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Abstract

The ability to draw inferences is core to semantics and the field of Natural Language

Processing. Answering a seemingly simple question like ‘Did Arsenal play Manch-

ester yesterday’ from textual evidence that says ‘Arsenal won against Manchester yes-

terday’ requires modeling the inference that ‘winning’ entails ‘playing’. One way of

modeling this type of lexical semantics is with Entailment Graphs, collections of mean-

ing postulates that can be learned in an unsupervised way from large text corpora.

In this work, we explore the role that temporality and linguistic modality can play

in inducing Entailment Graphs. We identify inferences that were previously not sup-

ported by Entailment Graphs (such as that ‘visiting’ entails an ‘arrival’ before the visit)

and inferences that were likely to be learned incorrectly (such as that ‘winning’ entails

‘losing’). Temporality is shown to be useful in alleviating these challenges, in the

Entailment Graph representation as well as the learning algorithm. An exploration of

linguistic modality in the training data shows, counterintuitively, that there is valuable

signal in modalized predications. We develop three datasets for evaluating a system’s

capability of modeling these inferences, which were previously underrepresented in

entailment rule evaluations. Finally, in support of the work on modality, we release

a relation extraction system that is capable of annotating linguistic modality, together

with a comprehensive modality lexicon.
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Lay Summary

The field of Natural Language Processing has made an enormous amount of progress

in the past decades. Many people now use digital personal assistants, like the Google

Assistant or Amazon Alexa — something that was perhaps unthinkable 50 years ago.

But anyone that has used these assistants knows they aren’t perfect. We cannot ask

them anything we want, and we cannot phrase our questions to them in all the ways

that feel natural to us.

A central area we are working to improve is Natural Language Inference. Models

of human language are currently able to extract much of the information that a sentence

states explicitly, but they struggle to understand information contained implicitly —

information that needs to be inferred. For example, if we read that “Arsenal won the

game last night” and somebody later asks us “Did Arsenal play last night?”, we can

answer “Yes”. As humans we can answer this question because we have somehow

stored the information that if a sports team wins, they also play. In linguistics this

relation between predicates is called entailment, and it is a type of knowledge that

computational models, including Alexa and the Google Assistant, struggle to learn.

One strategy for answering these kinds of questions involves 1) building a parser

which extracts structured information from text available on the web, 2) encoding that

information in a Knowledge Graph and 3) building some sort of inference engine,

that can make inferences about those facts. We can then combine these resources to

answer a question: we use the parser to understand the question (“Did Arsenal play

last night?”), search for facts that might answer it in the Knowledge Graph (“Arsenal

won last night”), and see whether our inference engine leads us from our facts to an

answer (“Yes”).

This brings us to the material of this thesis. We try to learn better Entailment

Graphs — models that can be part of an inference engine, that store the entailment

relations between linguistic predicates like win and play. Entailment Graphs can be

learned automatically using an algorithm. We give the algorithm a huge number of

news articles (say, a million) and by looking at what entities (e.g. Arsenal and Manch-

ester United) participate in what predicates (e.g. win), it can give us an Entailment

Graph.

This thesis builds on previous research by improving Entailment Graphs using tem-

porality and modality. We put time in the representation so that the graphs can make

temporal inferences (for example, if you are visiting you have arrived, while it is not

viii



the case that you will arrive.

We also add temporality to the learning algorithm. We realized that the graphs

contained incorrect relations between predicates like win and lose, because these occur

with the same entities (Sometimes Arsenal win; sometimes they lose). However, they

always occur with those entities at different times. So, we used models that understand

the part of language that refers to time — tense, aspect, our temporal expressions and

explicit and implicit ordering of events — to automatically understand when all the

events happened in the news articles. By taking these times into account in a new

learning algorithm, we remove the false edges between win and lose and learn more

accurate graphs. We also built three evaluation datasets containing both the temporal

and the contradictory types of inferences, to test performance of different models.

By modality we mean the part of language that deals with hypotheticals, possibil-

ity, desire, and other descriptions of things that don’t necessarily happen in the real

world. Think of sentences like “Arsenal might win.” or “if only Arsenal had won ... ”.

Our algorithm previously ignored this information, so that some of its data referred to

events that never occurred, which might be confusing to the model. We build a parser

that understands modality and show that in cases like the sports domain it is useful to

remove modal data, while it can be useful to keep it in other cases.

So, the general research project is to improve Entailment Graphs, making them

more accurate using time as a signal and putting time in the representation, and taking

modality into account in the training data. Downstream, this could improve reasoning

abilities of larger systems, which allows these systems to understand us humans in a

more fluid way, because they become able to make the same implicit inferences that

we make.
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Chapter 1

Introduction

Entailment is one of the central components of meaning in natural language. Montague

called it “the basic aim of semantics” (Montague, 1970). The ability to recognize the

entailments of a text is therefore essential to many Natural Language Processing (NLP)

applications, such as Information Extraction (IE), Information Retrieval (IR), docu-

ment summarization and Question Answering (QA) (Kozareva and Montoyo, 2006).

For example, when answering an open-domain question like “Did Arsenal play

Manchester last night?”, the unstructured textual data at our disposal might state that

“Arsenal beat Manchester 1-0”. This poses the challenge that the answer to the ques-

tion is not explicitly stated in the text — it needs to be inferred using entailment knowl-

edge. Only a system that can somehow recognize that beat � play will be able to

provide the correct answer (“yes”).

The tasks described above all run into one of the fundamental challenges of Natural

Language Understanding (NLU): the many-to-many mapping between meanings and

surface forms with which natural language confronts us. A single surface form can

have multiple meanings (semantic ambiguity), and a single meaning can be expressed

using multiple surface forms (semantic variability). Knowledge of entailment assists

us in the semantic variability problem. It brings us closer to an understanding of text

that is independent of the surface form — modeling a form-independent semantics.

Systems that reason with natural language often rely on entailment rules such as

beat � play. These can form a kind of background world knowledge to be used by

an inference system. In fact the background knowledge discovery problem is one of

the main bottlenecks of improving these systems (Bos, 2014). It has therefore been

a prominent research enterprise to create collections of entailment rules, which are

preferably mined automatically (since they are expensive to design by hand), while

1



2 Chapter 1. Introduction

still exhibiting high accuracy and high coverage.

This central problem has recently been tackled using Entailment Graphs (Berant,

2012), graph structures in which the nodes are linguistic predicates and the edges be-

tween them represent entailment relations. They can be learned in an unsupervised

way from large collections of multi-authored news text, which avoids the expensive

process of building such a lexicon manually. They also have the advantage of being

both interpretable and explainable: the relations are represented explicitly so that a hu-

man can easily interpret the outputs, and it is possible to track down the evidence that

supports any particular relation in the training corpus.

Their learning signal is based on the Distributional Inclusion Hypothesis (DIH).

Using the argument pairs of a predicate as its context, this states that a predicate

(e.g. win against) entails another (play) if the context set of the first predicate (e.g.

{(Arsenal, Manchester), (Everton, Liverpool), ...}) is included in that of the second

(e.g. {(Arsenal, Manchester), (Manchester, Arsenal), (Everton, Liverpool), ...}). By

example, because win entails play, whenever a team wins against another team, they

must also play that team (while not every team that plays against another team wins

against them). When we find this inclusion pattern occurring in the data between two

predicates, it indicates that an entailment relation likely exists between them. Algo-

rithms based on this intuition can be used to automatically induce Entailment Graphs.

Entailment Graphs and their induction process still face certain challenges, how-

ever. For one, until now they have not been expanded to model temporally contin-

gent inferences. Atemporal Entailment Graphs might learn a general entailment rela-

tion between visit and arrive, but this does not fully reflect the relation between the

predicates, since it ignores the fact that the arrival must happen before the visit. The

challenge is that our models should only support inferences like “Obama is visiting

Hawaii”�“Obama has arrived in Hawaii” and � “Obama will leave Hawaii”, while ex-

cluding temporally incorrect inferences like “Obama is visiting Hawaii”�“Obama will

arrive in Hawaii” or � “Obama has left Hawaii”.

Another unexplored challenge is that the atemporal DIH breaks down for antony-

mous predicates that occur frequently with the same argument pairs. For example,

predicates like win and lose will occur frequently with the same sports teams (say,

Arsenal and Manchester — sometimes Arsenal win; sometimes they lose). The algo-

rithm interprets this overlap as an indication of an entailment relation between win and

lose, whereas the true relation is one of contradiction.

This thesis explores two possible signals with which to engage in these challenges.



1.1. Thesis Statement 3

On the one hand, we investigate temporality. We can access the tense and aspect

of predications using techniques in parsing and part-of-speech tagging. We can also

make use of recent NLP progress to understand when a described eventuality happens,

by recognizing eventualities in the text, parsing temporal referring expressions (such

as on Monday two weeks from now) and predicting the temporal orderings between

them. Tense and aspect can form potential features of the predicate representation in

the graph (modeling was visiting instead of simply visit, for instance). The eventuality

time, on the other hand, has potential as a signal in the Entailment Graph induction

algorithm, since although win and lose might occur with the same two arguments, they

will never co-occur simultaneously.

We also investigate modality as a potential signal. Our languages have rich sys-

tems for describing eventualities that never actually happen — uncertain future events,

hypotheticals, counterfactuals, desires, commands, etc. NLP has developed tools to

understand this other kind of factive displacement, allowing us to tag predications with

their modal category. It seems tenable that the Entailment Graph learning signal would

benefit from this information, using the cleaner signal of only those predications actu-

ally asserted as happening. Otherwise, “Arsenal might win against Manchester.” and

the description “Arsenal lost to Manchester” (referring to the same sports event) would

reinforce the spurious entailment between win and lose.

1.1 Thesis Statement

Temporal entailment is an unexplored and challenging problem for Entailment Graphs.

It can be encoded in a Lexical Inference in Context task setup by varying the tense and

aspect of the premise and hypothesis predications. The inferences can be modeled in

Tensed Entailment Graphs by including tense and aspect in the predicate nodes.

Antonyms that are correlated through their argument pairs present another chal-

lenge to Entailment Graphs. Temporality can be injected as a useful signal into an

Entailment Graph mining algorithm, learning the correct entailments while avoiding

spurious entailments to correlated antonyms. This temporal formulation of the DIH is

effective for predicates with particular properties, such as those occurring in the sports

domain. Linguistic modality can be similarly useful in this regard — sports domain

Entailment Graphs learned from data of exclusively asserted predications are of higher

quality. This effect does not hold in the general domain, showing that modalized pred-

ications can be as valuable as asserted predications to entailment learning in certain
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circumstances.

1.2 Thesis Outline and Contributions

In Chapter 2, we discuss relevant literature from NLP and linguistics. We first sum-

marize work on entailment and Entailment Graphs, before discussing temporality and

modality.

In Chapter 3 we define the problem of temporal entailment, previously largely ig-

nored in Natural Language Inference. We present a novel entailment dataset, TEA1,

containing these inferences, described in Section 3.2. The work was carried out with

Thomas Kober, collaborating closely on the problem definition, dataset design and an-

notation. Thomas experimented with initial baselines on the dataset independently, and

initial experimental results will therefore be presented only briefly). In Section 3.3 we

present alterations to the Entailment Graph induction pipeline to create Tensed Entail-

ment Graphs. We show that these graphs are able to learn novel temporal inferences,

although due to sparsity they are limited to low recall. Again, the research was carried

out in collaboration with Thomas Kober. While we collaborated closely, most of the

implementation and experimentation work (altering the parser; running and evaluating

models) was carried out by me. Most of the work in Section 3.2 was published as

(Kober et al., 2019), while the work in Section 3.3 has remained unpublished.

In Chapter 4 we present a novel Entailment Graph induction algorithm that in-

corporates a temporal signal. To evaluate this idea we create the Sports Entailment

Dataset2 (Guillou et al., 2020), created using a new semi-automatic construction method

based on clusters of paraphrases. The dataset is inspired by the theoretical point that

the atemporal DIH is likely to conflate antonymy and entailment for some predicates.

We show that temporality is a useful signal for learning entailment. Liane Guillou and

I collaborated closely on engineering, experimentation and data construction in this

project. The chapter is based on work published under (Guillou et al., 2020) (shared

first authorship).

In Chapter 5 we generalize the experimentation in Chapter 4 to the news domain

more broadly. We test the idea of applying a dynamic temporal comparison window,

set separately for each eventuality in the data using a neural duration estimation model

1Available at https://github.com/tttthomasssss/iwcs2019.
2Available at https://gitlab.com/lianeg/temporal-entailment-sports-dataset.

https://github.com/tttthomasssss/iwcs2019
https://gitlab.com/lianeg/temporal-entailment-sports-dataset
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(Zhou et al., 2020). We contribute the ANT3 dataset, containing more general domain

antonyms and entailments produced semi-automatically using WordNet (Miller, 1993).

This demonstrates that the method works better on the sports domain specifically. We

further analyse the conditions under which the method works, and show that there are

other subdomains for which the temporal method might also be successful. Again, this

work was carried out in close collaboration with Liane Guillou. The work is in the

reviewing process at the time of submission of this thesis.

Chapter 6 presents work on a modality tagger based on a Combinatory Categorial

Grammar (CCG) (Steedman, 2000) dependency parser. The tagger includes the most

extensive modality lexicon to date, compiled from various other resources. In prepara-

tion of experimentation in Chapter 7 we verify that the tagger attains sufficiently high

accuracy for downstream application. The work in this chapter was also performed

with Liane Guillou; it was published as (Bijl de Vroe et al., 2021) under shared first

authorship.

In Chapter 7 we use linguistic modality as a signal in Entailment Graph induction.

Our experimentation shows that the signal is useful in the sports domain; a graph built

using only asserted predications outperforms the standard graph. As with temporal-

ity, the effect does not carry over to the general domain. In that case, using a mix of

asserted and modalized predications is more effective than an identical amount of as-

serted predication data, showing that modalized predications can still provide a useful

signal for entailment in some circumstances. I again shared first authorship with Liane

Guillou and the work is published as (Guillou et al., 2021).

At various points we refer to Multivalent Entailment Graphs (McKenna et al.,

2021). Although I collaborated on that project (primarily in recognizing the prob-

lem and designing the initial solution), the project was defined further and carried out

by Nick McKenna and is not presented in full in this thesis.

Finally, we conclude in Chapter 8. We present lessons learned in entailment eval-

uation dataset construction, and discuss the most promising directions revealed by the

thesis work, both in including temporality in the semantic representation and in exper-

imenting with temporality as a learning signal.

3To be made publicly available.





Chapter 2

Background

2.1 Introduction

In this Chapter, we discuss the relevant background for the remainder of the thesis.

We first discuss the linguistic background of entailment, and its investigation under the

lens of NLP (Section 2.2). We also take the opportunity here to discuss the important

role of entailment in the lexicon and semantics more broadly. We separately discuss

the Entailment Graph literature in Section 2.3.

We then move to the phenomena of temporality (2.4) and modality (2.5). In both

cases we first touch on the relevant linguistic background, before moving to the ap-

proaches that NLP has taken in modeling and dataset construction.

2.2 Entailment

2.2.1 Definition

The formal definition of entailment can be given either proof-theoretically or model-

theoretically (Shapiro, 2005). Proof-theoretically, a set of formulae P entails a formula

h within a deductive system if there exists a sequence of formulae that ends in h,

where every formula either 1) is an axiom of the system, 2) belongs to P, or 3) follows

from previous formulae using the system’s rules of inference. In model theory (Tarski,

1937), conversely, P entails h if every interpretation of the model M that satisfies all

formulae in P also satisfies h (in other words, if h is true in all the possible worlds

in which P holds). The latter approach provided an initial basis for formal semantics

(Montague, 1970), and has since occupied an important role in the study of meaning,

7
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for instance for defining a semantics of linguistic modality (Kratzer, 1981).

At its core entailment is about drawing inferences, such as if a team beat another

team then the teams played. Entailment datasets in computational semantics (more

about which in Section 2.2.3) have increasingly described this using a more common-

sense or probabilistic usage of the term entailment. For example, the Recognizing Tex-

tual Entailment task defines an entailment relation between two pieces of text (premise

P and hypothesis H) as follows: “P entails H if, typically, a human reading P would

infer that H is most likely true” (Dagan et al., 2006). Note that this softens the stan-

dard definition of logical entailment, in which an entailed statement is unquestionably

true given a hypothesis, to a more probabilistic and human-centered interpretation. Al-

though some argue that the use of entailment in this case diverges too much from the

technical definition (Manning, 2006), it has certain practical advantages, such as more

straightforwardly including the wide range of inferences that humans draw (including

discourse phenomena such as implicatures), and allowing more actionable data anno-

tation protocols.

For the remainder of this thesis, our usage of the term entailment follows the prob-

abilistic interpretation. We describe potential entailment relations as holding between

a premise and a hypothesis (P-H), as opposed to a text and hypothesis (T-H) preferred

in some other literature. When an entailment relation holds (doesn’t hold), we use the

logical notation P � H (P 2 H). Since our entailments normally apply to binary predi-

cates, we sometimes borrow the p, q, r notation for predicates, defaulting to predicate

p as the premise and q as the hypothesis. Entailment relations can hold between many

linguistic objects — between discourse level structures such as paragraphs, or at the

sentence-level between utterances. At the lexical level they can hold between entities

(e.g. dog � animal), predicates (run � move), or other categories of concepts. This

thesis will pertain to entailment relations between predicates contextualized with argu-

ment types (e.g. beat(sports team,sports team) � play(sports team,sports team)).

2.2.2 Entailment and (Lexical) Semantics

Entailment takes a central role in capturing meaning in language (Katz, 1972; Van Ben-

them, 2008). This centrality has also been recognized in NLP; in presenting FRaCas,

one of the earliest entailment datasets, Cooper et al. (1996) state that “inferential ability

is not only a central manifestation of semantic competence but is in fact centrally con-

stitutive of it”. In this view a lexical unit’s meaning is in large part the sum of all its en-
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tailments to other lexical units. Under the entailment view of semantics an Entailment

Graph can also be viewed as a lexicon, every node and its entailment edges constituting

a kind of Carnapian meaning postulate (Carnap, 1952) (see also Section 2.3).

Many computational lexical semantic resources contain some form of entailment in

support of this view. The WordNet lexicon (Miller, 1993) establishes various semantic

relations between its word nodes, including entailment1. It is possible to use FrameNet

(Baker et al., 1998) to mine entailment relations between predicates (Ben Aharon et al.,

2010), although its primary purpose is to support inferences from predicates to the

existence of the various typical arguments in a frame (with a lexical unit “evoking” a

set of frame elements). The hierarchically organized lexicon VerbNet (Schuler, 2005)

allows inferences between different levels in the hierarchy.

Constructing these lexical resources manually is a labor-intensive, iterative pro-

cedure. Various projects have therefore attempted to automatically gather inference-

based lexical knowledge, such as the 100 million paraphrases of the PPDB (Ganitke-

vitch et al., 2013). In the expanded PPDB 2.0 (Pavlick et al., 2015), a notion of fine-

grained entailment was one of the primary additions.

2.2.3 Datasets

2.2.3.1 Early Datasets

One of the earliest NLP datasets exploring entailment is the FraCaS test suite (Cooper

et al., 1996). Each example is handcrafted, resulting in a small (340 examples), high-

quality test set that is linguistically motivated. It covers a broad range of inference

types, including examples that require knowledge of specific logical and linguistic con-

cepts such as monotonicity, quantification, negation, anaphora and subordinate clauses.

The dataset offers multiple premises that can be used to reason to a hypothesis, in con-

trast to the later style using single premises and hypotheses. It contains a subsection

that focuses on temporality, although this is also fairly small. Example (1) shows one

such case from FraCaS, requiring an understanding of tense and aspect, temporal op-

erators like since and reasoning about time itself.

(1) Premise: Since 1992 ITEL has been in Birmingham.

Premise: It is now 1996.
1Incidentally, entailment can be seen as a generalization of many of the semantic relations in these

lexical databases: with antonymy, p � ¬q∧ q � ¬p and with synonymy and paraphrase, p � q∧ q � p.
With hypernyms, p 2 q∧q � p, while with hyponoms p � q∧q 2 p.
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Question: Was ITEL in Birmingham in 1993?

Answer: Yes

Monz and de Rijke (2001) take a less manual approach. They generate a set of

premise-hypothesis pairs by combining subsections of different documents that de-

scribe the same topic. A human annotator then judges whether one of the pieces of

text contains all the information expressed in the other. From 69 documents this re-

sults in a set of approximately 12,000 pairs, although the class distribution is heavily

skewed toward non-entailments.

The task was further developed in the PASCAL Recognizing Textual Entailment

shared task series, introduced in RTE-1 (Dagan et al., 2006). Instead of focusing on

detailed logic-inspired entailments like the ones contained in FraCaS, they concen-

trate on entailment variation stemming from lexical relations and syntax. A binary

entailment/non-entailment labeling scheme is used, and the examples always consist

of a single premise and a hypothesis. The series ran until its 7th edition (Bentivogli

et al., 2011), attracting attention to semantic inference and its usefulness in downstream

tasks such as QA and IE (Information Extraction).

RTE-6 (Bentivogli et al., 2010) diverges from the original P-H setup, instead cast-

ing the problem within a summarization scenario in which systems return all sentences

that entail a particular hypothesis from a set of candidates. The task setup showcases

another practical application of entailment knowledge: in automatic summarization of

multiple documents it can be used to reduce repetitiveness, by identifying and remov-

ing sentences that contain the same information. This also reframes the challenge as

textual entailment in context, expecting systems to make entailment decisions with ac-

cess to a paragraph or document, although that development was largely reverted in

later entailment task definitions.

2.2.3.2 Lexical Inference in Context

Inference rules (such as win |= play) formed a central part of early approaches to QA,

IE and RTE (see also Section 2.2.4). However, evaluating inference rules indirectly

in a downstream task such as RTE proves difficult because that task normally requires

many types of inferences. Evaluating the rules directly by asking human annotators

whether each rule is correct (e.g. as by Shinyama et al. (2002) and Szpektor et al.

(2004)) also has significant drawbacks, because considering them outside a context

makes them difficult to judge, resulting in low Inter Annotator Agreement (IAA). This
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led to the development of instance-based evaluation, which alleviates the problem

by providing annotators with a sample of simple premise sentences containing the

predicates, and judging a rule as correct if a sufficiently high percentage of the premises

entail the hypothesis predicate (Szpektor et al., 2007). The added arguments in this

sentence-based approach provide context that allows annotators to disambiguate more

effectively, leading to high IAA.

This task setup inspired a series of datasets for evaluating entailment rule col-

lections. The paradigm has retrospectively been called Lexical Inference in Context

(LIiC) (Schmitt and Schütze, 2019). Each example in a dataset consists of a pair of

simple sentences in which only the predicate is altered, labeled as entailed or not
entailed. Using entire sentences also encourages models to contain more context-

sensitive representations. For example, the Levy dataset (Levy and Dagan, 2016) con-

tains the premise-hypothesis pairs in examples (2) and (3). Both expect the entailed
label in spite of containing different senses of kill.

(2) Premise: “The salve kills cancers”

Hypothesis: “cancers may be treated by the salve”

Label: entailment

(3) Premise: “Crockett was killed at the Alamo”

Hypothesis: “Crockett died at the Alamo”

Label: entailment

Other datasets in this format include Berant’s dataset (Berant et al., 2011) consist-

ing of manually annotated edges sampled from 10 Entailment Graphs. In this case the

context is inherent in the predicate nodes, which are annotated with argument types

(e.g. kill(PERSON-PERSON) rather than the more general kill). Zeichner et al. (2012)

point out the cost-related drawbacks of the lengthy guidelines and annotator training

required in the methodology of Szpektor et al. (2007). They propose a cheap, high-

IAA crowd-sourcing methodology that splits the task into a meaningfulness task and

an entailment task.

A crucial inherent bias is present in these two datasets, however. They pre-select

candidate entailments for manual annotation according to a similarity measure or sys-

tem prediction. This means that existing entailments that are not captured by these

similarity measures would be excluded from evaluation. This issue is addressed in the

Levy dataset, used in multiple subsequent evaluations (e.g. by Hosseini et al. (2018,
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2019))

Levy and Dagan (2016) (see examples (2) and (3)) framed the collection of en-

tailments and non-entailments as a Question Answering task in which they presented

human annotators with questions and possible answers and asked them to mark the

answer as True or False, indicating whether the predicate in the answer entails the

predicate in the question. Entities in the answer are replaced with tokens representing

their type, e.g. London becomes city, so as to reduce the bias towards world knowl-

edge.

Despite addressing the issues of bias, the labeling error rate for entailments that

hold only in one direction is high in the Levy and Dagan (2016) dataset. Holt (2018)

designed a manual annotation task to address this problem, adding the reverse entail-

ment b |= a for each entailment a |= b and asking the annotators to directly annotate

both directions as entailment / non-entailment. The reannotated Levy/Holt dataset is

commonly used in evaluation (Hosseini et al., 2018; Hosseini, 2021) and is also used

in some chapters in this thesis.

Another recent evaluation dataset in the LIiC paradigm is SherLIic (Schmitt and

Schütze, 2019). They collect a large number (960K) of candidate inferences using a

variant of the Sherlock procedure (Schoenmackers et al., 2010), and annotate a sample

of this set through crowd-sourcing. The dataset addresses some of the artefacts dis-

covered in the recently released large Natural Language Inference (NLI) datasets (dis-

cussed next in Section 2.2.3.3). However, it still suffers from the same bias as Berant

and Zeichner’s datasets, because their potential rules are collected from an entailment

rule learning methodology.

2.2.3.3 Modern Benchmarks

Recently a series of large-scale entailment tasks have been introduced that have served

as benchmarks for modern NLU models. They represent a growth in size of three

orders of magnitude compared to early datasets such as FraCaS. The first of these is the

Stanford Natural Language Inference (SNLI) corpus (Bowman et al., 2015), consisting

of 570K premise-hypothesis sentence pairs that were collected as part of a crowd-

sourced task grounded in image captioning. Human annotators were presented with a

premise (in the form of an image caption), and were asked to spontaneously generate

hypotheses that were definitely true (entailment), definitely false (contradiction), or

neither (“neutral”). The image caption annotation setting leads to relatively concrete

sentences — consider examples (4)-(6).
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This task setup is referred to as Natural Language Inference, a rebranding of the

RTE paradigm that distinguishes itself in practice mainly in the inclusion of the con-
tradiction label (see example (6)). SNLI’s size addressed the need for a sufficiently

large corpus for training the neural network architectures available at the time.

(4) Premise: “A soccer game with multiple males playing.”

Hypothesis: “Some men are playing a sport.”

Label: entailment

(5) Premise: “An older and younger man smiling.”

Hypothesis: “Two men are smiling and laughing at the cats playing on the

floor.”

Label: neutral

(6) Premise: “A black race car starts up in front of a crowd of people.”

Hypothesis: “A man is driving down a lonely road.”

Label: contradiction

After SNLI, a number of other large-scale datasets were introduced. The Multi-

Genre Natural Language Inference Corpus (MNLI) (Williams et al., 2018) extends to

ten domains containing both spoken language and written text, thus providing broader

coverage than SNLI. Stepping away from the relatively concrete descriptions of vi-

sual scenes in SNLI leads to a substantially more challenging task that involves more

complicated phenomena like linguistic modality, temporal reasoning and propositional

attitude. For example, annotators are unlikely to generate a relatively abstract MNLI

hypothesis like “Hundreds of students will benefit from your generosity” from an im-

age description.

XNLI (Conneau et al., 2018) extends parts of the MNLI datasets to 15 languages,

this time widening the scope to cross-genre and cross-lingual examples. They also

include low resource languages such as Urdu, facilitating research in transfer learning

for cross-lingual language understanding (XLU).

The Diverse NLI Collection (DNC) (Poliak et al., 2018) contains diverse inference

types, achieved by casting datasets designed for other tasks into the NLI structure.

For example, Named Entity Recognition annotations over the sentence in example

(7) can be used to generate a premise-hypothesis pair, such as in example (8). The

original sentence becomes a premise, and the NER label can be used to generate a

hypothesis sentence. Many tasks and existing datasets can be repurposed for NLI using
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similar tricks to turn label annotations into hypotheses; for instance, a similar recasting

strategy was used to create the Question Answering NLI (QNLI) corpus (Wang et al.,

2018).

(7) NER Sentence: “Netanyahu met Weizman last Tuesday and voiced his opposi-

tion, Yedioth said.”

Label: Netanyahu: <PERSON>

(8) Premise: “Netanyahu met Weizman last Tuesday and voiced his opposition,

Yedioth said.”

Hypothesis: “Netanyahu is a person.”

Label: entailment

These advances in size and diversity have been essential to model development,

but questions have also been raised regarding whether models trained on these datasets

are actually able to generalize beyond their training domain. Gururangan et al. (2018)

show that (large, neural) supervised models abuse spurious statistical correlations present

in the datasets — they are capable of predicting the correct labels even when only the

hypothesis is available to the model. Furthermore, they fail to capture simple lexical

inferences (Glockner et al., 2018); when SNLI’s premises have a single word replaced

by a hypernym, synonym, co-hyponym or antonym, the systems trained on SNLI fail to

generalize their knowledge. Recently, a large adversarial benchmark addressing these

issues was released (Nie et al., 2020). Adversarial NLI (ANLI) uses a human-in-the-

loop data creation process, letting non-experts find weaknesses in models. They repeat

their process for three rounds, using intermediate versions of the dataset to inform sub-

sequent iterations, and show that this provides some protection against the spurious

statistical patterns present in the previous benchmarks.

NLI has become one of the central tasks in NLU and NLP more generally. Four

of the nine tasks in the popular General Language Understanding Evaluation (GLUE)

benchmark dataset were NLI-based (Wang et al., 2018), including datasets such as

RTE and MNLI, among others. The updated SuperGLUE benchmark maintains this

focus on inference (Wang et al., 2019).

In spite of the NLP community’s attention to NLI and the recent advances in di-

versity of annotated inferences, there are still many types of inferences that are not

covered by the existing datasets. In particular, there were previously no datasets fo-

cused on lexical entailment between predicates in which time plays a role (such as
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Dataset Contents Size Author, Year

FraCaS Handcrafted, logical examples 340 (Cooper et al., 1996)

Monz Pairs generated from news text 12K (Monz and de Rijke, 2001)

RTE-1 First RTE Shared task 1.4K (Dagan et al., 2006)

Szpektor Instance-based evaluation 760 (Szpektor et al., 2007)

Berant LIiC from Entailment Graphs 39K (Berant et al., 2011)

Zeichner Cheaper crowd-sourcing 6.6K (Zeichner et al., 2012)

SNLI Large-scale crowd-sourcing 570K (Bowman et al., 2015)

Levy LIiC from QA pairs 16.4K (Levy and Dagan, 2016)

Levy/Holt Levy reannotated 18.4K (Holt, 2018)

MNLI Multi-genre coverage 433K (Williams et al., 2018)

XNLI Cross-lingual coverage 113K (Conneau et al., 2018)

QNLI Cast from QA 108K (Wang et al., 2018)

DNC Cast from other diverse tasks 570K (Poliak et al., 2018)

SherLIic LIiC from Sherlock procedure 4K (Schmitt and Schütze, 2019)

ANLI-R1 Adversarial annotation 19K (Nie et al., 2020)

-R2 ” 47K ”

-R3 ” 103K ”

TEA Temporal Entailment in LIiC 11K (Kober et al., 2019)

Sports Antonyms in LIiC (Sports) 1.3K (Guillou et al., 2020)

ANT Antonyms in LIiC (General) 6.3K (Bijl de Vroe et al., 2022)

Table 2.1: An overview of Entailment Datasets

is currently visiting entails that has arrived, but not will arrive). There were also no

datasets in the LIiC landscape in which antonyms (such as win and lose) were explored

alongside entailments (such as win and play), where temporality and modality might

be a useful learning signal. Evaluations therefore did not reflect mistakes that models

were previously making in these domains. This thesis introduces three new datasets

to address this: TEA (Kober et al., 2019) focuses on temporal entailments such as

visit-arrive (Chapter 3), the Sports Entailments Dataset (Guillou et al., 2020) explores

temporally separable antonyms in the sports news domain (Chapter 4) and ANT ap-

plies the data creation strategy in a more general-domain setting (Chapter 5). Each

dataset is designed within the Lexical Inference in Context paradigm.
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2.2.3.4 Antonym Detection

It is worth briefly mentioning the field of antonym detection, in which antonyms are

distinguished from other semantic relations such as synonymy. Some of the work in

this thesis (Chapters 4 and 5 in particular) focuses on the related but distinct task of

Lexical Inference in Context in the presence of antonymy, which can be seen as a more

challenging version of the typical LIiC setup. Antonymy detection is evaluated using

various datasets, notably the relation classification-style EVALution dataset (Santus

et al., 2015), PPDB-based dataset of Rajana et al. (2017), and the multiple-choice

GRE question dataset (Mohammad et al., 2013). The datasets presented in Chapters 4

and 5 could also be used to evaluate antonymy detection models.

2.2.4 Systems

We mainly focus on Entailment Graphs as a model of entailment in this thesis, so they

will be discussed in more detail in Section 2.3. Here we provide an overview of other

methods that have been explored.

2.2.4.1 Logical Approaches

The logically designed FraCaS test suite and RTE datasets initially prompted logical

approaches. The basic strategy employed is generally to parse every premise into a

formal semantic representation, collect formally represented background knowledge,

and verify whether the hypothesis can be proven using an appropriate logical formal-

ism. For example, Bos and Markert (2005) use a CCG-based parser (Bos et al., 2004)

combined with a representation based on Discourse Representation Theory (Kamp and

Reyle, 1993) to obtain logical representations of the sentences. To perform inference

they use the Automated Theorem Prover (ATP) Vampire (Riazanov and Voronkov,

2002), which can perform proof search for either the positive or negated version of the

hypothesis. In parallel, they use the model builder Paradox (Claessen and Sörensson,

2003); if it succeeds in constructing a model for the negation of the hypothesis, the

system can return False (and halt the ATP’s proof search). Thus they combine a proof-

theoretic and a model-theoretic approach to establishing the deducibility of the hypoth-

esis.

Approaches in natural logic (MacCartney and Manning, 2007) are related to this

direction. They make sequences of logic-informed edits to attempt to transform the
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premise into the hypothesis step-by-step. The logic operates entirely on natural lan-

guage strings and focuses on the monotonicity (and polarity) of the linguistic expres-

sion. For example, truth is preserved in the transformation from They lacked weapons

to They lacked guns, because lack is downward-monotone in its second argument.

Most linguistic expressions will be upward-monotone, however: They have guns v
They have weapons. A classifier can be used to determine whether the proposed se-

quence of edits corresponds to an entailment relation overall.

A number of related models are based on edit distance (Kouylekov and Magnini,

2005; Bar-Haim et al., 2007; Iftene and Balahur-Dobrescu, 2007). Although they are

not always overtly logical, they are similar to the natural logic approach in attempting

to gradually transform the premise into the hypothesis. These approaches are more

syntactic in nature, using entailment rules over dependency parse trees of the premise

and hypothesis. An entailment relation is more likely if the edit distance (expressed

through a variety of cost functions) is small.

Logical approaches to entailment are still being explored. For instance, Chatzikyr-

iakidis and Luo (2014) use a modern type theory (Luo, 2012) and the Coq automated

prover (Coq, 2004) to tackle the FraCas Test Suite. Logical approaches have lately also

been applied to the temporal subset of FraCaS (Bernardy and Chatzikyriakidis, 2021),

by implementing a Montagovian semantics adapted for temporal purposes, including

additions to the semantics such as a treatment of tense, aspect, temporal adverbials and

temporal reference.

Although these systems are able to achieve relatively high precision, their recall

is often low. Bos (2014) identifies background knowledge as the crucial bottleneck

in achieving higher recall. Whereas both the inference systems and the parsers that

translate sentences to their logical forms show relatively strong performance, it is still

unclear how to mine and incorporate the background knowledge necessary to cover all

the cases that evaluation datasets might contain. Entailment Graphs form one avenue

of research towards alleviating this problem — the lexical knowledge stored in their

entailment edges is an essential part of the background knowledge required.

2.2.4.2 Statistical Approaches

Datasets like RTE also inspired a number of methods that attempt to relate the premise

and hypothesis through more probabilistic, distributional or statistical means. Note

that a number of distributional approaches have also been used for the related task of

learning collections of inference rules. These are more relevant to Entailment Graph
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learning, so we describe them in Section 2.3.3.2.

A number of approaches depend on measures of shallow semantic overlap between

the premise and hypothesis. For example, Jijkoun and de Rijke (2005) treat each sen-

tence as a bag-of-words, and compute a sentence-level directional similarity score as a

weighted sum over word-level similarity scores. In spite of ignoring syntax and deeper

semantic relations between the sentences, these approaches were comparatively suc-

cessful.

Another approach has been to model the entailment relation probabilistically (Glick-

man et al., 2005a). The core idea is to assume a generative model (similar to contem-

poraneous methods in Statistical Machine Translation), and define that an entailment

relation holds if and only if witnessing the premise increases the likelihood of the

hypothesis being true (that is, p(H = True|P) > p(H = True)). The parameters of

the generative model can be estimated using co-occurrence statistics in a large collec-

tion of news text or web text (Glickman et al., 2005b). These can in turn be used to

model the sentence probabilities of the premise and hypothesis (decomposed into lex-

ical item probabilities) in a text classification task setup. Harmeling (2007) propose

another application of probabilistic models, imposing them on a dependency tree cal-

culus similar to Bar-Haim et al. (2007). In this case, the probability that P entails H

is decomposed into the probabilities of dependency tree transformations from P to H,

where each probability corresponds to the chance that each successive transformation

is truth-preserving.

Statistical approaches have also been applied to the discourse level. Hickl (2008)

adopt a distributional approach in which the lexical alignment between the discourse

commitments of the premise and hypothesis is taken into account. This allows for

deeper semantic modeling, and should be especially beneficial when the context is

large (i.e. the premise is a paragraph or an entire document).

2.2.4.3 Deep Learning Approaches

As in other areas of NLP (and Artificial Intelligence in general), neural network archi-

tectures of increasing complexity have been applied to the problem of modeling tex-

tual entailment. This was made more feasible by the release of evaluation benchmarks

like SNLI, which are sufficiently large for data-hungry neural models. In a neural

baseline model over SNLI, Bowman et al. (2015) construct sentence embeddings in a

distributional space for the premise and hypothesis using a Long Short-Term Memory

Network LSTM (Hochreiter and Schmidhuber, 1997). The embeddings are fed into a
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multi-layer perceptron classifier to obtain their entailment prediction, training the ar-

chitecture end-to-end using gradient descent. Variations of neural architectures have

been applied to the problem, such as incorporating an attention model over the premise

(Rocktäschel et al., 2015), soft-aligning subphrases of the sentences using attention

(Parikh et al., 2016), or using a match-LSTM to align the premise and hypothesis word

by word (Wang and Jiang, 2016).

More recently, the state-of-the-art on large benchmarks has shifted to transformer

architecture language models (Vaswani et al., 2017) that use contextualized word em-

beddings (Peters et al., 2018), such as BERT (Devlin et al., 2019), GPT (Radford and

Narasimhan, 2018) and XLNet (Yang et al., 2019). They are now being trained with

billions of tokens of data, and have grown to using billions or even trillions (Fedus

et al., 2021) of parameters. Once these massive models are pre-trained using language

modeling they can be applied to other tasks such as Natural Language Inference, either

by fine-tuning the entire network to the task (Howard and Ruder, 2018; Radford and

Narasimhan, 2018), or by using a transfer learning approach in which another network

receives the pre-trained embeddings as input. The successive models increment the

base transformer architecture in various ways. For example, BERT introduces a bidi-

rectional encoder through a Masked Language Model pre-training objective — words

are masked in the middle of the sentence and the model predicts them back from sur-

rounding context on both sides. Its Next Sequence Prediction objective is also useful

to NLI specifically, as it encourages the model to reason about pairs of sentences.

The large language models do have a number of drawbacks. As described in Sec-

tion 2.2.3.3 large neural models suffer from overfitting, exploiting spurious training

data artefacts when fine-tuned. Relatedly, some have pointed out their ability to mem-

orize the data, which raises the question of whether they are able to learn generalizable

linguistic representations (or something akin to semantics at all) (McCoy et al., 2021).

This holds true especially as the number of parameters grows, as has been the recent

trend (Carlini et al., 2022). Additionally, Bender and Koller (2020) recently raised the

concern that any model cannot learn meaning from form alone, suggesting the need

for some type of grounding in the training signal.

Thus, although state-of-the-art performance on entailment tasks is achieved by neu-

ral network architectures, built around large transformer models and the associated pre-

training and transfer learning methods, there are indicators that this is not ultimately

the right direction. Significant biases in our evaluation datasets, training datasets and

methods mean that we may eventually need different solutions, which may hearken
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Figure 2.1: An example Entailment Graph for the predicates win, play, lose and tie, with edges

representing entailment relations

back to logical approaches.

2.3 Entailment Graphs

Entailment Graphs have been proposed as a method for tackling the semantic chal-

lenges presented in Section 2.2. They are directed graphs in which the nodes represent

predicates and the edges between them represent an entailment relation, and can be in-

terpreted as a lexicon containing meaning postulates (Carnap, 1952). They have proven

their usefulness in many downstream tasks that require NLU (see Section 2.3.2), and

can be induced in an unsupervised way using the distributional behaviour of predicates

and argument pairs in a large text corpus (Section 2.3.3). An example subgraph of an

Entailment Graph is shown in Figure 2.1. Here the edge from the node for the predi-

cate lose to the node for play means that if lose is seen in a particular sentential context

(e.g. a description of a match between two sports teams), then playing most likely also

occurs.

2.3.1 Representation

Previous work has considered a number of options for representing nodes in the graphs:

typed binary predicates (Berant et al., 2011; Hosseini et al., 2018), Open-IE proposi-

tions (Levy et al., 2014), longer textual fragments (Kotlerman et al., 2015; Eichler

et al., 2016) and eventualities (Yu et al., 2020).

In our work we use typed predicates, following Berant (2012) and Hos-
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seini et al. (2018). Typed predicates are useful because entailment be-

tween predicates is ambiguous with respect to the arguments the predicates

take. For example, kills(:medicine, :disease) � cures(:medicine, :disease), whereas

kills(:person, :person) 2 cures(:person, :person). Typed Entailment Graphs therefore

alleviate some of the Word Sense Disambiguation (WSD) issues present in untyped

graphs. A particular typed graph might contain predicates with arguments of type per-

son and location. An edge in that graph from the relation visit to be in, would imply

that if the predicate visit occurs with arguments of the types person and location, then

it is very likely true that the person is in the location.

More formally we are interested in an Entailment Graph G , the elements of which

are typed directed subgraphs Gt1,t2 = (P(t1, t2),E), where the set of nodes P(t1, t2) is

the set of all predicates that use the types t1, t2: P′(t1, t2)∪P′(t2, t1). Here tn ∈ T , the

set of all types. The edges E ⊆ P(t1, t2)×P(t1, t2) are the entailment relations between

the predicate nodes, where we use entailment to refer to the commonsense formulation

described in Section 2.2.1. An edge (p,q) ∈ E is an ordered pair that expresses the

entailment relation p � q, where p ∈ P(t1, t2), q ∈ P(t1, t2). We sometimes use p as

shorthand for a typed predicate p(:t1, :t2).

Note that a particular typed subgraph can contain predicates with a type pair

in either order, (t1, t2) or (t2, t1). This allows us to model entailment relations

between predicates with the arguments flipped. For example, in the organiza-

tion, person graph this would allow us to model work f or(:person, :organization) �

pay(:organization, :person).

2.3.2 Use Cases

Inference rules and Entailment Graphs have shown their usefulness in many ap-

plications. For example, in Question Answering (McKenna et al., 2021) they can

be used when the predicate in the question and evidence text have a different sur-

face form. For example, with the question “Is Obama in Hawaii?” and evidence

“Obama is visiting Hawaii”, the question becomes answerable using the entailment

edge is visiting� is in. Applications are also found in relation extraction (Eichler et al.,

2017) and link prediction or Knowledge Graph completion (Hosseini et al., 2019) —

if a system in any of these tasks encounters a triple, it can use Entailment Graphs to

generate more triples by generating all entailed relations. Entailment Graphs have also

been used in email categorization (Eichler et al., 2014).
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One ambitious use case for Entailment Graphs in the long term is to form a crucial

part of a logical inference engine. As described in Section 2.2.4.1, reasoning logi-

cally from text to hypotheses (useful to many applications that require NLU) can be

performed using a combination of proof-theoretic and model-theoretic approaches. In

that view, the edges of an Entailment Graph become part of the collection of rules used

by the proof search system, either as the rules of deduction or as axioms over which to

reason.

This paradigm is not without its challenges. The Entailment Graphs would need

to be relatively complete and very accurate, since logical approaches leave little room

for noise and error. Although entailment relations between predicates will be essential

(since predicates carry much of the meaning in sentences), it will also be necessary

to develop strong logical rule collections for other inference types. For example, the

system would need to reason about arguments, time, pragmatics and modifiers such as

adjectives, just to name a few categories, and for each of these should meet the same

stringent accuracy demands. Again, Bos (2014) identifies background knowledge as

a major bottleneck. Collecting this knowledge will be challenging, but the solution

remains theoretically possible, and is a worthwhile pursuit while methods in automated

theorem proving and (directed) proof search continue to improve.

On the other hand, Entailment Graphs can be useful in conjunction with neural

and distributional models. One way of implementing this is by leveraging an Entail-

ment Graph to strengthen a distributional link prediction model, which is designed to

predict the score of an edge in a Knowledge Graph. Hosseini et al. (2019) show that

ConvE (Dettmers et al., 2018), a convolutional neural network over Knowledge Graph

embeddings, improves at link prediction when it has access to entailment scores. In

their proposed model, the score of a particular triple Sq,e1,e2 is high when the Entail-

ment Graph predicts there are other high-scoring triples that would entail that triple,

i.e. there are high triple scores Sr,e1,e2 where r ∈ Rp→q, the set of entailment relations

that entail predicate q, derived from an Entailment Graph.

Another potential use of Entailment Graphs is as enrichment of a large language

model. Models such as COMET (Bosselut et al., 2019) and K-BERT (Liu et al., 2020)

have already demonstrated that the knowledge represented in Knowledge Graphs can

be injected into language models, improving their downstream performance on a range

of NLP tasks. Since Entailment Graphs can be viewed as a sort of Knowledge Graph, it

may be similarly beneficial to inject their entailment knowledge into a language model.

Ideally, future research would confirm that the resulting language model exhibits im-
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proved performance on NLI tasks specifically.

Incidentally, the reverse has already been demonstrated. McKenna and Steed-

man (2022) propose a smoothing method, which uses RoBERTa (Liu et al., 2019b) to

combat Entailment Graph predicate sparsity issues. They show a significant improve-

ment in recall when missing predicates are replaced with their nearest neighbours in

RoBERTa’s embedding space. For example, when the Entailment Graph does not con-

tain information for a rare typed predicate like obliterate(sports team, sports team),

the language model can suggest paraphrases of the predicate which can be looked up

in the Entailment Graph instead.

Entailment Graphs have already been applied to represent lexical knowledge in

a range of different domains, including newswire (Hosseini et al., 2018), the health

domain (Levy et al., 2014), and commonsense knowledge (Yu et al., 2020). Usually

they are evaluated using LIiC datasets such as Levy/Holt (Levy and Dagan, 2016) or

SherLIic (Schmitt and Schütze, 2019), although question answering tasks have recently

also been employed (McKenna et al., 2021).

2.3.3 Learning Entailment Graphs

There are many ways to learn the graph representation described in Section 2.3.1

— ultimately any interconnected collection of rules can be viewed as an Entailment

Graph. Recent approaches (Berant, 2012; Hosseini et al., 2018), however, have typ-

ically progressed in three steps. First, a corpus is analyzed with a relation extraction

pipeline, producing a set of triples (e.g. {(win against(organization,organization),

Arsenal,Manchester), ...}) that can be thought of as a Knowledge Graph. Next, in a

step referred to as local learning, the triples are used to learn a set of independent en-

tailment rules between typed predicates (e.g. win against(organization,organization)

� play against(organization,organization)). The output of this step can already be

called an Entailment Graph. Finally, a globalization step uses properties of entailment

(such as transitivity), combined with structural graph properties, to optimize the exist-

ing graph. We describe these steps in more detail here. Since much of the work in this

thesis is inspired by the work of Hosseini et al. (2018), we will focus on their method

in particular.
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2.3.3.1 Relation Extraction and Open Information Extraction

We will first describe the relation extraction method used by Hosseini et al. (2018), be-

fore briefly touching on related approaches to relation extraction. The relation extrac-

tion system presented here describes the one used in the experimentation in Chapter 3.

The Entailment Graph experimentation in Chapters 4, 5 and 7 uses a reimplementation

based on a more modern CCG parser.

In the first step, we extract a set of typed triples, each of which consists of a

predicate and two arguments, from a large collection of text. A typed predicate is

denoted p(:t1, :t2); as before p ∈ P(t1, t2), the set of all predicates, and tn ∈ T , the

set of all types. We then define a typed triple as an instantiated typed predicate

p(a1:t1,a2:t2), where an ∈ A, the set of all arguments. An example of an instanti-

ated triple is beat1,2(Arsenal:organization1,Manchester:organization2), which might

be extracted from the sentence “Arsenal beat Manchester in Highbury last night”. We

sometimes refer to the mention of a triple in text as a predication; that is, the predicate

beat1,2(:organization1, :organization2) can be predicated of the arguments Arsenal and

Manchester in a particular sentence.

Following segmentation and tokenization (Manning et al., 2014), the relation ex-

traction system uses GraphParser (Reddy et al., 2014), based on CCG (Steedman,

2000). CCG is a constituency-based syntactic formalism in which each lexical entry is

associated with a syntactic category, which can be combined together using a limited

number of combinators (such as function application or composition). It is useful for

relation extraction due to its transparent syntax-semantics interface, and is efficiently

parsable. GraphParser uses CCG to arrive at a graph-based, neo-Davidsonian semantic

representation. That is, it follows Davidson (1967) in recognizing that events can be

existentially quantified over and referred to with variables, and flattens the semantics

into a conjunction of thematic roles (Parsons, 1990).

GraphParser produces a logical form for our sentence shown in example (9). Note

that the predicate is flattened into three different views of the same event variable.

This is also the source of the subscript notation above; we let predicate subscripts

correspond loosely to semantic roles. For example, p1,2 refers to a predicate in which

the first argument is the subject and the second the object.

(9) Sentence: “Arsenal beat Manchester in Highbury.”

Logical form: ∃e[beat1(e,Arsenal)∧beat2(e,Manchester)

∧ beatin(e,Highbury)]
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Extractions:

beat1,2(Arsenal,Manchester)

beat1,in(Arsenal,Highbury)

beat2,in(Manchester,Highbury)

Hosseini et al. (2018) then arrive at the triple extractions shown in the example, by

applying a series of post-processing steps over the information present in the logical

form. Principally, they construct a triple by considering all pairs of entities shared by

the same predicate, arriving at three extractions for one event in the example above.

A number of steps are then applied. For example, passives are recognized using the

POS-tagger, and are converted to their active representations (e.g. “Manchester was

beaten by Arsenal” would also result in beat1,2(Arsenal,Manchester)). The relations

are annotated with negation, prepositions and event modifiers where necessary. Com-

pound predicates that contain arguments are constructed in certain cases via preposi-

tional attachment. For example, the predicate play game with can be extracted from

the sentence “Arsenal plays a game with Manchester”. The triples are also lemmatized.

On the argument side, we first apply the Named Entity Recognition system in-

cluded in CoreNLP Manning et al. (2014) to classify substrings in the sentence as

either a named entity (N) or general entity (G, all other nouns and noun phrases). We

sometimes refer to pairs of arguments as EE, EG, GE, or GG, depending on the types

of entities involved2. Triples that contain pairs of general entities (GG) are discarded.

Next, we perform Named Entity Linking with AIDA-Light (Nguyen et al., 2014),

mapping the arguments to their Freebase (Bollacker et al., 2008) IDs. AIDA-Light

achieves a high accuracy with major improvements in efficiency compared to the pre-

vious system, AIDA (Hoffart et al., 2011). These improvements make it feasible to

run the system on our news corpus. Both systems use a supervised model based on

features in the sentential context. For example, one of AIDA-Light’s features is the

similarity of the context tokens of the entity mention to pre-defined key tokens of the

entity candidate (e.g. the key token president for the candidate President of the U.S.).

AIDA-Light uses simpler features, and adopts a two-stage prediction approach, using

a simpler model for mentions that exhibit low ambiguity and reserving more expensive

features for more difficult predictions.

The linking step in turn allows Entity Typing, by mapping the IDs to their FIGER

2Using a recent implementation of the relation extraction system, the distribution of general and
named entity type pairs is fairly uniform (EE: 22.9%, EG: 34.3%, GE: 22.3%, GG: 20.5%).
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types (Ling and Weld, 2012). FIGER is a fine-grained hierarchical typing scheme

for entity recognition, originally designed to move beyond previous coarser typing

schemes. It consists of 112 types — for example, Lionel Messi would be mapped to

person/athlete and Arsenal to organization/sports team. General entities (along with

unmapped named entities) are typed with the generic thing type. Our graphs are based

on the first level of the FIGER hierarchy. Using these tools at the argument side we

arrive at the typed triples described earlier. The example relation triple can now be

instantiated as beat1,2(Arsenal:organization,Manchester:organization).

Before using this data for the local learning step (Section 2.3.3.2), it is possible

to filter noise from the data by applying two thresholds. Hosseini et al. (2018) fil-

ter out argument pairs based on the minimum number of predicates they occur with

(minPredforArgPair), and conversely filter out predicates depending on the minimum

number of argument pairs they occur with (minArgPairforPred). For example, if min-

PredforArgPair = 4, then any argument pair that occurred with fewer than 4 different

unique predicates is excluded from the data entirely.

Note that there are many options for improving this filtering step. Chapter 7 pro-

vides one such option, using linguistic modality as a way of deciding whether a partic-

ular triple should be considered noisy. Another option is to develop more sophisticated

models for filtering noise from the input data. For instance, it may be feasible to de-

velop supervised models that incorporate various contextual features from the article,

one of which could be modality. At a larger scale, it may also be worth taking into

account the trustworthiness of the news outlet that published a particular article —

formulations of the fake news detection task could become relevant here.

This open-domain relation extraction strategy was chosen to avoid the small and

predefined set of relations to which relation extraction systems are often limited. An-

other related task definition that mines open-domain triples is Open Information Ex-

traction (OpenIE) (Banko et al., 2007), which led to a range of proposed open-domain

information extraction systems. OpenIE systems make use of patterns, which may

be hand-crafted (Fader et al., 2011; Angeli et al., 2015) or learned through methods

such as bootstrapping (Wu and Weld, 2010; Mausam et al., 2012). These patterns

may be applied at the sentence level, or to semantically simplified independent clauses

identified during a pre-processing step (Del Corro and Gemulla, 2013; Angeli et al.,

2015). The majority of systems are restricted to the extraction of binary relations (i.e.

relation triples consisting of a predicate and two arguments), but systems have also

been proposed for the extraction of n-ary relations (Akbik and Löser, 2012; Mesquita
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et al., 2013). A comprehensive survey of OpenIE systems is provided by Niklaus et al.

(2018). Note that these systems often ignore temporal phenomena and modal mod-

ifiers, which risks introducing noise in their downstream application. In Chapters 3

and 6 we make alterations to the extraction approach described here to take these phe-

nomena into account.

2.3.3.2 Local Learning of Entailment Rules

Using the set of triples that relation extraction returns, we can learn entailment rules

between predicates. Usually, the entailment rules are based on an entailment score

between predicates, which can be calculated by their relative distributions of argument

pair co-occurrences. The scores are often inspired by the Distributional Inclusion Hy-

pothesis.

The Distributional Inclusion Hypothesis states that if the contexts that occur around

a word v also occur around w, then v is expected to entail w (Geffet and Dagan, 2005)3.

This can be seen as an entailment-specific version of the Distributional Hypothesis

(Firth, 1957), which claims that words with similar meanings will have similar con-

texts in a corpus. The Distributional Hypothesis can be used to define symmetric

scores, useful for modeling symmetric relations like similarity or synonymy, whereas

the Distributional Inclusion Hypothesis is generally used to inspire directional scores,

which are necessary for modeling directional relations like entailment. Directionality

should be an essential property for an entailment score, because if an entailment re-

lation holds in only one direction (p � q∧ q 2 p), the scores should be different. For

example, we would like the score from play to win to be low, whereas the score from

win to play should be high.

Applied to predicates, and taking arguments as the context set, we interpret the

DIH as follows: if the argument pairs that a predicate p applies to are also arguments

of a predicate q, we expect p to entail q4. For example, consider the predicates visit

and be in. Most of the argument pairs (e.g. {(Obama,Hawaii), (Obama,London),

(Clinton,London), ...}) that occur with visit would be expected also to be observed

with be in, which would support the entailment relation visit � be in. The unsuper-

vised signal derived from this hypothesis allows us to define similarity scores.

An entailment relation exists between predicates p and q when their entailment

3And vice versa, that is if v entails w, then we expect the contexts around v to also occur around w.
4When applied to predicates the context set has mostly been taken to refer to argument pairs (e.g.

by Berant et al. (2011) and Hosseini et al. (2018)). In Chapters 4 and 5 we suggest that this formulation
needs to be sharpened for some predicates, proposing temporality as an auxiliary signal.
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score spq ∈ [0,1] is larger than some chosen threshold δ. The scores are computed using

the set of features F(p) of each predicate p. A feature f ∈ F is a particular argument

pair (a1,a2), such as (Arsenal,Manchester). We use N(p, f ) to denote the count of

feature f occurring with the predicate p in the corpus — the number of occurrences of

a triple (p,a1,a2). Equivalently N(p) and N( f ) are the total counts of p and f in the

corpus, and N the total count of observed triples.

When computing scores, the feature values v(p, f ) used can be chosen either as

N(p, f ) for count-based scores or as the Pointwise Mutual Information PMI(p, f ) be-

tween the predicate and the argument pair for PMI-based scores. The PMI is defined

as

PMI(p, f ) = log2
P(p, f )
P(p)P( f )

,

where P(n) is the probability of n, estimated using the occurrences in the corpus:

P(p) = N(p)/N, P( f ) = N( f )/N and P(p, f ) = N(p, f )/N. Various scores have been

defined according to these feature values.

Lin (1998) define a symmetric similarity score as follows:

Lin(p,q) =
∑ f∈Fp∩Fq[v(p, f )+ v(q, f )]

∑ f∈Fp v(p, f )+∑ f∈Fq v(q, f )

Their score is based on mutual information: when the information required to de-

scribe the features the predicates have in common is similar to the information required

to describe the predicate separately, the similarity between the predicates will be high.

Weed’s Precision and Weed’s Recall are two measures inspired by Information

Retrieval methods (Weeds and Weir, 2003), defined as:

Weed’s Prec(p,q) =
∑ f∈Fp∩Fq v(p, f )

∑ f∈Fp v(p, f )
,Weed’s Rec(p,q) =

∑ f∈Fp∩Fq v(q, f )

∑ f∈Fq v(q, f )

Both Weed’s Precision and Recall are directional: Weeds’s Precision(p,q) is not

necessarily the same as Weeds’s Precision(q, p). Weed’s similarity, also defined in

(Weeds and Weir, 2003), is the geometric mean of the two scores.

Balanced Inclusion (BInc) (Szpektor and Dagan, 2008) is defined as the geometric

mean of Weed’s Precision and Lin’s similarity, directional in virtue of the directionality

of Weed’s precision:

BInc(p,q) =
√

Lin(p,q) ·Weed′s Prec(p,q)
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In previous work, BInc has proven particularly successful (cf. Hosseini et al.

(2018)), likely because it combines the useful directional properties of Weed’s with

the non-directional signal of Lin’s similarity. In Chapters 4 and 5, we design temporal

versions of these similarity scores, by exchanging atemporal features v for temporal

features vt (see Section 4.2.2 in particular). The results in this thesis show that the

strength of BInc often carries over to our particular entailment datasets (for example,

see results in Section 4.4.2), although the purely directional Weed’s score is useful on

purely directional evaluation data subsets (see Section 4.4.4).

Finally, Cosine similarity is sometimes used as a symmetric baseline:

cos(p,q) =
∑ f∈Fp∩Fq v(p, f ) · v(q, f )√

∑ f∈Fp v(p, f )2 ·
√

∑ f∈Fq v(q, f )2

An entailment score spq can be calculated using Lin, Weed’s Precision and BInc,

among other options. The edges E of an Entailment Graph, then, are the set of ordered

predicate pairs with scores above a threshold: {(p,q)|spq ≥ δ}. If both spq ≥ δ and

sqp ≥ δ, we have an entailment relation in both directions and can speak of a para-

phrase.

Entailment Graphs are usually evaluated on LIiC-style datasets (see Sec-

tion 2.2.3.2), using the area under the precision-recall curve (AUC) as a comparison

metric. Each point on the curve corresponds to a graph produced with a different

threshold δ over the scores — a high threshold corresponds to low recall, with recall

over the dataset increasing as the threshold is lowered. The maximum recall is achieved

when the threshold is set to 0, which includes all pairs of predicates that both co-occur

with some feature.

Within the context of this project we often select BInc as the entailment score due

to its strength in previous research. Chapter 4 contains some experimentation with the

other scores mentioned here. Furthermore, we mostly use PMI as v(p,q), as this helps

prevent word frequency from having an effect on the scores.

Note also that while most research has applied these inclusion-based scores to

sparse vector representations such as the argument pair-based ones described here,

it may also possible to apply them to dense word representations such as word2vec

(Mikolov et al., 2013) or contextualized word representations such as BERT (Devlin

et al., 2019). In that case the hypothesis would remain that the features of the entailing

predicate should generally include those of the entailed predicate. As far as we know

this option has not yet been explored in detail (although Hosseini et al. (2019) propose
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a related ConvE MC entailment score over dense representations).

It is unclear, however, whether existing dense spaces (e.g. those learned by

word2vec and BERT) can directly be used for inferences with these particular scores.

For the similarity scores above, the sparse vectors have the advantage of an intuitive

interpretation of set inclusion: if a particular feature is positive for predicate p (i.e.

the argument pair occurs in the data), and it is also positive for q, then that part of the

feature set of q is included in that of p. For dense representations this does not work:

since the vector’s information is shared across the few dimensions it has, there will

be very few features with value 0. Therefore if we simply apply BInc as is, we risk

summing over all features. Additionally, the embedding values in a dense vector can

also be negative (and there is no inherent meaning in their being positive or negative),

which has no intuitive correspondence in the set inclusion scores. Note that empirical

doubts have recently also been raised regarding the abilities of dense language models

on the directional part of NLI (Li et al., 2022).

A promising avenue of future research is to adapt dense representations to this

setting: to develop a dense representation space (and associated training method) that

adheres to the directional properties that are essential to entailment. This would give

access to the benefits of a dense representation, such as the ability to estimate the

(directional) similarity of predicate pairs that do not share sparse features in the data5.

Dense representations are also cheaper to store in memory, and require less compute

at inference time (at least according to this paradigm).

A crucial drawback of the sparse representations is that they require a lot of data,

preventing them from estimating similarities for many related predicates, and leading

to low recall scores. They are straightforward to estimate (by constructing them with

the results of machine reading), although their accuracy is limited by machine reading

accuracy. The also have the benefits of explainability and interpretability, and most

crucially they more intuitively support the entailment estimating strategy described

here. For the remainder of this thesis, we will focus on the sparse vectors.

2.3.3.3 Globalization

The advantage of thinking of a collection of entailment rules as a graph is that it gives

us access to graph algorithms, allowing us to infer the existence of more entailment

rules using the structural properties of the graph. This can be useful because the train-

5By placing a predicate in a dense space, it effectively benefits from the training data that supported
the predicates around it
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ing data may be too sparse to support a wide variety of edges, particularly for low-

frequency predicates. We refer to improving a local Entailment Graph in this fashion

as globalization. Note that we describe these steps here for completeness. Our exper-

imentation focuses on local learning, leaving the interaction of globalization and our

proposed methods to future work.

In their original proposal, Entailment Graphs were globalized using an exact Inte-

ger Linear Programming (ILP) solution (Berant et al., 2010). The primary constraints

were to preserve transitivity of the graph (since entailment is a transitive relation — if

p � q∧q � r, then p � r), and to maximize the sum of graph edge weights. However,

given that ILP is NP-complete, their method only scales to graphs of 50 nodes. A se-

ries of more efficient methods were developed in response to this limitation, aiming for

an approximate solution and again capitalizing on various structural graph properties

(Berant et al., 2011, 2012, 2015). This approach attained similar results to the original

ILP solution and scales to 20K nodes.

Further scaling has been achieved by using soft constraints instead of hard

constraints (Hosseini et al., 2018), making it possible to learn graphs contain-

ing hundreds of thousands of nodes. Hosseini et al. (2018) introduced con-

straints that operate both within a single type graph and between graphs of differ-

ent types. A paraphrase constraint within graphs dictates that paraphrases should

have similar entailments (e.g. if the local graph scores suggest that win against

is a paraphrase of beat, and win against � play, the constraint dictates that the

score sbeat,play should also be high). The cross-graph constraint states that pred-

icates that are similar between graphs should have similar entailments (e.g. if

win against(:organization, :organization) � play(:organization, :organization), we

can leverage this information in the (:person, :person) graph if the respective

win against predicates are similar). Recently, more soft constraints such as soft tran-

sitivity have been implemented (Chen et al., 2022).

Existing Entailment Graphs can also be improved using methods trained on other

tasks. For example, Hosseini et al. (2019) show how to obtain entailment scores from

link predictions scores, showing an improvement over BInc by augmenting the data

with additional predicted triples.
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2.4 Temporality

2.4.1 Temporality in Language

We now turn to temporal linguistics, before describing the current state of temporal

parsing. Broadly speaking, language users have a number of interconnected mecha-

nisms at their disposal to communicate about time, including tense, temporal anaphora,

temporal deixis and aspect. Tense and temporal anaphora encode how event times are

temporally ordered compared to the utterance time and other times in the discourse.

Temporal deixis can be used to instantiate and refer to reference times, accomplished

using temporal adverbials in English. The aspectual system, finally, describes an

event’s temporal internal constituency (Hamm and Bott, 2018).

2.4.1.1 Tense

Tense allows us to indicate whether an eventuality occurs in the past, present or fu-

ture. Reichenbach (1947) introduces the concepts of points of event (E), speech (S)

and reference (R) to this end. Within this framework the purpose of tense becomes

establishing the temporal order between these times points — the different tenses can

be distinguished in terms of their different orderings.

(10) I see John

(11) I saw John

(12) I had seen John

(13) I will have seen John

For example, in example (10), all three points occur simultaneously (E,R,S), while

in the simple past example in (11) the event and reference times occur before the ut-

terance time (E,R—S), meaning that the speaker refers to the past6. Examples (12)

and (13) illustrate how the introduction of a reference time allows us to construct more

complex tenses such as respectively the past perfect (E—R—S) and future perfect

(S—E—R).

Reichenbach proposed that tenses be categorized according firstly to their ordering

of speech and reference time, and secondly to their ordering of event and reference

6In Reichenbach’s notation, the comma indicates simultaneity and the em dash represents ordering
in time (with elements on the left appearing before elements on the right).
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time. As the ordering of speech time with respect to event time is usually irrelevant,

this creates a system of nine fundamental tenses. In Reichenbach’s terminology, the

S,R ordering corresponds to ‘past’, ‘present’ and ‘future’, while E,R ordering corre-

sponds to ‘anterior’, ‘simple’ and ‘posterior’. This changes the traditional names of

some English tenses (included in Table 2.2), for instance preferring ‘anterior present’

over ‘present perfect’ (E—S,R)7. His system suggested the existence of tenses that

traditionally had no name, such as the posterior future (S—R—E) in example (14).

(14) I will be going to see John

A few alterations and expansions of this theory have been suggested. For instance,

Prior (1967) points out that the distinction between reference times and speech times

is unnecessary: speech time is simply the first reference time. Furthermore, there

may be more reference times involved — the conditional past perfect in example (15)

requires an ordering E before R1 after R2 before S (Declerck, 1986). Another proposed

development distinguishes between absolute tenses and relative tenses, reserving the

latter for cases where a reference time is needed, and doing away with reference times

altogether for the former (Comrie, 1985). However, modeling multiple ordered times

(such as E,R,S) has been a consistent feature of later works on tense.

(15) The others would have left by then.

English realizes tense using both auxiliary verbs and morphological inflections

(Declerck et al., 2006). In terms of morphology English only distinguishes between

present and past, and marks this once in a tensed clause - either on the main verb, or

on an auxiliary verb if it is present. More complex tenses are built by adding auxiliary

verbs, which may indicate future (e.g. will), conditionality (e.g. would), or perfective-

ness (e.g. has). In referring to the future, English sometimes prefers a futurate use of

the present tense instead of the future auxiliaries. The correct tense can be inferred by

the hearer through context such as temporal adverbials, as seen in example (16). Note

that the future tense distinguishes itself from the past tense by being partly temporal

and partly modal (Lyons, 1977), since it contains an element of prediction or some

other modal concept. For completeness, the traditional names of the tenses are listed

in Table 2.2.

7We refer to the tenses by their traditional names.



34 Chapter 2. Background

Present Tense I am in Amsterdam.

Past Tense I was in Berlin.

Future Tense I will be in Copenhagen.

Present Perfect I have been in Dublin.

Past Perfect I had been in Edinburgh.

Conditional Tense I would be in Frankfurt.

Conditional Perfect I would have been in Gdansk.

Table 2.2: Inspired by Declerck et al. (2006)

(16) The train leaves tomorrow.

2.4.1.2 Temporal Anaphora and Deixis

Later research highlighted the crucial role of tense in discourse. This anaphoric role

was first recognized through the similarity of tense morphemes and definite pronouns

(McCawley, 1971; Partee, 1973). The intuition is that a hearer maintains a discourse

model with the previously mentioned event and reference times, and that times of

newly introduced eventualities will occur relative in time to those previous points, just

as pronouns refer to previous entities in the discourse model. For example, in (17) (ex-

ample borrowed from Hinrichs (1986)), part of the anaphoric chain includes the time

of going to bed being anaphoric on the time of taking a shower. Previous approaches

assume that the reference time moves forward with the discourse narrative for simple

past tense sentences, unless otherwise specified by temporal adverbials (Partee, 1984;

Hinrichs, 1986; Jordan et al., 1994). Temporal discourse relations can also be indi-

cated more explicitly using temporal subordinating conjunctions such as until, while

and since (Hwang and Schubert, 1994).

(17) He took off his clothes, went into the bathroom, took a shower and went to

bed.

(18) Sheila had a party last Friday and Sam got drunk.

(19) John went into the florist shop. He had promised Mary some flowers. She

said she wouldn’t forgive him if he forgot.

Examples such as (18) (Partee, 1973) and (19) (Webber, 1988) revealed that the
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picture is more complicated, however. In (18), getting drunk is a further description

of the party, so the temporal relation is one of containment, and in (19), the time of

saying is before the time of going to the shop. This led to a more formal account of

tense as anaphora. Webber (1988) specifies rules for how the times of the utterance

and discourse model can be ordered with one another, incorporating tense, aspect,

the event time-reference time distinction and the internal tripartite structure of events

(Moens and Steedman, 1988).

New reference times can also be introduced into the discourse through temporal

deixis (Lyons, 1977). In English, this is achieved with temporal adverbials such as

now, before or soon. Temporal adverbials can be used to specify a variety of temporal

properties related to an eventuality (Hwang and Schubert, 1993). They can specify

temporal locations (now, yesterday), durations (for three weeks, forever), time spans

(“He ran the race in three hours”) and repetitions (frequently, every two years). These

adverbials can also interact compositionally, as in example (20).

(20) “John ran for half an hour every morning for a month”

2.4.1.3 Aspect

While tense refers to how a situation is ordered with respect to reference times, aspect

describes the internal temporal constituency of those situations (Comrie, 1985). Within

the category of aspect we can further distinguish between grammatical and lexical

aspect.

Grammatical aspect refers to whether the situation is attended to as a whole or

whether we attend to the internal structure of a situation. In English, this is realized

morphologically (such as through the suffixes ‘-ed’ and ‘-ing’), auxiliary verbs or other

phrases (such as ‘am’ or ‘used to’), and combinations between those categories (De-

clerck et al., 2006). In perfective aspect, we consider the situation in its entirety, as in

example (21), where there is no internal structure of the situation to which the speaker

can refer.

In contrast, consider example (22), an example of imperfective aspect. Here the

situation is ongoing, and one of its subparts can be related temporally to some other

situation (introduced through a subclause). Imperfective aspect can be categorized into

ingressive, progressive and egressive aspect, which refer to respectively the beginning,

middle and end of the situation (Declerck et al., 2006). In English, only progressive

aspect can be realized grammatically (example (22)), and speakers do not have access
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Type Instant/Period Telicity Example

State Instant not unique/definite She is happy.

Achievement Instant unique/definite They reached the top.

Activity Period not unique/definite He pushed a cart.

Accomplishment Period unique/definite I ran a mile.

Table 2.3: Vendler’s Categories of Lexical Aspect

to ingressive or egressive aspect. Instead, these are realized through full aspectual

lexical verbs such as ‘started’ or ‘stopped’, as in examples (23) and (24).

Another category of grammatical aspect is habitual aspect, referring to situations

repeated over time. Here English uses the semi-auxiliary ‘used to’, as in example (25).

For both grammatical and lexical aspect further distinctions have been made that are

beyond the scope of this thesis.

(21) I had dinner with Anna yesterday.

(22) I was having dinner with Bobby yesterday, when ... .

(23) I started having dinner yesterday, while ... .

(24) I stopped having dinner yesterday, when ... .

(25) I used to have dinner with Carlos every night.

Lexical aspect, instead of being realized grammatically, depends on lexical knowl-

edge. This category was first introduced by Vendler (1957), who classified verbs into

states, activities, accomplishments and achievements, depending on whether they per-

tain to time points or periods and whether they have a natural endpoint8. Examples

are given in table 2.3. Although many extensions have since been given, these cate-

gories under varying names have been a mainstay in the literature. We use the term

eventuality to refer to the general class containing all these types.

Being able to draw these distinctions is important for accurate formal semantics of

events, since lexical aspect has an effect on truth values and entailment. For instance,

the aspectual category has an impact on entailment between tenses of the same verb

8Note that the instant-period distinction was originally made by Vendler, but has since been reana-
lyzed to mean whether or not the situation is both dynamic and durative (Smith, 2013). Being an instant
or a period essentially determines whether the situation is a process (and whether it appears felicitously
with the progressive).
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phrase, as shown in examples (26) and (27). These cases portray how entailment does

not hold between the progressive and regular past tense of an accomplishment, while it

does for an activity. In general, lexical aspect also informs us whether we are modeling

points or durations in time, and whether some specific endpoint needs to be taken into

account. Thus, to be able to formalize for which specific times a situation holds, lexical

aspect needs to be understood.

(26) I was running. ⇒ I ran.

(27) I was running a mile. ; I ran a mile.

This also illustrates the possibility of changing the aspectual class of a phrase by

adding context, through a process called aspectual type coercion (Moens and Steed-

man, 1988). Various types of context can lead to aspectual class changes. For instance,

adding auxiliaries and morphological inflection can coerce a point class into an activity

(examples (28) to (29)). Involving temporal adverbials can change an accomplishment

into an activity (examples (30) to (31)), and the same change can be achieved through

adding specific arguments (examples (32) to (33)).

(28) Mary hiccupped.

(29) Mary was hiccupping.

(30) Tony played Canto Ostinato.

(31) Tony played Canto Ostinato for a few minutes.

(32) Pat drank.

(33) Pat drank a beer.

Often, world knowledge is required for reinterpretation of aspect. Consider exam-

ple (34), which would normally be considered infelicitous, as it involves a for adver-

bial used with an accomplishment (Van Lambalgen and Hamm, 2008). However, this

can be reinterpreted as an iterated activity, which does permit for adverbials. For that

reinterpretation we require the knowledge that playing Opus 111 only takes a limited

amount of time, and in this context probably refers to the event occurring repeatedly

over a time span. This stands in contrast to (31), for which we require world knowledge

to understand that a musical piece of indefinite length is being played just briefly.

(34) Pollini played Opus 111 for two weeks.
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Moens and Steedman (1988) also introduce the event nucleus, conceiving of a sit-

uation as a tripartite structure containing a preparatory phase, a culmination and a

consequent phase. The existence of these primitive phases acknowledges that tem-

poral expressions in language are also about consequence, causation, preparation and

planning, and not exclusively about time. Furthermore, they allow for temporal refer-

ence to specific parts of a situation, crucial to resolving the types of temporal discourse

paradoxes described in Section 2.4.1.2. Again, both the idea of an event nucleus and

of aspectual coercion are valuable to formal semantics, as they inform how represen-

tations can be built and altered.

2.4.1.4 Temporality and Entailment

Temporality influences the entailments of a predication in a multitude of ways. Perfect

aspect (typically) describes events as a completed whole, and licenses inferences re-

garding the consequences of that event. In particular, the consequences of an event in

the present perfect hold at the time of utterance, whereas events in the simple past or

the past perfect do not (Comrie, 1985; Moens and Steedman, 1988; Depraetere, 1998).

This is shown below. While the present perfect example (35) does license the inference

to the present tense is in, both example (36) and example (37) do not.

(35) Elizabeth has gone to Meryton. � Elizabeth is in Meryton now.

(36) Elizabeth went to Meryton. 2 Elizabeth is in Meryton now.

(37) Elizabeth had gone to Meryton. 2 Elizabeth is in Meryton now.

This property can be explained through a Reichenbachian view of the present perfect,

where the point of reference coincides with the point of speech, thereby indicating its

current relevance (Reichenbach, 1947). On the other hand, events in the past simple or

the past perfect license inferences for consequent states in the past, as examples (38)

and (39) show.

(38) Elizabeth went to Meryton. � Elizabeth was in Meryton.

(39) Elizabeth had gone to Meryton � Elizabeth was in Meryton.

Progressive aspect describes ongoing events and therefore does not license infer-

ences regarding their consequences as example (40) shows. It furthermore gives

rise to the imperfective paradox (Dowty, 1979), which only licenses inferences for
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non-culminated processes (Moens and Steedman, 1988), as examples (41)-(43) below

show.

(40) Mary is going to Netherfield now. 2 Mary has arrived / is in Netherfield.

(41) Catherine was walking in the woods. � Catherine walked in the woods.

(42) Jane was reaching London. 2 Jane reached / was in London.

(43) Jane was reaching London. 2 Jane was in London.

Alongside developments of linguistic theories of tense, aspect and time, theories

were developed regarding how to logically represent natural language descriptions of

situations. Examples include the introduction of Davidsonian event variables (David-

son, 1967), the situation calculus (McCarthy and Hayes, 1969), the event calculus

(Kowalski and Sergot, 1989), the dynamic event calulus (Moens and Steedman, 1988)

and contributions in the form of flattened formal semantics (Parsons, 1990). As these

calculi essentially had as their goal to facilitate computation with events and time in

language, they can be seen as the forerunners of modern temporal NLP.

2.4.2 Temporality in Natural Language Processing

Given a document of text, temporal reasoning in NLP has focused on predicting as

much information as can be inferred about when the mentioned eventualities occur. We

focus here on this task - determining the temporal extent of eventualities, as we use sys-

tems performing this task as subcomponents of the algorithms presented in Chapters 4

and 5. We briefly mention related temporal processing problems in Section 2.4.2.4.

Temporal relation extraction systems are expected both to recover explicit and im-

plicit temporal information. In explicit cases, a unit of temporal information may be

referred to directly, as in “They arrived on March 26th, 2022”, or “They visited ev-

ery second Sunday of the month”. Implicit information will require further reasoning,

such as connecting an eventuality to a reference time mentioned elsewhere in the doc-

ument, as with the temporal adverbials “A week after they arrived, ...” or “Two days

before that, ...”. Sometimes this reasoning is performed on the basis of typical tem-

poral orderings between eventualities, without any temporal marker. For example, in

“They arrived on March 26th, 2022. The journey was pleasant”, the reference time

of was is before the arrival, while in “They arrived on March 26th, 2022. The visit

was fantastic” the reference time of was would be after the arrival. Systems may also
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be expected to involve external world knowledge, such as “They arrived the weekend

before Easter”, or “They arrived after the 56th Superbowl.”

2.4.2.1 Tasks and Annotation

These types of reasoning have been represented recently in NLP in the TempEval

shared task series (Verhagen et al., 2007, 2010; UzZaman et al., 2013). Recent work

has focused on the clinical domain with the Clinical TempEval series (Bethard et al.,

2015, 2016, 2017), because of the immediate practical applicability of temporal under-

standing of doctors notes in conjunction with patient data (Olex and McInnes, 2021).

The temporal reasoning demanded in the TempEval series boils down to reproduc-

ing the annotations in the family of temporal specification languages based on TimeML

(Pustejovsky et al., 2003a). TimeML annotates the eventualities, time expressions and

temporal orderings in a document, and the TempEval subtasks correspond to these el-

ements. Firstly, systems are expected to recognize the eventualities in the document,

along with certain temporal attributes such as tense, grammatical aspect, polarity and

modality. Secondly, the time expressions in the document are recognized and parsed

into one of several structured temporal types: Time (for specific times of day such as

“at half past twelve”), Date (Referring to parts of the calendar, e.g. “On Saturday April

2nd”), Duration (e.g. “for two months”) or Set (for repeating elements such as “every

day”). Lastly, TimeML distinguishes itself by annotating various types of relations

between the identified events, the time expressions and the DCT.

These three tasks together allow a system to estimate when eventualities in a para-

graph of text happened. The temporal algorithm work in this thesis (Chapters 4 and

5) stands to benefit from solutions to all three tasks when they help determine a spe-

cific time (rather than just an ordering). Task 2 of temporal expression recognition and

parsing is particularly relevant, since we use the SUTime system that performs that task

(using a dependency parse to link from time expressions to events (see Section 4.2.1)).

For example, take example sentence (44) from an article published on Saturday

09/02/2013, taken from the NEWSSPIKE corpus (Zhang and Weld, 2013). In this case,

SUTime recognizes that Friday is a temporal expression, and returns an estimated be-

ginning and end time grounded in calendar dates: [08/02/2013, 08/02/2013)]. The

system is able to understand that, given the past tense of the sentence, the Friday ref-

erenced is most likely the one just before the article’s publication date. In Chapter 4

we describe how these intervals are linked to relation triples and used in the learning

algorithm.
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(44) The Miami Heat dominated the middle two quarters on the way to an easy

111-89 win over the Los Angeles Clippers on Friday night.

For completeness we also discuss other facets of the task. Some systems also provide

output describing relations between different expressions in an article. The majority

of relation annotations are TLINKs, for temporally ordering eventualities and times.

TimeML also annotates the subordinating SLINK, for connecting events that involve

modality, evidentiality and factivity, such as connecting said and arrived in “He said

they arrived”. The aspectual ALINK connects aspectually related eventualities, such

as finished and racing in “... when they had finished racing”.

The TLINK orderings are {BEFORE, AFTER, INCLUDES, IS INCLUDED,

DURING, DURING INV, SIMULTANEOUS, IAFTER, IBEFORE, BEGINS, ENDS,

BEGUN BY, ENDED BY}, along with the IDENTITY link for coreferring eventu-

alities. These correspond loosely to the 13 possible temporal relations between in-

tervals specified in Allen’s interval algebra (Allen, 1983), although the overlap and

overlapped by relations are not represented (UzZaman and Allen, 2011). The algebra

also defines how to infer new ordering relations by computing the transitive closure

over a set of given relations. For example, if we know for intervals X , Y and Z that

X {before} Y and Y {before} Z, by transitivity we conclude X {before} Z. Inferred

relations can also be ambiguous. For example, if X {finishes} Y and Y {started by} Z,

we can infer a set of possible orderings: X {after,met by,overlapped by} Z. Recent

work has suggested moving to the more computationally efficient point temporal al-

gebra, using just three possible point-level relations ({<,=,>}) between two sets of

start and end points, instead of the thirteen relations over two intervals (Freksa, 1992;

Leeuwenberg and Moens, 2019).

TimeML annotations have been refined into ISO-TimeML (Pustejovsky et al.,

2010), THYME-TimeML (Styler IV et al., 2014) and, for time expressions specifically,

SCATE (Bethard and Parker, 2016). These allow the annotations to better capture the

potential complexity of the temporal reference system. For example, in ISO-TimeML,

the MLINK was introduced to allow both the contiguous and non-contiguous interpre-

tations of duration intervals, which are measures of the eventuality with which they

are linked. The sentence “She trained for 4 hours today” is ambiguous between a con-

tiguous reading in which the training happens in a single block, and one in which the

4-hour measure is spread out over the day. In SCATE, annotations become composi-

tional, to better support the compositionality of temporal expressions. For example,
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SCATE improves over TimeML by supporting time expressions that contain unisons

over simpler expressions (e.g. “every Tuesday and Thursday in March”) and that re-

fer to multiple parts of the calendar (e.g. “the summers in 2015 and 2016”). It has

been challenging to achieve high inter-annotator agreement for these tasks, and new

annotation schemes such as MATRES have been proposed in response (Ning et al.,

2018b).

2.4.2.2 Datasets

Numerous training and evaluation datasets have been annotated using these annota-

tion styles. The original TempEval tasks focused on the news domain with TimeBank

(Pustejovsky et al., 2003b), the first dataset in the TimeML specification. They also

introduced the AQUAINT TimeML Corpus and the TempEval3-Silver, -Gold and -

Platinum datasets (UzZaman et al., 2013), the latter having been annotated by experts

for system comparison. Later, the medical-domain evaluation focused on the THYME

dataset (Styler IV et al., 2014), which contains around 1,200 documents of clinical

notes. These are temporally rich, as they typically contain descriptions both of a pa-

tient’s medical history, recent changes and test results, and future treatment plans.

Evaluation has also branched out to domains such as encyclopedic text, histori-

cal text and fictional text (Mazur and Dale, 2010; Strötgen et al., 2014; Rogers et al.,

2019), as well as expanding to multilingual evaluation options (for example, the Ger-

man KRAUTS (Strötgen et al., 2018) and German version of WikiWars, (Strötgen and

Gertz, 2011), and French, Korean and Hindi versions of TimeBank, (Bittar et al., 2011;

Jeong et al., 2016; Goel et al., 2020). A number of specific temporal features have been

explored, often by reannotating or using additional annotations on TimeBank. Added

features include temporally dense annotations that expand the number of allowed links

per document (Cassidy et al., 2014), annotations of the durations of eventualities (Pan

et al., 2006), and causal information (Mirza and Tonelli, 2016). Causality has also

been explored in the CaTeRS dataset (Mostafazadeh et al., 2016). Annotations are par-

ticularly labor-intensive (with n eventualities and times, the number of potential links

grows at n2), and the datasets have been relatively small in consequence, normally

containing fewer than 100,000 tokens.
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2.4.2.3 Systems

The systems resulting from these shared tasks have been essential for temporal pro-

cessing of language. For our purposes, they make it possible to automatically annotate

a large corpus with temporal information, which can then be used as a signal in Entail-

ment Graph learning.

A number of strategies have been attempted in solving these problems. Early state

of the art systems such as HeidelTime (Strötgen and Gertz, 2010) and SUTime (Chang

and Manning, 2012) performed rule-based time expression annotation. They used

regex-based string matches and applied handcrafted rules to normalize the extracted

strings. UW-Time (Lee et al., 2014) approaches the problem with semantic parsing,

using a hand-engineered lexicon with the log-linear CCG of Clark and Curran (2007)

to rank possible meanings for the mentions in the document.

Later approaches found success by combining various types of learning. For in-

stance, CAEVO (Chambers et al., 2014) blends multiple rule-based and statistical

learners in a cascaded sieve ranked by precision. It was later improved by imple-

menting a generalized prediction ranking method to replace the coarse-grained sieve,

with further improvements from word embeddings and semantic features (McDowell

et al., 2017). CogCompTime (Ning et al., 2018c) uses a Beginning-Inside-Outside

(BIO) chunking classifier and rule-based parsing for the time expression recognition

task, combined with Integer Linear Programming to attain improvements in the tem-

poral ordering task. Here they use the temporal transitivity constraints that are inherent

in the graph of temporal relations between eventualities.

Finally, variants of neural networks and the contextualized word embeddings drawn

from transformer architectures such as BERT (Devlin et al., 2019) have recently been

applied to the problem. Dligach et al. (2017) were among the first to use neural net-

works, comparing the performance of Bidirectional LSTM and Convolutional Neural

Network (CNN) architectures. Neural networks’ limitation of requiring a large amount

of high-quality training data have been mitigated using a self-training framework (Lin

et al., 2018) over RNNs. They later improved on their method by combining it with

BERT (Lin et al., 2019), focusing on the CONTAINS temporal relation. Embeddings

from other larger transformer-based models have also been compared, showing that

RoBERTa-large performed best amongst the selected models (Guan et al., 2021).

The CogCompTime system’s ILP approach (Ning et al., 2018c) has also been im-

proved using contextualized BERT embeddings (Ning et al., 2019). They also find that
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adding temporal commonsense knowledge of typical orderings from the TEMPROB

knowledge base (Ning et al., 2018a) is useful, where the knowledge is generalized to

unseen pairs using a Siamese network (Bromley et al., 1993).

2.4.2.4 Related Problems

Related problem formulations can build an even richer understanding of the tempo-

ral properties of a piece of text. Temporal commonsense reasoning may be useful in

modeling more implicit temporal knowledge, such as the typical duration and typical

frequency of eventualities (Zhou et al., 2020). For instance, their models predict that

a vacation takes days or weeks whereas a walk takes minutes or hours. Another type

of commonsense knowledge is that of implicit eventualities. Zhou et al. (2021) use

a textual entailment-style setup to test knowledge of the temporal ordering between

a given implicit eventuality and an eventuality mentioned in the text. For example,

given a story about a visit, they might query the relative time of the arrival. Classify-

ing the lexical aspect of eventualities has also been explored in its own right (Kober

et al., 2020). Finally, event co-reference is important to temporal understanding, since

event coreference chains can be used to propagate temporal ordering relations (if two

event mentions co-refer, their relations should be identical). Jointly modeling event

co-reference and temporal relation extraction has been shown to support both tasks

(Teng et al., 2016).

2.5 Modality

2.5.1 Modality in Language

Finally we discuss the semantic phenomenon of modality. Modality contains a range

of devices that speakers can use to refer to conceivable states of the world that might or

might not occur, together with their attitude toward the propositional content of their

utterance. Our main interest in modality in this project is its usefulness in determining

the factuality of a predication: whether the eventuality is asserted as actually occurring

in the real world. We can then take this into account in our downstream application of

Entailment Graph induction.

Pyatkin et al. (2021b) point out that modality and factuality are two related but or-

thogonal concepts. Different kinds of modality can result in a positive factuality status

(compare “Arsenal succeeded in winning.” and “John confirmed that Arsenal won”),
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while different kinds can also results in a negative factuality status (e.g. epistemic

modality in “Arsenal might win tonight” and deontic modality in “Arsenal needs to

win tonight.”). We analyze modality because the type of modality resulting in non-

factuality is still relevant to the semantics. Although we only use the factuality distinc-

tion in this project, the more fine-grained modal distinctions are likely to be relevant in

future research, as these may have different implications for entailment learning. We

use “modal” and “modalized” to refer to modalities that result in non-factual expres-

sions.

We handle various semantic phenomena that can broadly be considered modal (e.g.

conditionality, propositional attitude) along with negation. We first discuss the typical,

more specific category of modality here.

2.5.1.1 Modality

The formal semantics of these notions was originally built on the logic of knowledge

and belief (Hintikka, 1962) and the logic of possible world semantics (Kripke, 1963).

In this quantificational view of modality, a modal expression quantifies over some

coherent, restricted set of possible states of the world (with universal or existential

quantification). For example, “Mary believes that it’s raining.” might be analyzed as

“In all possible worlds that are compatible with Mary’s beliefs, it is raining.” (Lassiter,

2017).

Lewis (1973) and Kratzer (1981) refined the quantificational models for a broader

variety of expressions. For example, Kratzer (1981) provides a formal analysis of

modal degree modification (expressions such as kann gut sein (English: can well be)

and geringe Möglichkeit (slight possibility)) — these require more fine-grained logical

tools than just the quantifiers ∀ and ∃. Her solution depends on an ordering over pos-

sible worlds, defined according to how well each of the worlds satisfies the ordering-

source propositions of a modal expression. Incidentally, this solution is also able to

encode some entailment relations, for example can well be |= can be.

Recently Lassiter (2011, 2017) has proposed moving past quantificational models,

instead building a scalar basis of modal semantics. This would reflect more accurately

the similarity of modal expressions to gradable expressions, such as hot and heavy.

Lassiter (2011) argues that, like temperature or weight, modality pertains to concepts

that admit of degrees, that can be ordered on a scale. He argues that modal adjectives

(such as likely, plausible) are clearly scalar and that attitude verbs have grammati-

cally similar properties to gradable expressions. Rethinking modal semantics from
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the ground up from a scalar perspective also allows analysis of the compositionality

of modal expressions, which presented challenges in the approach taken by Kratzer

(1981), and it is possible to extend the analysis even to expressions that do not imme-

diately show evidence of gradability, like the modal auxiliaries (e.g. must, may). The

analysis also permits inclusion of probability theory and Bayesian ideas from cognitive

science (Lassiter, 2017), which have evidence of being (more) cognitively plausible

(Lassiter and Goodman, 2015)

Typological definitions of modality focus on categorising the speaker’s attitude,

such as epistemic necessity (That must be John.), epistemic possibility (It might rain

tomorrow.), deontic necessity (You must go.), and deontic possibility (You may enter.)

(Van Der Auwera and Ammann, 2005). Categories such as desire can also be used

to describe the speaker’s attitude (Hacquard, 2006). Sometimes a lexical trigger of

modality is ambiguous between categories; English may, for example, is ambiguous

between an epistemic possibility reading (It may rain tomorrow.) and a deontic possi-

bility reading (You may enter.)

In English, modality can be expressed in a variety of ways. The modal auxiliaries

(e.g. might, should, can) are commonly used, but modality can be lexicalized in many

other trigger words. Nouns (e.g. possibility), adjectives (e.g. obligatory), adverbs

(e.g. probably) and verbs (e.g. presume that) can all indicate modality. In the long

tail, speakers have access to vastly productive phrases that indicate their attitude. The

following examples occurred naturally in the news domain (Zhang and Weld, 2013):

That’s how close they were to ... ., I cannot come up with a scenario that has ... .,

That’s based on the world wide assumption that ... .).

2.5.1.2 Conditionality

A conditional sentence is composed of a subordinate clause (which we will refer to as

the antecedent) and a main clause (the consequent). The antecedent and consequent

are connected by a conditional conjunction (which in English is often the word if )

(Dancygier, 1998), for example, if they attack there will be war. Conditional sentences

can have a variety of semantic interpretations, but the most commonly studied, the

hypothetical conditional, expresses that the consequent (there will be war) will hold

true when the antecedent (the attack) is satisfied (Athanasiadou and Dirven, 1997). For

our purposes, the most important part of their semantics is that neither the antecedent

nor the consequent are normally entailed by the sentence, so that the speaker is not

committed to their truth.
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2.5.1.3 Counterfactuality

In the counterfactual construction a more complicated semantic relation is established

between antecedent and consequent, for example: Had they protested, they would be

content. As with modality, this has been formalized more precisely with a possible

world semantics (Lewis, 1973; Kratzer, 1981). With a counterfactual, the speaker

communicates that in any world similar to the current one, differing only by the propo-

sition in the antecedent, the consequent would hold true (Lewis, 1973). In the above

example, if the world is altered by the protest in the antecedent, they would be content

holds true. Again, the crucial semantic information for our work is that neither the

antecedent nor the consequent are entailed.

2.5.1.4 Negation

Negation is a semantic category used to change the truth value of a proposition in

order to convey that an eventuality does not hold (Horn, 1989). It may be expressed

explicitly using various means, most notably closed-class function words such as not,

no, never, neither, nor, none and without, but can also be expressed lexically in open

grammatical categories such as nouns (e.g. impossibility), verbs (e.g. decline, prevent),

and adjectives (e.g. unsuccessful). It may also be expressed implicitly, such as with

combinations of certain verb types and tenses (e.g. The polls were supposed to have

closed at midnight). In this work we consider only explicit cues of negation.

2.5.1.5 Propositional Attitude and Evidentiality

Propositional attitude allows speakers to indicate the cognitive relations that entities

bear to a proposition (McKay and Nelson, 2000). For example, in Republicans think

that Trump has won, the speaker expresses that Republicans hold certain beliefs. In

English, such reports are often made using propositional attitude verbs such as claim,

warn or believe. Normally only the entity’s thoughts regarding the eventuality are

entailed, not the eventuality itself. Propositional attitudes are often used as markers of

evidentiality in English (Biber and Finegan, 1989; McCready and Ogata, 2007). These

are important in Question Answering. For example when answering a question using

the sentence The Kremlin says protesters attacked the police as evidence, mentioning

the source (The Kremlin) might be particularly important.
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2.5.2 Modality in Natural Language Processing

Understanding the phenomena in Section 2.5.1 is valuable to NLP, because many tasks

require knowledge of the speaker’s attitude towards an uttered proposition. Factuality

can be particularly important, because tasks such as Information Extraction, Ques-

tion Answering and Knowledge Base Population all depend on knowing whether de-

scribed eventualities are asserted as occurring (Karttunen and Zaenen, 2005; Morante

and Daelemans, 2012).

2.5.2.1 Annotation Schemes and Datasets

NLP investigates these concepts under various formulations, resulting in overlapping

task definitions and naming conventions. For example, Karttunen and Zaenen (2005)

talk of veridicity, while there is also work on uncertainty detection (Szarvas et al., 2012;

Vincze, 2014), hedge detection (Medlock and Briscoe, 2007) and modality annotation

(Saurı et al., 2006). Therefore, datasets that contain modal phenomena are associated

with many different annotation schemes.

The terms veridicity, uncertainty detection and factuality refer broadly to the same

phenomenon — whether the event in question actually occurs. The labeling schemes

vary widely, but usually consist of three labels, corresponding to asserted, uncertain,

and negated, where the middle category can often be split into more fine-grained no-

tions of uncertainty. In the factuality datasest FactBank (Saurı́ and Pustejovsky, 2009),

for example, eventualities are labeled as certain, probable or possible, along with their

negated variants (not certain, probable, possible) and uncommitted options. In ex-

ample (45) from the FactBank corpus, the verb led is annotated as certain; that is, it

is certainly the case that the event happened according to the source of the sentence.

Similar discrete labels are adopted in the more recent MegaVeridicality (White and

Rawlins, 2018; White et al., 2018); annotators are asked the question “did that thing

happen?” or “did that person do that thing?”, with the possible labels yes, maybe or

maybe not, no.

Other recent datasets in event factuality have adopted a [-3,3] annotation scale,

including the UW event factuality dataset (Lee et al., 2015), Unified Factuality

(Stanovsky et al., 2017), the Universal Decompositional Semantics “It Happened”

dataset (UDS-IH1) (White et al., 2016) and its expansion, UDS-IH2 (Rudinger et al.,

2018). For example, in sentence (46), the eventuality said receives an annotation of

3.0 (highly certain), while trade is annotated as -0.8.
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(45) Scott Ritter led his team on a 10-hour tour of three suspected weapons sites

classified as “sensitive” by the Iraqi authorities, U.N. spokesman Alan Dacey

said.

(46) He also said of trade with Iraq: “There are no shipments at the moment.”

These datasets encompass many genres. For example, FactBank (Saurı́ and Puste-

jovsky, 2009) is built on the temporal TimeBank (Pustejovsky et al., 2003b), consisting

of newswire and broadcast news reports. CommitmentBank (De Marneffe et al., 2019)

annotates events from the newswire, fiction and dialog genres. Kim et al. (2008) add

event annotation to the Genia corpus of biological text, and annotations of multilingual

data are available in the MEANTIME corpus (Minard et al., 2016).

Hedge detection can be seen as a specific kind of uncertainty detection, used to an-

alyze uncertainty stemming specifically from authors qualifying their statements. For

example, a scientist might qualify their result, as in “Our results suggest that XfK89

might inhibit Felin-9.” (Medlock and Briscoe, 2007) . Hedge detection datasets usu-

ally focus on annotating cues, which can be connected to events. For example, the

medical domain BioScope (Szarvas et al., 2008) is annotated for hedge cues, negation

cues and their scope. This corresponds loosely to the three labels used in uncertainty

detection, since an event that is not under scope of any cue can be considered asserted.

Hedges also occur in the encyclopedia domain, explored in the WikiWeasel corpus of

the CoNLL 2010 hedge detection shared task (Farkas et al., 2010).

Annotating modality presents a larger range of phenomena to analyze. Prabhakaran

et al. (2012) propose five classes of modality: ability, effort, intention, success, and

want, while Baker et al. (2010) use a more extensive set of classes that includes re-

quirement, permissive, and belief. In a pilot alongside the CLEF 2011 QA shared task,

Peñas et al. (2011) ask whether predications are asserted, negated, uncertain, or de-

scribe a condition or a purpose for another event. Saurı et al. (2006) enrich the TimeML

specification language with yet other categories (e.g. evidentiality and conditionality).

2.5.2.2 Models

Early approaches to detecting modality focused on lexicon design (Szarvas, 2008; Kil-

icoglu and Bergler, 2008; Baker et al., 2010). The strategy employed is usually to

construct a lexicon containing modal trigger words. These words are then recognized

in the context of a sentence, after which their scope can be predicted, revealing which

predicates are affected. Many early systems were purely rule-based (Lana-Serrano
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et al., 2012; Pakray et al., 2012), or combined rules with the output of a parser (Rosen-

berg et al., 2012).

Baker et al. (2010) employ two strategies for tagging modal triggers and their tar-

gets: 1) string and POS-tag matching between entries in a modality lexicon and the

input sentence, 2) a structure-based method which applies rules derived from the lexi-

con to a flattened dependency tree, inserting tags for modality triggers and targets into

the sentence. They use a set of eight modality tags, which we expand in Chapter 6 to

cover a wider range of phenomena, including conditionality and propositional attitude.

Our work is inspired by this lexicon and parse tree-based approach, in part due to the

lack of a large, open-domain modality training dataset.

Modality tagging has also been cast as a supervised learning task, in which classi-

fiers are trained using crowd-sourced annotated data (Morante and Daelemans, 2009;

Rei and Briscoe, 2010; Prabhakaran et al., 2012). While performance is reasonably

strong on in-domain data, out-of-domain data can still prove challenging for these

models (Prabhakaran et al., 2012). The state of the art in uncertainty detection and

modality annotation has experienced similar shifts as NLP tasks in entailment and tem-

porality. Jean et al. (2016) show the benefits of building sentence-level vector repre-

sentations, Adel and Schütze (2017) explore attention mechanisms in neural network-

based solutions, and Rudinger et al. (2018) experiment with dependency tree LSTMs.

Again, this has been extended to transformer architectures — models that incorporate

RoBERTa achieve strong results (Pyatkin et al., 2021b).
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Temporal Entailment and Tensed

Entailment Graphs

3.1 Introduction

Temporal entailments, such as the inference that if somebody is visiting a location, they

have arrived there already, allow us to correctly answer a question like “Has Obama

arrived in Hawaii?” from textual evidence like “Obama is visiting Hawaii”. Since they

include time, they avoid incorrect answers that might be given with a more general rule

visit � arrive, which might prompt the system to respond True even if the evidence is

“Obama will visit Hawaii”.

Temporal inferences such as these were previously unexplored, so initial research

centered around defining the problem and designing a new evaluation dataset, TEA

(Section 3.2), published as (Kober et al., 2019).

We then experimented with representing these entailments in a model we call

Tensed Entailment Graphs (TsEG), showing that they capture some entailment rela-

tions that regular EGs are unable to represent. This work is presented in Section 3.3

and has remained unpublished. We also discuss various challenges in both entailment

dataset design and Entailment Graph induction.

3.2 Temporal Entailment

In order to make progress on modeling temporality in Entailment Graphs, we first

need clearer definitions of what these models are trying to find, along with a dataset

for evaluating the models.

51
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3.2.1 Definition

For brevity, we will use the term entailment to refer to entailment between two typed

binary predicates, as used by Hosseini et al. (2018). That is, we investigate predicates

for which the types of the two arguments are specified, such as buy(person,object).

We also interpret entailment as common-sense inference (Dagan et al., 2006) (see also

Section 2.2.1), which has become the standard interpretation for evaluating whether

systems are able to draw semantic inferences. In this context, a text T entails a hypoth-

esis H if “typically, a human reading T would infer that H is most likely true.”

Then, within the work in Sections 3.2 and 3.3, we define a temporal entailment

task as one in which the texts in the dataset are centered on different morphosyn-

tactically tensed (Deo, 2012) predicates. The tense interactions inform us about the

temporal relationship between the two predicates. For example the pair “John has

bought the laptop”-“John owns the laptop” requires some sort of entailment rule like

has bought |= owns, which tells us that once somebody buys something they must

own it afterwards1. We keep this definition broad, allowing pairs of predicates to be

connected even if the tenses are identical. However, the cases in which tenses are dif-

ferent, such as the one above, are particularly interesting, since they inform us of the

temporal ordering of the predicates and may include more complex lexical relations

than atemporal troponomy.

In previous work, the question of how to represent an entailment relationship like

divorce |= marry was left unaddressed. This can create issues, since the knowledge

of the atemporal entailment divorce |= marry is not a sufficiently rich representation

to distinguish between non-entailments such as divorce 2 will marry and entailments

such as divorce |= was married. If a model contains the rule divorce |= marry and

applies it blindly, it might incorrectly predict that there is an entailment between “They

will divorce next week” and “They will marry next week”. Conversely, if one avoids

modeling the relationship at all, the model will incorrectly predict a non-entailment

between “They divorced” and “They were married”.

Models were not forced to represent this knowledge because previous datasets did

not focus on these distinctions. Moving to datasets containing temporal entailment

therefore encourages us to more accurately model the relationship between predicates.

1Note that temporal entailment is a specific case of the original entailment definition - there is noth-
ing excluding these types of interactions from the original datasets, since those texts also contained
tensed predicates. The main difference is that our dataset construction methods focus on the interac-
tions between the tenses.
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John is visiting London. � John has arrived in London.

John will visit London. 2 John has arrived in London.

John is visiting London. 2 John has left London.

John is visiting London. � John will leave London.

George has acquired the house. � George owns the house.

George is acquiring the house. 2 George owns the house.

Table 3.1: Examples From TEA

Temporal entailments allow us to model, for instance, that has divorced entails was

married while is divorcing entails is married. Note that there are other ways of tempo-

rally extending this definition, such as through lexical relations such as consequence,

or through temporal orderings. We discuss these as future research possibilities in

Section 8.2.

3.2.2 Dataset Creation

We developed TEA — the Temporal Entailment Assessment dataset — to evaluate

models under the definition of entailment. We cast the problem as a natural lan-

guage inference task, following a binary label annotation scheme (entailment vs. non-

entailment). TEA contains pairs of short sentences with the same argument structure

that differ in the tense and aspect of the main verb, such as the ones shown in Table 3.1.

There were previously no resources for specifically evaluating models that learn

entailments of a temporal nature. The dataset of Levy and Dagan (2016), improved by

Holt (2018), is commonly used for evaluating typed predicate Entailment Graphs, but

contains virtually no temporality. The FraCas test suite (Cooper et al., 1996) contains

a small section of temporal cases, but only a few examples are entailments between

predicates. While MNLI (Williams et al., 2018) claims to contain some examples that

involved temporal reasoning, it would be difficult to filter out the necessary cases as

they are not explicitly annotated. This might be possible using temporal keywords

such as yesterday, but it would not provide us with the temporally informative lexical

entailments between predicates that we focus on. Other popular entailment datasets

(see Section 2.2.3) also lack the desired properties.
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Figure 3.1: Frequencies of Tense Pairs in TEA; pst = past, pr = present, fut = future; s =

simple, pg = progressive, pf = perfect.

3.2.2.1 Data Collection

We sampled candidate pairs from the before-after category of VerbOcean (Chklovski

and Pantel, 2004), the WordNet verb entailment graph (Miller, 1993), the entailment

datasets of Weisman et al. (2012) and Vulić et al. (2017), and the relation inference

dataset of Levy and Dagan (2016). Subsequently, we manually filtered the list, and

discarded candidate verb pairs without any temporal relation to each other. For each

pair we chose nouns as arguments to form full sentences. The arguments further served

the purpose of reducing ambiguity, for instance by avoiding habitual readings. For

example, the sentence “The farmer harvests crops” allows for a habitual reading, which

is made less salient with a definite pronoun in “The farmer harvests the crops”. Choices

like this enable our dataset to concentrate on specific eventualities instead of a series

of of eventualities.

TEA covers entailments between an all-by-all combination of the present simple,

present progressive, present perfect, past simple, past progressive, past perfect and the

modal future, covering perfect and progressive aspect. The dataset contains 11,138

sentence pairs with a class distribution of 22 : 78 (entailment : non-entailment). Fig-

ure 3.1 presents a heatmap of different tense pair frequencies in the dataset.

3.2.2.2 Data Annotation

We interpreted entailment as common-sense inference (Dagan et al., 2006), see also

Section 2.2.1. We decided against crowd-sourced annotation of TEA, as our aim was
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to maximize the consistency of fine-grained entailment decisions. Therefore, TEA

was labelled by two annotators2, where the first round of annotation resulted in just

under 20% disagreement across the whole dataset (measured as a raw percentage of

cases disagreed upon). The relatively high level of disagreement suggests that even for

annotators who (more or less) know what they are looking for, assessing whether an

entailment holds between two temporal predications is a very challenging task.

Disagreements in TEA were resolved on a case-by-case basis and all sentence pairs

with an initial disagreement have been resolved and included in the dataset. We found

that with temporality involved, many entailment pairs became uncertain. For example,

in the pair “Airbus is producing the engine” � “Airbus will ship the engine” (labeled

True), there are readings where perhaps Airbus first puts the engine on an airplane

before any shipping occurs, or where a different company does the shipping. We re-

solved the disagreements stemming from this uncertainty by first discussing which of

several possible readings is the strongest, and whether that reading is sufficiently more

likely than any other possible reading. Subsequently we discussed whether the strong

reading is above the “most likely” common-sense entailment threshold.

3.2.3 Results

As mentioned in Chapter 1, the corresponding publication to this chapter (Kober et al.,

2019) also contains experimentation with various embedding methods to see whether

they capture temporal entailment. However, the experimental work was carried out by

Thomas Kober, so results will be presented here for completeness, and only briefly.

The models under examination were word2vec (Mikolov et al., 2013), fastText (Bo-

janowski et al., 2017), ELMo (Peters et al., 2018), BERT (Devlin et al., 2019) and An-

chored Packed Trees (APTs) (Weir et al., 2016). APTs are a sparse, high-dimensional

semantic vector space model in which the features are derived from typed dependency

trees, and which provides a method of distributional semantic composition. We also

pre-trained two bi-LSTM encoders (Hochreiter and Schmidhuber, 1997) on the SNLI

(Bowman et al., 2015) and the DNC (Poliak et al., 2018) datasets.

3.2.3.1 Preliminary Tasks

We performed a preliminary investigation on the first five models to confirm that they

encode basic morphosyntactic information. This provides a sanity check that the mod-

2Two of the authors on the paper Thomas Kober and Sander Bijl de Vroe.
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els are able to represent this kind of information at all, at least at the more shallow

morphosyntactic level rather than the deeper semantic levels subsequently probed us-

ing TEA. We tested the models with an auxiliary-verb agreement task, in which the

model has to decide whether the inflections of auxiliary verb and main verb match

(is walking matches, for example, while had walking does not). We also investigated

whether it was possible to learn consistent translation operations from the lemma em-

bedding to inflected word forms (for example, learning an offset vector for gerunds

and fastText, such that it can translate from lemmas like walk to the respective in-

flections, like walking). Results from those experiments showed that morphosyntactic

information relating to tense and aspect is encoded in the different embedding spaces.

3.2.3.2 Performance on TEA

For evaluation we measure precision and recall over varying thresholds and report per-

formance in terms of average precision. We also cast TEA as a binary classification

task, and report accuracy and macro-averaged F1-score for the two pre-trained biL-

STM models3. Table 3.2 shows the average precision scores for the models and the

accuracy and F1-scores for the two pre-trained biLSTMs in comparison to a majority

class baseline and a baseline predicting the majority class per tense pair. The results

show that neither of the models are able to outperform the majority class / tense base-

line. This highlights that despite the use of short and simple sentences in the dataset,

the latent nature of tense and aspect make TEA a very challenging problem.

Our analysis indicates that although the embedding models appear to extract

knowledge about tense and aspect in the contextualization procedure, the signal is not

strong enough to reliably draw temporal entailments. A key issue is that these models

are primarily governed by distributional similarity, which often does not correlate with

deeper semantic concepts such as tense and aspect. See (Kober et al., 2019) for more

details.

3.2.4 Challenges in designing TEA

Designing TEA brought with it many lessons surrounding the construction of (tem-

poral) entailment datasets. One issue with entailments between binary predicates is

3While the pre-trained models are designed specifically for binary classification of entailment, the
others are more general semantic models, so we do not pick a specific threshold and only evaluate them
over the whole precision-recall curve.
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Model Avg. Precision Accuracy F1-Score

word2vec 0.31 - -

APT 0.28 - -

fastText 0.30 - -

ELMo 0.21 - -

BERT 0.27 - -

biLSTM-DNC 0.22 0.58 0.49

biLSTM-SNLI 0.21 0.51 0.47

Maj. class 0.22 0.78 0.44

Maj. class / tense pair 0.35 0.80 0.66

Table 3.2: TEA results. All model results are significantly worse at the p< 0.01 level w.r.t. the

majority class / tense pair baseline, using a randomized bootstrap test (Efron and Tibshirani,

1994).

that the entailment only really holds for particular arguments. Consider examples (1)

to (5):

(1) The Chamber is also selling T-shirts. The Chamber had also shipped T-shirts.

(2) The Chief of Police is prosecuting the thief. The Chief of Police has arrested

the thief.

(3) John is publishing a documentary. John has filmed a documentary.

(4) Thomas is eating soup. Thomas has cooked soup.

(5) The Chamber is also selling the T-shirts. The Chamber also designed the T-

shirts

All of these examples seem acceptable, and there is a relationship between the predi-

cates, but they are not strictly entailments. If the Chamber sells something, it could be

a different company that shipped it. The prosecutor of a thief is not necessarily the one

that made the arrest. In the last three examples the entailed predicates seemed to arise

from the fact that the object exists at all. All we really know is that somebody filmed

the documentary, so this entailment can never be captured between binary predicates

with the same arguments. This challenge sparked interest in the construction of Multi-

valent Entailment Graphs, in which we amended the DIH to apply between predicates
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of different valencies (for example, kill(A,B) � die(B)). The work was published under

(McKenna et al., 2021) and has not been made part of his thesis.

Another issue is that different annotators have different intuitions about whether

an entailed proposition is likely enough to pass the commonsense threshold, especially

when dealing with future tense. For example:

(6) The farmer is planting the crops. The farmer will harvest the crops.

(7) Mary booked a ticket to Birmingham. Mary will travel to Birmingham.

In both these cases the entailed event could fail to transpire, although again some lexi-

cal relationship should be established between the predicates.

A uniquely temporal problem arose from an interaction between the tenses of

events and the ordering of the events’ nuclei. Examples (8) and (9) illustrate the point.

For instance, the first pair is ambiguous between two readings, a “will-divorce-and-is-

already-married” reading on one hand, and a “will-divorce-and-is-yet-to-marry” read-

ing on the other. The issue here is that the ordering between divorce and marry (after)

is the same as the ordering between divorce and now (after), so that the ordering be-

tween marry and now cannot be inferred. Without this, we cannot assign a tense to

marry. Although with pragmatics and world knowledge we might conclude that they

are already married, for many predicates the cases are equally likely in the absence of

any further context. Part of the issue is also that the entailed statement is too simple -

what is really entailed by the premise in example (8) is something like “Bob is mar-

ried to Jane at some point before the divorce”. Often such complex sentences seemed

necessary to avoid ambiguity, but in this case we decided to follow previous datasets

in having similar sentence structure between the premise and hypothesis.

This leaves us with a conundrum in labeling these cases. One option is to label both

as true, which might have happened in a crowd-sourced annotation where annotators

don’t see all sentence pairs. However, it is probably undesirable to have a dataset that

contains these pragmatically contradictory hypotheses. Another option is to label both

as false, but being so conservative leaves very few true labels in the dataset, and leaves

many predicate pairs for which there should be some entailment disconnected. We

mostly chose the third option, in which only one of a pair is labeled as true according

to which hypothesis is determined by commonsense knowledge as most likely. In this

case, (8) is labeled as True, and (9) as False.

(8) Bob will divorce Jane. Bob has married Jane.
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(9) Bob will divorce Jane. Bob will marry Jane.

A similar issue arises from the question of how long a state can be said to hold,

combined with a sort of temporal implicature. Consider examples (10) and (11).

(10) Arsenal is winning against Manchester United. Arsenal was playing against

Manchester United.

(11) Arsenal is winning against Manchester United. Arsenal is playing against

Manchester United.

Technically one could argue that Arsenal was also playing a few minutes ago, or by

world knowledge could argue that they were probably playing in the last few months.

However, the statement was playing doesn’t seem to be pragmatically licensed when

is playing holds true, even though it is logically true. It seems correct to label the

first example as false, but this does raise interesting questions about how an entailment

task should treat implicatures arising from the hypothesis, and whether a premise and

hypothesis should be interpreted as existing in the same discourse, or each treated on

their own terms.

Then there is a rather glaring issue: tenses are ambiguous in English. This could

be solved in future datasets by adding context in the form of temporal adverbials, but

it is still a problem in TEA. For example, Mary is traveling to London is ambiguous

between a true present tense where travel is ongoing, and a futurate use of the present

tense, where travel is still to happen. This is similar to the issue with the ambiguity of

the present tense described earlier. We tried to disambiguate habituals in those cases

by using definite articles, as in example (12).

(12) James is chewing on the sandwich. James eats the sandwich.

Another problem was generating examples from all tense-aspect combinations. This

created issues because the pairs of sentences didn’t always share a clear reference

time. For example, it is odd to think of a predicate in the past perfect to be entailed

by anything other than another past perfect predicate, see example (13). Generating

many simple present tenses also resulted in many cases where a habitual reading was

available.

(13) James ate the sandwich. James had chewed on the sandwich.
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Another source of possible annotation disagreements was a clash between the imper-

fective paradox and commonsense knowledge. Take example (14). On the one hand,

the past progressive was producing (as opposed to the perfect has produced) should not

entail the past simple owned because the progressive does not guarantee completion of

the event. On the other hand, commonsense knowledge often makes it reasonable to

assume that events will be completed - most people would assume that Veloretti would

succeed in production.

(14) Veloretti was producing the bicycle. Veloretti owned the bicycle.

A similar disagreement occurs with the semantics of the perfect. As mentioned

in Section 2.4.1.4, the consequences of an eventuality expressed in the present perfect

are still in force at the utterance time, as opposed to the consequences of eventuali-

ties in the simple past (Moens and Steedman, 1988). It is clear then that (15), in the

present perfect, should express an entailment relation. However, there is a tension with

the commonsense definition of entailment in (16): reasoned semantically, there is no

entailment, and yet many other datasets might label this as most likely entailed.

(15) George has acquired the house, George owns the house

(16) George acquired the house, George owns the house

Perhaps many of these are also simply issues with the RTE paradigm, which are

more evident when we deal with entailments between events in time. It is clear that lex-

ical entailment between events is quite complex, and that these inferences are mostly

drawn in the presence of a rich context. Example (16) could leave the annotator with

questions that would normally be disambiguated by information in the discourse: Does

this house still stand? Is George still alive? Was he acting on behalf of an organization

that now owns the house? How far back in the past is the reference time?

The way we design our datasets and our models should take this complexity into ac-

count. Another possible solution would be to add more textual context to the examples,

avoiding much of the ambiguity mentioned above. This might include adding temporal

adverbials, or even a description of the situation, so that a discourse is established and

people are more informed of the referents. This would require models to have a strong

contextualization mechanism, and could lead to interesting future work in Entailment

Graphs where its method of contextualization is extended beyond argument typing.

The commonsense definition stated in Section 3.2.1 acknowledges these ambigu-
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ities, but can also make it challenging to settle on a clear distinction between entail-

ment and non-entailment. “Most likely” will mean something different to different

annotators in different contexts. Recent work has shown that the disagreement may

be inherent in the task (Pavlick and Kwiatkowski, 2019). The multimodality of the

label distribution is not resolved by adding more annotators (which would be expected

if the disagreements were simply noise). Rather, the distribution remains bimodal or

multimodal when more annotators are added, indicating that annotators are gravitating

towards separate available readings of the sample. Counterintuitively, they also agreed

less as more context around the sample was shown. This may seem discouraging, but

if we can find an automatic way of assigning context targeted at the types of events

we are dealing with we might arrive at a more well-defined task. In any case, it seems

that just tense and aspect are not sufficient phenomena to disambiguate the available

readings.

3.3 Tensed Entailment Graphs

We now shift our attention to modeling. An initial project was to add temporality to

the graphs by changing the nodes, so that they represent tensed predicates instead of

the lemmatized predicates used by Hosseini et al. (2018). This allows us to model

the relationship between the different morphosyntactic surface forms of predicates, for

example modeling that is visiting entails has arrived as in Figure 3.2 We refer to this

model as Tensed Entailment Graphs.

3.3.1 Model

Figure 3.2: A comparison of Entailment Graphs (left) and Tensed Entailment Graphs (right)
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3.3.1.1 Definitions

We define temporal entailment as in Section 3.2.1. Our goal is to mine G , a set of

typed Entailment Graphs Gt1,t2 , consisting of a set of nodes P(t1, t2) ⊆ PT , where PT

is a vocabulary of tensed predicates, and a set of directed edges E indicating an entail-

ment relation. PT is P ×T , the cross product of the vocabulary of predicates with the

vocabulary of tenses, containing predicates such as is visiting(:person,:location) and

was visiting(person,location). It is here that temporality is introduced into the struc-

ture. As before if a node p has an outgoing edge e to a vertex q, then p� q. An example

of the difference between regular and tensed graphs can be seen in Figure 3.2.

3.3.1.2 Learning Method

We build Tensed Entailment Graphs by modifying the existing entailment graph min-

ing system (Hosseini et al., 2018)4. As described in Section 2.3.3, the system first ex-

tracts binary relations from text, assigns fine-grained types to the entities and computes

directional similarity measures based on the DIH. We use the local graphs, leaving an

investigation of the tensed graphs’ interaction with globalization to future research.

In order to build TsEGs, it is necessary to add functionality to the relation extrac-

tion system. In particular, Hosseini et al. (2018) parse sentences using GraphParser

(Reddy et al., 2014), which uses an open-domain syntactic CCG parser (Clark and

Curran, 2007) to parse sentences5. The syntactic parses are mapped to graphs, from

which binary relations with their arguments can be extracted by following all possible

paths from entity to entity. Graphparser was originally designed for question answer-

ing over Freebase (Bollacker et al., 2008) and didn’t require an analysis of tense. To

add morphosyntactic tense and arrive at TsEGs we make a number of changes to the

relation extraction steps.

We create a lexicon of special cases that takes into account the possible contexts

of auxiliary verbs. For instance, the past auxiliary have carries the CCG category

(S[dcl]\NP)/(S[pt]\NP), while the copular auxiliary be for creating progressive as-

pect requires the category (S[dcl]\NP)/(S[pg]\NP). In addition, unlike Hosseini et al.

(2018), we do not lemmatize the verbs so that the extracted relations can distinguish

between the simple present and past. We also choose the modal verb will as the only

modal verb to keep attached to extracted relations, since it almost always marks future

4Accessed from https://github.com/mjhosseini/entGraph
5Note that the graphs presented in later Chapters uses a different relation extraction system.
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tense in English, and other modal verbs (e.g. shall, must, ought to) do not do so as

unambiguously.

Through these changes our parser is able to distinguish between 12 morphosyn-

tactic (Deo, 2012) tenses: {past, present, future} × {simple, perfect, progressive,

perfect progressive}. For example, where our parser previously returned the relation

sell(person,company), it can now return has sold(person,company). Note that only the

seven tenses that use one auxiliary are tested in the evaluation set. For example, the

dataset does not investigate the entailments of will have visited.

After further learning steps, then, we are able to model entailment edges between

different tenses of predicates (as illustrated in Figure 3.2). Whereas before a subset of

the <person,object> graph might look like the graph on the left, adding temporality to

the nodes allows for more complex interactions to be captured. As in the subgraph on

the right, it can model that is visiting entails has arrived and will leave, while modeling

that it does not entail will arrive and has left.

3.3.2 Experimental Setup

Our methods are evaluated on TEA. As described above, each example contains con-

textualized predicates in varying tenses, and asks models to make a binary decision

regarding whether a premise entails a given hypothesis. The dataset is small, encour-

aging generalizable models that learn their knowledge from other datasets.

3.3.2.1 Model Implementation

Our graph models are trained using the NEWSSPIKE corpus (Zhang and Weld, 2013),

a collection of 500K news articles published over a span of a few months in early

2013. The articles come from parallel news streams, so that there is ample room for

the same situations to be expressed in different ways (allowing for more paraphrases

and entailments to be found). Furthermore, each of the news stories is annotated with

a document creation date, allowing for other the temporal extensions in Chapters 4 and

5.

As mentioned, We use GraphParser (Reddy et al., 2014) for extracting relations.

The arguments of the relations are mapped to Wikipedia entities using AIDA-Light

(Nguyen et al., 2014). Only relations involving at least one named entity are retained.

The argument types of the Wikipedia entities are determined by mapping to their Free-

base entry (Bollacker et al., 2008), and then matching this with the first level of the
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FIGER-type hierarchy (Ling and Weld, 2012). For example, given a mention of Google

in a piece of text, we link it to the Google Wikipedia entity, which we map to organi-

zation. Following experimentation by Hosseini et al. (2018) we calculate directional

similarities between predicates using the BInc score.

3.3.2.2 Models

We compare the performance of 5 models. The first three models are based on EG

methods, while the others rely on dense representations. Our first model is the en-

tailment graph method as presented by Hosseini et al. (2018). We build TsEGs as

presented in Section 3.3.1.

Then, we present a combined model that highlights the strengths of these two meth-

ods. When the tenses in two sentences are identical, we use the regular EGs, and if the

tenses differ the temporal graphs are used. We refer to this model as EG-TsEG.

As will be further discussed in Section 3.3.3, the nature of the TEA dataset makes

it so that the EG model is effectively forced to make mistakes. We therefore provide

another baseline, EG-0, to compare TsEG to a model that makes fewer mistakes. This

model again uses the regular EG when tenses in the two sentences are identical, but

predicts 0 when tenses are different.

Finally, we present results on two neural embedding methods, applied as in (Kober

et al., 2019). We evaluate word2vec (Mikolov et al., 2013) and BERT (Devlin et al.,

2019), two strong embedding models that have performed well over a wide range of

NLP tasks. This work was submitted in 2019, precluding the use of stronger modern

representations (RoBERTa, GPT-3, etc.). We also wanted a comparison to a classical,

non-contextualized dense representation, which is why we included the evaluation of

word2vec. While BERT can be contextualized by nature of the model, we contextu-

alize word2vec by averaging vectors as proposed by Kober et al. (2019). In spite of

its symmetric nature, cosine similarity scores performed best for these methods, so we

use this as our entailment score.

3.3.3 Results and Discussion

Figure 3.3 shows the precision-recall curves for each of the models on the TEA dataset,

and Table 3.3 shows the AUC scores at four different recall thresholds. We use different

thresholds so that the graph models receive a fair comparison for their respective recall

ranges, which differ substantially. We choose thresholds of 0.1, 0.2, 0.25, and 0.75 for
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Figure 3.3: Precision-Recall curves for each model

TsEG, EG-0, EG-TsEG and EG, respectively. The distributional models can compute

a similarity score between any pair of predicates in their vocabulary, and since their

vocabulary covers the Levy predicates they reach a recall of 1. Regular Entailment

Graphs, conversely, depend on observing these predicates with the same argument

pairs, limiting their maximum recall to 0.78 (note that Figure 3.3 is limited to 0.4

recall). The other models have a much lower maximum recall due to the sparsity of

tensed predicates in the training corpus.

In terms of precision all models fair quite poorly. While they do all manage to

surpass the uniform class distribution (0.22), they are unable to maintain high lev-

els of precision. Untensed Entailment Graphs have especially low precision, because

the structure of the dataset effectively forces them to make mistakes. The dataset fo-

cuses on the semantic intricacies of different tense interactions, which conflicts with

the model, capable of predicting either 1 (entailment) or 0 (non-entailment) for an en-

tire group of tense pair interactions for any given predicate pair. Thus, even when it

understands the predicates are related and has learned the correct directionality, it will

predict True for all tense interactions of that ordered predicate pair, resulting in much

lower precision due to forced false positives. The only entirely correct block of pre-
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Model AUC scores Max Recall
Rec. < 0.1 < 0.2 < 0.25 < 0.75 Reached

TsEG 0.035 0.04 0.04 0.04 0.115

EG 0.024 0.048 0.06 0.2 0.783

EG TsEG 0.042 0.087 0.109 0.12 0.276

EG 0 0.047 0.094 0.094 0.094 0.198

BERT 0.049 0.088 0.106 0.259 1
w2v 0.041 0.077 0.095 0.258 1

Table 3.3: Performance of the distributional and graph-based models for different recall thresh-

olds

dictions it can make is correctly predicting 0s for all the non-entailment pairs due to

directionality (e.g. the tensed versions of own|=buy). These true negatives aren’t taken

into account in calculating precision and recall, however.

The Tensed Entailment Graphs do improve over the regular graphs in terms of

precision at the low recall range, which is reflected in their higher AUC score at recall

<0.1. Still, their precision is low. Part of the issue is that they are faced with learning a

larger number of potential links from the same amount of data. The tensed graphs need

to apportion the data of one lemmatized predicate between its 12 morphosyntactically

tensed versions, resulting in less reliable distributions that are estimated from a smaller

amount of data. Further, the data distributes unevenly over these tenses, magnifying

the sparsity for edges between rare tenses, such as past perfect-past perfect.

EG-TsEG is the strongest model for its most favorable threshold of 0.25. We expect

that its success compared to EG and TsEG in isolation is due to playing to each model’s

strengths and weaknesses. TsEGs are able to distinguish between different tenses, so

they thrive in those cases, while regular EGs suffer less from sparsity, so they perform

better than TsEGs when the tenses are identical. The combined model is thus allowed

to make the most confident decision for identical tenses and different tenses.

EG-0 focuses on the regular graph’s most reliable predictions, simply predicting 0

when the tenses are different. At its most favorable recall range, it achieves the highest

AUC of any model. This improvement over EG-TsEG at lower recall indicates that

the predictions made by EG are more reliable than those made by TsEG. Still, EG-

TsEG achieves higher recall, indicating that the TsEGs correctly retrieve some of the

challenging different-tense examples in the dataset.
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Premise Hypothesis

True Positive TsEG; False Negative EG

Liverpool has defeated Arsenal Liverpool challenged Arsenal

William has acquired the desk William has the desk

John is visiting London John was traveling to London

Lee has killed the president Lee had wounded the president

Kim has the degree Kim obtained the degree

True Negative TsEG; False Positive EG

Phil divorced Jane Phil will marry Jane

Max bought the flat Max will own the flat

Table 3.4: Examples where TsEG predicts correctly and EG incorrectly on the TEA dataset.

Additionally, for the true negatives TsEGs still predict true positives on other tense pairs for

these predicates, for example finding that Phil divorced Jane → Phil had married Jane and

Max bought the flat→ Max has owned the flat

Table 3.4 shows some example temporal entailments that the TsEGs are able to

capture. Although the model is sparse, it is clear that some interesting temporal re-

lations between predicates are being learned from the corpus. For example, having

something is a consequence of acquiring it, and wounding is understood to occur be-

fore killing; these are the types of commonsense knowledge we set out to find. These

examples were found in graphs produced with a score threshold corresponding to 10%

recall (high precision being more important for these problems).

That distributional models are consistently among the strongest, but also struggle

to surpass 0.5 precision. Since they are learned on vast quantities of data and do not

depend on argument pair co-occurrences for their learning signal, they are able to

produce relatively reliable distributions while covering the entire recall range.

Overall, it is clear that this is a particularly challenging task. With precision values

of mostly less than 0.5, all models struggle to recover the deep semantic interactions

between tense, aspect and entailment. Note that this may be in part due to possible

flaws in the dataset (cf. Section 3.2.4). Still, Tensed Entailment Graphs do manage

to correctly predict some of the complex entailment relations in the dataset, of which

Table 3.4 shows some examples.
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3.3.4 Challenges in Entailment Graph Induction

3.3.4.1 Tensed Entailment Graphs

Although our models are able to capture relations that are difficult to mine from unsu-

pervised data, it is also clear that the evaluation dataset poses a serious challenge. For

EG-based methods it is clear that sparsity is a serious issue in spite of the fairly large

number of articles in our training corpus. Sparsity issues become even more signifi-

cant for TsEGs in particular. This is in part due to our choices in the representation —

the strategy to separate atemporal nodes into multiple tensed nodes requires even more

data, since far more edges need to be learned. When nodes are separated by tense the

number of possible edges grows from n2−n to n2t2−nt with number of predicates n

and number of tenses t.

In terms of learning, it is unclear whether it is principled to apply the Distributional

Inclusion Hypothesis to tensed predicates. Here we are assuming that if a predicate in a

particular tense entails a predicate in another tense, its context set will be subsumed by

the other’s context set. In retrospect this seems tenuous because predicates in different

tenses mentioned at different times can be used to refer to the same eventuality (Obama

has arrived, Obama is arriving, Obama will arrive, all referring to the same arrival,

but expressed at different speech times). If the eventualities are mentioned at those

different times, it will be challenging to extract the correct tensed entailments because

there will be evidence for each of the tenses — has arrived, is arriving and will arrive

would all be similarly probable entailments of is visiting. Some of the benefits we see

may therefore be due to biases in how the eventualities are reported — perhaps arrive

is often used in the perfect, which would allow the model to predict more easily that

its present perfect version is entailed. It is certainly clear that the theoretical grounding

of the learning signal interacting with tense warrants further investigation, if other

variants of this model are attempted.

3.3.4.2 Entailment Graphs

At this point it is also worth mentioning a few drawbacks to Entailment Graphs more

generally. One issue is that their only learning signal comes from the DIH. Again, this

states that if a predicate p entails a predicate q, we expect to see the contexts in which

p occurs included in the contexts in which q occurs, and not vice versa. In other words,

the hyponym’s context set will be a subset of the hypernym’s context set. This would

hold under perfect information: if we somehow observe all possible predications of
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every occurring eventuality, then the context surrounding entailing predicates p will

always also be seen around the entailed predicate q. However, in real world discourse

this relationship can be easily skewed. One reason is that news is biased to report

interesting occurrences, so that rare eventualities will appear to be entailed more than

they should. For example, taking a breath will almost never be reported, while murder

might seem like a relatively common eventuality, making it more difficult to recover

the entailments of taking a breath.

Relatedly, word frequency in general will interact with these patterns, even when

the semantics is constant. For instance, the context sets and frequencies across argu-

ment pairs for somnambulate and sleepwalk will be very different. Since sleepwalk

will apply to many more argument pairs, somnambulate might seem to entail sleep-

walk, even though they are paraphrastic. This also relates to the frequency effects of

cognitively useful basic-level categories (Rosch and Mervis, 1975; Rosch et al., 1976)

(e.g. dog as opposed to animal), the names of which are used more often in language

than both more general and more specific alternatives. This frequency effect could the-

oretically make it difficult to recover the correct directionality of entailment between a

basic-level category and the more general category it entails. Since the basic-level cat-

egory applies to more argument pairs (due to reportability and frequency), the model is

biased to consider it as a hypernym, even though it should be the hyponym. Although

previous research has shown the DIH to be a useful signal in discovering the entail-

ments of nouns, its application to verbs deserves further study, particularly in context

with these effects.

Another drawback of Entailment Graphs is their method for contextualization in

the representation. Previous approaches (Berant et al., 2011; Hosseini et al., 2018)

have achieved this by learning a separate graph for every pair of argument types. We

have already discussed that entailment is a highly contextualized problem, with a pair

of types failing to supply sufficient context to determine that an entailment will always

hold. Temporal entailment contains clear examples, and it is easy to find others within

the more generic types such as organization, which, within the more fine-grained lev-

els of the FIGER-type scheme, contains types as diverse as organization/sports team,

/political party and /terrorist organization. When attack, for instance, is predicated

of arguments of these types, the semantics and the available entailments will be very

different.

The most generic thing type, which forms a bucket for entities that are not rec-

ognized by Named Entity Recognition and Linking, poses an extreme version of this
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problem. For example, the predicate serves(person,thing) needs to cover many mean-

ings. By using this fairly coarse typing, the more particular entailments of relations

like a person serves food, serves the army, serves time and serves the ball cannot be

represented in the model — argument types alone are an insufficiently powerful feature

to perform WSD. Note that the NER system included in Stanford CoreNLP (Manning

et al., 2014) and the NEL system AIDA-Light (Nguyen et al., 2014) (see also Section

2.3.3.1) have not been re-evaluated for this project specifically. They are no longer

state of the art, but were sufficiently strong for the research performed by Hosseini

et al. (2018).

Improvements can be made by developing the typing systems and the typing

scheme, but there is an unavoidable trade-off within this paradigm: any time we in-

crease the specificity of the typing scheme, we increase the number of graphs we need

to learn, which introduces sparsity issues and makes each graph significantly harder to

induce. On the other hand, a typing scheme with more general categories will reduce

the disambiguation power of the representation, allowing us to model fewer entail-

ments.

Finally, a practical challenge with Entailment Graphs is that they require a rela-

tively extensive pipeline to be mined. Even when each component has high accuracy,

errors are bound to accumulate. One particularly challenging component (currently

not part of the pipeline) is coreference resolution, especially for the news genre. This

arises in part because reporters often switch between different nominal references in

the newswire style. For example, a single article about Beyoncé in NEWSSPIKE refers

to her by name only a handful of times. Besides pronominal references, the article also

refers to Beyoncé with the “‘Love on Top’ songstress”, “Queen Bey”, “the 31-year

old”, “the R&B Diva” and “the mother of one”. This poses a real issue, since these

references are extremely challenging for modern co-reference systems, while they may

simultaneously contain essential data for the learning algorithm, which thrives on hav-

ing varied, co-occurring predicates and argument pairs.

3.4 Conclusion

This chapter has presented work on defining the problem of temporal entailment, which

was previously largely unexplored in NLI in spite of its semantic importance. We de-

signed the first evaluation dataset to focus on entailments between predicates of differ-

ent tenses and aspects. We then alter the relation extraction pipeline to mine unsuper-
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vised Tensed Entailment Graphs and compare them against various distributional and

graph-based baselines. Although these graphs are able to recover some of the chal-

lenging entailment relations in the dataset, they also suffer from sparsity issues. In

Section 8.2 we discuss modeling options to alleviate this.

Once these initial conclusions had been reached we decided to shift our attention

to other research directions. Rather than introducing temporality into the Entailment

Graph representation, we decided instead to use temporal information in the mining

procedure to induce more accurate Entailment Graphs. That work is described in Chap-

ter 4.





Chapter 4

Temporality in Entailment Graph

Induction

4.1 Introduction

A different kind of possible error in Entailment Graph induction is the prediction of

spurious entailments between antonyms, in particular similar but temporally distinct

eventualities that occur with the same argument pairs. For example, both the predi-

cates win against and lose against will apply to sports team argument pairs such as

(Arsenal, Manchester), but will do so at different times. This is likely to mislead the

current atemporal methods into incorrectly assigning an entailment relation between

those predicates.

Instead of approaching this problem in the representation (as in Chapter 3), we ap-

proach it in the learning algorithm, incorporating the temporal location of eventualities,

with the aim of removing spurious entailments from the graphs. Temporal information

can be used to disentangle these clusters of highly correlated predicates, because al-

though they will share argument pairs, they will never occur at the same time. Consider

Figure 4.1, in which Arsenal and Manchester played each other three times in 2019,

with three different outcomes, expressed with the predicates win against, lost against

and tied with. Previous methods that use the DIH to learn predicate entailments have

used a formulation in which the context set refers to argument pairs (Berant et al., 2011;

Hosseini et al., 2018)). Therefore they mistakenly take the examples in Figure 4.1 as

evidence of entailments or paraphrases between the three antonymous outcome predi-

cates (win, lose, and tie), depending on the distributions found in the data. Our method

enriches this context to include time interval information, thereby filtering out com-

73
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binations that are not temporally near each other. This constitutes a kind of temporal

reformulation of the DIH, which should avoid learning that win against � lost against,

while still learning that win against � play.

Arsenal-played, lost against-Manchester 1-3 (25/01/19)

Arsenal-played, won against-Manchester 2-0 (10/03/19)

Arsenal-played, tied with-Manchester 1-1 (30/09/19)

Figure 4.1: Example triples (left) and their resulting entailment/non-entailment graph (right).

Arrows indicate entailment, dotted lines indicate non-entailments that previous methods were

biased to spuriously learn.

As an initial test domain, we focus on the sports news genre, using extracted

triples that involve two sports teams. We design a semi-automatic dataset construc-

tion method based on entailments between paraphrase clusters. Applying this to clus-

ters built around the sports predicates win, lose, tie and play, we produce a dataset of

1,312 entailment pairs, which we use to evaluate our graphs. Our goal is to recover

the structure of the graph in Figure 4.1 in an unsupervised way, separating each of the

highly correlated, yet antonymous predicates win, lose and tie, while predicting that

they all entail play. The news domain is particularly useful for leveraging temporal

information, because which each article has a known publication date and temporal

expressions are commonly used.

The contributions of this work are: 1) a model for incorporating triple-level time in-

tervals into an Entailment Graph induction procedure, outperforming atemporal mod-

els, 2) a manually constructed evaluation dataset of sports domain predicates, and 3)

results showing that temporality is indeed a useful signal for entailment learning. To

our knowledge this is the first attempt to incorporate temporal information into Entail-

ment Graph induction.
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4.2 Method

4.2.1 Relation Extraction

We use a pipeline based on a Combinatory Categorial Grammar (CCG) (Steedman,

2000) parser to extract triples with time intervals. These triples are used to construct

typed Entailment Graphs using the unsupervised method of Hosseini et al. (2018),

adapted to compare only pairs of triples that are temporally near each other.

We use an updated version of the relation extraction pipeline used in Chapter 3,

reimplemented together with Liane Guillou. This replaces Graphparser (Reddy et al.,

2014) (which depends on the C&C CCG parser (Clark and Curran, 2007)) with a Ro-

tating CCG parser (Stanojević and Steedman, 2019). The Rotating CCG parser is

stronger than the C&C parser (an F1 score of 90.5 compared to 85.2 on the labeled

dependencies of CCGbank (Hockenmaier and Steedman, 2007a)), in part because it

applies many of the recent advances in neural NLP models, such as ELMo embeddings

(Peters et al., 2018) and bi-LSTMs (Graves et al., 2005). It is also more incremental,

and thus more cognitively plausible, than previous methods. We later upgraded this

system to include modality tagging capabilities (presented in Chapter 6).

The output’s form remains as described in Section 2.3.3.1; we extract triples of

the form predicate(arg1,arg2) (e.g. win against(Arsenal, Manchester). Triples are

extracted from the NEWSSPIKE corpus (Zhang and Weld, 2013) of news articles col-

lected from multiple sources over a period of approximately six weeks.

The Rotating CCG parser (Stanojević and Steedman, 2019) generates a syntactic

parse. For example, the sentence “Johnson doubts that Labour will win the election.” is

parsed as shown in the CCG parse tree in Figure 4.2. Using a method similar to Clark

et al. (2002), we then convert the parse into a CCG dependency graph, which can be

traversed to produce our relation triples. An example dependency graph is shown in

Figure 4.3.

Then, we traverse the dependency graphs starting from verb and preposition nodes,

until we reach an argument leaf node. In the example in Figure 4.3, the paths are high-

lighted in orange. The traversed nodes are used to form (lemmatized) predicate strings,

and arguments are classified as either a named entity (extracted by the CoreNLP (Man-

ning et al., 2014) Named Entity Recognizer), or a general entity (all other nouns and

noun phrases). Predicate strings may include (non-auxiliary) verbs, verb particles, ad-

jectives, and prepositions. Negation nodes are detected via string match (“not”, “n’t”,

and “never”), and are included in the predicate if there is a path between the negation
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Johnson doubts that Labour will win the election

N (S[dcl]\NP)/S[em] S[em]/S[dcl] N (S[dcl]\NP)/(S[b]\NP) (S[b]\NP)/NP NP/N N
TC TC >

NP NP NP
>

S[b]\NP
>

S[dcl]\NP
<

S[dcl]
>

S[em]
>

S[dcl]\NP
<

S[dcl]

Figure 4.2: A CCG syntactic parse tree of the sentence “Johnson doubts that Labour will win

the election.”

Figure 4.3: A CCG dependency graph converted from a syntactic parse

node and a node in the predicate. We map passive predicates to active ones. Modifiers

such as “managed to” as in the example “Arsenal managed to win against Manchester”

are also extracted and included in the predicate. As the modifiers may be rather sparse,

we extract the relation both with and without the modifier.

We extract and resolve time expressions in the document text using SUTime

(Chang and Manning, 2012), available via CoreNLP. If there is a path in the CCG de-

pendency graph between the time expression and a node in the predicate, the triple is

assigned a time interval. A number of reasons motivated our choice of SUTime. It was

fastest to incorporate, given that the information was already available with CoreNLP,

which was already included in our pipeline. It is also a relatively fast system compared

to heavier systems like CAEVO (which consists of a ranked sieve of multiple clas-

sifiers) and UWTime (which is built using the C&C syntactic CCG parser combined

with a temporal semantic parser), see Section 2.4.2.3 for more information. Finally,

including just the time expression representation in the parse (rather than using other

systems for linking to eventualities as well) allowed the possibility of investigating log-
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ical, discourse-level approaches for temporal reference in one of our intended future

research directions. However, this system does have the drawback of being older, thus

potentially having lower precision and recall than more modern systems. Given that

we extracted a time interval for approximately 19% of triples, and that its rule-based

approach should yield fairly high precision, we were content using the system.

As in the previous pipeline, arguments are mapped to types by linking to their

Freebase (Bollacker et al., 2008) IDs using AIDA-Light (Nguyen et al., 2014), and

subsequently mapping these IDs to their fine-grained FIGER types (Ling and Weld,

2012).

We restrict our investigation to the sports domain, which provides many advan-

tages. As a primary reason, the sports domain contains arguments that interact with

many other arguments, and do so repeatedly over time (this holds for sports teams in

particular, but also players, leagues, cities, stadiums, etc.). Since the DIH depends on

argument pair interactions, this provides a rich ground for investigating the learning

signal. Intuitively speaking there should also be less missing data, because many news

outlets report at least briefly on every game played in a league. Sports data is also

easy to mine from the web, and is common in NEWSSPIKE (constituting over a third

of the data, see Section 6.5), and in our experience sports entities have reliable Named

Entity linking. Due to all these reasons sports provides a strong exploration ground for

entailment learning in general.

For the purpose of this project we focus on sports teams. This simplifies the repre-

sentation to a single type-pair graph, and also provides the straightforward win-lose-tie

outcome predicate set for investigating the conflation of antonyms and entailment. We

limit our data by filtering the total set of output triples, accepting only those involving

two arguments of the fine-grained FIGER type organization/sports team. This results

in a set of 78,439 triples extracted from 24,147 articles, of which 14,664 triples have

time intervals derived from SUTime. In Chapter 5 we apply this method to other argu-

ment type pairs in an attempt to generalize our conclusions beyond the sports domain.

4.2.2 Graph Construction

The input to the graph construction step is the set of typed triples with their

time intervals, p(a1:t1,a2:t2, [ts, te]), where ts and te are the start and end of the

time interval, are both calendar days, and ts � te. An instantiated example
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is beat(Arsenal:organization,Man United:organization, [13/5/2013,13/5/2013])1.

Since we focus on eventualities that involve two sports teams, the output is a single

graph Gorganization−organization, rather than the typical set of graphs for every pair of

types. Note that these graphs contain only locally learned entailments.

In the original method for computing local entailment scores, Hosseini et al. (2018)

extract a feature vector for each typed predicate (e.g. play with type pair organization-

organization). As described in Section 2.3.3.2, The argument pairs (e.g. (Arsenal,

Man United)) are used as the features, and either the count or pointwise mutual infor-

mation (PMI) between the predicate and the argument pair is the value. These feature

vectors are then used to compute local similarity scores.

We extend this method to take into account the time intervals for each of the triples,

with the goal of comparing only those eventualities that are temporally near each other.

To achieve this, we filter the counts of predicate q according to whether each triple’s

time interval overlaps with any of p’s. In other words, a triple in q is retained if it is tem-

porally close enough to any triple in p. A temporal similarity score st is computed by

replacing the atemporal feature values v(p, f ) by a temporally filtered version vt(p, f ),

keeping the computation otherwise identical. Again, vt(p, f ) can be either a tempo-

rally filtered count Nt(p, f ) or PMIt(p, f ), see also the formulae in Section 2.3.3.2. For

example, when we substitute temporally filtered PMI for the value v(p, f ) in Weed’s

Precision we simply get:

Temporal Weed’s Precision(p,q) =
∑ f∈Fp∩Fq PMIt(p, f )

∑ f∈Fp PMIt(p, f )
,

Algorithm 1 describes the process of filtering counts using time intervals. The pro-

cess uses a set of edges E between predicate nodes to store filtered count information.

We loop through each argument pair ap and get the list of predicates that occur with

that argument pair (line 4). Then, for each pair of predicates, we instantiate edgeOb-

jects (line 7) between predicates p and q (in both directions), to store the filtered count

information. We also retrieve p and q’s timeObjects, containing a list of the time inter-

vals at which the predicate and argument pair co-occurred (lines 8–9). For each pair of

time intervals we compute whether there is an overlap (lines 12–19). The filtered count

is the total number of triples in predicate p that temporally overlap with any triple in

predicate q. The count is stored in the edgeObject edgep,q. Once all counts have been

collected, they are used to compute the similarity measures.

1Since we are dealing with sports events, the start point and end point of the interval will normally
be the same day.
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Play Arsenal Manchester 18/1/2021

Beat Arsenal Manchester 18/1/2021

Play Arsenal Manchester 12/2/2021

Lose to Arsenal Manchester 12/2/2021

Table 4.1: The extractions resulting from four descriptions of two sports matches between the

same teams.

Edge Regular Count Filtered Count

play � beat 2 1

beat � play 1 1

play � lose 2 1

lose � play 1 1

beat � lose 1 0

lose � beat 1 0

Table 4.2: Comparing regular and temporally filtered counts for each edge.

Since our loop considers the argument pair, predicate p and predicate q, generaliz-

ing the PMI score to our case would mean precomputing and storing each Conditional

PMI(p,ap,q). However, this is computationally expensive (if not infeasible) given the

existing graph construction framework, so we instead opt to scale the original PMI

scores using the filtered counts. We apply two strategies: 1) Ratio: the temporally

filtered PMIt = PMI · (ct/c), i.e. the original PMI multiplied by the ratio of filtered

counts (ct) to regular counts (c), and 2) Binary: PMIt = PMI if ct>0; otherwise 0 —

using the original PMI score if any of the triples in predicate p overlap with any triple

in predicate q, otherwise setting the score to zero. The intuition in both cases is that

the PMI score will be reduced if the predicates are temporally separate.

For example, suppose two football matches are held between Arsenal and Manch-

ester, one described as happening on 8th January 2021 where “Arsenal played and beat

Manchester.”, and another on 12th February 2021 where “Arsenal played and lost to

Manchester” (see Table 4.1). The algorithm computes a filtered count for each argu-

ment pair for the pair p-q: the total number of eventualities of predicate p with a time

interval that temporally overlaps with the time interval of any eventuality of predicate

q, and vice versa. In this case the filtered count for play � beat = 1 and play � lose to
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= 1 as there is a temporal overlap for the play and beat events in the first match and the

play and lose to events in the second. Crucially, the filtered count for beat � lose to

becomes zero as there is no temporal overlap between the beat and lose to events. See

Figure 4.2 for an illustrated example. In this way, the values of temporally separate

predicate pairs are lowered, leading to discounted similarity scores. We use the filtered

counts to compute the temporal similarity measures described in Section 5.2.4. The

regular counts are used to compute their (standard) atemporal counterparts.

We consider three possible sources of time intervals: 1) the resolved time expres-

sions extracted from raw text using SUTime, 2) the document creation date (provided

as metadata in the NEWSSPIKE corpus), and 3) a combination of the two – using

resolved time expressions where these are available, and backing off to the document

creation date where they are not. The intuition behind using time expressions extracted

from the article text is that these ought to more accurately pinpoint the time interval of

the eventualities. However, as such expressions may be sparse, we also investigate the

use of the document creation date, under the assumption that sports news is likely to

be reported very close the day of the eventuality.

We also consider a temporal window to extend the time intervals by N days ei-

ther side. This would mitigate the problem of sports events being reported several

days later, especially when we fall back to the document creation date. For sports

matches we would expect to see a benefit in using a small window of a few days, and

a detrimental effect as that window grows increasingly larger. Specifically, we expect

that larger windows would render temporal information useless, preventing our model

from being able to distinguish between two different matches involving the same pair

of teams. Time interval source and window size are parameters that we experiment

with in Section 4.4.1.

4.3 Evaluation

4.3.1 Dataset Construction

We propose a semi-automatic method to construct a small evaluation dataset based on

manually constructed paraphrase clusters. We start with a small set of predicates for

which we know the entailment pattern, in our case {win, play, lose and tie}. We restrict

the dataset to include only those triples that involve two sports teams, by filtering on the

fine-grained FIGER (Ling and Weld, 2012) type organization/sports team. We then
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Algorithm 1 Temporal filtering in local graph computation
1: procedure TEMPORALFILTER(argument pairs, predicates)

2: E ← initializeAllEdgeOb jects(predicates) . Initialize set of edges

3: for ap in argument pairs do
4: predicatesap← getPredicatesForEntityPair(predicates,ap)

5: for p← 0 to length(predicatesap) do
6: for q← p+1 to length(predicatesap) do
7: edgep,q,edgeq,p← getEdgeOb jects(E , p,q)

8: time ob jectsap,p← getTimeOb jects(ap, p)

9: time ob jectsap,q← getTimeOb jects(ap,q)

10: overlapp← initializeVectorO f Zeros(length(time ob jectsap,p))

11: overlapq← initializeVectorO f Zeros(length(time ob jectsap,q))

12: for i← 0 to length(time ob jectsap,p) do
13: for j← 0 to length(time ob jectsap,q) do
14: if intervalOverlap(time ob jectsap,p[i], time ob jectsap,q[ j]) = 1 then
15: overlapp.set(i,1)

16: overlapq.set( j,1)

17: end if
18: end for
19: end for
20: edgep,q.addTCounts(sum(overlapp)) . Rels p that temporally overlap with any q

21: edgeq,p.addTCounts(sum(overlapq))

22: end for
23: E .update(edgep,q,edgeq,p)

24: end for
25: end for
26: return E
27: end procedure
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order the predicates by their frequency in the corpus, and manually select paraphrases

of our small set with a count of at least 20 (the 235 most frequent predicates). This

results in four clusters of paraphrases, with sizes of 26, 8, 3 and 5 respectively for win,

lose, tie and play. We then automatically generate entailment pairs (1,312 in total),

labeling them according to the pattern in Table 4.3, with premises in the rows and

hypotheses in the columns.

This results in a LIiC-style dataset of 1,312 pairs with entailment and non-

entailment labels. The task is fairly challenging compared to other LIiC datasets be-

cause its non-entailments are particularly challenging. Models are expected both to

predict the correct directionality of entailments (otherwise penalized with the direc-

tional 0 category) and not to predict spurious entailments between antonyms. Note

that this task has similarities to antonym detection (see Section 2.2.3.4), and the pub-

lic version of the dataset contains the full label set so that it can be adapted for this

purpose.

We include the paraphrase category for completeness, although we are more in-

terested in the effect of separating the antonymous, temporally disjoint sports match

outcomes. The paraphrase category contains predicates of varying gradation, such as

crush suggesting a strong victory or eliminate indicating that a team is knocked out of

a tournament. We wish to avoid specific predicates such as eliminate entailing non-

specific predicates like win against. To avoid this issue we manually annotated the

predicates for specificity, and for the paraphrase entailments subset we only generate

pairs for non-specific predicates. More generally, a set of paraphrase clusters with a

total of n predicates yields n2−n pairs (not taking into account the paraphrase subsets

reduction)2.

4.3.2 Similarity Measures

We compute both symmetric and directional similarity measures to learn entailments,

making use of the temporally filtered counts and PMI scores described in Section 4.2.2.

Specifically, we adapted Lin’s similarity measure (Lin, 1998), Weeds’ precision and re-

call measures (Weeds and Weir, 2003), and BInc (Szpektor and Dagan, 2008). This

leads to a number of adaptations. Temporal count-based measures using the tem-

porally filtered counts: Weeds’ precision, recall, and similarity (harmonic average of

precision and recall); Lin’s similarity; BInc using Weed’s precision and count-based

2The subtracted term comes from duplicate pairs like defeat-defeat
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(a) 1 = entailment, 0 = non-entailment. Blue = base

(directional entailments, and non-entailments from

temporally disjoint antonyms), orange = directional

non-entailment, green = paraphrases

win lose tie play

win 1 0 0 1

lose 0 1 0 1

tie 0 0 1 1

play 0 0 0 1

(b) Examples from the evaluation dataset

Category Examples Size

defeat � vs
directional 1

crush � face
272

beat � fall to
antonym 0

outscore � lose
446

play � win
directional 0

go against � tie
272

top � knock off
paraphrase 1

defeat � outplay
322

Table 4.3: Entailment pairs evaluation dataset

Lin’s similarity. Temporal PMI-based measures using both Ratio and Binary PMI:

Weeds’ precision, recall, and similarity; Lin’s similarity; BInc using Weed’s PMI pre-

cision and Lin’s similarity. Temporal hybrid BInc measures: Computed using count-

based Weeds’ precision and PMI-based Lin’s similarity, using the temporally filtered

counts, Ratio and Binary PMI. We also ensure that for every temporal measure, its

atemporal counterpart is also included, and we include cosine similarity as a symmet-

ric baseline3.

4.4 Experiments, Results and Analysis

4.4.1 Experimental Settings

As described in Section 4.2.1 we extract all possible triples from the NEWSSPIKE cor-

pus and map their arguments to types using the FIGER hierarchy. We construct a typed

Entailment Graph for the organization-organization type pair using the subset of these

triples where both arguments are sports teams. We compute entailment scores using

the set of 29 similarity measures described in Section 4.3.2. We highlight results for

the strongest measures: BInc based on counts and PMI values and Weed’s precision,

along with their temporal counterparts.

We experimented with different values for the time information source and tempo-

ral window described in Section 4.2.2. We constructed typed Entailment Graphs using

3In total, we experiment with 29 similarity measures. However, to focus the discussion we present
only the strongest scores. The hybrid scores did not exhibit interesting differences.
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only time expressions (timexOnly), only the document creation date (docDateOnly),

and using time expressions where available, otherwise backing off to the document cre-

ation date (timexAndDocDate). For each of the time interval sources, we also applied

windows of 1, 2, 3, 4, 5, 6, 7, 30 and 3,650 days, as well as no window.

We used the evaluation dataset described in Section 4.3.1 and Table 4.3 to evaluate

entailments captured under each of these experimental settings. We evaluate on three

different configurations of the dataset: Base (directional 1 and antonym 0), Directional
(directional 1 and directional 0), and All (directional 1, antonym 0, directional 0 and

paraphrase 1).

Note that the results are different to those reported by Guillou et al. (2020) due to

updated relation extraction, correction of an error in the method for applying temporal

windows, and thresholds as applied by Hosseini et al. (2018) (predForArgPair4 and

argPairForPred = 4, edgeThreshold5 = 0.01). We consider these the definitive results.

In the timexOnly setting we use an edgeThreshold of 0.00, since this sparse model

benefits from using the full set of edges.

4.4.2 Temporality and Temporal Information Source

Table 4.4 contains area under the curve (AUC) scores for a range of temporal (T.) and

atemporal similarity measures, for each of the three temporal information sources. To

evaluate the similarity measures fairly we calculate AUC under a recall threshold (a

recall of 0.75 is reached by all non-timexOnly measures).

Results confirm that temporality is a useful signal. Firstly, timexAndDocDate is

the strongest temporal information source — it is most effective to use the tempo-

ral expressions when available and use the document date otherwise. Comparing the

temporal and atemporal scores for that information source, we find that the temporal

scores are consistently higher. The precision-recall curves in Figure 4.4 also illus-

trate this. We tested statistical significance of the differences between temporal and

atemporal scores on the timexAndDocDate setting using bootstrap resampling (10K

samples) (Efron and Tibshirani, 1985; Koehn, 2004). The p-values are .065, .091 and

.074 for BInc (PMI), BInc (Count) and Weed’s Precision respectively, so that for all

these scores the difference is significant at the < 0.1 level.

Example subgraphs from the atemporal BInc and temporal Ratio BInc Entailment

4A hyperparameter for reducing noise in the input data. A value of 4 means an argument pair is kept
in the data if it co-occurs with at least 4 predicates (and vice versa for argPairForPred).

5Another noise reduction hyperparameter that removes all edges in the graph below the threshold.
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Similarity measure timexAndDocDate docDateOnly timexOnly

rec < 0.75 rec < 0.75 rec < 0.75 rec < 0.1

T. BInc (Count) 0.481 0.473 0.112 0.082

BInc (Count) 0.462 0.462 0.460 0.069

T. BInc (Ratio PMI) 0.495 0.493 0.119 0.092

T. BInc (Binary PMI) 0.491 0.489 0.116 0.089

BInc 0.471 0.471 0.459 0.072

T. Weed’s Pr (Count) 0.455 0.449 0.103 0.074

Weed’s Pr (Count) 0.440 0.440 0.434 0.061

Table 4.4: Temporal information source: AUC scores for the base evaluation dataset, and a

temporal window size of 5 days

Figure 4.4: Results on the base evaluation dataset with the timexAndDocDate time information

source and a temporal window size of 5 days. Dotted lines are atemporal scores, complete lines

of similar color are the temporal counterparts.
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Graphs are shown in Figure 4.5. Entailment scores between graphs are not necessarily

directly comparable, since a graph trained with sparser data or fewer comparisons

might exhibit lower scores across the board. Therefore we also present the rank of the

entailment edge within the evaluation dataset (in bold next to the score) — entailments

should have a low rank, whereas non-entailments should have a high rank. We can see

that in these example subgraphs the temporal signal has worked as intended. The edges

going into play have a lower rank in the temporal case, whereas the edges between the

outcome predicates win against and lose to both have higher ranks in the temporal

case. We can also observe that entailment scores in the atemporal graph tend to be

higher overall.

Figure 4.5: Edge values and dataset rank on base, for the play - win against - lose to subgraph.

On the left is the BInc score graph, and on the right is the Temporal Ratio BInc score graph

trained with timexAndDocDate information and a 5 day window.

Although temporality overall provides a useful effect, these results raise the ques-

tion of whether the time expressions provided by SUTime are a benefit to the system

as a whole. We can evaluate this in two ways, firstly through the comparison of the

timexAndDocDate and docDateOnly sources, and secondly through the comparison of

the temporal and atemporal scores within the timexOnly source.

The difference in AUC derived from adding temporal expressions alongside tem-

poral document date data (timexAndDocDate compared to docDateOnly) is positive

and consistent across scores, but very slight. The largest absolute difference is only

0.008 for the T. Binc (Count) score, while the strongest score, T. BInc (Ratio PMI),

gains only 0.002 AUC. Thus while time expressions improve the score, their contribu-
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tion is not essential to the strongest system. The result indicates that it would be worth

improving the precision (and recall) of the temporal understanding systems, discussed

in more detail in Sections 4.5 and 8.3.5. We discuss in Section 4.5 how this slight

difference may be due to the noise of document dates drowning out the signal of time

expressions.

The timexOnly experiments paint a revealing and more promising picture. We note

first that the timexOnly source reaches much lower recall, most likely due to having

access to a sparser set of triples (with only 19% of triples linked to a time expres-

sion in the text). We therefore also include AUC scores below a 0.1 recall threshold

(Table 4.4). Performance of timexOnly temporal scores evaluated under 0.75 recall is

significantly worse than atemporal scores, but the results flip when we focus on the low

recall range. Here we find that every temporal measure outperforms their atemporal

counterpart (for example, the strongest score is T. BInc (Ratio PMI), exceeding the

BInc state-of-the-art). This result indicates that when focused on just those triples for

which we have accurate time interval information, it is more useful to include temporal

expression information than to exclude it, which is promising for temporal expressions

as a learning signal. The result is also visualized in Figure 4.6 — the temporal mea-

sures are able to start at a much higher precision, but reach very low recall.

With the current temporal parsing system SUTime, the benefit of temporal expres-

sions is only very slight to the system overall, and temporal expressions alone are

clearly not enough to be practically useful. However, we do believe these results show

that temporal expressions show clear potential in the future. Higher recall temporal

parsing systems will certainly be necessary to extract more specific information from

the text, and alongside further development of the algorithm they may yet prove their

value. Note that this discussion pertains only to time expressions specifically — tem-

porality in general (as with the document date information) is still clearly useful.

4.4.3 Temporal Window Size

Figures 4.7 and 4.8 show the performance of graphs with different window sizes. Every

point represents the AUC for a precision-recall curve with a particular window size.

The graphs presented here use the same results as in (Guillou et al., 2020). Since

they are particularly expensive to compute (with each data point requiring a separate

Entailment Graph) we did not update these results with the newer models.

In both figures we can see that there is a sharp improvement in AUC score for all
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Figure 4.6: Results on the base evaluation dataset with the timexOnly time information source,

temporal window size of 5 days.

of the temporally-informed similarity measures when a window of one day is applied6.

This is likely due to data sparsity and because sports articles report on the same event

on different days. In some cases (e.g. T. BInc (PMI) in Figure 4.7 and all scores in the

timexOnly case in Figure 4.8) the temporal score then rises above the atemporal equiv-

alent represented by the horizontal lines, before returning to the atemporal baseline

with very large window sizes7. The aim in future research can be seen as maximizing

the size of this gap.

For the timexAndDocDate time source (Figure 4.7) there are two peaks for most

similarity measures, at 5 days and at 10 days. This may be due to different window

sizes being effective for different sports: if two teams play each other in consecutive

weeks with possibly differing outcomes then the window side should be shorter, but if

teams only play each other once a month then it is safe to increase the window size.

For this class of predicates a window size of 5 seems suitable, as it avoids conflating

games that happen on consecutive weekends, while giving some leeway. We explore

6With no window, the temporally informed similarity measures perform poorly (between 0.24 and
0.26)

7At window size w = ∞, every temporal score st = s
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the possibility of using a dynamic window in Chapter 5.

For the timexOnly source described in Figure 4.8, a positive window size almost

always allows the temporal score to surpass their atemporal counterpart. Here we see a

peak around 4-5 days, and a similar second peak at ten days, with the PMI-based BInc

performing best. This highlights that using a window around the temporal expression

time is necessary for good performance, and that the temporal expressions can be a

valuable learning signal for predicate entailment.

Figure 4.7: Effects of window size for the timexAndDocDate temporal information source

4.4.4 Data Subsets

Our main interest is in performance on the base dataset, but for completeness and

comparison to previous work, which has investigated directionality, we also evaluate

on the directional and all sets (see Table 4.5).

To investigate the challenge of directionality in entailment we consider the set of
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Figure 4.8: Effects of window size for the timexOnly temporal information source

entailments and their reverse, e.g. win � play and play � win, “directional 1” and “di-

rectional 0” in Table 4.3(b)). We find that in general the temporal similarity measures

still perform well, although the difference is smaller than for Base. Every score outper-

forms its atemporal counterpart, and T. Weeds’ precision, the only purely directional

measure in the set, is the strongest score on the directional subset.

We also evaluate on the complete dataset (all), which includes paraphrases (“para-

phrase 1” in Table 4.3(b)). Here we find that Weeds’ precision is the best measure by

a small margin. Its performance may again be due to correctly identifying the direc-

tional entailments in the dataset. BInc also performs reasonably well on this subset,

showing that atemporal measures remain competitive when multiple phenomena are

tested. The temporal measures do not exhibit the same improvement as on the other

data subsets, likely because the temporal method will reduce the available evidence

for paraphrases. In this particular distribution of entailment categories, it seems that

that benefits for antonyms and directionality are approximately balanced to the costs
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Similarity measure Base Dir All

T. BInc (Count) 0.481 0.430 0.426

BInc (Count) 0.462 0.419 0.424

T. BInc (Ratio PMI) 0.495 0.437 0.426

T. BInc (Binary PMI) 0.491 0.435 0.425

BInc 0.471 0.432 0.427

T. Weed’s Pr (Count) 0.455 0.472 0.429

Weed’s Pr (Count) 0.440 0.460 0.431

Table 4.5: AUC scores for different subsets of the evaluation dataset. Temporal information

source is timexAndDocDate, with a temporal window size of 5 days, with a recall threshold of

0.75

for paraphrases. Future research may investigate ways of mitigating this cost while

retaining the benefits for antonymy and directional entailment.

4.5 Discussion and Future Work

We take these results to indicate that temporality is a useful signal for accurately learn-

ing entailments and non-entailments between predicates, which can be taken into ac-

count in future research and applications. The temporal measures are stronger than

atemporal ones with the strongest temporal information source timexAndDocDate. T.

BInc Ratio/Binary PMI outperform BInc, the state-of-the-art atemporal similarity mea-

sure for predicate entailment employed by Berant et al. (2011) and Hosseini et al.

(2018). It is also promising that scores with the timexOnly information source achieve

much higher precision for the short recall range they cover. Furthermore, the benefits of

temporality extend to two challenging task setups: distinguishing between directional

entailments and antonyms, and between directional entailments and non-entailments.

Still, they are not necessarily helpful for all types of entailment, particularly para-

phrase.

One reason that the timexOnly results do not extend into higher recall ranges could

be the quality of SUTime, which takes a rudimentary rule-based approach. Currently,

we also only connect time expressions to eventualities through CCG dependencies in

the same sentence, performing no further reasoning to deduce more event times at
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the paragraph or document level. A stronger temporal resolution system could thus

greatly improve the timexOnly performance and might allow temporal measures in-

formed by the timexAndDocDate soure to reach even higher AUC scores. Relatedly,

the NEWSSPIKE corpus covers a period of only approximately six weeks, and the out-

comes of two matches between two teams within this period may be similar (with few

changes to the teams management, players, etc.). In future work it should be useful to

move to a corpus covering a longer time period, as well as a larger corpus in general,

for which we would expect to observe a greater effect. We discuss related future work

strategies in Chapter 8, including a number of options for gathering higher quality

relation extraction data.

Whilst we can observe a positive effect when using temporal information, the ef-

fect is modest. Upon closer inspection we found that this was due to relatively few

triples being filtered. An analysis of a subset of sentences revealed that triples were

being extracted spuriously due to various linguistic phenomena. Issues were caused

by conditionals (e.g. “if Arsenal win”), modals (“I still expect Arsenal. . . ”), incor-

rect future predictions (“Arsenal will win”) and counterfactuals (“had Arsenal won,

...”)8. These types of predictions appear to be especially common in the sports domain.

Another issue arose due to an incorrect application of passive to active conversion

(lost to(Arsenal, Manchester) from “Manchester lost to Arsenal”) resulting from in-

correct verb feature labels in the CCG parses. Addressing these issues should lead to

a larger effect from using temporal information, because it would reduce overlaps and

allow more filtering.

A similar issue was that the data sometimes contained underspecified time expres-

sions (e.g. “They played last month”). SUTime provides the full time interval for these

expressions (e.g. [01/01/12,31/01/12]), which again may lead to spurious overlaps.

We incorporated a simple fix to this issue after the publication of (Guillou et al., 2020),

and the results presented here are updated accordingly. Our quick solution is simply to

exclude any triples longer than a week, but there are certainly further potential gains

here in future research. For one, it would be possible to distinguish between eventual-

ities that actually have a longer duration (e.g. plays f or(:person, :sports team)) and

eventualities of a shorter duration that simply have an underspecified time expression.

The duration prediction strategy used in Chapter 5 could serve this purpose.

Later investigations (beyond (Guillou et al., 2020)) led to the discovery of a po-

tential drawback of the approach described here. One potentially undesirable feature

8This observation motivated the work in Chapters 6 and Chapters 7.



4.5. Discussion and Future Work 93

is that the more eventualities there are, the more challenging it becomes to filter out

eventualities. This is a result of conditions we set on temporal filtering. In the al-

gorithm, a particular eventuality time i of time ob jectsap,p (i.e. a single count of

a triple v(p,ap)) is filtered out when it does not temporally overlap with any time

interval of time ob jectsap,q. This means that as the length of time ob jectsap,q in-

creases, each time interval time ob jectsap,p[i] needs to pass more comparisons in or-

der to be filtered out. Simply put, the more data there is, the higher the chance that

there are overlaps. This feature is not necessarily incorrect, but it does mean the sys-

tem’s robustness to noise is limited. With a noisy pipeline and a large amount of

data, the chance greatly increases that at least one spurious overlap occurs for a pair

(time ob jectsap,p[i], time ob jectsap,q) that should be separated (for instance, overlap-

ping due to a modalized predication or incorrect time interval allocation).

The solution may involve a metric of temporal overlap between a time interval

and a vector of time intervals that is less dependent upon the vector’s length. One

simple approach could be to base the condition on a tuneable percentage of overlaps.

For example, keep the count if time ob jectsap,p[i] overlaps with 10% or more of the

elements of time ob jectsap,q (instead of just 1). These options are worth exploring in

the future.

Incidentally, the effect of more data leading to less filtering may help explain a

counterintuitive result. We might expect the timexOnly condition to have the most ac-

curate temporal data, which might lead us to expect a significantly stronger temporal

effect in timexAndDocDate than in docDateOnly. However, the difference between

these conditions is small. It is possible, then, that this small effect is due to the amount

of data in the timexAndDocDate condition (and the noise that accrues with it). Per-

haps the more precise temporal signal comes through more strongly in the relatively

sparse set of timexOnly triples, whereas this signal gets drowned out in the volume

(and added DocDate noise) of the timexAndDocDate triples. Still, it is also possible

that the temporal expressions are similarly noisy to the document dates, but the result

certainly warrants further investigation.

An interesting potential feature of our algorithm is that it could add a directional

signal using temporality, allowing us to better distinguish between beat � play and

play 2 beat in the count-based case. Unfortunately this opportunity was missed in the

original implementation. The effect is easiest to understand by example.

Imagine we again have a toy dataset resulting in the counts in Table 4.6, like the one

in Table 4.1. This time we also highlight the crucial role of normalization: in Weed’s
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Edge N N
N Nt

Nt
Nt

Nt
N

play � beat 2 2
2 1 1

1
1
2

beat � play 1 1
1 1 1

1
1
1

play � lose 2 2
2 1 1

1
1
2

lose � play 1 1
1 1 1

1
1
1

beat � lose 1 1
1 0 0

0
0
0

lose � beat 1 1
1 0 0

0
0
0

Table 4.6: Comparing regular (N) and temporally filtered counts (Nt) for each edge. This time

we include regular normalized counts ( N
N ), temporal counts with temporal normalization ( Nt

Nt
)

and temporal counts with atemporal normalization ( Nt
N )

precision, the feature value is added both to the numerator and the denominator9.

When moving from N to Nt it may initially seem like we are are inducing play and

beat to be more paraphrastic (since for N the counts are different and for Nt they are

the same). However, what matters to the entailment score is not the raw count, but

the count and its normalization. Here we observe that the behavior is actually similar

between the temporal and atemporal score: the edge for play � beat and beat � play

receive the same normalized information. We correctly separate the antonyms (1→ 0)

and leave the other behavior relatively constant.

However, the final column describing temporal counts with atemporal normaliza-

tion reveals that we missed an important choice in normalization. We get the desired

difference between the play � beat and beat � play edges when we normalize the

temporal counts with the atemporal counts. In this toy dataset, that would lead to the

desirable effect of increasing the average score of beat � play towards 1, while driving

the play � beat score to a lower value of 1
2 . A more effective formula might then be:

Temporal Weed’s Precision(p,q) =
∑ f∈Fp∩Fq Nt(p, f )

∑ f∈Fp N(p, f )
,

It should be intuitive that temporality can provide an additional directional entail-

ment signal here. After all, the reason we know that beat � play and play 2 beat is

that playing leads to beating some of the time. Those other times occur with other

predicates like lose, and we can reflect this in normalization.

Note that discourse effects may work against this. If beat is more salient to the

9For convenience we notate the fraction in the table — in the computation the sum occurs separately
over the numerator and denominator, not over the fractions.
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reader, and described more often, then the data might support the other direction, even

though under perfect information the correct distribution would be learned.

The effect of triple-level information being biased towards paraphrase, which was

also present in the atemporal scores, has not been discussed in previous research as far

as we know. Perhaps this is because previous research has focused on distributional

inclusion across argument pairs, whereas this effect describes distributional inclusion

within the occurrences of a single argument pair. Future work should investigate these

options, along with the complication of using PMI scores instead. As will be discussed

in Chapter 8, it may be worth improving aspects of the pipeline before delving deeper

into such algorithmic choices, since it can be challenging to attain reliable experimental

answers with the remaining noise in relation extraction, Named Entity Recognition,

Linking and Typing, and temporal expression parsing.

More generally, our method could incorporate in its filtering any function of the

contextualized eventuality to determine whether their co-occurrence should contribute

to an entailment score. In this project a binary decision is made based on time interval

overlap and argument pair overlap, but one might use features such as (lexical) aspect,

tense, the presence of other entities, etc. Previous work was limited to using the pres-

ence of two arguments as a proxy for entailment relevance; with our refinements we

could expand to involving not only time but also other features of the contextualized

eventualities.

One of the most pressing avenues of future research was to generalize these results

beyond the sports domain, which eventually led to the work in Chapter 5. We antici-

pated that this might require us to set the window dynamically. In the setup presented

here, eventualities stay relevant for a similar amount of time, but the varied predicates

in the general domain should allow comparison for different granularities of time. For

example, the window around a person being president should be larger than a person

visiting a location, because the consequences of being president may hold for longer.

We had initially planned to learn a different window size per predicate (for example by

taking into account average predicate duration and granularity), but eventually settled

on dynamic windowing per contextualized eventuality using modern duration predic-

tion methods (Zhou et al., 2020).
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4.6 Conclusions

We injected temporal information into the local Entailment Graph construction frame-

work of Hosseini et al. (2018), with the goal of comparing only those eventualities that

are temporally near each other. This is achieved by filtering the counts of predicate p

according to whether its triples’ time intervals overlap with the those of predicate q.

We considered a range of new local similarity scores based on both temporally filtered

counts and scaled PMI scores, which we evaluate on a semi-automatically constructed

dataset, based on manually constructed paraphrase clusters.

Our temporal versions of PMI-based BInc outperform the atemporal version, the

previous state-of-the-art measure for predicate entailment. We also show that adding a

temporal window around the time intervals of the triple is essential. The performance

of the temporal similarity measures over the atemporal measures is particularly strong

at the low recall range, and is also useful when only time expressions from the text

are used. This suggests that temporality is a useful signal for learning entailment,

and points at recall-improving avenues of future research such as the development of

sophisticated temporal resolution systems that link more eventualities to time intervals.

In the next chapter we explore another avenue of research, investigating the versatility

of our method by applying it to the general news domain.



Chapter 5

Temporality in General-Domain

Entailment Graphs

5.1 Introduction

In Chapter 4 we proposed an algorithm that prevents Entailment Graphs from learning

spurious entailment edges, by taking into account the temporal overlap of eventualities,

alongside their occurrence with argument pairs. This effectively reinterprets the DIH’s

context set as containing both argument pairs and time. The focus of these experiments

was the outcome predicates in the sports news domain.

In this chapter, we extend the sports domain work by applying the method to a cor-

pus of general news domain text. In acknowledgment of the temporally more diverse

set of predicates in the general domain we propose setting different size temporal com-

parison windows. We dynamically assign a window for each eventuality in the corpus

using a temporally-aware language model (Zhou et al., 2020) that predicts the expected

duration of the eventuality, and show initial experimentation comparing this to uniform

windows.

The Sports Entailment Dataset (Chapter 4) is unsuitable for evaluating graphs built

on the general news domain, motivating the construction of the general-domain ANT

dataset — a novel dataset derived from WordNet (Miller, 1993) antonyms.

We find that refining the DIH’s context to include time (in addition to argument

pairs) is beneficial for the sports news domain, but that this does not extend to the

general news domain. We do, however, identify predicates in legal news as another

possible area in which temporal information may be useful for learning Entailment

Graphs. The contributions of this Chapter are: 1) the application of a temporally in-

97
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formed Entailment Graph learning method to the general news domain, 2) ANT, a

novel general-domain entailment dataset based on WordNet antonyms and 3) an anal-

ysis that investigates possible reasons why the temporal DIH is effective in some do-

mains, but not others. For a background on temporality, antonym detection and (eval-

uation of) Entailment Graphs, please consult Chapter 2.

5.2 Method

5.2.1 Relation Extraction

We start by extracting triples from a corpus of news articles. As in Chapter 4 we

use MONTEE (Bijl de Vroe et al., 2021), an open-domain system that uses the Ro-

tatingCCG parser (Stanojević and Steedman, 2019) and extracts triples consisting of

predicates and their arguments by traversing the resulting CCG dependency graph.

For each sentence we extract all potential triples of the form predicate(arg1, arg2)

(e.g. beat(Arsenal, Man United))1. Arguments, which may be either named entities

or general entities (all other nouns and noun phrases), are mapped to their fine-grained

FIGER types (Ling and Weld, 2012) (e.g. person, disease, etc.). For more detail on

relation extraction, see Section 2.3.3.1.

We also use the temporally extended MONTEE as before, adding temporal inter-

vals to triples where there is a path in the dependency graph between the predicate and

a temporal expression in the text. The temporal intervals consist of the start and end

date of the eventuality, and are derived using SUTime (Chang and Manning, 2012).

5.2.2 Graph Learning with Temporal Filtering

To learn Entailment Graphs we build on the temporal filtering method described in

Chapter 4 (Guillou et al., 2020) which extends the graph learning framework of Hos-

seini et al. (2018). As before, the input is the set of typed triples paired with their time

intervals, p(a1:t1,a2:t2, [ts, te]). The output is a set G of graphs Gt1,t2 , one for each pair

of FIGER types found in the set of triples. We focus on locally learned entailments,

leaving an investigation of the interaction between temporality and globalization to

future work.

1As we are not concerned with the intersection of temporality and modality, we do not tag triples for
modality.
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In Chapter 4, we update the method of Hosseini et al. (2018) to also observe tem-

porality: an eventuality in p’s feature vector is retained (and counted) if it is temporally

close enough to any eventuality in q’s feature vector. The goal of this process is to sep-

arate out different instances of antonymous predicates (such as win and lose) that recur

frequently with the same argument pairs. Given a subgraph of correlated predicates

win, lose to and play, we aim to learn the following entailment relations following

completion of the temporal filtering process: beat � play, lose to � play, and lose to

2 beat (and its reverse). Without temporal filtering a spurious entailment relation be-

tween beat and lose to (and vice versa), which occur within a similar context (i.e. they

share the same argument pair), would be learned.

5.2.3 Dynamic Temporal Window

Although a uniform temporal window is suitable for sports matches, which are typ-

ically concluded within a single day, it may be less suitable for other eventualities.

We follow the recommendation in Chapter 4 and apply a dynamic window on a per-

eventuality basis to reflect that different eventualities remain relevant for different

lengths of time. For example, the window around information stating that a person

is president should be larger than a report of a person visiting a location.

We incorporate a temporally-aware language model, TacoLM (Zhou et al., 2020),

and use it as the basis for per-predicate dynamic windowing. TacoLM augments lan-

guage model pre-training to improve their understanding of several important temporal

phenomena, including duration. Firstly, training data is generated cheaply from the Gi-

gaword corpus (Napoles et al., 2012), by observing the contexts in which temporal cues

occur. For example, the sentence “Jack rested for 2 hours before the speech” can be

used to generate a training instance in which resting takes hours within this particular

sentential context. Then, a joint training objective is designed by including these labels

as part of the input sequence, following Huang et al. (2019). The masked prediction

objective can be used for classification.

As such, TacoLM predicts the expected duration of a triple using the context pro-

vided by the sentence in which the relevant eventuality mention occurs. For each even-

tuality in a sentence it assigns a duration label from the set {seconds,minutes,hours,

days,weeks,months,years,decades,centuries}.
We incorporate TacoLM into our corpus preprocessing, associating a duration pre-

diction with each triple in the corpus. In a small number of cases the model is unable
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to make a prediction, indicated by the no prediction label2.

Subsequently TacoLM can be used to determine the size of the temporal window.

Recall that in the uniform window model each eventuality e is assigned a temporal in-

terval et = [tstart−w, tend +w], where tstart and tend are predicted using SUTime(e), and

w is the model’s fixed window size. Conversely, we define the window using TacoLM

in the dynamic window model. We instead assign et = [tstart −map(T LM(e)), tend +

map(T LM(e))]. Here map(T LM(e)) is TacoLM’s prediction mapped to a concrete du-

ration value: weeks 7→ 15, months 7→ 30, years 7→ 365, decades 7→ 3,650, centuries 7→
36,500 and T LM(e) 7→ 5 if T LM(e) ∈ {seconds,minutes,hours,days}. That is, for

shorter durations we maintain the uniform window of 5 days, extending it only for

eventualities with longer durations.

5.2.4 Similarity Measures

We compute both a symmetric and a directional temporally-informed similarity mea-

sure to learn entailments, making use of the temporally filtered counts and PMI scores

described in Section 5.2.2. We adapted BInc (Szpektor and Dagan, 2008) and Weeds’

precision (Weeds and Weir, 2003).

We compute Temporal Weed’s precision using the temporally-filtered counts. For

Temporal BInc-based measures, we focus on the temporal PMI scores. As in Chap-

ter 4, we refrain from computing conditional PMI between an argument pair, predicate

p, and predicate q due to space and time complexity issues. Instead, we scale the PMI

scores used to compute BInc. The temporally filtered PMIt = PMI · (ct/c), i.e. the

original PMI multiplied by the ratio of filtered counts (ct) to regular counts (c). We

refer to this measure as T. Binc (Ratio PMI)3.

5.3 Evaluation

We evaluate the Entailment Graphs using two different entailment datasets. 1) the

Sports Entailment Dataset (Guillou et al., 2020) which contains 1,312 entailment pairs,

focusing on events that occur between two sports teams. 2) ANT, a novel dataset based

on WordNet antonym pairs. ANT addresses the need for a general-domain, LIiC-style

dataset containing antonyms.

2249,262 [0.61%] eventuality mentions in the NEWSSPIKE corpus
3We limit the set of similarity scores again for a more concise story. For example, Binary PMI is not

presented since it does not differ significantly.
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5.3.1 ANT Dataset Construction Overview

ANT contains entailment pair examples of the form premise, hypothesis, label. The

premise and hypothesis take the form of natural English sentences containing a sub-

ject, predicate, and object. The label denotes one of four types of entailment relation:

1) Antonym: non-entailments between antonymous predicates (e.g. acquit - convict), 2)

Directional Entailments between an antonymous predicate and a related third predicate

(e.g. acquit � indict), 3) Directional Non-Entailments, the reverse of each Directional

Entailment (e.g. indict 2 acquit), and 4) Paraphrases of each predicate in the antonym

pair (e.g. acquit - absolve). For a standard entailment evaluation setup, we map:

(Antonyms,Dir.Non-Entailments) 7→ 0 and (Paraphrases,Dir.Entailments) 7→ 1. Our

released dataset contains the original four labels as these may be useful in future re-

search. For instance, it may be useful to instead map antonym to a separate contra-

diction label (as in NLI), or to keep labels to distinguish between paraphrases and

directional entailments. ANT can also easily be adapted for the evaluation of antonym

detection systems.

Dataset construction was semi-automatic. The manual steps were carried out by

Liane Guillou and myself (a native and fluent English speaker respectively). Our

dataset generation method uses the entailment relations between manually annotated

predicate clusters to generate entailment pairs. By ensuring that most of the annota-

tion occurs at the predicate level, rather than the predicate-pair or sentence-pair level,

we are able to generate thousands of high quality entailment pairs from hundreds of

annotated predicates. This is in contrast with the construction processes of the Levy

(Levy and Dagan, 2016) and SherLIiC (Schmitt and Schütze, 2019) datasets, which in-

volved generating large numbers of candidate entailment pairs of varying quality, prior

to manual annotation by crowd-source workers. Our method also avoids the issue of

selection bias present in Zeichner et al. (2012) and SherLIiC, that arises from using a

similarity measure to automatically pre-select candidate entailments.

5.3.2 Antonym Pair Selection

We started by automatically collecting a list of 477 lemmatized verb antonym pairs

from WordNet (Miller, 1993) and propose these as possible conflicting predicate pairs.

Although WordNet’s antonym set is not large, the high quality of its annotations makes

WordNet a reliable starting point.

Interestingly, we found that WordNet’s antonym list contained many temporal en-
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tailments (e.g. fall asleep-wake up; you will always fall asleep before you can wake

up). Although this set may be useful in work continuing the research program set out

in Chapter 3, we exclude it here. The pairs contained within are antonymous only

when interpreted as simultaneous eventualities (i.e. you cannot fall asleep and wake

up at the same time). If one of the two human annotators marked the antonym pair as

having a possible temporal entailment between the predicates, we removed it from the

set. This step resulted in 283 remaining antonym pairs.

We also removed pairs that were highly specific (e.g. dehydrogenate-hydrogenate)

as these are likely to be infrequent in the general domain, pairs resulting from simple

alternation of prepositions or morphemes (scale up-scale down; deceive-undeceive),

and duplicate pairs in the British spelling.4 We were left with 114 antonym pairs.

5.3.3 Entailment Cluster Construction

For each antonym pair, we identified possible paraphrases and third predicates that are

entailed by both. We used the online Merriam-Webster Thesaurus (Merriam-Webster,

2021), which includes both (near) synonyms and antonyms, and the Relatedwords

website (RelatedWords, 2021) – an online tool for finding related words beyond syn-

onyms that combines a number of NLP resources including word embedding spaces,

ConceptNet and WordNet. This often suggested entailed predicates and helped us find

less typical paraphrases.

For each antonym pair we created an entailment cluster C = (A1,A2,E), where A1

and A2 are the sets of predicates containing the first and second predicate in the seed

antonym pair respectively, plus their paraphrases, and E is a set of predicates entailed

by all elements in ∪(A1,A2).

Each cluster was then manually annotated with a set of argument type pairs

(designed for this project and distinct from the FIGER types for named entities),

which were later used for instantiating simple sentences. For example, the clus-

ter for the antonym seed pair refresh-tire receives a set containing a single argu-

ment type pair, activity#generic person. We also allowed predicates with a specific

word sense to be assigned a specific set of types. For example, for the enjoy-suffer

through pair, the entailed predicate see is assigned the set containing just the type

generic person#entertainment watch, to avoid it being paired with arguments from

the entertainment read type. This also enabled us to specify argument order, allowing

4We prefer American English spellings (e.g. colonize) over British English spellings (colonise) as
the training corpus contains mostly American English news articles.
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a predicate pair like refresh(activity#generic person) - do(generic person#activity).

5.3.4 Entailment Pair Generation

The aim of the generation step is to automatically convert the entailment clusters into

the dataset format required for evaluation: premise, hypothesis, and a label denoting

the type of entailment relation that holds between them.

To generate entailment pairs we take the cross product of different sets in the

cluster. Directional Entailments are generated by ∪(A1× E,A2× E), Antonyms by

∪(A1× A2,A2× A1), Directional Non-Entailments by ∪(E × A1,E × A2) and Para-

phrases by ∪(A1×A1,A2×A2), excluding duplicate predicates. We exclude an entail-

ment pair if no intersection is found in the sets of its argument types, or if it already

occurs as part of another antonym pair’s cluster.

To generate a sentence for a predicate we need to populate its subject and object

arguments. We therefore manually created argument strings for each argument type,

ensuring they combine effectively with all predicates in the cluster. For example, the

argument type politician maps to arguments like Hillary Clinton, used to instantiate

sentences for predicates like govern. We used the Relatedwords website (Related-

Words, 2021) for inspiration. We then sampled an argument type pair from the inter-

section of the type pair sets of both predicates in the entailment pair. For each argument

type we sampled non-identical argument strings. This produces an entailment exam-

ple of the form (arg1, predicate1, arg2. arg1, predicate2, arg2. label). For example,

(The school, admitted, Jean. The school, evaluated, Jean. 1) represents the direc-

tional entailment admit � evaluate. Finally, both annotators made a single pass over

the dataset to identify errors, and corrected the clusters accordingly. For example, we

encountered unforeseen predicate-argument mismatches stemming from word sense

ambiguity. Whilst this refinement method may be repeated indefinitely, we found that

after a single manual pass the quality of the generated sentence pairs was very high.

The test portion5 of ANT (based on 100 WordNet antonym pairs) contains 6,300

entailment pairs: 1,800 Antonyms, 1,465 Directional Entailments, 1,465 Directional

Non-Entailments, and 1,570 Paraphrases. For the purpose of evaluation we used the

following data subsets: 1) Base: Antonyms and Directional Entailments, and 2) Direc-
tional: Antonyms and Directional Non-Entailments.

5ANT also contains a small development set (based on 14 antonym pairs) for use with supervised
learning techniques
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5.3.5 Error Analysis

To verify the dataset’s quality we conducted an error analysis on 200 examples, with

50 examples per label sampled randomly from the test set. We found 82.5% (165

/200) examples to be correct, confirming that the dataset is of high quality. Of the 35

incorrect examples we labelled five as a syntactic error, 18 as a semantic error, and

12 as unnatural/disfluent. The syntactic errors were attributed to wrong verb tense or

a missing auxiliary verb in the predication. Sometimes semantic errors resulted from

the introduction of subtle meaning change, such as for the directional non-entailment

“Morgan changed the server” - “Morgan upgraded the server” (here changed might be

interpreted as replaced). They also arose due to predicate pairs that were overlooked

in cluster construction, e.g. look down on is an antonym of like but not necessarily

a paraphrase of dislike - you can dislike (a person) without looking down on (them).

Unnatural sentences were often the result of odd argument-predicate combinations,

e.g. “Gale expended gas”.

5.4 Experimental Setup

We used the NEWSSPIKE corpus of multi-source news text (Zhang and Weld, 2013)

for our experiments. NEWSSPIKE comprises approx. Using The relation extraction

system (Section 5.2.1) we extracted 40,669,470 triples from NEWSSPIKE. Of these

8,107,944 (19.94%) triples are extracted with a temporal interval resolved by SUTime

(Chang and Manning, 2012) from a temporal expression in the text. As the temporal

filtering method relies on the information contained in the time intervals to compute

the temporal overlap of two eventualities, the sparseness of temporal expressions in the

text raises a problem. To address this we employ the strategy described in Chapter 4,

using the SUTime temporal interval if it is available and backing off to the document

publication date if not. Furthermore we use TacoLM to associate a duration with every

triple.

We used the entGraph6 framework (Hosseini et al., 2018) with the extension of

temporal filtering by Guillou et al. (2020) to train the Entailment Graphs. We used

the default values for all other parameters, except the infrequent predicate and ar-

gument cutoffs. With the increased complexity (resulting from the additional inner

loops) we found that the algorithm became prohibitively slow for large graphs such

6https://github.com/mjhosseini/entGraph
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as thing-thing. We therefore separately raised its cutoffs to [minPredForArgPair=6]

and argument pairs [minArgPairForPred=6], using cutoffs of [minPredForArgPair=4]

and [minArgPairForPred=4] for all other type-pair graphs. Although there is room for

these hyperparameters to be increased further, it would be useful to find improvements

in the algorithm complexity of the method presented in Chapter 4, if the training data’s

scale is increased further.

With the following exceptions we used MONTEE’s default settings to extract

triples. We enable the SUTime component [includeTemporal=True]. We disabled

unary relation extraction [writeUnaryRels=False], and restricted triples to only those

that include at least one named entity [acceptGGBinary=False].

All of the experiments were conducted on a single server which has two Intel Xeon

E5-2697 v4 2.3GHz CPUs (each with 18 cores) and 330GB RAM. The computational

cost of training a single Entailment Graph is approximately one day (this is the typical

time for all steps, with some variation depending on other jobs running on the server)

and 160GB RAM (the stable maximum memory usage reached during the local learn-

ing step). Evaluation of both the Levy/Holt and ANT datasets using the entGraph

evaluation scripts takes approximately 6 hours per graph.

We conducted experiments using two main settings. For the sports domain we ap-

ply a uniform window of 5 days on either side of the temporal intervals, as suggested

by experiments in Chapter 4. We also chose this setting because the evaluation predi-

cates all refer to sports matches. Since these have a short duration and occur frequently

between different pairs of teams, the window for which a match stays relevant to the

readers, and for which the preconditions and consequences of the eventuality hold, is

typically short.

For the general domain the duration of eventualities is highly variable, ranging from

minutes or hours, to years, decades, or even centuries. These eventualities may also re-

main relevant for much longer than the sports matches. We therefore apply a dynamic

window around each time interval using TacoLM information (see Section 5.2.3 for

details). We carry over the default five day window from the sports setting for shorter

durations. In Section 5.5.1 we first show results comparing the uniform and dynamic

window strategies. We then compare performance of the temporal method on the gen-

eral domain ANT dataset compared to Sports (Section 5.5.2), before briefly presenting

results on the Levy/Holt dataset (Section 5.5.3).
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ANT Base ANT Directional

Window Method Uniform Dynamic Atemporal Uniform Dynamic Atemporal

Similarity measures:

Weed’s Pr (Count) 0.181 0.199

T. Weed’s Pr (Count) 0.164 0.180 0.177 0.198

BInc (PMI) 0.161 0.178

T. BInc (Ratio PMI) 0.144 0.161 0.157 0.178

BInc (Count) 0.159 0.167

T. BInc (Count) 0.144 0.160 0.148 0.167

Table 5.1: AUC scores for the Base and Directional subsets of the Sports Entailment and ANT

datasets.

5.5 Results

5.5.1 Comparing Uniform and Dynamic Windowing

Results of the temporal scores with a uniform and a dynamic window, alongside the

atemporal scores, are presented in Table 5.1. The methods here were all evaluated

on the ANT dataset subsets. Note that the atemporal scores are consistently higher

than the temporal uniform scores — this effect will be discussed in more detail in the

following section.

Comparing uniform and dynamic windows, we find that the dynamic windows con-

sistently achieve higher AUC scores. This seems initially hopeful, because it suggests

that the duration information from the TacoLM model is useful and that a dynamic

window is more effective. However, we note that all dynamic scores are very close to

the atemporal scores. These effects hold for both the base and the directional portions

of ANT.

One possible reason for this may again be spurious overlaps — the larger windows

result in fewer occasions of filtering, which makes the dynamic scores equal to the

atemporal scores. Thus although a window set dynamically per eventuality is a theo-

retically appealing idea, we leave it to future research to analyze how best to apply this

in practice and develop a more effective implementation. For now we therefore take

the uniform score to be more representative of the temporal signal, and focus on this

for the remainder of the results and analysis.
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Sports ANT

Data subset Base Dir. Base Dir.

Recall < threshold 0.75 0.75 0.3 0.3

Similarity measure:

Weed’s Pr (Count) 0.440 0.460 0.181 0.199

T. Weed’s Pr (Count) 0.455 0.472 0.164 0.177

BInc (PMI) 0.471 0.432 0.161 0.178

T. BInc (Ratio PMI) 0.495 0.437 0.144 0.157

BInc (Count) 0.462 0.419 0.159 0.167

T. BInc (Count) 0.481 0.430 0.144 0.148

Table 5.2: AUC scores for various temporal and atemporal similarity scores on the Base and

Directional subsets of the ANT dataset. All scores use a uniform window.

5.5.2 Comparing Domains

Table 5.2 contains AUC scores for the Base and Directional subsets of the Sports and

ANT datasets. As presented in Chapter 4, temporal measures are consistently higher

than their atemporal counterparts for the Sports base and directional subsets. For the

Base and Directional subsets of ANT, however, the performance of temporal measures

is consistently lower than that of the atemporal counterparts. This difference suggests

that the atemporal formulation of the DIH by Dagan et al. (1999) and Geffet and Dagan

(2005) is appropriate for the general domain, while the temporal formulation is more

applicable in the sports domain.

Figure 5.2 contains the precision-recall curves for the Sports Entailment and ANT

datasets. To provide a fair comparison between similarity scores that have different

recall ranges, we compute AUC under a recall threshold, chosen separately for each

dataset (See threshold values in Table 5.2). For the Sports Entailment Dataset we

observe higher precision for the temporal measures compared with their atemporal

counterparts at the lower recall ranges.

For the ANT dataset we make two observations. Firstly, recall is very low. This is

due to the absence of many of the entailment pairs in the Entailment Graphs. Secondly,

in contrast to the Sports Entailment Dataset, the temporal curves are consistently below

the atemporal curves, even at the low recall level. It seems that the temporal distribu-

tions for eventualities in the more general domain are such that temporal filtering has
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a counterproductive effect.

The example subgraph in Figure 5.1 sheds some light. For both the Weed’s Pre-

cision and Temporal Weed’s Precision measures, the system outputs a score of zero

for all edges marked on this graph. The scores may be partially due to sparse cover-

age of the predicates in ANT in general, but can also be due to these antonyms being

uncorrelated with each other in the data to begin with (as one might initially expect

for antonyms). In that case, applying the temporal algorithm to further filter down the

scores will have no effect, and thus the temporal algorithm only adds sparsity in cases

where the signal is necessary. We investigate related explanations in the analysis in

Section 5.6.

Figure 5.1: Subgraph between the predicates refreshed by and rejuvenated by, and their

antonyms worn out by and wearied by from the ANT dataset. For both Weed’s Precision and

Temporal Weed’s Precision, all scores are 0.

5.5.3 The Levy/Holt Dataset

For completeness we briefly report results on the Levy/Holt (Levy and Dagan, 2016;

Holt, 2018) dataset, following previous work (Hosseini et al., 2018, 2019, 2021;

McKenna et al., 2021). This dataset is more general-domain than the Sports Entail-

ment Dataset, but it is not designed for evaluating performance on the task of tempo-

rally separating contradictory eventualities. We use the same dev/test split proposed

by (Hosseini et al., 2018): 5,486 pairs for dev and 12,921 pairs for test.

AUC scores are provided in Table 5.3. We again use the uniform temporal measures

rather than the dynamic ones. Overall, these results further support the idea that the
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Figure 5.2: Precision-recall plots for the Sports Entailment Dataset (A) base and (B) direc-

tional subsets, and the ANT dataset (C) base and (D) directional subsets

temporal distributions for the eventualities in the general domain are such that temporal

filtering is not useful — the temporal scores are worse across the board, except for close

performance in the complete Dev set7. However, the results on ANT are more relevant

to this claim, because the Levy effect can also be explained by its lack of temporally

separable antonyms.

5.6 Analysis and Discussion

Table 5.4 contains statistics of temporal separation for the Base subset of the Sports

Entailment and ANT datasets. % Scaled down is the percentage of PMI scores (for

7For dynamic windows we see the same effect as in Sports. Dynamic window scores converge to
very similar levels as the atemporal scores.
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Dev Test

Data subset All Dir. All Dir.

Recall < threshold 0.45 0.5 0.45 0.5

Similarity measure:

Weed’s Pr (Count) 0.215 0.217 0.207 0.220

T. Weed’s Pr (Count) 0.215 0.183 0.193 0.194

BInc (PMI) 0.221 0.203 0.212 0.203

T. BInc (Ratio PMI) 0.224 0.164 0.196 0.176

BInc (Count) 0.217 0.208 0.205 0.201

T. BInc (Count) 0.218 0.173 0.191 0.174

Table 5.3: AUC scores for the Levy/Holt datasets: All examples and Directional only exam-

ples for the dev and test sets. Settings: dynamic window, 5 day default.

True False δ(T −F)

Sports
% Scaled down 31.5 35.8 -4.2

% Overlap 72.8 65.8 7.1

ANT
% Scaled down 53.0 51.8 1.2

% Overlap 50.4 50.4 0.0

Table 5.4: Analysing the difference in effect of temporal filtering between the Sports and ANT

base datasets.
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each co-occurrence p,q,ap of triples (p,ap) where p and q are predicates, and ap is an

argument pair) that are scaled down by the temporal filtering method. % Overlap is the

percentage of eventuality comparisons (ep, eq) that result in a temporal overlap. When

the method is effective, we expect % Scaled to be higher for false predicate pairs than

true predicate pairs (as scores of antonymous predicate pairs should be scaled down).

Scaling should be inversely related to the average Overlap, which we expect to be

higher for true predicate pairs than false predicate pairs.

We indeed find that % Scaled is higher for false predicates pairs in the Sports En-

tailment Dataset, whereas there is a small difference in the wrong direction for the ANT

dataset. This helps explain the differences observed in the Base dataset precision-recall

graphs A (Sports Entailment Dataset) and C (ANT dataset) in Figure 5.2. Furthermore,

% Overlap has the expected correlation, showing that our method works for the tempo-

ral distribution of the sports domain data, but not for the general-domain data. That is,

it can be applied successfully when there are antonymous predicate pairs that are found

applying to the same argument pairs in the data, with argument co-occurrences of the

antonym pairs being temporally disjoint more often than the argument co-occurrences

of entailing predicate pairs. In our training corpus, this distribution holds for sports

predicate pairs but not for general domain predicate pairs. We expect that the decrease

in performance on the general domain is due to the scaling and overlap being (fairly)

uniformly distributed over True and False predicate pairs — in that case the method

simply reduces the amount of data available, while providing no added accuracy.

Breaking down the % Scaled statistic per predicate pair in the ANT dataset, we do

find antonyms for which many scores are scaled down, indicating that there may still

be specific predicates in the general domain where temporality is a useful signal. For

example, the antonymous predicate pairs that are scaled most include violate-respect,

convict-acquit, allow-prohibit and (thing) kills (person)-(person) survives (thing), sug-

gesting that predicates in crime news are worth exploring.

Examples found in the corpus also support this idea for other predicate pairs. We

find “Cameron, who ... , leaves London today ... .” and “Cameron will instead stay

in London ... .”, referring to dates a month apart. The atemporal baseline models

use this data to erroneously support that leave � stay in, whereas our method success-

fully disentangles the evidence. Future research could further investigate which other

subdomains or predicates stand to benefit from temporal information. As mentioned

above, the crime news domain is a potential candidate. In general, it seems likely that

the method becomes useful in domains where there are antonymous predicates fre-
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quently repeating with the same actors, such as with crime news (e.g. acquit - convict)

or political news (e.g. vote for - vote against) This could inform models that are able

to decide whether to apply temporal filtering for particular predicate pairs.

5.7 Conclusion

We applied the temporal filtering method of Chapter 4 Guillou et al. (2020) to the

construction of Entailment Graphs for the general news domain, and compared perfor-

mance across different domains. The results on the Sports Entailment Dataset suggest

that a reformulation of the Distributional Inclusion Hypothesis that incorporates time

could be beneficial for the sports domain. In contrast, the results on the general-domain

ANT dataset suggest that the atemporal formulation is appropriate for the general do-

main, although there may still be specific predicates for which the temporal formu-

lation is effective. Our analysis shows that the temporal formulation of the DIH is

best applied to domains where the predicates have particular temporal properties —

there must be false predicate pairs for which the scores are scaled down (this happens

when they co-occur with the same argument pairs, but at different times) while the true

predicate pairs should overlap more often.
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CCG-Based Modality Tagging

6.1 Introduction

As introduced in Chapter 1, linguistic modality also has potential as a learning signal

for Entailment Graph Induction. We investigate this usefulness in Chapter 7. In order

to perform that investigation, we required a modality tagger that can judge whether

each eventuality in a corpus is asserted as actually occurring. This Chapter will de-

scribe our implementation of a CCG-based modality tagger for that purpose.

As described in Chapter 2, linguistic modality is frequently used in natural lan-

guage to express uncertainty regarding the occurrence of eventualities. Downstream

NLP tasks that depend on knowing whether an eventuality actually occurred, such as

Knowledge Graph construction, Fact-checking and Question Answering can benefit

from understanding modality. Modal information is crucial in the medical domain,

for instance, where it facilitates more accurate Information Extraction and search for

radiology reports (Wu et al., 2011; Peng et al., 2018).

Similarly, if a Question Answering system receives the query Did the protesters

attack the police?, the answer will be different depending on the evidence observed:

Protesters attacked the police (True) or Protesters are unlikely to have attacked the

police (Uncertain)1. These challenges are exacerbated by the prevalence of the phe-

nomenon. In a multi-domain uncertainty corpus (Szarvas et al., 2012), sentences con-

taining uncertainty cues are significantly more common in newswire text (18%) com-

pared to encyclopedic text (13%). Modality is also commonly observed in editorials

(Bonyadi, 2011).

1Assuming trustworthy source text
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Category Example

∅ Protesters attacked the police

Negation Protesters did not attack the police

Lexical negation Protesters refrained from

attacking the police

Modal operator Protesters may have attacked the police

Conditional If protesters attack the police ... .

Counterfactual Had protesters attacked the police ... .

Propositional Journalists said that

attitude protesters attacked the police

Table 6.1: Modality and negation categories

We present MONTEE2, an open-domain system for Modality and Negation

Tagging in Event Extraction, built on top of the existing relation extraction pipeline.

Tagging these phenomena allows us to distinguish between eventualities that took

place (e.g. Protesters attacked the police), those that did not take place (Had protesters

attacked the police ... .), or are uncertain at the time that a document is written

(Protesters may have attacked the police). We also show that within the news genre,

modality is common in the politics and sports domains, where experts often make

predictions and state their opinions on the possible outcomes of eventualities such as

elections or sports matches, and analyse alternative outcomes where situations unfold

differently.

The extracted relations, as in previous chapters, consist of a predicate and one or

two arguments, for example: attack(protesters, police) (from the sentence Protesters

attacked the police). The predicates are analysed according to the following semantic

phenomena: negation, lexical negation, modal operators, conditionality, counterfac-

tuality and propositional attitude. See Table 6.1 for examples of each category. Our

tagger depends on a novel modality lexicon contributed as part of this project. The

lexicon contains words and phrases that trigger modality, and was compiled from a

number of different resources. It is unique in its breadth, to our knowledge capturing

more phenomena than the lexicons from which it is composed. Finally, we present a

corpus study comparing different domains of a large corpus of news text.

2https://gitlab.com/lianeg/montee

https://gitlab.com/lianeg/montee
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Johnson doubts that Labour will win the election

N (S[dcl]\NP)/S[em] S[em]/S[dcl] N (S[dcl]\NP)/(S[b]\NP) (S[b]\NP)/NP NP/N N
TC TC >

NP NP NP
>

S[b]\NP
>

S[dcl]\NP
<

S[dcl]
>

S[em]
>

S[dcl]\NP
<

S[dcl]

Figure 6.1: CCG parse tree for Johnson doubts that Labour will win the election

6.2 Modality Tagger

6.2.1 Relation Extraction System Overview

doubts

Johnson

will

that

Labour

the

election

win

1 2

2

21

1

1

Figure 6.2: CCG dependency graph for Johnson doubts that Labour will win the election;

marked paths from doubts (blue, dotted) and will (orange, solid) to win.

In Section 2.5 we discuss the linguistic side of the modal phenomena exemplified

in Table 6.1, as well as some of the NLP problem formulations and approaches that

have been applied to them. Although there are many existing open-domain relation

extraction systems, none capture the full range of phenomena described here. For ex-

ample, neither OpenIE nor OLLIE handle some of the phenomena we are interested

in (in particular counterfactuals and lexical negation), and they fail to extract unary

relations (see Section 6.3 for a comparison of our system with OpenIE and OLLIE)3.

Since we believe it necessary to handle these phenomena in order to perform the in-

vestigation in Chapter 7, we therefore expand the relation extraction system used in

3Note that expanding the system to handle unary relations is also useful for the work in (McKenna
et al., 2021).
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Chapters 4 and 5 to take the phenomena into account4.

Our system takes as input a text document, and for each sentence outputs a set of

tuples, as in Section 2.3.3.1. A relation tuple consists of a predicate and one or two

arguments (p(a) or p(a1,a2), e.g. ended(the protest), addressed(Angela Merkel,

NPD protesters)). Typing will be omitted in the notation for succinctness.

Each sentence in the document is parsed using the RotatingCCG parser (Stano-

jević and Steedman, 2019) over which we construct a CCG dependency graph using a

method similar to the one proposed by Clark et al. (2002). (See Figure 6.2 for an ex-

ample of a dependency graph and Figure 6.1 for the CCG parse tree from which it was

extracted). CCG dependency graphs are more expressive than standard dependency

trees, allowing them the model phenomena that may interact with modality, such as

long-range dependencies (e.g. “The government is ... , they believed”) and coordina-

tion (“Merkel might win and celebrate next week”).

As before, we traverse the dependency graph, starting from verb and preposition

nodes, until an argument node is reached. The traversed nodes, which are used to form

the predicate strings, may include (non-auxiliary) verbs, verb particles, adjectives, and

prepositions. The CCG argument slot position, corresponding to the grammatical case

of the argument (e.g. 1 for nominative, 2 for accusative), is appended to the predicate.

Our focus is on the extraction of binary and unary relations. Binary relations may

be extracted from dependency paths between two entities. Extraction of unary rela-

tions, which have only one such endpoint, poses a unique challenge (Szpektor and

Dagan, 2008) – we must decide whether they are truly a unary relation, or form part of

a binary relation. Therefore linguistic knowledge must be carefully applied to extract

meaningful unary relations (similar to the rules for binary relations described in Sec-

tion 2.3.3.1). We extract unary relations for the following cases: verbs with a single

argument including intransitives (bombs exploded) and passivized transitives (protests

were held), and copular constructions (Greta Thunberg is a climate activist).

In addition to binary and unary relations we also extract n-ary relations which

combine two binary relations via prepositional attachment. These are of the form:

predicate arg2 preposition(arg1,arg3), and are constructed by combining the two

binary relations predicate(arg1,arg2) and preposition(arg2,arg3). For example

marched on(protesters,Parliament Square) and in(Parliament Square, London) com-

bine to form the new relation marched on Parliament Square in(protesters,London)

4Note that (Bijl de Vroe et al., 2021) was the first mention of the pipeline as as a standalone system,
presented separately from Entailment Graph experimentation.
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Lemma Category POS-tag Strength

succeed MOD VB 4

shall MOD MD 3

conceivably MOD RB 2

impossible MOD JJ 0

as long as COND RB 2

concede ATT SAY VB 4

reckon ATT THINK VB 2

Table 6.2: Example lexicon entries

(from the sentence: Protesters marched on Parliament Square in London).

The type system is identical to that described in Section 2.3.3.1, and may be lever-

aged to identify eventualities belonging to specific domains. This supports our corpus

analysis in Section 6.5, allowing us to identify and track, for instance, political even-

tualities such as elections, debates and protests, according to their occurrence with

political entities.

6.2.2 Lexicon

Since many of the phenomena we capture involve lexical trigger items, we opt for a

lexicon-based approach. Triggers identified using the lexicon can then be linked to

predicate nodes in the CCG dependency graph. Entries in the lexicon cover modal-

ity, lexical negation, propositional attitude, and conditionality, with counterfactuality

handled separately. Each entry contains the lemma, the categories that it covers, the

POS-tag and an estimate of the epistemic strength that the word would often indicate.

A few examples are included in Table 6.2.

Our lexicon is constructed by pooling together various lexical resources. The ma-

jority of the entries derive from the modality lexicon presented by Baker et al. (2010),

who use it for a similar rule-based tagging approach. Their lexicon contains just under

a thousand instances, but includes multiple forms for each verb inflection. Using only

infinitival forms, we add approximately 200 of the modal entries to our own lexicon.

For modeling propositional attitude (largely ignored in Baker et al. (2010)), we

include a list of reporting verbs found in (Fay, 1990). This expands the resource by

another 120 phrases. The entries are separated by attitudes that are stated (“attitude

say”, tag ATT SAY, e.g. say, state) and attitudes of thought (tag ATT THINK, e.g.
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suspect, assume).

More phrases expressing uncertainty are found in the analysis described in Chap-

ter 4 of news domain sentences describing conflicting eventualities. Sentences describ-

ing simultaneous win and loss events, for example, often contained modal descriptions

of eventualities that didn’t actually happen. Yet more related words were found by gen-

erating each entry’s WordNet synonyms and antonyms (Miller, 1993). We filtered and

annotated these manually to obtain just under another 200 phrases, and added these to

the lexicon. We also took inspiration from Somasundaran et al. (2007), especially for

conditionals. In aggregate, this work resulted in a resource of 530 phrases.

We also annotated each phrase with a modal category. Our lexicon contains the

categories deontic, intention and desire, and for the remaining phrases lists a kind of

epistemic strength, with values 4 (definitely), 3 (probably), 2 (possibly), 1 (probably

not) and 0 (definitely not). The latter correspond to lexical negation. These epis-

temic strength values may optionally be used to use specific subsets of predicates under

modal scope, such as those marked with probable modals.

6.2.3 Tagger

We use the CCG-based relation extraction system (Section 6.2.1) and the expanded

modality lexicon (Section 6.2.2) in tandem to assign modal categories to relations.

The procedure is described in Algorithm 2. The focus of the tagger is to identify the

bulk of uncertain relations: we prioritize recall over precision, so that we can expect

relations without a tag to have actually happened.

The relation extractor produces a CCG dependency graph G that contains a node n

for each word in the sentence (line 2 of the algorithm). We then decide which of these

nodes is a trigger (lines 4-7). For modality, negation, lexical negation, propositional

attitude and conditionals, we tag these nodes if the node’s lemma is present in the

lexicon (check lexicon function, line 5). The loop in the algorithm covers the simple

case of single token modal triggers (such as possible); in the implementation we extend

it to multi token triggers (e.g. shoot for).

Counterfactual nodes are identified separately. The check cf function (line 5) finds

instances of the token “had” that are assigned one of two indicative CCG supertags:

(((S\NP)\(S\NP))/(S[pt]\NP))/NP or ((S/S)/(S[pt]\NP))/NP. For example in the

sentence The protesters would have been arrested, had they attacked the police, the to-

ken “had” would be assigned the CCG supertag (((S\NP)\(S\NP))/(S[pt]\NP))/NP
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Algorithm 2 Tagging Modal Relations
1: procedure TAGMODALEVENTS(sentence s, predicates p, lexicon l)

2: G , pred nodes← CCG dep parse(s, p)

3: trigger nodes← [ ]

4: for n in G do

5: if check lexicon(n,l) or check cf(n,G) then

6: trigger nodes.add(n)

7: end if

8: end for

9: for p n in pred nodes do

10: for t n in trigger nodes do

11: if path between(p n, t n) then

12: p n← update(p n,t n.tag)

13: end if

14: end for

15: p n.tag← tag precedence(p n)

16: pred nodes.update(p n)

17: end for

18: return pred nodes

19: end procedure

and is therefore recognized as an instance of counterfactual had. Additionally, any

instance of “if” that syntactically governs an instance of “had”, is labelled as counter-

factual. Upon realising that even this common counterfactual pattern was rare in the

corpus, we decided not to engineer further counterfactual patterns.

We can then decide whether a predicate node should be tagged, by checking

whether there is a path in the dependency graph from the trigger nodes to the predicate

node (lines 9-12). Figure 6.2 illustrates the intuition behind walking the dependency

graph. The graph shows a path from both doubt and will to win. This strategy is ef-

fective because the existence of a path between a trigger node and an predicate node

corresponds to the trigger node taking syntactic scope over the predicate node. The

semantic phenomena we handle all rely heavily on this syntactic process (for example

negation, see McKenna and Steedman (2020)).

A single predicate node may be connected to multiple triggers (e.g. in might not

play, play is connected to both the triggers might and not). We therefore choose the

final tag on line 15. Since our primary concern is whether the eventuality happened,
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MONTEE OpenIE OLLIE

The guerrillas are ready to talk with the Soviets, if Moscow is willing.
MOD (guerrillas; talk; Soviets) (guerrillas; are; ready) (Moscow; is; willing)

COND (Moscow; be willing) (guerrillas; talk with; Soviets)

(guerrillas; talk; if Moscow is willing)

(guerrillas; talk; willing)

(Moscow; is; if Moscow is willing)

(Moscow; is; willing)

Had Trump won the election, Cummings would still be in Downing Street.
COUNT (Trump; win; election) (Trump; Had Trump won; election) (Trump; Had won; the election)

MOD (Cummings; be in; D.St.) (Cummings; would; would still be in D.St.) (Cummings; would still be in; D.St.)

Protesters did not attack the Police.
NEG (Protesters; attack; police) ∅ (Protesters; did not attack; the police)

Parliament failed to investigate the Kremlin.
(Parliament; failed to investigate; Kremlin) (Parliament; investigate; Kremlin) (Parliament; failed to investigate; the Kremlin)

LNEG (Parliament.; investigate; Kremlin) (Parliament; to investigate; the Kremlin)

Ed Miliband says the government betrayed Yorkshire.
ATT SAY (government; betray; Yorkshire) ∅ (the government; betrayed; Yorkshire)

(Ed-Miliband; say) [attrib=Ed Miliband says]

Table 6.3: Comparison of our system with OpenIE and OLLIE. We borrow their notation for

clarity, using argument - predicate - argument.

we do not combine tags and instead assign a single tag based on the following order

of precedence: MOD > ATT SAY > ATT THINK > COND > COUNT > LNEG

> NEG. The negation categories need to be ordered last because an relation that is

negated and modal is still uncertain (e.g. might not play shouldn’t result in NEG play),

but the ordering is otherwise arbitrary.

6.3 Comparison with Existing Relation Extraction Sys-

tems

We highlight the capabilities of our system on five example sentences, comparing with

two existing open-domain relation extraction systems: OpenIE (Angeli et al., 2015)

and OLLIE (Mausam et al., 2012). See Table 6.3 for a comparison of the relations

extracted by our system, OpenIE and OLLIE. The examples are all naturally occurring

sentences from the news domain, obtained by a web search targeted to the modality

categories discussed in this chapter. To enable a fair comparison, we focus on the

extraction of binary relations, as neither OpenIE nor OLLIE was designed to extract

unary relations.

While Stanford OpenIE (Angeli et al., 2015), OLLIE (Mausam et al., 2012), and
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OLLIE’s predecessor REVERB (Fader et al., 2011) may be used to extract binary rela-

tions for eventualities, they do not explicitly mark eventualities for modality or nega-

tion. Stanford OpenIE (Angeli et al., 2015) typically includes modals as part of the

predicate (for example: (Protesters; may have attacked; police)), but ignores the other

categories of linguistic modality described in Section 6.2.3. In particular, it does not

extract relations for sentences involving negation or propositional attitude, omits lex-

ical negations, and is easily confused by sentences involving conditionals or counter-

factuals.

OLLIE (Mausam et al., 2012) handles the phenomena in more detail. It identifies

conditionals by detecting markers such as if and when, and labels the enabling con-

dition for extracted relations that are governed by a conditional5. It typically includes

modals and negation as part of the predicate, and captures propositional attitude in

its handling of attribution (e.g. Ed Miliband says ... .). Like OpenIE, OLLIE is not

designed to handle counterfactuals. In terms of lexical negations, OLLIE extracts the

predicate both with and without the negation cue (e.g. failed to investigate and to in-

vestigate), which is undesirable if the downstream NLP application needs to be able to

distinguish between eventualities that took place and those that did not.

6.4 Tagger Evaluation

We conduct an intrinsic evaluation of our modality-aware relation extraction system6,

measuring performance on a set of 100 extracted relations with manually annotated

tags.

We identified the set of articles from the NEWSSPIKE corpus (Zhang and Weld,

2013) for which at least 20% of the relations contain tags, and from these we ran-

domly selected five articles. We then processed the articles using our system to extract

relations. From the extraction we selected 100 relations for inclusion in our evalu-

ation set. We excluded those for which the predicate contains only a preposition as

these have little meaning unless they form part of a high-order n-ary relation. At the

sentence-level we ensured that we include only one relation for each predicate node in

the dependency graph, since all relations with the same predicate node will be assigned

the same modality. The set of 100 relations was manually annotated by Liane Guillou

5The labeling of conditional is not applied in the first example in Table 6.3 as no relation is extracted
for the consequent.

6We exclude both OLLIE and OpenIE from this evaluation as neither system is designed to handle
the modality or negation phenomena (c.f. Section 6.3)
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Precision Recall F1

Micro-average 0.81 0.81 0.81

Macro-average 0.72 0.88 0.76

Table 6.4: Intrinsic evaluation results

(a native English speaker) and myself (fluent). For each example, we asked the annota-

tors to answer the question Does the text entail that the eventuality definitely happens?

using the following scale: the eventuality happened (2), is uncertain (1), didn’t hap-

pen (0). Inter-annotator agreement over the set of 100 examples was measured using

Cohen’s Kappa (Cohen, 1960). The agreement score was 0.77, indicating substantial

agreement, and the annotations differed for only 16 examples.

Following the completion of the annotation task, the two annotators resolved the

disagreements. This reconciled annotation was then used as the gold standard against

which system performance was evaluated. System-assigned modal and negation tags

were mapped to the scale used in the manual evaluation, with LNEG and NEG tags

mapped to 0 (didn’t happen), empty tags mapped to 2 (happened), and all other tags

mapped to 1 (uncertain). In Table 6.4 we report the micro- and macro-averaged preci-

sion, recall and F1 scores. As the number of examples per tag type is too small for a

meaningful error analysis over types, we provide aggregated scores. The distribution

of labels is also uneven, with few negations marked in the gold standard. We therefore

take the micro-averaged F1 score of 0.81 to be the definitive result.

We performed an error analysis of the 17 errors made by our system. Parsing was a

common issue, with five errors attributed to general dependency parsing mistakes, and

five errors due to missing dependency links between reporting verbs and predicates

in quoted text (e.g. “Police were attacked”, they said). Two mistakes were due to

human error, as the annotators also missed these reporting verbs in longer sentences.

Then, three errors arose from shortcomings of the lexicon. Two of these stemmed

from lack of coverage: our lexicon does not handle temporal displacement, as in We

won’t act until the white house gives more information. The other was caused by

incorrect application of a lexical entry, which would need to be disambiguated by

context. Finally, two errors could also have been avoided by treating linguistic aspect,

as in They began the process to ... .. Future research could thus focus on expanding the

lexicon by these final categories of displacement, and take context into account when

linking a words in the sentence to entries in the lexicon.
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6.5 Corpus Analysis

We conducted a corpus analysis of extracted relations over the NEWSSPIKE corpus

(Zhang and Weld, 2013). NEWSSPIKE contains approximately 540K multi-source

news articles (approximately 20M sentences) collected within a period of six weeks.

We report on the distributions of tagged phenomena over the set of binary relations ex-

tracted from news articles in the complete corpus (general domain), and for the subsets

of articles related to the politics and sports domains.

The NEWSSPIKE corpus does not include topic or domain information in the

article-level metadata. Therefore to identify articles belonging to the politics and sports

domains we leveraged the Named Entity Linker AIDA-Light (Nguyen et al., 2014)

and the FIGER (Ling and Weld, 2012) type system. We first identified the set of fine-

grained FIGER types related to each sub-domain, and then obtained the set of entities

belonging to each type. Next we used the output of AIDA-Light to identify the set of

articles for which more than 40% of the entities found by the linker belonged to the

politics domain, with at least two political entities. We repeated this process for the

sports domain, with a lowered threshold of 25%, as the sports topic is less likely to

overlap with other topics.

The distribution of relation tags over the general, politics, and sports domains is

shown in Table 6.5. For the politics domain approximately 25% of the extracted rela-

tions are tagged by the modality tagger, which is more than for the sports or general

domains. In particular, modals and propositional attitude verbs belonging to the say

category are more prevalent. This suggests that while it is important to identify modal-

ity in the general news domain, it is particularly important in the politics domain.

The top ten most frequent trigger words found in the general domain are: the propo-

sitional attitude trigger say, the modal triggers will, would, can, could, may, should,

want and have to, and the conditional trigger if. The same top ten are also observed for

the politics domain (with different frequencies), and for the sports domain the propo-

sitional attitude trigger think replaces want. The similarity of these lists is perhaps due

all domains belonging to the more general news genre.

6.5.1 Future Work

An obvious limitation of our approach is that it does not take into account the context

in which eventualities and trigger words occur. Modality is a context-dependent phe-

nomenon, so using the sentential context would improve accuracy. For example, the
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General Politics Sports

Articles 532,651 58,521 196,098

Sentences 20,683,584 2,280,312 8,056,704

Relations 96,774,467 11,265,585 37,936,677

Distribution of tags (as a percentage of relations)

∅ 77.83 74.78 78.82

Modal 14.32 16.65 13.83

ATT say 4.77 5.37 4.24

ATT think 0.49 0.43 0.49

Conditional 0.89 1.03 0.85

Counterfactual 0.04 0.05 0.04

Negation 1.52 1.51 1.66

Lexical Negation 0.13 0.17 0.14

Table 6.5: Relation tagging summary by news domain

word unbelievable is ambiguous between an unlikely and an amazing, and happened

reading. Relatedly, our concept of epistemic strength is highly context-sensitive, and

requires further development. A promising avenue is to develop a pre-training pro-

cedure for a modality-aware contextualized language model, in a similar direction as

Zhou et al. (2020). We plan to use our modal lexicon to identify sentences with modal-

ity triggers. We will then gather human annotations of the certainty that each eventu-

ality happened, and use this annotated data to train a modality-aware language model

able to classify eventuality uncertainty. Such a system might eventually even tackle

the long-tail of modal examples mentioned in Section 2.5.

Our system was developed for English, but work is already underway to develop re-

lation extraction systems for other languages including German and Chinese. Extend-

ing to other languages would allow us to apply our methods to multilingual and cross-

lingual NLP tasks. Finally, most CCG parsers, including the one used in this work, are

trained on English CCGbank (Hockenmaier and Steedman, 2007b). This makes them

perform well on news text, but accuracy suffers on out-of-domain sentences, primarily

those involving questions. The results could be improved by retraining the parser on

the CCG annotated questions dataset (Rimell and Clark, 2008; Yoshikawa et al., 2019),

allowing us to apply our system to the task of open-domain Question Answering in an

extrinsic evaluation.
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6.6 Conclusion

This chapter presented MONTEE, a modality-aware relation extraction system that

can distinguish between eventualities that took place, did not take place, and for which

there is a degree of uncertainty. Our tagger shows strong performance on an intrinsic

evaluation of examples from the politics domain and our corpus analysis supports that

modality is an important phenomenon to handle in this domain. Being able to make

such distinctions is crucial for many downstream NLP applications, including Knowl-

edge Graph construction and Question Answering. In the following chapter, we will

investigate the tagger’s usefulness in Entailment Graph Induction.





Chapter 7

Modality in Entailment Graph

Induction

7.1 Introduction

Detecting modality, uncertainty and factivity is crucial to downstream NLP tasks such

as Information Extraction (Karttunen and Zaenen, 2005; Farkas et al., 2010), Informa-

tion Retrieval (Vincze, 2014), machine reading (Morante and Daelemans, 2012), and

Question Answering (Jean et al., 2016). One might expect that it would also be useful

in learning Entailment Graphs. That is, Entailment Graphs would be more reliable

if learned from data in which predications are asserted as actually happening, rather

than data with uncertain predications under scope of various types of modality. In

this chapter (also published as (Guillou et al., 2021)) we investigate whether this is the

case.

The Entailment Graph-learning algorithm depends on descriptions of eventualities

in the news, observing directional co-occurrences of typed predicates and their argu-

ments. For example, we expect to observe all the arguments of being president, such as

Biden and Obama, also to be encountered in a sufficiently large multiply-sourced body

of text as arguments of running for president, but not the other way around (Hillary

Clinton will run but not be president). However, if all the reports of Clinton might be

president are extracted as be president(Clinton), one would expect the learning signal

to be confusing to the algorithm.

We use the method of Hosseini et al. (2018) combined with the modality tagger

MONTEE (Chapter 6, (Bijl de Vroe et al., 2021)) to construct typed Entailment Graphs

from raw text corpora under two different settings. In the modality-aware condition,

127
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modal predications are removed from the data entirely, while in the modality-unaware

the model learns from both asserted and modal predications as usual. We show that

ignoring modal distinctions counterintuitively helps Entailment Graph induction in the

general domain. However, we also investigate whether this effect applies uniformly

across different sub-domains, showing that the modality-aware condition performs

well when evaluated on outcome predicates in the sports domain. While modality

annotation is clearly useful for recognising entailment from a given text (Snow et al.,

2006; MacCartney et al., 2006), to our knowledge no research has been conducted on

its effect on learning Entailment Graphs.

7.2 Methods

We extend relation extraction to pay attention to modality, so that we can distinguish

modal and non-modal relations in the Entailment Graph mining algorithm. This allows

us to investigate the impact of modalized predicate data on the accuracy of learned

entailment edges.

We extract triples of the form predicate(arg1,arg2) using MONTEE, the open-

domain modality-aware relation extraction system described in Chapter 6. A triple is

tagged as modal (MOD), propositional attitude (ATT SAY, ATT THINK) or condi-

tional (COND) if the CCG dependency graph contains a path between a relation node

and a node matching an entry in the MONTEE lexicon. Counterfactuals (COUNT)

are tagged according to hand-crafted rules. Since we focus on uncertainty and not

negation, lexical negation (LNEG) tagging is ignored.

In the modality-aware setting, we remove triples tagged by MONTEE as any kind

of modal ({MOD, ATT SAY, ATT THINK, COUNT, COND}). In local learning,

learned entailment edges then have access only to non-modal evidence: eventualities

that were asserted as actually happening. For example, the edge between win and lose

should now be learned only from non-modal descriptions such as A won today against

B or A has been defeated by B, leaving out modal descriptions (A could beat B).

7.3 Experimental Setup

Using MONTEE1, we extract 40,669,812 binary relation triples from the NEWSSPIKE

corpus (Zhang and Weld, 2013). Of these, 14.57% are tagged; 10.04% MOD, 3.51%
1https://gitlab.com/lianeg/montee
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REP SAY, 0.38% REP THINK, 0.61% COND, and 0.03% COUNT. We then con-

struct three different datasets and build an Entailment Graph with each. The modality-

unaware baseline, BaselineLarge, is trained on the complete set of triples with modal-

ity tags removed. This corresponds to the data and model in Hosseini et al. (2018).

For the modality-aware Asserted graph, we extract only the set of 34,744,216 asserted

relations (∼85% of the relations), i.e. all modal relations are excluded. To rule out

effects of data size, we construct BaselineSmall, which is trained on a random sample

of 85% relations from the total set. Comparing Asserted to BaselineLarge shows us

whether it is worth filtering out modal data, and comparing Asserted to BaselineSmall

shows whether asserted data or mixed data (i.e. asserted and modal) is more effective

for learning entailment relations.

We follow the example of Hosseini et al. (2018) and construct typed graphs for

all possible type pairs (e.g. person-location). As before, relation arguments are typed

by linking to a Named Entity Freebase identifier (Bollacker et al., 2008) using the

AIDA-light linker (Nguyen et al., 2014), and mapping these identifiers to a type in the

FIGER hierarchy (Ling and Weld, 2012). The typed relations become the input to the

graph learning step of the Entailment Graph mining algorithm. Following previous

research, we use the BInc similarity score (Szpektor and Dagan, 2008) to compute

entailment scores. We first construct local typed Entailment Graphs and then apply the

globalization method across graphs Hosseini et al. (2018), see also Section 2.3.3.3.

As before, we evaluate the Entailment Graphs on LIiC-style datasets. Firstly we

evaluate on the full 18,407 entailment pairs of the Levy/Holt Entailment Dataset (Levy

and Dagan, 2016; Holt, 2018). As our training method is unsupervised and we do

not tune hyperparameters, we evaluate on the complete Levy/Holt dataset rather than

the dev/test split. We also evaluate on the Sports Entailment Dataset introduced in

Chapter 4, focusing on the directional subset of 718 examples comprising entailments

and pairs of match outcome predicates (e.g. win, lose, tie, and their paraphrases) which

are always non-entailments. This subset evaluates whether Entailment Graphs can

recognize, for example, that win/lose→ play but win = lose (with similar patterns for

other paraphrases of win, play and lose). We focus on the subgraph of organizations

as all predicates are assumed to apply to sports teams. Both datasets use binary labels

for each premise/hypothesis pair: entailment (1) and non-entailment (0). We did not

evaluate on ANT because the experimentation here was carried out before its creation.

We used the entGraph2 code developed by Hosseini et al. (2018) to construct each

2https://github.com/mjhosseini/entGraph
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Figure 7.1: Precision-Recall on Levy/Holt

of the Entailment Graphs, and the corresponding evaluation scripts3 to evaluate per-

formance on the Levy/Holt dataset. Performance on the Sports Entailment Dataset4 is

evaluated using scripts5 developed for this chapter.

We MoNTEE with the default settings, with the exception of disabling unary re-

lation extraction (writeUnaryRels=False) and restricting binary relations to those that

include at least one named entity (acceptGGBinary=False). When using entGraph to

construct Entailment Graphs we raised the threshold values for infrequent predicates

(minPredForArgPair=4) and argument pairs (minArgPairForPred=4), and used the de-

fault values for all other parameters. All experiments were conducted on a single

server with 330GB RAM, and two Intel Xeon E5-2697 v4 2.3GHz CPUs (each with

18 cores). The computational cost of training Entailment Graphs under these settings

is approximately one day for the local learning step, and eight hours for globalisation.

7.4 Results

Table 7.1 contains AUC scores for Asserted, BaselineSmall, and BaselineLarge on the

complete Levy/Holt dataset, the directional portion of the Levy/Holt dataset (2,414

3https://github.com/mjhosseini/entgraph eval
4https://gitlab.com/lianeg/temporal-entailment-sports-dataset
5https://gitlab.com/lianeg/sports-entailment-evaluation
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Figure 7.2: Precision-Recall on Sports

Levy/Holt Levy/Holt Sports

complete directional

BaselineLarge 0.190 0.163 0.453

BaselineSmall 0.184 0.157 0.422

Asserted 0.171 0.136 0.468

Table 7.1: AUC scores

examples), and the Sports Entailment dataset. The precision-recall curves for the

Levy/Holt (complete) and Sports Entailment datasets are displayed in Figures 7.1

and 7.2 respectively. As before, every point on the curve represents a different en-

tailment score threshold (higher thresholds correspond to lower recall and vice versa).

We compute AUC for precision in the range [0.5, 1] and over the entire recall range,

following Hosseini et al. (2018). All three Entailment Graphs cover this range and pre-

dictions with precision higher than random are important for downstream applications.

On the Levy/Holt dataset (all examples), BaselineLarge performs best overall. The

strong performance of BaselineLarge compared to Asserted is in itself surprising, and

indicates that it is usually not beneficial to distinguish modality when building Entail-

ment Graphs. This can be understood as a data size issue: filtering out data is harmful

as it introduces sparsity, and modal data is useful enough to provide a learning signal.
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Nodes Edges % Levy predicates found

all examples directional

BaselineLarge 334K 72,7M 63.06 70.29

BaselineSmall 277K 58,4M 61.13 69.29

Asserted 254K 46,3M 58.51 67.92

Table 7.2: Graph size comparison and predicate coverage for Levy/Holt dataset (all examples)

and its directional portion

Nodes Edges % Sports predicates found

BaselineLarge 4,514 1.65M 92.86

BaselineSmall 3,823 1.29M 90.48

Asserted 3,682 1.09M 88.10

Table 7.3: organization subgraph size comparison and predicate coverage for the Sports En-

tailment Dataset

More counterintuitive, however, is that even BaselineSmall, which controls for

training dataset size, outperforms Asserted. To understand why, we measured the size

of each graph in terms of the number of nodes (predicates) and edges (entailment rela-

tions) it contained, and the percentage of predicates in the Levy/Holt dataset that were

present in the graph (see Table 7.2). This revealed that BaselineSmall contained more

of the predicates present in the Levy/Holt dataset, while also being larger in terms of

both nodes and edges than Asserted. Thus, Asserted learns with more relations per

predicate, while BaselineSmall has more predicate nodes overall. This may lead to the

increase in recall that we see for the BaselineSmall graph.

Another explanation might be that this richer predicate coverage allows BaselineS-

mall to accurately correlate more of the common paraphrase examples in the Levy/Holt

dataset. To this end we investigated the directional portion of the Levy/Holt dataset,

which contains 2,414 examples of both the entailment pair and its reverse, where the

entailment is true in one direction and false in the other. As noted by Hosseini et al.

(2018) this task is much harder than that represented by the original dataset. However,

the baselines both outperform the Asserted graph on the directional entailment task.

We also observe a similar pattern in the percentage of predicates covered (see last col-

umn in Table 7.2). In general, we conclude that modal data is useful even for learning

directional entailments.
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Performance on the Sports Entailment dataset (Figure 7.2) reveals a different pat-

tern. BaselineLarge outperforms BaselineSmall as expected, but Asserted performs

best, despite lower coverage of the predicates in the Sports Entailment Dataset (see

Table 7.3 for a size comparison of the organization subgraph). This supports the sug-

gestion by Guillou et al. (2020) that excluding modal data may help to avoid learning

entailments between disjunctive outcomes, i.e. that winning entails losing, which is

not measured by the Levy/Holt dataset.

Example subgraphs of the Asserted and BaselineLarge Entailment Graphs are

shown in Figure 7.3. As in Chapter 4 we show the entailment scores alongside their

rank in the dataset, since the scores may be incomparable between graphs. In these

graphs we observed a mixed effect. The edges between the outcome predicates de-

feat and fall to both have higher ranks in the Asserted subgraph. That is, the scores

between these antonymous predicates are lower relative to the rest of the dataset: the

intended effect. However, the score and rank of the incoming edges to face stay rela-

tively constant. For these subgraphs, the majority of the benefit can therefore be found

in separating the antonyms.

Figure 7.3: Edge values and dataset rank on base, for the face - defeat - fall to subgraph. A

BInc score graph trained on the BaselineLarge dataset is shown on the left, and a BInc score

graph trained on the Asserted data on the right.
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7.5 Discussion & Future Work

Understanding the behaviour of the Asserted and modalized graphs will come down

to understanding the various distributions in which modalized predications occur. One

appealing intuition is that the usefulness of modalized predications derives from how

they distribute over whether the described eventuality actually ends up occurring. That

is, they might generally be expressed in text when the prior probability of the eventu-

ality is already high.

For example, suppose that modalized predications are mostly used to express even-

tualities that actually occur (e.g. a reporter asserts “Google might buy Youtube”, and

subsequently Google in fact ends up buying YouTube). In that case, the data they pro-

vide should be useful to the algorithm. The DIH is built on the intuition of set inclusion

over real world entities, so if modalized data mostly corresponds to actual events, the

modalized data ends up being of similar quality to asserted predications. The larger

dataset then simply leads to higher recall. On the other hand, modalized predications

might more often describe eventualities that don’t happen (e.g. somebody reports “Ar-

senal wants to win against Manchester”, and the result is in fact a loss). That leads to

an argument pair co-occurrence for win and lose, falsely strengthening the confidence

in the edge win |= lose. In that case, we would expect the algorithm to suffer more

from the added noise than it benefits from the added data.

Perhaps this explains the difference in performance between the datasets. In the

case of the general-domain Levy/Holt dataset, the predicates contained within might

be used in the news domain when the prior probability of the eventuality is already high

— reporters might be expected not to speculate on unlikely events. This would result

in distributions for the main predicates to be improved by the modalized data in spite

of the uncertainty of the evidence. The Sports dataset then constitutes an exception

in which the predicates are more heavily speculated upon despite being uncertain. As

such being under modal scope does not necessarily imply a higher prior probability in

that case, and the data is less valuable.

Indeed it is easy to find examples in the news corpus to support these intuitions.

In the general domain we observe examples of eventualities initially being discussed

with uncertainty, and later mentioned as asserted. An example of this is the acqui-

sition of Dell by Michael Dell: on February 5th, 2013 we observe “... founder and

CEO Michael Dell and investment firm Silver Lake Partners will buy Dell.”, and sub-

sequently, on February 6th, 2013 we read “So Michael Dell and a private equity group
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have bought Dell and taken it private.”. We also observe the reverse scenario in the

sports domain. For example, on January 10th, 2013 we observe “The popular opinion

on this game seems to be Seattle beating Atlanta because ...”, while shortly afterwards

we are informed that “Falcons come back to beat Seahawks”.

Part of the effect may also simply be due to the presence of antonyms in the Sports

evaluation dataset. In general, the worry with modal data is increasing scores of unre-

lated predicates, antonyms, and hypernyms, which should remain significantly lower

than those of hyponyms (note that any noise added to the score of a hyponym relation

is beneficial). It may be that modality poses more of a challenge to correctly labelling

antonyms than to the other non-entailment categories. After all, in the speculative ex-

ample of reporters discussing possible sports outcomes (“Arsenal might win or might

lose this weekend”), they are speculating precisely because there are two salient contra-

dictory events that might occur. If it is the case that modal noise is more distracting to

antonyms, then the benefit of modality on the sports dataset may be due to the dataset’s

high fraction of antonyms compared to Levy/Holt6.

Note that there is an overlap in the usefulness of modality and temporality un-

der this interpretation. Temporality is useful because it helps us distinguish a win on

February 3rd from a loss on March 24th, whereas modality is useful because it helps us

distinguish an actual win from some imagined loss. In both cases, the signal helps us

reduce the association between antonyms by only associating data points that represent

an actual co-occurrence.

We may expect to find a similar effect for other subdomains that share the disjunc-

tive outcome property and contain speculation, for example election news, crime news

and war news, where modals are used when speculating about potential and contra-

dictory outcomes. Considering the overlap in usefulness of modality and temporality,

the domains suggested in Chapter 5 may also stand to benefit from the modal signal.

Specifically, it might be easier to correctly learn the semantics of predicates like acquit

and convict in crime news and court case descriptions.

As mentioned previously, when controlling for training data size the Asserted

dataset is still outperformed by the partially modalized set (BaselineSmall). In Sec-

tion 7.4 we analyze how this may be due to the coverage of predicates of the two

graphs, along with their numbers of nodes and edges. However, it is unclear why these

statistics should be higher for the model resulting from the mixed dataset. Investigat-

ing the distribution of modals over different predicates may help clarify this effect —

6Note that ANT was constructed after this experimental work was carried out.
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it could be that certain predicates are more likely to be under model scope than others,

and that there is insufficient data for those predicates in the Asserted condition as a

result.

Future research could attempt a deeper corpus study of the distribution of modals.

One could investigate how often modalized predications correspond to eventualities

that actually end up happening. We can also ask how this interacts with epistemic

strength. In other words, do eventualities that are described as more likely (i.e. with a

predication that contains a modal of high epistemic strength such as almost certainly

or definitely) actually end up happening more often? If it is true that humans have

reasonable intuitions about probability, our models may be able to use this information

— there may be some epistemic threshold above which it becomes useful to include

modalized predications. The more fine-grained categories of the modality tagger can

be used for this purpose (uncertainty detection systems that use the new -3/+3 annota-

tion scheme, as opposed to a binary label, may also be useful). A similar study can be

made of other distributions of the modals, such as over data genres and predicate types.

We can then leverage this information and retain or remove modal data depending on

the sub-domains in question.

The recent developments in modal linguistics should be kept in mind here. The

semantics of modal expressions does not behave literally as it is operationalized in the

modal logics, just as negation in language does not behave as the negation operator in

propositional logic. For example, definitely(x) is usually only licensed if there is some

reasonable possibility that ¬x, so the literal interpretation of P(x) = 1 should be put

aside for a more semantically and pragmatically informed interpretation.

Another possibility is to consider whether modalized predications are more likely

to occur over premises or hypotheses — by extension, how they distribute over the

entailment hierarchy in general. They might more frequently occur with more specific,

entailed predicates like win and lose, for example, or perhaps they are used more fre-

quently with predicates in the middle of the hierarchy. Intuitively it is also possible

for this distribution to be uniform — in that case if the probability of a premise is high

enough to be worth mentioning, then in general that of its entailments are too.

Finally, we can experiment with learning Entailment Graphs with modal predicate

nodes, by retaining modal relations with tags attached as input. Many of these entail-

ments are trivial, because any entailment of a consequence can be reproduced under

modal scope (if buy → own, then also MOD buy → MOD own). We might also re-

cover the more interesting phenomenon that following an entailment in the reverse
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direction can produce a modal entailment (e.g. if beat → play, then we know play

→ MOD beat), and many preconditions will behave interestingly (e.g. beat → play,

but also MOD beat→ play). To evaluate this idea, we will design a dataset of modal

entailments, drawing inspiration from previous research on veridicality in entailment

datasets (Staliūnaitė, 2018).

7.6 Conclusion

We have investigated the role of modalized predications in Entailment Graph induc-

tion, and shown that there are specific domains in which removing modal data is ben-

eficial (such as the co-occurring antonyms in sports data). Conversely, for the general-

domain predicates in the Levy/Holt dataset, modalized predications actually constitute

a valuable learning signal — it is better to ignore modality for those predicates.
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Conclusion

The central contribution of this thesis can be summarized as follows: both temporality

and modality can be valuable signals for learning an entailment-based semantics. We

explored the interaction of these phenomena by studying their role in improving both

the representational power and accuracy of Entailment Graphs. This endeavour con-

tributes to the end goal of allowing systems to better understand the deeper semantics

of a piece of text — drawing implications about the world that aren’t stated literally.

We have explored the value of temporality and modality in three parts of the prob-

lem: the semantic representation, the learning algorithm and the training data. Repre-

sentationally, we have demonstrated the necessity of including some notion of time, in

order to support temporal entailment — inferences that reflect the more complicated

temporal relationship between predicate pairs such as visit and arrive. In the learning

algorithm, we have shown that time can be a valuable feature, while modality was use-

ful as a signal in filtering the training data. Still, these latter two effects hold only for

specific subdomains, at least under the present experimental conditions.

Finally, in support of these projects we have devised three novel evaluation

datasets, one of which presents the relatively unexplored problem of temporal entail-

ment, and two of which highlight the importance of balancing different types of entail-

ment — directional (non-)entailment, antonymy and paraphrase. We also contributed

a modality tagging tool, along with an extensive lexicon of modal trigger words.

Chapter 3 defined the Temporal Entailment problem. Acknowledging the temporal

nature of the relation between visit and arrive means a model can avoid potential errors

like will visit |= has arrived, while still modeling the correct entailment is visiting |=
has arrived. In the evaluation dataset TEA we introduced this concept by varying the

tense and aspect of predications, which proved challenging to both Entailment Graphs

139
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and distributional baselines. We then introduced the same phenomena in the model in

Tensed Entailment Graphs, allowing the predicate nodes to be expressed in a variety of

morphosyntactic tenses. To this end we added tense and aspect parsing functionality

to GraphParser. Our model was able to recover some of the temporal entailments we

sought after, but sparsity issues currently prevent it from being practically useful.

In Chapter 4, we explored a different temporal direction, instead injecting tem-

porality as a learning signal in the algorithm, for inducing more accurate Entailment

Graphs that contain atemporal nodes. We demonstrate a theoretical drawback of the

Distributional Inclusion Hypothesis, which risks learning spurious entailments be-

tween antonymous predicates that occur with the same argument pairs (for example,

win and lose are antonyms but may both appear in training data with an argument pair

like (Arsenal, Manchester)). To evaluate the idea of alleviating this issue using tem-

porality, we introduce the Sports Entailment Dataset. We introduce the sports domain

as a test bed for entailment learning because its data is easily available, and it contains

a multitude of named entities that interact frequently. We show that temporality has

potential as a learning signal — the benefits of temporality exist across temporal in-

formation sources, although for temporal expressions they do not extend into higher

recall ranges. Possible solutions and research directions are outlined in Section 8.3.

Chapter 5 continues this investigation beyond the sports domain, inducing graphs

for different argument type pairs over the full NewsSpike training corpus. Recogniz-

ing that the more heterogenous predications of the general news domain may remain

relevant for different periods of time, we dynamically extend the temporal comparison

window per eventuality, using the temporally aware language model TacoLM (Zhou

et al., 2020). For evaluation, we present the ANT dataset, created from general-domain

antonyms drawn from WordNet (Miller, 1993). Although the sports domain effect is

not reproduced in the general domain, our analysis shows there may be other subdo-

mains for which the temporal algorithm performs best. Additionally, we show that

the algorithm functions as expected; it performs well when the training data contains

true predicate pairs that frequently overlap and false predicate pairs that are temporally

separable, supporting the intuition behind our algorithm.

Chapter 6 prepares an exploration of linguistic modality in graph induction by con-

structing a modal tagger. We implement this functionality as an extension of the ex-

isting relation extraction framework. Our algorithm finds paths in a CCG dependency

parse between modal trigger nodes and predicate nodes, and depends on an extensive

modality lexicon composed from various resources. An intrinsic evaluation shows that
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our tagger is sufficiently high-quality for downstream application.

Finally, Chapter 7 presented research on the role of modality in Entailment Graph

induction. We apply the tagger introduced in Chapter 6 to the training data, and com-

pare the relative value of modal and exclusively asserted data. We show that modalized

predications are as useful as asserted predications in the general domain, even when

controlling for training data size. However, in the sports dataset containing antonyms,

modality constitutes a valuable learning signal, mirroring the temporal experiments,

and it is useful to remove modalized predications.

This thesis has developed intuitions regarding temporality and modality as fea-

tures of and learning signals for entailment. Work in these directions is far from fin-

ished. We will now contribute various central avenues of research for further exploring

entailment-based semantics; questions revealed by the work presented here.

8.1 Entailment Evaluation

This thesis has contributed three datasets, TEA, the Sports Entailment Dataset, and

ANT. We have already discussed some shortcomings of TEA and associated solutions

in Section 3.2.4. Here I would like to touch on some more general future research

directions and lessons learned from entailment dataset construction.

We advocate for an increase in variety of inference types, capturing more linguistic

phenomena. Some datasets contain crowd-sourced examples derived from uncurated

source material (e.g. (Bowman et al., 2015)). The entailment pairs gathered in this

manner are likely to occur in some natural distribution, which can result in many in-

ference types in the long tail being underrepresented. Models trained on these datasets

then struggle to generalize. On the other hand, many existing datasets focus on a par-

ticular type of inference, such as the TEA dataset (Kober et al., 2019). Even if the

datasets are used exclusively for evaluation, overfitting may still occur during model

development if only one such dataset drives research, once again leading to models

that are not robust to novel inferences. We thus follow Poliak (2020) in suggesting a

focus on specific linguistic phenomena, highlighting that various types would ideally

be collected under a large benchmark.

A varied dataset like this should include inferences that test for knowledge of lex-

ical ambiguity, especially with regard to argument variation. Datasets often contain

positive inferences for a variety of senses, but do not contain the challenging nega-

tive counterparts. For example, The Levy/Holt dataset does not always include crucial
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misleading examples. For the lexically ambiguous kill, it contains the challenging pair

of inferences “The salve kills cancers” � “cancers may be treated by the salve” and

“Crockett was killed at the Alamo” � “Crockett died at the Alamo”, but does not con-

tain misleading negative counterparts such as “Crockett was killed at the Alamo” 2
“Crockett was treated at the Alamo”. Therefore, models evaluated on this dataset can

get away with populating a general thing-thing graph that can contains the entailment

edges of all the various senses of a single word (instead of modeling the inferences

separately in a medicine-disease and person-person graph as intended). Those models

will then perform adequately in evaluation, but generate mistakes in downstream tasks.

We suggest including these more challenging negative inferences, inspired by the trend

of creating datasets that are more adversarial (Nie et al., 2020).

There are other argument-related inference types worth focusing on. For exam-

ple, LIiC datasets have so far ignored multivalent entailments between predicates of

different valencies (e.g. the binary kill entails a unary die pertaining to win’s object).

Modeling these inferences has recently been explored (McKenna et al., 2021), but they

have not been represented in datasets explicitly. McKenna et al. (2021) start with the

simplest case of decreasing the valency from binary to unary predicates, but future

research may consider alternatives (e.g. ternary to binary, such as give(person 1, per-

son 2, thing) � have(person 2, thing)).

A relatively unexplored generalization of this idea is to test for inferences with

entirely new (existentially bound) arguments. In the multivalent case above no new

arguments are ever introduced (valency always decreases), but such inferences can

sometimes be warranted. For example, in “John is publishing a documentary.” �

“John has filmed a documentary” (and other examples (1) - (5) in Section 3.2.4),

perhaps it is more accurate to expect models to predict the unary passive predicate

was filmed(documentary) along with the knowledge that somebody did the filming.

We often make inferences about chains of events with multiple changing actors, and

our models should reflect this. These inferences are akin to implicit semantic roles, and

are thus also related to argument-based approaches to semantic representation such as

QA-SRL (FitzGerald et al., 2018; Roit et al., 2020; Pyatkin et al., 2021a). Perhaps

the right approach is to develop models that learn and represent inferences jointly be-

tween predicates and arguments (that is, entailments between predicates, entailments

between arguments, and between those two categories when possible).

The latter two datasets in this thesis, Sports and ANT, have forced models to cor-

rectly identify paraphrases, antonyms and directional entailments and non-entailments.
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Previous datasets such as Levy/Holt have mostly ignored this aspect, containing a high

ratio of paraphrases. Again, models can appear more accurate than they really are un-

der these evaluations, modeling many relations as symmetric. We believe that datasets

would do well to mostly contain both directions of an inference, as this invites model

development that is more attuned to this crucial property of entailment. Again, with

this point we advocate for higher adversariality.

Of course, there are many other linguistic phenomena that deserve attention. Be-

yond the temporal entailments presented here, a more expansive dataset could contain

modality (e.g. “It is likely that ... ” � “It is possible that ... ”) and propositional atti-

tude. We can be inspired by the many categories studied under FraCas (Cooper et al.,

1996), such as adjective intersectivity (e.g. “Max is a sick man and Max is a linguist.”

� “Max is a sick linguist.”, but “Max is an alleged murderer and Max is a senator.”

2 “Max is an alleged senator.” (Balcerak Jackson, 2017)), and introduce adversarial

cases of monotonicity as modeled in Natural Logic (MacCartney and Manning, 2007).

We can introduce metonomy (“Gas has gone up.” � “The price of gas has risen.”)

or pragmatic phenomena such as implicatures. It is unclear whether a crowdsourcing

strategy can be devised that guarantees all these particular phenomena are covered,

even though any semantic model should be able to account for them. At the very least,

the NLP community would benefit from a catalogue of inference types (with attention

to the variety of inferences that humans can draw) and should be more cognizant of

whether our datasets represent them.

The question remains, of course, of how to avoid data artifacts and biases, and

prevent high-parameter supervised models from overfitting. We would like to avoid the

bias of some datasets of priming data collection with automatic distributional methods

(Berant et al., 2011; Zeichner et al., 2012), and at the same time avoid artefacts like

hypothesis length or the presence of negation in the hypothesis being correlated with

the label (Gururangan et al., 2018). ANLI (Nie et al., 2020) is on the right track. One

appealing avenue might be to build a varied dataset reminiscent of FraCaS at a larger

scale, with adversariality in mind and attention to data artefacts using humans in the

loop.

Asking for variety and linguistically informed design stands in obvious contrast

with other data creation preferences: low labor-intensiveness and low annotator train-

ing time, with the aim of driving down cost. Concessions on these points may be

necessary. Dataset development and model development both play an important role

in progress, but models have received an disproportionate share of monetary invest-
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ment. For instance, pre-training the recent billion-parameter large language models is

estimated to cost in the millions of dollars1 (LambdaLabs, 2020), estimated with the

cost of the Microsoft V100 GPUs that were used for training GPT-3. Why not expect

the same for datasets? The ambitions we feel towards modeling should be extended

to datasets — investing a similar level of resources could supply us with resources of

enormous size, variety and quality.

8.2 Temporal Entailment and Causality

The challenges encountered in the temporal entailment task (Chapter 3) has pointed

us to promising avenues of research. One of the main issues in the Tensed Entail-

ment Graph approach was that a complicated set of morphosyntactic tense interactions

needed to be learned. However, it is likely that these interactions are actually governed

by a simpler set of relations between predicates: precondition, consequence, hyper-

nymy and paraphrase, possibly among others. For example, arrive is a precondition of

visit, and this determines the pattern of entailment between the different tenses of the

predicates. Certainly this approach is at least more cognitively plausible than modeling

the tensed interactions one-by-one.

As alluded to in Chapter 3, a possible line of work involves designing unsuper-

vised methods to mine those lexical relations (e.g. arrive is a precondition of visit), for

instance with an Entailment Graph model that incorporates temporal information. In

parallel one could linguistically explore the entailment patterns that arise from lexical

relations interacting with the various tense combinations, defining all these symbolic

interactions manually (e.g. p precondition of q licenses an entailment present pro-

gressive(q) |= present perfect(p), etc.). Finally, this information can be combined to

correctly label premise-hypothesis pairs like John is visiting London-John has arrived

in London as True. This method would offload the modeling demands of tense in-

teractions to the manual design of a logical system, which alleviates the previously

mentioned training data sparsity issues. The problem of designing these logical in-

teractions and learning the lexical relations are likely both to be challenging tasks in

themselves, however.

Again, valency plays an important part play here, so the resulting Entailment

1At 1287 MWh energy consumption for training (Patterson et al., 2021), the electrical bill alone
would amount to hundreds of thousands — C185,000 using the average EU non-consumer household
price per kWh of C0.1445 in the second semester of 2021 (EuropeanCommission, 2022).
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Graphs should be multivalent (McKenna et al., 2021). This is because there may be

preconditions and consequences of an eventuality that are particular to only a subset

of the participants. Some of the most salient consequences of an eventuality only hold

for a single participant — for example, “A kills B” has the consequence for B that “B

is dead”. “A harvests B” usually follows after the precondition that “B grows” or “B is

ripe”.

It may be possible to adapt the current temporal algorithm to this purpose. One

path to investigate is splitting the temporal comparison window into a before and after

frame, producing separate entailment scores for different temporal orderings. Perhaps

the data’s distribution is such that this corresponds to precondition and consequence,

but this would need to be investigated in practice. A proof-theoretic approach with this

background knowlege could then be tested on TEA2.

At the same time, it will be useful to develop a deeper understanding of the relation-

ship between entailment and causality. Precondition and consequence are both causal

notions, separating them from ontological inferences like car � vehicle or to run � to

move. While the latter have more to do with a hierarchy of types, the causal inferences

are more related to how the world works — how different eventualities, which may

combine to form larger episodes, are related to one another. These various inference

types can exist side-by-side in the same entailment challenges, but our models should

perhaps be aware of the distinctions. In particular, Pearl and Mackenzie (2018) have

raised the concern that causal notions may not be learnable from a static dataset like a

news corpus; in their terminology such a dataset is limited to the first, associative, rung

on the ladder of causation. They argue that learning causation requires more dynamic

interventions (rung two), and a notion of counterfactuality (rung three). Causality is a

prominent part of the entailments in our NLI datasets, but it seems the causal revolution

has yet to reach NLP.

8.3 The Temporal Algorithm

We presented a novel temporal algorithm for Entailment Graph induction in Chapter 4,

and analyzed the conditions under which it works in Chapter 5. These investigations

showed that temporality is a valuable learning signal for entailment. Still, there is room

to further improve results and extend them to other domains, and our work has revealed

2Note that TEA could also be expanded with the temporal entailments we discovered among the
WordNet antonyms.
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some important directions for this purpose.

In the next section we again mention the algorithmic improvements suggested in 4.

However, beyond these improvements, incorporating a phenomenon like temporality

may also require input data that is highly accurate to begin with. Entailment Graph

induction depends on numerous technologies that all still have their own multitude of

problems to solve. This includes relation extraction, named entity recognition, typing

and linking and coreference resolution, as well as the temporal relation extraction and

modality detection systems themselves. The input to our algorithm is a set of tuples

p(a1:t1,a2:t2, [ts, te]); it contains predicates p, arguments an, types tn, and time points ts,

te, which can be computed using a typical duration d. After Section 8.3.1 we therefore

touch on each of these briefly.

Note that it will also be worth simply experimenting with a larger training data size.

Temporality, along with the accuracy benefits, does introduce sparsity, and this may be

offset with more data. In particular, it may also be worth expanding to a much larger

temporal range, since the current NewsSpike experiments were limited to a 6-week

time range. It is possible that the benefits of temporality are more evident across larger

ranges, because here there is more opportunity for spurious temporal overlap, which

the temporal algorithm can separate.

8.3.1 Algorithmic Design

In Section 4.5 we mentioned a few variations of the central algorithmic idea. The first

idea is to improve on the fact that filtering becomes more challenging with more data.

Future models could take the number of eventualities into account when computing

overlap, so that overlaps become less guaranteed with a large amount of data. The

second idea explores how temporality may be used for a directional signal within triple

counts. We show this may be achievable by normalizing with the atemporal features

instead of the temporal ones.

Another direction is to incorporate temporality into the (contextual) link prediction

entailment scores proposed by Hosseini et al. (2019, 2021). One way of approaching

this would be to alter the transition probabilities in the bipartite graph according to

the temporal overlap between the relevant eventualities. Where Hosseini et al. (2019)

define:

sr,q = P(〈q〉|〈r〉) = ∑
e1,e2∈E2

P(〈q〉|〈e1,e2〉)P(〈e1,e2〉|〈r〉)
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we could additionally multiply by a temporal overlap term

ft((q,e1,e2),(r,e1,e2)) ∈ [0,1], that is low when the triples in question are tem-

porally separable. For example,

ft((win against,Manchester,Arsenal),(lose against,Manchester,Arsenal))

would be low, reducing the increment to the score swin against,lose against . However,

the additional temporal dimension may again lead to computational complexity issues

for larger datasets, especially since the method depends on parallelizable matrix oper-

ations. This brings up a related point: future research would also benefit from ways of

making the current algorithm more computationally efficient. This may be necessary

with larger sets of input triples, both due to incorporated coreference resolution and

larger training data sets.

Experimentation should become significantly easier with the pipeline improve-

ments described in the following sections. Specifically, it simplifies teasing apart

whether null results are due to design choices in the algorithm or due to input data,

because the chance is reduced that a null result is caused by parts of the pipeline that

were previously weak. For example, small differences in the general domain experi-

ments could be due to various pipeline flaws. This is particularly true for temporal ex-

periments because input noise can cause spurious overlaps, reducing the effect. With

enough noise it may be possible for the temporal signal to be drowned out. A larger

volume of higher quality data would therefore make it more straightforward to test

variations of the features mentioned above, and achieve larger improvements.

8.3.2 Predicates

One issue in the representation of predicates is the current treatment of modifier verbs.

The (non-modal) relation extraction system extracts both the modified and unmodified

versions of predicates, which can lead to downstream mistakes. For example, for the

sentence “Rosa Parks refused to comply with the law”, our system extracts both the

predicates comply with and refuse to comply with. In this case, extracting the propo-

sition containing the bare comply with is incorrect, since it is not entailed by the sen-

tence. On the other hand, if modified predicates are excluded entirely sparsity issues

may be exacerbated. Understanding the semantics of modifier verbs would allow us to

choose when to include the unmodified predicate, and would therefore be an important

step towards more accurate relation extraction.



148 Chapter 8. Conclusion

It may also be valuable to improve strategies around compound predicates such as

has border with (extracted from the sentence “India has a border with China”). These

can be constructed by including noun phrases in the predicate — in the example the ar-

gument border can be included because it forms a link between India, has and China.

This construction is useful for light verb constructions such as has a border with or

takes care of, and is helpful in covering multiword expressions. However, as with

the modifiers, not all variations should always be extracted. The solution could be to

extract only the compound predicate in the case of light verb constructions and mul-

tiword expressions, given a system for recognizing them. This would prevent a triple

like take(Alice, naps), that should be interpreted only using a compound predicate take

naps, from being extracted and being used as evidence towards the entailments of the

predicate take(:person,:thing) in the person-thing graph (causing issues, for example,

if it co-occurs with like(Alice, naps))).

On the other hand, there are cases where it may be better not to construct the

compound predicate at all, such as when the introduced noun phrases are really argu-

ments in their own right. For example, the current system extracts many predicates

such as want $175-million from(), which may bloat the semantics with unnecessary

predicates, especially when constructed with low cutoffs. What is needed is a stricter

definition of what should constitute a predicate (e.g. based on whether it is a light

verb, whether the argument belongs in the predicate, etc.), along with a way of clas-

sifying these categories automatically. Although current evaluations will not uncover

this noise (since such predicates are never tested), it may prove inconvenient to down-

stream applications.

8.3.3 Arguments and Coreference

One path worth investigating on the argument side is how to differentiate between the

signals provided by general entities (non-specific nouns like plan) and named entities

(like Obama). The type-token distinction is relevant here: when general entities form

part of an argument pair feature (say (Obama,plan)) they refer to a type (congregating

different specific plans from each separate eventuality in the data), whereas Obama

refers to the same token each time. Thus they constitute a different kind of feature

than the dual named entity features typically used as examples (say (Obama,Hawaii)

or (Google,Youtube)), and the consequences of their presence in the learning signal

are unexplored. This investigation could also lead to better use of “GG” dual general
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entity pairs, which have thus far been ignored as a feature.

Relatedly, general entities often form part of larger noun phrases, and there is no

clear strategy for selecting the most relevant subset of the larger phrase. For example,

our data contains mention of both plutonium plans and uranium plans, but both are

extracted with the generic plans. There is a tradeoff again here between accuracy

and sparsity — in the current approach we risk incorrectly conflating tokens into the

same type, but conversely we might risk splitting arguments into needlessly specific

categories.

Failing to account for the more complex phrase can also risk missing the point

of the sentence entirely. For example, in an article about cigarette use, our system

extracted the triple rule on(United States Congress,use), whereas the more relevant

noun phrase was use of cigarettes, or even simply cigarettes. The challenge is that it

is highly ambiguous to decide whether an attached phrase (prepositional or otherwise)

should form part of the argument (e.g. preferably ignoring pocket in cigarettes in her

pocket), and whether the noun within is a pertinent one in its own right (e.g. perhaps

instead extracting perfume from smell of her perfume).

The problems on both the predicate and the argument side reveal that learning

semantics is something of a chicken-and-egg problem. We expect highly accurate

relation extraction for learning a semantic representation, but simultaneously require a

highly accurate semantic representation for approaching some of the most ubiquitous

challenges in relation extraction.

We briefly discussed the importance of coreference resolution in Section 3.3.4.2.

We mentioned a news article about Beyoncé, in which most of the predications in

which she was involved did not refer to her by name, instead using various nominal

references. Including this data could be essential to building stronger graphs. It would

be interesting to pursue the hypothesis that coreference contains an essential learning

signal for entailment. A straightforward experiment would be to compare the increase

in performance when incorporating coreference data to the increase in performance

with additional randomly sampled data. For example, one could build an Entailment

Graph with 400K articles sampled from NewsSpike, and compare that baseline both to

an Entailment Graph that adds the data of a robust coreference system and an Entail-

ment Graph that samples triples from the remainder of NewsSpike to equalize the data

increase.
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8.3.4 Types

As mentioned in Section 3.3.4.2, argument pair types are the primary way of per-

forming WSD in many Entailment Graph induction techniques (Berant et al., 2011;

Hosseini et al., 2018), and this forms a major possible area of improvement. Firstly,

the set of types chosen plays an important role in how the learning signal of differ-

ent eventualities is spread across predicates. Our pipeline utilizes the first level of

the FIGER hierarchy. One clear improvement might be to use a mixture of FIGER

type levels. Some types in the first level are more general and common than oth-

ers, and in those cases it might be worth prioritizing subcategories (e.g. beyond just

person, using person/politician, person/athlete; or organization/company, organiza-

tion/sports team). Other first-level types are specific and exceedingly rare in our train-

ing and evaluation data, such as astral body or metropolitan transit, and could instead

be modeled with the thing type. It may even be worthwhile simultaenously building

graphs at multiple levels (e.g. both person and person/politician). so that politician

information can still inform the person graph.

Again, there are benefits to be gained with general entities, which usually receive

the thing type. Many general entities could be assigned more specific types, especially

if context is used (for example, person for the player, location for the stadium, orga-

nization for the club). With an improved system for typing general entities we could

therefore build stronger representations for all the non-thing type pair graphs, instead

of siphoning information off to the more noisy thing graphs.

It will be a significant challenge to move beyond the more fundamental problem

that argument types alone are insufficient for WSD. The ideal representation might

involve a single graph for which the nodes and edges are less discrete, such that the

entailments of a predicate can be adjusted given more context. Of course, this would

require the basic assumptions of the model to be reevaluated, but the benefits in terms

of increased representational power would be substantial.

8.3.5 Time and Duration

As suggested in Section 4.5, advances in temporal parsing are among the most crucial

pipeline improvements to make in order to better understand the temporal signal. Re-

sults in Chapter 4 showed that the temporal expression data (the timexOnly condition)

allowed for substantial precision gains, but was limited to low recall. It is essential

to improve performance on this condition, since we can be certain that the document
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date information will often result in incorrect times attributed to an eventuality. Addi-

tionally, as with coreference, we may expect that more data from improved temporal

parsing (i.e. including more eventualities from the same document) is better than sim-

ply increasing the dataset size.

Of course, one possibility is to use a more modern temporal parsing system. Instead

of SUTime, the temporal expression component from CogCompTime (Ning et al.,

2018c) could be used. Instead of linking the time expressions to predicates using

dependency parse trees, a more modern temporal ordering system (e.g. (Chambers

et al., 2014)) could be applied (which would not only connect temporal expressions

and eventualities, but also order eventualities with respect to each other).

However, there are also appealing ideas for new systems. For example, it would be

possible to develop more sophisticated ways of linking times to eventualities, expand-

ing the current linking approach to work across the entire document. The approach

could be inspired by the linguistic theory on tense, deixis and shifting Reichenbachian

reference times (see Section 2.4.1.2). Furthermore, considering the similarity of tem-

poral ordering to entity coreference resolution, it may be worth borrowing models from

that field. For example, it may be possible to apply end-to-end neural coreference mod-

els (Lee et al., 2017) to the task. Memory networks (Weston et al., 2015; Sukhbaatar

et al., 2015) for entity coreference (Liu et al., 2019a) could also be reworked into the

temporal reference setting.

Event coreference could also be a crucial step in this procedure, allowing many

eventualities that are not explicitly linked to a temporal expression to still be located

in time. This can be useful inter-sententially within one document, but also between

documents. For example, given the phrase two days after the earthquake a model that

links the earthquake event to other eventualities in the document can also propagate

the associated temporal information. When working between documents, it will be

useful to have a general temporal background knowledge base, which can be invoked

when a document refers to a generally known event, as in a week before the first moon

landing. Likewise, a more specific knowledge base, that is updated dynamically with

newsworthy events as a system reads articles, can provide essential temporal links.

This is because articles in the news domain are written as part of a wider discourse,

and as such may assume prior knowledge. For example, an article might state 2 days

after Johnson’s resignation, expecting the reader to be aware of the date. Relatedly, it

may be worth attempting to model event coreference and the temporal ordering task

jointly.
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The system would also benefit from better duration prediction models. Currently

the model always defaults to TacoLM’s prediction, but in some cases the exact duration

is actually stated explicitly or can be inferred (for instance, “He played for the Yankees

for 3 months”). Before improving the model, however, it may be worth guaranteeing

that the evaluation dataset actually contains entailment pairs that benefit from varying

the temporal window. ANT could be further analyzed, and if necessary extended to

contain predicates like be president, which would benefit from a dynamic window.

An important related direction is to distinguish between temporal ranges and tem-

poral durations. The former includes phrases like the teams played in March, in which

eventualities of a short duration are described as occurring at some point within a

larger window, while the latter actually assign a particular duration to an eventuality

(e.g. was working for Arsenal in March). The temporal algorithm does not currently

have a mechanism for taking this information into account.

8.3.6 Modality

Finally, with all these relation extraction improvements, the observed effect of modal-

ity may also change, perhaps extending into the general domain. For more research

suggestions specific to the modal graphs, see 7.5.

Unfortunately, in preliminary experiments for combining temporality and modality,

the temporal modal graphs were weaker than both the temporal graphs and the modal

graphs. Again, this may be due to the data sparsity that accrues with both additions.

However, with the cleaner signal from relation extraction improvements, modality may

still provide a benefit to temporal graphs, since taking it into account should prevent

additional spurious overlaps (e.g. from a simulatenous might win and might lose).

A stronger modal tagger will also be useful in this case, perhaps moving towards a

modality-aware language model similar to TacoLM.

8.4 Entailment and Grounding

We have already touched on the limitations of learning semantics from textual data

alone, as seen in the challenge of learning causality from static data (Section 8.2). Lin

(1998) also points out challenges associated with bootstrapping semantics from text:

by example, the word “Westener” is used to refer to hostages the majority of the time

in the 45 million word San Jose Mercury corpus. It is unclear how to prepare our
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models for this bias. Similar concerns have recently been raised by Bender and Koller

(2020) — form alone is insufficient for learning meaning. These concerns seem to lead

us to grounding: learning symbolic concepts by relating them to experience in various

modalities, instead of through their relation to other symbolic concepts (as is the hope

in language modeling).

Grounding in NLP is being explored in various forms. For example, the Visual

Question Answering (VQA) task (Antol et al., 2015; Goyal et al., 2017) requires sys-

tems to jointly model images and text. Auditory (Kiela and Clark, 2017) and even ol-

factory (Kiela et al., 2015) modalities can improve semantic representations. Grounded

language modeling is being explored with spontaneous speech data grounded in vir-

tual reality environments (Ebert and Pavlick, 2020) — the type of data to which young

children have access.

Future research will need to answer whether entailment knowledge stands to bene-

fit from grounding as well. Ontological inferences such as man � person may be easier

to learn through grounding, and temporal entailments may benefit from grounding too

(e.g. using grounded visuospatial data to learn that A drops B � B falls). Still, some

entailments seem taught directly through symbols; the fact that bachelor � unmarried

man is probably not learned through any set-theoretic mechanism based in observation

(i.e. observing that all grounded bachelors are also unmarried men), so some entail-

ments may still require a purely symbolic signal. Likewise, these approaches should

still take into account the contributions of innate knowledge, such as the knowledge

that things can only be in one place at a time. This knowledge is passed down to

humans through evolution rather than through grounded learning, so our models may

likewise require a separate mechanism.

The intersection of grounding and entailment is only recently being explored. For

example, Vu et al. (2018) show that models perform better on SNLI when they have

access to visual data. Xie et al. (2019) go beyond this, proposing SNLI-VE, a Visual

Entailment task in which the premise is an image and the hypothesis is a piece of

text. Chen and Golisano (2021) introduce a similar task, moving from image data to

video data. Purely textual data for learning entailment-based semantics is far from

fully exploited, but the new grounding research direction may ultimately transport us

beyond the inevitable limitations of textual data.
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