fUU and decompose

it as follows:

h = U
q−→ U/ker(h)

h′−→ im(h)
m−→ U.

This decomposition exists in Hilb precisely because im(h) is closed by assumption

and, hence, it is a Hilbert space, whereas it can be shown that U/ker(h) is isomorphic

to the orthogonal complement of ker(h) and, hence, a Hilbert space as well; since h

is bounded, it follows that h′ is bounded and it is simple to show that m and q are

bounded as well. Then, it is immediate that h′ ◦ q is surjective, so there is at least one

linear map r : im(h)→ U acting as its right inverse. We must show that r is bounded;

according to Proposition 4.6.1 from [7] this is implied by h′ ◦ q being a surjective

bounded linear map. Similarly, m ◦ h′ is injective, so there is at least one linear map

l : U → U/ker(h) acting as its left inverse. We must show that l is bounded; according

to Proposition 4.5.2 from [7] this is implied bym◦h′ being an injective bounded linear

map and im(m ◦ h′) = im(h) being a closed subspace — the latter being satisfied by

assumption. It is straightforward to check that both fUA and fBU may be decomposed

into

fUA = A
f ′
UA−−→ im(h)

m−→ U

fBU = U
q−→ U/ker(h)

f ′
BU−−→ B.

where f ′UA and f ′BU are bounded. It follows that i = r◦f ′UA and k = f ′BU ◦l are bounded

linear maps and, hence, morphisms in Hilb. What remains of the proof follows by the

same argument from Proposition 3.1.9.

The following two propositions are well-known facts about the orthogonal comple-

ment2 of Hilbert spaces and they will be used in Section 3.3 to prove that the kernel-

image inclusions (3.3) are satisfied by every morphism in FdContraction.

Proposition 3.1.12. Every morphism f ∈ Hilb(A,B) satisfies:

ker(f †) = im(f)⊥

where f † is the adjoint of f .3

2Given a Hilbert space H and a set of vectors S ⊆ H , the orthogonal complement of S is defined as
follows: S⊥ = {v ∈ H | ∀u ∈ S, 〈u |v〉 = 0}. It can be shown that S⊥ is a closed subspace of H .

3Recall that the adjoint of a bounded linear map f ∈ Hilb(A,B) is the bounded linear map f† ∈
Hilb(B,A) satisfying 〈f(a) |b〉 = 〈a |f†(b)〉 for every a ∈ A and b ∈ B.
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Proof. Recall that in a Hilbert space A, every vector a ∈ A satisfies:

a = 0 ⇐⇒ ∀a′ ∈ A, 〈a′ |a〉 = 0. (3.4)

Then, the following sequence of implications prove the claim:

v ∈ ker(f †) ⇐⇒ ∀a ∈ A, 〈a|f †(v)〉 = 0 (implication (3.4))

⇐⇒ ∀a ∈ A, 〈f(a) |v〉 = 0 (def. of adjoint)

⇐⇒ v ∈ im(f)⊥ (def. of orthogonal complement).

Proposition 3.1.13. Let H be a Hilbert space, K a closed subspace of H and S a

subset of H . Then,

S ⊆ K ⇐⇒ K⊥ ⊆ S⊥.

Proof. Assume S ⊆ K; for any v ∈ K⊥ we have that for all u ∈ K, 〈u |v〉 = 0. Thus,

in particular, for all u ∈ S, 〈u |v〉 = 0 and v ∈ S⊥. To prove the other direction, assume

K⊥ ⊆ S⊥; then the previous argument establishes that S⊥⊥ ⊆ K⊥⊥. It is immediate

that S ⊆ S⊥⊥ and, for any closed subspace, K = K⊥⊥. Thus, S ⊆ S⊥⊥ ⊆ K⊥⊥ = K

and the proof is complete.

3.1.3 The canonical trace on compact closed categories

This section describes the canonical trace on the monoidal category (FdHilb,⊗,C)

and, more generally, on any compact closed category. It will be argued that the trace in

(FdHilb,⊗,C) is not well suited to capture the notion of quantum iteration. Never-

theless, this compact category is of great importance in the study of categorical quan-

tum mechanics [31, 18] and it is worth discussing it briefly.

A monoidal category (C,⊗, I) is said to have (right) duals if for every object A ∈
C there is an object A∗ ∈ C and morphisms η : I → A∗⊗A and ε : A⊗A∗ → I such

that the following diagrams commute:

A A⊗ I A⊗ (A∗ ⊗ A)

A I ⊗ A (A⊗ A∗)⊗ A

ρ−1 id⊗η

α−1

ε⊗idλ

id

A∗ I ⊗ A∗ (A∗ ⊗ A)⊗ A∗

A∗ A∗ ⊗ I A∗ ⊗ (A⊗ A∗)

id

λ−1 η⊗id

α

id⊗ερ

(3.5)
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A symmetric monoidal category with duals which interact nicely with the monoidal

structure is known as a compact closed category (see Chapter 3, Definition 3.34 from [31]

for a proper definition). Every compact closed category is totally traced, with the trace

of a morphism f : A⊗ U → B ⊗ C defined as follows:

TrU(f) = (idB ⊗ ε) ◦ (f ⊗ idU∗) ◦ (idA ⊗ ση). (3.6)

In particular, FdHilb is a compact closed category: Section 1.5 already estab-

lished that (FdHilb,⊗,C) is symmetric monoidal, and it can be shown that the

dual of a finite-dimensional Hilbert space H is the space defined on the hom-set

H∗ = FdHilb(H,C) using pointwise addition and scalar multiplication; since H∗

is finite-dimensional it can be made into a Hilbert space by defining an appropriate

inner product. Given an orthonormal basis {ei ∈ H}1≤i≤dim(H) of H , an orthonormal

basis of H∗ is given by the collection {φi : H → C}1≤i≤dim(H) where φi is defined for

each v ∈ H as follows:

φi(v) = 〈ei |v〉.

The morphisms η : C→ H∗⊗H and ε : H ⊗H∗ → C are defined by linear extension

of:

η(1) =
∑

1≤i≤dim(H)

φi ⊗ ei and ε(ei ⊗ φj) =

1 if i = j

0 otherwise

and it is straightforward to check that the diagrams (3.5) commute. Then, for any

morphism f ∈ FdHilb(A ⊗ U,B ⊗ U) the trace defined using the compact closed

structure (3.6) yields:

TrU(f) =
∑

1≤i≤dim(U)

(idB ⊗ φi) ◦ f ◦ (idA ⊗ ei) (3.7)

which corresponds to the linear algebraic trace of a block matrix f = (fi,j)i,j≤dim(U)

determined by the orthonormal basis {ei}i≤dim(U) of U , where each block is of type

fi,j : A→ B.

Such a categorical trace on FdHilb has little in common with the notion of itera-

tive loops: Section 3.1.1 identifies the requirement that morphisms f : A⊗U → B⊗U
must be characterisable in terms of components fBA, fBU , fUA and fUU , which is cer-

tainly not the case for the tensor product ⊗. Importantly, the fact that (FdHilb,⊗,C)

cannot be given a categorical trace that captures iteration is only due to its monoidal

structure and has nothing to do with its compact closedness. In fact, there are com-

pact closed categories whose canonical trace coincides with the execution formula; for
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instance, this is the case on any category obtained as the result of applying the Int

construction (see [36]) to a category traced with respect to the execution formula.

3.2 Unique decomposition categories

Unique decomposition categories were introduced by Haghverdi [28] as a general

framework where a morphism f : A ⊕ U → B ⊕ U may be decomposed as a ma-

trix

f =

(
fBA : A→ B fBU : U → B

fUA : A→ U fUU : U → U

)
and where a notion of infinite summation of morphisms exists, so that the execution

formula may be defined:

exU(f) = fBA +

∞∑
n=0

fBUf
n
UUfUA. (3.8)

The execution formula is meant to behave as a categorical trace, and the intuition is

that it aggregates all possible paths that go from A to B. However, as discussed by

Hoshino in Appendix B from [33], Haghverdi’s original definition is too weak: it

admits categories whose execution formula violates vanishing I. Hoshino’s proposal

was to define a stronger version of unique decomposition categories; their definition is

provided below.

Definition 3.2.1. Let Σ∗ be one of the categories of Σ-monoids from Definition 2.1.15

endowed with a monoidal structure (Σ∗,⊗, I) given by the tensor product as described

in Section 2.1.5. For a Σ∗-category C let there be:

• a zero object Z ∈ C and

• a functor ⊕ : C × C → C such that its action on hom-objects on arbitrary

A,B,C,D ∈ C is described by a morphism in Σ∗

−⊕− : C(A,C)×C(B,D)→ C(A⊕B,C ⊕D)

whose domain is a categorical product in Σ∗.

If (C,⊕, Z) is a symmetric monoidal category we say that it is a Σ∗-enriched unique

decomposition category (Σ∗-UDC).
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Slight changes have been made to Hoshino’s original definition [33]. On one hand,

Hoshino only discusses Σs-enriched UDCs; the definition has been generalised so that

all flavours of Σ-monoids introduced in Chapter 2 may be used. On the other hand,

Hoshino asks that idZ is the neutral element of the Σ-monoid C(Z,Z), instead of

requiring that the monoidal unit is a zero object. These conditions are equivalent: if

idZ = Σ∅ any morphism f : Z → A is equal to the neutral element:

f = f ◦ idZ = f ◦ (Σ∅) = Σ∅

due to composition being Σ-bilinear; thus, Z is initial and a similar argument shows

that Z is also terminal. Notice that the zero morphism of each hom-object C(A,B) —

i.e. the unique morphism that factors through Z — is precisely the neutral element of

the Σ-monoid C(A,B). Moreover, if Z is a zero object then C(Z,Z) is a singleton

hom-set, so idZ must be the neutral element of the Σ-monoid C(Z,Z). Furthermore,

Hoshino requires that

Σ{idA ⊕ 0B,B, 0A,A ⊕ idB} ' idA⊕B

but this can be inferred from our definition:

Σ{idA ⊕ 0B,B, 0A,A ⊕ idB} ' Σ{idA, 0A,A} ⊕ Σ{0B,B, idB} (product in Σ∗)

' idA ⊕ idB (Σ-monoid axioms)

= idA⊕B. (⊕ functor)

Alternatively, it can be shown that this equality imposes that the functor⊕ acts on hom-

objects as a Σ-homomorphism whose domain is a categorical product and, hence, our

definition is equivalent to Hoshino’s in the case of Σs-UDCs.

Every monoidal category whose unit is a zero object has certain morphisms that

act in a similar way to projections and injections, even though they may lack their

universal property. These morphisms are essential in the discussion of UDCs and we

define them below.

Definition 3.2.2. For each finite collection of objects {Aj ∈ C}J and each i ∈ J ,

define the canonical quasi-projection πi : ⊕J Aj → Ai to be the unique morphism

of its type generated by {id, α, α−1, λ, ρ} together with the zero morphism 0: Aj →
Z for each j ∈ J . Similarly, for each i ∈ J define the canonical quasi-injection

πi : Ai → ⊕JAj to be the unique morphism generated by {id, α, α−1, λ−1, ρ−1} along

with the zero morphism 0: Z → Aj for each j ∈ J .
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The equations Haghverdi required in the definition of a UDC [28] are satisfied in

the case of canonical quasi-injections and canonical quasi-projections, as shown in the

following remark.

Remark 3.2.3. It follows from the definition of the canonical quasi-projection that

πA : A⊕B → A is πA = ρ(idA⊕0) and the canonical quasi-injection ιA : A→ A⊕B
is ιA = (idA ⊕ 0)ρ−1; similarly for πB and ιB using the left unitor λ instead. It is

immediate that πAιA = idA whereas πAιB = 0. The fact that Σ{idA ⊕ 0, 0 ⊕ idB} '
idA⊕B implies that:

Σ{ιAπA, ιBπB} ' idA⊕B.

This suggests that the monoidal structure on C is very similar to the canonical one

on a category with biproducts; indeed, every additive category (see Definition 3.1.4) is

a Σg-UDC, as established below.

Example 3.2.4. Every additive category (C,⊕, 0) is a Σg-UDC. To check this, recall

that an additive category is enriched over Ab and every abelian group is a Σ-group

whose Σ function on infinite families is undefined. Moreover, the monoidal unit of an

additive category is a zero object according to the canonical definition of its monoidal

structure, and the requirement that Σ{idA ⊕ 0, 0 ⊕ idB} = idA⊕B is immediate from

the universal property of biproducts.

Example 3.2.5. Both Hilb and FdHilb are additive categories and, hence, they are

Σg-UDCs. However, as discussed above, such a trivially defined Σg-enrichment as-

sumes no infinite family is summable. In contrast, Section 3.3 will provide a Hausdorff

topology on each hom-set of Hilb, thus realising each of them as a Σ-group via the

functor HausAb → Σg from Definition 2.2.40 which defines summability of infi-

nite families in terms of convergence. Since the definition of UDC (Definition 3.2.1)

does not impose any extra condition on the summability of infinite families, it is im-

mediate that Hilb and FdHilb are still Σg-UDCs. Similarly, Contraction and

FdContraction are Σw-UDCs; the Σ function on each hom-set of Contraction

is induced from the inclusion Contraction(A,B) ↪→ Hilb(A,B) using the con-

struction from Lemma 2.1.8. On the other hand, Isometry and Unitary, along with

their subcategories on finite dimensions are not UDCs since they lack a terminal object

(and hence, a zero object).

Notice that a Σ∗-UDC need not have biproducts; for instance, this is the case for
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Contraction since the universal morphism for the diagram:

A

A A⊕ A AπA πB

id id

would need to be the diagonal map a 7→ (a, a) for all a ∈ A, which is evidently not a

contraction. However, whenever the corresponding universal morphism does exist, it is

unique, as established by the following proposition. This is perhaps the most important

characteristic of unique decomposition categories, justifying their name.

Proposition 3.2.6 (Haghverdi [28]). Let (C,⊕, Z) be a Σ∗-UDC. Let f : ⊕I Ai →
⊕JBj be a morphism in C, with finite I and J . There is a unique summable family

{fji ∈ C(Ai, Bj)}J×I satisfying:

Σ{ιj ◦ fji ◦ πi}J×I ' f.

Proof. It straightforward to check that the following equations are satisfied for any

finite collection of objects {Ai ∈ C}I :

πi ◦ ιi′ =

id if i = i′

0 otherwise
and Σ{ιi ◦ πi}I ' id. (3.9)

The first equation follows trivially from the definition of the canonical quasi-injections

and quasi-projections, the second one follows from the axiom Σ{idA ⊕ 0, 0⊕ idB} '
idA⊕B of Σ∗-UDCs and the flattening axiom of weak Σ-monoids.

Let f : ⊕I Ai → ⊕JBj be a morphism in C, with finite I and J . Let fji = πjfιi;

then:

f = id ◦ f ◦ id = Σ{ιj πj}J ◦ f ◦ Σ{ιi πi}I (equation (3.9))

' Σ{ιj πj f ◦ Σ{ιi πi}I}J (◦ is Σ-bilinear)

' Σ{Σ{ιj πj f ιi πi}I}J (◦ is Σ-bilinear)

' Σ{ιj fji πi}J×I (flattening axiom and def. of fji).

Thus, there is at least one family {fji}J×I satisfying the claim. To show uniqueness,

assume there is another family {gj′i′}J×I satisfying Σ{ιj′ ◦ gj′i′ ◦ πi′}J×I ' f ; then:

fji = πj f ιi = πj(Σ{ιj′ gj′i′ πi′}J×I)ιi ' Σ{πj ιj′ gj′i′ πi′ ιi}J×I = Σ{gji} = gji

due to composition being Σ-bilinear. Therefore, both families {fji}J×I and {gj′i′}J×I
contain the same elements and are thus the same family.
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The family of components has a suggestive representation as a matrix; for instance,

for f : A⊕B → C ⊕D we may write:

f =

(
fCA fCB

fDA fDB

)
The composition of two morphisms can be given in terms of their ‘matrix multiplica-

tion’ where multiplication of entries is replaced by their composition, as established

below.

Proposition 3.2.7. Let (C,⊕, Z) be a Σ∗-UDC. Let f : ⊕I Ai → ⊕JBj and g : ⊕J
Bj → ⊕KCk be two morphisms in C, with finite I , J and K. Then, for each (k, i) ∈
K × I the family {gkj ◦ fji}J is summable and the unique decomposition of g ◦ f is

given by the collection of morphisms

(g ◦ f)ki = Σ{gkj ◦ fji}J

for all (k, i) ∈ K × I .

Proof. We show that the family {gkj ◦ fji}J is summable for all (k, i) ∈ K × I:

πk(g ◦ f)ιi ' πk g ◦ (Σ{ιj πj}J) ◦ f ιi (equation (3.9))

' Σ{πk g ιj πj f ιi}J (◦ is Σ-bilinear)

= Σ{gkj ◦ fji}J . (def. of gkj and fji)

Recall that (g◦f)ki = πk(g◦f)ιi by uniqueness of the decomposition, thus completing

the proof of the claim.

Haghverdi’s original definition of UDCs simply required C to be Σs-enriched,

symmetric monoidal, and satisfy (3.9). Unlike Hoshino, Haghverdi did not impose a

particular choice of morphisms to act as quasi-injections and quasi-projections, which

permitted the choice of ones that altered the input in a subtle way, causing vanish-

ing I to fail for the execution formula (see Appendix B from [33] for further details).

In the Σ∗-UDCs of Hoshino, the symmetric monoidal structure satisfies some useful

properties discussed in the following remarks.

Remark 3.2.8. Let f : A→ B and g : C → D be morphisms in a Σ∗-UDC (C,⊕, Z).

It follows that

πB(f ⊕ g)ιA = ρ(idB ⊕ 0)(f ⊕ g)(idA ⊕ 0)ρ−1 (def. of πB and ιA)

= ρ(f ⊕ 0)ρ−1 (functoriality of ⊕, zero morphism)

= f ◦ ρ(idA ⊕ idZ)ρ−1 = f (nat. of ρ, idZ = 0)
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and similarly πD(f ⊕ g)ιC = g, whereas πB(f ⊕ g)ιC = 0 and πD(f ⊕ g)ιA = 0.

Therefore, the unique decomposition of f ⊕ g is:

f ⊕ g =

(
f 0

0 g

)
.

Remark 3.2.9. Let σ : A ⊕ B → B ⊕ A be the symmetric braiding of a Σ∗-UDC

(C,⊕, Z). It follows that

πA σ ιA = λ(0⊕ idA)σ(idA ⊕ 0)ρ−1 (def. of πA and ιA)

= λ(0⊕ idA)(0⊕ idA)σ ρ−1 (naturality of σ)

= λ(0⊕ idA)σ ρ−1 (functoriality of ⊕)

= λσ ρ−1 (idZ = 0, nat. of λ)

= idA (coherence theorem)

with the last step due to the coherence theorem of symmetric monoidal categories,

which establishes that if two morphisms have the same type and both are built from

composition and monoidal product of {id, α, λ, ρ, σ} and their inverses, then the two

morphisms are equivalent (see Corollary 1.42 from [31]). Similarly, πB σ ιB = idB,

whereas πA σ ιB = 0 and πB σ ιA = 0. Therefore, the unique decomposition of the

symmetric braiding is:

σ =

(
0 idB

idA 0

)
.

These remarks together with the monoidal unit being a zero object and composition

being Σ-bilinear are almost sufficient for Σ∗-UDCs to be partially traced categories

with respect to the execution formula. This is made precise by the following lemma.

Lemma 3.2.10. Let (C,⊕, Z) be a Σ∗-UDC. Then, for any morphism f ∈ C(A ⊕
U,B ⊕ U), the execution formula

exU(f) ' Σ
(
{fBA} ] {fBUfnUUfUA}N

)
is guaranteed to satisfy all of the axioms of partially traced categories but vanishing

II.

Proof. Each of the axioms of partially traced categories (except vanishing II) are

proven below.
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• Naturality. For all f : A⊕ U → B ⊕ U , if exU(f) is defined then:

h ◦ exU(f) ◦ g ' h ◦
(
Σ
(
{fBA} ] {fBUfnUUfUA}N

))
◦ g (def. of ex)

' Σ
(
{hfBAg} ] {hfBUfnUUfUAg}N

)
(◦ is Σ-bilinear)

' exU((h⊕ id) ◦ f ◦ (g ⊕ id)) (def. of ex)

so that naturality is satisfied.

• Dinaturality. For all f : A⊕ U → B ⊕ U ′ and g : U ′ → U , if exU((id⊕ g)f) is

defined then:

exU((id⊕ g) ◦ f) ' Σ ({fBA} ] {fBU(gfU ′U)n(gfU ′A)}N) (def. of ex)

= Σ ({fBA} ] {(fBUg)(fU ′Ug)nfU ′A}N) (associativity of ◦)

' exU
′
(f ◦ (id⊕ g)). (def. of ex)

Similarly, if exU
′
(f ◦ (id ⊕ g)) is defined then exU((id ⊕ g) ◦ f) is defined as

well and they coincide, so that dinaturality is satisfied.

• Superposing. For all f : A ⊕ U → B ⊕ U and g : C → D, if exU(f) is defined

then, according to the matrix decomposition of g ⊕ f (see Remark 3.2.8):

exU(g⊕f) = exU

(
g 0

0 f

)
'

(
Σ
(
{g} ] {0fnUU0}N

)
0

0 exU(f)

)
' g⊕exU(f)

where the neutral element and singleton axioms of weak Σ-monoids have been

used. Thus, superposing is satisfied.

• Yanking. The axiom follows trivially from the matrix decomposition of the sym-

metry σ : U ⊕ U → U ⊕ U (see Remark 3.2.9):

exU(σ) = exU

(
0 idU

idU 0

)
' Σ ({0} ] {idU 0n idU}N) ' idU

where the neutral element and singleton axioms of weak Σ-monoids have been

used. Thus, yanking is satisfied.

• Vanishing I. For all f : A ⊕ Z → B ⊕ Z notice that fZA = 0, fBZ = 0 and

fZZ = 0 due to Z being a zero object, implying:

exZ(f) ' fBA = πB f ιA = ρ(idB ⊕ 0)f(idA ⊕ 0)ρ−1 = ρ f ρ−1

where the neutral element and singleton axioms of weak Σ-monoids have been

used. Thus, vanishing I is satisfied.
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The proof above uses that composition is Σ-bilinear along with the neutral element

and singleton axioms of weak Σ-monoids. However, neither the bracketing nor the

flattening axioms of weak Σ-monoids are used. The theorem below establishes that, in

the case of Σs-UDCs, the vanishing II axiom is also satisfied. The proof relies on the

strong bracketing and the strong flattening axioms from the Σs-enrichment. The same

result was proven by Hoshino in [33] using a different strategy: Hoshino provides a

representation theorem for Σs-UDCs, establishing that every such category embeds

in a categories with countable biproducts, then derives a partial trace in the original

category using a similar approach to Proposition 3.1.3. In contrast, our proof illustrates

the importance of strong bracketing and strong flattening explicitly and, hence, hints

at the challenge of generalising this result to Σw-UDCs where these axioms are not

available. For further discussion on the connection between our work and Hoshino’s,

see Section 3.5.

Theorem 3.2.11. Every Σs-UDC (C,⊕, Z) is partially traced using the execution

formula.

Proof. According to the previous lemma, all axioms except vanishing II are guaranteed

to be satisfied. Thus, we only need to show that, whenever the enrichment is over Σs,

vanishing II is satisfied as well. Let f : A⊕ U ⊕ V → B ⊕ U ⊕ V be a morphism in

C such that exV (f) is defined. For each n ∈ N, let dn ∈ C(A,B)∗ be the family of

morphisms A→ B built from chains of compositions of the form:

fBWn ◦ . . . ◦ fW2W1
◦ fW1A

where each Wi may be either U or V ; in the case of n = 0, define d0 = {fBA}. Let

p = ]n∈Ndn and, for each n ∈ N, let qn be the subfamily of p comprised of all

morphisms built from chains that factor through U exactly n times; evidently, p =

]n∈Nqn. Notice that for n > 0 the sum of dn would correspond to:

Σdn '
(
fBU fBV

)(fUU fUV

fV U fV V

)n−1(
fUA

fV A

)
and thus dn is summable according to Proposition 3.2.7. Since Σd0 = fBA, the defini-

tion of exU⊕V implies that:

exU⊕V (f) ' Σ{Σdn}N. (3.10)

Similarly, Σq0 ' πB ◦ exV (f) ◦ ιA due to composition being Σ-bilinear and, for each

n > 0,

Σqn ' (πB exV (f) ιU) ◦ (πU exV (f) ιU)n−1 ◦ (πU exV (f) ιA)
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where each family qn is summable due to exV (f) being defined (by assumption) and

composition being Σ-bilinear. Then, according to the definition of exU :

exU(exV (f)) ' Σ{Σqn}N. (3.11)

In summary, we have provided two partitions of the family p, both satisfying that

for all n ∈ N each subfamily dn and qn is summable. Moreover, we have shown that

the family of their sums is defined iff either side of the vanishing II axiom is satisfied;

it is now straightforward to prove vanishing II using the strong flattening and strong

bracketing axioms from the Σs-enrichment. Assume exU(exV (f)) is defined, then it

follows that:

exU(exV (f)) ' Σ{Σqn}N (equation (3.11))

' Σp (strong flattening)

' Σ{Σdn}N (strong bracketing)

' exU⊕V (f). (equation (3.10))

Similarly, if we assume that exU⊕V (f) is defined it follows that exU(exV (f)) is defined

as well and their results coincide. Therefore, vanishing II is satisfied and the proof is

complete.

An immediate question is whether this theorem can be generalised to Σw-UDCs.

Unfortunately, these are generally not partially traced since vanishing II cannot be

guaranteed to hold, as shown in the following counterexample.

Example 3.2.12. Let the Σg-enrichment of FdHilb be induced by the usual operator

norm topology (see Proposition 3.2.25 for details) and consider the following mor-

phism in FdHilb:

f : C⊕C⊕C→ C⊕C⊕C

f =


0 1 1

1 −2
3

1

1 1 1
3

 .

Explicit calculation yields the following result:

exC(f) = exC


0 1 1

1 −2
3

1

1 1 1
3

 =

(
3
2

5
2

5
2

5
6

)
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so that
∣∣5

6

∣∣ ≤ 1 and, hence, exC(exC(f)) is well-defined, whereas

exC⊕C(f) = exC⊕C


0 1 1

1 −2
3

1

1 1 1
3

 =

∞∑
n=0

(
1 1

)(−2
3

1

1 1
3

)n(
1

1

)

does not converge in norm and, hence, is undefined. Therefore, this morphism is an

instance of vanishing II failing in a Σg-UDC.

The construction of such a counterexample is enabled by the presence of additive

inverses; in particular, entry −2
3

in the definition of f . The goal of the rest of this

section is to establish sufficient conditions for vanishing II to be satisfied in Σw-UDCs.

But first, we discuss the relevance of the result for Σs-UDCs (Theorem 3.2.11) in the

context of classical iterative loops.

3.2.1 Classical iterative loops

This section provides three examples of Σs-UDCs which, according to Theorem 3.2.11,

are partially traced with respect to the execution formula. The relevance of each of

these categories in classical and quantum computing is briefly discussed and, in par-

ticular, it is argued that their execution formula captures the semantics of classical

iterative loops in their respective frameworks.

Classical reversible programs. A bijection f : A→ B is interpreted to describe the

input-output behaviour of a reversible program whose possible inputs and outputs are

elements of the sets A and B, respectively.

Definition 3.2.13. Let Bijection be the category whose objects are sets and whose

morphisms are bijections. For any partial function f : A ⇀ B let dom(f) ⊆ A be the

subset where f is defined. Let PInj be the category whose objects are sets and whose

morphisms f ∈ PInj(A,B) are partial injective functions, i.e. partial functions whose

restriction dom(f)→ B is injective.

Proposition 3.2.14 (Haghverdi [28]). Let (PInj,],∅) be the symmetric monoidal

category induced by disjoint union. A family of morphisms {fi}I ∈ PInj(A,B)∗ is

summable iff dom(fi)∩dom(fi′) = ∅ and im(fi)∩ im(fi′) = ∅ for all i 6= i′; in such

a case, the partial function Σ{fi}I : A ⇀ B is defined as follows for every a ∈ A:

(Σ{fi}I)(a) =

fi(a) if ∃i ∈ I s.t. a ∈ dom(fi)

undefined otherwise.
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These definitions make PInj a Σs-UDC.

Proof. (Sketch). We first check that each hom-set PInj(A,B) is a strong Σ-monoid

using the definition of Σ given above. The neutral element of the Σ-monoid is the

partial function that is undefined on every a ∈ A and the singleton axiom holds triv-

ially. Strong flattening holds as well: let {fj ∈ PInj(A,B)∗}J be an indexed set of

summable families and let f = ]J fj; assume that the family {Σfj}J is summable, this

implies that dom(Σfj) ∩ dom(Σfj′) for every j 6= j′ and hence, necessarily, the do-

mains of the elements of fj ] fj′ are all pair-wise disjoint. Since this applies to every

pair of indices j 6= j′ in J and a similar argument holds for the images, it follows that

f = ]J fj is summable and it is trivial to check that Σf = Σ{Σfj}J so that strong flat-

tening is satisfied. The proof of the strong bracketing axiom is dual to this argument.

Finally, subsummability holds trivially since the summability condition is imposed on

every pair of elements from the family.

To show that PInj is a Σs-enriched category we must check that composition is

Σ-bilinear. Assume {fi}I ∈ PInj(A,B)∗ is summable and let g ∈ PInj(B,C); then

{g◦fi}I trivially satisfies the condition on disjoint domains. That {g◦fi}I also satisfies

the condition on disjoint images can be shown by contradiction: suppose there is an

element c ∈ im(g ◦ fi) ∩ im(g ◦ fi′) for i 6= i′ then there must be elements b ∈ im(fi)

and b′ ∈ im(fi′) such that g(b) ' c ' g(b′), but b 6= b′ is necessary for {fi}I to be

summable, so this contradicts g being injective. A similar argument can be used to

prove that composition is a Σ-homomorphism on the left as well, making it Σ-bilinear.

It is straightforward to check that (PInj,],∅) is a symmetric monoidal category

and its monoidal unit ∅ is a zero object. Moreover, Σ{idA]0, 0] idB} ' idA]B holds

trivially. Thus, PInj is a Σs-UDC, as claimed.

Notice that PInj does not have coproducts since the codiagonal map∇ : A]A→
A cannot be injective because it would need to map both ιl(a), ιr(a) ∈ A ] A to

a ∈ A. And, evidently, ] is not a categorical product; nevertheless, morphisms f : A]
B → C ] D in PInj may uniquely be characterised by their matrix decomposition

thanks to Proposition 3.2.6. According to Theorem 3.2.11, the category (PInj,], ex)

is a partially traced and, furthermore, we can show that it is totally traced. For an

arbitrary morphism f ∈ PInj(A ] U,B ] U), let p0 = fBA and for all n ∈ N let

pn+1 = fBUf
n
UUfUA. It can be shown by induction that no element b ∈ B can be both in

im(pn) and im(pm) for n 6= m since this would contradict f being injective; similarly,

no a ∈ A can be both in dom(pn) and dom(pm). Consequently, the family {pn}N is
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always summable and PInj is in fact totally traced (see Example 2.23 (i) from [28]

for more details).

Even though Bijection itself is not a UDC — quasi-projections are necessarily

partial — it is a subcategory of PInj; therefore, every bijection f : A ] B → C ] D
may be decomposed into a matrix form whose entries are in PInj. We may transport

the trace of PInj to (Bijection,], êx) using Proposition 3.1.3 which defines:

êxU(f) =

g if exU(f) is a bijection

undefined otherwise.

If f denotes a reversible program then the bijection êxU(f) : A→ B denotes a program

that repeatedly applies f whenever the output is in U — an iterative loop. Notice that

Bijection is only partially traced; for instance, if U = N we may define a bijection

so that fUU(n) = n + 1 for all n ∈ N and, for some a ∈ A, fUA(a) = 0 so that a 6∈
dom(exU(f)) and exU(f) is only a partial injection. The latter case would correspond

to an iterative loop that never halts if the input is a.

Classical probabilistic programs. On each input a ∈ A, a probabilistic program

may yield an output b ∈ B with probability pa(b). These probabilities may be arranged

in a |B| × |A| matrix M with entries mba = pa(b) so that each of its columns add up

to one: ∑
b∈B

mba =
∑
b∈B

pa(b) = 1.

These are known as stochastic matrices. If the sum of each of their columns is only

required to be bounded by one
∑

b∈Bmba ≤ 1 we refer to them as substochastic

matrices. Evidently, every stochastic matrix is substochastic.

Definition 3.2.15. Let SubStoch be the category whose objects are finite sets and

whose morphisms f ∈ SubStoch(A,B) are substochastic matrices |B| × |A|. Com-

position corresponds to matrix multiplication and identities correspond to the usual

identity matrices. Let Stoch be the subcategory of SubStoch whose morphisms are

restricted to be stochastic matrices.

Similarly to the case with PInj and Bijection; the category we are interested in

is Stoch, but we instead work on the larger category SubStoch that happens to be a

Σs-UDC, as established below.
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Proposition 3.2.16. Let (SubStoch,⊕,∅) be the symmetric monoidal category where

⊕ acts as disjoint union of sets and direct sum of matrices. A family of morphisms

{fi}I ∈ SubStoch(A,B)∗ is summable iff the standard sum of matrices4 yields a

substochastic matrix, in which case Σ{fi}I is defined to be the corresponding result.

These definitions make SubStoch a Σs-UDC.

Proof. (Sketch). We first check that each hom-set SubStoch(A,B) is a strong Σ-

monoid using the definition of Σ given above. Its neutral element is the matrix with

all zero entries and the singleton axiom is trivially satisfied. Due to the lack of neg-

ative entries, both strong bracketing and strong flattening are immediately implied by

the fact that a converging series of positive real numbers is convergent no matter the

ordering of the sequence; subsummability is also straightforward to check.

To show that SubStoch is a Σs-enriched category we must check that composi-

tion is Σ-bilinear. If {fi}I ∈ SubStoch(A,B)∗ is summable then g ◦ Σ{fi}I is a

substochastic matrix for all g ∈ SubStoch(B,C). Given that matrix multiplication

distributes over matrix addition, the family {g◦fi}I is summable, with the result being

the substochastic matrix g ◦ Σ{fi}I . A similar argument can be used to prove that

composition is a Σ-homomorphism on the left as well, making it Σ-bilinear.

It is straightforward to check that (SubStoch,⊕,∅) is a symmetric monoidal

category and its monoidal unit ∅ is a zero object. Moreover, Σ{idA ⊕ 0, 0 ⊕ idB} '
idA⊕B holds trivially. Thus, SubStoch is a Σs-UDC, as claimed.

In the case of SubStoch objects A⊕ B are coproducts; however, A⊕ B is not a

categorical product since the diagonal morphism ∆: A→ A⊕ A would need to be

∆ =

(
idA

idA

)

which is not a substochastic matrix — each of its columns add up to 2.

According to Theorem 3.2.11, the category (SubStoch,⊕, ex) is partially traced.

Moreover, it is straightforward to check that, whenever U is a singleton set, exU(f)

is well-defined (due to the convergence criteria of the geometric series); then, due to

objects being finite sets, we may trace out each element of any arbitrary set U one by

one and, after to a finite number of applications of vanishing II:

exU(f) ' ex{u}(ex{u
′}(. . . (f)))

4An infinite family of matrices is summable iff it is entry-wise summable according to the notion of
absolute convergence on real numbers (see Example 2.1.5).
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so that we conclude (SubStoch,⊕, ex) is totally traced. Using Proposition 3.1.3 we

can induce a partial trace on Stoch using ex from SubStoch. Notice that the resulting

partially traced category (Stoch,⊕, êx) is not total since

êxu

(
0 0

1 1

)
= 0 +

∞∑
n=0

0 · (1)n · 1 = 0.

Quantum programs with classical control flow. The category CPTP was intro-

duced in Section 1.5.1 to capture both coherent quantum operations and non-coherent

ones (e.g. measurements) in a single framework. Along it, CPTR was introduced

to take up a similar role SubStoch plays with respect to Stoch. The objects in

CPTR are finite-dimensional C∗-algebras whose density operators represent mixed

quantum states: probability distributions of pure quantum states. It was discussed in

Section 1.5.1 that for any two C∗-algebrasA andB, if (ρ, ρ′) ∈ A⊕B is a density oper-

ator, then (ρ, ρ′) may be interpreted as probability distributions comprised of outcome
ρ

tr(ρ)
with probability tr(ρ) and outcome ρ′

tr(ρ′) with probability tr(ρ′). Consequently, a

morphism f ∈ CPTR(A,B ⊕C) may be understood to apply either fBA : A→ B or

fCA : A → C with some probability. Intuitively, it follows that the execution formula

in CPTR will correspond to the sum of probabilistic paths and, to a certain extent, it

will be similar to the case of SubStoch.

Proposition 3.2.17. A family of CPTR maps {fi}I ∈ CPTR(A,B)∗ is summable

iff its pointwise sum5 yields a CPTR map, in which case Σ{fi}I is defined to be the

corresponding result. Then, the monoidal category (CPTR,⊕, {0}) is a Σs-UDC.

Proof. (Sketch). We first check that each hom-set CPTR(A,B) is a strong Σ-monoid

using the definition of Σ given above. Its neutral element is the map that sends any

ρ ∈ A to the zero operator in B; the singleton axiom is trivially satisfied. Notice that

the pointwise addition of CPTR maps does not have additive inverses: considering that

morphisms f, g ∈ CPTR(A,B) send positive elements ρ ∈ A to positive elements in

B, the pointwise addition of CPTR maps satisfies

(f + g)(ρ) = f(ρ) + g(ρ) ≥ 0.

5A definition in terms of pointwise sums requires that the codomain B has a notion of summability
for infinite families. For finite families, addition is given by the standard addition in B and, since B
is a finite-dimensional C∗-algebra, it can be regarded as the direct sum of a finite collection of finite-
dimensional Hilbert spaces. Thus, the notion of infinite summability assigned to B corresponds to
the usual one derived from operator norm convergence in FdHilb (see Proposition 3.2.25 for further
details).
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Then, it follows that strong flattening and strong bracketing are implied by commuta-

tivity and associativity of addition. Subsummability is satisfied as well since if Σ{fi}I
is trace-reducing, summing up fewer maps J ⊆ I means that Σ{fj}J is guaranteed to

be trace-reducing.

It is immediate that composition distributes over pointwise addition, so that com-

position is Σ-bilinear. It is evident that {0} is a zero object and Σ{idA⊕ 0, 0⊕ idB} '
idA]B holds:

Σ{idA⊕0, 0⊕ idB}(a, b) = (idA⊕0)(a, b)+(0⊕ idB)(a, b) = (a, 0)+(0, b) = (a, b).

Thus, CPTR is a Σs-UDC, as claimed.

Objects A ⊕ B in CPTR are coproducts; however, A ⊕ B is not a categorical

product since the diagonal morphism ∆: A→ A⊕A is not trace-reducing. According

to Theorem 3.2.11, the category (CPTR,⊕, ex) is partially traced. In fact, CPTR is

totally traced, as previously shown by Selinger in [49] (where CPTR is denoted Q).

The trace given in [49] is not exactly ex, in the sense that it is not defined in terms of Σ-

monoids, but rather in terms of recursive applications of binary addition; nevertheless,

it is apparent that the two notions of trace coincide in their result. Alternatively, it

may be shown that (CPTR,⊕, ex) is totally traced employing a similar argument

to the one used for SubStoch, relying on the fact that objects in CPTR are finite-

dimensional. The proof is cumbersome due to the need to manage CPTR maps, but the

intuition is the same.

We may transport the trace in CPTR to (CPTP,⊕, êx) using Proposition 3.1.3

which defines:

êxU(f) =

g if exU(f) is trace-preserving

undefined otherwise.

As in the case of Stoch, this is not a totally traced category.

The fact that CPTR is Σs-enriched tells us that there is no interference between

the paths being added up in the execution formula; thus, this is a clear example of

“quantum data, classical control”. In contrast, in a quantum iterative loop we would

expect that paths may cancel out with each other, allowing for additive inverses of

morphisms in the category, preventing it from being Σs-enriched. Such is the case of

Contraction as will be shown in what remains of this chapter.
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Some traced monoidal functors. There is an obvious faithful functorM : FinPInj→
SubStoch where FinPInj is the subcategory of PInj where objects are restricted to

finite sets. The functor M acts as the identity on objects and maps partial injections

f : A→ B to the matrix M(f) of entries:

mba =

1 if b = f(a)

0 otherwise.

It is trivial to check that
∑

b∈Bmba = 1 if a ∈ dom(f) whereas
∑

b∈Bmba = 0 oth-

erwise, so that the matrix M(f) is indeed substochastic. It is straightforward to check

that M is a strict monoidal functor and, moreover, for each family f ∈ PInj(A,B)∗

we have that:

Σf ' f =⇒ ΣM f 'M(f)

so that the action of M on hom-sets is a Σ-homomorphism. Then, it is immediate to

show that M : (FinPInj,], ex) → (SubStoch,], ex) is a traced monoidal functor.

Intuitively, this corresponds to the fact that reversible (hence, deterministic) programs

are a subclass of probabilistic programs.

On a similar note, there is a faithful functor P : SubStoch → CPTR map-

ping finite sets A to C∗-algebras ⊕a∈AB(C). The details of how P acts on mor-

phisms are rather verbose to give explicitly, but the concept is simple: an element

(pa)A ∈ ⊕a∈AB(C) that is a positive operator can be represented as a vector of positive

real numbers and, if it has trace one (i.e. if it is a density operator) then
∑

a∈A pa = 1.

Consequently, the elements in the C∗-algebra P (A) correspond precisely to probabil-

ity distributions over A and it is straightforward to see how multiplying a substochas-

tic matrix f ∈ SubStoch(A,B) with the vector (pa)A ∈ R|A| would result in a

sub-probability6 distribution over B and, consequently, a positive operator in P (B)

with trace at most one. Following this intuition, it can be shown that substochas-

tic matrices A → B induce CPTR maps P (A) → P (B). It is immediate from the

definition of P on objects that P is a strict monoidal functor. Since summability in

CPTR is defined pointwise, it is straightforward to show that the action of P on hom-

sets is a Σ-homomorphism. Consequently, it follows that P : (SubStoch,], ex) →
(CPTR,⊕, ex) is a traced monoidal functor. Intuitively, this corresponds to the fact

that classical probabilistic programs are a subclass of quantum programs with classical

control flow.
6In a sub-probability distribution the probabilities are only required to sum up to a value smaller than

or equal to one.
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3.2.2 Towards an execution formula with additive inverses

The goal of the following sections is to prove that (FdContraction,⊕, ex) is a totally

traced category. Lemma 3.2.10 established that the execution formula on every Σ∗-

UDC automatically satisfies all axioms of partially traced categories but vanishing

II. The Σg-UDC (FdHilb,⊕, {0}) was shown not to be a partially traced category

with respect to the execution formula, due to vanishing II failing. The importance

of vanishing II is made apparent in the discussion from the previous section where,

for instance, SubStoch was shown to be totally traced via an induction argument

using vanishing II. In Section 3.2.4 sufficient conditions for the execution formula to

satisfy vanishing II are presented. But first, we shall explain why the proof strategy

from Theorem 3.2.11 — which establishes that Σs-UDCs satisfy vanishing II and are,

hence, partially traced — cannot be used in the general case where additive inverses are

allowed. The obvious answer is that, in general, weak Σ-monoids do not satisfy strong

flattening and strong bracketing, which are at the core of the proof of Theorem 3.2.11.

In essence, the proof made use of the fact that exU(exV (f)) and exU⊕V (f) add up the

same morphisms, but they do so in different arrangements. Unfortunately, it turns out

that there are examples of morphisms f in FdContraction where both exU(exV (f))

and exU⊕V (f) are well-defined and coincide but the ‘flattened’ family is not summable

and, hence, a proof strategy via the flattening and bracketing axioms will not work.

Such an example is given below.

In FdContraction, a family of morphisms A→ B will be considered summable

iff the sum of their operator norms converges (see Proposition 3.2.26 for more details);

in the particular case of morphisms C→ C this corresponds to absolute convergence.

Let f : C⊕C⊕C→ C⊕C⊕C be the following contraction:7

f =


f00 f01 f02

f10 f11 f12

f20 f21 f22

 =
1

2


−1 1 −1

1 −1 −1

−1 −1 1

 .

Multiplying the lower right 2×2 block of f with itself results in 1
2

id, so we can easily

7An easy way to check that this is indeed a contraction is to realise that it corresponds to the lower
right 3× 3 block of the matrix H ⊗H where H is the unitary matrix:

H =
1√
2

(
1 1
1 −1

)
.
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calculate exC⊕C(f):

exC⊕C(f) = f00 +

∞∑
n=0

(
f01 f02

)(f11 f12

f21 f22

)n(
f10

f20

)

= −1

2
+

1

2

∑
n even

(
1

2

)n
2

+
1

4

∑
n odd

(
1

2

)n−1
2

= −1

2
+

1

2

∞∑
n=0

(
1

2

)n
+

1

4

∞∑
n=0

(
1

2

)n
= 1.

On the other hand, we have that:

exC(f) =
1

2

(
−1 1

1 −1

)
+

1

4

(
−1

−1

)(
∞∑
n=0

1

2n

)(
−1 −1

)
=

(
0 1

1 0

)

so that exC(exC(f)) = 0 +
∑∞

n=0 1(0)n1 = 1. Thus, exC(exC(f)) ' exC⊕C(f) as

required by vanishing II. In contrast, their ‘flattened’ family contains all C→ C mor-

phisms arising from chains of the form:

f0wn ◦ . . . ◦ fw2w1
◦ fw10

where each wi is either subscript 1 or 2 and n is an arbitrary positive integer. It is

straightforward to check that, in general, there are 2k−1 chains of length k and each

chain of length k has absolute value 1

2k
, consequently, the sum of absolute values of all

elements in the flattened family is

∞∑
k=1

1

2k
· 2k−1 =

∞∑
k=1

1

2

and, hence, the sum is not absolutely convergent and the flattened family is not summable.

Thus, such a morphism f provides an example where the correctness of vanishing II

cannot be shown by means of the flattening and bracketing axioms. Instead, the fol-

lowing subsections build upon the definition of the kernel-image trace and the notion

of limit from Hausdorff commutative monoids to provide sufficient conditions for van-

ishing II to be satisfied in a Σw-UDC.

3.2.3 Σg-UDCs and their kernel-image trace

Section 3.1.2 discussed the kernel-image trace from [44]: a partial trace available on

every Ab-enriched category with finite biproducts. The proof that this is a categorical

trace appears in Proposition 3.17 from [44]; in it, the existence of biproducts is only
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required so that morphisms of type A⊕B → C⊕D may be uniquely characterised by

their matrix decomposition. However, as discussed in Proposition 3.2.6, the structure

of a Σ∗-UDC is sufficient for this unique decomposition to exist. Moreover, every

Σ-group (X,Σ) can be seen as an abelian group (X,Σ{−,−}), so we may regard any

Σg-enriched category as an Ab-enriched one by simply forgetting the action of Σ on

infinite families. Therefore, it is to be expected that any Σg-UDC is partially traced

using the kernel-image trace. The proof of this claim is sketched below, it follows the

same strategy used by the authors of [44] to prove that additive categories are partially

traced.

Notation 3.2.18. To improve readability, given a Σ-group (X,Σ) and elements x, y ∈
X , we use the shorthand x+y and x−y to refer to Σ{x, y} and Σ{x,−y} respectively.

Recall that, for an arbitrary morphism f : A⊕U → B⊕U in C, we write (k, i) 


TrU(f) iff there are morphisms i : A→ U and k : U → B in C such that the diagram

A U

U B

i

fUA

fBU

k

id−fUU (3.12)

commutes.

Proposition 3.2.19. Let C be a Σg-UDC. Then, the kernel-image trace (as defined in

Proposition 3.1.8) makes C a partially traced category.

Proof. (Sketch). First, let’s check that the kernel-image trace TrU is well-defined, i.e.

it does not depend on the choice of morphisms k and i. Assume (k, i) 
 TrU(f) and

(k′, i′) 
 TrU(f) then,

k ◦ fUA = k ◦ (id−fUU) ◦ i′ = fBU ◦ i′ = k′ ◦ fUA

and, similarly, fBU ◦ i = fBU ◦ i′, so

TrU(f) = fBA + fBU ◦ i = fBA + k ◦ fUA

is well-defined. The proof of each axiom of partially traced categories is sketched

below; for further details see Proposition 3.17 from [44].

• Naturality. If (k, i) 
 TrU(f), then (hk, ig) 
 TrU((h ⊕ id)f(g ⊕ id)) follows

trivially, and TrU((h⊕ id)f(g⊕ id)) = h ◦TrU(f) ◦ g due to composition being

Σ-bilinear.
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• Dinaturality. If (k, i) 
 TrU((id ⊕ g)f), then (kg, j) 
 TrU
′
(f(id ⊕ g)) where

j = fU ′A+fU ′U ′ ◦i; this follows from the fact that i = gj thanks to the left triangle

of diagram (3.12) commuting. That TrU((id⊕ g)f) = TrU
′
(f(id⊕ g)) follows

trivially from the definition of TrU , using the witnesses k and kg respectively.

The opposite direction of implication can be proven using a similar argument.

• Superposing. If (k, i) 
 TrU(f), then it is immediate from the matrix decompo-

sition of g⊕ f (see Remark 3.2.8) that (ιk, iπ) 
 TrU(g⊕ f) and TrU(g⊕ f) =

g ⊕ TrU(f).

• Yanking. The axiom follows trivially from the matrix decomposition of the sym-

metry σ (see Remark 3.2.9), with (id, id) 
 TrU(σ).

• Vanishing I. For every morphism f : A⊕Z → B⊕Z each of its components fZA,

fZZ and fBZ are zero morphisms due to Z being a zero object. Then, (0, 0) 


TrZ(f) and TrZ(f) = fBA + 0. Moreover, fBA = πBfιA = ρfρ−1 due to

Remark 3.2.3; therefore, TrZ(f) = ρfρ−1.

• Vanishing II. Let f : A ⊕ U ⊕ V → A ⊕ U ⊕ V and assume (k, i) 
 TrV (f);

vanishing II follows from uniqueness of the matrix decomposition along with

Σg-enrichment: if (i′, k′) 
 TrU(TrV (f)) then (i′′, k′′) 
 TrU⊕V (f) where

i′′UA = i′, k′′BU = k′, i′′V A = iV A + iV U i
′ and k′′BV = kBV + kUV k

′. Similarly,

if (i′′, k′′) 
 TrU⊕V (f) then (i′′UA, k
′′
BU) 
 TrU(TrV (f)) and, in both cases,

TrU(TrV (f)) = TrU⊕V (f) follows from algebraic manipulation using the Σg-

enrichment.

The left triangle of diagram (3.12) imposes that (k, i) 
 TrU(f) implies fUA =

(id−fUU) ◦ i. Thanks to the Σg-enrichment, composition distributes over addition,

and additive inverses are available for every morphism. Then, the previous equation

is equivalent to i = fUA + fUU ◦ i and we may expand this expression recursively,

obtaining:

i = fUA + fUU ◦ (fUA + fUU ◦ i) = . . . (3.13)

Thus, for any arbitrary n ∈ N we have that (k, i) 
 TrU(f) implies:
n∑
j=0

f jUUfUA = i− fn+1
UU ◦ i

n∑
j=0

fBUf
j
UU = k − k ◦ fn+1

UU
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which, when n → ∞, resembles the infinite sum from the execution formula (3.8).

This hints at a strategy to prove the validity of the execution formula as a categorical

trace: use the kernel-image trace as a stepping stone, and find out under which circum-

stances the above equation can be extended to an infinite sum. However, as n → ∞
these equations may become ill-defined unless we can show that fnUU ◦ i tends to zero.

With this situation in mind, Chapter 2 gave a brief introduction to topological monoids,

where limits may be taken, and Section 2.2.4 established the relationship between these

and Σ-monoids. Continuing this line of work, the following subsection presents a sub-

class of Σg-UDCs whose hom-sets are endowed with a topology, enabling us to use

nets and their limits to discuss the convergence of infinite sums.

3.2.4 A limit condition

This section introduces the notion of hom-convergence UDC which Hilb is an example

of. In Section 3.3.2, the special properties of these UDCs will be used to prove that

FdContraction is a totally traced category with respect to the execution formula.

Conceptually, the goal is to study Σg-UDCs whose hom-sets are Hausdorff abelian

groups, so that the notion of limit is readily available. The first idea that comes to

mind is to define HausAb-UDCs; unfortunately, the category HausAb of Hausdorff

abelian groups does not have tensor products and such an enrichment would be ill-

defined (see Remark 2.2.42). The alternative presented below is to consider Σg-UDCs

whose hom-sets are identified with Hausdorff abelian groups and whose composition is

continuous. To formalise this notion, we may use the faithful functor G : HausAb→
Σg that maps each (X, τ,+) ∈ HausAb to (X,Σ) ∈ Σg, where Σ is the extended

group operation induced by the topology (see Definition 2.2.40).

Definition 3.2.20. Let C be a Σg-UDC. Let Φ be a collection containing, a Σ-isomorphism8

ϕ : C(A,B) → G(XA,B) for each hom-object C(A,B) ∈ Σg, where XA,B is some

Hausdorff abelian group. The pair (C,Φ) is a hom-convergence UDC if composition

is continuous in each variable; more precisely: for each triple of objects A,B,C ∈ C

and morphisms f ∈ C(A,B) and g ∈ C(B,C), the Σ-homomorphisms

ϕ(− ◦ f)ϕ−1 : G(XB,C)→ G(XA,C)

ϕ(g ◦ −)ϕ−1 : G(XA,B)→ G(XA,C)

are both in the image of G : HausAb→ Σg.
8A Σ-isomorphism is simply an isomorphism in a Σ∗ category, i.e. a Σ-homomorphism with an

inverse Σ-homomorphism.
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Recall that composition in a Σ∗-enriched category is a Σ-homomorphism C(B,C)⊗
C(A,B) → C(A,C) and, hence, by the definition of the tensor product in Σ∗ cat-

egories (see Section 2.1.5), both − ◦ f and g ◦ − are Σ-homomorphisms. More-

over, G acts as the identity on morphisms so, if as required by the definition of hom-

convergence UDCs there is some continuous function f̂ satisfying that G(f̂) = ϕ(− ◦
f)ϕ−1, then it is justified to say that − ◦ f is continuous. In the framework of hom-

convergence UDCs we may recover the notion of limits from topology.

Notation 3.2.21. Recall that G : HausAb → Σg does not change the underlying set

of a given Hausdorff abelian group. Thus, in a hom-convergence UDC (C,Φ), every

morphism f ∈ C(A,B) corresponds to a point ϕ(f) in the corresponding Hausdorff

abelian group XA,B. Let α : D → C(A,B) be a net; we say that α has a limit point f

iff lim (ϕ ◦α) ' ϕ(f) using the notion of limits from the Hausdorff space XA,B. Even

though (strictly speaking) C(A,B) is not a Hausdorff abelian group, we recover the

notation limα ' f to indicate that the limit point of α exists and is f ∈ C(A,B). The

beginning of this section will deal with the limit of certain sequences — recall that a

sequence is a net defined on the directed set (N,≤). For a sequence s : N→ C(A,B)

we will use the shorthand

lim
n→∞

s(n)

to refer to its limit point (if it exists).

It is possible to define a topology on hom-sets of Hilb so that the category is

a hom-convergence UDC. An immediate candidate is the topology induced by the

operator norm, but such a topology presents problems in the infinite-dimensional case

when we attempt to prove certain results, such as Lemma 3.3.10. Instead, we may use

the strong operator topology, defined below. Any reader only interested in the finite-

dimensional case may skip to Proposition 3.2.25, where it is shown that the strong

operator topology in FdHilb coincides with the standard operator norm topology.

Definition 3.2.22. Every hom-set Hilb(A,B) can be assigned a strong operator topol-

ogy denoted τSOT whose base is comprised of the following open sets:

Bf
S,ε = {g ∈ Hilb(A,B) | ∀a ∈ S, ||f(a)− g(a)|| < ε} (3.14)

where f ∈ Hilb(A,B), S is a finite set of vectors in A and ε > 0.

It is not immediate that the definition above provides a valid base; the proof is

discussed below. For any g ∈ Bf
S,ε it follows that ε− ||f(a)− g(a)|| > 0 for all a ∈ S;
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let ε̂ be

ε̂ = min {ε− ||f(a)− g(a)||}a∈S.

Then, for any h ∈ Bg
S,ε̂ and for all a ∈ S we have that

||g(a)− h(a)|| < ε̂ ≤ ε− ||f(a)− g(a)||

and using the triangle inequality we obtain:

||f(a)− h(a)|| ≤ ||f(a)− g(a)||+ ||g(a)− h(a)|| < ε

implying h ∈ Bf
S,ε. Therefore,

g ∈ Bf
S,ε =⇒ Bg

S,ε̂ ⊆ Bf
S,ε. (3.15)

Assume g is a map belonging to two different open sets g ∈ Bf
S,ε and g ∈ Bf ′

S′,ε′ and

define the corresponding ε̂ and ε̂′ as above. It is straightforward to check that

Bg

S∪S′,min(ε̂,ε̂′) ⊆ Bg
S,ε̂ ∩B

g

S′,ε̂′

and, thanks to (3.15), we may conclude that:

g ∈ Bf
S,ε ∩B

f

S′,ε′ =⇒ Bg

S∪S′,min(ε̂,ε̂′) ⊆ Bf
S,ε ∩B

f

S′,ε′

proving the base is valid (see Definition 2.2.2).

Proposition 3.2.23. The strong operator topology τSOT on every hom-set Hilb(A,B)

is Hausdorff.

Proof. Let f, g ∈ Hilb(A,B) so that f 6= g and find an element a ∈ A such that

f(a) 6= g(a); fix ε = 1
2
||f(a)− g(a)||. Suppose there is a map h both in Bf

{a},ε and

Bg
{a},ε then:

||f(a)− g(a)|| ≤ ||f(a)− h(a)||+ ||h(a)− g(a)|| < 2ε

and we reach a contradiction ||f(a)− g(a)|| < ||f(a)− g(a)||. Therefore, Bf
{a},ε and

Bg
{a},ε must be disjoint, implying that the topology is Hausdorff.

Remark 3.2.24. In the literature, the strong operator topology is often defined in terms

of a subbase: a collection C of sets that induces a base by taking all finite intersections

of elements in C. Such a subbase comprises all open sets Bf
S,ε where S is a singleton

set; let τ ′SOT denote the topology generated by this subbase. Every open set in τ ′SOT

is trivially an open set in τSOT, since every element in the subbase for τ ′SOT is in τSOT.

Moreover, Bf
S,ε = ∩a∈SBf

{a},ε so the converse also holds, implying that τ ′SOT = τSOT.
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Proposition 3.2.25. In hom-sets FdHilb(A,B), the strong operator topology τSOT is

equivalent to the operator norm9 topology τop whose base is comprised of the following

open sets:

Bf
ε = {g ∈ FdHilb(A,B) | ||f − g||op < ε} (3.16)

for every f ∈ FdHilb(A,B) and ε > 0.

Proof. We must show that τSOT ⊆ τop and τop ⊆ τSOT. Thanks to Proposition 2.2.3, to

show that τ ⊆ τ ′ it is sufficient to prove, for their respective bases B and B′, that for

every x ∈ X and B ∈ B:

x ∈ B =⇒ ∃B′ ∈ B′ s.t. B′ ⊆ B and x ∈ B′.

First, we show that τSOT ⊆ τop. For each element Bf
S,ε of the base for τSOT and each

g ∈ Bf
S,ε define ε′ = ε−||f − g||op. Consider the element Bg

ε′ of the base for τop so that

if h ∈ Bg

ε′ then ||g − h||op < ε− ||f − g||op and, consequently,

||f − h||op ≤ ||g − h||op + ||f − g||op < ε

implying that h ∈ Bf
S,ε due to the definition of the operator norm. Consequently,

Bg

ε′ ⊆ Bf
S,ε and, trivially, g ∈ Bg

ε′; thus, τSOT ⊆ τop according to Proposition 2.2.3.

To show that τop ⊆ τSOT, let S be an orthonormal basis of A. Thanks to A being

finite-dimensional, we have that every f ∈ FdHilb(A,B) satisfies:

||f ||op ≤
√
|S| ·max

e∈S
||f(e)|| (3.17)

For every open set Bf
ε from the base for τop and every g ∈ Bf

ε the base element Bg

ε′

where ε′ = ε − ||f − g||op satisfies that Bg

ε′ ⊆ Bf
ε and g ∈ Bg

ε′ . Let ε̂ = ε′√
|S|

and

consider the open set Bg
S,ε̂ from the base for τSOT so that if h ∈ Bg

S,ε̂ then:

∀e ∈ S, ||g(e)− h(e)|| < ε′√
|S|

which implies ||g − h||op < ε′ due to (3.17). Consequently, Bg
S,ε̂ ⊆ Bg

ε′ ⊆ Bf
ε and,

trivially, g ∈ Bg
S,ε̂; thus, τop ⊆ τSOT according to Proposition 2.2.3, completing the

proof.

9Recall that the operator norm ||f ||op of a bounded linear map f ∈ Hilb(A,B) is the infimum of
the subset of real numbers c ∈ R that satisfy:

∀v ∈ A, ||f(v)|| ≤ c · ||v||.
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The following proposition establishes that Hilb is a hom-convergence UDC when

the strong operator topology is used. A similar proof can be used to show that Hilb

with the operator norm topology is a hom-convergence UDC. The reason for using

the strong operator topology is that it will later enable us to prove results (such as

Lemma 3.3.10) that do not hold in Hilb if the operator norm topology is used.

Proposition 3.2.26. Hilb is a hom-convergence UDC, with the topology on each hom-

set Hilb(A,B) given by the strong operator topology.

Proof. Pointwise addition of bounded linear maps makes Hilb(A,B) an abelian group;

we now prove that the strong operator topology makes it a Hausdorff abelian group.

Recall from Proposition 2.2.10 that +: Hilb(A,B) ×Hilb(A,B) → Hilb(A,B) is

continuous iff for every pair f, g ∈ Hilb(A,B) and every open set B from the base

for τSOT the following implication holds:

f+g ∈ B =⇒ ∃ open sets U 3f and V 3g s.t. + (U, V ) ⊆ B.

Thanks to (3.15) it is sufficient to prove this for open sets B of the form Bf+g
S,ε with

arbitrary S and ε since any other Bh
S′,ε′ containing f+g will contain some open set of

the form Bf+g

S′,ε̂ . For every pair f, g ∈ Hilb(A,B) and every S and ε we have that

(h, h′) ∈ Bf
S,ε/2 ×B

g
S,ε/2 =⇒ h+ h′ ∈ Bf+g

S,ε . (3.18)

due to the following, which holds for all a ∈ S:

||(f + g)(a)− (h+ h′)(a)|| ≤ ||f(a)− h(a)||+ ||g(a)− h′(a)|| < ε
2

+ ε
2
.

Therefore, +(Bf
S,ε/2, B

g
S,ε/2) ⊆ Bf+g

S,ε , implying addition is continuous. Moreover,

every open set Bf
S,ε satisfies −(B−fS,ε ) = Bf

S,ε, so the inversion map is continuous ac-

cording to Proposition 2.2.10. Therefore, each hom-set Hilb(A,B) endowed with the

strong operator topology is a Hausdorff abelian group.

Recall that any Hausdorff abelian group can be made into a Σ-group via the functor

G : HausAb → Σg which does not alter the underlying set; thus, every Hilb(A,B)

is a Σ-group. To conclude that the Σg-enrichment on Hilb is well-defined, we need

to verify that composition is Σ-bilinear. According to Lemma 2.2.39, it is sufficient to

prove that g ◦− and−◦ f are continuous monoid homomorphisms for every choice of

bounded linear maps f and g. It is immediate that composition is a group homomor-

phism on both variables due to addition being defined pointwise; below we show that

composition is also continuous in each variable.
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• For every f ∈ Hilb(A,B) and g ∈ Hilb(B,C) with g 6= 0 it follows from g

being a bounded linear map that

h ∈ Bf
S,ε/||g||op

=⇒ g ◦ h ∈ Bg◦f
S,ε

due to

||g(f(a))− g(h(a))|| ≤ ||g||op · ||f(a)− h(a)|| < ||g||op ·
ε
||g||op

for all a ∈ S and, hence,

(g ◦ −)
(
Bf
S,ε/||g||op

)
⊆ Bg◦f

S,ε ;

whereas if g = 0 then (0 ◦−)(Bf
S,ε) = {0} so, trivially, (g ◦−)(Bf

S,ε) ⊆ Bg◦f
S,ε as

well. Consequently, since every open set from the base for τSOT containing g ◦ f
will contain some open set of the form Bg◦f

S,ε — see the discussion of (3.15) — it

follows from Proposition 2.2.10 that g ◦ − is continuous.

• Alternatively,

h ∈ Bg
f(S),ε =⇒ h ◦ f ∈ Bg◦f

S,ε

follows trivially, so − ◦ f is continuous as well.

Finally, it is immediate that (Hilb,⊕, {0}) is a Σg-UDC since its monoidal product is

a biproduct. Therefore, Hilb — or more precisely (Hilb,Φ), where Φ is a collection

of identity Σ-homomorphisms — is a hom-convergence UDC.

Corollary 3.2.27. FdHilb is a hom-convergence UDC, with the topology on each

hom-set Hilb(A,B) given by the operator norm topology.

Proof. The claim follows from the same argument provided in the previous proof,

thanks to the equivalence in the finite-dimensional case between the strong operator

topology and the operator norm topology, as established in Proposition 3.2.25.

Notice that the definition of hom-convergence UDC may be reproduced for Σft-

enriched UDCs. However, the motivation behind hom-convergence UDCs is that we

may consider the limit of the recursive equation (3.13) that arises in categories with a

kernel-image trace, and such a trace assumes the existence of additive inverses in its

definition. The following lemma illustrates how the execution formula arises from the

kernel-image trace in a hom-convergence UDC.
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Lemma 3.2.28. Let C be a hom-convergence UDC and let f : A ⊕ U → B ⊕ U be

a morphism in C satisfying (k, i) 
 TrUki(f) for some morphisms k ∈ C(U,B) and

i ∈ C(A,U). If f satisfies either

lim
n→∞

fnUUfUA ' 0 or lim
n→∞

fBUf
n
UU ' 0

then the sequence of partial sums s : N→ C(A,B)

s(n) =

n∑
j=0

fBUf
j
UUfUA

is convergent, with

lim
n→∞

s(n) ' TrUki(f)− fBA.

Proof. Recall from the discussion of equation (3.13) that for any n ∈ N we have:

n∑
j=0

f jUUfUA = i− fn+1
UU ◦ i.

In particular, the sequence α : N→ C(A,B) given by

α(n) = s(n) + fBUf
n+1
UU ◦ i

is the constant function n 7→ fBU ◦ i and, hence,

lim
n→∞

α(n) ' fBU ◦ i = TrUki(f)− fBA.

Take the claim’s assumption that lim fBUf
n
UU ' 0; then, because composition in C

is continuous in each variable,

lim
n→∞

fBUf
n
UU ◦ i ' 0

and we may use that + and the inversion map are continuous to obtain:

lim
n→∞

(α(n)− fBUfn+1
UU ◦ i) ' lim

n→∞
α(n)− lim

n→∞
fBUf

n+1
UU ◦ i =

(
TrUki(f)− fBA

)
− 0

which simplifies to:

lim
n→∞

s(n) ' TrUki(f)− fBA.

If we assume lim fnUUfUA ' 0 instead, we may use a similar argument along with the

recursive expression of k to obtain the same result, completing the proof.
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Notice that the lemma above only implies the existence of the limit of a sequence,

whereas the Σ function of a hom-convergence UDC is defined (according to the functor

G : HausAb → Σg) in terms of the limit of a net; this is meant to prevent different

orderings of the summands to yield different results. Since the execution formula

is defined in terms of the Σ function, we need to upgrade the previous lemma from

sequences to nets. To do so, we need to impose an additional condition.

Definition 3.2.29. Let C be a hom-convergence UDC and let f : A⊕ U → B ⊕ U be

a morphism in C. Let (F(N),⊆) be the directed set of finite subsets of N. For any

J ∈ F(N), let

J̃ = {n ∈ N | n < max(J) and n 6∈ J}.

If f satisfies both

lim
J∈F(N)

Σ{fBUf jUUfUA}J̃ ' 0 (3.19)

and either

lim
n→∞

fnUUfUA ' 0 or lim
n→∞

fBUf
n
UU ' 0

we say f is U -tail vanishing.

For any finite set J ∈ F(N), its corresponding J̃ as defined above can be seen as

the set of ‘gaps’ that are left by J when enumerating from 0 to max(J). If J ⊆ J ′ then

min(J̃) ≤ min(J̃ ′) (or J̃ ′ 6= ∅) so condition (3.19) may be phrased as follows: as the

first occurence of a gap tends towards infinity, the sum of the corresponding missing

terms approaches zero.

Lemma 3.2.30. Let C be a hom-convergence UDC and let f : A ⊕ U → B ⊕ U be

a U -tail vanishing morphism in C satisfying (k, i) 
 TrU(f) for some morphisms

k ∈ C(U,B) and i ∈ C(A,U). Then, the execution formula on f :

exU(f) = Σ
(
{fBA} ] {fBUfnUUfUA}N

)
is well-defined and

exU(f) = TrUki(f).

Proof. The previous lemma established that the sequence

s(n) =

n∑
j=0

fBUf
j
UUfUA
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is convergent under the claim’s assumptions, with lim s ' TrUki(f)− fBA. It is evident

that s ◦max: F(N)→ C(A,B) is a subnet of s, so

lim
J∈F(N)

s(max(J)) ' TrUki(f)− fBA.

Let σ : F(N)→ C(A,B) be the net of partial sums of the family

{fBUfnUUfUA}N.

For any J ∈ F(N) we may write:

σ(J) = s(max(J))− {fBUf jUUfUA}J̃

and, using that f satisfies (3.19) along with the fact that + and the inversion map are

continuous, we obtain

lim
J∈F(N)

σ(J) ' lim
J∈F(N)

s(max(J))− lim
J∈F(N)

{fBUf jUUfUA}J̃ '
(
TrUki(f)− fBA

)
− 0

implying that limσ ' TrUki(f)− fBA. Let σ̂ be the net of partial sums of the family

{fBA} ] {fBUfnUUfUA}N

and recall that, according to the definition of hom-convergence UDC and, in particular,

that of the functor G : HausAb→ Σg,

Σ
(
{fBA} ] {fBUfnUUfUA}N

)
' lim σ̂

and, hence, exU(f) ' lim σ̂. Moreover, it is immediate that lim σ̂ ' fBA + limσ so

that exU(f) ' TrUki(f), as claimed.

The conditions imposed in the definition of tail vanishing morphisms are quite

strong but, as shown in the next section, they are satisfied by every morphism in

FdContraction. This will be sufficient to prove that the execution formula makes

FdContraction a traced monoidal category. Furthermore, it will be shown that the

category LSI≤ of linear shift invariant quantum processes over discrete time (see Sec-

tion 3.4) is also traced using the corresponding execution formula.

3.3 Quantum iterative loops and the execution formula

The focus of this section is on categories of Hilbert spaces and contractions. Contrac-

tions have some useful properties with regards to convergence. The section begins by

introducing some well-known results that will be essential in the following discussions.
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3.3.1 Properties of contractions in Hilb (Preamble)

The following results are well-known in the literature of contractions and they will be

essential in later discussions within this section. The results in this subsection hold for

arbitrary Hilbert spaces, thus including infinite-dimensional ones.

Every contraction can be seen as a component of an isometry acting on larger

Hilbert spaces; such an isometry is commonly known as a dilation. Other dilations

of contractions are known (perhaps the most widely known being Sz.-Nagy’s dilation

theorem: Theorem 4.1 from [50]); the one established in the proposition below is

arguably the simplest dilation and it will be sufficient for our purposes.

Proposition 3.3.1 (Halmos [30]). Let f ∈ Contraction(A,B) and define Df =√
id− f †f . Then, the linear map

g =

(
−f † Df

Df† f

)

is an isometry.

Proof. In Section I.3 from [50] it is shown that D†f = Df and f ◦Df = Df† ◦f . Then,

g†g =

(
−f Df†

Df f †

)(
−f † Df

Df† f

)

=

(
ff † +D2

f†
Df†f − fDf

f †Df† −Dff
† D2

f + f †f

)

=

(
ff † + id− ff † fDf − fDf

f †Df† − f †Df† id− f †f + f †f

)

=

(
id 0

0 id

)

and, hence, g†g = id, implying that g is an isometry.

Contractions satisfy a useful property in terms of the sum of the norm of its com-

ponents, as established below.

Proposition 3.3.2. For any morphism f ∈ Contraction(A ⊕ A′, B ⊕ B′) and any

a ∈ A,

||fBA(a)||2 + ||fB′A(a)||2 ≤ ||a||2
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Proof. Suppose there is a vector a ∈ A such that

||fBA(a)||2 + ||fB′A(a)||2 > ||a||2.

Then, the vector ιA(a) =

(
a

0

)
in A⊕ A′ satisfies:

||f(ιA(a))||2 =

∣∣∣∣∣
∣∣∣∣∣
(
fBA(a)

fB′A(a)

)∣∣∣∣∣
∣∣∣∣∣
2

= ||fBA(a)||2 + ||fB′A(a)||2 > ||a||2 = ||ιA(a)||2.

But f is a contraction and we have reached a contradiction ||f(ιA(a))|| > ||ιA(a)||.
Therefore, it must be that ||fBA(a)||2 + ||fB′A(a)||2 ≤ ||a||2 for all a ∈ A.

Corollary 3.3.3. For any f ∈ Contraction(A⊕ A′, B ⊕B′),

∀a ∈ A, ||fBA(a)|| = ||a|| =⇒ fB′A = 0

Proof. The previous proposition establishes that for all a ∈ A:

||fB′A(a)||2 ≤ ||a||2 − ||fBA(a)||2.

Then, if ||fBA(a)|| = ||a|| we have that ||fB′A(a)|| ≤ 0 for all a ∈ A and therefore fB′A is

the zero map a 7→ 0.

Contractions have a canonical decomposition into a direct sum of a unitary com-

ponent and a nonunitary component, as established in Theorem 3.3.7. The following

definitions and proposition build towards this result.

Definition 3.3.4. Let f ∈ Hilb(H,H) and let H0 ⊆ H be a closed subspace; let H1

be the orthogonal complement of H0 so that H = H0 ⊕ H1. If for every v ∈ H0 and

every v′ ∈ H1 it is satisfied that f(v) ∈ H0 and f(v′) ∈ H1, we say that H0 reduces f .

In such a case, f may be decomposed as follows:

f = f0 ⊕ f1 =

(
f0 0

0 f1

)
where f0 : H0 → H0 and f1 : H1 → H1.

Equivalently, reducing subspaces may be defined as subspaces that are invariant

both on f and on its adjoint f †.

Proposition 3.3.5. Let f ∈ Hilb(H,H) and let H0 ⊆ H be a closed subspace; H0

reduces f iff for all v ∈ H0 both f(v) ∈ H0 and f †(v) ∈ H0.
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Proof. Let H1 be the orthogonal complement of H0 and decompose f as a matrix:

f =

(
f00 : H0 → H0 f01 : H1 → H0

f10 : H0 → H1 f11 : H1 → H1

)
.

Assume f(v) ∈ H0 for all v ∈ H0, it follows that π1f(H0) = {0} so that f10 = 0;

similarly, if f †(v) ∈ H0 for all v ∈ H0 then f †01 = 0 and therefore f01 = 0. Thus,

f = f00 ⊕ f11 and for all v′ ∈ H1 it is satisfied that f(v′) ∈ H1, implying H0 reduces

f . Conversely, if H0 reduces f it is immediate that f †(v) = f †00(v) ∈ H0 for all

v ∈ H0.

Definition 3.3.6 (Section I.3 from [50]). A contraction f ∈ Contraction(H,H) is

completely nonunitary if there is no reducing subspace H ′ ⊆ H such that the compo-

nent f ′ : H ′ → H ′ is unitary.

Theorem 3.3.7 (Theorem 3.2 from [50]). Every contraction f ∈ Contraction(H,H)

has a reducing subspace H0 inducing a decomposition H = H0 ⊕ H1 such that the

component f0 : H0 → H0 is unitary and the component f1 : H1 → H1 is completely

nonunitary. This decomposition is uniquely determined, with

H0 = {v ∈ H | ∀n ∈ N, ||fn(v)|| = ||v|| =
∣∣∣∣f †n(v)

∣∣∣∣}.
Proof. The proof is paraphrased from [50] (Theorem 3.2) and included here for com-

pleteness. For any contraction f ∈ Contraction(H,H) let Df : H → H be the

linear map Df =
√

id− f †f and let Kf = ker(Df ), which is evidently a closed

subspace of H and thus Kf ∈ Hilb. Notice that Df is self-adjoint and for all v ∈ H:

||Df (v)||2 = 〈v |D2
f (v)〉 = 〈v |(id− f †f)(v)〉 = 〈v |v〉−〈f(v)|f(v)〉 = ||v||2−||f(v)||2

and, hence, v ∈ Kf if and only if ||f(v)|| = ||v|| so Kf may be equivalently defined as

the Hilbert space:

Kf = {v ∈ H | ||f(v)|| = ||v||}. (3.20)

Moreover, if v ∈ Kf then D2
f (v) = (id− f †f)(v) = 0 and we obtain the implication:

||f(v)|| = ||v|| =⇒ f †f(v) = v. (3.21)

Let H0 be the following subspace:

H0 =

∞⋂
n=0

(Kfn ∩Kf†n)
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which is a Hilbert space since any intersection of closed subspaces is closed. If we

expand the right hand side using (3.20), we obtain the definition of H0 given in the

claim. For any v ∈ H0 and all n ∈ N:

||fnf(v)|| =
∣∣∣∣fn+1(v)

∣∣∣∣ = ||v|| = ||f(v)||∣∣∣∣f †nf(v)
∣∣∣∣ =

∣∣∣∣f †n−1f †f(v)
∣∣∣∣ =

∣∣∣∣f †n−1(v)
∣∣∣∣ = ||v|| = ||f(v)||

where the third equality of the second equation uses (3.21). Therefore, f(v) ∈ H0 and

a similar argument shows that f †(v) ∈ H0, implying that H0 reduces f .

Let H1 be the orthogonal complement of H0 and let f = f0 ⊕ f1 according to the

decomposition H = H0 ⊕ H1. For any v ∈ H0, we have that v ∈ Kf so implica-

tion (3.21) establishes that f †0f0 = idH0
; conversely, we have that v ∈ Kf† so that

f0f
†
0 = idH0

, implying f0 is unitary. On the other hand, let H2 ⊆ H1 be a closed

subspace that reduces f and assume the corresponding f2 : H2 → H2 is unitary. Then,

for every v ∈ H2 and n ∈ N we would have ||fn(v)|| = ||v|| =
∣∣∣∣f †n(v)

∣∣∣∣ and, hence,

v ∈ H0; but H2 ⊆ H1 and H1 is orthogonal to H0, so we reach a contradiction. There-

fore, we conclude that f2 cannot be unitary and, hence, f1 is completely nonunitary, as

claimed.

Finally, the following result will be essential to proving that (FdContraction,⊕, ex)

is a totally traced category.

Proposition 3.3.8 (Bartha [10]). Let f ∈ Isometry(A⊕U,B ⊕U) where id−fUU is

invertible, then

h = fBA + fBU(id−fUU)−1fUA

is an isometry.

Proof. The proof is paraphrased from [10] and included here for completeness. For

the sake of brevity, use the following shorthand for the components of f :

f =

(
a b

c d

)
=

(
fBA fBU

fUA fUU

)
Considering that f is an isometry, we have that f †f = id; this gives us the following

equalities:

a†a+ c†c = idA (3.22)

a†b+ c†d = 0AU (3.23)

b†a+ d†c = 0UA (3.24)

b†b+ d†d = idU . (3.25)
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To prove that h is an isometry we show that h†h = id, where

h†h = (a+ b(id− d)−1c)†(a+ b(id− d)−1c).

Using that (g ◦ f)† = f † ◦ g† and ((id− g)−1)† = (id− g†)−1, h†h is equal to:

a†a+ a†b(id− d)−1c+ c†(id− d†)−1b†a+ c†(id− d†)−1b†b(id− d)−1c.

Using (3.23) and (3.24), this is equal to:

a†a− c†d(id− d)−1c− c†(id− d†)−1d†c+ c†(id− d†)−1b†b(id− d)−1c

and, thus, h†h = a†a+ c†gc where

g = (id− d†)−1b†b(id− d)−1 − d(id− d)−1 − (id− d†)−1d†.

Thanks to (3.22), to prove that h†h = id it is sufficient to show that g = id. We show

g = id by applying (id − d†) ◦ − and − ◦ (id − d) to both sides of the equation, then

rearranging the terms to reach (3.25):

g = id ⇐⇒ b†b− (id− d†)d− d†(id− d) = (id− d†)(id− d)

⇐⇒ b†b− d+ d†d− d† + d†d = id− d− d† + d†d

⇐⇒ b†b+ d†d = id

Consequently, h†h = id and h is an isometry, as claimed.

Corollary 3.3.9. Let f ∈ Contraction(A ⊕ U,B ⊕ U) where id−fUU is invertible,

then

h = fBA + fBU(id−fUU)−1fUA

is a contraction.

Proof. Proposition 3.3.1 established that for every contraction f the following linear

map:

g =

(
−f † Df

Df† f

)
is an isometry, where Df =

√
id− f †f . Next, we decompose g : B⊕U⊕A⊕U →

A⊕U⊕B⊕A as follows:

g =

(
a : B⊕U⊕A→ A⊕U⊕B b : U → A⊕U⊕B

c : B⊕U⊕A→ U fUU

)
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Since g is an isometry and id−fUU is invertible by assumption, the previous proposition

implies that:

h′ = a+ b(id−fUU)−1c

is an isometry. It is straightforward to check that h = πB ◦h′ ◦ ιA where the injection ιA
is an isometry and the projection πB is a contraction. Therefore, h is a contraction.

3.3.2 The execution formula in FdContraction

The goal of this subsection is to prove that (FdContraction,⊕, ex) is a (totally)

traced monoidal category, where ex is the execution formula. To do so, the notions of

hom-convergence UDC and U -tail vanishing morphisms introduced in Section 3.2.4

will be used. In essence, the strategy is to derive the validity of ex as a categorical trace

via the kernel-image trace on FdHilb. Once the result that (FdContraction,⊕, ex)

is a totally traced category has been established, it follows that FdIsometry and

FdUnitary are themselves totally traced; the latter results were previously proven by

Bartha [10] using the framework of matrix iteration theories.

Before the formal discussion begins, it is worth presenting a simple example that

will illustrate some of the intricacies of these results. Let the linear map H : C⊕C→
C⊕C be described by the matrix:

H =

(
h00 h01

h10 h11

)
=

1√
2

(
1 1

1 −1

)
. (3.26)

Notice that H is unitary and hence a morphism in FdContraction. We may evaluate

the execution formula:

exC(H) = Σ ({h00} ] {h01h
n
11h10}N) = 1√

2
+

∞∑
n=0

1√
2

(
− 1√

2

)n
1√
2

and realise that exC(H) = 1, which is a unitary C → C. Similarly, exC(σHσ) =

1 as well and exC(σH) = −1 = exC(Hσ), where σ is the symmetric braiding in

(FdContraction,⊕, {0}). What is peculiar about this situation is that, if we were to

sum all elements from exC(σHσ) but h11, the result is larger than 1:

Σ{h10h
n
00h01}N =

∞∑
n=0

1√
2

(
1√
2

)n
1√
2

= 1
2−
√

2
> 1

and it is not until we add in h11 = − 1√
2

that the result becomes 1. The key insight to

be drawn from this example is that, even when the result of the execution formula is a

contraction, its partial sums need not be contractions.
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The following lemma establishes that every contraction in Hilb satisfies one of the

conditions in the definition of tail vanishing morphisms (Definition 3.2.29).

Lemma 3.3.10. Let f : A ⊕ U → B ⊕ U be a contraction in the hom-convergence

UDC Hilb defined in terms of the strong operator topology (see Proposition 3.2.26).

Then,

lim
n→∞

fBUf
n
UU ' 0.

Proof. Recall that this limit exists iff for every finite set of vectors S ⊆ U and every

ε > 0 there is some n such that for all k ≥ n we have that fBUfkUU ∈ B0
S,ε,

10 i.e. we

need to show that:

k ≥ n =⇒ ∀u ∈ S,
∣∣∣∣fBUfkUU(u)

∣∣∣∣ < ε (3.27)

To do so, the first step will be to show that the following is satisfied:

lim
n∈N

(∣∣∣∣fnUU(u)
∣∣∣∣2 − ∣∣∣∣fn+1

UU (u)
∣∣∣∣2) ' 0. (3.28)

For every u ∈ U , the collection of real numbers Su = {
∣∣∣∣fnUU(u)

∣∣∣∣2}N is bounded from

below by 0 and, hence, by completeness of the total order (R,≤), the infimum of the

set Su exists. Thus, for each ε > 0 there is some k ∈ N such that∣∣∣∣fkUU(u)
∣∣∣∣2 < inf(Su) + ε

since otherwise inf(Su)+ε would be a lower bound to Su greater than inf(Su), con-

tradicting the definition of infimum. Considering that fUU is necessarily a contraction,

every k′ ≥ k will satisfy∣∣∣∣∣∣fk′UU(u)
∣∣∣∣∣∣2 − inf(Su) ≤

∣∣∣∣fkUU(u)
∣∣∣∣2 − inf(Su)

and, consequently,
∣∣∣∣∣∣fk′UU(u)

∣∣∣∣∣∣2 − inf(Su) < ε so that in the standard topology on R we

have that:

lim
n∈N

∣∣∣∣fnUU(u)
∣∣∣∣2 ' inf(Su).

The previous argument is commonly known as the monotone convergence theorem.

Moreover, it is trivial to check that inf(Su) = inf(SfUU (u)) for every u ∈ U and due to

addition (and negation) of real numbers being continuous:

lim
n∈N

(∣∣∣∣fnUU(u)
∣∣∣∣2 − ∣∣∣∣fn+1

UU (u)
∣∣∣∣2) ' inf(Su)− inf(SfUU (u)) = 0

10As established by Proposition 2.2.18 and implication (3.15), it is sufficient to consider only the
open sets from the base for τSOT ‘centered’ at 0, i.e. of the form B0

S,ε for some S and ε.
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and, hence, equation (3.28) is satisfied.

Proposition 3.3.2 establishes that for all u ∈ U :

||fBU(u)||2 ≤ ||u||2 − ||fUU(u)||2

and, in particular, for every n ∈ N, we have that fnUU(u) ∈ U and∣∣∣∣fBUfnUU(u)
∣∣∣∣2 ≤ ∣∣∣∣fnUU(u)

∣∣∣∣2 − ∣∣∣∣fn+1
UU (u)

∣∣∣∣2.
Since the limit of the right hand side is known to be zero (3.28) and the sequence of

real numbers
∣∣∣∣fBUfnUU(u)

∣∣∣∣2 is bounded from below by 0, it follows that:

lim
n→∞

∣∣∣∣fBUfnUU(u)
∣∣∣∣2 ' 0.

Therefore, for each u ∈ U and each ε > 0 we can find an nu ∈ N such that every

k ≥ nu satisfies
∣∣∣∣fBUfkUU(u)

∣∣∣∣2 < ε2. For any given finite set of vectors S ⊆ U we can

take n = max {nu | u ∈ S} so that (3.27) is satisfied, completing the proof.

The previous lemma applies to contractions between arbitrary Hilbert spaces, in-

cluding the case of infinite dimensions. In contrast, the rest of the results in this

subsection have only been established for the case of finite-dimensional spaces and

Section 3.3.4 discusses the obstacles in the way of their generalisation.

Lemma 3.3.11. Every contraction f : A ⊕ U → B ⊕ U in FdHilb satisfies (k, i) 


TrU(f) for some morphisms k ∈ FdHilb(U,B) and i ∈ FdHilb(A,U).

Proof. The proof will follow from Corollary 3.1.10 which establishes that it suffices

to show that:
im(fUA) ⊆ im(id−fUU)

ker(id−fUU) ⊆ ker(fBU).

Let v ∈ ker(id−fUU); this implies ||fUU(v)|| = ||v|| and, necessarily, fBU(v) = 0 for f

to be a contraction. Consequently, ker(id−fUU) ⊆ ker(fBU) is satisfied. To prove the

inclusion of images, we convert it to an statement on kernels as follows:

im(fUA) ⊆ im(id−fUU) ⇐⇒ im(id−fUU)⊥ ⊆ im(fUA)⊥ (Proposition 3.1.13)

⇐⇒ ker(id−f †UU) ⊆ ker(f †UA) (Lemma 3.1.12)

where the first step holds because im(id−fUU) is a closed subspace — in FdHilb

every subspace is closed. Considering that the adjoint of any contraction f is also a
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contraction,11 the inclusion ker(id−f †UU) ⊆ ker(f †UA) follows from the same argument

used for ker(id−fUU) ⊆ ker(fBU), completing the proof.

The phrasing of the previous lemma purposely refers to the category FdHilb in-

stead of FdContraction because, in principle, the morphisms k and i need not be

contractions themselves. For instance, in the case of the morphism H from (3.26) we

have that (k, i) 
 TrCki(σHσ) where k = 1√
2−1

= i, but
∣∣∣ 1√

2−1

∣∣∣ > 1 and, hence, k and

i are morphisms in FdHilb but not in FdContraction.

The following two lemmas build towards Lemma 3.3.14 where it is established that

every contraction f : A ⊕ U → B ⊕ U between finite-dimensional Hilbert spaces is

U -tail vanishing.

Lemma 3.3.12. Let f ∈ FdContraction(H,H) and let f = f0 ⊕ f1 be its decom-

position into a unitary f0 and a completely nonunitary contraction f1 : H1 → H1 (see

Theorem 3.3.7). Then, ∣∣∣∣∣∣fdimH1
1

∣∣∣∣∣∣
op
< 1.

Proof. If H1 = {0} then ||f1||op = 0 and the proof is trivial. Otherwise, recall

from (3.20) that for any contraction g we can define a closed subspace

Kg = {v ∈ H | ||g(v)|| = ||v||}.

Then, for every k ∈ N we may define a closed subspace of H1 as follows:

Vk =

k⋂
n=0

Kfn1
= {v ∈ H1 | ∀n ≤ k, ||fn1 (v)|| = ||v||}.

Clearly, V0 = H1 and Vk+1 ⊆ Vk for all k ∈ N. Fix a value of k ∈ N such that Vk 6=
{0} and suppose — for the sake of an argument by contradiction — that Vk = Vk+1.

Then, v ∈ Vk implies f1(v) ∈ Vk since for all n ≤ k:

||fn1 (f1(v))|| =
∣∣∣∣fn+1

1 (v)
∣∣∣∣ = ||v|| = ||f1(v)||.

Moreover, we have that ||f1(v)|| = ||v||, so the restriction f1|Vk : Vk → Vk is an isometry.

In finite dimensions, every isometry is surjective (and, hence, unitary), implying that

for each v ∈ Vk we also have that f †1(v) ∈ Vk. Then, Vk reduces f1 according to

Proposition 3.3.5 but f1|Vk is unitary, contradicting that f1 is completely nonunitary.

Consequently, it must be that for all k ∈ N:

Vk 6= {0} =⇒ Vk 6= Vk+1

11Recall that every bounded linear map f ∈ Hilb(A,B) satisfies that its adjoint f† has the same
operator norm ||f ||op =

∣∣∣∣f†∣∣∣∣
op

. Thus, if f is a contraction then f† is also a contraction.
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and, hence, Vk+1 is a proper subspace of Vk and dimVk+1 < dimVk. Then, it is

immediate that VdimH1
= {0} which, according to the definition of Vk, implies that for

all v ∈ H1 (other than 0): ∣∣∣∣∣∣fdimH1
1 (v)

∣∣∣∣∣∣ < ||v||.
Since H1 is finite-dimensional it follows that

∣∣∣∣∣∣fdimH1
1

∣∣∣∣∣∣
op
< 1, as claimed.

Lemma 3.3.13. Let f : A⊕U → B ⊕U be a contraction in FdHilb and decompose

U = U0 ⊕ U1 according to the decomposition of fUU into its unitary and completely

nonunitary components respectively. Then, there is a real number M such that:

∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
≤M

where

M =

dimU1 ·
(

1−
∣∣∣∣∣∣fdimU1

U1U1

∣∣∣∣∣∣
op

)−1

if dimU1 6= 0

0 otherwise.

Proof. According to Theorem 3.3.7, we may decompose fUU so that f may be ex-

pressed as:

f =


fBA fBU0

fBU1

fU0A
fU0U0

fU0U1

fU1A
fU1U0

fU1U1


where fU0U0

is unitary. Then, Corollary 3.3.3 establishes that fBU0
= 0 and fU1U0

= 0

and, similarly, fU0A
= 0 and fU0U1

= 0 because f †U0U0
is also an isometry. Consequently,

for every k ∈ N the following is satisfied:

fkUUfUA =

(
fkU0U0

0

0 fkU1U1

)(
0

fU1A

)
=

(
0

fkU1U1
fU1A

)

and, hence, ∣∣∣∣fkUUfUA∣∣∣∣op
=
∣∣∣∣fkU1U1

fU1A

∣∣∣∣
op
.

Therefore, if U1 = {0} then
∣∣∣∣fkUUfUA∣∣∣∣op

= 0 for all k ∈ N and it is trivial that∑∞
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
= 0, satisfying the claim in the case where dimU1 = 0. Otherwise,

if U1 6= {0} we may use the well-known inequality ||h ◦ g||op ≤ ||h||op · ||g||op to obtain:

∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
≤

(
dimU1−1∑
r=0

∣∣∣∣f rU1U1

∣∣∣∣
op

)(
∞∑
q=0

∣∣∣∣∣∣f q·dimU1
U1U1

fU1A

∣∣∣∣∣∣
op

)
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and due to fU1U1
and fU1A

being contractions, we conclude that:

∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
≤ dimU1 ·

∞∑
q=0

(∣∣∣∣∣∣fdimU1
U1U1

∣∣∣∣∣∣
op

)q

Finally, according to Lemma 3.3.12, we have that
∣∣∣∣∣∣fdimU1

U1U1

∣∣∣∣∣∣
op
< 1 so it is follows from

the convergence criteria of the geometric series that:

∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
≤ dimU1 ·

(
1−

∣∣∣∣∣∣fdimU1
U1U1

∣∣∣∣∣∣
op

)−1

thus proving the claim in the case where dimU1 6= 0.

Lemma 3.3.14. Every contraction f : A⊕U → B⊕U in FdHilb is U -tail vanishing.

Proof. Lemma 3.3.10 already established that lim fBUf
n
UU ' 0. It remains to check

that

lim
J∈F(N)

Σ{fBUf jUUfUA}J̃ ' 0 (3.29)

is satisfied, where

J̃ = {n ∈ N | n < max(J) and n 6∈ J}.

This requires us to show that for all ε > 0, there is a J ∈ F(N) such that

J ⊆ J ′ =⇒
∣∣∣∣Σ{fBUf jUUfUA}J̃ ′∣∣∣∣op

< ε.

If J̃ ′ = ∅ it is trivial to prove that Σ{fBUf jUUfUA}J̃ ′ = 0. Otherwise, if J̃ ′ 6= ∅ let

mJ ∈ N be the index of the first ‘gap’ in J , explicitly:

mJ =

min J̃ if J̃ 6= ∅

max J + 1 otherwise.

Notice that whenever J ⊆ J ′ we have that mJ ≤ min J̃ ′ and, hence, j −mJ ≥ 0 for

all j ∈ J̃ ′, so that we may write:∣∣∣∣Σ{fBUf jUUfUA}J̃ ′∣∣∣∣op
≤
∣∣∣∣fBUfmJUU

∣∣∣∣
op
·
∣∣∣∣∣∣Σ{f j−mJUU fUA}J̃ ′

∣∣∣∣∣∣
op
.

Moreover, ∣∣∣∣∣∣Σ{f j−mJUU fUA}J̃ ′
∣∣∣∣∣∣

op
≤

∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
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due to the triangle inequality of norms along with norms being positive numbers. Re-

call from Lemma 3.3.13 that there is some M ∈ R such that:
∞∑
k=0

∣∣∣∣fkUUfUA∣∣∣∣op
≤M.

We conclude that

J ⊆ J ′ =⇒
∣∣∣∣Σ{fBUf jUUfUA}J̃ ′∣∣∣∣op

≤
∣∣∣∣fBUfmJUU

∣∣∣∣
op
·M.

If M = 0 then fUU is unitary (see the proof of Lemma 3.3.13 for further details) and

hence fUA = 0 according to Corollary 3.3.3 so that (3.29) follows trivially. Otherwise,

if M 6= 0 we may use that lim fBUf
n
UU ' 0 (established in Lemma 3.3.10) which

implies that for every ε > 0 we may choose some m̂ ∈ N such that for all m′ ∈ N:

m̂ ≤ m′ =⇒
∣∣∣∣∣∣fBUfm′UU

∣∣∣∣∣∣
op
<

ε

M
.

Then, we simply need to choose some J ∈ F(N) such that mJ = m̂ and it will follow

that for all J ′ ∈ F(N):

J ⊆ J ′ =⇒
∣∣∣∣Σ{fBUf jUUfUA}J̃ ′∣∣∣∣op

< ε

thus, verifying that (3.29) is satisfied and proving that f is U -tail vanishing.

Finally, we reach the main result of this section.

Theorem 3.3.15. The category (FdContraction,⊕, ex) is totally traced, where ex

is defined on any morphism f : A⊕ U → B ⊕ U as follows:

exU(f) = Σ
(
{fBA} ] {fBUfnUUfUA}N

)
.

Proof. Corollary 3.2.27 established that FdHilb is a hom-convergence UDC and,

for every contraction f : A ⊕ U → B ⊕ U in FdHilb, Lemma 3.3.11 shows that

(k, i) 
 TrUki(f) whereas Lemma 3.3.14 shows that f is U -tail vanishing. According

to Lemma 3.2.30 this is sufficient for exU(f) to be defined in FdHilb for every con-

traction f and every U ∈ FdHilb, with exU(f) = TrUki(f). Since Trki is a partial trace

in FdHilb and the embedding functor FdContraction ↪→ FdHilb is faithful and

strict monoidal, Proposition 3.1.3 implies that (FdContraction,⊕, êx) is a partially

traced category, where:

êxU(f) =

exU(f) if exU(f) is a contraction

undefined otherwise.
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To show that (FdContraction,⊕, êx) is a totally traced category we need to

show that for every contraction f ∈ FdContraction(A ⊕ U,B ⊕ U) the result of

the execution formula exU(f) is guaranteed to be a contraction. We prove this by an

inductive argument on the dimension of U . If U = C the component fCC : C → C is

just a scalar.

• If |fCC| < 1 then 1−fCC is invertible and

Σ{fnCC}N = (1−fCC)−1.

Thanks to FdHilb being Σg-enriched, composition distributes over Σ so that:

exC(f) = fBA + fBC(1−fCC)−1fCA.

Then, according to Corollary 3.3.9, exC(f) is a contraction.

• Otherwise, if |fCC| = 1 then Corollary 3.3.3 implies that fBC = 0 and, hence,

exU(f) = fBA, which is necessarily a contraction.

If U = C⊕k for some k > 1 it follows from repeated applications of the above that

exC(. . . exC(f)) is a contraction. Since (FdContraction,⊕, êx) has been established

to be partially traced, we may use vanishing II repeatedly to obtain:

êxC(. . . êxC(f)) ' êxC⊕k(f)

and, hence, exC⊕k(f) must be a contraction. For any arbitrary U there is a unitary

φ : U → C⊕ dimU due to U being finite-dimensional. Clearly, f ′ = (idB ⊕ φ)f(idA ⊕
φ†) is a contraction and it has already been established that exC⊕ dimU

(f ′) is a contrac-

tion; then, using dinaturality we obtain:

êxC⊕ dimU
(f ′) ' êxU(f ◦ (idA ⊕ φ†φ)) = êxU(f)

implying that exU(f) is a contraction for any arbitrary f ∈ FdContraction(A ⊕
U,B⊕U). Consequently, (FdContraction,⊕, êx) is a totally traced category, com-

pleting the proof.

The theorem above along with Lemma 3.2.30 establish that both the execution for-

mula and the kernel-image trace coincide in FdContraction. This is in stark contrast

to Proposition 3.14 from [44] where it was shown that no partial trace in (Vect,⊕) —

nor in (FdHilb,⊕) — could simultaneously coincide with the execution formula and
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the kernel-image trace. This is no contradiction, though, as the proof of their result

is based on a linear map presented as a counterexample, but such a linear map is not

a contraction and hence their result need not hold for FdContraction. Notice that

a similar situation occurred in Example 3.2.12 where a linear map in FdHilb (but

not in FdContraction) violated vanishing II. In retrospective, this is not surpris-

ing: notice that the characterisation of tail vanishing morphisms (Definition 3.2.29)

immediately rules out any linear map whose operator norm is strictly larger than one.

Since we heavily relied on the fact that morphisms in FdContraction are tail van-

ishing (Lemma 3.3.14) in our argument leading to the previous theorem (particularly,

Lemma 3.2.30), our argument is exploiting a key difference between FdHilb and

FdContraction.

On the other hand, even though the categories FdIsometry and FdUnitary

are not UDCs (because they lack quasi-projections), we may use their faithful strict

monoidal embedding into FdContraction to induce a total trace in them, calculated

via the execution formula.

Corollary 3.3.16. The category (FdIsometry,⊕, êx) is totally traced, where:

êxU(f) =

exU(f) if exU(f) is an isometry

undefined otherwise.

Similarly, the category (FdUnitary,⊕, êx) is totally traced, where exU(f) is instead

required to be unitary.

Proof. The embedding functor FdIsometry ↪→ FdContraction is faithful and

strict monoidal and, hence, (FdIsometry,⊕, êx) is partially traced according to Propo-

sition 3.1.3. Next, we must prove that for every isometry f : A ⊕ U → B ⊕ U in

FdHilb exU(f) is an isometry. This follows from a similar argument as the one used

in the previous theorem:

• if U = C then Proposition 3.3.8 can be used to show that exC(f) is an isometry;

• then, repeated application of this implies that exC(. . . exC(f)) is an isometry and,

by vanishing II, exC⊕k(f) is an isometry as well;

• for everyU there is a unitary φ : U → C⊕ dimU due toU being finite-dimensional,

so f ′ = (idB⊕φ)f(idA⊕φ†) is an isometry and we may use dinaturality to con-

clude that exU(f) is an isometry.
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Consequently, êx is a total function and (FdIsometry,⊕, êx) is a totally traced cate-

gory.

The case of (FdUnitary,⊕, êx) can be proven with a similar argument, this time

using that, in FdHilb, a morphism f : A → B is unitary if and only if dim(A) =

dim(B) and f is an isometry.

Thus, it has been shown that the execution formula — which is closely related to

iterative loops — is a well-defined trace in some important categories of quantum pro-

cesses. This was previously established in the case of FdIsometry and FdUnitary

by Bartha [10] using a different approach; a brief comparison between these two ap-

proaches appears in Section 3.5. The proof of some of the results in this section heavily

relied on the fact that the objects of FdContraction are finite-dimensional Hilbert

spaces; some open questions regarding the general case of Contraction are discussed

in Section 3.3.4. Furthermore, the following remark discusses the prospects of proving

that the execution formula is continuous.

Remark 3.3.17. We know from Proposition 2.2.19 that a function

exU : FdUnitary(A⊕ U,B ⊕ U)→ FdUnitary(A,B)

is continuous if and only if for every net α : D → FdUnitary(A ⊕ U,B ⊕ U) the

existence of limα implies lim exU ◦ α ' exU(limα). The topology considered here

is the strong operator topology (see 3.2.22). Moreover, recall that ex is defined in

terms of a Σ function that arises from the limit of certain net of finite partial sums

(see 2.2.32). Consequently, we may write:

exU(lim
d∈D

α(d)) ' lim
F(N)

lim
d∈D

σα(d)

where σα(d) : F(N)→ FdUnitary(A,B) is the net of finite partial sums correspond-

ing to the sum of paths of α(d) : A⊕U → B⊕U . Notice that we know that exU(limα)

is well defined since limα is unitary and ex is total in FdUnitary. Then, we would

need to prove that the limit point

lim
d∈D

(exUα(d)) ' lim
d∈D

lim
F(N)

σα(d)

exists. Notice that the difference between these expressions is the ordering of the limits

so it is not immediate that the existence of exU(limα) implies that of lim exU ◦ α. To

prove such a limit exchange holds we often need both that:
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• for each d ∈ D the corresponding limit converges — in this case, limJ∈F(N) σα(d)

does exist for all d ∈ D since ex is total — and that

• the net σα(−) uniformly converges with respect to D — in this case meaning that

for each open neighbourhood U we can choose dU ∈ D such that for all d ≥ dU

and all J ∈ F(N) it holds that σα(d)(J) ∈ U .

Such conditions are sufficient in the case of metric spaces and when limits are taken

over sequences (see Moore-Osgood theorem, Theorem 2 from Chapter VII in [25]).

However, it is not immediate whether the second condition is satisfied in our case, nor

whether these two conditions would be sufficient in our general case.

The following subsection compares (FdContraction,⊕, ex) and (CPTR,⊕, ex)

and shows that their traces cannot be reconciled, hinting at a fundamental difference

between quantum and classical iterative loops.

3.3.3 Comparing the traces in FdContraction and CPTR

In Section 3.2.1, (CPTR,⊕, ex) was given as an example of a totally traced category

capturing the notion of classical iterative loops of quantum processes. The previous

section has established that (FdContraction,⊕, ex) is totally traced as well and, in

this case, different execution paths may cancel out — additive inverses of morphisms

exist — which is a fundamental characteristic of quantum control-flow. We show that

the canonical functor from FdContraction to CPTR is not a traced monoidal func-

tor, not even when the definition of traced monoidal functor is relaxed.

Definition 3.3.18. Let E : FdContraction → CPTR be the faithful functor that

maps Hilbert spacesA ∈ FdContraction to C∗-algebrasB(A) ∈ CPTR and which

maps morphisms f ∈ FdContraction(A,B) to the CPTR map E(f) defined for all

ρ ∈ B(A) as follows:

E(f)(ρ) = f ◦ ρ ◦ f †.

Notice that this functor is only lax monoidal: for every A,B ∈ FdContraction

there is a canonical morphism θA,B : E(A)⊕ E(B)→ E(A⊕B) given by:

θA,B(ρ, ρ′) =

(
ρ 0

0 ρ′

)
for all (ρ, ρ′) ∈ E(A)⊕E(B), but θA,B is not an isomorphism. It is straightforward to

check that θ is a natural transformation and, indeed, (E, θ) is a lax monoidal functor.
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Moreover, considering that θ is injective, it has a left inverse φ : E(A⊕B)→ E(A)⊕
E(B) acting as follows on every ρ ∈ E(A⊕B):

φ

(
ρAA ρAB

ρBA ρBB

)
= (ρAA, ρBB).

It is immediate to check that, indeed, φ ◦ θ = id but θ ◦ φ 6= id. Notice that (E, φ) is a

colax monoidal functor; in a situation such as this, we may define a weaker notion of

traced monoidal functors.

Definition 3.3.19. Let (C,⊕C,TrC) and (D,⊕D,TrD) be totally traced categories

and let F : C → D be a functor such that (F, θ) is lax monoidal, (F, φ) is colax

monoidal and φ ◦ θ = id. Then, F is said to be a lax traced monoidal functor if for all

A,B ∈ C there is a function εA,B : D(F (A), F (B))→ D(F (A), F (B)) such that, for

all f ∈ C(A⊕ U,B ⊕ U), it maps:

F (TrUC(f)) 7→ Tr
F (U)
D (φ ◦ F (f) ◦ θ).

Alternatively, F is said to be a colax traced monoidal functor if εA,B maps in the other

direction:

Tr
F (U)
D (φ ◦ F (f) ◦ θ) 7→ F (TrUC(f)).

The motivation behind this definition is two-fold: on one hand, the requirement

(from the standard definition of traced monoidal functor) that F is strong monoidal

is lifted and, on the other hand, instead of requiring that F (TrC(f)) = TrD(φ ◦
F (f) ◦ θ) we only require that there is some arbitrary mapping between the results.

This is an extremely weak notion of traced monoidal functor and yet, the functor

E : FdContraction → CPTR is neither lax traced nor colax traced, making it

apparent that the traces in FdContraction and CPTR are fundamentally different.

This result is shown by counterexample.

Let σ be the symmetric braiding in FdContraction, let i : C → C be the mor-

phism in FdContraction that multiplies a complex number by the imaginary unit

and let H : C⊕C→ C⊕C be the Hadamard map:

H =
1√
2

(
1 1

1 −1

)
.

Fix the following morphisms of type C⊕C⊕C→ C⊕C⊕C in FdContraction:

f = idC ⊕H g = idC ⊕ σ h = (idC⊕C ⊕ i) ◦ g.
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Applying ex to these morphisms yields:

exC(f) = idC⊕C exC(g) = idC⊕C exC(h) = idC ⊕ i (3.30)

where the case of exC(f) follows from the example discussed at the beginning of Sec-

tion 3.3.2, and those of exC(g) and exC(h) follow from the yanking axiom of traced

categories. Let f ′ : E(C⊕C)⊕ E(C)→ E(C⊕C)⊕ E(C) be

f ′ = φ ◦ E(f) ◦ θ

and define g′ and h′ in the same manner. Let f ′ be decomposed as follows:

f ′ =

(
f ′00 : E(C⊕C)→ E(C⊕C) f ′01 : E(C)→ E(C⊕C)

f ′10 : E(C⊕C)→ E(C) f ′11 : E(C)→ E(C)

)

and similarly for g′ and h′. Let |ψ〉 ∈ C⊕C be |ψ〉 = 1√
2
|0〉+ 1√

2
|1〉 and let ρ = |ψ〉〈ψ|;

then:

f ′00(ρ) =
1

2

(
1 1√

2
1√
2

1
2

)
g′00(ρ) =

1

2

(
1 0

0 0

)
h′00(ρ) =

1

2

(
1 0

0 0

)

and, for all n ∈ N,

f ′01(f ′11)nf ′10(ρ) =
1

4
· 1

2n+1

(
0 0

0 1

)

g′01(g′11)ng′10(ρ) =
1

2
· 1

2n+1

(
0 0

0 1

)

h′01(h′11)nh′10(ρ) =
1

2
· 1

2n+1

(
0 0

0 1

)
so that, when all of these paths are summed up, we obtain:

exE(C)(f ′)(ρ) =
1

2

(
1 1√

2
1√
2

1

)

exE(C)(g′)(ρ) =
1

2

(
1 0

0 1

)

exE(C)(h′)(ρ) =
1

2

(
1 0

0 1

)
.

(3.31)

According to (3.30), exC(f) = exC(g) and, hence, E(exC(f)) = E(exC(g)); how-

ever, according to (3.31), exE(C)(f ′) 6= exE(C)(g′) since they are distinct at least at
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ρ. Consequently, there exists no function acting as E(exC(f)) 7→ exE(C)(f ′) both

for f and g, preventing E from being a lax traced monoidal functor. On the other

hand, exC(g) 6= exC(h) and E(exC(g)) 6= E(exC(h)) due to E being faithful, but

exE(C)(g′) = exE(C)(h′) so that a function acting as exE(C)(g′) 7→ E(exC(g)) both for

g and h cannot exist, thus preventing E from being colax traced monoidal either.

3.3.4 Open questions in Contraction

Sections 3.2 and 3.3 have been organised in such a way that all of the results whose

proofs depend on finite-dimensionality appear in Section 3.3.2. In this section, we

discuss the role that finite-dimensionality plays in these proofs; the objective being to

shed some light on whether or not (Contraction,⊕, ex) is a partially traced category

and, if it were, identify the obstacles in the way of proving so.

• Lemma 3.3.11 establishes that every contraction in FdHilb can be traced using

the kernel-image trace. Recall that (Hilb,⊕,Trki) is a partially traced category

(see Proposition 3.2.19) and, hence, we may ask whether every contraction in

Hilb can be traced. The proof of Lemma 3.3.11 relies on the fact that im(id−
fUU) is a closed subspace of U , which is trivial to prove since it is a finite-

dimensional space. Unfortunately, it is unclear whether im(id−fUU) would be

closed for an arbitrary morphism f : A⊕ U → B ⊕ U in Contraction.

• Lemma 3.3.12 establishes that every completely nonunitary f1 : H1 → H1 in

FdContraction satisfies that fdimH1
1 is a strict contraction. This claim cannot

be properly phrased in Contraction since dimH1 may be infinite. Moreover,

Example 3.3.20 provides a contraction g whose component gUU is completely

nonunitary but satisfies
∣∣∣∣gnUU∣∣∣∣op

= 1 for all n ∈ N, giving strong evidence that

a result akin to Lemma 3.3.12 cannot be established in Contraction.

• Lemma 3.3.13 establishes an upper bound for
∑∣∣∣∣fkUUfUA∣∣∣∣op

. Its proof heavily

relies on Lemma 3.3.12 and, hence, it is unlikely its proof can be generalised

to Contraction. Furthermore, Example 3.3.20 provides a contraction g for

which
∑∣∣∣∣gkUUgUA∣∣∣∣op

cannot be bounded from above; thus, Lemma 3.3.13 does

not hold in Contraction.

These three lemmas were used in Section 3.3.2 to establish that every contraction

in FdHilb is tail vanishing (Lemma 3.3.14). Due to the above, the approach from

Section 3.3.2 cannot be used to prove that every contraction in Hilb is tail vanishing.
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However, recall that Lemma 3.3.10 establishes that lim fBUf
n
UU ' 0 for every contrac-

tion f : A ⊕ U → B ⊕ U in Hilb and, hence, for f to be U -tail vanishing we only

need to show that:

lim
J∈F(N)

Σ{fBUf jUUfUA}J̃ ' 0

where J̃ is the set of ‘gaps’ in J (see Definition 3.2.29). Unlike the previous lemmas,

this equation does seem to hold for the contraction provided in Example 3.3.20 and, if

this were the case for all contractions, it would imply that (Contraction,⊕, ex) is a

partially traced category, as established in Lemma 3.2.30. Consequently, there is some

hope that Contraction is partially traced with respect to the execution formula, but

proving so would require an approach different from the one presented in Section 3.3.2.

Example 3.3.20. Let U , A and B be separable Hilbert spaces of countably infinite

dimension, each with an orthonormal basis given by {ui}i∈N, {ai}i∈N and {bi}i∈N,

respectively. Let g : A ⊕ U → B ⊕ U be a morphism in Contraction where, for all

n ∈ N:

g(un) =

 √
1

2n
· bn√

1− 1
2n
· un+1


and g(an) = un. Even though for every v ∈ U there is some c ∈ R strictly smaller than

1 such that ||gUU(v)|| ≤ c·||v||, notice that ||gUU ||op
= 1; the same applies to

∣∣∣∣gnUU∣∣∣∣op
= 1

for every n ∈ N. We thank Hari Bercovici for providing us with this example.

On another note, it may be argued that the trace in (FdContraction,⊕, ex) is not

appropriate to capture iterative loops: we would expect that different execution paths

— e.g. fBA and fBUf 2
UUfUA — on the same input would produce their output at different

time-steps. However, FdContraction cannot capture the notion of time since this is

an infinite domain and FdContraction can only deal with finite-dimensional Hilbert

spaces. To this end, the following section introduces a particular category of quantum

processes over time on which we the execution formula is a well-defined trace, thus

providing a satisfactory formalisation of iterative loops in quantum computing.

3.4 Coherent quantum processes over time

When the output of a process depends only on its input at the previous time-step, the

time domain may be omitted from the mathematical formalism. For instance, given

any sequence of operations Un ∈ Unitary(H,H) and any initial state |ψ0〉 ∈ H the
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(
fBA fBU

fUA fUU

)
A B

U U

|ψ〉

two steps later7−−−−−−→
(
fBA fBU

fUA fUU

)
A

B

U U

|ψba〉|ψbua〉

|ψuua〉

Figure 3.1: A state |ψ〉 is given as input to a quantum iterative process; two time-steps

later, the state is in a superposition |ψba〉 + |ψbua〉 + |ψuua〉 where |ψba〉 = fBA|ψ〉,
|ψbua〉 = fBUfUA|ψ〉 and |ψuua〉 = fUUfUA|ψ〉. The term |ψba〉 ‘leaves’ the system a

step earlier than |ψbua〉.

state after t steps can be easily represented as

|ψt〉 = Ut . . . U2U1|ψ0〉.

Thus, the time domain may be abstracted away from the state and represented by the

sequence of operations that remains to be applied. In contrast, if we turn to open

quantum walks (see Section 1.1.2) we encounter situations as the one depicted in Fig-

ure 3.1:12 if the walker enters device f : A ⊕ U → B ⊕ U through A at time-step t0,

some of its amplitude will be found in B at t0 + 1 but some will traverse the loop and

eventually leave at a later time-step. Consequently, the output is not only localised at

t0 + 1 but instead its amplitude spreads throughout [t0 + 1,∞). This situation may be

captured by functions describing the input and output over time. For instance, in the

case of Figure 3.1, we may use functions a : Z → C and b : Z → C to describe the

input (state on A) and output (state on B) respectively:

a(t) =

ψ if t = t0

0 otherwise
b(t) =


0 if t ≤ t0

fBA(ψ) if t = t0 + 1

fBUf
t−t0−2
UU fUA(ψ) otherwise.

Then, |b(t)|2 determines the probability of finding the walker in B if we were to

measure at time-step t. Thus, we would require that the square of the amplitudes sum

up to one:
∞∑

t=−∞

|b(t)|2 = 1

but, in order to work with vector spaces, we instead consider states up to normali-

sation and, hence, impose that functions describing a quantum state must be square-

12Figure 3.1 is a copy of Figure 1.1, reproduced here for the reader’s convenience.
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summable:
∞∑

t=−∞

|a(t)|2 <∞.

We can now define a Hilbert space of square-summable functions of type Z→ C.

Definition 3.4.1. Let `2 be the complex Hilbert space defined as follows:13

• vectors are functions ψ : Z→ C such that

∞∑
t=−∞

|ψ(t)|2 <∞

• addition and scalar multiplication are defined pointwise, i.e. for ψ, φ ∈ `2 and

α ∈ C:

(ψ + φ)(t) = ψ(t) + φ(t) (αψ)(t) = α · ψ(t)

• inner product is defined as follows:

〈φ |ψ〉 =

∞∑
t=−∞

φ(t)∗ · ψ(t)

Proving that the inner product given above is well-defined is a common exercise in

courses on functional analysis; it can be shown using the Cauchy-Schwarz inequality

in Rn along with absolute convergence in C. We should also check that `2 is indeed

Cauchy complete but, once again, this is a well-known fact and it is omitted here for

the sake of brevity. The goal of this section is to discuss linear maps `2 → `2 that may

be interpreted as operators that act on quantum states over the time domain. When

discussing these, the convolution of functions in `2 will take a fundamental role.

Definition 3.4.2. For any two functions f, g ∈ `2 we define g ∗ f : Z → C acting on

every t ∈ Z as follows:14

(g ∗ f)(t) =

∞∑
τ=−∞

g(t− τ) · f(τ).

We refer to g ∗ f as the convolution of f and g.

13This is slightly different from the usual `2 space, which is defined as the space of square-summable
sequences. In essence, instead of a vector being a sequence (a function N→ C), we use Z as the domain
to describe both directions of time.

14It can be shown that f, g ∈ `2 implies that g ∗ f is well-defined; the argument is similar to the one
used to prove that the inner product in `2 is well-defined, reproducing it for (g ∗ f)(t) for every t ∈ Z
and using that Sτ is an isometry. However, the function g ∗ f need not be square-summable.
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It is straightforward to check that convolution is associative and commutative.

Moreover, let δ ∈ `2 be the function:

δ(t) =

1 if t = 0

0 otherwise
(3.32)

then δ ∗ f = f for any f ∈ `2 and, due to commutativity, f ∗ δ = f as well. Moreover,

convolution distributes over pointwise addition of functions, as established below.

Proposition 3.4.3. Let f, g, h ∈ `2 and let (f + g)(t) = f(t) + g(t), then:

h ∗ (f + g) = (h ∗ f) + (h ∗ g)

(f + g) ∗ h = (f ∗ h) + (g ∗ h)

Proof. By explicit calculation, for all t ∈ Z:

(h ∗ (f + g))(t) =

∞∑
τ=−∞

h(t− τ) · (f + g)(τ)

=

∞∑
τ=−∞

h(t− τ) · (f(τ) + g(τ))

=

(
∞∑

τ=−∞

h(t− τ) · f(τ)

)
+

(
∞∑

τ=−∞

h(t− τ) · g(τ)

)
= (h ∗ f)(t) + (h ∗ g)(t) = ((h ∗ f) + (h ∗ g))(t).

This proves the first identity from the claim; the second one follows from it due to

commutativity of convolution.

The `2 space lets us formalise the notion of quantum states over the discrete-

time domain. Similarly, the definition below describes a Hilbert space L2 of square-

integrable functions, formalising quantum states over continuous time. An appropriate

notion of convolution of functions in L2 is also provided.

Definition 3.4.4. Let L2 be the complex Hilbert space defined as follows:

• vectors are functions ψ : R→ C such that∫ ∞
−∞
|ψ(t)|2 dt <∞

• addition and scalar multiplication are defined pointwise, i.e. for ψ, φ ∈ L2 and

α ∈ C:

(ψ + φ)(t) = ψ(t) + φ(t) (αψ)(t) = α · ψ(t)
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• inner product is defined as:

〈φ |ψ〉 =

∫ ∞
−∞

φ(t)∗ · ψ(t) dt.

Definition 3.4.5. For any two functions f, g ∈ L2 we define g ∗ f : R → C acting on

every t ∈ R as follows:

(g ∗ f)(t) =

∫ ∞
−∞

g(t− τ) · f(τ) dτ.

Remark 3.4.6. Convolution in L2 is associative and commutative, but it has no unit.

Physicists often circumvent this by defining δ to be the Dirac delta: a map that is zero

everywhere except at 0, and whose square-integral is equal to 1; but, evidently, no

such a function exists. More formally, we may consider a sequence of functions δn
in L2 whose square-integral equals 1 and whose support is centered at zero, becom-

ing narrower as n tends to infinity. Such a sequence does not converge, but we can

nonetheless choose an n large enough so that the support of δn is sufficiently narrow

for the approximation δn ∗ f ≈ f to be satisfactory for practical purposes. In what

follows, δ• ∈ L2 will be used to denote a choice of δn where n is some arbitrary large

number.

3.4.1 The discrete-time Fourier transform (Preamble)

A fundamental result in physics and engineering establishes that the convolution of

two functions in L2 can be calculated by pointwise multiplication of the Fourier trans-

formed functions.15 The main goal of this subsection is to introduce its `2 version,

known as the discrete-time Fourier transform. Both the discrete-time Fourier transform

and its convolution theorem (Theorem 3.4.9) will be key ingredients in subsequent dis-

cussions of quantum processes over discrete time.

Definition 3.4.7. The discrete-time Fourier transform (DTFT) is a linear map Fd that

sends any f ∈ `2 to the function Fd[f ] : R→ C defined below:

Fd[f ](ω) =

∞∑
t=−∞

f(t) e−iωt.

It is well-known (although not immediate) that if f 6= 0 then Fd[f ] is a periodic

function with period 2π; consequently, Fd[f ] cannot possibly be square-integrable,

15See Section 9.2 from [7] to learn about the theory around the Fourier transform and Proposition
9.2.3 for this particular result).
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Fd[f ] 6∈ L2. Nevertheless, the DTFT has a left inverse obtained by integrating over a

full 2π period:

F ld[g] =
1

2π

∫ 2π

0

g(ω) eiωt dω (3.33)

so that (F ld ◦ Fd)[f ] = f for any f ∈ `2. This can be derived from the following

identity, which is satisfied for integers n ∈ Z:

∫ 2π

0

eiωn dω = 2π · δ(n) (3.34)

where, for n = 0 the integral is just
∫ 2π

0
dω = 2π and for any other integer n ∈ Z,

the interval of integration contains |n| full periods of the function eiωn and, hence, for

each ω ∈ (0, π) the value of eiω cancels out with ei(ω+π) and the integral evaluates to

0. Notice that the existence of this left inverse implies that Fd is an injective map.

Remark 3.4.8. When functions ψ ∈ `2 are interpreted as (non-normalised) quantum

states whose amplitude spreads over discrete time, the DTFT is understood to yield a

functionFd[ψ] : R→ C describing the same quantum state over the frequency domain.

This interpretation becomes clearer after examining the identity ψ = (F ld ◦ Fd)[ψ]:

ψ(t) =
1

2π

∫ 2π

0

Fd[ψ](ω) · γω(t) dω

where γω(t) = eiωt is the plane wave of angular frequency ω. Consequently, the state

ψ is described as a superposition (i.e. a linear combination) of plane waves γω for all

frequencies ω ∈ R, where each complex number F [ψ](ω) determines the amplitude

(and phase) of each plane wave.

The convolution theorem for functions in `2 is presented below.

Theorem 3.4.9. For any ω ∈ R and any two functions f, g ∈ `2:

Fd[g ∗ f ](ω) = Fd[g](ω) · Fd[f ](ω).
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Proof. The theorem follows from a simple rearrangement of terms:

Fd[g](ω) · Fd[f ](ω) =

=

 ∞∑
t′=−∞

g(t′) e−iωt
′

( ∞∑
τ=−∞

f(τ) e−iωτ

)
(def. Fd)

=

∞∑
t′=−∞

∞∑
τ=−∞

g(t′) f(τ) e−iω(t′+τ) (rearrangement)

=

∞∑
t=−∞

∞∑
τ=−∞

g(t− τ) f(τ) e−iωt (substitute t′ = t− τ )

=

∞∑
t=−∞

(g ∗ f)(t) e−iωt (def. convolution)

= F [g ∗ f ](ω). (def. Fd)

The Fourier transform F : L2 → L2 is unitary, implying that ||F [ψ]|| = ||ψ|| for any

function ψ ∈ L2 (see Theorem 9.2.1 from [7]). In contrast, the function Fd[ψ] is not

even square-integrable. Nevertheless, a similar result can be obtained for the DTFT by

integrating the values of |Fd[ψ](ω)|2 over a full period, as established below.

Proposition 3.4.10. For any ψ ∈ `2 the following identity is satisfied:

||ψ||2 =
1

2π

∫ 2π

0

|Fd[ψ](ω)|2 dω.

Proof. The norm of any ψ ∈ `2 is:

||ψ|| =

√√√√ ∞∑
t=−∞

ψ(t)∗ · ψ(t)

as determined by the inner product in `2. Then:

1

2π

∫ 2π

0

|Fd[ψ](ω)|2 dω =

=
1

2π

∫ 2π

0

∣∣∣∣∣
∞∑

t=−∞

ψ(t) e−iωt

∣∣∣∣∣
2

dω (def. Fd)

=
1

2π

∫ 2π

0

(
∞∑

τ=−∞

ψ(τ)∗ eiωτ

)(
∞∑

t=−∞

ψ(t) e−iωt

)
dω (def. |α|2 for α ∈ C)

=
1

2π

∞∑
t=−∞

∞∑
τ=−∞

ψ(τ)∗ · ψ(t) ·
∫ 2π

0

eiω(τ−t) dω (rearrange)
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=

∞∑
t=−∞

∞∑
τ=−∞

ψ(τ)∗ · ψ(t) · δ(τ − t) (identity (3.34))

=

∞∑
t=−∞

ψ(t)∗ · ψ(t) = ||ψ||2. (def. δ and ||ψ||)

3.4.2 Linear shift invariant maps

Physical processes that act on states over an infinite domain are often shift invariant.

The input-output behaviour of a shift invariant device D : `2 → `2 acting on quantum

states is independent of the time-step the input reaches the device. To formalise this

notion we define a shift operator Sτ : `2 → `2 for all τ ∈ Z:

Sτ [ψ](t) = ψ(t− τ)

which captures the passing of an amount τ of time. Then, a linear shift invariant (LSI)

map D : `2 → `2 is a linear map that commutes with every shift operator:

SτD = DSτ

for all τ ∈ Z. Crucially, any operator `2 → `2 that is both linear and shift invariant can

be fully characterised by a function in `2, as shown below.

Proposition 3.4.11. For any LSI map D : `2 → `2, there is a unique function χD ∈ `2

such that for all ψ ∈ `2:

D[ψ] = χD ∗ ψ.

Such a function is precisely χD = D[δ] where δ is the unit of the convolution (3.32).

Proof. Considering δ is the unit of convolution, we have that:

ψ(t) = (δ ∗ ψ)(t) =

∞∑
τ=−∞

δ(t− τ) · ψ(τ) =

∞∑
τ=−∞

Sτ [δ](t) · ψ(τ).

Then, due to D being linear and shift invariant we can compute D[ψ] as follows:

D[ψ] =

∞∑
τ=−∞

D[Sτ [δ]] · ψ(τ) =

∞∑
τ=−∞

Sτ [D[δ]] · ψ(τ) = D[δ] ∗ ψ.

Therefore, if we let χD = D[δ] then D[ψ] = χD ∗ ψ as claimed. To prove uniqueness,

assume there is a different function ξD such that D[ψ] = ξD ∗ ψ for all ψ ∈ `2. It then

follows that D[δ] = ξD ∗ δ = ξD due to δ being the unit of convolution and, hence, we

conclude that ξD = χD.
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Due to convolution being associative, it is apparent that composition of LSI maps

D,D′ : `2 → `2 corresponds to convolution of their characteristic functions:

(D′ ◦D)[ψ] = (χD
′ ∗ χD) ∗ ψ.

Notice that D′ ◦ D is again a LSI map `2 → `2 and, hence, χD′ ∗ χD is necessarily

in `2. A similar result holds for LSI maps D : L2 → L2; however, in this case the

characterisation of D as a function in L2 is only an approximation. This is due to the

lack of a unit of convolution in L2 (see Remark 3.4.6).

Proposition 3.4.12. For any LSI map D : L2 → L2, let χD ∈ L2 be χD = D[δ•]; then,

for all ψ ∈ L2:

D[ψ] ≈ χD ∗ ψ.

Proof. The claim follows from the same argument as that for `2 (Proposition 3.4.11),

provided that we are dealing with approximations, as discussed in Remark 3.4.6.

For any finite set A, the vector space ⊕A `2 over the field C has collections

Ψ = {ψa ∈ `2}a∈A

as vectors, with addition and scalar multiplication defined index-wise:

Φ + Ψ = {φa + ψa}a∈A

αΨ = {αψa}a∈A

The inner product in ⊕A `2 is defined in terms of the inner product in `2:

〈Φ|Ψ〉 =
∑
a∈A

〈φa |ψa〉

Considering thatA is a finite set, it follows that⊕A `2 is complete and, hence, a Hilbert

space. For each a ∈ A there is a projection πa : ⊕A `2 → `2 that yields the component

at index a, πa[Ψ] = ψa, and an injection ιa : `2 → ⊕A `2 that maps φ ∈ `2 to a

collection {φa}a∈A where φa = φ and all other φa′ are the constant zero function. It is

trivial to check that for all Ψ ∈ ⊕A `2 the following identity is satisfied:

Ψ =
∑
a∈A

(ιaπa)[Ψ] =
∑
a∈A

ιa[ψa]. (3.35)

We can then consider linear maps D : ⊕A `2 → ⊕B `2 where both A and B are

finite sets, and say that these are shift invariant iff for all (b, a) ∈ B × A the map

πbDιa : `2 → `2 is shift invariant. Once again, convolution lets us describe these maps

in terms of functions in `2, as established in the following proposition.
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Proposition 3.4.13. Let A and B be two arbitrary finite sets. For any LSI map D : ⊕A
`2 → ⊕B `2 and for each (b, a) ∈ B × A let χDba ∈ `2 be

χDba = (πbDιa)[δ]

Then, for all Ψ ∈ ⊕A `2:

D[Ψ] =

{∑
a∈A

χDba ∗ ψa

}
b∈B

.

Proof. Since for each (b, a) ∈ B × A the map πbDιa is time shift invariant map,

we may use Proposition 3.4.11 to compute the B-indexed family D[Ψ] in terms of

convolution with the each of characteristic functions χDba:

D[Ψ] =
∑
b∈B

(ιbπb)[D[Ψ]] (equation (3.35))

=
∑
b∈B

(ιbπb)

[
D

[∑
a∈A

ιa[ψa]

]]
(equation (3.35))

=
∑
b∈B

ιb

[∑
a∈A

(πbDιa)[ψa]

]
(linearity)

=
∑
b∈B

ιb

[∑
a∈A

χDba ∗ ψa

]
(Proposition 3.4.11)

=

{∑
a∈A

χDba ∗ ψa

}
b∈B

. (equation (3.35))

Therefore, an LSI map D : ⊕A `2 → ⊕B `2 is characterised by a collection of `2

functions: {χDba}(b,a)∈B×A. Moreover, if we arrange this collection into a |B| × |A|
matrix and, similarly, represent any Ψ ∈ ⊕A `2 as an |A| × 1 matrix of its ψa ∈ `2

components, the previous proposition establishes that:

D[Ψ] =


χDba . . . χD

ba′
... . . . ...

χD
b′a . . . χD

b′a′

~

ψa
...

ψ′a


where ~ denotes formal matrix multiplication whose entry-wise multiplication is re-

placed by convolution. Furthermore, considering that the DTFT is an injective map —

due to it having a left inverse (3.33) — any Ψ and D can be uniquely determined by

the collection of their Fourier transformed components:

Ψ̂ = {Fd[ψa]}a∈A
D̂ = {Fd[χDba]}(b,a)∈B×A
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where the hat notation is used to indicate that D̂ and Ψ̂ are representations in the

frequency domain (see Remark 3.4.8). For each ω ∈ R let:

Ψ̂ω = {Fd[ψa](ω)}a∈A
D̂ω = {Fd[χDba](ω)}(b,a)∈B×A

and notice that the elements of these collections are complex numbers. Then, D̂ can

be identified with a collection of linear maps D̂ω : C|A| → C|B| indexed by ω ∈ R.

The importance of these remarks is due to the convolution theorem (Theorem 3.4.9),

which turns the convolution of entries used in ~ into standard multiplication, so that

for each ω ∈ R:

(̂D[Ψ])ω = D̂ω · Ψ̂ω (3.36)

where − · − corresponds to standard multiplication of matrices. Considering that all

of the operations involved in this discussion are associative, composition of LSI maps

turns into index-wise composition of the linear maps that comprise them:

̂(D′ ◦D)ω = D̂′ω ◦ D̂ω

In particular, it unravels a deep connection between the algebra of LSI maps and the

algebra of linear maps on finite-dimensional Hilbert spaces. This motivates the defini-

tion of a category of LSI processes.

Definition 3.4.14. Let LSI be the category whose objects are finite sets and whose

morphisms f : A → B are LSI maps ⊕A `2 → ⊕B `2 represented as their R-indexed

collections:

f = {f̂ω : C|A| → C|B|}ω∈R.

Composition is given by index-wise composition of the linear maps:

g ◦ f = {ĝω ◦ f̂ω}ω∈R

and, for any finite set A, its identity morphism is the R-indexed family of copies of the

identity map îdω : C|A| → C|A|.

Remark 3.4.15. Unfortunately, the definition of LSI cannot be reproduced for linear

shift invariant maps over L2 since, according to Proposition 3.4.12, D[ψ] is only ap-

proximately equal to χD ∗ ψ. It would perhaps be possible to define a category where

equality is replaced by approximation up to certain factor; unfortunately, every time

we compose we would reduce the precision of the approximation.
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The following results establish how the D̂ω components of a LSI map interact with

the norm in ⊕A `2. The ultimate goal is to define a category of LSI contractions.

Lemma 3.4.16. For any finite set A and any vector Ψ ∈ ⊕A `2 the following identity

is satisfied:

||Ψ||2 =
1

2π

∫ 2π

0

∣∣∣∣∣∣Ψ̂ω

∣∣∣∣∣∣2 dω.
Proof. The claim follows from Proposition 3.4.10, as shown below:

||Ψ||2 =
∑
a∈A

||ψa||2 (norm in ⊕A `2)

=
∑
a∈A

1

2π

∫ 2π

0

|Fd[ψa](ω)|2 dω (Proposition 3.4.10)

=
1

2π

∫ 2π

0

∑
a∈A

|Fd[ψa](ω)|2 dω (rearrangement)

=
1

2π

∫ 2π

0

∣∣∣∣∣∣Ψ̂ω

∣∣∣∣∣∣2 dω (norm in C|A|)

Theorem 3.4.17. Let D : ⊕A `2 → ⊕B `2 be an arbitrary LSI map represented by a

collection of linear maps {D̂ω : C|A| → C|B|}ω∈R. If for all ω ∈ R the linear map D̂ω

is a contraction, then D is itself a contraction.

Proof. According to the previous lemma, for each vector Ψ ∈ ⊕A `2 we may calculate

the norm of D[Ψ] as follows:

||D[Ψ]|| =

√
1

2π

∫ 2π

0

∣∣∣∣∣∣(̂D[Ψ])ω

∣∣∣∣∣∣2 dω
and, due to equation (3.36) and the assumption that D̂ω is a contraction,∣∣∣∣∣∣(̂D[Ψ])ω

∣∣∣∣∣∣ =
∣∣∣∣∣∣D̂ω · Ψ̂ω

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣Ψ̂ω

∣∣∣∣∣∣.
It then follows that:

||D[Ψ]|| ≤

√
1

2π

∫ 2π

0

∣∣∣∣∣∣Ψ̂ω

∣∣∣∣∣∣2 dω
and, according to the previous lemma, the right hand side is equal to ||Ψ||, so that

||D[Ψ]|| ≤ ||Ψ||. This holds for every vector Ψ ∈ ⊕A `2, implying that D is a contrac-

tion, as claimed.

This result motivates the definition of a category of linear shift invariant maps that

are guaranteed to be contractions.
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Definition 3.4.18. Let LSI≤ be the subcategory of LSI obtained by imposing that

morphisms f : A→ B

f = {f̂ω : C|A| → C|B|}ω∈R

must satisfy that each f̂ω is a morphism in FdContraction(C|A|,C|B|).

Remark 3.4.19. The hom-set LSI≤(A,B) may not contain every LSI contraction

⊕A `2 → ⊕B `2 since the condition that each linear map D̂ω is a contraction has only

been established to be sufficient (Theorem 3.4.17). Nevertheless, it is reasonable to

expect this condition is also necessary: if for some ω0 ∈ (0, 2π) there is a vector

v ∈ C|A| such that
∣∣∣∣∣∣D̂ω0

(v)
∣∣∣∣∣∣ > ||v||, then we may engineer a state Ψ ∈ ⊕A `2 that, for

each ω ∈ R, is characterised by:

Ψ̂ω = v · δ•(ω − ω0)

where δ• : R → C approximates the Dirac delta (see Remark 3.4.6). Then, using

Lemma 3.4.16 we find that ||Ψ||2 ≈ 1
2π
||v||2 and ||D[Ψ]||2 ≈ 1

2π

∣∣∣∣∣∣D̂ω0
(v)
∣∣∣∣∣∣2 so that we

may expect ||D[Ψ]|| > ||Ψ||, preventing D from being a contraction. Thus, it is likely

that the condition established in Theorem 3.4.17 is not only sufficient, but also neces-

sary.

Importantly, morphisms in LSI≤ can be seen as R-indexed collections of mor-

phisms from FdContraction. Then, the execution formula from FdContraction

induces an execution formula in LSI≤. To this end, the following proposition lets us

discuss addition of LSI maps in terms of the index-wise addition of its component

linear maps.

Proposition 3.4.20. For any two morphisms f, g ∈ LSI(A,B), let their addition f+g

be the following R-indexed collection:

f + g = {f̂ω + ĝω}ω∈R.

Then, f + g ∈ LSI(A,B).

Proof. First, realise that if we see f and g as linear shift invariant maps ⊕A `2 →
⊕B `2, their pointwise addition is again a linear shift invariant map — it will commute

with shift operators. The challenge is to prove that such a map is characterised by the

collection {f̂ω + ĝω}ω∈R or, more explicitly, we must show that:

(̂f + g)ω = f̂ω + ĝω (3.37)
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for all ω ∈ R. Recall that for any LSI map h : ⊕A `2 → ⊕B `2 each ĥω : C|A| → C|B|

is the linear map given by the matrix:

ĥω =


Fd[χhba](ω) . . . Fd[χhba′ ](ω)

... . . . ...

Fd[χhb′a](ω) . . . Fd[χhb′a′ ](ω)


where χhba ∈ `2 is the unique function satisfying (πbhιa)[ψ] = χhba ∗ ψ for all ψ ∈ `2.

Considering that addition of linear maps is defined pointwise and that πb is linear:

(πb(f + g)ιa)[ψ] = (πbfιa)[ψ] + (πbgιa)[ψ]

for all ψ ∈ `2. Then, thanks to convolution distributing over addition (see Proposi-

tion 3.4.3) we have that:

(πb(f + g)ιa)[ψ] = (χfba ∗ ψ) + (χgba ∗ ψ) = (χfba + χgba) ∗ ψ

and, due to uniqueness of the characteristic function, we conclude that χf+g
ba = χfba +

χgba. This, along with linearity of Fd, implies that Fd[χf+g
ba ] = Fd[χfba] +Fd[χgba] and it

is then immediate that (̂f + g)ω = f̂ω + ĝω as required by equation (3.37), completing

the proof.

Evidently, it is generally not the case that for two morphisms f, g ∈ LSI≤(A,B)

their addition f + g is again in LSI≤, since addition of contractions need not result

in a contraction. In the following subsection we prove that LSI≤ is a totally traced

category with the execution formula.

3.4.3 The execution formula in LSI≤

Since morphisms in LSI are R-indexed collections of morphisms in FdHilb and com-

position and addition in LSI are defined index-wise, it is not surprising that LSI is a

Σg-UDC. Similarly, LSI≤ is a Σw-UDC.

Proposition 3.4.21. LSI is a Σg-UDC.

Proof. The Σ-group structure on every hom-set LSI(A,B) is defined in terms of the

Σ-group structure on FdHilb(C|A|,C|B|), i.e. for each family {fi}I ∈ LSI(A,B)∗

define:

Σ{fi}I =

{ĝω}ω∈R if ∀ω ∈ R, Σ{(̂fi)ω}I ' ĝω

undefined otherwise.
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Since FdHilb(C|A|,C|B|) is a Σ-group and Σ on LSI(A,B) is defined index-wise, it is

immediate that LSI(A,B) is a Σ-group. Composition in LSI is Σ-bilinear since both

composition and addition in LSI are defined index-wise and composition in FdHilb is

Σ-bilinear; thus, LSI is a Σg-enriched category. Moreover, (LSI,⊕,∅) is a symmetric

monoidal category where ⊕ corresponds to disjoint union of sets on objects and, on

any two morphisms f ∈ LSI(A,B) and g ∈ LSI(C,D), it acts as index-wise direct

sum:

f ⊕ g = {f̂ω ⊕ ĝω : C|A| ⊕C|C| → C|B| ⊕C|D|}ω∈R.

This is well-defined thanks to the isomorphism C|A]B| ∼= C|A| ⊕ C|B|. The monoidal

unit ∅ is clearly a zero object since C|∅| = {0}, so that f ∈ LSI(∅, A) and g ∈
LSI(A,∅) are R-indexed collections of copies of the zero map in FdHilb. Verifying

the identity Σ{idA ⊕ 0, 0 ⊕ idB} ' idA]B is conceptually simple since both ⊕ and Σ

in LSI are defined index-wise on morphisms, and the identity is satisfied in FdHilb.

Consequently, LSI is a Σg-UDC, as claimed.

Corollary 3.4.22. LSI≤ is a Σw-UDC.

Proof. By definition, LSI≤ is a subcategory of LSI and we may define a symmetric

monoidal structure on it in the same manner we did for LSI in the previous proposition.

Moreover, we may also provide a Σ-monoid structure on each hom-set in LSI≤ via the

same index-wise definition — this time using the Σ-monoid structure of hom-sets in

FdContraction. Recall that FdContraction is only Σw-enriched, since a pair of

contractions does not generally add up to a contraction; thus, the enrichment in LSI≤ is

over Σw as well. Consequently, the same proof strategy from the previous proposition

establishes that LSI≤ is a Σw-UDC.

It follows from the fact that (FdContraction,⊕, ex) is a totally traced category

that (LSI≤,⊕, ex) is totally traced as well.

Theorem 3.4.23. The category (LSI≤,⊕, ex) is totally traced.

Proof. Recall that on any Σ∗-UDC the execution formula ex is defined as follows:

exU(f) = Σ{fBA} ] {fBUfnUUfUA}N.

Since the morphisms in LSI≤ are, by definition, R-indexed collections of morphisms

in FdContraction and Σ, ⊕ and composition in LSI≤ are all defined index-wise,

we have that exU(f) corresponds to:

exU(f) = {exC|U |(f̂ω)}ω∈R
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where exC|U | is the execution formula in FdContraction. Theorem 3.3.15 estab-

lishes that (FdContraction,⊕, ex) is a totally traced category and, hence, for all

ω ∈ R the linear map exC|U |(f̂ω) is a well-defined contraction. According to Theo-

rem 3.4.17 this guarantees that the LSI map exU(f) is itself a contraction and, hence,

the execution formula is a total function in LSI≤. Moreover, (LSI≤,⊕, ex) is a traced

monoidal category since the execution formula in FdContraction is a valid trace,

which guarantees that the axioms of traced monoidal categories are satisfied for every

index ω ∈ R. Thus, we conclude that (LSI≤,⊕, ex) is a totally traced category, as

claimed.

As discussed at the beginning of this section, the physical interpretation of the

Hilbert space ⊕A `2 is that each vector is a quantum state that spreads over a finite set

of locations A and over the discrete-time domain Z. LSI maps ⊕A `2 → ⊕B `2 are

interpreted as devices with a finite number of input and output ports, labelled by the

elements in A and B respectively, and whose input-output behaviour is independent

of the time-step the input reaches the device. Then, exU(f) may be interpreted as the

device obtained after connecting the output ports labelled by U to the input ports with

the same label.

Considering the prevalence of the notion of time — an infinite domain — in the

definition of LSI, it is perhaps surprising that we may prove LSI≤ is a traced cate-

gory by means of an argument in finite dimensions, i.e. using FdContraction. The

key to this result were the discrete-time Fourier transform (Definition 3.4.7), together

with its convolution theorem (Theorem 3.4.9) and the unique characterisation of LSI

maps (Proposition 3.4.13). In short, the Fourier transform lets us uniquely characterise

time-shift invariant maps according to their action on plane waves γω(t) = eiωt (see

Remark 3.4.8) and the convolution theorem establishes that the action of these maps

at different frequencies ω do not interact with each other. Consequently, in order to

describe the input-output behaviour of a time-shift invariant device, we simply need

to figure out how it affects the phase and amplitude of each plane wave γω for every

angular frequency ω ∈ R; this is precisely what each map f̂ω : C|A| → C|B| represents.

In some sense, the fact that (LSI≤,⊕, ex) is a traced category tells us that we may cal-

culate the behaviour of a device with feedback by an iterative method, adding up the

contribution of each of the possible paths from ports in A to ports in B. Moreover, the

fact that ex is total indicates that this iterative method always converges. These results

are not novel: physicists and engineers have been using these facts about LSI maps and
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the Fourier transform for quite a long time; however, there is some value in providing

a formal description of this situation in the language of traced monoidal categories, as

it may enable computer scientists to use these notions in a more abstract setting.

The category LSI captures the notion of quantum processes over a discrete domain

Z; such domain has been interpreted to describe the line of time, but it could instead

be interpreted to correspond to discrete one-dimensional space, or we may extend it

to a domain Z3 so that the appropriate version of LSI would capture maps that are

invariant with respect to translations on three-dimensional space. A natural question is

whether a similar approach could be used to discuss LSI maps acting on states over a

continuous domain R. To do so, we would need to work with the Hilbert space L2 but,

as discussed in Remark 3.4.6, convolution in L2 does not have a unit and, consequently,

the characterisation of LSI via an R-indexed collection of linear maps is only valid up

to approximation (see Proposition 3.4.12). In practice, physicists and engineers tend

to disregard these approximations and treat them as equalities (see Remark 3.4.6);

however, the objective of this section was to discuss feedback in the formal setting of

traced monoidal categories and, to that extent, the case of the continuous-time domain

is left as an open question.

3.5 Related work

In this section, the contributions of this chapter are put into perspective and compared

to previous works in the field.

Hoshino [33]. Hoshino proved that every Σs-UDC is partially traced using the ex-

ecution formula. The same result is established in Theorem 3.2.11 of this chapter,

although the proof strategy differs from Hoshino’s. In [33], Hoshino proves that ev-

ery Σs-UDC can be faithfully embedded in a category with countable biproducts and

enriched over totally defined strong Σ-monoids — i.e. every family of morphisms is

summable. It is straightforward to show that these categories are totally traced using

the execution formula and, thus, the faithful embedding provided by Hoshino immedi-

ately induces a partial trace on the original category as described in Proposition 3.1.3.

Unfortunately, such a result cannot be reproduced in the general case of Σw-UDCs:

there are examples of such categories that are not partially traced using the execution

formula, e.g. (FdHilb,⊕, {0}), see Example 3.2.12. Our interest in Σw-enriched cat-

egories comes from the fact that the categories of quantum processes we are interested



3.5. Related work 165

in (e.g. Unitary and LSI) have additive inverses of morphisms; these capture destruc-

tive interference in quantum computing but are not available in a Σs-enrichment.

The Barr functor. The Barr functor PInj → Contraction originally proposed

in [9] induces a Σs-enrichment in Contraction using that of PInj. The details of the

induced Σs-enrichment in Contraction appear in Section 5.5 from [28]; in essence,

families of contractions are deemed summable if and only if the domain and codomain

of every pair of contractions come from orthogonal subspaces and, hence, no quantum

interference may occur between them. Such a situation can be perceived as a quantum

computer simulating a classical iterative loop, which is not of interest to this thesis.

Malherbe, Scott & Selinger [44]. The kernel-image trace plays an essential role in

our proof that (FdContraction,⊕, ex) is a totally traced category. We can draw a

loose analogy between the kernel-image trace of a morphism f : A ⊕ U → B ⊕ U

and the existence of a pseudo-inverse (id− fUU)+ which may be used to calculate

Trki ≈ fBA+fBU(id−fUU)+fUA. Under this analogy, the intuition behind our proof that

(FdContraction,⊕, ex) is totally traced loosely corresponds to the identity in the

real numbers (1− r)−1 =
∑∞

n=0 r
n, which only holds when both sides are defined and

r < 1. More formally, Lemma 3.2.30 identifies sufficient conditions for a morphism f

to satisfy that the well-definedness of Trki(f) implies that of ex(f), with their results

matching. Then, we take advantage of the kernel-image trace being a valid categorical

trace in Hilb to prove that the execution formula is a valid trace of its subcategory

FdContraction.

Bartha [10]. Bartha had shown that both FdIsometry and FdUnitary are to-

tally traced categories using the execution formula. Bartha’s proof makes use of

the kernel-image trace in a similar way as we do and, in particular, our proof that

FdContraction is totally traced (instead of simply partially traced) relies on the

approach Bartha used to prove the same result in the case of FdIsometry (see Propo-

sition 3.3.8). Even though Bartha did not explicitly show that FdContraction is

totally traced, this can be easily inferred from the result that FdIsometry is totally

traced and, hence, we do not claim this to be a novel result. Instead, the approach

we have used to reach this result is novel: whereas Bartha relies on matrix iteration

theories, our approach relies on the more general theory of Hausdorff abelian groups.

Moreover, our approach is self-contained, whereas Bartha defers the details of a key
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proof (that of Theorem 8 from [10]) for the reader to check, assuming prior (nontrivial)

knowledge on matrix iteration theories.

Our original goal was to answer an open question posed by Bartha: is Isometry

partially traced? We rephrased this question in terms of Contraction and, unfortu-

nately, the question remains open. However, we have been able to narrow down the

search of an answer to the open problems discussed in Section 3.3.4; in particular, we

have shown that Hilb is a hom-convergence UDC and, hence, even if Contraction

were not partially traced, we have opened up a path to prove that certain subcategories

of Contraction may be partially traced. In particular, LSI≤ is an example of a cat-

egory that faithfully embeds in Contraction and that is totally traced, as established

in Section 3.4.

Pseudo-traces with delays. Previous works such as [15] have formalised discrete-

time quantum iterative loops in an ad-hoc manner by introducing a notion of categori-

cal pseudo-trace similar to the execution formula but that explicitly includes a ‘delay’

operator in its definition. Doing so implies that the category no longer satisfies the

yanking axiom, as intuitively shown in the diagram below

tr(f) = f
δ

; tr(σ) =
δ

= δ 6= id.

In contrast, the category LSI captures such ‘delays’ in the definition of its mor-

phisms and, hence, an appropriate notion of discrete-time quantum iteration can be

achieved in the standard framework of traced monoidal categories and the execution

formula. To the best of our knowledge, our result that (LSI≤,⊕, ex) (Theorem 3.4.23)

is a totally traced category is the first instance of a formalisation of discrete-time quan-

tum iterative loops as a categorical trace.



Chapter 4

Weakly measured while loops

This chapter reproduces the contents of a publication due to Andres-Martinez and He-

unen [5]; the text and notation has been revised to better fit this thesis. The focus of

this chapter is on classical control flow of quantum programs and, hence, measure-

ments are fundamental. As such, the framework of completely positive weak trace

reducing maps (CPTR) will be used (see Section 1.5.1 for a brief introduction).

A while loop tests a termination condition on every iteration but, on a quantum

computer, such measurements perturb the evolution of the algorithm. In this chap-

ter we define a while loop primitive using weak measurements, offering a trade-off

between the perturbation caused and the amount of information gained per iteration.

This trade-off is adjusted with a parameter set by the programmer. We provide suf-

ficient conditions that let us determine, with arbitrarily high probability, a worst-case

estimate of the number of iterations the loop will run for. As an example, we solve

Grover’s search problem using a while loop and prove the quadratic quantum speed-up

is maintained.

This chapter is structured as follows: Section 4.1 gives a brief introduction to weak

measurements and defines the notion of κ-measurement; Section 4.2 contains the main

contribution of this chapter: the proposal of κ-while loops and the study of its proper-

ties; Section 4.3 shows that Grover’s algorithm may be implemented using a κ-while

loop, and Section 4.4 concludes the chapter with discussion of related work and open

questions.

167



168 Chapter 4. Weakly measured while loops

4.1 Weak measurements (Preamble)

Roughly speaking, a weak measurement is “a measurement which gives very little

information about the system on average, but also disturbs the state very little” [14].

For instance, the field of quantum feedback control uses weak measurements (often,

continuous measurements) to monitor a state; the stream of measurement outcomes is

used to control the strength of a Hamiltonian that corrects the system (see [58] for a

survey). Our approach is inspired by these ideas, contextualised for their application

to algorithm design. We restrict ourselves to the discrete-time setting and define a

particular kind of parametrised measurement, the κ-measurement, that behaves as a

weak measurement when κ is small.

Let H be a Hilbert space and let B be an orthonormal basis of H; we wish to apply

a measurement to test whether a state ψ ∈ H satisfies a predicate Q : B → {0, 1}.
Assume the existence of a unitary OQ : H ⊗ C2 → H ⊗ C2 acting as the oracle of

predicate Q:

OQ|x, p〉 = |x, p⊕Q(x)〉.

Fix a value of parameter κ ∈ [0, 1] and let P = span{⊥,>} be an auxiliary space

known as the probe. We define a unitary Eκ,Q as follows:

Eκ,Q = (O†Q ⊗ idP ) (idH ⊗ Λ(Rκ)) (OQ ⊗ idP )

Λ(Rκ) = |0〉〈0| ⊗ idP + |1〉〈1| ⊗Rκ

Rκ =

(√
1− κ

√
κ

√
κ −

√
1− κ

)
,

The purpose of Rκ is to map |⊥〉 to α|⊥〉 + β|>〉 so that |β|2 = κ.1 In particular, if

κ = 0 then R0 = id and if κ = 1 then R1|⊥〉 = |>〉. Eκ,Q is a quantumly controlled

version of Rκ where the outcome from the oracle OQ acts as the control. Notice that

the auxiliary qubit the oracle OQ acts upon is restored to its initial state by O†Q so it

may be reused and we need not keep track of it. We initialise it to |0〉 and omit it in

further discussions.

Definition 4.1.1. A κ-measurement of predicate Q may be applied on any density

matrix ρ ∈ B(H) by the following procedure:

• apply the unitary Eκ,Q : H ⊗ P → H ⊗ P on the state ρ⊗ |⊥〉〈⊥|,
1Such a behaviour is not unique to this definition of Rκ. For instance, Z(θ)RκZ(θ′) for any θ and

θ′ is an equally valid choice for this unitary, where Z(θ) is a Z-rotation of angle θ.
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• apply a measurement to discern between the orthogonal subspacesH⊗span{⊥}
and H ⊗ span{>}.

Since Eκ,Q entangles the probe with the result of the oracle, the outcome of this

measurement provides some information about the original state in H . If the outcome

of the κ-measurement is ⊥ and κ < 1, we obtain no definitive information on whether

the state in H satisfies Q or not: for any state ρ ∈ B(H), the probability of outcome >
is

p>(ρ) = κ · pQ(ρ)

where pQ(ρ) is the probability of predicate Q being satisfied by ρ,

pQ(ρ) = tr
(
(idH ⊗ 〈1|)OQ (ρ⊗ |0〉〈0|)O†Q (idH ⊗ |1〉)

)
. (4.1)

The smaller κ is, the less likely it is that we read outcome >. On the other hand, when

the outcome of the κ-measurement is>, no matter the value of κwe are certain that the

state left in space H satisfies predicate Q. In contrast, the mapW⊥ : B(H) → B(H)

corresponding to outcome ⊥ does not project the state to the subspace of H where Q

is unsatisfiable:

W⊥(ρ) =
W⊥ (ρ⊗ |⊥〉〈⊥|)W †

⊥
1− p>(ρ)

(4.2)

where W⊥ = (idH ⊗ |⊥〉〈⊥|)Eκ,Q.

Intuitively, a κ-measurement models the behaviour of a device with internal state

space P used to measure a property Q of a system H , with κ indicating how strongly

the probing device couples with the system.

Remark 4.1.2. After applying a measurement on a pure state, we may describe the

result as a mixed state on the C∗-algebraB(H⊗P ). However, in doing so are omitting

the information we have obtained from the classical outcome of the measurement: we

in fact know whether the state is inH⊗span{⊥} or inH⊗span{>}. For our purposes,

it is more elucidating to describe the two possible outcomes separately. Notice that

when the state in H prior to measurement is a pure state both possible outcomes yield

a pure state; this fact will be used in Section 4.3 to simplify our discussions.

4.2 The κ-while loop

This section contains the main contribution of this chapter: we define κ-while loops

and introduce the properties of A-guarantee and robustness which let us estimate the
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worst-case runtime of certain algorithms using κ-while loops. In short, a κ-while loop

is a classically controlled while loop where the test of the termination condition is

realised by a κ-measurement.

4.2.1 Motivation

Fix a predicate Q, and let C be a completely positive (weak) trace reducing (CPTR)

map acting on B(H); we will refer to C as the body of the loop.

Definition 4.2.1. Let σ ∈ B(H) be an arbitrary density matrix. Define a predicate

AQ,σ : N→ B as follows:

AQ,σ(n) ⇐⇒ pQ(Cn(σ)) >
1

2

where pQ is given in (4.1). If AQ,σ(n) is satisfied, we say n is an A-iteration — read

as active iteration.

If we can somehow identify an A-iteration m, we may use a simple approach to

find a state satisfying Q: apply Cm(σ) and then perform a projective measurement; if

the outcome does not satisfy Q, repeat the process from the initial state σ. Thanks to

AQ,σ(m) being satisfied, the probability of succeeding at some point within k restarts

is 1 − 1/2k so the probability of success quickly approaches 1 as k increases. This is

an efficient approach whenever a smallA-iteration m is known. In fact, this is how the

standard Grover’s algorithm works, choosing an iteration m where pQ is maximised.

However, this measure-restart strategy can only be implemented if we already

know when A-iterations will occur. The distribution of A-iterations may become un-

predictable as soon as some randomness is introduced in the body of the loop. For

instance, consider the standard Grover’s algorithm being implemented on a faulty ma-

chine where, without notice, the quantum memory may reset to its initial state. If such

an event occurs mid-computation the evolution is effectively restarted, but the algo-

rithm – oblivious to the memory reset – continues for only the remaining fixed number

of iterations. In contrast, a version of Grover’s algorithm that uses a κ-while loop

(such as the one we describe in Section 4.3) will, by definition, keep iterating until it

succeeds to find the target state. Although a contrived example, this illustrates how

a while loop could provide reliability against unpredictable behaviour. More realistic

scenarios that would lead to an unpredictable distribution of A-iterations may come

from algorithms that, by design, explore the state space in an unpredictable manner;
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w h i l e !κ Q[ρ] do
ρ ← C(ρ)

end

q ← |⊥〉〈⊥|
w h i l e M [q] = ⊥ do
ρ ← C(ρ)

ρ, q ← Eκ,Q(ρ⊗ q)
end

Figure 4.1: Left: the syntax we use to represent a κ-while loop; κ ∈ [0, 1] is a parameter

set by the programmer and Q is the predicate to be measured. Right: the pseudocode

that implements the κ-while loop on a programming language with classical control

flow, following the notation from [54]; Eκ,Q is defined in Section 4.1 and the condition

M [q] = ⊥ indicates that q is measured to distinguish between H ⊗ span{⊥} and

H ⊗ span{>}, with the condition being satisfied if q collapses to the former.

Section 4.4.2 proposes the field of quantum walk-based algorithms as an area were

such examples may perhaps be found.

In this section we present the concept of κ-while loops as an abstract quantum

programming construct. In Section 4.3 we present a version of Grover’s algorithm

that uses a κ-while loop and maintains the quadratic quantum speed-up. In the future,

we hope to apply κ-while loops to practical problems where the distribution of A-

iterations cannot be predicted. To this end, we provide sufficient conditions that let

us determine, with arbitrarily high probability, a worst-case estimate of the number

of iterations the loop will run for. Remarkably, these conditions do not require us to

know the precise distribution of A-iterations, but only a guarantee of their proportion

throughout the algorithm in the worst-case scenario.

4.2.2 Definition and properties

In Figure 4.1 we propose the syntax for the κ-while loop and its implementation in a

quantum programming language with classical control flow. The syntax of the κ-while

loop is meant to be read as “repeat C while it is not certain thatQ is satisfied”. On each

iteration, the value of the state ρ will be updated to C(ρ), followed by a κ-measurement

of predicate Q (see Section 4.1). If the outcome of the κ-measurement is ⊥, the loop

keeps iterating; the state ρ becomes W⊥(ρ) where W⊥ is given in (4.2). Otherwise,

outcome > causes the loop to halt and we succeed in obtaining a state ρ that satisfies

Q.
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Definition 4.2.2. An isotone function f : N→ N is aAQ,σ-guarantee if for all n ∈ N:

n ≤ |{k ∈ N | k ≤ f(n), AQ,σ(k)}| (4.3)

If such a function f exists we are promised that there will be at least n active

iterations within the first f(n) applications of C. In principle, this need not be a tight

bound. For instance, we may only know that within the first thousand iterations there

are at least ten A-iterations; a valid AQ,σ-guarantee in this case would be a function f

such that f(1) = f(2) = · · · = f(10) = 1000. This gives us little information about

when any of these A-iterations actually occur.

Definition 4.2.3. The evolution induced by a CPTR map C on a state σ is said to be

ε-robust to κ-measurements of predicate Q if there is an isotone function g : N → N
such that:

∀n ∈ N, ∃m ≤ g(n) : |pQ(Cn(σ))− pQ((W⊥C)m(σ))| ≤ ε (4.4)

where ε < 1/2 andW⊥ is given in (4.2). The function g is said to be a witness of the

robustness.

In practice, if the evolution is ε-robust this means that the weakly-measured evolu-

tion will provide a similar curve of the success probability pQ throughout its iterations,

but certain intervals may span a larger number of iterations. Then, the witness function

g provides a bound on how much slower the weakly-measured evolution may be.

Lemma 4.2.4. If f is a AQ,σ-guarantee and g witnesses that C is ε-robust to κ-

measurements of predicate Q, then g ◦ f is a A′Q,σ-guarantee where A′Q,σ is the predi-

cate satisfying:

A′Q,σ(n) ⇐⇒ pQ ((W⊥C)n(σ)) >
1

2
− ε

Proof. Since f is a AQ,σ-guarantee, at least n instances of AQ,σ-iterations will occur

within the first f(n) applications of C. If we switch to weakly measured iterations

W⊥C, robustness tells us that within the first gf(n) iterations of the loop we will find

those n active iterations again, but the probability pQ might differ by ε, so it is at least

pQ > 1/2− ε. Thus, for every n ∈ N it follows that:

n ≤
∣∣{k ∈ N | k ≤ gf(n), A′Q,σ(k)}

∣∣
This concludes the proof.
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Lemma 4.2.4 guarantees that at least n of the first gf(n) iterations of the κ-while

loop will be A′-iterations. For each of these A′-iterations, the probability of outcome

> is at least κ(1/2 − ε) since p> = κ · pQ. Within N instances of A′-iterations the

probability of loop termination is:

Psucc > 1−
(
1− κ(1/2− ε)

)N
Since for all x ∈ (0, 1) we have that (1 − x)

1
x < 1

e
, if the algorithm is allowed to run

for at least N = 2
κ(1−2ε)

A′-iterations, the probability of success will be:

Psucc > 1− 1
e
> 1

2

Therefore, with probability higher than 1/2, our κ-while loop will halt within its first

T = gf

(
2

κ(1− 2ε)

)
(4.5)

iterations. Thus, equation (4.5) estimates the median of the number of iterations the

κ-while loop runs for before halting. More generally, for any c ∈ N, the probability of

success after cN instances ofA′-iterations is greater than 1− 1/ec. Since 1/ec quickly

approaches 0 as c increases, we may say that, with arbitrarily high probability, the loop

halts successfully within Tc = gf(cN) iterations for small c. Hence, we may claim

that the time complexity of the loop is asymptotically bounded by gf(cN) or, in other

words, its time complexity is

O
(
gf

(
2c

κ(1− 2ε)

))
.

Hence, if we manage to choose appropriate κ, ε, f and g, we can prove statements

about quantum speed-ups — under the assumption that the time complexity of the best

classical algorithm is known. Notice that if we do not manage to find witness functions

f and g to prove certain quantum speed-up this does not rule out its existence.

Remark 4.2.5. Definition 4.2.2 can be weakened so that instead of f being a ‘deter-

ministic’ guarantee of AQ,σ, we only impose that f(n) satisfies (4.3) with probability

higher than η. In such a case, after Tc iterations we can achieve a success probability

arbitrarily close to η.

4.3 An example: Grover’s algorithm

In Grover’s search problem [26], we are given an unsorted set of elements B, about

which we know no structure or heuristics, and a predicate χ : B → {0, 1} that satisfies
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UP

⊥

>

U†P
⊥

>·(>
G

Eκ,χ
>
H

>
H

>
H

>
H

> >

<
H ⊗ P

>

i n p u t : χ , |ψ〉
o u t p u t : q

beg in
q ← |ψ〉
w h i l e !κ χ[q] do
q ← G(q)

end
end

Figure 4.2: Left: pseudocode describing our algorithm. The while loop is controlled

by a κ-measurement as described in Section 4.2.2. Right: the algorithm’s information

flow; Eκ,χ is given in Section 4.1, UP applies the canonical isomorphism H ⊗ P ∼=
H ⊕H , separating with respect to the orthogonal basis {|⊥〉, |>〉} of P .

χ(?) = 1 for only one element ? ∈ B. We are tasked with finding this marked

element ?. The standard Grover’s algorithm defines an iteration operator G using an

oracle of χ and applies it a fixed number of times K ≈
√
|B| on an initial state |ψ〉.

Afterwards, a measurement on the basis B is applied, finding the marked element

with high probability. Thus, the algorithm achieves a quadratic quantum speed-up:

it requires O
(√
|B|
)

iterations whereas a classical algorithm would require O (|B|)
iterations since there is no available heuristic to guide the search. In this section we

discuss a different approach to Grover’s search problem where a κ-while loop is used

instead.

The algorithm’s pseudocode is given in Figure 4.2. When the κ-while loop halts,

we are certain that the state is |?〉. We do not fix the number of times G is applied;

instead, we fix the measurement strength κ. We will see that for κ ≈ |B|−1/2 the loop

terminates within c
√
|B| iterations with arbitrarily high probability, where c is a small

constant. Thus, the quadratic quantum speed-up of Grover’s algorithm is preserved.

It is important to remark that, in the case of Grover’s iterator G, we can easily

predict when the A-iterations occur (see Section 4.2.1). Therefore, κ-while loops do

not provide an algorithmic advantage on this problem. Instead, we present Grover’s

search problem as a simple proof of concept showing how classically controlled while

loops may be to monitor a quantum algorithm without destroying the quantum speed-

up. This approach to Grover’s problem was first proposed by Mizel [46]. This section

reformulates Mizel’s results in the broader framework of Section 4.2.2.
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4.3.1 Standard Grover’s algorithm (Preamble)

We first give a brief description of the standard Grovers algorithm and introduce our

notation. The standard Grover’s algorithm acts on a quantum state in H = spanB,

starting from the uniform superposition state:

|ψ〉 = 1√
|B|

∑
b∈B

|b〉. (4.6)

Let |ψ1〉 = |?〉 be the target state and

|ψ0〉 = 1√
|B|−1

(
|ψ〉 −

√
|B| · |ψ1〉

)
For every angle a ∈ [0, 2π) define the state |a〉 as follows:

|a〉 = cos a |ψ0〉+ sin a |ψ1〉. (4.7)

Let α = arcsin 〈? |ψ〉 = arcsin |B|−1/2; it is customary to assume that |B| is large

enough so that the approximation α ≈ |B|−1/2 is reasonable. Notice that |α〉 = |ψ〉.
For every state |ϕ〉 ∈ H let:

Sϕ = 2|ϕ〉〈ϕ| − idH

Grover’s iteration is given by the operatorG = Sψ Sψ0
where Sψ0

may be implemented

using an oracle of χ.

On a state |a〉, the action of Grover’s iteration G is:

G|a〉 = Sψ Sψ0
|a〉 = Sψ|−a〉 = |a+ 2α〉 (4.8)

and after k iterations:

Gk|ψ〉 = cos (α + 2kα)|ψ0〉+ sin (α + 2kα)|ψ1〉

The standard Grover’s algorithm applies G a total of K = b(π
√
|B|)/4c times on |ψ〉

so that the amplitude of |ψ1〉 is maximised. Then, the state is measured on the basis B,

finding the marked element ? with high probability.

4.3.2 While loop approach

In this section we discuss the algorithm given in Figure 4.2. To show that it retains the

quadratic quantum speed-up, we provide an A-guarantee and prove that G is robust to

κ-measurements of χ, as described in Section 4.2.2. Our framework is general enough
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to deal with mixed states and CPTR maps but, in the case of Grover’s algorithm, the

body of the κ-while loopG is unitary and both the initial state |ψ〉 and the target |?〉 are

pure states. Therefore, as discussed in Remark 4.1.2, all states involved in our analysis

will be pure states.

Lemma 4.3.1. The function f : N→ N given by f(n) = 2n+K where K = bπ
√
|B|

4
c

is a Aχ,|ψ〉-guarantee.

Proof. By definition (4.7) of |a〉,

pχ(|a〉) = |〈?|a〉|2 = sin2 a.

Whenever a ∈ (π
4
, 3π

4
) or a ∈ (5π

4
, 7π

4
), we have pχ(|a〉) > 1

2
. Moreover, G|a〉 =

|a+ 2α〉 according to (4.8), so the angle is increased a constant amount on each iter-

ation. Thus, within m ∈ N iterations we know that the number of A-iterations is at

least m−K
2

whereK (defined in the claim) is the number of applications ofG it takes to

traverse a π
2

angle, which is the longest interval of consecutive iterations not satisfying

Aχ,|ψ〉. Assuming the worst case scenario we find that within m = 2n + K iterations

it is guaranteed that n of them are Aχ,|ψ〉-iterations, i.e. for all n ∈ N

n ≤
∣∣{k ∈ N | k ≤ f(n), Aχ,|ψ〉(k)}

∣∣
thus, proving the claim.

Consider applying a κ-measurement at iteration n: if the outcome is >, the state

becomes |?〉, otherwise it suffers a collapse towards |ψ0〉 determined by the projector

W⊥ from Section 4.1:

W⊥|a,⊥〉 = cos aW⊥|ψ0,⊥〉+ sin aW⊥|ψ1,⊥〉

= cos a |ψ0,⊥〉+ sin a (idH ⊗ |⊥〉〈⊥|)Eκ,χ|ψ1,⊥〉

= cos a |ψ0,⊥〉+ sin a
√

1− κ |ψ1,⊥〉

(4.9)

Thus, the output is still in a superposition between |ψ0〉 and |ψ1〉. Notice that W⊥
returns an unnormalised state; the actual CPTP map W⊥ from (4.2) takes care of the

normalization. Then, we may describe the action of W⊥ as |a〉
W⊥7−−→ |a− θ(a, κ)〉

on every angle a ∈ [0, 2π) where the value of θ(a, κ) may be calculated from (4.9)

following the geometric construction of Figure 4.3. We now find an upper bound of

θ(a, κ); this will be used to prove robustness of G. To reduce clutter, we use the

shorthand:

ξ =
√

1− κ (4.10)
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cos a |ψ0〉

si
n
a
|ψ

1
〉

ξ
si
n
a
|ψ

1
〉

|a〉

W⊥|a〉

a

θ

cos a |ψ0〉

si
n
a
|ψ

1
〉

ξ
si
n
a
|ψ

1
〉

|a〉

W⊥|a〉

a

θ

i) ii)

Figure 4.3: Geometric relation between the angle a before weak measurement and

the offset θ(a, κ) after measuring outcome ⊥. The construction is provided when i)

a ∈ [0, π
2
)and when ii) a ∈ [π

2
, π).

Lemma 4.3.2. For any κ and angle a

|θ(a, κ)| ≤ arcsin

(
1− ξ
1 + ξ

)
.

Proof. Suppose a ∈
[
0, π

2

)
and use the properties of sines on the triangle from Fig-

ure 4.3i to obtain:
sin(a− θ)
ξ sin a

=
sin(π/2− a+ θ)

cos a

This simplifies as follows:

sin(a− θ)
ξ sin a

=
cos(a− θ)

cos a

⇐⇒ tan(a− θ) = ξ tan a

⇐⇒ tan a− tan θ

1 + tan a tan θ
= ξ tan a

Solving for θ gives:

θ(a, κ) = arctan

(
(1− ξ) tan a

1 + ξ tan2 a

)
(4.11)

If a ∈
[
π
2
, π
)

instead, a similar analysis yields:

θ(a, κ) = − arctan

(
(1− ξ) tan a

1 + ξ tan2 a

)
(4.12)

which only differs from equation (4.11) in the sign. If a is in the third quadrant, then

we obtain equation (4.11) and, if a is in the fourth quadrant, we get (4.12). These sign

changes are convenient: the geometric analysis in Figure 4.3 shows that in the first

(and third) quadrant, the resulting angle is a− |θ|, whereas in the second (and fourth)
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quadrant it is a+ |θ|. Thus the resulting angle is a− θ regardless of which quadrant a

lies in.

Next, we determine the maximum value of θ(a, κ). To do so, fix κ and find the

critical points of θ as a function on a. These happen where the derivative

dθ

da
= 1− ξ

cos2 a+ ξ2 sin2 a

vanishes. Critical points occur periodically (once in every quadrant), but all of them

reach the same absolute value. The critical point within the first quadrant happens at:

a = arccos

(√
ξ

ξ + 1

)
When applied to equation (4.11) this identity gives a tight upper bound:

|θ(a, κ)| ≤ arctan

(
1− ξ
2
√
ξ

)
Using the equality sin(arctan(x)) = x√

x2+1
, the fact that ξ ∈ [0, 1] and some basic

algebra we reach:

sin|θ(a, κ)| ≤ 1− ξ
1 + ξ

thus, proving the claim.

Corollary 4.3.3. For every angle a ∈ [0, 2π) the bound

|θ(a, κ)| ≤ arcsinκ

holds.

Proof. By definition, κ ∈ [0, 1]. Using this fact along with (4.10) and simple algebra

we can prove that:

0 ≤ 1− ξ
1 + ξ

≤ κ.

Then, the corollary follows from Lemma 4.3.2.

According to these results, if κ ≈ 1 the collapse θ(a, κ) can be up to π
2
, thus always

sending the state back to |ψ0〉, preventing a gradual evolution of the angle. In such

a case, the algorithm would lose its quantum speed-up. Interestingly, Corollary 4.3.3

shows we can keep θ(a, κ) small by bounding κ, so that the action of G overcomes the

effect of the collapse.
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Lemma 4.3.4. The evolution of the unitary map G on the uniform superposition |ψ〉 is

ε-robust to κ-measurements of χ for

κ ≤ 1√
|B|

and ε = sin 3α

witnessed by g(n) = 2n.

Proof. Let {an} be the following sequence of angles:

an+1 = an + 2α

a0 = α

Recall from Section 4.3.1 that Gn|ψ〉 = |an〉. Similarly, we define a sequence {bn}
satisfying (W⊥G)n|ψ〉 = |bn〉:

bn+1 = bn − θ(bn, κ) + 2α

b0 = α.
(4.13)

Remember that sinα = |B|−1/2, so the bound imposed on κ in the claim can be

rephrased as κ ≤ sinα. Thanks to Corollary 4.3.3, this implies |θ(bn, κ)| ≤ α on

every iteration. Then α ≤ bn+1 − bn ≤ 3α for every n ∈ N, whereas an+1 − an = 2α.

Therefore, for some m ≤ 2n we have that bm ≤ an ≤ bm+1 and an − bm ≤ 3α.

Since pχ(Gn|ψ〉) = pχ(|an〉) = sin2 an and pχ((W⊥G)m|ψ〉) = pχ(|bm〉) = sin2 bm, it

follows that:

|pχ(Gn|ψ〉)− pχ((W⊥G)m|ψ〉)| =
∣∣sin2 an − sin2 bm

∣∣.
If we now restrict to an ∈

[
0, π

2

)
and assume that α is small enough so that an−3α ≥ 0

we find that sin2 an − sin2 bm ≤ sin2 an − sin2 (an − 3α); then, using the identity

sin2 x− sin2(x− y) = sin(y) sin(2x− y) (which holds for all x, y ∈ R) we conclude

that:

sin2 an − sin2 bm ≤ sin 3α− sin (2an − 3α) ≤ sin 3α.

A similar argument follows if an ∈
[
π
2
, π
)

or if an is in the third or fourth quadrant so

that, for every n ∈ N:

∃m ≤ g(n) : |pχ(Gn|ψ〉)− pχ((W⊥G)m|ψ〉)| ≤ sin 3α

thus, proving the claim.
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From the general result of Lemma 4.2.4 and the discussion following it along with

the assumption that α is small — so that sin 3α < 1/2 — we conclude that, with

arbitrarily high probability, the algorithm in Figure 4.2 will succeed in finding the

marked element |?〉 within

Tc = gf

(
2c

κ(1− 2ε)

)
iterations for small c ∈ N. Combining this with Lemmas 4.3.1 and 4.3.4 we find that,

for κ ≤ |B|−1/2, the number of iterations is within O
(√
|B|
)

.

Remark 4.3.5. Our analysis yields an arguably large constant factor

Tc ≈ (8c+ π
2
)
√
|B|.

However, it is important to remark that this factor is an overestimation due to the

simplifications applied when finding f and g in this section. With these simplifications

we intended to prioritise clarity of our proof stategy. Tighter bounds would yield a

more accurate factor. In fact, Figure 4.4 suggests the average number of iterations

before success is approximately 2
√
|B|.

Moreover, our choice of κ = |B|−1/2 is not optimal. To prove Lemma 4.3.4 we only

needed that the collapse on each iteration was smaller than the increment of the angle

due to G, i.e. for every angle a we required that θ(a, κ) < 2α. If we set κ = 5|B|−1/2

and use the bound of θ(a, κ) given by Lemma 4.3.2, we can verify that for an instance

of |B| = 106 we have the bound θ(a, κ) < 1.3α, so the collapse is appropriately

bounded below 2α. In this particular case, numerical analysis shows that the average

number of iterations required is slightly smaller than K = π
4

√
|B| where bKc is the

number of iterations the standard Grover’s algorithm runs for. The optimal value of

κ depends on the parameters of the problem — i.e. it may be different for different

values of |B|. We conjecture that such an optimal value of κ exists for every instance of

Grover’s problem so that our approach and the standard one coincide in their expected

number of iterations.

The realisation that for a fine-tuned value of κ our algorithm would perform as

well as the standard Grover’s algorithm was first discussed in a recent paper [20]. The

paper provides an automatic procedure based on differentiable programming that looks

for optimal values of the parameters of a quantum program. The authors discuss our

algorithm as a use case of their approach and, for small values of |B|, they find optimal

values for κ satisfying the conjecture above.
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Figure 4.4: Distribution of the number of iterations before success for parameters

|B| = 106 and κ = |B|−1/2; left: histogram, right: cumulative probability distri-

bution. Drawn from 10000 samples, obtained by sampling the success probability

p> = κ sin2 bn where bn is given by (4.13). The median is approximately 1000 itera-

tions, and mean 2000 iterations, i.e. approximately 1
κ

and 2
κ

respectively.

Figure 4.4 helps us visualise the behaviour of the algorithm: as the angle bn mono-

tonically increases throughout the iterations, the instantaneous probability of success

p> = κ sin2 bn changes periodically. The peaks of the histogram correspond to inter-

vals of A-iterations where the probability of success approaches its maximum (that is,

p> ≈ κ); these alternate with troughs where the probability of halting approaches 0.

These periodic stages of unlikely termination are the cause of the plateaus in the sec-

ond plot from Figure 4.4 where the cumulative probability of halting — i.e. for each

n ∈ N, the probability of halting before n iterations — is graphed. Apart from these

plateaus, the curve resembles that of the cumulative probability of a geometric dis-

tribution, which is to be expected since these model experiments that “continue until

success”. The data points used to draw the figures were obtained by sampling from

the success probability p> = κ sin2 bn throughout iterations until success, where bn is

given by (4.13); no simulation of the quantum algorithm is required since we are not

running the computation itself.

4.4 Discussion

The κ-while loop is a programming construct that offers a promising abstraction: a way

to ‘peek’ at quantum states while computing without sacrificing asymptotic quantum

speed-up. The key challenge to its use is the need to strike a balance — by tuning
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the measurement strength κ — so that the collapse per iteration is low enough and the

information gained is sufficient. The body of a κ-while loop may be any CPTR map,

hence κ-while loops may be nested inside each other. As with classical while loops,

termination implies the satisfaction of the predicate, which is a useful feature for the

analysis of program correctness. We emphasise that these κ-while loops can be realised

in any quantum programming language with classical control flow, as indicated in

Figure 4.1. More precisely, κ-while loops are a particular instance of the classically

controlled while loops described in [55]. Hence, we expect it would be immediate

to apply to κ-while loops any findings from the literature on classical control flow

of quantum programs; for instance, verification of program correctness [21], study of

loop termination [39, 55] and semantics [49, 54]. We conclude this chapter discussing

previous works and proposing new avenues of research.

4.4.1 Related work

The key component of the κ-while loop is a weak measurement parametrised by κ.

Weak measurements are not new to quantum computer scientists, as they are at the

heart of quantum feedback control [58]. Our κ-while loop can be seen as an example

of quantum feedback control where the weak measurements are applied at discrete time

steps. Discrete time feedback control has been used to protect a single qubit from deco-

herence [12, 23], while similar notions of weak measurement (over continuous time)

have been proposed to monitor and drive complex evolutions [41]. However, weak

measurements are rarely used in the design of quantum algorithms; Mizel’s work [46]

being the only case we are aware of. By defining the κ-while loop programming con-

struct we are attempting to introduce weak measurements to algorithm designers and

programming language experts in a language that is familiar to them.

We have shown that a κ-while loop may be used to implement Grover’s algorithm;

however, there is no algorithmic advantage with respect to the standard approach. The

reason is that the distribution of A-iterations throughout Grover’s algorithm is easy to

predict, and thus we can fix the number of iterations we should run it for in advance,

instead of using a κ-while loop. Our approach trivially extends to the more general

setting of amplitude amplification originally proposed in [13].

Mizel [46] proposed a version of Grover’s algorithm that is, in essence, the same

as ours. We learned about Mizel’s work while writing the first version of our publi-

cation [5]. Our work can be seen as a generalisation of Mizel’s where our study of
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Grover’s algorithm is meant as a proof of concept; our main contribution is the pro-

posal of a programming construct — the κ-while loop — and the introduction of tools

to study the worst-case complexity of algorithms using it. Mizel presents their algo-

rithm as a fixed point routine, where a mixed state gradually converges to the target

state. However, this fixed point behaviour is an artefact of disregarding the outcome

of the weak measurement (see Remark 4.1.2): we know the loop will eventually halt

and, when it does, the result will be the target state; the fixed point behaviour Mizel

observes is that of the cumulative probability of halting converging to 1 as the number

of iterations tends to infinity (see Figure 4.4) and, thus, it is an statement about the

stochastic behaviour of multiple runs of the algorithm. In contrast, we have focused on

describing the evolution of the quantum state in a single run, and we have shown that

the state keeps evolving at approximately the same rate throughout the algorithm (i.e.

the angle increases an amount between α and 3α per iteration) until a > measurement

outcome occurs, in which case the state collapses onto the target subspace. The field of

quantum trajectories [14] focuses on understanding these kind of stochastic dynamics

in the presence of weak measurements.

It is worth mentioning that algorithms for Grover’s search using a fixed point ap-

proach do exist [27, 57]. In these, no measurement is applied during execution; in-

stead, each iteration applies a unitary parametrised by a value that is gradually reduced

throughout the algorithm. Intuitively, each iteration moves the state closer to the tar-

get, but each time the step is smaller to avoid overshooting. The drawback of this fixed

point approach is that, unless we can implement a circuit where the unitary’s parameter

can be changed during runtime, each iteration requires a different circuit.

4.4.2 Applications beyond quantum search

We have presented a κ-while loop version of Grover’s algorithm as a proof of concept.

However, the pragmatic value of κ-while loops cannot be confirmed unless we find

examples of quantum algorithms where the distribution of A-iterations is unknown or

it would be costly to predict. We believe such examples may be found in the field

of quantum walk based algorithms. The literature on quantum walks provides mul-

tiple results where quantum computers exhibit an advantage in the study of Markov

processes [51, 4]. The unitary evolution of these quantum walks is defined in terms

of the transition matrix of the Markov process, which is often only required to be

symmetric and ergodic. Thus, the literature from this field offers a diverse class of ex-
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amples of quantum algorithms whose evolution may be arbitrarily complex. We argue

there may be Markov processes whose quantum walk can be proven to be robust to κ-

measurements (as per Definition 4.2.3) while, at the same time, being complex enough

to prevent an accurate estimation of when a desired state would be reached. The ar-

gument goes as follows: on one hand, the choice of κ may be determined by a lower

bound of the rate at which the walker traverses the graph (so that κ-measurements are

not so strong that they would prevent the walker from reaching certain regions of the

graph). This rate may be estimated as the infimum of local rates, using notions such as

conductance and effective resistances [11]. On the other hand, in order to predict when

the walker reaches a particular state, we would need to take into account the global

behaviour of the walk, which may be a more daunting task. Thus, in such situations

choosing the value of the measurement strength κ may be an easier task than that of

deciding the number of iterations in advance.

Another possible avenue of research is the study of continuously measured while

loops. The notion of weak measurement used in this chapter is discrete, but continu-

ous measurements have been studied extensively in the literature of quantum feedback

control [35]. We can entertain the idea of a while loop whose body describes an in-

finitesimal step of the evolution — for instance, by providing a Hamiltonian — thus

extending κ-while loops to the continuous-time setting. This may be valuable from an

experimentalist perspective; for instance, it hints at implementations of algorithms (for

instance, Grover’s search) where the probe is continuously measured throughout the

execution, thus simplifying control: we no longer need to know when each iteration

finishes and the next one starts.



Chapter 5

Final remarks

The driving motivation of this thesis has been the study of control flow in quantum

programs, with particular focus on unbounded iterative loops. We have studied both

the case of quantum control flow and the case of classical control flow. Along the

way we have presented multiple theoretical results whose relevance was discussed

within their corresponding chapters. In this final chapter we wish to highlight the two

contributions of major pragmatic value.

Chapter 3 culminates with Theorem 3.4.23, establishing that (LSI≤,⊕, ex) is a

totally traced category. The morphisms in LSI≤ describe quantum processes over dis-

crete time and the execution formula in this category represents quantum iteration.

This result opens up the possibility of providing categorical semantics for quantum

programming languages using quantum control flow. Indeed, in Section 5.1 we sketch

a toy programming language with quantum control flow and we provide its denota-

tional semantics in the category LSI≤.

In Chapter 4 we have proposed a novel programming primitive: the κ-while loop.

These κ-while loops are an instance of classical control flow since the decision-making

process is dependent on the outcome of a measurement. This primitive may be intro-

duced into any quantum programming language supporting classical control; we dis-

cuss how this may be achieved in Section 5.2 and provide denotational semantics in

CPTR for the κ-while loop.

5.1 A toy language with quantum control flow

In this section we sketch the bare bones of a programming language qWhile sup-

porting quantum control flow and provide its denotational semantics using the results

185
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from Chapter 3. Previous works [56, 15, 17] have proposed programming languages

and mathematical frameworks aiming to describe quantum computation with quantum

control. The shortcomings of the approach proposed by Ying, Yu and Feng [56] were

discussed in Section 1.1.1, whereas Section 3.5 discussed the connection between our

work and that of [15]. The authors of [17] proposed the PBS-calculus, a diagram-

matic language used to describe and reason about quantum computation with quantum

control flow; at the end of this section we compare qWhile with their approach.

Definition 5.1.1. We use finite sets A,B to specify the input and output types of pro-

grams P : A → B in qWhile. Every program P : A → B in qWhile is inductively

defined using the following syntax:

U | ∆t | P ;P ′ | P⊕P ′ | do P while X

• there is a unitary primitive U : A → A for every finite set A and every unitary

U : C|A| → C|A|;

• there is a delay primitive ∆t : {•} → {•} for every t ∈ N and every element •;

• there is a sequential combinator yielding P ;P ′ : A→ C for every two programs

P : A→ B and P ′ : B → C;

• there is a parallel combinator yielding P ⊕ P ′ : A ] A′ → B ] B′ for any two

programs P : A→ B and P ′ : A′ → B′;

• for every program P : A]X → B]X there is a while loop combinator yielding

(do P while X) : A→ B.

We choose to write (do P while X) instead of the more usual syntax (while X do P )

since its semantics are easier to describe. The semantics of (do P while X) will be

given by the execution formula where the shortest execution path is PBA : A → B

which can be understood as a single application of P . Thus, we want our syntax to

suggest that at least one iteration of P will always be applied, hence, we ‘do’ P before

we test the loop condition.

The denotational semantics of qWhile is given by a mapping J−K from pro-

grams P : A → B to morphisms JP K ∈ LSI≤(A,B). Recall from Section 3.4 that

a morphism f : A → B in LSI≤ corresponds to a linear shift invariant contraction

⊕A `2 → ⊕B `2. According to Definition 3.4.18, a morphism f ∈ LSI≤(A,B) is

represented as an R-indexed collection of contractions:

f = {f̂ω ∈ FdContraction(C|A|,C|B|)}ω∈R.
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Definition 5.1.2. The denotational semantics of a program P : A → B in qWhile is

the morphism JP K ∈ LSI≤(A,B) inductively defined as follows:

• for each unitary primitive U : A→ A, let JUK be the R-indexed collection where

ĴUKω = U for all ω ∈ R;

• for each delay primitive ∆t : {•} → {•}, let J∆tK be the R-indexed collection

where Ĵ∆tKω = e−iωt for all ω ∈ R;

• for each program of the form P ;P ′, let JP ;P ′K be the R-indexed collection

where ĴP ;P ′Kω = ĴP ′Kω ◦ ĴP Kω;

• for each program of the form P ⊕ P ′, let JP ⊕ P ′K be the R-indexed collection

where ̂JP ⊕ P ′Kω = ĴP Kω ⊕ ĴP ′Kω;

• for each program of the form (do P while X) where P : A ]X → B ]X , let

̂Jdo P while XKω = exX(JP Kω)

where ex is the execution formula in LSI≤.

The definition of J−K on each syntax primitive follows from the discussion on lin-

ear shift invariant maps in Section 3.4. In particular, recall that the elements of the

R-indexed collection representing a linear time-shift invariant map f may be under-

stood as the action — via multiplication — of f on inputs that are periodic signals

of angular frequency ω ∈ R (see Remark 3.4.8). Since unitary primitives are instan-

taneous, these act in the same manner on all input signals, whereas a delay primitive

simply changes the phase of the signal. The correctness of these definitions can be

checked by obtaining the characteristic function χU = U ·δ and χ∆
t = St[δ] of these

LSI maps (see Proposition 3.4.11), then applying the discrete-time Fourier transform

to them (Definition 3.4.7). We established in Section 3.4 that, thanks to the convolu-

tion theorem 3.4.9, composition of LSI maps can be described in terms of index-wise

composition of their corresponding R-indexed collections; a similar result trivially

follows for parallel composition (i.e. monoidal product). Finally, we provide seman-

tics for while loops using the execution formula; well-definedness is guaranteed since

(LSI≤,⊕, ex) is a totally traced category, as established in Theorem 3.4.23.

Comparison with PBS-calculus [17]. The authors of the PBS-calculus consider two

separate state spaces: one being the internal state (holding ‘data’) and another — re-

ferred to as the ‘polarisation’ — which determines the execution path the computation
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will take. In the case of qWhile we only capture the ‘polarisation’ space since the

state space assigned to each input port a ∈ A of a program P : A→ B is the `2 space

of square-summable functions Z → C, i.e. we only capture amplitude over time on

each port a ∈ A. It would not be conceptually difficult to extend qWhile so that

the inputs and outputs ports may carry an ‘internal state’; it is a matter of increasing

dimensions. However, there is a fundamental conceptual difference between qWhile
and the PBS-calculus: the PBS-calculus does not support any primitive that changes

the polarisation state during computation. This restriction reduces the expressivity of

loops dramatically: the variables used in conditional statements are, in fact, constants

defined at the program’s input. The toy programming language qWhile does not

exhibit this restriction.

Notice that the introduction of the time delay primitive ∆t to the syntax of qWhile
is not necessary for the denotational semantics to be well-defined. In fact, if we re-

move ∆t from the syntax we would be able to define the semantics of qWhile within

(FdContraction,⊕, ex) — or even FdUnitary — which we have shown to be a

totally traced category as well (Theorem 3.3.15). However, in such a case the seman-

tics would suggest that the different execution paths of the program may interact with

each other as if all of them produced their output in the same instant — this is not a

physically sound proposal. Thus, the delay primitive ∆t is added for pragmatic reasons

rather than theoretical limitations. An interesting consequence is that we may perceive

qWhile as a language for manipulating wave functions since states are signals rather

than qubits. However, recall that LSI≤ only captures processes over discrete time,

whereas wave functions are defined over continuous time.

5.2 The κ-while loop in existing programming languages

The κ-while loop primitive may be introduced into any quantum programming lan-

guage supporting classical control flow and standard while loops. Figure 5.1 shows

how this may be achieved:1 a κ-while loop is nothing more than a standard while

loop controlled by a κ-measurement, so it suffices to unpack the definition of κ-

measurement (Definition 4.1.1) within the body of the loop. This may be done by

a parser that scans the code and replaces any occurrence of a κ-while loop with the

equivalent code from Figure 5.1.

On a similar note, the semantics of the κ-while loop may also be defined in terms

1Figure 5.1 is a copy of Figure 4.1, reproduced here for the reader’s convenience.
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w h i l e !κ Q[ρ] do
ρ ← C(ρ)

end

q ← |⊥〉〈⊥|
w h i l e M [q] = ⊥ do
ρ ← C(ρ)

ρ, q ← Eκ,Q(ρ⊗ q)
end

Figure 5.1: Left: the syntax we use to represent a κ-while loop; κ ∈ [0, 1] is a parameter

set by the programmer and Q is the predicate to be measured. Right: the pseudocode

that implements the κ-while loop on a programming language with classical control

flow, following the notation from [54]; Eκ,Q is defined in Section 4.1 and the condition

M [q] = ⊥ indicates that q is measured to distinguish between H ⊗ span{⊥} and

H ⊗ span{>}, with the condition being satisfied if q collapses to the former.

of the semantics of the base language. In fact, it is as simple as evaluating the seman-

tics of the equivalent code provided in the right hand side of Figure 5.1 which, being

comprised only of primitives of the base programming language, should already have

well-defined semantics. Nevertheless, and for the purpose of completeness, we con-

struct the morphism in CPTR that ought to describe the denotational semantics of the

κ-while loop. Let Q be the halting predicate and let κ be its measurement strength; we

may construct a function

Wkκ,Q : CPTR(B(H), B(H))→ CPTR(B(H)⊕B(H), B(H)⊕B(H))

that maps a morphism C ∈ CPTR(B(H), B(H)) describing the body of a κ-while

loop to its corresponding weakly measured counterpart. To do so, use the isomorphism

h : H⊗span{⊥,>} → H⊕H and the functor F : FdContraction→ CPTR given

in Definition 3.3.18 along with the canonical inclusion θ : B(H)⊕B(H)→ B(H⊕H)

and its left inverse φ : B(H ⊕ H) → B(H) ⊕ B(H) (see Section 3.3.3).2 Then, for

every C ∈ CPTR(B(H), B(H)) we may define Wkκ,Q(C) as follows:

Wkκ,Q(C) = φ ◦ F (h ◦ Eκ,Q) ◦ (C ⊗ id) ◦ F (h−1) ◦ θ

where Eκ,Q is a unitary defined in Section 4.1. Since CPTR is a Σs-UDC it has

canonical quasi-injections ι⊥, ι> : B(H) → B(H) ⊕ B(H) and quasi-projections

π⊥, π> : B(H) ⊕ B(H) → B(H) distinguishing the measurement outcomes ⊥ and

2Notice that θ may be understood as state preparation and φ as measurement [6].
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>. Then, we may define Wkκ,Q in terms of its unique decomposition:

Wkκ,Q(C) =

(
π> ◦Wkκ,Q(C) ◦ ι> π> ◦Wkκ,Q(C) ◦ ι⊥
π⊥ ◦Wkκ,Q(C) ◦ ι> π⊥ ◦Wkκ,Q(C) ◦ ι⊥

)

so that exB(H)(Wkκ,Q)(C) corresponds to the morphism in CPTR describing the κ-

while loop of body C and halting predicate Q, where the execution formula ex in

CPTR is the one discussed in Section 3.2.1.

5.3 Conclusion

With this thesis we are attempting to put forward new perspectives on the field of

control flow of quantum programs and, in particular, the study of unbounded iter-

ation. On one hand, we have revisited Bartha’s result [10] that quantum processes

with instantaneous coherent quantum feedback are well-defined: more formally, that

(FdContraction,⊕, ex) is a totally traced category. A physical interpretation of this

result is that, instead of assuming inputs and outputs come in the form of particles in-

teracting with a device, these are described in terms of plane waves (see Remark 3.4.8)

which are, in some sense, everywhere at once; thus, feedback in such a situation does

not require a notion of ‘delay’ to be well-defined. Following this intuition, we have

used the Fourier transform to decompose any input signal to its plane wave compo-

nents and used the properties of time-shift invariant maps to prove the novel result that

(LSI≤,⊕, ex) is totally traced. Other novel technical results on category theory and, in

particular, on categories of Σ-monoids and UDCs have been introduced while building

towards our objective. On the other hand, we have introduced a novel programming

primitive — the κ-while loop — that in certain cases may be used to classically con-

trol the termination condition of a quantum subroutine without sacrificing the quantum

speed-up.

Quantum computer scientists tend to dismiss unbounded iteration in quantum algo-

rithms as an uninteresting field of work: in the case of classical control flow due to the

assumption that testing a termination condition on every iteration would destroy any

achievable quantum speed-up and, in the case of quantum control flow, due to the tech-

nical obstacles that interference and the possibility of infinitely many execution paths

would entail — these obstacles were discussed in Section 1.1.1. However, prior to this

thesis there already were examples of both classically controlled unbounded loops —

such as Mizel’s proposal of a measurement-controlled Grover algorithm [26] — and
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instances of quantumly controlled unbounded loops — in the form of a wide variety

of quantum-walk based algorithms. In this thesis we have established that unbounded

iteration in quantum computing is mathematically sound. It is my hope that further

study on this field will yield quantum programming languages supporting quantum

control flow and new algorithms that make use of unbounded iteration.
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