

This thesis has been submitted in fulfilment of the requirements for a

postgraduate degree (e. g. PhD, MPhil, DClinPsychol) at the University of

Edinburgh. Please note the following terms and conditions of use:

• This work is protected by copyright and other intellectual property rights,

which are retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or

study, without prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without

first obtaining permission in writing from the author.

• The content must not be changed in any way or sold commercially in

any format or medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the

author, title, awarding institution and date of the thesis must be given.

Meta-ontology fault detection

Juan Casanova Jaquete
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Artificial Intelligence and its Applications Institute

School of Informatics

University of Edinburgh

2022

Abstract
Ontology engineering is the field, within knowledge representation, concerned with

using logic-based formalisms to represent knowledge, typically moderately sized knowl-

edge bases called ontologies. How to best develop, use and maintain these ontologies

has produced relatively large bodies of both formal, theoretical and methodological

research.

One subfield of ontology engineering is ontology debugging, and is concerned with

preventing, detecting and repairing errors (or more generally pitfalls, bad practices

or faults) in ontologies. Due to the logical nature of ontologies and, in particular,

entailment, these faults are often both hard to prevent and detect and have far reaching

consequences. This makes ontology debugging one of the principal challenges to

more widespread adoption of ontologies in applications. Moreover, another important

subfield in ontology engineering is that of ontology alignment: combining multiple

ontologies to produce more powerful results than the simple sum of the parts. Ontology

alignment further increases the issues, difficulties and challenges of ontology debugging

by introducing, propagating and exacerbating faults in ontologies.

A relevant aspect of the field of ontology debugging is that, due to the challenges

and difficulties, research within it is usually notably constrained in its scope, focusing

on particular aspects of the problem or on the application to only certain subdomains

or under specific methodologies. Similarly, the approaches are often ad hoc and only

related to other approaches at a conceptual level. There are no well established and

widely used formalisms, definitions or benchmarks that form a foundation of the field

of ontology debugging.

In this thesis, I tackle the problem of ontology debugging from a more abstract than

usual point of view, looking at existing literature in the field and attempting to extract

common ideas and specially focussing on formulating them in a common language

and under a common approach. Meta-ontology fault detection is a framework for

detecting faults in ontologies that utilizes semantic fault patterns to express schematic

entailments that typically indicate faults in a systematic way. The formalism that I

developed to represent these patterns is called existential second-order query logic

(abbreviated as ESQ logic). I further reformulated a large proportion of the ideas

present in some of the existing research pieces into this framework and as patterns in

ESQ logic, providing a pattern catalogue.

iii

Most of the work during my PhD has been spent in designing and implementing

an algorithm to effectively automatically detect arbitrary ESQ patterns in arbitrary

ontologies. The result is what we call minimal commitment resolution for ESQ logic,

an extension of first-order resolution, drawing on important ideas from higher-order

unification and implementing a novel approach to unification problems using depen-

dency graphs. I have proven important theoretical properties about this algorithm such

as its soundness, its termination (in a certain sense and under certain conditions) and its

fairness or completeness in the enumeration of infinite spaces of solutions.

Moreover, I have produced an implementation of minimal commitment resolution

for ESQ logic in Haskell that has passed all unit tests and produces non-trivial results

on small examples. However, attempts to apply this algorithm to examples of a

more realistic size have proven unsuccessful, with computation times that exceed our

tolerance levels.

In this thesis, I have provided both details of the challenges faced in this regard,

as well as other successful forms of qualitative evaluation of the meta-ontology fault

detection approach, and discussions about both what I believe are the main causes of

the computational feasibility problems, ideas on how to overcome them, and also ideas

on other directions of future work that could use the results in the thesis to contribute to

the production of foundational formalisms, ideas and approaches to ontology debugging

that can properly combine existing constrained research. It is unclear to me whether

minimal commitment resolution for ESQ logic can, in its current shape, be implemented

efficiently or not, but I believe that, at the very least, the theoretical and conceptual

underpinnings that I have presented in this thesis will be useful to produce more

foundational results in the field.

iv

Acknowledgements

It would be hard to acknowledge anyone without first acknowledging my supervisors:

Alan Bundy and Perdita Stevens. They have not only provided me huge amounts

of research methodology advice, motivated discussions and directions of research

and introduced me to important fields and persons in those fields; but also they have

regularly acted as counsellors, played the good-cop-bad-cop routine with me very

effectively, given me ample and supportive freedom to choose my focus and perhaps

tolerated a bit more from me than I should have expected them to.

Next to my supervisors, the list of people I have collaborated with during my PhD

is very long, but I would like to identify a few specific individuals who have proved key

in one way or another to my research.

The first of these must be Xue Li, whose PhD happened more or less at the same

time as mine, and with whom I shared more than a lot of topics, ideas, discussions

and projects. Similarly, Christian Kindermann has provided interesting discussions,

a bridge to certain fields that would have been harder for me to reach without him,

and very relevant and useful literature pointers and discussions. I am sure I will be

forgetting some, but other similar collaborators that I would like to mention by name

include Jacques Fleuriot, Kwabena Nuamah, Alan Smaill, Francisco Quesada, Marius

Urbonas, Paul Jackson, Iain Murray and Daniel Raggi.

I would like to mention the particularly convenient and nice environment provided

by the School of Informatics at the University of Edinburgh. The Informatics Forum

truly is one of the best buildings to work in and it is unfortunately uncommon that the

physical context of a long project does not in itself introduce its own difficulties to the

project, and in this case it hasn’t.

Similarly, I would like to acknowlege the financial and institutional support of the

EPSRC CDT in Data Science, which this PhD has been a part of.

Other than that, the number of people who have been relevantly supportive or

helpful in general throughout my life during the PhD is too large to explicitly mention

here, but clearly the mere fact that I have arrived to the end of this PhD while still being

sane is a testament to their value.

v

A last mention will go to Heriot-Watt University for hiring me as a full time

assistant professor during my last year of PhD, and for overall being supportive

of my finishing the PhD, by giving me space, time and trying to avoid overload-

ing me while still giving me a job that I enjoy and hope to continue to enjoy in the future.

Thank you to all, and I sincerely hope I was not too much to bear with too often.

PS: I will obviously not thank the wonderful Covid-19 virus for making the last

year of my PhD that little bit more stressful and anxiety inducing. If there ever was a

reason to add negative acknowledgements to a thesis, this was it.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Juan Casanova Jaquete)

vii

Table of Contents

1 Introduction 1

2 Literature review 7

2.1 Knowledge management and ontology engineering 7

2.1.1 Ontology debugging . 9

2.2 Other topics in knowledge revision 11

2.2.1 Belief revision . 11

2.2.2 Abduction . 12

2.2.3 Conceptual change and other logic based approaches 12

2.2.4 Systematic and automatic approaches to software development 13

2.3 Automated theorem proving and related topics 15

2.3.1 Fundamentals of the semantics and algorithmics of logic . . . 15

2.3.2 Heuristics, domain-specific approaches and other modern topics 18

2.3.3 Rewrite systems . 21

2.3.4 Description logics . 24

3 Background 27

3.1 Web Ontology Language (OWL) . 27

3.2 Logic and automated theorem proving 29

3.2.1 First-order logic . 29

3.2.2 Higher-order logic . 36

3.2.3 SAT and SMT . 42

3.2.4 Description logics . 44

3.3 Constraint programming . 45

3.3.1 Logic programming . 46

3.3.2 Answer Set Programming 48

3.4 Rewrite systems . 49

ix

3.4.1 Graph rewrite systems . 52

3.5 Termination / decidability and enumeration procedures 53

4 Faults as patterns 57

4.1 Semantic patterns . 58

4.2 Reasoning outside of the box . 59

4.3 Existential second-order query logic 61

4.4 The meta-ontology fault detection framework 64

4.5 Pattern catalogue . 66

4.5.1 Fault pattern 1: Assuming universal quantification implies exis-

tential quantification (Empty pepper pizza) 67

4.5.2 Fault pattern example 2: Missing domain or range properties . 70

4.6 Summary . 72

5 Automatic detection of patterns 73

5.1 Automated theorem proving . 73

5.2 Brute force search . 74

5.3 Technical challenges . 76

5.3.1 Second-order . 76

5.3.2 Queries . 77

5.4 Utilizing existing approaches . 80

5.4.1 Higher-order logic . 80

5.4.2 Decidable subsets of second-order logic 92

5.4.3 Constraint programming . 94

5.5 Minimal commitment resolution for ESQ logic 96

5.5.1 Maximal CNFs . 98

5.5.2 Resolution and implicit unification 100

5.5.3 Dependency graph unification 102

5.6 Summary . 106

6 Minimal commitment resolution for ESQ logic: Theoretical results 107

6.1 Basic pieces . 107

6.1.1 Terms . 107

6.1.2 Substitution / instantiation 115

6.1.3 Unifier expressions . 117

6.1.4 Unification solutions and equations 125

x

6.1.5 Meta-CNF formulas . 127

6.1.6 Formulas with meta-predicates 129

6.2 Existential second-order query logic 130

6.2.1 Denotational semantics . 131

6.2.2 Computational aspects . 138

6.3 Maximal CNFs and inductive instantiation 141

6.4 Summary . 145

7 Dependency graph unification for ESQ logic: Theoretical results 147

7.1 Basic pieces . 147

7.1.1 Dependants . 147

7.1.2 Equational reasoning . 148

7.2 Unification dependency graphs . 148

7.3 Normalization of dependency graphs 159

7.3.1 Prenormal form . 160

7.3.2 Acyclic form . 161

7.3.3 Factorizable form . 162

7.3.4 Seminormal form . 163

7.3.5 Quasinormal form . 164

7.3.6 Normal form . 165

7.4 Rewrite rules for dependency graphs 168

7.4.1 Vertical monotony . 169

7.4.2 Edge zipping . 173

7.4.3 Projection simplification . 175

7.4.4 Occurs check . 177

7.4.5 Function dumping . 185

7.4.6 Validate consistency . 188

7.4.7 Factorization . 190

7.5 Normalization and rewrite rules . 207

7.6 Termination, productivity, fairness and solution shape verification . . 214

7.6.1 The issue with cycles . 217

7.6.2 Prenormalizing rules: Termination 217

7.6.3 Seminormalizing rules: Termination under acyclicity 220

7.6.4 Normalizing rules: Fairness 222

7.6.5 Quasinormalizing rules: Solution shape verification 247

xi

7.7 Relation to standard higher-order unification 250

7.7.1 Why graphs . 252

7.7.2 Rewrite rules and their roles 253

7.7.3 Non-determinism . 253

7.7.4 Unifiability versus explicit unifiers 254

7.8 Summary . 255

8 Implementation 257

8.1 Terms and unifier expressions . 257

8.2 ESQ logic . 258

8.3 Resolution . 258

8.4 Unification . 260

8.5 Non-determinism . 262

8.6 Dependency graph data structure . 264

8.7 Unit tests . 267

8.8 Summary . 269

9 Evaluation 271

9.1 Evaluation methodology . 275

9.1.1 Extensive pattern test cases 276

9.1.2 Pattern completeness and specificity against original research 278

9.2 Pattern test case examples . 279

9.2.1 SpicyTopping pattern test case 279

9.2.2 ProteinLoversPizza pattern test case 281

9.2.3 ProteinLoversPizza / Primitive subsumption cycles pattern test

case . 284

9.3 Results . 287

9.3.1 Pattern automated test cases 287

9.3.2 Detailed profiling and debugging of an intermediate test case . 291

9.3.3 Qualitative evaluation of patterns on original research examples 297

9.4 Analysis . 298

9.5 Summary . 301

10 Conclusions 303

10.1 Related work . 306

10.1.1 Meta-ontology fault detection 306

xii

10.1.2 Minimal commitment resolution for ESQ logic 308

10.2 Future work . 310

10.2.1 Minimal commitment resolution for ESQ logic 311

10.2.2 Pattern catalogue . 312

10.2.3 Higher-order unification . 313

10.2.4 Other applications of ESQ logic 314

10.2.5 Enumeration procedures and infinite search spaces 315

10.3 Summary . 316

A Pattern catalogue 317

A.1 Fault information . 317

A.2 Fault patterns . 318

A.2.1 OWL: Primitive versus defined classes (Spicy topping) 318

A.2.2 Missing necessary conditions (Margherita pizza) 321

A.2.3 Incorrect subclass axioms (Four cheese pizza) 322

A.2.4 Incoherent domain axioms (Chocolate ice-cream) 324

A.2.5 Assuming universal quantification implies existential quantifi-

cation (Empty pepper pizza) 326

A.2.6 Incorrect usage of logical constraints (ProteinLoversPizza) . . 328

A.2.7 Heterogeneus collective: Technical administrative group . . . 330

A.2.8 Homogeneous functional complex: IT component 335

A.2.9 Creating synonyms as classes 337

A.2.10 Subsumption cycles . 339

A.2.11 Missing domain or range properties 340

A.2.12 Missing inverse properties 342

A.2.13 Inkless books . 344

A.2.14 Vegetarian pizzas with meat 346

A.2.15 Unsatisfiable domains or ranges 348

B Additional theoretical results and proofs 351

C Qualitative evaluation of fault pattern coverage 379

C.1 Examples . 380

C.1.1 MeatyVegetable . 380

C.1.2 Margherita pizzas with unwanted toppings 380

C.1.3 Pizzas with cheese that are not cheesy 381

xiii

C.1.4 Non-vegetarian margherita pizzas 381

C.1.5 A chocolate ice-cream that is a pizza 381

C.1.6 Empty pizzas . 382

C.1.7 Vegetarian protein lovers pizza 382

C.1.8 Protein lovers pizzas do not exist 383

C.1.9 Untangling of spicy toppings 383

C.1.10 Heterogeneous technical administrative group 384

C.1.11 Homogeneous IT architecture 384

C.1.12 Theatre in a theatre . 385

C.1.13 Cars, motorcars and automobiles 385

C.1.14 An actor “does is”a man . 385

C.1.15 Members of non-existent teams 386

C.1.16 The item sells the buyer . 386

C.1.17 All persons are professors 387

C.1.18 Style and period . 387

C.1.19 Product or service . 388

C.1.20 Routes that start but do not end 388

C.1.21 Followed but not preceded 389

C.1.22 Numbers that are both odd and even 389

C.1.23 Numbers that are both prime and composite 390

C.1.24 Objects writing emotions . 390

C.1.25 My city is not a CITY . 391

C.1.26 Referees being referees in matches 391

C.1.27 Inkless books . 391

C.1.28 Vegetarian pizzas with some vegetables 392

C.1.29 Many Madrids and many Barcelonas 392

C.1.30 Only cities have an official language 393

C.1.31 Olympics happen in city-nations 393

C.1.32 Incorrectly labelled crossroads 394

C.1.33 Other river element . 394

C.1.34 animalorigin . 395

C.1.35 Yes and No as instances . 395

C.1.36 hasFork if and only if it hasFork 395

Bibliography 397

xiv

Index of concepts and definitions 409

Index of notation 417

xv

Chapter 1

Introduction

In the context of the semantic web and linked data, ontologies [Guarino et al., 2009]

are knowledge bases expressed using logic-based formalisms, such as description logics

[Baader et al., 2009], which allow for rich semantics encoding complex entailments

that enable more advanced inference mechanisms than simple databases. These usu-

ally involve some form of automated theorem proving. For example, by explicitly

representing in a logic formalism that:

• Birds fly.

• Eagles are birds.

we can infer that eagles fly.

One of the most common problems when utilizing ontologies is the effect of errors

or misrepresentations in the ontologies on the inferences done with them. We use the

word fault to encompass not only direct errors (inconsistencies, representations that

do not accurately depict reality, etc.) but also other problematic situations such as

inadequate representations, bad design patterns, etc. In short, anything we want to avoid

in an ontology. Due to the expressive capabilities of logic formalisms, it is moderately

common for even small faults to cascade into large issues with inference.

Building on the previous example, not all birds actually fly. For example, penguins

do not fly. This may lead us to infer that penguins are not birds. This could escalate

even further, depending on the specific ontology, to infer things like penguins being

reptiles, penguins having scales, and so on; all because of a small misrepresentation

(that all birds fly).

1

2 Chapter 1. Introduction

There has been a moderate body of work trying to deal with this and similar issues

in different ways. Some approaches involve limiting expressivity and reach of inference

to contain the effect of faults, while others may wish to utilize provenance or related

notions to be able to identify sources of problems. Our work in this thesis focuses

on finding automated or semi-automated ways to identify these faults that may help

ontology designers limit their frequency and, perhaps more importantly, more quickly

and easily debug ontologies as they evolve. This is sometimes referred to as ontology

debugging.

While it is not central to our work, it is relevant to under-

stand the usual sources of faults in ontologies. Most research on

the topic [Rector et al., 2004, Blomqvist, 2010, Kindermann et al., 2019,

Poveda-Villalón et al., 2010, Poveda-Villalón et al., 2012, Guarino and Welty, 2009,

Copeland et al., 2013, Gkaniatsou et al., 2012, Haverty, 2013, Markakis, 2013,

Lambrix and Liu, 2013, Prince Sales and Guizzardi, 2017, Mikroyannidi et al., 2011,

Mikroyannidi et al., 2012] points to human error and different ontologies that work

together using different background incompatible conceptualizations, because of their

different scope, assumptions or simplifications. For example, in a simple educational

ontology it may make sense to work with the simplification that all birds fly, whereas this

assumption is problematic in a more serious taxonomy ontology. Another important area

of research in the field is the automatic generation of ontologies, often by combining or

aligning preexisting ones [Lambrix and Liu, 2013, Šváb-Zamazal and Svátek, 2008].

Automatically generated ontologies are also very prone to faults

[Gkaniatsou et al., 2012, Haverty, 2013, Markakis, 2013].

Meta-ontology fault detection is a framework for automated detection of faults in

ontologies that we have developed. Its core principle is to use automated theorem

proving techniques, combined with formally encoded patterns to identify potentially

faulty situations in ontologies. We sometimes refer to these patterns as meta-knowledge,

and one of the strengths of the framework is that the technique is independent of the

specific patterns. While we do identify some patterns which are likely to be useful

across the board, we also identify others that are designed to be applicable only to

specific kinds of ontologies. Similarly, all of the patterns we describe in this thesis are

based on situations identified by previously existing research, that we have interpreted
and encoded within our framework. We believe this showcases the strength of the

3

approach, and we consider the gathering and reformulation of this pattern catalogue to

be one of the three main contributions of this work.

Clearly, another of the main contributions of this work is the meta-ontology fault

detection framework itself. This is embodied by one of the two research hypotheses

that we evaluated:

Hypothesis 1. Meta-ontology fault detection, used by encoding patterns in existential

second-order query logic, has the potential to be an effective and feasible approach to

detecting common faults in ontologies formalized in first-order logic.

This hypothesis focuses on the pragmatic value of the framework, assuming the

technology for implementing it exists and works adequately. But of course, the devel-

opment of this technology is another relevant contribution of this thesis. In particular,

we developed a formalism and an algorithm using novel automated theorem proving

techniques to efficiently find instances of fault patterns present in ontologies. We call

this minimal commitment resolution for existential second-order query logic, or minimal

commitment resolution for ESQ logic.

This algorithm takes patterns, encoded as queries containing free second-order

variables (representing the ontology elements that cause the faults), and an ontology

presented in first-order logic, and uses a minimal commitment approach to produce

proofs associated with instantiations of the patterns corresponding to likely faults. We

evaluate the success of minimal commitment resolution for ESQ logic via our second

research hypothesis:

Hypothesis 2. minimal commitment resolution for existential second-order query logic

is a sound, complete and computationally feasible implementation of existential second-

order query logic.

Thus, the three primary contributions of this thesis are:

1. The development of the meta-ontology fault detection framework, and the evalua-

tion of its effectiveness and feasibility.

2. The development of the minimal commitment resolution for ESQ logic algorithm,

and the evaluation of its soundness, completeness and computational feasibility.

3. The recollection and reformulation of common ontology patterns from the litera-

ture into a ESQ logic pattern catalogue.

4 Chapter 1. Introduction

Unfortunately, I ran into significant computational feasibility issues with the usage

of the algorithm on more realistically sized examples, meaning that the practical

feasibility of this approach as a whole in its current state is unclear. Nonetheless,

the framework principles, theoretical results and the pattern catalogue remain as the

valuable contributions of this thesis independently of the algorithm’s computational

properties; and there are still ideas to be tried to attempt to overcome the computational

performance issues. We discuss these issues, their causes, and potential future work

mainly in chapter 9, but also in chapters 8 and 10.

The remainder of the thesis is structured as follows:

• In chapter 2 we review the existing literature on topics related to this thesis, such

as automated theorem proving, ontology engineering, ontology debugging and

other related topics in artificial intelligence.

• In chapter 3 we provide technical background on the standard topics that are

important for the understanding of this thesis.

• Chapter 4 describes the meta-ontology fault detection framework and introduces

the pattern catalogue, one of the main contributions of this work.

• In chapter 5 we discuss the formalism, algorithm and other technical tools that we

developed to implement the meta-ontology fault detection framework: minimal

commitment resolution for existential second-order query logic.

• Chapter 6 contains core theoretical results about the outer layers of the minimal

commitment resolution for ESQ logic algorithm. Namely, the definition of ESQ

logic and the resolution aspects.

• Chapter 7 contains core theoretical results about the inner layers of the minimal

commitment resolution for ESQ logic algorithm. Namely, dependency graph

unification, which is the main theoretical contribution of the thesis. Among

other things, it includes correctness (soundness and conditional completeness)

theorems.

• In chapter 8 we describe our implementation of both the technical algorithm and

the framework to detect faults.

5

• Chapter 9 discusses the evaluation of the two research hypotheses, and analyzes

the results.

• Finally, we produce some concluding remarks, compare this work with other

similar research and discuss ideas for future work in chapter 10.

Chapter 2

Literature review

The initial problem that motivates this PhD is an ontology engineering (§2.1) one:

automatically detecting and repairing faults in ontologies (§2.1.1), a subfield sometimes

referred to as ontology debugging or ontology evaluation. The problem of automatically

detecting and repairing faults (errors, bugs, mistakes, problems...) is, however, present

in other fields, and we take a look at them: belief revision (§2.2.1) considers updating

knowledge of an agent when new information is obtained. Other logic based approaches

(§2.2.3) and experience in the software engineering field (§2.2.4) are also relevant.

Both because of the usual usage of ontologies for reasoning and for the approach

to fault detection and repair that we have taken, topics in automated theorem proving

(§2.3) are also highly relevant. We extensively consider foundational and theoretical

aspects of logic in general (2.3.1), modern work in optimized algorithms built on these

foundations (2.3.2) and description logics (2.3.4) as a theoretical basis for OWL.

2.1 Knowledge management and ontology engineering

A general and informal description of an ontology is that it is an “explicit specification

of a conceptualization” [Guarino et al., 2009]. Practically speaking, ontologies are

usually specified using languages that stem in one way or another from logic. The

most straightforward case is when this language is just first-order logic. However,

due both to the computational properties of first-order logic (undecidability, bad

complexity for reasoning) and some usual aspects of ontologies (classes or concepts)

not being an explicit part of first-order logic, it is more common to use less expressive

logics with more attractive computational properties and explicit formalizations

7

8 Chapter 2. Literature review

of concepts. A big family of such restrictions are known as Description Logics

[Brachman and Schmolze, 1989, Baader et al., 2009], among which the Web Ontology

Language (OWL) [Motik et al., 2012] is a predominant one, specially in the Semantic

Web and Linked Data context. It should be noted that OWL is also a particular case

of RDF [Lassila and Swick, 1999, Brickely and Guha, 2014], a simple formalism for

expressing triples connecting pairs of elements via properties (also called relations).

Other approaches to ontologies exist, among which we can find Frame Logic

[Angele et al., 2009] or Formal Concept Analysis [Stumme, 2009], but these have not

received as much attention or research effort, and thus we shall not focus on them.

However, some of the ideas developed in the PhD might still apply to them, as the

notion of using formalized meta-level patterns to detect faults via meta-reasoning is

transferable. This applicability is, though, something that we have not explored in detail.

Within the description logics and OWL context, plenty of literature, engineering

methods and tools have been developed. There are several well developed IDEs for

development of ontologies in OWL, among which Protégé1 seems to be the currently

dominant one. Protégé comes with plenty of inbuilt abilities (automated reasoners,

refactoring methods, metrics) as well as a healthy ecosystem of plugins and tools that

can be used in conjunction with it. A good survey of the ecosystem can be found

in [Kurian et al., 2013]. Methodologies have also been thoroughly studied for the

development of ontologies in an industrial setting [Sure et al., 2009, Pinto et al., 2009].

In the context of the work carried out in my MSc [Casanova, 2017], the idea of

utilizing anti-patterns to automatically detect faults in ontologies was explored. While

perhaps not generally aimed towards fault detection, the concept of ontology patterns

and anti-patterns has been long and thoroughly discussed in the literature. For example,

in [Hammar and Presutti, 2017], notions of template-based or specialization-based

instantiation of patterns in ontologies are discussed. These ideas also seem relevant in

the context of pattern detection, representing (in my opinion) the usage of meta-level

or object-level methods for fault detection. Similar discussions are carried out in

[Blomqvist, 2010]. An analysis of the actual usage in practice (in medical ontologies)

of ontology design patterns as typically presented in the literature was performed in

[Kindermann et al., 2019]. This analysis has largely negative results, showing that the

1https://protege.stanford.edu/

https://protege.stanford.edu/

2.1. Knowledge management and ontology engineering 9

vast majority of these ontologies do not incorporate these design patterns at all.

2.1.1 Ontology debugging

However, most of this work is purely methodological: there is tool support but there

are few automated and AI-based methods for dealing with ontology development and

specifically with ontology debugging. More precisely, they are typically tools to help

humans find existing faults in ontologies or avoid introducing them, with little to

no automatic support in its semantic aspect. For example, in [Rector et al., 2004] a

taxonomy of common errors made by learners when authoring ontologies is presented,

and some general high level ideas are explained as to how to find these situations.

In a similar way, in [Poveda-Villalón et al., 2010] a classification of what are called

pitfalls in ontology engineering is described, arising from a similar experience: teaching

learners to develop ontologies.

OntoClean [Guarino and Welty, 2009] is a more systematic and formal methodol-

ogy for finding faults in ontologies, but is still meant for a human to apply manually.

OntoClean presents an interesting approach in which abstract and philosophical

notions are used as a means to express general ideas that can be used to find faults.

We embraced this general idea in the work in [Casanova, 2017] (from which this

PhD departs), but from a “dual” point of view: instead of manually annotating the

ontology and using the annotations to detect faults, we use pre-established and generic

anti-patterns that are then matched against the whole ontology to flag up possible faults.

The work in this thesis starts off from that overall idea.

Some more automated work exists. For example, OOPS

[Poveda-Villalón et al., 2012] is an automated online system for detecting the

pitfalls described in [Poveda-Villalón et al., 2010] in ontologies. This system is,

however, specific to those pitfalls and it detects them programatically with largely

ad-hoc procedures. Moreover, probably due to the intention of such work being more

related to ontology evaluation from an engineering point of view than to fault detection

from a semantic point of view, it is not accompanied by any theoretical background or

semantic procedures for understanding the nature of the faults. In a similar fashion,

[Copeland et al., 2013] uses versioning information of the ontology as an indicator of

potential faults. In particular, they consider incoherent versioning actions such as adding

10 Chapter 2. Literature review

and removing an element from the ontology in subsequent versions to be indicators of

faults. In [Gkaniatsou et al., 2012, Haverty, 2013, Markakis, 2013], work was carried

in relation to detecting and repairing faults in the KnowItAll ontology: an ontology

created from general knowledge found in the world wide web, plagued with faults. In

that work, specific types of faults (for example, incorrect association of countries to

their capital cities) were looked into and specific procedures were developed to find and

repair them, with moderate success. Similarly, in [Lambrix and Liu, 2013], a specific

approach and implementation to finding and repairing “is-a” hierarchical structures

in ontologies is offered, with good theoretical underpinnings and experimental

evaluation. [Prince Sales and Guizzardi, 2017] offers another specific approach for

finding mereological errors in ontologies defined using the Unified Foundational

Ontology.

Most of this work is specific and/or uses ad-hoc implementations. In contrast, our

approach intends to be more generic, providing a framework for fault/pattern detection,

while still being practically feasible.

A more general approach is followed in [Mikroyannidi et al., 2011,

Mikroyannidi et al., 2012], where syntactic regularity is used to cluster parts of

ontologies and signal areas where regularity is not present and it should be, which they

understand as a symptom of an underlying problem. This approach is very distant from

ours in that it is a machine learning / statistical approach, and it focuses more on the

syntax of the ontology than on its semantics. The work provides, however, interest-

ing considerations about similarity / equivalence of axioms that are relatable to our work.

A relevant concept in the context of fault detection and repair is that of an

explanation of a proof, entailment or, more generally, an inference. Many approaches to

ontology debugging rely on finding useful forms of explanation. A formal explanation

of a faulty inference can guide a system to identify the source of the fault and/or how to

repair it. In this context, interesting work [Horridge, 2011] considers the formalized

notion of a justification in the context of description logics, and how it can be practically

used as a foundation for explanation in ontologies of this kind and all tasks associated

with it. It provides relevant algorithms for finding and manipulating justifications, and

experimental results surrounding those algorithms.

2.2. Other topics in knowledge revision 11

2.2 Other topics in knowledge revision

2.2.1 Belief revision

Belief revision [Alchourrón et al., 1985, Gärdenfors, 1992, Gärdenfors, 2003] is a term

used to refer to the study of the process of updating a logical knowledge base when new

information is acquired. This has mostly been used in the context of developing agent

systems that need to have a model of the reality within which they are operating, and

where this model needs to be continuously updated as new information is obtained or

the environment itself changes. However, it seems evidently related to the problem of

fault detection and repair in logical ontologies: it deals with incorrect representation in

a logical theory.

Belief revision works from the assumption that a knowledge base exists, containing

a set of statements, usually expressed in some form of logic, and with the implicit

assumption that the knowledge base is logically closed (i.e. all logical consequences

of statements in the knowledge base must also be part of it). Its approach can be

summarized as the development of strategies for updating the knowledge base that

maintain a series of desired formal properties, such as monotonicity in the changes or

minimal change.

There are several differences between these two research areas, the main one being

that belief revision is normally specifically concerned with the revision of a local

knowledge base in the event of finding new information, whereas ontology engineering

is more focused on using ontologies as a (correct) model of a broader and less dynamic

reality. While the semantics of these two processes are not largely different, the aspects

of the problem that each of them is most concerned with, as well as the situations that

typically arise in them, are indeed relevantly different. Another notable difference is

that knowledge bases considered in belief revision are usually considerably smaller

than ontologies in, for example, OWL. These differences are mostly contingent and

of pragmatic nature, meaning that the techniques appearing in each of them can in

principle be applied in the other, but their effectiveness and applicability may meander.

12 Chapter 2. Literature review

2.2.2 Abduction

Abduction was originally introduced by philosopher Charles Sanders Peirce during the

nineteenth century [Peirce, 1901, Peirce, 1906]. A slightly more modern account of its

usage in artificial intelligence can be found in [Cox and Pietrzykowski, 1986]. A much

more recent description of this and related topics can be found in [Kowalski, 2014].

Generally speaking, abduction is the process of finding the most satisfactory

explanation for a series of observations, where most satisfactory typically means that it

is as simple as possible and alters our perception of reality as little as possible. It can be

seen as a complement to belief revision in that belief revision typically works in making

inconsistent theories/ontologies consistent again with simplicity and minimal change

principles, while abduction typically works in making incomplete theories/ontologies

observationally complete with simplicity and minimal change principles.

In artificial intelligence and mathematical logic, abduction usually considers possible

ways in which a theory or ontology can be extended to produce a wanted theorem, with

options ranging from the most straightforward (adding the wanted theorem as an axiom)

to less obvious ones (such as weakening preconditions on existing axioms).

2.2.3 Conceptual change and other logic based approaches

Reformation [Bundy and Mitrovic, 2016] is an algorithm for repairing previously de-

tected faults in first-order theories exploiting the properties of first-order unification.

Reformation offers a well-founded and technically unambiguous (i.e. mathematically

formulated) method for performing repairs to ontologies already considered faulty.

More importantly, it differs from other techniques (such as belief revision §2.2.1) in

that it repairs faults by changing the representation (i.e. the language) rather than the

statements (axioms, content...). That is, the repairs performed by reformation change

the language of the ontology, by, for example, adding or removing arguments from

functions and predicates, renaming them, etc. In [Li et al., 2018], work on several

methods of knowledge revision (conceptual change, belief revision and abduction) are

combined in a single system that provides repairs suggested by each of them, enabling

the usage of heuristics, repair combination methods, etc., homogeneously.

The detection method usually associated with reformation is, however, simplistic:

it relies on existing true and false sets of observations and a choice of an unsuc-

2.2. Other topics in knowledge revision 13

cessful proof attempt or a successful proof of an unwanted theorem, meaning not

only that these sets of observations need to be available, but also that the proof at-

tempts of each of these individual faults have to be carried out. Also, in its general

form, reformation suggests a vast space of possible repairs for each fault. Work in

[Urbonas, 2019, Urbonas et al., 2020] explores, with initial successful results, heuristic

approaches for reducing this search space. Work presented in this thesis could be used

in combination with reformation, where meta-ontology fault detection offers a local

detection mechanism that does not rely on full observation of reality, and reformation

tackles the potential faults detected by it to suggest repairs to them.

2.2.4 Systematic and automatic approaches to software develop-

ment

In software engineering, similar issues to that of faults in ontologies appear in the form

of bugs in programs. The similarities are many: both problems relate to specifications

made by humans in formal languages about conceptual models.

One of the most prominent ways in which the topic of avoiding problems in software

through design is that of design patterns. The topic of software design patterns is huge

and it would be impossible to summarize it all here. [Bafandeh Mayvan et al., 2017] is

a recent systematic mapping study of the whole field which can help get a basic map of

the subtopics it includes.

At a basic level, software design patterns were introduced in the 80s (see, for ex-

ample, [Smith, 1987, Beck, 1987]) in the context of object oriented programming and

taking inspiration from architecture. Software design patterns are general reusable

approaches to software engineering situations. Their value arguably lies in the sys-

tematicity of applying the pattern to the situation they are designed for, reducing how

much specific design needs to happen for each instance and the likeliness of problems

appearing with the approach, as well as increasing the generality and interoperability of

the implementation. The less general a software engineering situation or problem is,

the less likely a design pattern is to be useful.

Some important topics around the idea of design patterns include: refactoring of

implementations and designs, both to be more general or leveraging previously utilized

patterns to more easily change aspects of an implementation; and modeling languages

(see, for example, UML (https://www.uml.org/)) that are particularly prepared for

https://www.uml.org/

14 Chapter 2. Literature review

designing using patterns. Once again, the literature on these topics is immense and the

UML website or a text book on software engineering (such as [Mall, 2018]) would be a

good starting point for the basics on these.

These concepts are clearly related, and have influenced, our approach to fault

detection patterns in this thesis. However, there are some important differences to note.

First, fault detection patterns as presented in this thesis, while in many cases originated

from design patterns in ontologies (see §2.1.1), are meant for automatic detection,

whereas software design patterns are primarily and majoritarily aimed at informing the

design process of the software, not the debugging. Second, fault detection patterns as

presented in this thesis are considerably more formalized than software design patterns

typically are. This is a particular strength and focus of this thesis, and derives from the

first difference mentioned.

A topic in software engineering conceptually closer to the ideas presented in this

project is that of bad smells [Fowler, 1999]. Bad smells are situations in programs

that typically indicate that a bad design is present. They are found by looking for

patterns in the shape of a program, and are accompanied by schematic directions on

the refactorings that usually ought to be done to “fix” them. Similarly to the ideas

presented in this thesis, they appeal to abstract notions that do not point out that an

error is certain to exist but rather likely bad structuring.

Bad smells were originally introduced [Fowler, 1999] as a taxonomy of undesirable

situations in software to be used by software developers to manually find refactorings

to be made in their programs. However, similarly to fault detection, attempts have been

made to try to automate their detection [Fontana et al., 2012].

The similarities between the two are mostly conceptual, though, and direct or

semi-direct application of tools and specific approaches to bad smell detection and

repair in software engineering to ontology fault detection does not seem like a feasible

idea, partly due to the complexity of a formal translation method between programs and

ontologies, but also and perhaps more importantly because of how bad smell works are

mostly focused on typical patterns and situations found in software development that

indicate a fault in a software development setting, but do not necessarily do so in their

corresponding ontology setting (for example, because they may be related to typical

2.3. Automated theorem proving and related topics 15

errors that programmers or software engineers make, caused by mostly contingent

reasons not necessarily related to the semantics of the program). In summary, while

the conceptual ideas are similar, the particularities (which are essential to an effective

solution to the problem) are quite different, and therefore there are good reasons to

develop specific work in each field. That said, and while not close to the topic of this

thesis, it may be an interesting area of research to formally translate these methods and

apply them in the corresponding setting; an area that we have not explored.

An interesting piece of work is [Balaban et al., 2015]. In it, the authors present a

language for defining software patterns and anti-patterns, provide some patterns using

such language, compare it with similar approaches and evaluate it using experiments.

The idea of formalizing patterns in a higher-level language and matching those against

real models is very similar to our approach, even though its field of application is

software engineering and, most importantly, it is focused on the definition of patterns

rather than on their detection.

2.3 Automated theorem proving and related topics

One of the main reasons for the attractiveness of ontologies, and especially those

based on some form of logic, is the ability to reason over them. This refers to the

ability to infer entailed facts about the ontology from its axioms through some form of

automated theorem proving. Moreover, the meta-ontology fault detection approach on

which this PhD is based relies heavily on automated reasoning concepts and capabilities.

2.3.1 Fundamentals of the semantics and algorithmics of logic

Logic as a formal system, as understood in this thesis, appeared originally in the form

of first-order logic. The precise origins of first-order logic are multiple, broad and

hard to track down, but an overview can be found in [Ferreirós, 2001]. Overall, its

current shape appeared from the hand of several mathematicians and philosophers

in the end of the nineteenth century and the beginning of the twentieth. Although

both propositional and first-order logic as concepts had existed long before, it is the

formalizations developed in that period that sustains most of today’s work in logic.

Miriads of introductory books to logic exist. A relatively modern and AI-oriented

16 Chapter 2. Literature review

approach can be found in [Bundy, 1983] or [Robinson and Voronkov, 2001]. In chapter

3 we briefly describe the foundational syntax and semantics of first-order logic that we

work with.

Automated theorem proving has been a research topic almost since the efforts

regarding the formalization of logic and the meta-theory of logic in the first half of the

twentieth century, even before computers were a common or even a real thing; with

formal approaches not just to the representation of knowledge, but also to the process

of logic deduction. These approaches are in most cases based on systems of deduction

rules. For first-order logic, natural deduction [Jaśkowski, 1934] is often regarded as the

most intuitive of such systems. However, as an automated system, and in its most naive

form, it is a practically infeasible one, due to its complexity properties, but it provides

a good foundation for meta-reasoning about deduction systems and their algorithmic

properties. Successful approaches build on the basis of natural deduction, while being

more careful with its search properties. For example, the foundations of the higher-order

theorem prover Isabelle [Paulson, 1989] are arguably in this group.

Other approaches, such as resolution [Robinson et al., 1965, Bundy, 1983,

Robinson and Voronkov, 2001] and tableaux based methods [Beth, 1955,

Robinson and Voronkov, 2001], have been long known to have more attractive

computational properties and many automated theorem provers are based in vari-

ations of these. Both of these methods typically rely on first-order unification

[Herbrand, 1930, Robinson et al., 1965, Bundy, 1983, Robinson and Voronkov, 2001],

a symbolic technique for matching two or more formulae which has many other

applications outside first-order logic, and which is a fundamental focus in this work.

Theoretically, it is well known that provability in first-order logic is, in general,

semi-decidable2. Plenty of proofs of this fact are known, the most well-known ones

being published almost simultaneously by Alan Turing [Turing, 1937] and Alonzo

Church [Church, 1936]. Moreover, even for provable formulas, the complexity of any

algorithm for finding proofs for them is in general at least exponential on the size of

the formula. These results are relevant because they state the limits of any automated

theorem proving algorithm. Of course, these limitations do not make the problem

hopeless, and modern approaches (described in §2.3.2) use either heuristics, reductions

in the expressivity of the logic or a combination of these to tackle the problem in a more

2Algorithms exist that will provide a positive result for every provable formula, but will not always
terminate for non-provable formulas.

2.3. Automated theorem proving and related topics 17

practically feasible way, although usually still using a core deduction system from the

ones mentioned. A family of reduced expressivity logics of particular relevance in the

ontology engineering community are description logics (see §2.3.4).

Another relevant topic in the context of this thesis is higher-order logic

[Church, 1940, Andrews, 2010, Robinson and Voronkov, 2001], which extends first-

order logic by allowing predicates and functions to also be first-class elements3.

Automated theorem proving techniques for higher-order logic (see, for example,

[Paulson, 1989, Sterling and Shapiro, 1994a, Miller, 2021]) also rely on systems of

deduction rules, which normally also use unification. Higher-order unification is,

however, a qualitatively more complicated problem than first-order unification. For

instance, it has an infinite number of maximal solutions in general (as opposed to the

unique one of first-order unification), along other highly relevant additional complex-

ities. Therefore, the standard algorithm for higher-order unification [Huet, 1975] is

not only non-terminating in general, but also has to make certain search space choices,

and has very unattractive complexity properties when attempting to find all individual

unifiers. While in many applications this complexity can be avoided by relying on

simply checking for unifiability, this is not enough in others. The technical problem that

the work in this thesis solves can formally be presented as a particular case of finding

all maximal unifiers in higher-order logic (see chapter 5 for a more detailed discussion).

Our approach shares many aspects with higher-order unification, and therefore we

have taken inspiration in this fundamental work, and in particular in the higher-order

unification algorithm proposed by Huet [Huet, 1975] and other algorithms based in it.

A particular case of higher-order logic is second-order logic, where only one level

of functions and predicates over other functions is allowed. Second-order theorem

proving, and in particular second-order unification, are also in general undecidable

([Levy and Veanes, 2000, Farmer, 1991, Levy, 1998]). However, a relevant amount of

research effort has gone into finding subsets of second-order logic that have decidable

and/or efficient algorithms. The most prominent examples include linear second-order

unification [Levy, 1996], monadic second-order unification [Farmer, 1988] and bounded

second-order unification [Schmidt-Schauß, 2004]. This is relevant to our work because

our technical problem (chapter 5) is a subset of second-order logic, and thus the question

of whether these algorithms or adaptations for these can be used for our purposes is

3Therefore, there can be variable functions/predicates and higher-order functions/predicates whose
domain and/or range are other functions/predicates.

18 Chapter 2. Literature review

relevant. We discuss this in more detail in chapter 5, but a summary is that we find our

problem is clearly not contained in any of these languages and the fundamental ideas

behind these algorithms work are not applicable in any natural way to our problem in

the way we would ideally want. It is, however, potentially interesting to consider the

application of bounded second-order unification in particular to a restricted version of

our problem, as future work; even though the complexity properties are still in general

problematic. We discuss this in chapter 10.

2.3.2 Heuristics, domain-specific approaches and other modern

topics

Modern topics in automated theorem proving usually involve at least one of three

things: altered expressivity, heuristics or interactivity with automated theorem provers.

These topics are, however, not in general closely related to this thesis and therefore we

only provide a high level overview.

By altered expressivity we refer to constraining or extending a conventional

logic language (like first-order logic or higher-order logic), altering both the

scope of its semantics and its algorithmic properties. A good example of reduced

expressivity is description logics, which we discuss in more detail in §2.3.4.

Other examples include intuitionistic logic [Heyting, 1966, Van Dalen, 1986] and

linear logic [Girard, 1987]. Examples of increased expressivity include modal

logics [Kripke, 1959, Kripke, 2007, Emerson, 1991], such as temporal logic

[Prior, 1962, Emerson, 1991].

Both within conventional propositional, first-order or higher-order logic, or within

other altered expressivity logics, the particularities of the algorithmics are another

big area of research. In conventional logics, however, the general complexity prop-

erties of the problem are well understood and overall significant changes to general

purpose algorithms have not appeared in the past few decades. Thus, most of the

research focus is on enhancing the general structure of the algorithms with heuris-

tics that refine the search, computing approaches that optimize the usage of resources

or in solving specific subsets of the language in particular ways, relying on domain-

specific semantics. An example of the latter is SMT (Satisfiability Modulo Theories)

[Nieuwenhuis et al., 2006]. SMT is a general approach to theorem proving which re-

2.3. Automated theorem proving and related topics 19

duces non-propositional problems to propositional logic algorithms (in particular, SAT

(satisfiability) [Nieuwenhuis et al., 2006, Gomes et al., 2008, Davis et al., 1962] prob-

lems), by using specific encodings of non-propositional aspects of certain domains

in efficient ways. Two typical examples are the theory of arithmetic or the theory

of arrays, which are much simpler and computationally efficient when handled in a

domain-specific way than when encoded naively into first-order logic. There are two

families of SMT approaches: lazy and eager. The eager approach clearly separates the

propositional from the non-propositional aspects, by transforming each individual in-

stance of the target problem into a traditional propositional formula. The lazy approach

instead uses the structure of the propositional problem to query the non-propositional

encoding in targetted ways. It can be argued that the lazy approach has more flexibility

and a wider application scope. SAT and SMT have enormous practical applications

and are a highly active area of research and of practical application. The effectiveness

of SMT approaches depends mainly on two (interrelated) factors: the efficiency of the

underlying SAT algorithm used (which in itself is in large proportion dependent on

heuristics), and the power of the encoding used to represent non-propositional aspects.

This second factor is ultimately related to the particular theory. An interesting idea

is to encode the entire theory of first (or higher) order logic in SMT and use SMT to

solve the much more general family of problems that these logics present. To a degree,

this is as difficult (both in terms of decidability, complexity and mathematical prowess)

a problem as it is to implement native automated theorem provers for these logics.

However, it is arguable that the optimized search capabilities of SMT solvers can be of

use in this, and separate the problem somehow. Some work has been done in this regard

(see, for example [Barrett et al., 2002, Bongio et al., 2008], which encodes first-order

logic as an SMT theory), but the results are mixed and limited. Encoding the particular

logic problems contained in this work as an SMT theory is in principle a sound idea,

but would require an important amount of theory development of a similar nature to

that included in this thesis, and it is not one that we have chosen to explore. We discuss

this issue a bit further in chapter 5.

In altered expressivity logics, while the usual algorithms still form the basis of most

reasoning approaches, they are more heavily modified in consonance with the modified

expressivity properties of the language, and this is still an active area of research. See,

for example [Tsarkov and Horrocks, 2006, Baader and Ghilardi, 2011].

Improving the way in which humans interact with theorem provers is also an active

20 Chapter 2. Literature review

area of research, often related to that of heuristics: human input can be used as a

heuristic, but how to capture this input and use it is not a trivial question. Topics in this

area typically include interactive and/or tactical theorem provers that allow the user

to control the proof search and strategies (see [Paulson, 1989], for example), but also

work on the explainability of inference, such as [Horridge, 2011].

The field of logic programming is related to all topics discussed in this section, as it

involves enhancing the semantics of different expressivity logics with computational

aspects that, to a degree, allow the human (programmer) to control the search aspects

of the problem, reducing the complexity and performance issues and the need for

heuristics. The first and most important logic programming theory / language is Prolog.

Plenty of academic and technical resources exist for conventional Prolog, but to cite

a general one the reader may take a look at, consider [Sterling and Shapiro, 1994b].

Semantically, Prolog is a subset of first-order logic attached to a particular form of

resolution theorem prover, restricted to Horn clauses [Wikipedia contributors, 2022b],

with a particular set of rules for how first-order variables can be used and resolved for.

Formulas in Prolog are instead presented as rules or facts (each of which is a Horn

clause), with added computational notions to them; mainly to do with how variables

are unified, and the specific order in which they are resolved. It is in the clearly

specified rules for how resolution and unification are carried out that Prolog gives the

programmer the power to determine the particular way in which they wish to solve

their problem. As the name implies, logic programming is generally considered to

be inbetween automated theorem proving and programming. In particular, it is more

common to use logic programming to create software solutions (though normally to

problems with a predominantly mathematical nature) than it is to use it to produce

general automated theorem proving solutions. Many variations on the basic concept

of Prolog exist. Lamdba Prolog ([Miller, 2021, Nadathur and Miller, 1988]) is a logic

programming implementation with higher-order capabilities. However, its use is

not very extended and it has important difficulties and limitations, both in terms of

expressivity, performance and ease of use. These difficulties and limitations are mostly

fundamental to the wider scope of the problem than particular issues that could be

easily solved. More in general, constraint logic programming [Jaffar and Lassez, 1987]

is a generalization of logic programming which abstracts away from the specifics of

(first-order) unification and resolution, and instead embraces the constraint solving

nature of logic programming to provide a general approach to a wider family of

2.3. Automated theorem proving and related topics 21

problems that is fundamentally the same as logic programming. Conceptually speaking,

our approach to existential second-order query logic (see chapter 5) is very similar to

(and potentially formalizable as a particular case of) constraint logic programming, in

the sense that we have goals that we process to generate (unification) constraints that

we solve using particular algorithms. We discuss this in more detail in chapter 5.

In relation to constraint logic programming, the wider field of constraint solving

needs to be looked at. In the general sense, constraint solving refers to automated

or semi-automated approaches for finding solutions to sets of constraints, normally

generated as an encoding of a domain problem or as a result of some form of processing

of the domain problem. In constraint solving, often the aim is to find general solution ap-

proaches for families of constraint problems that avoid the specifics of the domain prob-

lems. Logic and logic-based languages are a prime choice for expressing these generic

constraints. SAT [Gomes et al., 2008], SMT [Nieuwenhuis et al., 2006] and logic

programming [Sterling and Shapiro, 1994b, Miller, 2021, Nadathur and Miller, 1988,

Jaffar and Lassez, 1987], already mentioned, conceptually fall within this larger field,

but there are other approaches. Among them, we would like to bring up Answer Set

Programming (ASP) [Brewka et al., 2011, Balduccini, 2009, Baget et al., 2018]. ASP

is similar to logic programming in that it expresses first order rules and facts, and to

SMT in that it solves them by transforming it into a propositional problem. However,

as opposed to logic programming, the resolution of ASP programs is much more auto-

mated (though some computational aspects can still be left to the programmer); and as

opposed to SMT, the translation to propositional problems is completely general and

automated, and is due to limits in expressivity (for example, in how negation is handled).

ASP is designed to solve simpler constraint problems than those that SMT or logic

programs solve, in more general and automated ways. ASP solvers are based on the

same basic DPLL algorithm that SAT and SMT solvers are [Nieuwenhuis et al., 2006].

2.3.3 Rewrite systems

Rewrite systems or Rewrite rule systems are a mathematical tool used to define

and reason about formal systems in which we have elements that can transform

into equivalent ones through rewrite rules, normally to simplify or compare them

in some way. A basic overview of standard rewrite systems can be found on

[Huet and Oppen, 1980, Robinson and Voronkov, 2001].

22 Chapter 2. Literature review

In rewrite systems, the elements that are rewritten to and from are called terms, a

definition which properly contains the definition of term in logic (that is, logic terms

are a particular case of terms in general). Thus, we often refer to term rewrite systems.

A term is simply an element that has some algebraic structure and which is, in some

sense, defined by its algebraic structure.

In relation to this thesis, we use some basic notions of term rewriting in producing

some standard proofs about normalization of first-order and second-order terms in

logic, which can be found in different shape in standard reviews on logic topics, such as

[Dowek, 2001]. The fundamental aspects here are of when two terms are equivalent, in

what way they are equivalent, and specially about whether they can be normalized, that

is, reduced to a normal form; meaning an equivalent version of a term that is clearly and

intrinsically distinguished as being an equivalent version that is no longer reducible,

often simpler in some sense. Normal form is related to the notion of irreducibility,

meaning the term cannot be rewritten any more. Often, we care about normal forms

being unique, that is, each term can only be reduced to one normal form. Very important

notions in this topic are those of confluence and termination of rewrite systems. One

of the main results in this area is due to [Newman, 1942], called Newman’s lemma or

the diamond lemma, that establishes that a terminating rewrite system is confluent

if and only if it is locally confluent. The relevance of this lemma comes from the

connection between confluence, a global property establishing the general behaviour of

the rewrite system as a whole, and which can thus be difficult to prove on its own; to

local confluence, which, as its name implies, is a local property that is much easier to

prove, relating to the behaviour of two particular alternative reductions of the same term.

A sub-topic of rewrite systems that is particularly related to the work in this thesis

is that of term graph rewriting. [Plump, 2002, Habel and Plump, 1995, Plump, 1999,

Barendregt et al., 1987] are some good pieces of literature to get started. Standard terms

based on strings are well known to be equivalent to trees in the graph theoretical sense.

Indeed, graph theoretical trees are isomorphic to linear representations of information

and this transformation is universal so long as there is a clear algebraic structure on the

string terms. Term graph rewriting considers what happens when we extend rewrite

systems to graphs that are not trees. The most studied and most interesting case is what

is arguably the simplest extension of trees in this context: directed acyclic graphs. A

2.3. Automated theorem proving and related topics 23

directed acyclic graph is a graph whose edges are directed, and where it is impossible

to cycle through the graph while following the direction of the arrows. However, unlike

trees, directed acyclic graphs can have undirected cycles; that is, cycles that do not

follow the direction of the arrows.

In rewrite systems, directed acyclic graphs represent the notion of multiple de-

pendence on the same sub-term. This is very natural, for example, when considering

variables (such as first-order logic variables) which appear in multiple places in a term

but which conceptually the represent the same element, and when substituted, must

be substituted homogeneously throughout the term. It is also common (see, for exam-

ple, [Habel and Plump, 1995, Plump, 1999, Barendregt et al., 1987, Plump, 2005]) to

consider hypergraphs instead of regular graphs, meaning that edges can have multiple

sources/targets. Our unification dependency graphs (introduced in chapter 5) and the

rewrite system associated to them are a particular case of term graph rewriting, though

we note that we have adopted what seems to be the opposite of the standard convention

on the direction of the edges4. This has no effect on the theory whatsoever.

The majority of the results in term graph rewriting topics focus on the general

properties of abstract term graph rewriting systems and their theoretical properties, in

relation to confluence, reducibility, termination and normalization, as well as complex-

ity; often in comparison with the simpler string/tree rewriting systems. To put it in

a simplified way, results in [Habel and Plump, 1995, Dwork et al., 1984, Plump, 2005,

Barendregt et al., 1987] establish that term graph rewrite systems are:

• Sound w.r.t. corresponding string term rewrite systems (they produce correct

results).

• Complete w.r.t. corresponding string term rewrite systems (they produce all

correct results).

• Terminating and confluent w.r.t. corresponding string term rewrite systems under

some basic additional conditions dependent on the particularities of the rewrite

system.

• More efficient in space as a general rule, due to the sharing of data structures.

• Have potential for more efficient parallel algorithms for some particular sub-

problems, while the general standard problems remain more or less equivalent in

4This was discovered after this PhD’s viva, and changing it would involve a lot of work and issues,
specially with respect to the implementation, so we chose to note it rather than change it.

24 Chapter 2. Literature review

time complexity.

We note that in chapter 7 we have proven soundness, completeness, termination

and confluence (under conditions) results to our particular algorithm / rewrite system

based on unification dependency graphs. Moreover, we argue (though we do not

prove) the moderate efficiency advantages mentioned above, and also argue that a graph

data structure allows our search to make decisions based on additional information
that works as a mild heuristic for the search inherently involved with second-order

unification.

2.3.4 Description logics

While most or all of the approaches described so far can and are applied to description

logics (as a particular, reduced expressivity, case of first-order logic), one of the reasons

for using description logics to begin with is the more attractive computational landscape

that they offer.

In that regard, inference in description logics is often done using structural methods

which, in some sense, work at the level of concepts or classes and their subsumption

relations (as well as properties that connect them), as opposed to working at the level

of instances of said classes and using quantification to depict subsumption. An early

example of this is structural subsumption [Dionne et al., 1992, Dionne et al., 1993], in

the context of the KL-ONE description logic [Brachman and Schmolze, 1989]. It is

interesting to realize the way in which these algorithms are produced: the intuitive way

in which humans would consider subsumptions by thinking about almost “graphical”

relations between concepts in a graph (more precisely, reasoning about orderings in

a graph) is formalized, and later compared to the first-order logic (model-theoretic)

variant of it. The semantics of both approaches are connected and thus the validity of

the structural subsumption algorithm for description logics is asserted, even from a

model-theoretic semantics point of view, which uses the expressivity constraints of

description logics to largely simplify the algorithm and allow reasoning at the class level.

The work in this thesis falls relatively far from this. Our approach is applicable

to full first-order logic (existential second-order logic5, in fact), but it also does not

leverage the expressivity constraints of description logics, of course. A relevant area

of future research lies in understanding how the core ideas of the meta-ontology fault

5A slight extension of first-order logic that allows existentially-quantified second-order variables.

2.3. Automated theorem proving and related topics 25

detection framework can be applied in a description logic context and in relation to

structural inference algorithms. We have chosen not to focus on that mainly because

first-order logic is more foundational and, from a theoretical point of view, the results

within it will carry a lot more relevance, and therefore we thought best to begin the

exploration of the approach from that end.

Chapter 3

Background

In this section we discuss and provide definitions for standard concepts that are not

part of the contribution of this thesis, but which this thesis builds on. Most of these

are presented in more detail elsewhere, but we will try to provide references whenever

possible.

3.1 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [Motik et al., 2012] is one of the most used ontol-

ogy languages. It is formally an instance of a description logic ([Baader et al., 2009],

§3.2.4), but it has its own syntax(es) and approach aimed at making it accessible to

people without the technical expertise in description logics.

The most important concept in OWL is that of a class.

Definition 3.1.1 (OWL class). In OWL, a class represents a family of individuals

(instances) that are conceptually of the same nature.

For example, the notion of a Pizza or a PizzaTopping might be OWL classes.

Classes correspond to first-order unary predicates (§3.2.1). For example, an individual

x being an instance of the class Pizza would correspond to the first-order statement

Pizza(x)

The other fundamental concept in OWL are properties. Where classes are unary

predicates, properties are first-order binary predicates, that link two individuals in some

way.

27

28 Chapter 3. Background

Definition 3.1.2 (OWL property). In OWL, a property represents pair-wise relations

between instances. An instance of a property is one such pair of connected individuals.

For example, the notion of a Pizza having a topping can be embodied by a

hasTopping property. In first-order logic, pizza x having a topping y would be

represented by the statement hasTopping(x,y).

One of the most important concepts relating to classes in OWL is that of one class

subsuming another.

Definition 3.1.3 (OWL subsumption). In OWL, we say that a class A subsumes another

class B if every individual that is an instance of class B is also an instance of class A.

For example, the Pizza class may subsume the VegetarianPizza class.

This is similar to inheritance in object-oriented programming, and in first-order

logic terms, it corresponds to the relation between two first-order predicates A and B in

which A subsuming B is equivalent to the following first-order statement:

∀x.B(x) =⇒ A(x)

There are some concepts in OWL that do not explicitly map to concepts in first-order

logic, and which sometimes have more to do with the way the ontology is expressed

than with what it formally represents itself. In this area one of the most important

distinctions is that between primitive and defined classes (see [Horridge et al., 2009]).

In OWL, primitive classes are usually considered to be the “baseline” classes, and

defined classes are a tool used for expressivity.

Definition 3.1.4 (OWL primitive class). In OWL, we say a class is primitive if it is

defined by a necessary condition but not a sufficient one

Definition 3.1.5 (OWL defined class). In OWL, we say a class is defined if its definition

consists of a condition that is both necessary and sufficient (it fully defines it).

For example, Pizza could be a primitive class, meaning that some instances

that satisfy its definition are not Pizzas, as long as they are not explicitly declared

or inferred as Pizzas; whereas VegetarianPizza would normally be a defined

class, establishing that any Pizza that only contains vegetable toppings is a Vegetar-

ianPizza, regardless of whether it has been explicitly defined as a VegetarianPizza or not.

3.2. Logic and automated theorem proving 29

Due to the nature of OWL, and specifically because it normally only discusses

classes and properties rather than individuals, it is impossible (under standard con-

ditions) for an OWL ontology to be inconsistent in the usual logical sense (§3.2.1).

Instead, the much more common situation that in some sense represents a problem with

representation in OWL is that of an unsatisfiable class.

Definition 3.1.6 (OWL unsatisfiable class). A class in OWL is said to be unsatisfiable

if it is not possible that it has any instances.

For example, if we defined a class VegetarianPizzasWithMeat, containing all Pizzas

that are vegetarian and contain meat, it would in all likelihood be unsatisfiable.

In first-order logic terms, a class A is unsatisfiable if the following first-order

statement is true:

¬∃x.A(x)

Finally, when discussing properties, there are two aspects often discussed about

them, called the domain and range of the property.

Definition 3.1.7 (OWL domain and range). Given an OWL property, its domain is the

OWL class whose instances are exactly those individuals that appear on the left side of

one instance pair of the property.

Similarly, its range is the OWL class whose instances are exactly those individuals

that appear on the right side of one instance pair of the property.

For example, the domain of hasTopping is the set of all pizzas that have any toppings

at all, whereas its range is the set of all toppings that appear in a pizza.

In first-order logic terms, A is the domain and B the range of property R if the

following statements are true:

∀x.A(x) ⇐⇒ ∃y.R(x,y)
∀y.B(y) ⇐⇒ ∃x.R(x,y)

3.2 Logic and automated theorem proving

3.2.1 First-order logic

All of the concepts discussed in this section are described in much more de-

tail in standard books on logic and algorithmic theorem proving, such as

30 Chapter 3. Background

[Bundy, 1983, Robinson and Voronkov, 2001].

First-order logic is what is usually abbreviated as logic or mathematical logic. It is

a formalization of deductive reasoning that differentiates from higher-order logic in that

functions and predicates are not themselves first-order elements. That is, there are no

statements about functions, predicates or statements themselves.

The most basic definitions in first-order logic are those revolving around the notion

of a signature. A signature is a definition of a language of discourse for a set of logical

statements.

Definition 3.2.1 (First-order signature). A first-order signature consists of a set of

variables, a set of function symbols and a set of predicate symbols.

• Predicate symbols are syntactic representations of properties that can be stated

about elements in the universe of discourse. They can have different arities,

indicating how many elements the statement is about. For example, an isPizza

predicate would be unary (arity 1) and indicate whether a given element is a pizza

or not. A predicate hasTopping would be binary (arity 2) and indicate whether a

given pizza has a certain topping.

• Function symbols represent functional relations between elements in the universe

of discourse. Similarly to predicates, functions have an arity. Functions with

arity 0 are often called constants and treated separately, though this distinction

is formally unnecessary. As an example, a unary function father could indicate

the father of any other one individual, whereas a 0-ary function (constant) Mars

could refer to the specific individual in the universe of discourse corresponding

to the planet Mars.

• Variables are syntactical tools that represent unidentified elements, in the context

of a formula, of the universe of discourse. They are normally used together with

quantifiers, explained later in this section, to produce general statements about

families of elements in the universe of discourse.

When predicates, functions and variables are combined to represent the simplest

statements in the language, we refer to these as atoms and terms.

3.2. Logic and automated theorem proving 31

Definition 3.2.2 (First-order term). First-order terms are formed either by variables or

functions applied to other terms. For example, x, father(x) or Mars() are terms.

A term is said to be ground if it contains no variables.

Definition 3.2.3 (First-order atom). First-order atoms are formed by applying predi-

cates to terms, such as isPizza(x) or hasTopping(father(father(x)),y).

The perhaps most fundamental aspect of first-order logic is the usage of logical

connectives to produce more complex statements (formulas) from the simplest formulas

represented by atoms.

Definition 3.2.4 (First-order connectives). The simplest connective is the negation of

another formula, which by definition is considered to be satisfied if and only if the

original formula is not. We usually write ¬F to represent the negation of formula F.

For example, ¬isPizza(x).

It is usual to use the terminology literal to refer to either atoms or the negation of

atoms.

Binary connectives are usually formed by the conjunction (“and”), the disjunction

(“or”) and the implication, though technically only any one of these three is necessary

for the language to be complete, as the others can be built from that one and negation.

The conjunction F ∧G of two formulas F and G is satisfied if and only if both F

and G are satisfied.

The disjunction F ∨G is satisfied if and only if at least one of them is satisfied.

The implication F =⇒ G is satisfied if and only if F is not satisfied and/or G is

satisfied.

In close connection to connectives are quantifiers. Quantifiers are used in combina-

tion with variables to express more general statements about the universe of discourse.

Definition 3.2.5 (Universal quantification). The universal quantifier ∀ is used together

with a variable (for example x) and a formula containing the variable x, which we will

write as φ(x).

The universally quantified formula ∀x.φ(x) is satisfied if and only if for every

element a in the universe of discourse, when x is replaced by a, φ(a) is satisfied.

For example ∀x.isPizza(x) is satisfied if every element in the universe of discourse

is a pizza.

32 Chapter 3. Background

Definition 3.2.6 (Existential quantification). The existential quantifier ∃ is used together

with a variable (for example x) and a formula containing the variable x, which we will

write as φ(x).

The existentially quantified formula ∃x.φ(x) is satisfied if and only if there is at least

one element a in the universe of discourse such that, when x is replaced by a, φ(a) is

satisfied.

For example ∃x.isPizza(x) is satisfied if there is at least one element in the universe

of discourse that is a pizza.

3.2.1.1 Interpretations and Herbrand semantics

So far, we have talked about the universe of discourse and formulas being satisfied, but

we have not formalized it. This is done through interpretations.

Definition 3.2.7 (Interpretation). An interpretation defines a set of elements as the

universe of discourse, associates each function symbol with a function within that

universe and each predicate symbol with a set of tuples of elements in that universe (of

the same arity as the predicate).

In other words, it establishes which atoms are true and which ones are not in a

coherent way.

An important type of interpretations from a theoretical point of view are Herbrand

interpretations, associated with Herbrand universes, Herbrand structures and Herbrand

bases.

Definition 3.2.8 (Herbrand universe). The Herbrand universe of a first-order signature

is the universe of discourse containing the ground terms of the logical language as

elements.

Definition 3.2.9 (Herbrand structure). The Herbrand structure is an interpretation for

function symbols on top of the Herbrand universe, that assigns to each function symbol

the function result of applying it.

For example, the interpretation of the unary function symbol f is the function f H

that, given a term α, as an element of the Herbrand universe, produces the term f (α).

That is, f H(α) = f (α).

3.2. Logic and automated theorem proving 33

Definition 3.2.10 (Herbrand base). The Herbrand base extends the Herbrand structure

by adding interpretations for predicate symbols, with the same rationale.

Definition 3.2.11 (Herbrand interpretation). A Herbrand interpretation finally extends

the Herbrand base by assigning a certain truth value to each ground atom.

One of the reasons why Herbrand interpretations are relevant is Herbrand’s theorem

[Herbrand, 1930], that establishes a connection between Herbrand interpretations and

arbitrary interpretations, fundamentally allowing us to analyze the general semantics of

a logical theory by looking only at its Herbrand interpretations. It can be used to show

the soundness and completeness of an inference system.

3.2.1.2 First-order resolution and unification

Definition 3.2.12 (First-order theory). A set of formulas in first-order logic that estab-

lish the basic true facts of any universe of discourse that we are considering is called a

theory.

Given a theory T , we typically consider whether some formula F holds true in every

interpretation of the language that satisfies all formulas in T . That is, F is a logical

consequence of T . We call such interpretations the models of the theory.

Definition 3.2.13 (First-order model). Given a theory T and an interpretation I, we say

that I is a model of T if every formula in T is true in I.

Definition 3.2.14 (Entailment). We say that F is entailed by T , written T � F if F is

true in every model of T .

Thinking about entailment allows us to use logic as a way to talk about semantics

themselves without ever having to explicitly consider interpretations.

This becomes most useful when using systematic reasoning techniques.

Definition 3.2.15 (Inference system). An inference system is a set of rules that can be

systematically applied to formulas in a theory to produce other formulas and eventually

check whether a formula is entailed by a theory.

Definition 3.2.16 (Formal proof). Given an inference system, we call a sequence of

applications of its rules a proof within the system, and we say that the formula F can

be proven from T , written T ` F.

34 Chapter 3. Background

Definition 3.2.17 (Soundness and completeness of an inference system). An inference

system is said to be sound and complete if T ` F if and only if T � F.

What this means is that we can check for entailment (semantics) entirely via

syntactic means (proofs). This further typically allows us to automatize inference into

an automated theorem prover.

Resolution is one of the most commonly used inference systems for first-order logic,

that relies on two important concepts: conjunctive normal forms (CNF) and unification.

A formula is said to be in conjunctive normal form if:

• All quantifiers are at the front of the formula.

• The formula inside the quantifiers is a conjunction of clauses.

• A clause is a disjunction of literals.

For example:

∀x.∃y.∀z.(p(x)∨¬q(y))∧ (¬p(c())∨q(x))∧ (r(x,y,z))

is in CNF, with three clauses: (p(x)∨¬q(y)), (¬p(c())∨q(x)) and r(x,y,z).

Formulas in conjunctive normal form are Skolemized by removing existentially

quantified variables and replacing them with Skolem functions that depend on the

universally quantified variables whose scope is bigger than the existentially quantified

variable. After doing this, we normally omit universal quantifiers, since all remaining

free variables in the formula are implicitly assumed to be universally quantified. For

example, the Skolemization of the formula above would be:

(p(x)∨¬q(fy(x)))∧ (¬(p(c())∨q(x))∧ (r(x, fy(x),z))

where we note that fy is not some parameterized version of f , but rather a new function

symbol introduced into the signature that is associated with the variable y.

Every first-order logic formula can be algorithmically transformed into a Skolem-

ized conjunctive normal form with fundamentally1 the same semantics.

1The Skolemized formula is satisfiable if and only if the original is.

3.2. Logic and automated theorem proving 35

Unification takes two or more atoms or terms with variables and unifies them,

finding the least committed substitution of the variables for which the two atoms or

terms are equal. For first-order logic, it can be shown that every unification problem has

a single, most general solution, called the most general unifier.

For example, the unification problem:

p(f (x,y),x)∼ p(r,g(s))

has as most general unifier the substitution:

x→ g(s)

r→ f (g(s),y)

y→ y

s→ s

which, when applied, makes both sides of the above equation become

p(f (g(s),y),g(s))

Given a Skolemized CNF formula, we can apply the rule of resolution which takes

two clauses and a chosen literal (or set of literals) for each of them (positive in one

clause, negated in the other), unifies them, removes them from each clause, and joins

the remainder of both clauses with the unifier applied to them; producing a new clause

that is then added to the CNF. For example, we can resolve the first literal in each of the

following two clauses:

p(f (x),y)∨q(y)

¬p(r,g(g(s)))

into the following resolvent:

q(g(g(s)))

The resolution rule can be applied to Skolemized CNF formulas to produce a sound

and complete inference system, in the following way:

1. Consider the theory T , and present it as a conjunction CT of all formulas in T .

2. Transform CT into a Skolemized CNF CN
T .

36 Chapter 3. Background

3. Take the formula to try to prove F , and consider its negation ¬F , presented in

Skolemized CNF ¬FN .

4. Conjunctively join CN
T ∧¬FN , this will trivially be a Skolemized CNF as well.

5. Apply the resolution rule repeatedly, conjunctively joining resolvents to the CNF

each time.

6. If at any point, an empty clause is produced, then we can conclude that T ` F

(and therefore T � F) and finish the proof.

The reasons for which this method works can be summarized by the following facts:

• T � F if and only if T ∧¬F is unsatisfiable (no interpretation satisfies this

conjunction). The usage of this fact is why resolution is commonly referred to as

a refutation proof method.

• The resolution rule preserves the set of models of a Skolemized CNF formula.

• An empty clause in a CNF formula is unsatisfiable, since it is the disjunction of

zero literals (and so none of them can be satisfiable).

A relevant property of all sound and complete inference systems for first-order

logic, including resolution, is that they are semi-decidable (see §3.5), meaning that they

will always terminate with a positive result when a formula is provable, but they may

sometimes not terminate when a formula is not provable.

More details about resolution can be found in [Bundy, 1983,

Robinson and Voronkov, 2001].

3.2.2 Higher-order logic

Second-order logic is the extension of first-order logic by allowing functions and predi-

cates whose universe of discourse are first-order functions and predicates themselves,

as well as second-order variables that can be quantified over.

Similarly, one can further extend this to higher and higher levels of abstraction,

or include arbitrary levels within the same language. This is what is called higher-

order logic. A thorough, general overview of higher-order logic can be found in

3.2. Logic and automated theorem proving 37

[Paulson, 1989]

One of the most fundamental elements added in higher-order logic with respect

to first-order logic is that of lambda abstractions, original from lambda calculus

[Barendregt, 1992]. A lambda abstraction is an explicitly defined function, indicating

how it syntactically combines its arguments in its body through variables. For example,

the function λ f .λx. f (g(f (x),x)), which would typically instead be written using the

different notation λ f .λx. f (g(f x)x), is a second-order function that takes the variable f ,

ranging over first-order functions, and the variable x, ranging over first-order elements,

and returns the result of applying f to the result of applying the constant function g to

its two arguments f (x) and x.

3.2.2.1 Higher-order unification

Most of the concepts of first-order logic can be extended to higher-order logic. However,

the algorithmic properties of some of these become more problematic. This becomes

most clear with higher-order unification. In higher-order logic, not only do some

unification problems not have a single most general unifier (instead having multiple,

and sometimes infinitely many, maximal unifiers which do not contain each other); but

even checking for the unifiability of two or more terms (is there a unifier at all?) is a

semi-decidable problem in general (see §3.5).

Nonetheless, extensive work has been done trying to provide powerful tools to

higher-order logic, due to its incredibly attractive general expressivity properties. A

crucial piece of work is Huet’s higher-order unification algorithm [Huet, 1975], which,

while obviously remaining semi-decidable, and inevitably intractable even when decid-

able, has some attractive algorithmic properties based on deep insights about the nature

of higher-order unification problems. This is also one of the most complex results in

traditional automated theorem proving research. A comprehensive survey of this and

related algorithms can be found in [Dowek, 2001].

We can describe two of the most important topics behind Huet’s algorithm in the

following way:

• Least (or minimal) commitment - Huet’s algorithm deals with a large portion

of the problem’s undecidability and intractability issues by prioritizing exploration

38 Chapter 3. Background

of possible solutions that do not incur so much in it. A perfect example of this

is what are often called “flex-flex pairs”, which concerns the unification of two

higher-order expressions that both have variable heads (functions). This is one of

the most important situations in which there is not a most general unifier, but there

is a large number of maximal unifiers, highly dependent on the specifics. Huet’s

algorithm encodes these cases implicitly (as equations), avoiding the exploration

of their explicit solutions, instead focusing on parts of the problem that are more

likely to produce deterministic results. This is what we call a minimal commitment

approach, because the instantiation of variables is only produced to the extent

that is required to continue the execution of the algorithm. The commitment to

specific solutions is minimal.

• Non-determinism - While Huet’s algorithm is not often explained explicitly in

terms of non-determinism, it can be understood in such a way, and this perspective

is very relevant to this thesis. As mentioned in the previous point, the lack of a

most general unifier can be dealt with by non-deterministically exploring multiple

branches of possible solutions, that only when combined together reconstruct the

original solutions.

Both of these properties are central in the work presented in this thesis. Minimal

commitment resolution for existential second-order query logic, the algorithm presented

as one of the main contributions of this work, leverages heavily on both of these.

However, as we discuss in chapters 5 and 7, the scope of our algorithm is, in one sense,

an extension of higher-order logic, but in most other senses a constrained version of it.

This means that our algorithm solves a less general problem in similar, but (we argue,

or we attempt) in more efficient ways than higher-order unification does.

3.2.2.2 Second-order unification

A particular case of higher-order unification is second-order unification. While second-

order unification is a subset of higher-order logic; it is also, in general, only semi-

decidable. However, a relevant amount of research effort has undergone on find-

ing the fundamental limits and elements of the language that make it undecidable

[Levy and Veanes, 2000, Farmer, 1991, Levy, 1998]; and on finding specific subsets of

second-order logic that are decidable and potentially useful. Some of the most promi-

nent examples of these are bounded second-order unification [Schmidt-Schauß, 2004],

3.2. Logic and automated theorem proving 39

monadic second-order unification [Farmer, 1988] and linear second-order unification

[Levy, 1996] (which is not, in general, decidable, but certain subcases of it are).

In chapter 4 we describe our language for representing patterns as faults, which we

call existential second-order unification. This is a subset of second-order unification.

It is therefore an important question whether this subset is decidable, whether one of

the decidable algorithms described for the languages above can be applied to it, or the

ideas behind them can possibly be extended to them. The extent of this discussion

can be found on chapter 5, but the general conclusion is that existential second-order

unification is clearly not a subset of any of the above mentioned languages, and the

ideas underlying these algorithms cannot be applied directly to our problem in a clear

way that does not require further research beyond the scope of this PhD. Of course, the

possibility of taking inspiration in these ideas to develop more complex algorithms that

deal with our problem in ways not considered in this thesis always remains open, but I

have not found any result in that respect; and we briefly introduce the fundamentals of

these languages and their decidable unification algorithms here in order to enable the

discussion in chapter 5.

3.2.2.2.1 Linear second-order unification

Linear second-order unification [Levy, 1996] is the problem of unifying general second-

order terms, but restricting the set of unifiers under consideration to those that instantiate

second-order variables to linear terms.

Definition 3.2.18 (Linear second-order term). Linear terms are second-order terms

where bound variables in a lambda abstraction occur exactly once in the body of the

lambda-abstraction.

For example, the following is a linear term:

λx,y. f (x,y) (3.1)

while the following is not:

λx. f (x,x) (3.2)

The principal way in which algorithms for cases of linear second-order unification

exploit the linearity of the problem is by forgoing two rules in general second-order

40 Chapter 3. Background

logic (referred to as elimination and iteration), which non-deterministically extend the

search space of the unification problem by considering whether a variable could appear

fewer or more times in the instantiation. These rules are inherently semi-decidable in

that one can always apply them additional times, so removing them removes one of the

most important sources of undecidability (non-termination).

3.2.2.2.2 Bounded second-order unification

From a slightly simplistic point of view, we can say that bounded second-order uni-

fication [Schmidt-Schauß, 2004] is an extension of linear second-order unification in

which, instead of limiting the occurrence of bound variables in lambda-abstractions to

exactly one we limit it to any boundary (a maximum number of occurrences). This

means that the algorithm cannot completely forgo the consideration about the number

of occurrences of bound variables in instantiations of second-order variables, but it can

effectively limit how many times these rules are applied, to ensure termination (and

thus decidability).

Definition 3.2.19 (Bounded second-order term). A second-order term φ is bounded

with boundary n if there is no bound variable in a lambda abstraction within φ that

occurs more than n times in the body of the abstraction.

Definition 3.2.20 (Bounded second-order unification problem). A bounded second-

order unification problem with boundary n is any second-order unification problem

with the additional restriction that we only consider instantiations for second-order

variables to bounded second-order terms with boundary n.

[Schmidt-Schauß, 2004] provides a sound, complete and terminating algorithm for

general bounded second-order unification. We note that while decidable, this problem is

known to be NP-hard, as proven in [Schmidt-Schauß, 2004], meaning that the algorithm

is (currently and probably unavoidably) computationally problematic.

3.2.2.2.3 Monadic second-order unification

Definition 3.2.21 (Monadic second-order term). A monadic second-order term is one

which contains no function constants with arity greater than or equal to 2. A second-

order language/signature is monadic if it contains only function symbols with arity less

than or equal to 1.

3.2. Logic and automated theorem proving 41

Unification in monadic second-order languages is called monadic second-order

unification [Farmer, 1988]. For example, the following second-order term is monadic:

λx. f (x) (3.3)

while the following is not:

λx,y. f (x,y) (3.4)

The fundamental aspect of monadic second-order terms that the algorithm described

in [Farmer, 1988] exploits is that it is fundamentally impossible for the instantiation

of a monadic second-order term to have more than one bound variable (that is non-

trivial). Because each function symbol is monadic, the body of a lambda abstraction will

always consist in a (potentially empty) sequence of applications of function symbols to

individual terms, and ultimately to either a single variable or a constant; but never more

than one variable. This means that instantiations of monadic second-order terms are

isomorphic to sequences (or words). For example:

λx,y. f (g(h(x))) (3.5)

ignores its second argument, and thus is essentially the same as:

λx. f (g(h(x))) (3.6)

that is, there are no non-monadic instantiations of second-order variables. Thus, this is

fundamentally isomorphic to the word:

f gh (3.7)

This property greatly simplifies the complexity of the problem, mainly by

completely removing the aspect of function substitution and correlation between

different variables from the problem.

An important aspect of monadic second-order unification, and in particular the algo-

rithm shown in [Farmer, 1988], is that in order for the algorithm to become decidable,

considering unification schemata as opposed to individual unifiers, is necessary. The

unification schemata utilized in [Farmer, 1988] allow variable numbers of repetitions of

subsequences within a sequence to represent infinite (but regular) sets of unifiers that do

42 Chapter 3. Background

not have a common most general unifier. The general concept of unification schemata

is a very interesting one that could potentially be used in more clever ways, both in this

thesis and elsewhere. We do not directly utilize unification schemata, but the underlying

ideas are present in the way we discuss dependency graphs, introduced in chapter 5

and explained in more detail in chapter 7; and in the way our particular implementation

handles answer sets (chapter 8).

3.2.3 SAT and SMT

Propositional logic is logic without object variables or quantifiers. It is gener-

ally considered the simplest type of logic and explained first. The reader may

familiarize themselves with propositional logic in any standard logic textbook

[Bundy, 1983, Robinson and Voronkov, 2001]. For simmplicity, we define it from

the previously given first-order logic definition before, by removing variables and

quantifiers.

Definition 3.2.22 (Propositional logic). Propositional logic is the subset of first-order

logic with no object variables or quantifiers, and with added propositional variables.

Definition 3.2.23 (Propositional variable). A propositional variable is a variable that

functions as an atom. An interpretation of a propositional variable assigns it either a

true > or false ⊥ value.

For example, the propositional formula:

(p∨q)∧ (r∨¬q) (3.8)

has three propositional variables: p, q and r. If, for example, an interpretation assigns

all three to >, then the formula is true in that interpretation. If, for example, an

interpretation assigns all three to ⊥, then the formula is false in that interpretation.

Definition 3.2.24 (Satisfiable propositional formula). A propositional formula is satisfi-

able if there is at least one interpretation of its propositional variables that makes it

true (satisfies it).

Definition 3.2.25 (SAT (Satisfiability problem)). The satisfiability problem (usually

abbreviated SAT) is the problem of, given a propositional formula, deciding whether it

is satisfiable.

3.2. Logic and automated theorem proving 43

SAT [Gomes et al., 2008] is one of the most studied algorithmical problems that ex-

ist. The basic algorithm that most modern SAT solvers are based on is the DPLL (Davis-

Putnam-Logemann-Loveland) procedure [Davis et al., 1962, Nieuwenhuis et al., 2006].

DPLL is a parametric search procedure which utilizes the relation between proposi-

tional variables as established by the propositional formula to guide the search. A large

proportion of the research done in SAT and related topics [Gomes et al., 2008] has gone

into studying heuristics for precisely guiding this search.

Algorithmically, SAT is normally considered to be the fundamental NP-complete

problem [Wikipedia contributors, 2022c], with the Cook-Levin theorem [Cook, 1971]

establishing that SAT is an NP problem (a solution can be checked in polynomial

time) and an NP-hard problem (if a polynomial algorithm for SAT existed, then it

could be used to build a polynomial algorithm for any other NP problem), making it

NP-complete. It is common to prove NP-hardness of other problems by polynomially

reducing SAT to them, as a proxy for every other possible NP problem.

In relation to its NP-completeness, there is a plethora of search and constraint

problems with real-world applications that can be reduced to SAT. Therefore, fast

SAT solvers are highly attractive for their practical applications as much as for their

theoretical insights. However, there are plenty of search and constraint problems that

cannot be reduced to SAT. For example, first-order logic. Usually (and informally),

these problems include an infinite aspect of some nature (e.g. quantifiers in first-order

logic). Mainly in order to deal with some of these problems that are not, technically,

reducible to SAT, but which have a lot of structure that can be exploited in simple ways

(including relevant subsets of first-order logic), SMT (Satisfiability Modulo Theories)

was developed. An overview of SMT can be found in [Nieuwenhuis et al., 2006].

Formally, an SMT problem is a problem with a propositional component (SAT) and a

first-order component, that is implemented in a specialized way.

There are two general approaches to SMT solvers: eager and lazy approaches.

In the eager approach, the problem is first reduced to a propositional problem, and

the propositional problem is then solved using an off-the-shelf SAT solver. In the

lazy approach, the SAT solver works closely with the specialized theory that enables

exploration of the boolean value of first-order expressions in the given theory during

execution of the SAT algorithm. We can define this a bit more formally.

Definition 3.2.26 (Eager SMT algorithm). An eager SMT algorithm is an algorithm to

solve a problem consisting of two separate parts:

44 Chapter 3. Background

1. A part that reduces an arbitrary instance of the problem to the problem of

establishing the satisfiability of a finite number of propositional formulas.

2. A SAT algorithm.

Definition 3.2.27 (Lazy SMT algorithm). A lazy SMT algorithm is a SAT algorithm

enhanced with a theory-specific oracle that the SAT algorithm can query during its

execution with specific instances of the problem. The general flow and search properties

of the algorithm are those of the SAT algorithm, with the oracle providing support for

the non-propositional parts of the problem exclusively.

There are a number of important theories for which SMT algorithms ex-

ist. Prominent examples include linear arithmetic [Bozzano et al., 2005], the the-

ory of arrays [Brummayer and Biere, 2009], equality and difference constraints

[Armando et al., 2004] and temporal reasoning [Armando et al., 1999]. There has even

been work in utilizing the SMT approach to handle the entirety of first-order logic

[Barrett et al., 2002, Bongio et al., 2008], though this comes with important limitations

and is not in general preferable to standard first-order logic theorem proving approaches.

3.2.4 Description logics

We do not concern ourselves directly with description logics in this thesis, but we

do need to acknowledge them in the context of their use for defining ontologies and

defining patterns. OWL (§3.1) is a description logic, for instance.

Description logics are formally variations of first-order logic (§3.2.1) with a few

important differences:

• Description logics usually have constrained expressivity, disallowing various

forms of constructing formulas that first-order logic allows. For instance, function

nesting may be disallowed, or quantification might be limited to only certain

shapes, etc.

This allows description logics to both be decidable and/or much more algorith-

mically attractive than first-order logic (depending on the specific description

logic). That is, for many description logics, such as OWL, there are decidable

and tractable automated inference algorithms.

3.3. Constraint programming 45

• Description logics often use more human or program-like language, even if their

semantics are still aligned with those of first-order logic. For example, they may

use more text and overloaded syntactical constructs rather than short mathematical

language and special symbols.

• Description logics typically have a considerably larger focus on classes and

properties (see for example §3.1), as opposed to individuals. While description

logics do have the ability to talk about individuals and first-order logic has the

ability to talk about classes and properties, the difference is more in the way that

the language is designed to be used and what aspects it focuses on.

Description logics are talked about in plural because there are many of them, with

differences mostly in their expressivity and also possibly some differences in their

syntax. There are often multiple alternative syntaxes for the same description logic,

such as is the case with OWL (§3.1).

3.3 Constraint programming

Constraint programming is a broad term used to describe approaches to solving con-

straint problems by encoding them in programming languages specifically designed

to this end (either specific types of constraints or more general families of constraint

problems). While a lot or most of these approaches have a clear and explicit relation to

logic, technically constraint programming encompasses broader approaches than those

typically catalogued as logic.

The general approach of constraint programming approaches is to provide a

language which is fundamentally declarative and aimed at expressing constraints, has

very specific semantics and, usually, has some computational elements that allow the

programmer to guide the search process to the problem.

SAT and SMT (§3.2.3) are both closely related to the internal execution aspects

and the semantics of many constraint programming approaches, and can be considered

a constraint programming approach in themselves. In this section, we consider two

additional families of constraint programming approaches: Logic programming and

Answer Set Programming.

46 Chapter 3. Background

3.3.1 Logic programming

Logic programming is heavily based on first-order logic and resolution theorem prov-

ing (§3.2.1.2). Prolog [Sterling and Shapiro, 1994b] is the principal and first logic

programming language, and Prolog programs are declarative sets of clauses of two

types:

• Facts - Unconditional statements that are defined to be “true” or “satisfied” by

the program. For example, pizza(X).

• Rules - Conditional statements that have a head and a body. The head rep-

resents the statement that can be concluded, while the body indicates a set of

conditions that need to be satisfied for the head to be satisfied. For example,

cheesyPizza(X):- pizza(X), hasTopping(X,Y), cheese(Y).

Facts and rules are technically two particular cases of the same logical construct,

which corresponds exactly to that of a Horn clause. They have variables in them,

that can appear both in the body and the head of rules. This allows rules to represent

conditional statements that are true of only those elements of the universe of discourse

for which the conditions hold.

Computationally speaking, Prolog is a goal-oriented refutation procedure. This

means that the way to run a Prolog program is to input a query or goal (which may

include free variables), and Prolog systematically tries to match the goal(s) with facts

or the head of rules. When a rule matches, the associated conditions are added as new

goals and the process continues. In the matching procedure, unification (see §3.2.1.2) is

utilized with respect to the variables.

The main difference between Prolog and resolution automated theorem provers

is that automated theorem provers will usually try to do a full and fair exploration of

the search space of potential applications of the resolution rule, and use heuristics to

guide this search; whereas Prolog strictly defines the search order as a consequence

of the way the program is written, with additional computational utilities (for

example, cuts) used to give the programmer additional control over this. Automated

theorem provers will also often not be limited to Horn clauses. Practically speaking,

Prolog is regarded as a programming language rather than a theorem prover, and

3.3. Constraint programming 47

is used to implement solutions to technical problems rather than to prove mathe-

matical theorems, though the problems used for Prolog are often mathematical in nature.

3.3.1.1 Extensions of Prolog

There are more logic programming approaches than Prolog. We will briefly discuss two

families of these.

Higher-order logic programming, and in particular Lambda Prolog

[Miller, 2021, Nadathur and Miller, 1988], extends the notions of applying reso-

lution theorem proving to create a declarative programming language to higher-order

languages. The principal (and large) difficulty in this extension is the issue (discussed in

§3.2.2) of higher-order unification and its much less attractive computational properties

(compared to first-order unification). Mainly due to this issue, Lambda Prolog is much

less popular and extensively used than regular Prolog. It is, however, particularly

relevant as closely related in scope and principles to some of the technical problems

in this thesis. A technical aspect of particular relevance about Lambda Prolog is that,

like Prolog, it is limited to Horn clauses, and this limitation is fundamental to its

implementation and algorithmical aspects.

Another related topic is Constraint Logic Programming [Jaffar and Lassez, 1987].

Constraint Logic Programming fundamentally understands that the declarative style and

computational approach of Prolog can be applied to more general constraint solving

problems and approaches than first-order resolution. At a basic level, the following

extensions of the pieces of Prolog are made:

• Facts are replaced by the more general notion of constraints. They still represent

unconditional elements that have to hold in any solution to the problem.

• Rules are preserved but their semantics are generalized. They still represent a

connection between the body and the head, but in a more general way. A rule

head :- c1, c2. indicates that in order for the constraint head to be satisfied, the

constraints c1 and c2 need to be satisfied in the solution.

• Unification as the fundamental constraint solving process is replaced with a

general abstract notion of any constraint solving process that relates the head and

48 Chapter 3. Background

the body of rules.

• Goals are still utilized as a means to guide the search.

As can be derived from the way we described it, Constraint Logic Programming

is not a singular approach, but rather a family of approaches with shared notions. The

particularities of what the constraints represent and the particular constraint solving

process utilized change the nature and specific semantics.

3.3.2 Answer Set Programming

Answer Set Programming (ASP) [Brewka et al., 2011, Balduccini, 2009] is a language

for expressing (and automatically solving) constraint satisfaction problems that focuses

more on providing an easy and intuitive way to express problems than on particularly

strong automated resolution capabilities. In particular, basic ASP is fundamentally based

on propositional logic (§3.2.3), with a declarative language conceptually very similar to

Prolog, but with an underlying resolver based on DPLL [Nieuwenhuis et al., 2006].

The target problems of ASP are search problems in finite spaces in which the user

may utilize the declarative language’s capabilities to guide the resolution of the problem,

similar to how Prolog would. It provides a tool where users can express their specific

problems quickly and intuitively and get automated answers with theoretical guarantees,

and avoid or limit the effect of computational pitfalls through conscious choices in the

definition of the program.

ASP also has first-order-like syntax, though all variables are forall quantified, which

together with its handling of negation means that the programs are finite in nature and

can always be automatically reduced to propositional programs that the resolver then

works through. Negation in ASP takes two forms:

• Intuitionistic negation (inability to prove a given atom)

• Strong negation (classical negation, a semantic relation in every model between

an atom and its negation).

The limited expressivity of ASP means that strong negation is pragmatically

equivalent to adding a new atom for the negative literal, with a few implicit rules that

relate them. Thus it’s both not very useful and not very complicated to handle.

3.4. Rewrite systems 49

There are some research efforts into adding expressivity to ASP, one step at a time. A

relevant example of this for the purposes of this thesis is about the possibility of adding

existential rules to ASP [Baget et al., 2018]. This, naturally, has important limitations

and challenges that relate to known properties of logic and algorithmics. Therefore,

ASP continues to not be an ideal choice for applications that rely heavily on these

semantic aspects.

3.4 Rewrite systems

A good, more complete overview on rewrite systems can be found on

[Huet and Oppen, 1980, Robinson and Voronkov, 2001]. Here we will cover

some basic notions that relate to our usage of rewrite systems, mostly as a theoretical

tool to show certain results in chapter 7.

Rewrite systems or Rewrite rule systems are a mathematical tool used to define and

reason about formal systems in which we have elements that can be transform into

equivalent ones, normally to simplify them in some way. Results in rewrite system

topics typically include confluence and termination results, both of which we will

discuss shortly.

A simple example can be polynomials with addition and multiplication, such as

(3+ x)× (x+9). Rewrite systems normally begin by defining a set of direct reduction

rules. For example:

a×b→ a ·b|a,b ∈ R
xn× xm→ xn+m|n,m ∈ N
a× xn→ axn|a ∈ R,n ∈ N
axn +bxn→ (a+b)xn|a,b ∈ R,n ∈ N
(p+q)× r→ p× r+q× r

Note we have omitted rules for commutativity and associativity here, and instead

assumed them implicitly. We can then produce transitive chains of reductions, in which

all the elements in the chain are equivalent, but the latter ones are more simplified than

previous ones. For example:

50 Chapter 3. Background

(3+ x)× (x+9)→
→ 3× (x+9)+ x× (x+9)→
→ 3× x+3×9+ x× (x+9)→
→ 3x+3×9+ x× (x+9)→
→ 3x+27+ x× (x+9)→
→ 3x+27+ x× x+ x×9→
→ 3x+27+ x2 + x×9→
→ 3x+27+ x2 +9x→
→ x2 +12x+27

The question then, is, what if we had applied the rules in a different order; for

example:

(3+ x)× (x+9)→
→ 3× (x+9)+ x× (x+9)→
→ 3× x+3×9+ x× (x+9)→
→ 3× x+3×9+ x× x+ x×9→
→ 3× x+3×9+ x2 + x×9→
→ 3× x+27+ x2 + x×9→
→ 3x+27+ x2 + x×9→
→ 3x+27+ x2 +9x→
→ x2 +12x+27

The fact that we get the same final result, or in fact, that we would have gotten

the same result regardless of the order in which we applied the rules, regardless of the

initial expression, is called confluence of the rewrite system.

Definition 3.4.1 (Confluence). A rewrite system is confluent if for any expression that

can be reduced two different ways a and b, then it is the case that a and b can both be

reduced to the same expression c.

The following is an important result in rewrite systems relating to confluence and

irreducibility:

Theorem 3.4.1 (Unique normal form). If a rewrite system is confluent, and an expres-

sion can be reduced to an irreducible expression, then that irreducible expression is

unique (it is the only one it can be reduced to), and it is called a normal form.

3.4. Rewrite systems 51

For example, x2 +12x+27 is a normal form in the above rewrite system.

It makes sense to ask whether applying rewrite rules a different way would have

made us never reach a normal form. This is what we call termination of the rewrite rule

system. For example, the following simple rewrite system is not confluent:

A→ B

B→ A

because the expression A gets rewritten to B, which in turns gets rewritten to A

and so on. To be precise, a rewrite system is terminating if every reduction chain is finite.

A constrained notion of confluence is that of local confluence, which asks the

confluence property only for expressions a and b which are direct reductions of the

original expression. Local confluence is much easier to prove than confluence, and in

fact confluence is usually proven by proving local confluence and termination, and then

using the following fundamental result:

Theorem 3.4.2 (Newman’s lemma / Diamond lemma). A terminating rewrite system is

confluent if and only if it is locally confluent.

Well behaved rewrite systems like this allow us to prove a slightly stronger result

than theorem 3.4.1:

Theorem 3.4.3 (Exists and unique normal form). If a rewrite system is terminating and

confluent, then any expression can be reduced to a unique normal form.

The main usefulness of this result is that in well behaved systems, we can decide

whether any two expressions are equivalent by reducing each of them to a normal form,

and then comparing their normal forms.

Corollary 3.4.1 (Equivalence of normal forms). In a terminating and confluent rewrite

system, two expressions a and b are equivalent if and only if they have the same normal

form.

Proof. Each of a and b have their unique equivalent normal form aN and bN .

If a and b are equivalent, then so are aN and bN . But each of aN and bN have a

unique equivalent normal form, and they are both normal forms, so they must be exactly

the same.

52 Chapter 3. Background

In the other direction, if a and b have the same normal form N, then both a and b

are equivalent to N, and thus are equivalent between them.

3.4.1 Graph rewrite systems

In what we have described so far, and in fact in almost all the literature on rewrite

systems, rewrite systems operate on either sequences of symbols (“strings”) or terms,

which involve a hierarchical (tree) structure, but are still ultimately linear (can be tra-

versed in a linear manner while going over all relevant links between elements). In both

of these cases, rewrite rules can be applied locally to subsequences/subterms/subtrees

because the scope of a sequence, term or tree is always locally defined. For example, if

we have a string αβγ, and we want to apply a reduction β→ β′ locally, we can consider

this to be the result of “taking β out” of the original string, replacing it with β′, and then

putting that back in, for the result αβ′γ. Similarly, if we have a term α(β,γ), we can

reduce β locally irrespective of α and γ.

However, rewrite systems can also be considered for more complex data structures,

but local application can be more thorny to define. In this thesis we do this: we define a

rewrite system on graphs. The main concern with local application of rewrite rules in

graphs is what to do with edges that connect to any of the nodes in the local sub-graph

after replacement. All sequences have a beginning and an end, but not all graphs have

the same number of nodes or a clear way to identify them between them.

One way to deal with this is to always define rewrite rules globally for graphs,

meaning they can only be applied to whole graphs. Then, confluence and termination

results about rewrite systems can be applied to them normally. We do not do exactly

this in this thesis, instead opting for an intermediate approach in which we define the

rules locally, but explicitly indicate how to handle their context.

In the term graph rewriting literature, similar formalisms have been considered, even

though our approach is not directly based nor inspired in any of these. For comparison,

we can establish the similarities and differences with some of these.

In general, term graph rewrite systems are defined over hypergraphs, meaning edges

can have multiple sources and/or targets. For example, see [Habel and Plump, 1995,

Plump, 2002]. This is also the case for us. Another, fundamentally equivalent approach

is to use labelled edges/nodes, such as in [Barendregt et al., 1987, Dwork et al., 1984].

3.5. Termination / decidability and enumeration procedures 53

A subtle difference between our approach and all approaches we’ve found in the

literature is that a term graph in the literature usually corresponds to one term, and

these can, for example, be unified into a new graph, whereas in our approach the

graph represents the unification problem (in fact, multiple unification problems) at

once. At the level of a graph rewrite system, this difference is inconsequential, and it

only has to do with the meta-level aspects of our particular algorithm with respect to

unification. An interesting concept throughout, that while not directly adopted, may

help understand some of the considerations in chapter 7 is that of graph homomorphism

[Barendregt et al., 1987]. It has a basic relation to our notion of solution preserving

rule (definition 7.4.1) in that it establishes semantic relations between different graphs.

An aspect of term graph rewriting, that in [Habel and Plump, 1995, Plump, 2002,

Barendregt et al., 1987] is informally called “garbage collection”, and relates to what

in [Dwork et al., 1984] is called “propagation” and “transitivity”, is the notion that the

non-locality of graph rewriting means that the application of rewrite rules can have

important effects on the state in which the global graph is left, and may need to be

dealt with. One way to deal with this (that we adopted) is to have minor rewrite rules

specifically designed to clean these aspects, and have a clear priority between the rules.

We achieve this through most of our prefactorizing rules (see definition 7.5.3), which

have the exact purpose of cleaning up the graph; the dependency graph normalization

levels (§7.3) and the normalization preconditions on most of the rewrite rules of our

system.

3.5 Termination / decidability and enumeration proce-

dures

While we have discussed termination and decidability throughout this chapter without

issue, this aspect is central enough in this thesis to provide some clear background

as to our terminology. A thorough discussion on these topics can be found on any

introductory book to theoretical computer science, such as [Sipser, 1996]. We will omit

fundamental definitions here such as the definition of an algorithm.

Note, however, that it is common in theoretical computer science to reserve the

word algorithm only for terminating processes. An algorithm is some computational

process that terminates, computing some result from its inputs.

54 Chapter 3. Background

We say that a problem is decidable if there exists an algorithm that computes it.

Similarly, a decision problem (that is, a problem with a positive or negative result) is

semi-decidable if there is a computational process that terminates if and only if the

input produces a positive result2.

There is less concern in conventional literature, however, with the problem of enu-

merating infinite sets. Similar concerns appear sometimes in the context of computing

with real numbers or when considering non-deterministic processes, but these often

have a different scope and perspective than the one followed in this thesis.

In our case, we consider problems whose answer is an infinite (countable) set, and

extend the usual definition of algorithm to include non-terminating processes that,

however, produce iterative and complete (fair) results (enumerate the infinite set). Since

most of these results are not exactly standard, we produce them in chapter 7. However,

there are a couple of basic notions that would be relevant for the reader to understand

thus far.

Definition 3.5.1 (Enumeration procedure). An enumeration procedure E for a set A is

a computational process that keeps producing results a ∈ A, and such that every a ∈ A

is eventually produced after a finite time by E.

Note that this does not mean that E terminates at all, or that there is necessarily ever

a moment where all a ∈ A have been produced: while each individual a is produced

after finite time, if A is infinite, then E will necessarily never completely enumerate it.

Second, consider that given any two enumeration procedures E1 and E2 for sets A1

and A2 respectively, it is easy to produce an enumeration procedure E1∪2 that enumerates

A1 and A2, even when they are both infinite. Of course, naively enumerating A1 first is

problematic because A2 never gets enumerated. But we can enumerate both at the same

time by producing one result from each set at a time (this is often called interleaving).

For example, consider the set A3 = {3,6,9,12, ...} of all multiples of 3, and

consider the set A5 = {5,10,15,20, ...} of all multiples of 5, and respective enumeration

procedures A3 and A5 that enumerate them in ascending order. Then, we can

2Note that for most semi-decidable problems, the reasonable procedure will also terminate on some
negative results, but it is always possible to make this match the theoretical definition by forcing the
procedure into an infinite loop when the negative result is found. In particular, every decidable problem
is also semi-decidable.

3.5. Termination / decidability and enumeration procedures 55

produce an interleaving procedure A3∨5 that enumerates all multiples of 3 or 5 by

alternating which of A3 or A5 we pick next; effectively producing the enumeration

{3,5,6,10,9,15,12,20, ...}.

Finally, this can be extended to a more general situation: Given an enumeration

procedure E0 for a set A, and one parametric enumeration procedure Ea that enumerates

a set Ba for each a ∈ A, it is possible to build a single enumeration procedure Ed (we

will often call this the diagonalization) that enumerates the set
⋃

a∈A
Ba. The specifics

are tedious to describe, but entirely analogous to the usual proof that Q and N are

equipotent sets; a construction that can be implemented in a general algorithm that

works with arbitrary enumeration procedures. This result can be chained multiple times

to essentially combine infinite sets of infinite sets any number of times, while keeping

the enumeration sound and complete.

We use this approach extensively in our work.

Chapter 4

Faults as patterns

The basic idea of using patterns of some kind to detect errors or faults is not novel at all.

This comes from the idea that an ontology (like any other formal system) is mostly

correct and errors and faults are likely to be isolated instances “hidden” underneath

everything else.

A brief discussion about wording would be adequate. Throughout this thesis, we

use the term “fault”, as opposed to other options such as “error”, “pitfall”, “bad smell”,

“problem”, “warning” or “mistake”. While none of these terms have a formal and/or

clearly agreed upon definition, to the best of my knowledge, they usually have slightly

different connotations. On one hand, “error” seems to indicate that some aspect of the

definition of the ontology is necessarily incorrect. “Fault” is more generic in that it also

conceptually (and in practice, as described in this chapter) includes situations that are not

necessarily incorrect but rather suboptimal or potentially problematic in the future. The

word “mistake” carries a similar connotation to “error”, except it additionally assumes

that the error is the product of a simple human issue during the definition of the ontology

(a mistake). “Pitfall” is used in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016,

Poveda-Villalón et al., 2012] and has the connotation of referring to a particular thought

pattern or human mistake that leads to the definition of the ontology in a suboptimal

way. In some ways, “pitfall” is to “fault” as “mistake” is to “error”. This is arguably in

part because of the focus in the cited work on design patterns to be applied by humans

during the definition of the ontology to avoid these pitfalls (even if they do incorporate

some level of automated methods of detection, which are aimed primarily at pointing

them out to the ontology developer). Our focus is broader, trying to include any fault,

regardless of the source or what we will want to do with it. “Bad smell” is probably

57

58 Chapter 4. Faults as patterns

closest to what we do here, but this terminology is a bit more specific and (to our

knowledge) not used in the ontology debugging literature, instead being relegated to the

software debugging literature (such as [Fowler, 1999]). Similarly, “bad smell” would

be more adequate to refer to our patterns than to the faults that we detect with them,

since the bad smell is a sign of a fault, not a fault in itself. “Warning” has a similar

situation and would probably be a suitable nomenclature for our patterns (or the result

of their application), but not for what they are trying to detect: faults.

All of this said, these definitions are small and conceptually the differences are not

big between these concepts. The main reason we use the “fault detection” terminology

is to try to establish the particular perspective from which we look at it: that there are

patterns that are suboptimal or potential problematic in the ontology, and we are trying

to detect them.

A large portion of the literature on ontology debugging falls in one way or another

into this abstract and general concept (see chapter 2), and so does related work like bad

smells in software engineering [Fowler, 1999].

The interesting questions are:

1. What does a fault pattern look like?

2. How do you detect a pattern?

3. What are good patterns to use?

We answer the first and third questions in this chapter, and the second one in chapter

5.

4.1 Semantic patterns

Part of the issue with faults in logical ontologies is their ability to quickly spread

through inference due to the high expressivity of logic. For example, the following

set of statements, paraphrased and slightly modified from the original example on

[Rector et al., 2004] (and which can be seen in more detail in appendix A):

• Toppings are things you put on pizzas.

4.2. Reasoning outside of the box 59

• Chocolate ice creams are ice creams that have chocolate toppings.

• Chocolate toppings are toppings.

leads to the conclusion that chocolate ice creams are pizzas. This is a simple inference

but the point is there is no statement explicitly talking about ice creams and pizzas at

the same time, yet the fault arises as such.

However, we can embrace this property of logical inference in our pattern detection

framework, by considering semantic patterns of entailed situations rather then explicit

patterns (e.g. syntactic). In the example above, a semantic pattern that matches any

situation where two primitive classes subsume1 another primitive class and do not

subsume each other, would match this and identify the fundamentally problematic

situation, even if it does not correspond to any of the explicit axioms in the ontology. In

particular, pizza, ice cream and chocolate ice cream would likely be primitive classes,

and chocolate ice cream is subsumed by the two others.

Following this notion, it makes sense to express the semantic patterns as some form

of extension of first-order logical formulas that represent the structure of the situation

we are looking for while leaving some room for interpretation (variables) that can match

multiple situations. We talk more about this in §4.3.

4.2 Reasoning outside of the box

Logics are an extremely expressive formalism, in which most other formalisms can be

embedded. More precisely, logical inference is one of the most far reaching kinds of

inference. When using the same base knowledge, logical inference has the potential to

produce more conclusions than, for example, taking the knowledge base to be a simple

list of facts, strictly causal reasoning, etc.

The reason this is relevant is that, if we intend to use exclusively the information

strictly semantically entailed by the original ontology, then any conclusions we would

draw would in some way already be entailed by the ontology itself. With (small) caveats,

what we are saying is that every conclusion that could be drawn, through any means of

1Whenever we discuss subsumption in this chapter, we refer to inferred subsumption unless explicitly
stated that we are talking about asserted subsumption.

60 Chapter 4. Faults as patterns

inference, exclusively from the semantics of the ontology, is already an implicit part of

the ontology.

We thus need to incorporate additional information to be able to detect faults other

than the direct inconsistency of the ontology.

A large source of additional information are the patterns themselves. This is another

of the reasons why using patterns for fault detection makes sense. The patterns are

supposed to be general knowledge of situations that are not necessarily inconsistent but

which often signal faults; knowledge that is not semantically contained in the original

ontology.

However, there are other important sources of additional information that we can

and indeed do use. In the example from the previous section, we used the notion of

classes being primitive to identify the situation. However, and as described in §3.1, the

notion of a class in OWL being primitive or defined is one about the way the class is

expressed, rather than about the mathematical semantics of the class. Similarly, we may

want to use the notion of an axiom being expressed explicitly in a particular way, or a

class in OWL being defined, or the existence of a domain or range axiom in a class, just

to name a few examples. This information is part of the ontology in terms of its explicit

representation, but not of its semantics, and thus cannot be obtained merely through

logical inference.

Our framework incorporates the notion of contextual knowledge, an explicit repre-

sentation of specific facts about how the ontology is expressed and other information

about its context that may be relevant to detect faults. In many cases, this corresponds

to explicit declarations about the syntactic structure of the ontology (for example, as

with the primitive and defined classes discussed earlier). Note that this contextual infor-

mation will often be dependent on the specifics of the ontology, such as its formalism,

methodological context, purpose, etc. As such, our framework does not specify how

to obtain this contextual information in general, but all the contextual knowledge used

in patterns that we have collected is very simple to extract from the ontologies with

little more (and sometimes less) than a simple scan of the explicit representation of the

ontology. In the pattern catalogue in appendix A, the specific contextual knowledge

utilised in each pattern and its meaning are explicitly discussed.

4.3. Existential second-order query logic 61

4.3 Existential second-order query logic

As explained in §4.1, we want to use a logical formalism to represent patterns so that

we can embrace the entailment capabilities of the ontology itself.

The main reason that we need to use second-order logic to represent these has to do

with the desired generality of the patterns. A pattern that only matches an individual

fault in an individual ontology is both unrealistic to have (it would require us knowing

this ontology beforehand) and incredibly useless (only works for this situation). In

other words, in order for something to be a pattern, it generally involves some form of

variability. However, this variability usually comes in the elements of the language of

the ontology itself (for example, the names of the predicates / classes). Thus, first-order

variables are unsuited for the task. Second-order variables, on the other hand, can

be used as “wildcards” in patterns. We can indicate that any entailed formula, in the

combination of the ontology with the contextual information, that matches the pattern

by replacing the second-order variables with some set of predicates or functions, is an

instance of the pattern. Furthermore, the specific replacement of second-order variables

(we call this the instantiation of the pattern) for specific predicates and functions is a

very adequate way to express to the user what the fault may be.

For instance, we could produce a formula with second-order variables A, B and C

(class / predicate variables), indicating that if A, B and C are all primitive, A and B both

subsume C but neither A nor B subsume each other, then a fault is likely. In such a case,

the specific instantiation of the variables A, B and C would indicate the primitive classes

that produce this issue, producing a great way to describe the fault.

However, we are not embracing all capabilities and expressivity of second-order

logic, by far. Instead, the only true element of second-order logic that our meta-

ontologies contain are second-order variables in patterns to indicate source of variability.

Instantiations of second-order variables used as wildcards will be compositions of

first-order functions and predicates. This is described in a lot more detail in chapters 6

and 7.

A relevant notion about the formal aspect of this usage of second-order variables is

that finding all instantiations of patterns with second-order variables is equivalent to

finding all constructive proofs of the existentially quantified formula; which in a theory

containing no axioms with quantified second-order variables, is equivalent to finding

all proofs of the existentially quantified formula, as every proof will be constructive2

2further discussed in chapter 5

62 Chapter 4. Faults as patterns

(each proof will correspond to a family of instantiations of the variables that make the

resulting first-order formula provable). For example, consider the theory:

∀x.p(f (x))

∀x.p(x) =⇒ q(x)

and the pattern

∀x.P(x)

where P is a second-order predicate variable. Two instantiations of this pattern are

P≡ p◦ f and P≡ q◦ f . Each of these instantiations corresponds to one proof of the

second-order existentially quantified formula ∃P.∀x.P(x).
Due to the fact that all second-order variables appearing in our patterns will be

conceptually existentially quantified, we call our logic existential.

It is important to note, however, that we are not only interested in finding that

the formula ∃P.∀x.P(x) is provable or not. Instead, we wish to explicitly find every
instantiation of P for which the pattern ∀x.P(x) holds. Indeed, a pattern is an indication

of a potential fault, but there may be more than one in an ontology or some indications

may be false alarms while others aren’t. In debugging terms, fault patterns indicate

warnings rather than necessarily errors. Moreover, the user needs to check which of

these correspond to actual faults and which do not, which is achieved by finding all

explicit instantiations of the patterns. Thus, completion in the search is fundamental.

We will write this with the notation:

P � ∀x.P(x)

which should be read as “The P’s for which ∀x.P(x) is entailed”, and which is not a

formula that is entailed or not entailed, but rather, it is a query with a result set (all the

P’s that entail ∀x.P(x)).

One additional note regarding non-first-order elements has to do with the afore-

mentioned contextual knowledge. For example, consider how we could express that a

class (a first-order predicate) p is primitive. The most natural way would be to have a

statement of the form primitive(p). What is primitive here? We could represent these

4.3. Existential second-order query logic 63

as second-order predicates / functions, but3 this would then make any second-order ex-

pression that is equivalent to p to also be primitive (through extensionality). Moreover,

we note that (as explained before) contextual knowledge is extracted from the ontology

through some additional process and assumed to be simple, and that patterns do not

include second-order operations on the contextual knowledge predicates themselves.

Thus, it is much more adequate to represent these as meta-predicates than second-order

predicates. This requires that statements of contextual knowledge are always stated and

processed separate from statements in the underlying existential second-order query

logic, which is not at all a problem in all the examples and patterns that we have

compiled.

Thus, our language contains two types of statements:

• First-order statements with existentially quantified second-order variables.

• Meta-statements with simple meta-predicates applied to first-order functions,

predicates and second-order variables standing for these.

These two types of statements are always kept separate and processed separately.

Unification of meta-statements corresponds to a simplified version of first-order

unification and we do not even discuss it any further in this thesis. Both of these

statements may appear in the described queries. The separation of the meta-predicates

exclusively in meta-statements ensures that the syntatic type of each element is always

clear and thus we do not require the usage of quotes.

The specific formalism for representing these queries is what we call existential

second-order query logic (or ESQ logic for short), and is described in more detail in

chapter 6. We have, however, explained the adjectives “existential”, “second-order” and

“query”.

We can explain the “computational” adjective as well. In the course of exploring

existing research on detecting faults in ontologies and identifying patterns, we

realized that in a lot of situations, there is a great benefit (performance, presentational,

intuitive, etc.) in expressing patterns as a prescriptive computation rather than a merely

declarative expression. Thus, the queries that we use to represent our patterns are not

comprised of individual formulas, but rather combinations of these, each with their own
3as pointed out by Paul Jackson, internal examiner of this thesis, during the viva and in discussions

afterwards

64 Chapter 4. Faults as patterns

result set that is reutilized by the other queries in specific ways. This is also explained

in more detail in chapter 6.

An additional reason to consider separate queries that are combined in an explicit

way is that some patterns may try to find entailed formulas while others may try to find

satisfied formulas, and we may want to combine them.

We will present here an example of a full ESQ logic query. Consider the chocolate

ice cream example described above and the pattern “two primitive classes that subsume

another primitive class but such that they do not subsume each other”. We will express

this as the following combined query:

((P,Q,R) �∗ (∃X .P(X)∧¬Q(X))∧ (∃X .Q(X)∧¬P(X)))on

on ((P,Q,R) � (∀X .R(X) =⇒ P(X))∧ (∀X .R(X) =⇒ Q(X)))on

on ((P,Q,R) �M primitive(P)∧primitive(Q)∧primitive(R))

which first (read from right to left like function evaluation) considers combinations

of classes that are all primitive, checks whether two of them subsume the third one,

and then checks whether it is possible that those two classes do not subsume each

other. This streamlining aids both with expressing the query succinctly, controlling the

branching factor of the algorithmical search for solutions, and combine different types

of queries (entailment and satisfiability).

A complete theoretical definition of ESQ logic and discussion about its computa-

tional aspects can be found in §6.2.

4.4 The meta-ontology fault detection framework

All of what has been described so far in this chapter comes together into the meta-

ontology fault detection framework to automatically detect faults in an ontology O:

1. Translate / ensure O is in the adequate formalism4

2. Extract contextual knowledge C from the ontology and encode it.

3. Combine O, C and the fault patterns into a second-order ontology (which we

often also call the meta-ontology).
4In our work, this is first-order logic, but the abstract framework could potentially be used with other

formalisms, such as OWL or other description logics.

4.4. The meta-ontology fault detection framework 65

4. Apply the detection mechanism to find instantiations of the patterns.

The reason we call it meta-ontology fault detection is that the combination of O,

the contextual knowledge and the fault patterns is technically also an ontology in the

more general formalism required to detect patterns that has O embedded into it, and

the detection of patterns conceptually consists in performing inference within this

formalism.

This approach has a couple of important attractive properties, some of which we

have already mentioned:

• The pieces are independent and interchangeable. The patterns, the method to

extract the contextual knowledge, the specific algorithm to detect patterns and the

ontology O itself are not necessarily coupled with each other. It is true, however,

that often the contextual knowledge needs to have some level of compatibility

with the patterns, and so does the algorithm with the patterns. From a conceptual

point of view though, they are clearly separate pieces, which allows for easier

improvements on just some parts of the process.

For example, the same set of patterns is likely to be applicable to many, if not all

ontologies conceivable.

• By embedding O into a meta-ontology in an adequate way, we ensure that it

only combines with the contextual knowledge and the patterns in exactly the

intended ways. Language overlaps are not an issue (e.g. O contains only first-

order statements using first-order predicates, but contextual knowledge statements

are normally second-order statements using second-order predicates).

• The use of contextual knowledge gives a lot more power to what the patterns may

encode. This allows encoding much more generic patterns into the framework.

• The computational nature of patterns allows for pragmatic concerns to be encoded

and partly dealt with within them. For example, by using the more constraining,

less computationally expensive queries first, as a filter for the search space of the

more expensive queries.

66 Chapter 4. Faults as patterns

4.5 Pattern catalogue

Apart from defining the framework, we have carried out a task of examining a portion

of the literature on ontology debugging and interpreting the ideas contained in it as

specific ESQ logic queries that encode fault patterns for our framework.

This task has been quite successful, showing the expressive power of our approach

and how it may be a way to generalize and systematize a lot of the ideas in ontology

debugging.

In this section we include two examples of patterns extracted from the literature.

The remainder (18 patterns in total) is too long to be included in the body of the thesis,

but is included in the appendix A. In chapters 9 and C, among other things, we examine

the level of success of the process of encoding patterns as ESQ queries.

For each example, the following information is given:

• Description of the example.

• Reasoning behind considering it a fault.

• Formalism in which the example is originally represented. For example, OWL,

first-order logic, etc.

• Conceptual source of the fault. For example, an inadequate blend of ontologies,

an imprecision in a natural language processing technique or a misconception by

an ontology designer.

• Specific source of the example. A reference to an existing ontology where it was

found, a paper where it was mentioned, etc.

• Detection strategy

• (Optional) Repair suggestions. These are always quite informal and non-

systematic, but they may still be quite useful in many cases. We do not explore

repair mechanisms in this thesis, but it is an obvious avenue of future work and

when compiling the pattern catalogue it made sense to make some notes about it.

• Formal fault pattern. Expressed using ESQ logic.

4.5. Pattern catalogue 67

• Additional contextual information that is used at the meta-level for defining the

patterns.

As an additional note regarding formulation: take into account that whenever the

present tense is used to make a statement (for example, “a chocolate ice-cream is not

a pizza”), we mean that in the preferred model5 a chocolate ice-cream is not a pizza,

whereas the faulty ontology might entail so.

The following are two representative examples from the catalogue:

4.5.1 Fault pattern 1: Assuming universal quantification implies

existential quantification (Empty pepper pizza)

In [Rector et al., 2004], it is mentioned that one of the most common sources of errors

for ontology designers unfamiliar with OWL is to assume that universal quantifiers

imply existential quantifiers. A class which only has a universal quantifier as an axiom

for a property may have that axiom satisfied trivially by having an empty range for that

property.

As an example, consider the following definition of a PepperPizza:
class(PepperPizza complete

Pizza

restriction(hasTopping allValuesFrom PepperTopping))
which means that every pepper pizza is also a pizza and all of its toppings

are pepper toppings, or, in first-order logic; ∀x.PepperPizza(x) =⇒ (Pizza(x) ∧
∀y.hasTopping(x,y) =⇒ PepperTopping(y)).

And now consider the following definition of MargheritaPizza:
class(MargheritaPizza complete

Pizza

restriction(hasTopping allValuesFrom Nothing))
which implies that every margherita pizza is also a pizza and has no toppings. In

first-order logic: ∀x.MargheritaPizza(x) =⇒ (Pizza(x)∧¬∃y.hasTopping(x,y)).

The ontology then entails that a margherita pizza is a pepper pizza, which is not

conceptually what we refer to when we talk about pepper pizzas.

5In some sense, what we consider to be really true.

68 Chapter 4. Faults as patterns

4.5.1.0.1 Why is it a fault

A margherita pizza is not a pepper pizza. A pepper pizza needs to have some pepper in

it.

4.5.1.0.2 Formalism

OWL

4.5.1.0.3 Conceptual source of the fault

A failure, by the ontology designer, to express all conditions that define a PepperPizza.

An assumption that universal quantification entails existential quantification.

4.5.1.0.4 Specific source of the example

I have concocted this example based on the ideas expressed in [Rector et al., 2004].

4.5.1.0.5 Detection strategy

A good approach is to check if there is any class subsumption (PepperPizza subsumes

MargheritaPizza) which is only enabled by a trivial satisfaction of a universal quantifier

in the definition of PepperPizza. While there may be some legitimate cases where

this kind of subsumption is correct (for example, a MargheritaPizza is arguably a

VegetarianPizza), it is a good start to signal these cases.

An important note should be made here. If tomato and mozzarella were considered

toppings in the ontology, then this fault would be harder to detect, at least with the

approach described here. While having no toppings is an extreme case that seems

easier to flag, having no toppings except mozzarella or tomato (or any other kind of

composite predicate like that) seems too broad to signal as a fault. For example, if we

had a concept PepperPizza which could have green, red or yellow peppers and then a

RedPepperPizza that could have only red peppers, it would be foolish to suggest that it

is a fault that the subsumption between RedPepperPizza and PepperPizza is spurious: it

is not. There is no structural difference, without lexical knowledge about what pepper

pizzas are, that differentiates this from the Margherita pizza being subsumed by Pepper

pizza.

4.5. Pattern catalogue 69

4.5.1.0.6 Repair suggestions

A sensible suggestion is to explicitly remove the trivial case from the definition of the

class. This is easily done by adding a condition that there are at least some toppings in

pepper pizzas.

4.5.1.0.7 Fault pattern

To put the idea described previously more precisely, we are looking for classes A

(Pizza), B (MargheritaPizza) and C (PepperPizza), property R (hasTopping) and class P

(PepperTopping) such that:

1. C subsumes B. We can use the previously defined macro subsumes(C,B).

2. C has a universal property restriction to it. We require contextual informa-

tion to identify this as being something explicitly indicated in the ontology6.

class property restriction(C,R,P). There is a class property restriction indicat-

ing that for every x of class C (every pepper pizza), it is related through relation

R only to elements y of class P (it only has pepper toppings).

3. All instances of B have that universal property restriction fulfilled trivially.

∀x.B(x) =⇒ ¬∃y.R(x,y), which is read as, for every element of class B, there is

no element to which it is related through property R.

A key difference with this case, and one that showcases the usefulness of the

instantiation set approach as compared to more ad-hoc procedures, is that the subsumed

class (X) is not constrained by the domain constraint, and so any class may work there.

However, we can still leverage the computational properties of the rest of the pattern to

ideally find instances quick, using equational reasoning while keeping account of what

we are limited to.

The resulting pattern would be:

((X ,Y,R) � (∀x.X(x) =⇒ ¬∃y.R(x,y))∧ (∀x.X(x) =⇒ Y (x)))on
on ((Y,R) �M class property restriction(Y,R,P))

(4.1)

6We could find any entailed universal property restriction for a class, but that would make the purpose
of the pattern moot as we are looking for definitions that are not used, in some sense, not for entailments
that are not used.

70 Chapter 4. Faults as patterns

4.5.1.0.8 Related contextual information

We have introduced the new contextual predicate class property restriction to express

that something is expressed as a class property restriction explicitly in the OWL ontology.

It is fundamental for the intuition behind this fault pattern.

4.5.2 Fault pattern example 2: Missing domain or range properties

Pitfall P11 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], properties which

have no domain or range constraints are regarded as prone to faults.

For example, consider the following ontology:

class(Writer)

class(LiteraryWork)

ObjectProperty(writesLiteraryWork)

which simply states there are two unary predicates (classes) Writer and LiteraryWork

and a binary property writesLiteraryWork.

4.5.2.0.1 Why is it a fault

Without domain or range constraints, writesLiteraryWork could in theory apply to any

object in the semantics. This has many unwanted consequences, such as the inability

to infer useful theorems about the property because its wide domain and range mean

that strange situations can appear, the potential for the property itself to interfere with

the inference of other parts of the ontology for the same reason, and all the secondary

consequences these may have.

4.5.2.0.2 Formalism

OWL

4.5.2.0.3 Conceptual source of the fault

Most likely the author forgot to include the domain and range constraints.

4.5.2.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

4.5. Pattern catalogue 71

4.5.2.0.5 Detection strategy

It is in principle easy to detect. Look for explicit properties in the ontology that have no

domain or range constraints.

It is very interesting that in [Poveda-Villalón et al., 2012], the authors acknowledge

that their detection mechanism is limited in the sense that it will not count inherited

domain or range constraints for these purpose. Our approach in principle goes even

further to consider any inferred domain or range constraints as valid, enabling the

author of the ontology to rely on reasoning to provide these, and meaning that our

automated detection mechanism is even more useful for working with these situations

while still having a way to check whether we forgot to provide them.

However, because we are looking for properties that do not have range or domain

constraints, we are not finding an instantiation of these domain or range constraints that

makes them provable, but rather, that are satisfiable.

4.5.2.0.6 Repair suggestions

It is very hard to provide useful repair suggestions for this fault pattern, as that would

imply having knowledge about what the domain or range of the property should be.

4.5.2.0.7 Fault pattern

((P) �∗ ∀x.∃y.P(x,y))on ((P) �M explicit property(P))

((P) �∗ ∀x.∃y.P(y,x))on ((P) �M explicit property(P))

(4.2)

This last example involves a satisfiability check rather than an entailment check.

Indeed, a domain or range constraint involves an axiom entailing that the property only

applies to some elements. The lack of such an axiom involves that the limitation is

not entailed. This is not the same as the negation being entailed, as there could be

models of theories in which a property has no domain or range properties, but not every

instance in that model is related through the property (in fact, this would be true in

most cases). For example, only people legally own property; but some models of a

theory without this domain constraint may in fact be such that every element that owns

another is a person. It is not entailed that every element must own property.

72 Chapter 4. Faults as patterns

Satisfiability queries are discussed in more detail in §6.2.

4.5.2.0.8 Related contextual information

We have introduced the predicate explicit property to indicate that a property is explic-

itly defined in the ontology.

4.6 Summary

In this chapter we have explained in detail two of the three main contributions of this

thesis: The meta-ontology fault detection framework and the pattern catalogue. The

meta-ontology fault detection framework uses fault patterns encoded as logical queries

using a meta-ontology containing the original ontology plus contextual knowledge

about how the ontology was expressed to automatically detect instantiations of those

patterns.

We call the language that we use to describe the fault patterns existential second-

order query logic (ESQ logic). It is logic because we want to consider entailment

/ satisfiability when checking for a pattern match, as opposed to explicit or simple

syntactic checks. It is a query language because the answers are not yes or no, but

rather sets of instantiations of the pattern. It is existential second-order because we

need some second-order expressivity capabilities to properly describe our patterns and

the contextual knowledge, but only to a certain degree (second-order variables are only

existentially quantified).

One of the main attractive aspects of meta-ontology fault detection is that the

ontology, the methods to extract the contextual knowledge, the patterns themselves,

and the algorithm to detect the patterns in the ontology are, to a degree, indepen-

dent of each other, and so each of them can be modified or exchanged for a different one.

The pattern catalogue is a set of patterns expressed in ESQ logic that we have

collected from multiple sources in the literature on ontology debugging. We have

understood the contexts and rationales behind these fault patterns and encoded them in

the common framework that we have developed. This has been quite a successful task,

showing that a majority of the nuances of these approaches can be effectively expressed

in ESQ logic.

Chapter 5

Automatic detection of patterns

In chapter 4, we introduced the meta-ontology fault detection framework and the ESQ

logic formalism for expressing patterns of faults within this framework.

We did not, however, specify the algorithmical process by which, from an ontology

and contextual knowledge associated with it, and a formal description of a pattern,

one produces an enumeration of instantiations of this pattern: how does one use the

patterns to find faults?

This chapter deals with this aspect of the problem in detail, and also contains

the informal description of the third (and perhaps largest) contribution of this thesis:

minimal commitment resolution for ESQ logic, an algorithm and background theory

that we have developed precisely to solve the detection problem in the most satisfactory

way.

5.1 Automated theorem proving

A fundamental point that needs to be clearly established is the following: Finding

instantiations of ESQ logic queries in a logical theory is an automated theorem proving

task. As described in §4.1, ESQ logic queries are semantic patterns encoding sought

entailments. Thus, in order to find their instantiations, we need to consider the full

length of the entailments of the ontology.

Let us look at the example presented in §4.3. Consider the theory:

∀x.p(f (x))

∀x.p(x) =⇒ q(x)

73

74 Chapter 5. Automatic detection of patterns

and the logical query

P � ∀x.P(x)

In order to find the two desired instantiations of this pattern (P≡ p◦ f and P≡ q◦ f),

it is necessary to produce proofs of each of these statements. Specifically, P≡ p◦ f is

associated with a proof by an axiom:

∀x.p(f (x))

while for P≡ q◦ f , we need a one-step proof:

(∀x.p(f (x)),∀x.p(x) =⇒ q(x))

` ∀x.q(f (x))

Therefore, it makes sense to (and we do) use all of the existing knowledge, tech-

niques and approaches of the automated theorem proving and constraint solving fields

and subfields. However, we will argue that conventional approaches to these are not

directly suited to directly deal with this problem. This is the reason why we have

developed our algorithm, which however is heavily based on previously existing theory

and approaches.

5.2 Brute force search

In this section we describe a simple, yet ineffective, approach to finding instantiations

of ESQ logic queries, based on reducing the problem to first-order theorem proving.

Before we proceed to the meat of this section, let us briefly remind that meta-

statements in the logic are solved separately from pure ESQ statements, and that this

process is a simplified version of first-order unification. Thus, the only obstacle to

reducing ESQ logic queries to first-order theorem proving are second-order variables.

The brute force approach then, considers a formula1 that is part of a ESQ logic

query, that contains second-order variables, and reduces finding its instantiations to the

following process:

1. Consider the set of all functions and predicates present in the signature.
1From now on we use a single formula to represent the entire theory, since the theory can be presented

as a conjunction, and then implication and/or negation can be used to join this with the potential theorem.
See §3.2.1.

5.2. Brute force search 75

2. Extend this set to the (in general, infinite) set of all compositions of functions and

predicates in the signature (the second-order Herbrand universe, see §6.2).

3. For each free second-order variable, and each element in the second-order Her-

brand universe, consider the formula that replaces each variable for each such

element. The resulting formula contains no second-order variables.

4. For each such formula, use first-order theorem proving methods to check whether

it is a theorem or not.

5. For those formulas that are provable, output the corresponding instantiation of

second-order variables that was used.

In other words, try every potential instantiation of second-order variables, producing

a first-order formula for each of them, and try to prove it. Let’s see an example. Consider

the theory:

∀x.p(f (x))

∀x.p(x) =⇒ q(x)

and the logical query

P � ∀x.P(x)

The signature here contains two predicates: p and q and one function f . Thus,

the (infinite) set of possible instantiations of P looks like this: {p,q, p◦ f ,q◦ f , p◦ f ◦
f ,q◦ f ◦ f , ...}. For each of those, the pattern in the query is a first-order formula. For

example:

∀x.p(x)
∀x.q(x)
∀x.p(f (x))

∀x.q(f (x))

∀x.p(f (f (x)))

∀x.q(f (f (x)))

...

We can then individually apply first-order theorem proving techniques to each such

formula to attempt to prove them. Some will be provable (for example, ∀x.p(f (x)), and

76 Chapter 5. Automatic detection of patterns

others will not (for example, ∀x.p(x)).

While this approach works in theory, it has horrendous algorithmical properties.

First of all, note that each attempted proof of a first-order formula is a semi-decidable

and potentially intractable problem. These proofs would thus need to be run in parallel

or diagonalized (see §3.5). Second, the size of this set of formulas is infinite as long as

there is at least one function (that is not 0-ary) in the signature. But worse still, the rate

of growth of this space as the depth of the terms increases is exponential on the size of

the signature.

This becomes even more abhorrent in the face of realizing facts such as that any

proof of ∀x.p(f (x)) is automatically a proof of ∀x.p(f (f (x))), but the converse is

not true. Even when the proofs themselves are not strictly contained in each other, it

is likely that a lot of the proof steps will be common, and repeating them for each

individual attempt at a first-order proof seems entirely unnecessary.

These properties are why the brute force approach is unconscionable in practice;

and when considering the seemingly natural idea of doing common parts of the proof

first and only enumerating second-order variables whenever necessary, we arrive at the

fundamental idea of minimal commitment resolution for ESQ logic, described in §5.5.

5.3 Technical challenges

There are fundamentally two reasons why conventional automated theorem proving and

constraint solving approaches are not best suited to solve this problem: The second-

order nature and the query nature of ESQ logic (see §4.3). In the following sections

we discuss the general issues with these, while later on we consider specific potential

approaches and the particular problems with each of them.

5.3.1 Second-order

A very large proportion of research and results in automated theorem proving is strictly

constrained to first-order logic or more constrained formalisms (this includes proposi-

tional logic and description logics, among others). There are several good reasons for

this:

• A large proportion of real world applications of automated reasoning can be

5.3. Technical challenges 77

expressed in first-order logic or more constrained formalisms.

• While first-order logic has intractable and semi-decidable worst case computa-

tional properties, efficient algorithms and powerful heuristics exist that deal with

most practically appearing situations within it.

• Moreover, a lot of practical applications of automated theorem proving can be

and are expressed using more constrained formalisms like description logics that

have even more attractive algorithmical properties.

• Second or higher-order automated theorem proving, while being possible

and indeed there are well-known technologies that use it (see, for example,

[Paulson, 1989]), has much more unattractive algorithmical properties that make

its applicability much more limited.

Existential second-order logic is, as its name implies, a form of second-order logic,

and thus research limited to strict first-order theorem proving cannot be directly applied

to solve our problem.

An issue of higher-order logic is its immense expressivity. This severely affects

limitations in existing general approaches to it, either by constraining the expressivity in

specific ways (for example, Lambda Prolog (see §3.3.1.1), or by offering very little in the

way of algorithmical guarantees (see §3.2.2). In ESQ logic, however, we are constrained

to existentially quantified second-order variables (see definition 6.1.2 and following

discussions). In this thesis, we attempt to leverage these limitations in expressivity to

produce more efficient algorithms than those possible for general higher-order logic by

cutting some corners.

All of this thus leaves us in a point where using tested first-order approaches is

technically insufficient, but using conventional higher-order approaches is excessive in

expressive power, and unsatisfactory in practical terms.

5.3.2 Queries

ESQ logic is a query logic. This was discussed in §4.3, but we present it here again.

The answer to a ESQ logic query is a set of instantiations that satisfy the query,

whereas the answer to a potential theorem in first or higher-order logic is true or false:

78 Chapter 5. Automatic detection of patterns

“is it a theorem, or not”, or, at most, a proof of the theorem.

It is important to understand how this is not at all a trivial problem that can be

overcome with a simple tweak of the existing algorithms or approaches. We will present

this by comparison with two distinct alternatives:

5.3.2.1 ESQ queries and first-order theorem proving

The main element that distinguishes ESQ logic from first-order logic is the presence

of second-order variables for which we wish to find instantiations. In other words, for

each possible instantiation of second-order variables, the resulting query is a first-order

logic formula (this is discussed in more detail in §5.2).

It is precisely the fact that queries have many possible results that prevents ESQ

logic from being solved directly by first-order theorem proving methods. In other words,

if the problem was simply to ascertain whether a given instantiation satisfies the formula

or not, this would be exactly a first-order theorem proving problem. The presence of free

second-order variables makes first-order unification inapplicable directly. It does make

a lot of sense to adapt the ESQ logic problem to a variation / extension of the first-order

problem, and this is what we discuss both in §5.2 and in §5.5, the latter of which is

our implemented approach and one of the main contributions of this thesis. In other

words, while first-order theorem proving is not enough, we have followed an approach

of extending it only as much as necessary to solve our problem, treating the presence of

second-order variables as a specific challenge to overcome (which it is, given that ESQ

logic was always designed to find patterns in first-order logic theories).

5.3.2.2 ESQ queries and higher-order theorem proving

It is in fact theoretically possible to find instantiations of ESQ logic queries using

traditional higher-order logic, but we should examine what this involves.

Because higher-order logic does include second-order variables as part of its lan-

guage, we can directly encode the body of a ESQ query as a higher-order formula, and

seek to use higher-order theorem proving to find instantiations. In order to attempt to

prove a formula, however, it needs to be closed, meaning no free variables are left. We

thus need to quantify the second-order variables from the ESQ query.

It is clear that universally quantifying these variables would not have the intended

5.3. Technical challenges 79

semantics of finding instantiations of a query, and it is existentially quantifying them

which properly represents our problem from a higher-order logic point of view. Consider

the possible proofs of the existentially quantified formula. It is traditional to categorize

proofs of existential formulas (that are not valid) into two families:

• Non-constructive or classical proofs - That is, proofs which only prove the

existence of an instantiation, but do not provide any insight on what that instan-

tiation may look like. Formally, these proofs can be traced back to atoms with

quantified variables. For example, if every person has a father and we know of

the existence of at least one person (but nothing else about them), then we can

prove the existence of at least one father (but nothing else about who that father

may be). These proofs are completely irrelevant for ESQ logic, because in ESQ

logic we will never have axioms containing quantified second-order variables.

• Constructive proofs - That is, proofs that something exists that build it. These

are exactly what we are looking for. Therefore, the following would be a funda-

mentally valid approach to finding instantiations of ESQ queries:

1. Existentially quantify all free second-order variables in the ESQ query.

2. Produce all proofs (they will all be constructive because we do not have

second-order quantified variables in axioms) in higher-order logic of the

existentially quantified formula.

3. For each of those proofs, inspect the construction of the instantiation to

produce an instantiation of the ESQ query. This is similar to the usage of

witnesses in resolution proofs, such as, for example, logic programming

[Sterling and Shapiro, 1994b].

To summarize: If the theory contains no quantified second-order variables

and the part of the goal pattern containing second-order variables is not valid,

then every proof of it will be constructive. For example, for a theorem ∃P.P(a)
to be provable from a theory that contains no second-order variables, the only

possibility would be to find particular instantiations of P that satisfy P(a). For

example, if the theory contains axioms p(a) and ∀x.p(x) =⇒ q(x), then we can find in-

stantiations P≡ p and P≡ q, but every proof of the theorem will provide a witness for P.

Thus, a standard higher-order theorem prover could be used to find instantiations of

the pattern by finding all such proofs and generating witnesses from them. The issue

80 Chapter 5. Automatic detection of patterns

with this method is double and compounded, even if in theory it is perfectly valid. First,

the fact that the usual higher-order automated theorem proving methods are in general

not computationally attractive and tailored to the particularities of ESQ logic. Second,

and more importantly, the issue with finding all proofs of an existentially quantified

formula. Usual higher-order automated theorem proving methods are not geared at all

towards this goal, instead focusing on finding one proof.

This is extremely problematic in that a usual higher-order automated theorem

proving method will omit entire spaces of proofs when it is known that an alternative,

cheaper proof exists; and these omissions are fundamental for both the success and the

algorithmical properties of the algorithm (see the issue with flex-flex pairs as discussed

in §3.2.2). A direct application of usual higher-order theorem proving techniques to

find instantiations of a ESQ query would result in even more issues than usual with

intractability, non-termination and unfairness of the search process.

5.4 Utilizing existing approaches

In the following we discuss in more particular detail the issues with each of a series

of candidate methods for solving our problem using existing approaches. We note

that in general these are not issues that completely prevent the application of these

approaches. Instead, they indicate large challenges either in terms of expressivity,

computational feasibility or simply the fact that a significant development of additional

original research would be needed for the approach to be applicable to our problem.

Some of these may turn out to be productive avenues of research, and we try to outline

the promises that they afford as much as their challenges.

In other words, the purpose of this section is not to say these approaches are hopeless,

but rather to justify that they were not obvious solutions to our problem. I chose to

develop the approach that I did based on this preliminary exploration and the realization

that important issues would need to be faced in every possible approach. This was an

informed and I feel justified decision, but certainly not the only one I could have taken.

5.4.1 Higher-order logic

We begin by discussing general higher-order logic or second-order logic approaches,

and some specific implementations of it. The challenges come in three main shapes:

5.4. Utilizing existing approaches 81

Not enough expressivity, no ability to ask instantiation queries, or computational issues.

We will look at three particular implementations that fall within this category: Isabelle

automated theorem prover, Leo III automated theorem prover, and Lambda Prolog. A

technical comparison between dependency graph unification and standard higher-order

unification can be found in §7.7.

5.4.1.1 Isabelle

Isabelle2 [Paulson, 1989] is an interactive higher-order theorem prover with full

expressivity and focused on tactics and giving the user the ability to structure proofs

themselves and utilize tactics and lemmas in an effective way, rather than give the

theorem prover full control over the proof search. It is quite powerful in the hands

of an experienced mathematician and has a robust foundation and a lot of technical treats.

The issue with off-the-shelf Isabelle is that it is fundamentally incapable of providing

a list of results. An Isabelle program consists of a series of logical statements at varying

levels of abstraction that the automated theorem prover verifies, either generating errors

or accepting it as valid. For example, the following is an Isabelle program that proves

that

(∀x.(p(x) =⇒ q(x)))∧ (∀y.p(f (y))) =⇒ (∀z.q(f (z))) (5.1)

theory example

imports Main

begin

theorem

fixes p q :: "’a \<Rightarrow> bool"

fixes f :: "’a \<Rightarrow> ’a"

assumes A1: "\<forall>x :: ’a. p(f(x))"

assumes A2: "\<forall>y :: ’a. p(y) \<longrightarrow> q(y)"

shows "\<forall>z. q(f(z))"

proof

fix z

from A1 have L1: "p(f(z))" by simp

2https://isabelle.in.tum.de/

https://isabelle.in.tum.de/

82 Chapter 5. Automatic detection of patterns

from A2 have L2: "p(f(z)) \<longrightarrow> q(f(z))" by simp

from L1 L2 show "q(f(z))" by simp

qed

end

This program was written mostly manually, and the reason why we know the theorem

is proven is because Isabelle accepts the program with no errors. The automated theorem

prover of Isabelle has two fundamental ways in which the user interacts with it:

1. By calling proof methods (for example, simp in the example).

2. By providing error outputs to the user when proof steps are invalid or proof goals

are not fulfilled.

The output of the second one is only an accept or an error message. But in no case

will it return instantiations of variables. The only hope would come from the first one.

While the output is still an accept or error message, the proof methods can be complex

and involve relatively complex proofs (automated). Even if it’s not usually output, one

could argue it would be simple to output these proofs. However, this is still largely

problematic. To see why, let us try to have Isabelle output q as an instantiation of a free

existential variable. We start by existentially quantifying it, while keeping a specific

proof for q:

theory existential

imports Main

begin

theorem

fixes p q :: "’a \<Rightarrow> bool"

fixes f :: "’a \<Rightarrow> ’a"

assumes A1: "\<forall>x :: ’a. p(f(x))"

assumes A2: "\<forall>y :: ’a. p(y) \<longrightarrow> q(y)"

shows "\<exists>r. \<forall>z. r(f(z))"

proof

show "\<forall>z. q(f(z))" proof

fix z

5.4. Utilizing existing approaches 83

from A1 have L1: "p(f(z))" by simp

from A2 have L2: "p(f(z)) \<longrightarrow> q(f(z))" by simp

from L1 L2 show "q(f(z))" by simp

qed

qed

This works absolutely fine, but we had to tell Isabelle that q was the instantiation

we were looking for. Let us have it produce that automatically for us. We could start by

completely automating the proof for q:

theory existentialauto

imports Main

begin

theorem

fixes p q :: "’a \<Rightarrow> bool"

fixes f :: "’a \<Rightarrow> ’a"

assumes A1: "\<forall>x :: ’a. p(f(x))"

assumes A2: "\<forall>y :: ’a. p(y) \<longrightarrow> q(y)"

shows "\<exists>r. \<forall>z. r(f(z))"

proof

show "\<forall>z. q(f(z))" by (simp add: A1 A2)

qed

end

which also works perfectly. The only step left is to not tell it the instantiation q is the

one we’re after. This actually also works:

theory existentialsearch

imports Main

begin

theorem

fixes p q :: "’a \<Rightarrow> bool"

fixes f :: "’a \<Rightarrow> ’a"

assumes A1: "\<forall>x :: ’a. p(f(x))"

assumes A2: "\<forall>y :: ’a. p(y) \<longrightarrow> q(y)"

84 Chapter 5. Automatic detection of patterns

shows "\<exists>r. \<forall>z. r(f(z))"

by blast

end

While we do not get the actual instantiation of r that satisfies the proof, extracting

a witness from the proof would probably not be very hard. It could be either r = p or

r = q that blast utilizes to find the proof. But herein lies the fundamental issue. There

are other instantiations, like p◦ f , q◦ f , p◦ f ◦ f , etc. How can we ask Isabelle to output

all instantiations? We cannot. A simple idea would be to explicitly exclude the ones we

already know of (so iteratively using Isabelle to extract solutions sequentially). We can

try this:

theory existentialsearch

imports Main

begin

theorem

fixes p q :: "’a \<Rightarrow> bool"

fixes f :: "’a \<Rightarrow> ’a"

assumes A1: "\<forall>x :: ’a. p(f(x))"

assumes A2: "\<forall>y :: ’a. p(y) \<longrightarrow> q(y)"

shows "\<exists>r. r \<noteq> p & (\<forall>z. r(f(z)))"

by blast

end

This program does not work. Moreover, when using the catch-all sledgehammer

procedure to try to find any method that works to prove this, Isabelle produces no results.

The inequality makes the situation hard enough that Isabelle’s automated elements are

at a loss.

The reason behind this is at the heart of the inadequacy of off-the-shelf Isabelle

to solve our problem, and relates to the standard higher-order unification algorithm

[Huet, 1975], which Isabelle fundamentally utilizes (in varying ways, depending on

proof method). As described previously, one of the most important aspects of this

algorithm is that it focuses on unifiability rather than on finding all unifiers. Therefore,

the inequality is checked by Isabelle a posteriori after unification has found one unifier

5.4. Utilizing existing approaches 85

for the rest of the formula. It cannot go back and find a different unifier. Moreover,

and more importantly, even if we modified the algorithm (or Isabelle’s proof methods)

to produce all unifiers, or at least sequentially produce those that we asked, it would

become intractable. No known algorithm produces all maximal unifiers of a higher-

order logic problem in an computationally feasible way for medium sized problems.

Avoiding this search is a known feature of Huet’s algorithm, as it avoids computational

issues. But in our problem, we fundamentally need it to go back to this constraint. The

algorithm is simply not designed for this, and thus neither is Isabelle.

Of course, a very sensible idea is to try to modify the algorithm to output all unifiers

in a computationally reasonable way, possibly by leveraging the expressivity limitations

of ESQ logic. But at this point, we are fundamentally doing exactly what this thesis

ends up doing, and whether or not we use Isabelle on top is only an additional liability

and not an advantage for the problem at hand. The outcomes of this thesis could be

applied to extend Isabelle to do this, but I considered that using Isabelle would not have

been an advantage to begin with.

5.4.1.2 Leo III

Leo III3 [Steen and Benzmüller, 2018, Steen, 2020] is a fully automated higher-order

theorem prover based on extensional higher-order paramodulation. The main difference

with Isabelle is that it is fully automated rather than being interactive / tactical. However,

at its core it follows similar principles: uses particular tactics to guide the search, and

is ultimately reliant on a variation of the standard higher-order unification algorithm

[Huet, 1975].

We can follow a similar approach to what we did with Isabelle to see the limitations

with Leo III. Leo III uses TPTP4 input files to describe its problems. We can produce

the following file to describe the same problem as above, that is, prove:

(∀x.(p(x) =⇒ q(x)))∧ (∀y.p(f (y))) =⇒ (∀z.q(f (z))) (5.2)

thf(p_type,type,

p: $i > $o).

3https://github.com/leoprover/Leo-III
4https://tptp.org/

https://github.com/leoprover/Leo-III
https://tptp.org/

86 Chapter 5. Automatic detection of patterns

thf(q_type,type,

q: $i > $o).

thf(f_type,type,

f: $i > $i).

thf(a1,axiom,

(! [X: $i] :

((p @ (f @ X)))

)

).

thf(a2,axiom,

(! [X: $i]:

((˜ (p @ X))

| (q @ X))

)

).

thf(c,conjecture,

(! [X : $i] :

(q @ (f @ X))

)

).

This program successfully terminates almost instantaneously with a proof. Leo III

can also be easily prompted to output the proof, which ultimately also will allow us

to generate witnesses for existentially quantified variables. The following is the proof

output for this program:

thf(p_type, type, p: ($i > $o)).

thf(q_type, type, q: ($i > $o)).

thf(f_type, type, f: ($i > $i)).

thf(sk1_type, type, sk1: $i).

thf(4,axiom,((! [A:$i]: (˜ (p @ A) | (q @

A)))),file(’leo3_test.txt’,a2)).

thf(9,plain,((! [A:$i]: (˜ (p @ A) | (q @

A)))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[4])).

5.4. Utilizing existing approaches 87

thf(10,plain,(! [A:$i] : ((˜ (p @ A)) | (q @

A))),inference(cnf,[status(esa)],[9])).

thf(1,conjecture,((! [A:$i]: (q @ (f @ A)))),file(’leo3_test.txt’,c)).

thf(2,negated_conjecture,((˜ (! [A:$i]: (q @ (f @

A))))),inference(neg_conjecture,[status(cth)],[1])).

thf(5,plain,((˜ (! [A:$i]: (q @ (f @

A))))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])).

thf(6,plain,((˜ (q @ (f @ sk1)))),inference(cnf,[status(esa)],[5])).

thf(11,plain,(! [A:$i] : ((˜ (p @ A)) | ((q @ A) != (q @ (f @

sk1))))),inference(paramod_ordered,[status(thm)],[10,6])).

thf(12,plain,((˜ (p @ (f @

sk1)))),inference(pattern_uni,[status(thm)],[11:[bind(A, $thf(f @

sk1))]])).

thf(3,axiom,((! [A:$i]: (p @ (f @ A)))),file(’leo3_test.txt’,a1)).

thf(7,plain,((! [A:$i]: (p @ (f @

A)))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[3])).

thf(8,plain,(! [A:$i] : ((p @ (f @

A)))),inference(cnf,[status(esa)],[7])).

thf(16,plain,(˜ ($true)),inference(rewrite,[status(thm)],[12,8])).

thf(17,plain,($false),inference(simp,[status(thm)],[16])).

As we did with Isabelle, we can existentially quantify the predicate on the conjecture,

to push Leo III and its unification algorithm to instantiate it, producing the instantiation

of the pattern that we search. The following is the program:

thf(p_type,type,

p: $i > $o).

thf(q_type,type,

q: $i > $o).

thf(f_type,type,

f: $i > $i).

thf(a1,axiom,

(! [X: $i] :

((p @ (f @ X)))

)

88 Chapter 5. Automatic detection of patterns

).

thf(a2,axiom,

(! [X: $i]:

((˜ (p @ X))

| (q @ X))

)

).

thf(c,conjecture,

(? [Q : $i > $o] :

(! [X : $i] :

(Q @ X)

)

)

).

which also finishes almost instantaneously, and when prompted for a proof allows us to

extract a witness of the instantiation:

thf(p_type, type, p: ($i > $o)).

thf(f_type, type, f: ($i > $i)).

thf(3,axiom,((! [A:$i]: (p @ (f @ A)))),file(’leo3_test_2.txt’,a1)).

thf(7,plain,((! [A:$i]: (p @ (f @

A)))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[3])).

thf(8,plain,(! [A:$i] : ((p @ (f @

A)))),inference(cnf,[status(esa)],[7])).

thf(1,conjecture,((? [A:($i > $o)]: ! [B:$i]: (A @

B))),file(’leo3_test_2.txt’,c)).

thf(2,negated_conjecture,((˜ (? [A:($i > $o)]: ! [B:$i]: (A @

B)))),inference(neg_conjecture,[status(cth)],[1])).

thf(5,plain,((˜ (? [A:($i > $o)]: ! [B:$i]: (A @

B)))),inference(defexp_and_simp_and_etaexpand,[status(thm)],[2])).

thf(6,plain,(! [A:($i > $o)] : ((˜ (A @ (sk1 @

(A)))))),inference(cnf,[status(esa)],[5])).

thf(11,plain,($false),inference(rewrite,[status(thm)],[8,6])).

thf(12,plain,($false),inference(simp,[status(thm)],[11])).

5.4. Utilizing existing approaches 89

The important proof step here is step 11, which combines the result of steps 8 and

6. This ultimately indicates the unification of the existential variable (A / Q) with

the composition function p◦ f , producing the instantiation (not the one we originally

looked for, but rather a simpler one, which is also valid).

We note that this step is a fundamentally higher-order unification step, that therefore

relies on some variation of Huet’s algorithm, and produces only one unifier. Similar

to Isabelle, the only simple way to prompt it to find a different unifier is to explicitly

indicate the different instantiation as part of the problem:

thf(p_type,type,

p: $i > $o).

thf(q_type,type,

q: $i > $o).

thf(f_type,type,

f: $i > $i).

thf(a1,axiom,

(! [X: $i] :

((p @ (f @ X)))

)

).

thf(a2,axiom,

(! [X: $i]:

((˜ (p @ X))

| (q @ X))

)

).

thf(c,conjecture,

(? [Q : $i > $o] :

((Q != (ˆ [X : $i] :

(p @ (f @ X))

))

90 Chapter 5. Automatic detection of patterns

& (! [X : $i] :

(Q @ X)

)

)

)

).

where the line Q != (ˆ [X : $i] : (p @ (f @ X)) indicates that we don’t want this

unifier.

As before, attempting to run this program times out after 60 seconds. The reason,

ultimately, we argue, being that the reliance on the standard higher-order unification

algorithm limits the search for unifiers.

As with Isabelle, it would be very sensible to extend Leo III’s approach to use a

different unification approach that produced all unifiers, but this is essentially the same

challenge as the one this thesis does tackle, and I considered that using Leo III as basis

would not offer any significant advantage for this particular task.

5.4.1.3 Lambda Prolog

Lambda Prolog5 [Miller, 2021, Nadathur and Miller, 1988] (§3.3.1.1) is a logic

programming language that extends traditional Prolog with higher-order capabilities.

As any other programming language, it is fundamentally a query language, and the

production of witnesses for proofs as output and the full exploration of the search space

are considered more explicitly.

However, Lambda Prolog also has other important limitations that make it unsuitable

to solve our problems. We explore them (mostly in the scope of the most prominent

implementation Teyjus6) in this section. These limitations come in the shape of three

constraints on what can be expressed in the Lambda Prolog language to begin with.

The reasons for these constraints are precisely computational feasibility, and relate

(and to a degree reinforce my arguments) that the fundamental limitations of the

higher-order unification algorithm [Huet, 1975] are at the core of the unsuitability of

these approaches. Lambda Prolog disallows certain structures because the unification

5http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/
6http://teyjus.cs.umn.edu/

http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/
http://teyjus.cs.umn.edu/

5.4. Utilizing existing approaches 91

algorithm is unfit for handling them properly. This means that we cannot express

most of our patterns in Lambda Prolog. The following are the relevant expressivity

constraints:

• Horn clauses only - A Horn clause (§3.3.1) is a clause with only one positive

literal (goal or head). Most or all logic programming languages are limited to

Horn clauses (in higher-order logic extended to the notion of hereditary Harrop

formulas, which allows quantifiers to appear), as this severely restricts the search

properties of the algorithm (in particular, the growth of goal sizes, see §3.2.1.2).

However, a lot of our patterns cannot be expressed via Horn clauses (as an

example, you may consider §A.2.7).

• No uninstantiated variables as heads - Teyjus has a specific check that outputs

an error when a rule or a goal have uninstantiated variables in their head. For

example, the following rule cannot be expressed in Lambda Prolog, where P is a

second-order variable:

P(c1)∧ p(x) =⇒ P(x) (5.3)

The main reasons for disallowing this are also very clear: the logic programming

approach and resolution search means that rules, facts and goals are matched on

their head, and unification is used to propagate this matching unto the body of

the rules. A rule or goal with a variable head would in principle match with any

or many different goals, producing very different unrelated unifiers (again, the

fundamental aspect of the higher-order unification algorithm we have been talking

about), which would likely make the search space explode and the program to not

terminate easily. Thus, Lambda Prolog restricts it. The same example referred to

above utilizes variable heads (§A.2.7).

• Queries with body - In most or all logic programming languages, queries are

referred to as goals, and consist of a clause with a single, positive literal. A query

with a body would be equivalent to a clause with negative literals as a goal. This

is disallowed in any logic programming language for the same reason that the

language is limited to Horn clauses: the combination of these two limitations

severely limits the search space and allows the search to be conducted linearly in

a regular and predictable manner. Allowing queries with body in a logic program

92 Chapter 5. Automatic detection of patterns

would have similar effects to allowing non-Horn clauses in the program. Once

again, the same example referred to above utilizes queries with body (§A.2.7).

These limitations are too severe to allow Lambda Prolog to constitute an acceptable

basic approach to our problem. The same reasons why these limitations exist are

those that we attempt to overcome by leveraging other, different, limitations in our

particular problem (that Lambda Prolog does not assume). Thus, the two problems are

too different in application to be worth it to consider one as a particular case of the

other.

5.4.2 Decidable subsets of second-order logic

In §3.2.2.2 we described a series of subsets of second-order logic that are known to be

decidable and have specific algorithms for their resolution which are computationally

more attractive than the general higher-order unification algorithm. These are linear

second-order unification, bounded second-order unification and monadic second-order

unification. It is relevant to consider whether our problem might fall within any of

these subproblems and thus can benefit from these existing more attractive algorithms.

The situation is not in general attractive, though we do identify a couple of directions

of potential investigation that might yield useful results. In this section we detail the

reasons for this and the extent of this issue.

5.4.2.1 Linear and bounded second-order unification

Linear second-order unification [Levy, 1996] restricts the set of unifiers that can be

produced to those that instantiate second-order variables to linear terms; a linear

term being a term for which bound variables in lambda abstractions occur exactly

once in the body. Bounded second-order unification [Schmidt-Schauß, 2004] can be

considered to be an extension of linear second-order unification to the more gen-

eral case of where the number of occurrences is bounded at the beginning of the problem.

It is in fact true that all of our test cases (as described in chapter §9) have target

instantiations associated with them that fall within the restrictions of linear second-order

unification. One could argue that in general we would want other instantiations, but at

a first glance utilizing the algorithm associated with linear and bounded second-order

unification could be promising, at least to produce the simpler solutions to the problem,

even if not all.

5.4. Utilizing existing approaches 93

The main issue with these algorithms is that they are fundamentally similar to the

brute force search approach described in §5.2, with limits for the depth of this search

(this finite aspect of the search is not relevant for the approach followed in this thesis,

as we are prepared to deal with infinite enumerations of solutions in general). There are

other aspects of the algorithms described in [Levy, 1996, Schmidt-Schauß, 2004] that

could be attractive for our problem, but as a matter of fact, [Schmidt-Schauß, 2004]

provides a formal proof of the NP-hardness of their algorithm, which relates to the

computational issues we described in §5.2.

In other words, the attractive algorithmical properties of these algorithms come in

the flavour of limits to the search that make the problem decidable but not efficient. I

must, however, acknowledge, that I had not become aware of the applicability of these

algorithms until the post-viva modifications to this thesis, which is ultimately the reason

I didn’t explore these avenues further. The argument provided makes me confident that

this was definitely not a trivial perfectly viable solution that I ignored, but I have to

admit that investigating this in more detail could be productive. However, at the time

of this writing, I could not find any actual automated theorem provers which utilize

these algorithms to try some practical problems on. I believe considerations about

decidability of subsets of second-order logic tend to be theoretical and concerned with

the decidability of the problems, rather than pragmatic. Further investigation would be

useful, but almost certainly not leading to a direct solution to the problem, and I do not

have the time availability at the time of this writing to conduct it in full extent.

5.4.2.2 Monadic second-order unification

Monadic second-order unification [Farmer, 1988] is second-order unification in a lan-

guage that contains no function symbols with aritty greater than or equal to 2. The

algorithm associated with it is in fact considerably more efficient than standard higher-

order unification. However, in this case the expressivity limitation is too much for most

of our patterns (too much to be worth considering).

Most or all of the patterns and ontologies that we would want to detect patterns in,

are non-monadic. In particular, any OWL ontology that contains any properties (see

§3.1) is automatically non-monadic, as properties in OWL are binary function symbols

in first/second-order logic terms. As a particular example (just one of many) from our

patterns, consider §A.2.4.

94 Chapter 5. Automatic detection of patterns

5.4.3 Constraint programming

5.4.3.1 Satisfiability Modulo Theories (SMT)

The application of an SMT-based approach (§3.2.3) to the automatic detection of ESQ

logic queries in ontologies would require the separation of this detection problem in

two parts: A propositional part, and a part that can be implemented as either an eager

transformation of a ESQ problem into a propositional formula, or a lazy element which

can be queried during the resolution of a query using a SAT algorithm. The difficulty

of this task comes from the fundamental notion that we are trying to express full

first-order logic in propositional logic. We note that ESQ logic strictly contains all of

first-order logic. In particular, a ESQ query with no second-order variables is exactly a

first-order theorem proving problem, and every first-order theorem proving problem can

be presented this way. The task of detaching the propositional logic aspect of first-order

logic from the strictly first-order elements has no evident solution. We can look to the

literature [Bongio et al., 2008, Barrett et al., 2002] for existing research in this area.

On one hand, work like [Barrett et al., 2002] encodes quantifier-free first-order

logic iteratively as a propositional problem, reducing the size of the grounding of

formulas in the naive transformation of quantifier-free first-order logic to propositional

logic. However, quantifier-free first-order logic is by far not expressive enough for

our purposes. In particular, nearly all of the patterns in our catalogue (appendix A)

have first-order quantifiers. In general, we focus a lot of our practical applications

on ontology languages like OWL, whose bread and butter include subsumptions of

classes and domain axioms, both of which are fundamentally quantified first-order

statements about the instances of classes and properties. This branch of the research

does not concern itself with quantified variables, the reason being the fundamentally

non-propositional nature of these that impedes their iterative grounding approach.

On the other hand, work like [Bongio et al., 2008] focuses on the technical proof

objects of first-order logic and when these can be easily encoded in an SMT problem.

In particular, [Bongio et al., 2008] uses SMT to solve rigid first-order theorem proving

problems by using connection Tableaux and encoding their technical aspects as an SMT

solver. We note that the results in this work are mixed, and are positive mostly when

subjected to two conditions:

5.4. Utilizing existing approaches 95

1. Rigidness - Rigid satisfiability of a first-order formula is the problem of checking

whether a ground instance of the formula is satisfiable. Thus, checking non-

rigid unsatisfiability involves checking rigid unsatisfiability of every possible

instantiation of a formula. This is semi-decidable in general, and computationally

problematic. The work in [Bongio et al., 2008] note this difference and perform

their encoding for both rigid and non-rigid, utilizing an enumeration procedure

similar to the one mentioned. Their positive results are almost exclusively limited

to the rigid case.

2. Horn clauses - As discussed in §5.4.1.3, limiting our problem to Horn clauses

would severely limit the extent of the applicability of our problem. For example,

the pattern in §A.2.7 cannot be expressed as a Horn clause. The approach in

[Bongio et al., 2008] does extend to non-horn clauses, but they report negative

results having to do with computational issues in these cases.

All of the above discussion does not even consider the fact that ESQ logic is strictly

more expressive than first-order logic: first-order logic being comfortably solvable using

SMT approaches is a necessary, but not sufficient condition for automatic detection of

ESQ queries using SMT to be feasible. Since this condition is already only partly and

conditionally held, I considered it sensible not to explore this avenue of work. This is

not to say that the notion of extending SMT to solve ESQ queries (or a subset of these)

is absurd, because it is not. But developing this approach would involve a large amount

of research in a different direction than the one I chose for this thesis.

5.4.3.2 Answer Set Programming (ASP)

The idea of utilizing Answer Set Programming (§3.3.2) to solve ESQ queries encounters

very similar challenges to those that utilizing SMT did. ASP is mainly aimed at finite

spaces, with quantified formulas being fundamentally problematic to represent and solve

within it. Approaches to this normally come in the shape of enumerating or limiting

the extent to which the formulas are quantified, similar to the rigidness issue described

in §5.4.3.1. Indeed, in [Baget et al., 2018], one of the main pieces of literature that I

was able to find in this topic, section 2.4 explicitly describes the intrinsic limitations of

existential rules when utilizing an ASP approach to solve them.

We remind the reader that this describes the limitations of utilizing this approach

to solve restricted versions of first-order logic, with ESQ logic being an extension of

first-order logic. The expressivity is simply too small. As with SMT, this avenue of

96 Chapter 5. Automatic detection of patterns

research is not absurd. Indeed, extensions of ASP approaches to the particularities of

ESQ (or restricted versions of it) could end up being productive. However, this would

involve a significant amount of research that is not part of what I have decided to spend

my time on in this thesis.

5.4.3.3 Constraint logic programming

Constraint logic programming (§3.3.1.1) refers to the extension of the syntax,

philosophy and algorithmics of Prolog to more general constraint-solving problems. It

does not constitute, at its core, a particular algorithm for solving constraint problems,

but rather a framework for expressing them and tackling the different steps that

constitute it.

We do embrace the basic ideas of constraint logic programming in the way that ESQ

logic is expressed itself, and the computational semantics attached to itt. In particular,

ESQ queries are expressed as compositions of smaller queries, solved in a particular

order, the results of some are used as inputs to following queries. Solving each query

involves finding solutions to a particular kind of constraint problem. Thus, ESQ logic

takes heavy inspiration from constraint logic programming. But this does not provide

us with an algorithm for finding solutions to atomic ESQ queries.

As an example of how a ESQ query can be seen as a constraint logic programming

goal, consider the following query, taken from the pattern in §A.2.3:

((X) � ¬∃x.X(x))on
on ((X) �M primitive(X))

(5.4)

This could easily be seen as a constraint logic program looking something like this:

unsatisfiable_class(X) :- primitive(X), entailed(not(exists(y,X(y)))).

The algorithmical difficulty, however, comes from the resolution of the goal

entailed(not(exists(y,X(y)))). The formal particularities of ESQ logic are dis-

cussed in more detail in §6.2.

5.5 Minimal commitment resolution for ESQ logic

Minimal commitment resolution for ESQ logic is the algorithm that we have developed

5.5. Minimal commitment resolution for ESQ logic 97

to find instantiations of ESQ queries. The fundamental difference between this approach

and the brute force approach described earlier is the minimal commitment principle:

we only instantiate variables when it is necessary to continue with a proof, and we

only instantiate them as much as necessary to continue with a proof. This principle is

applied in a few different ways throughout the description of the algorithm. It should be

noted that minimal commitment is also what underlies standard first-order unification,

among a lot of other algorithms and approaches in the field; we are extending it to our

particular problem in a particular way.

The general approach of the algorithm can be described as follows:

Algorithm 5.5.1 (Minimal commitment resolution for ESQ logic (outline)).

1. Use first-order resolution as a basis. See §3.2.1.

2. On one hand, non-deterministically instantiate second-order predicate variables to

composite predicates with logical connectives. On the other, assume second-order

predicate variables to be atoms and apply resolution normally to them. Details of

this aspect are discussed in §5.5.1.

3. Instead of solving unification problems whenever resolution is applied, generate

declarative equations representing these unifications.

4. Once a proof is found with an associated set of equations, apply dependency

graph for unification equations to find instantiations of second-order variables

that satisfy the equations. Details of this aspect are discussed in §5.5.3.

Starting with part 1, the aspects of first-order resolution (§3.2.1) that we preserve

are:

• We use conjunctive normal form to express the formulas that we are working to

prove

• We use a refutation approach, by conjunctively joining the conjunction of the

whole theory with the negation of the conjectured theorem.

• We apply the resolution rule between two sets of literals in two clauses in the

CNF. However, this is applied a bit differently in minimal commitment resolution

for ESQ logic. See §5.5.1 for details.

98 Chapter 5. Automatic detection of patterns

• A proof is finished if the empty clause is found.

5.5.1 Maximal CNFs

Maximal CNFs are an extension of first-order logic Conjunctive Normal Form formulas

(CNFs) to include unifier variables and second-order variables, while keeping the same

basic structure. The reason we call these maximal is that they could stop being in

conjunctive normal form depending on the instantiations of second-order variables and

the values of unifier variables, but structurally they are as close to a conjunctive normal

form as they can be without having more information about these instantiations. In this

section we describe this concept in detail.

Consider a maximal conjunctive normal form formula with second-order variables:

(δ1,1α1,1∨δ1,2α1,2∨...∨..δ1,m1α1,m1)∧(δ2,1α2,1∨...∨δ2,m2α2,m2)∧...∧(δn,1αn,1∨...∨δn,mnαn,mn)

(5.5)

or, more succinctly:

∧
i∈1..n

(
∨

j∈1..mi

(δi, jαi, j)) (5.6)

where:

• n and each mi can be zero (an empty CNF is never unsatisfiable, whereas an

empty clause is always unsatisfiable).

• Each δi, j is either a negation or nothing (negative or positive literal).

• Each αi, j is what we call a meta-atom. The formal details of meta-atoms can be

found under the definition of unifier expressions (definitions 6.1.29, 6.1.19).

Conceptually, meta-atoms are like first-order atoms except they may contain:

– Second-order variables.

– Unifier variables. The meaning and usage of these is explained in more

detail in §5.5.2, and the technical details are presented in §6.1.3.

Second-order variables and unifier variables both represent a level of indeterminacy

in the formula. A second-order variable is to be instantiated to a predicate or function

5.5. Minimal commitment resolution for ESQ logic 99

(depending on whether it is a predicate or function variable), and a unifier variable is to

be replaced by a first-order substitution (a first-order unifier, in the usual sense). For

example, consider the maximal CNF:

(p(x)∨¬P(x))∧ (¬σ1 p(f (y)))∧ (q(z))

If we apply the instantiation P := q◦ f and the substitution σ1 := {y→ f (w)} to

it, the result would be the first-order (no longer has second-order variables or unifier

variables) CNF formula:

(p(x)∨¬q(f (x)))∧ (¬p(f (f (w))))∧ (q(z))

However, if we apply the same substitution, but instead use the composite instantia-

tion P := (λa.p(a)∧q(a)), it would result in the formula:

(p(x)∨¬(p(x)∧q(x)))∧ (¬p(f (f (w))))∧ (q(z))

which no longer is in conjunctive normal form.

We can consider every possible instantiation of the second-order variables while

being able to treat a maximal CNF as an actual CNF for resolution purposes by per-

forming inductive instantiation of the maximal CNF. This is essentially a systematic

way to return the formula to CNF with low cost and ensuring productivity of the search:

At each step, if there are second-order predicate variables in a maximal CNF,

produce the following non-deterministic branches in our search:

• Assume every second-order predicate variable can only be instantiated to atoms

and proceed with steps 5.5.3 and 4 of algorithm 5.5.1 (see §5.5.2 and §5.5.3).

• Pick one second-order variable7 P with arity k and do one step of partial instanti-

ation, producing branches:

– Instantiate P to Q∧R, for fresh predicate variables Q and R.

– Instantiate P to ¬Q, for fresh variable Q.

– Instantiate P to (λx1, ...,xk.∀y.Q(y,x1, ...,xk).

After each of the above steps, transform the formula into a conjunctive normal

form again.
7How to make this choice is a heuristic decision that we do not discuss here.

100 Chapter 5. Automatic detection of patterns

This process is relatively technical. A more precise definition and theoretical

results about it can be found on §6.3. Moreover, as discussed in chapter 8, in our

implementation we only pursue the first branch (assuming variables are instantiated to

atoms). This does sacrifice completeness, and reasons for this choice are explained in

chapter 8. Theoretical results are however produced on the complete search space.

At a conceptual level, what we are doing here is to divide the set of instantiations of

the maximal CNF in a way that allows us to productively explore branches that we can

assume correspond to actual CNFs, and apply resolution to them. Resolution cannot be

applied to formulas unless we are certain of the fact that they are in CNF.

The remainder of this section works with formulas in which we assume that each

meta-atom can only be instantiated to an actual atom, and thus that the formula is going

to be a CNF after instantiation.

5.5.2 Resolution and implicit unification

The next thing that we have to do, once we have a maximal CNF in which we assume all

meta-atoms can only be instantiated to atoms, is to apply the resolution rule. To remind

what was discussed in §3.2.1, in first-order logic, at this step we apply unification to

the two clauses being resolved, and apply the resulting unifier to the resolvent. For

example, if we resolved the following two clauses on the literals marked in bold:

C1 ≡ (p(x)∨q(f (x)))

C2 ≡ (r(y)∨¬p(g(y)))

this would have the unifier x∼ g(y) and result in the following resolvent:

R≡ (q(f (g(y)))∨ r(y))

At this point, we will bring attention to a fundamental aspect of resolution called

factoring of literals. Any resolution refutation procedure must implement this to be

correct [Robinson and Voronkov, 2001], but there are multiple different ways to do so.

One way of factoring consists in, given a single clause, if it has multiple literals with

the same sign (positive or negative) that are unifiable, attempt to unify them, producing

a new clause.

An alternative way of implementing factoring, which we inherit in our approach, is,

when applying the resolution rule, rather than unifying a single literal from each clause,

5.5. Minimal commitment resolution for ESQ logic 101

unify multiple literals from each clause (same sign in each of the clauses, and all are

unified at the same time). This is usually called general resolution.

Factoring is necessary for resolution to be correct. Otherwise, a CNF formula with

two or more literals in each clause would never produce the empty clause, even when

there is a proof8.

Factoring implemented as part of the resolution rule would, for example, take the

following two clauses and resolve on the literals marked in bold:

C1 ≡ (p(x, f(z))∨p(z, f(z))∨q(f (x),z))

C2 ≡ (r(y,w)∨¬p(g(y),w))

with the resulting unifier: {x∼ z∼ g(y),w∼ f (g(y))}, producing the resolvent:

R≡ (q(f (g(y)),g(y))∨ r(y, f (g(y))))

Not surprisingly, factoring becomes more tricky when considering second-order

variables. To see this, consider a variation on the previous example with some second-

order variables substituted in:

C1 ≡ (p(x,F(z))∨P(z, f(z))∨q(f (x),z))

C2 ≡ (r(y,w)∨¬p(g(y),w))

(note the predicate second-order variable P and the function second-order variable F).

Function variables do not alter the principle of the resolution rule or factoring itself,

and instead are entirely dealt with in the unification step 4, explained in §5.5.3. Predicate

variables, however, do.

Are p(x,F(z)) and P(z, f (z)) unifiable? That depends on the instantiation of

P. The resolution could be applied regardless, since p(x,F(z)) and ¬p(g(y),w) are

unifiable in any case; the doubt comes as to whether we should factor in P(z, f (z)) or not.

The solution is yet again to introduce non-determinism (in a similar way that

first-order resolution already does by allowing multiple search orders in the application

of the resolution rule). We consider two possible resolutions: one that includes

P(z, f (z)) and one that does not. Each of these could lead to different instantiations of

8This is because each resolution application would produce a clause of equal or larger size than the
previously existing ones, and the size of the clauses would never be reduced.

102 Chapter 5. Automatic detection of patterns

the second-order variables.

With factoring out of the way, we still have the question: how do we unify

p(x,F(z)), P(z, f (z)) and ¬p(g(y),w)? The result of first-order unification would

depend (drastically) on the instantiations of P and F . We could, of course, consider

possible instantiations at this point, but this would be close to the brute force

approach described in §5.2. Instead, we do implicit unification, producing unifica-

tion equations that we solve later (see §5.5.3). This is what unifier variables are used for.

In the example above:

C1 ≡ (p(x,F(z))∨P(z, f(z))∨q(f (x),z))

C2 ≡ (r(y,w)∨¬p(g(y),w))

instead of unifying the selected literals, we use a fresh unifier variable (σ1) to indicate

what this unifier may end up being, without finding its actual value; and produce two

things: the resolvent, and a unification equation to be solved later. The latter is to be

seen as a constraint that needs to hold for the proof to be correct, and which summarizes

what the instantiations of the second-order variables can and cannot be.

The unification equations produced would be:

σ1 p(x,F(z))≈ σ1P(z, f (z))≈ σ1 p(g(y),w)

while the resolvent would be:

(σ1q(f (x),z)∨σ1r(y,w))

This allows us to produce a full resolution proof without having to worry about

unification, generating equations that express the unification problems we would have

to solve to have a correct proof. Only once we find the empty clause, do we worry with

the unification equation system produced in the process. This is explained in the next

section.

5.5.3 Dependency graph unification

At this point, we have reduced our problem to solving systems of unification equa-
tions, where each unification equation is of the form:

5.5. Minimal commitment resolution for ESQ logic 103

δ1 ≈ δ2

where δ1 and δ2 are unifier expressions (formally, see definition 6.1.19).

We shall make it clear what a solution to a system of unification equations is.

Technically, we call this a unification solution (definition 6.1.22). It consists of two

things:

• A substitution (definition 6.1.10) associated to each unifier variable present in the

equations.

• A single instantiation (definition 6.1.14) of the second-order variables present in

the equations.

For example, consider the following set of unification equations:

σ1 f (x)≈ σ1F(y)

σ2σ1g(F(y),w)≈ σ2g(z, f (z))

where we note that we have one second-order variable (F) and two unifier variables

(σ1,σ2).

One possible unification solution U to this system is the following9:

U(F) = π1
1

σU
1 = {y→ f (x)}

σU
2 = {z→ f (x),w→ f (f (x))}

which, when applied to the original equations, make the equality syntactically explicit:

U(σ1 f (x)) = f (x) =U(σ1F(y))

U(σ2σ1g(F(y),w)) =U(σ2g(f (x),w)) = g(f (x), f (f (x))) =U(σ2g(z, f (z)))

In this section we describe how the set of unification solutions of a unification

equation system can be extracted from the system, at an informal / semiformal level.

This is the most technically advanced aspect of the work in this thesis, and chapter 7

contains a lot of detail about it.

The fundamental idea is that we represent systems of unification equations as

dependency graphs where:
9We note that π1

1 is the unary projection on the first argument (in other words, the identity function)

104 Chapter 5. Automatic detection of patterns

• Nodes represent dependants: atomic elements on which to define the substitutions

and instantiation at the smallest level of granularity. For example, second-order

variables F or function symbols f are second-order dependants, while unifier

variables applied to first-order variables, like σ1x or σ3σ1y, are first-order depen-

dants.

• Edges represent dependencies between these dependants. These are not tech-

nically edges in the usual sense, since not only are they directed, but they also

have multiple (or zero) sources (whose order matters) and a head. Details are

explained in chapter 7. For example, an equation σ1y≈ f (σ1x) would normally

be expressed as an edge with source σ1x, head f and target σ1y.

We note that the directionality on the edges represents the flow of information.

Targets depend on the head and the sources, and not the other way around, which

may be used sometimes in different contexts to represent dependencies. That is,

informally, edges represent equations of the form Target = Head(Sources)

Encoded this way, a dependency graph represents all the relations between the

atomic elements as defined by the unification equations. This representation allows

us to identify independent elements, codependent elements and the most suitable

parts of the problem to focus on to simplify it, changing the representation and

producing different dependency graphs encoding the same sets of solutions in a more

straightforward way.

This fundamental aspect of the minimal commitment approach is similar to existing

ways to represent first-order unification as term graphs [Robinson and Voronkov, 2001].

However, there are some fundamental differences, such as the much more explicit way

in which substitutions / instantiations are represented in our approach, the second-order

aspect and perhaps most importantly, the set of rewrite rules on the graphs that we will

introduce shortly. The minimal commitment and targetted reduction strategy can be

compared to equational reasoning in arithmetic. For example, if we have equations:

3y2+x
x+1 = 2yx−3y

2x = 6

then we may wish to solve the second equation first, to obtain x = 3, and then substitute

it in the first one, obtaining 3y2+3
3+1 = 2 ·3y−3y, which now only contains one variable

5.5. Minimal commitment resolution for ESQ logic 105

and can be solved using the formula for obtaining roots of second degree polynomials.

Our approach is similar at a conceptual level, except that we use dependency graphs

and the relations between atomic elements in the unification solutions to find the best

parts to solve first and propagate the solutions.

In a bit more detail, we have developed an algorithm based on non-deterministic

rewrite rules on dependency graphs10 that:

1. Begins with a dependency graph that encodes the system of unification equations

in a direct way.

2. Applies rewrite rules to it.

3. Reaches a certain normalization level for the resulting graphs. In those normal-

ization levels, explicit unification solutions may be extracted or a given solution

can be checked against it.

The technical details of this approach, along with theoretical results about it, can be

found in chapter 7. Here is a summary of the most important results:

• There is a systematic way to build a dependency graph from a system of unifica-

tion equations with the same unification solutions. See algorithm 7.2.5.

• All rewrite rules on dependency graphs are solution preserving (they do not alter

the set of unification solutions of the graph, definition 7.4.1).

• Explicit unification solutions may be extracted from a normal dependency graph

systematically. See definition 7.6.4 and theorem 7.6.5.

• Every quasinormal dependency graph has at least one solution. This allows us to

check whether a given unification solution is a solution to a given set of equations.

See definition 7.6.16, theorem 7.6.9, algorithm 7.6.17 and theorem 7.6.10.

• There is an algorithm11 that enumerates all unification solutions to a dependency

graph in a sound and fair way. See theorem 7.6.8.

10Non-deterministic here means that some rules rewrite a single dependency graph into a set of
dependency graphs, such that the solution of the original graph is the union of the solutions of all the
graphs produced.

11Under a condition of no acyclicity in the process of solving the graph. In practice, this condition is
nearly always met.

106 Chapter 5. Automatic detection of patterns

Together with the maximal CNF search approach and the adapted resolution rule

with implicit unification, this allows us to produce a sound and fair enumeration of all

the instantiations that make a given formula entailed by a given theory in ESQ logic,

with a minimal commitment approach that greatly reduces the search as compared to

the brute force approach.

5.6 Summary

In chapter 4, we introduced ESQ logic as a way to express fault patterns. In this chapter

we have described an algorithmical approach to finding solutions to ESQ queries. We

call this approach minimal commitment resolution for ESQ logic, and is an extension

of first-order logic resolution in which we deal with second-order variables by only

instantiating them whenever necessary. In particular, we deal with unification by

representing it implicitly as equations during a proof, and solving these sets of equations

once a proof has been found to find the instantiations of the second-order variables that

satisfy them. This unification step is done via a novel approach that uses dependency

graphs and a set of non-deterministic rewrite rules on dependency graphs to tackle

the most productive parts of the problem first and reduce the size of the instantiation

search space as much as possible. We have shown strong theoretical properties about

this approach.

Chapter 6

Minimal commitment resolution for

ESQ logic: Theoretical results

6.1 Basic pieces

In this section we provide some standard and non-standard definitions for the elemental

concepts sustaining our resolution and unification algorithm. The core concepts of our

developed algorithm are introduced in later sections in this and the next chapter. While

some of these concepts are well known and used in the literature, formalizations may

vary in approach. Since they are important elements of our theory, we introduce our

specific definitions / useful results in the way that best suits our goals. In each case we

indicate whether this concept is just our formalization of a preexisting concept, or a

novel idea developed as part of this thesis.

6.1.1 Terms

In this subsection we introduce the basic notions of first and second-order terms (see

§3.2.1 and §3.2.2), as well as definitions and results having to do mainly with their

equality and normalization. Each first-order and second-order term has a unique normal

form, and equality corresponds to equality of normal forms. These results are important

for many of the considerations in the more novel sections of this chapter, as they enable

us to normalize terms before comparing or decomposing them, ensuring certain useful

propertties for the algorithms.

All ideas in this subsection are preexisting and appear extensively in the literature.

107

108 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Some places to start would be [Robinson and Voronkov, 2001, Bundy, 1983].

Definition 6.1.1 (Signature). A second-order signature consists of:

• A countable (possibly empty, and typically finite) set of function symbols. Each

function symbol has an associated arity: a natural number (including zero)

indicating the number of arguments it may take. We normally use lowercase

letters f ,g,h... to represent constant function symbols.

• A countable set of predicate symbols. Each predicate symbol has an associated

arity: a natural number (including zero) indicating the number of arguments

it may take. We normally use lowercase letters p,q,r... to represent constant

predicate symbols.

• A countable set of first-order variables. We normally use uppercase letters

X ,Y,Z... to represent first-order variables.

• A countable set of second-order variables. Each second-order variable has

an associated arity. We normally use uppercase letters F,G,H... to represent

second-order variables.

• A countable set of meta-predicate symbols. Each meta-predicate symbol has an

associated arity. We normally use lowercase greek letters δ,ε... to represente

meta-predicates.

We note that, in conventional second-order logic, a first-order variable and a second-

order variable of arity 0 have equivalent semantics. Indeed, a second-order variable of

arity 0 is a variable that stands for a 0-ary function, which is a constant; so it’s a variable

that stands for a constant, which is a first-order variable. Thus1, one could consider that

having first-order variables is redundant. This is absolutely not true in our case.

Our second order variables are introduced at a separate layer from first-order

variables, and the whole purpose of patterns and our algorithm is to find specific

instantiations of second-order variables in our formulas that make the rest of the

formula entailed, satisfied or a similar notion of provability. Thus, in a solution, a

second-order variable is instantiated before the formula is considered to be entailed or

satisfied, whereas a first-order variable is part of the semantics of whether the formula is

entailed or satisfied. Thus, they are different. Clearly, this signals that our second-order

1and as noted by the principal examiner of this Thesis, Paul Jackson

6.1. Basic pieces 109

variables are in some sense meta-variables (which we discuss in a little more detail on

chapter 4), which they are in the way they are solved, but in terms of what they can be

instantiated to, they behave exactly like second-order variables.

Throughout a lot of this section we will not explicitly mention predicate symbols.

Syntactically, they behave very similarly to function symbols, except that they do

not produce terms that are then usable to build newer terms; instead making atoms.

However, the usage of atoms is more clearly detailed in the detailed theory in this

chapter and the previous one. In other words, every time a function symbol or a

second-order function variable appears, it will also be applicable to predicate symbols

and second-order predicate variables, with the only difference being the result will not

be a term but instead an atom. The syntax works the same way.

We define second-order terms first, since first-order terms may contain them.

Definition 6.1.2 (Second-order term). A second-order term has an associated arity (a

natural number, including zero) and is either:

• A function symbol, with its associated arity.

• A projection2 πn
i , where n≥ i, with arity n.

• A second-order variable, with its associated arity.

• A composition, formed by a head (another second-order term) and a sequence of

arguments (other second-order terms). The number of arguments must be equal

to the arity of the head, and the arities of all arguments must be equal3. We write4

φ0{φ1, ...,φn} to represent the composition of head φ0 with arguments φ1, ...,φn.

Its arity is equal to the arity of its arguments.

Note that because we allow compositions of zero arguments and arities must be

well defined, the arity of a composition of zero arguments could, in principle, not be

well defined. That is, f{} could have any arity, since all its arguments (none) share

the same arity, and any such arity works. To prevent this, we consider the arity of a
2We do not define semantics for these yet, but projections represent the selection of an argument.
3The arguments in a composition are the inner-most functions, each of them ultimately applied to the

same set of actual first-order arguments, which is why they must have the same arity.
4The notation φ0(α1, ...,αn) is reserved for application of a second-order term to a set of first-order

terms. Composition in mathematics is normally represented with ◦, but this only works naturally for
composition of unary functions. Thus the use of the curly brackets {}.

110 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

composition to be defined at the composition itself, and a composition is only well

defined if it matches the arity of all its arguments. Therefore, we will write f{}n to

indicate that the arity of the composition is n, and therefore it is different from f{}m, if

n 6= m.

In all other cases, the arity will be well defined by the context, but whenever we

may want to be explicit about the arity of a second-order term, we will use superscripts

as well to indicate it.

While we have not introduced semantics yet, readers familiar with higher-order

functions may wonder whether abstractions are or should be allowed in the syntax

of second-order terms (specially when considering instantiations for second-order

variables). For example, replacing second-order variable F with (λX . f (g(),X)). Our

term system is simple enough (purely syntactic) that every second-order term/function

that could be achieved via abstraction can be achieved just with composition. For

example, (λX . f (g(),X))≡ f{g{}1,π1
1}. Keep in mind that we are restricted strictly to

second-order, with no third- or higher-order functions. Therefore, abstractions do not

need to be considered in any way other than at this point of the document, but every

result presented here includes anything that could be produced by adding abstractions

to our definition of second-order terms.

We write φ ≡ ψ to denote syntactic equality of φ and ψ. That is, the two second-

order terms are formed in exactly the same way and are indistinguishable as per the

definition of second-order term.

Definition 6.1.3 (Ground second-order term). A second-order term is ground if it

contains no second-order variables. That is, it is not a second-order variable and, if it

is a composition, both its head and its arguments are inductively ground.

Definition 6.1.4 (Second-order normal form). A second-order term is in normal form

when it is either:

• Not a composition.

• It is a composition, but then all of the following are true:

– Its head is not a composition nor a projection

– All its arguments are inductively in normal form

6.1. Basic pieces 111

– One of the following holds:

* There is an i for which the i-th argument is not πm
i

* The arity of the head is different from the arity of the arguments.

In essence, second-order normal form is an inductive definition that states that

normal second-order terms can only be compositions when that is the only way to

express them. Specifically:

• A composition with a composition as head can always be simplified.

• A composition with a projection as head can always be simplified.

• A composition whose arguments are all ordered projections of the same arity as

the head is equivalent to the head itself, and thus can be simplified.

These notions are expressed formally in the rewrite system below. For now, here are

some examples of not normal second-order terms:

• φ2
0{φ3

1,φ
3
2}{ψn

1,ψ
n
2,ψ

n
3} is not normal because its head (φ2

0{φ3
1,φ

3
2}) is a composi-

tion, which means one can dump the head’s arguments into the main arguments:

φ
2
0{φ3

1,φ
3
2}{ψn

1,ψ
n
2,ψ

n
3}
∗→ φ

2
0{φ3

1{ψn
1,ψ

n
2,ψ

n
3},φ3

2{ψn
1,ψ

n
2,ψ

n
3}}

• π2
1{φn

1,φ
n
2} is not normal because we can simply apply the projection:

π
2
2{φn

1,φ
n
2}
∗→ φ

n
2

• φ3{π3
1,π

3
2,π

3
3} is not in normal form because its arguments are all ordered projec-

tions, and thus we can reduce it to its head.

φ
3{π3

1,π
3
2,π

3
3}
∗→ φ

3

• φ2
0{φ2

1{π2
1,π

2
2},φ2

2} is not in normal form because one of its arguments

(φ2
1{π2

1,π
2
2}) is not inductively in normal form and thus we can inductively reduce

it:

φ
2
0{φ2

1{π2
1,π

2
2},φ2

2}
∗→ φ

2
0{φ2

1,φ
2
2}

and here are some examples of normal second-order terms:

• φ2 and π2
1 are in normal form because they are not compositions.

112 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

• φ2
0{φ2

1,π
2
1} is in normal form because its head is not a composition, all its argu-

ments are in normal form and not all its arguments are ordered projections

• φ2{π3
1,π

3
2} is in normal form because, while all its arguments are ordered projec-

tions, they have different arity. This means that φ2{π3
1,π

3
2} has arity 3 (takes 3

arguments), whereas its head, φ2, has arity 2 (takes 2 arguments), and thus one

cannot reduce one to the other (this would make arity change with reduction or

not be well defined).

All of this becomes formally defined with the notion of second-order term equiva-

lence.

Definition 6.1.5 (Second-order term equivalence). We first define the following rewrite

rules (see §3.4) of directly reducible second-order terms, written→:

• φ0{πn
1, ...,π

n
n}→ φ0. We call this rule head simplification.

• πn
i {φ1, ...,φn}→ φi. We call this rule projection simplification.

• φn
0{φm

1 , ...,φ
m
n }{ψ1, ...,ψm} → φn

0{φm
1 {ψ1, ...,ψm}, ...,φm

n {ψ1, ...,ψm}}. We call

this rule function dumping.

We then define the reducibility relation, written ∗→, between second-order terms to

be the closure of direct reducibility under the following properties:

• Reflexivity ∀t.t ∗→ t.

• Transitivity ∀r,s, t.(r ∗→ s∧ s ∗→ t) =⇒ r ∗→ t

• Algebraic closure over the structure second-order term terms. That is, for every

production rule for this algebraic structures that is formed from smaller elements,

if each of the smaller elements reduce to something else, then the larger term

reduces to the result of substituting these for their corresponding reduced forms.

The equivalence relation, written ∼=, between second-order terms is the symmet-

ric closure of ∗→, and is a congruence relation [Wikipedia contributors, 2022a] by

definition.

We write i→ when we wish to indicate direct, reflexive or inductive, but not transitive,

reduction5.
5We do allow the argument or head being reduced to be reduced transitively in this step, but the

outer-most reduction is only inductive with no transitivity involved.

6.1. Basic pieces 113

The set of equivalence classes of second-order terms defines an algebraic struc-

ture typically called an abstract clone [Kerkhoff et al., 2014], defined precisely by the

equivalence induced by the rewrite rules that we have used to define second-order term

equivalence (∼=).

Theorem 6.1.1 (Normalization of second-order terms). Every second-order term φ is

equivalent to a unique normal second-order term N (φ).

Proof. We use standard techniques for rewriting systems. This proof is long and very

detailed, but does not offer any major insights and is quite straightforward from an

intuitive point of view. Thus, the proof can be found in theorem B.0.1 in the appendix.

Corollary 6.1.1. Two second-order terms φ and ψ are equivalent if and only if they

have the same normal form.

Proof. By the theorem, we know there is a unique equivalent normal form for φ∼=N (φ),

and a unique equivalent normal form for ψ∼= N (ψ).

So, if they have the same normal form, N (φ)≡N (ψ), and therefore φ∼= ψ. Con-

versely, if φ∼= ψ then N (φ)∼= N (ψ), but then φ∼= N (ψ) and ψ∼= N (φ), and we know

that normal forms are unique. So it must be N (φ)≡N (ψ).

Definition 6.1.6 (First-order term). A first-order term is either:

• A first-order variable.

• An application, formed by a head (a second-order term) and a sequence of

arguments (other first-order terms). The number of arguments must be equal to

the arity of the head. We write φ(α1, ...,αn) to represent the application of head

φ to arguments α1, ...,αn.

We write α≡ β to denote syntactic equality of α and β. That is, the two first-order

terms are formed in exactly the same way and are indistinguishable as per the definition

of first-order term.

Definition 6.1.7 (Ground first-order term). A first-order term is ground if it contains no

first-order variables. That is, if it is not a first-order variable and, if it is an application,

both its head and its arguments are recursively ground.

114 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Definition 6.1.8 (First-order normal form). A first-order term is in normal form if it is

either a first-order variable, or its head is a function symbol or a second-order variable;

and all its arguments are recursively in normal form.

Definition 6.1.9 (First-order equivalence). We first define the following rewrite rules

(see §3.4) of directly reducible first-order terms, written→:

• πn
i (α1, ...,αn)→ αi. We call this rule projection simplification.

• φn
0{φm

1 , ...,φ
m
n }(α1, ...,αm)→ φn

0(φ
m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)). We call this

rule function dumping.

We then define the reducibility relation, written ∗→, between first-order terms to be

the closure of direct reducibility under the following properties:

• Reflexivity ∀t.t ∗→ t.

• Transitivity ∀r,s, t.(r ∗→ s∧ s ∗→ t) =⇒ r ∗→ t

• Algebraic closure over the structure second-order and first-order terms. That

is, for every production rule for these algebraic structures that is formed from

smaller elements, if each of the smaller elements reduce to something else, then

the larger term reduces to the result of substituting these for their corresponding

reduced forms.

The equivalence relation, written ∼=, between first-order terms is the symmetric clo-

sure of ∗→, and is a congruence relation [Wikipedia contributors, 2022a] by definition.

We write i→ when we wish to indicate direct, reflexive or inductive, but not transitive,

reduction6.

Similarly to second-order equivalence, the set of equivalence classes of first-order

terms is a clone [Kerkhoff et al., 2014] over the abstract clone of second-order terms.

Theorem 6.1.2 (Normalization of first-order terms). Every first-order term α is equiva-

lent to a unique normal first-order term N (α).

6We do allow the argument or head being reduced to be reduced transitively in this step, but the
outer-most reduction is only inductive with no transitivity involved.

6.1. Basic pieces 115

Proof. We use standard techniques for rewriting systems. This proof is long and very

detailed, but does not offer any major insights and is quite straightforward from an

intuitive point of view. Thus, the proof can be found in theorem B.0.2 in the appendix.

Corollary 6.1.2. Two first-order terms α and β are equivalent if and only if they have

the same normal form.

Proof. By the theorem, we know there is a unique equivalent normal form for α ∼=
N (α), and a unique equivalent normal form for β∼= N (β).

So, if they have the same normal form, N (α)≡N (β), and therefore α∼= β. Con-

versely, if α∼= β then N (α)∼= N (β), but then α∼= N (β) and β∼= N (α), and we know

that normal forms are unique. So it must be N (α)≡N (β).

Theorem 6.1.3 (Extensionality of second-order terms). Two second-order terms φ1 and

φ2, both with arity m, are equivalent if and only for all sequences of first-order terms

α1, ...,αm, φ1(α1, ...,αm) and φ2(α1, ...,αm) are equivalent.

Proof. This proof is relatively long, standard and does not provide relevant intuitive

insights and thus it can be found in theorem B.0.3 in the appendix.

6.1.2 Substitution / instantiation

We use the word substitution for replacement of first-order terms, and the word instan-

tiation for replacement of second-order terms. The reason for this is that the way in

which we treat second-order and first-order variables are fundamentally different. We

do not produce second-order unifiers, but rather multiple first-order unifier solutions,

each of which is associated to second-order instantiations. So, in a sense, we consider

unifiers to act after instantiation. This is the way in which we approach the problem,

and the way in which we define things. It does not mean it is the only mathematical

way to see it.

The ideas in this subsection are particular variations / implementations of common

ideas specifically suited for our problem. The fundamental notion of a substitution or

instantiation (also sometimes called unifier) is explicitly and implicitly omnipresent

in the literature. A standard place to start would be [Robinson and Voronkov, 2001,

Bundy, 1983].

116 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Definition 6.1.10 (Substitution). A substitution is an assignment of first-order terms

to first-order variables. If not indicated explicitly, a substitution leaves a first-order

variable as is (replaces it with itself).

Note that substitutions with cyclic references7 are considered invalid.

A substitution may be applied to a first-order term, replacing each appearance of

first-order variables in them with their assignments under the substitution. We write

σi(α) to mean the application of substitution σi to first-order term α.

Definition 6.1.11 (Ground substitution). A substitution is ground (with respect to a

context) if it replaces all first-order variables present in the context (a formula, or an

entire signature) with ground terms.

Definition 6.1.12 (Composition of substitutions). Since substitutions can be applied to

first-order terms, substitutions can be composed, producing new substitutions. We write

the usual σi ◦σ j to express the substitution result of applying σ j first, and then σi.

Definition 6.1.13 (Finer substitutions). We say that a substitution σi ◦σ j is finer than

σ j, written σi ◦σ j � σ j, for any σi and σ j.

We say that σi is strictly finer than σ j, written σi ≺ σ j, if σi is finer than σ j and σ j

is not finer than σi.

Definition 6.1.14 (Instantiation). An instantiation is an assignment of second-order

terms to second-order variables, analogously to substitutions for first-order terms,

with the additional constraint that the arity of the second-order term each variable is

assigned to must be equal to the arity of the second-order variable.

Similarly to substitutions, instantiations with cyclic references are not allowed.

Also similarly, instantiations can be applied to second-order terms, replacing each

appearance of second-order variables in them with their assignments in the instantiation.

Moreover, instantiations can be applied to first-order terms, replacing each appearance

of second-order variables in them with their assignments. We write I(φ) to mean the

application of instantiation I to second-order term φ, and similarly I(α) to mean the

application of instantiation I to first-order term α.

7A substitution σ with cyclic references can be equivalently defined (without a need to consider
alpha-equivalence) as a substitution such that for all natural numbers n, σn+1 6= σn.

6.1. Basic pieces 117

Definition 6.1.15 (Ground instantiation). An instantiation is ground (with respect to a

context) if it replaces all second-order variables in the context (a formula or an entire

signature) with ground second-order terms.

Definition 6.1.16 (Composition of instantiations). Since instantiations can be applied

to first and second-order terms, instantiations can be composed, producing new instan-

tiations. We write the usual I1 ◦ I2 to express the instantiation result of applying I2 first,

and then I1.

Definition 6.1.17 (Finer instantiations). We say that an instantiation I1 ◦ I2 is finer than

I2, written I1 ◦ I2 � I2, for any I1 and I2.

We say that I1 is strictly finer than I2, written I1 ≺ I2, if I1 is finer than I2 and I2 is

not finer than I1.

6.1.3 Unifier expressions

An important aspect of our unification algorithm is that it deals with symbolic unifiers.

To do this, it utilizes unifier variables that can be added to first-order terms, extending

their language. In this subsection we formalize these notions.

While the general idea of utilizing variables to stand for unifiers / substitutions is

natural and has precedents in the literature, our particular approach is novel and has

important aspects that are critical to the dependency graph unification algorithm, such as

the ordering of unifier variables in expressions. The most prominent field in which uni-

fier variables (often called binders) appears is nominal unification [Urban et al., 2004,

Schmidt-Schauß et al., 2019, Levy and Villaret, 2010, Calvès, 2013]. The definitions

presented here clearly fall within this general notion and most of the theory in the

literature in this regard has a direct effect here. However, our problem is a much simpler

particular case for which we identify no significant benefit in utilizing all the explicit

theoretical firepower of nominal unification literature: ultimately, our problem is only a

slight extension of first-order unification in this regard. Moreover, and in a transversal

direction, the presence of existential second-order variables in our problem complicates

things in a different way that standard nominal unification is only prepared to tackle

with full higher-order expressivity, which we are trying to avoid (see chapter 5). In

chapter 10 we discuss the relation between nominal unification and our work in a bit

more detail.

118 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Definition 6.1.18 (Unifier variable). We may augment a second-order signature to a

second-order unification signature by adding a sequence of unifier variables to it. We

usually write σ1,σ2, ... to represent unifier variables.

We use the same notation σ for unifier variables as we do for substitutions because

unifier variables are meant to be replaced by substitutions. This can arguably be slightly

confusing at times, but in every situation it should be clear whether we are talking

about a specific substitution or we are simply using a unifier variable that has not been

replaced by a substitution yet.

Note that unifier variables represent unification steps in, for example, a resolution

proof (§3.2.1.2). Therefore, each unifier variable is to be replaced by a substitution, and

moreover, the indices associated with the unifier variables indicate the order in which

these substitutions are applied (and these have a strict ordering). Also note that, in the

context of resolution proofs, after each unifier we may have to introduce new first-order

variables (a process called standardization in resolution proofs (§3.2.1.2)). This

accounts for the universally quantified nature of first-order variables and the assumption

(true in resolution) that the two terms being unified come from conjunctively joined

sub-formulas which therefore can be thought of as having separate variable sets for full

generality of the subsequent unifications.

The formalization of the notions explained here, while present in this thesis, do not

come until later on (§7.2). The intuitive explanation is included here to help the reader

approach the following sections from the conceptual point of view that it is intended.

Unifier variables do not include an instantiation of second-order variables. This is a

consequence of the way in which we use second-order variables: they are existentially

quantified outside the scope of the universal quantifiers for first-order variables, and

therefore it is meant to be thought that an instantiation includes an instantiation of the

unifier variables themselves: for each valid instantiation of second-order variables,

there is an associated set of substitutions for the unifier variables, that ultimately apply

substitutions to the first-order variables. This is one of the fundamental simplifications

that make our problem a proper sub-case of general second-order unification (§3.2.2),

and which we exploit intensely in the algorithm presented.

Next we define the notion of unifier expressions, which combine unifier variables

with first-order terms to represent a first-order term, but including also the dependence

6.1. Basic pieces 119

on the substitutions with which unifier variables are replaced.

For example, σ2σ1α represents the first-order term that will result after applying

substitutions σ1 and then σ2 to the first-order term α, where σ1 and σ2 are variables

and not replaced by specific substitutions yet.

Note that our algorithm considers unifier expressions explicitly, so they are not just

a theoretical tool but rather an embodied concept in our approach.

Definition 6.1.19 (Unifier expression). We define the algebraic structure of a unifier

expression at the same time that we define its associated unifier level (a natural number,

or ⊥ for certain expressions that have no unifier level), and an ordering (>) between

these unifier levels. We write #σ(ε) to refer to the unifier level of expression ε, where

#σ(ε) ∈ {⊥,0}∪N. We also define i > 0 >⊥, for every unifier level i ∈ N. A unifier

first-order expression is either:

1. A first-order variable. In this case its unifier level is 0.

2. An application formed by a second-order term φ, with arity m, applied to a set of

other unifier expressions ε1, ...,εm: φ(ε1, ...,εm), where each εi that has a unifier

level (i.e. not ⊥) has the same unifier level. Its unifier level is the same as that

of the εi that have unifier level, or ⊥ if no arguments have a unifier level. For

consistency, we will call φ the head and the εi the arguments of the expression.

3. A substitution, formed by a unifier variable σi applied to a unifier expression ε:

σiε, where i > #σ(ε) (we consider every i to be i >⊥). Its unifier level is i. We

call σi the unifier variable of σiε and ε its sub-expression.

Some examples of valid unifier expressions include:

ε1 ≡ X ε2 ≡ σ1X ε3 ≡ σ3σ1X

ε4 ≡ f (X ,Y) ε5 ≡ σ3σ2 f (X ,Y) ε6 ≡ f (σ3σ2X ,σ3σ2Y)

ε7 ≡ f () ε8 ≡ f (g(), f (g())) ε9 ≡ f (g(), f (σ2X ,σ2X))

where

#σ(ε1) = 0 #σ(ε2) = 1 #σ(ε3) = 3

#σ(ε4) = 0 #σ(ε5) = 3 #σ(ε6) = 3

#σ(ε7) =⊥ #σ(ε8) =⊥ #σ(ε9) = 2

Note that in this definition, we rely on an ordering of the unifier variables {σi},
associated to its indices {i}. The fundamental formal properties here are that unifier

120 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

variables have a specific increasing ordering that denotes which ones may appear to

the left of which other ones in unifier expressions, and that we have two special unifier

levels: 0 to denote expressions with no unifier variables, and ⊥ to denote expressions

with no unifier variables and no first-order variables (not affected by unifier variables),

i.e. only first-order functions and constants. We use the indices {i} to denote this, such

that for any expression of the form σ jσiα, j > i.

Definition 6.1.20 (Equivalence of unifier expressions). We define the following rewrite

rules (see §3.4) of directly reducible unifier expressions, written→:

• πn
i (ε1, ...,εn)→ εi. We call this rule projection simplification.

• φn
0{φm

1 , ...,φ
m
n }(ε1, ...,εn) → φn

0(φ
m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm)). We call this

rule function dumping.

• σiφ(ε1, ...,εm)→ φ(σiε1, ...,σiεm). We call this rule unifier variable dumping.

where

• πn
i is the i-th projection of arity n, as defined in definition 6.1.2.

• ε1, ...,εn are any n unifier expressions, as defined in definition 6.1.19.

• φn
0 is any second-order term of arity n, and φm

1 , ...,φ
m
n are any n second-order

terms of arity m, as defined in definition 6.1.2.

• σi is the i-th unifier variable, as defined in 6.1.19.

We then define the reducibility relation, written ∗→, between unifier expressions to

be the closure of direct reducibility under the following properties:

• Reflexivity ∀t.t ∗→ t.

• Transitivity ∀r,s, t.(r ∗→ s∧ s ∗→ t) =⇒ r ∗→ t

• Algebraic closure over the structure of unifier expressions, first-order terms and

second-order term heads. That is, for every production rule for these algebraic

structures that is formed from smaller elements, if each of the smaller elements

reduce to something else, then the larger term reduces to the result of substituting

these for their corresponding reduced forms.

6.1. Basic pieces 121

The equivalence relation, written ∼=, between unifier expressions is the symmet-

ric closure of ∗→, and is a congruence relation [Wikipedia contributors, 2022a] by

definition.

We write i→ when we wish to indicate direct, reflexive or algebraic, but not transitive,

reduction.

Lemma 6.1.1. Let ε1
∗→ ε2. Then, at least one of the following must be true:

• #σ(ε2) =⊥.

• #σ(ε1) = #σ(ε2).

Proof. We need to consider reflexivity, transitivity, inductive reduction on sub-

expressions and direct reduction rules.

• Reflexivity - Clearly, an expression has the same unifier level as itself.

• Transitivity - ε1
∗→ ε3 and ε3

∗→ ε2. We may inductively assume that the lemma

holds for both of these reductions. Then, one of the following holds:

– #σ(ε2) =⊥. Then the transitive case is proven.

– #σ(ε3) = #σ(ε2) and #σ(ε3) =⊥. Then #σ(ε2) =⊥ and the transitive case

is proven.

– #σ(ε3) = #σ(ε2) and #σ(ε1) = #σ(ε3), in which case #σ(ε1) = #σ(ε2) and

the transitive case is proven.

• Inductive reduction - Consider the possible shapes of ε1:

– ε1 is a first-order variable. No inductive reduction is possible here.

– ε1 ≡ φ(δ1, ...,δn), where δi
∗→ δ2

i and ε2 ≡ φ(δ1, ...,δ
2
i , ...,δn). Consider the

possibilities:

* #σ(δi) = ⊥. Then, inductively, #σ(δ
2
i) = ⊥, which means the unifier

level of ε2 is the same as ε1.

* #σ(δ
2
i) =⊥ and #σ(ε1) 6=⊥, either there was another δ j with #σ(δ j) 6=

⊥, and so #σ(ε2) = #σ(ε1) = #σ(δ j); or #σ(ε2) =⊥. The lemma is true

in all cases.

* It is not possible that #σ(δi) 6=⊥ and #σ(ε1) =⊥.

122 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

* #σ(δ
2
i) = #σ(δi). In such case, #σ(ε2) = #σ(ε1).

– ε1 = σiδ1, with δ1
∗→ δ2, and ε2 = σiδ2. Regardless of δ1 and δ2, by

definition #σ(ε1) = i = #σ(ε2).

• Direct reduction - Consider the three direct reduction rules:

– Projection simplification. The arguments of the expression, by definition,

have unifier level either ⊥ or the same unifier level as the whole expression,

so reducing the whole expression to one of its arguments preserves the

unifier level or reduces it to ⊥.

– Function dumping. φn
0{φm

1 , ...,φ
m
n }(ε1, ...,εm) has as unifier level the

unifier level of the εi that are not ⊥. Similarly, the reduced

φn
0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm)) has as unifier level the unifier level of

the φm
j (ε1, ...,εm) that are not ⊥, each of which has as unifier level the uni-

fier level of the εi that are not ⊥, so the unifier level is preserved. If n = 0,

then the unifier level of ε2 ≡ φ0
0() is ⊥. If m = 0, then the unifier level of

ε2 ≡ φn
0(φ

0
1(), ...,φ

0
n()) is the unifier level of each φ0

i (), which is ⊥, and so

the unifier level of ε2 is ⊥.

– σiφ(ε1, ...,εm) has as unifier level i. Similarly, φ(σiε1, ...,σiεm) has as unifier

level the unifier level of the σiε j that are not ⊥, but they are all i. The only

exception case is when m = 0, in which case σiφ()
∗→ φ(), so the unifier

level is reduced from i to ⊥.

Lemma 6.1.2. If a unifier expression ε has unifier level #σ(ε) = ⊥, then for any

i1, i2, ..., in > 0, ε∼= σin...σi2σi1ε.

Proof. The way we prove this is by showing that σiε
∗→ ε, for all i > 0, if #σ(ε) =⊥.

Thus, we can reduce σi1ε
∗→ ε, and so we can reduce σi2σi1ε

∗→ σi2ε
∗→ ε; and so on for

all i1, i2, ..., in.

To prove that σiε
∗→ ε, consider what ε might be. If #σ(ε) =⊥, then necessarily ε is

of the shape φm
0 (ε1, ...,εm), where each ε j has #σ(ε j) =⊥. We proceed inductively on

the ε j. There are two possibilities:

• m = 0. Then ε≡ φ0
0(), and then σiε≡ σiφ

0
0()

∗→ φ0
0()≡ ε.

6.1. Basic pieces 123

• m 6= 0. Then σiε≡σiφ
m
0 (ε1, ...,εm)

∗→ φm
0 (σiε1, ...,σiεm). But we may inductively

assume that each σiε j
∗→ ε j, and so σiε

∗→ φm
0 (ε1, ...,εm)≡ ε.

Lemma 6.1.3. If a unifier expression ε has as unifier level i > 0, then it is equivalent to

an expression of the form σiδ.

Proof. • If ε were a first-order variable, then it would have unifier level 0, so ε

cannot be a first-order term.

• If ε is of the form σiδ, then it already is of the desired form.

• The only case left is if ε is of the form φ(ε1, ...,εn).

By definition, ε has the same unifier level as the ε j whose unifier level is not

⊥. Therefore, we can recursively assume that there is an ε j whose unifier level

is not ⊥ and that it is equivalent to σiδ j for some δ j. For those ε j such that

#σ(ε j) = ⊥, by lemma 6.1.2, we have ε j ∼= σiε j. Define ∆ j to be δ j for those

ε j whose level is not ⊥, and ∆ j = ε j for those whose level is ⊥. By inductive

equivalence, ε is then equivalent to φ(σi∆1, ...,σi∆n), which in turn is directly

equivalent to σiφ(∆1, ...,∆n); and we have proven the lemma.

Definition 6.1.21 (Unifier expression normal form). Unifier expression normal form is

defined as an extension of first-order normal form to unifier expressions.

To do so, we first define the utility notion of function free unifier expression. A

first-order term with no unifier variables is function free if it is a first-order variable. A

unifier expression of the form σiε is function free if ε is function free. In any other case,

it is not function free.

We then say a unifier expression is normal if it is function free or if it is an application

whose head is a function symbol or a second-order variable; and all its arguments are

recursively in normal form.

This definition is very similar to the definition of normal first-order terms (definition

6.1.8), where any unifier variables have been pushed inwards as much as possible.

For example:

124 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

• X is normal because it is function free.

• σ2σ1X is normal because it is function free.

• f (X) is normal because it is an application, its head (f) is a function symbol, and

its argument (X) is recursively normal.

• F(X) is normal because it is an application, its head (F) is a second-order variable,

and its argument (X) is recursively normal.

• f (σ2σ1X) is normal because it is an application, its head (f) is a function symbol,

and its argument (σ2σ1X) is recursively normal.

• f (g(X)) is normal because it is an application, its head (f) is a function symbol,

and its argument (g(X)) is recursively normal.

• π2
1(X ,Y) is not normal because its head (π2

1) is a projection.

• f{g}(X) is not normal because its head (f{g}) is a composition.

• σ1 f (X) is not normal because it is not function free and it is not an application.

Theorem 6.1.4 (Normalization of unifier expressions). Every unifier expression ε is

equivalent to a unique normal unifier expression N (ε).

Proof. We use standard techniques for rewriting systems. This proof is long and very

detailed, but does not offer any major insights and is quite straightforward from an

intuitive point of view. Thus, the proof can be found on theorem B.0.4 in the appendix.

Corollary 6.1.3. Two unifier expressions ε and δ are equivalent if and only if they have

the same normal form.

Proof. By the theorem, we know there is a unique equivalent normal form ε∼= N (ε),

and a unique equivalent normal form δ∼= N (δ).

So, if they have the same normal form, N (ε)≡N (δ), and therefore ε ∼= δ. Con-

versely, if ε∼= δ then N (ε)∼= N (δ), but then ε∼= N (δ) and δ∼= N (ε), and we know

that normal forms are unique. So it must be N (ε)≡N (δ).

We will note that while second-order unifier expressions make conceptual sense,

second-order variables are not affected by unifier variables, and so second-order unifier

expressions are exactly second-order terms.

6.1. Basic pieces 125

6.1.4 Unification solutions and equations

In this subsection we define unification equations that express the conditions of a

unification problem, and the unification solutions that satisfy them, as well as the

connections between them.

While the particular approach followed here is likely to not have been presented

elsewhere, due to its particular adaptation to our problem’s conditions, the basic notion

of representing unification problems with equations and their associated solutions is

core to the unification literature, and therefore not novel. A standard place to begin

would be [Robinson and Voronkov, 2001, Bundy, 1983].

Definition 6.1.22 (Unification solution). Given a signature, including a sequence

of unifier variables σi, we define a unification solution U to consist of a single

instantiation and a substitution associated with each unifier variable. We write IU for

the instantiation of U and σU
i for the substitution associated with unifier variable σi of

U.

We say a unification solution is ground if its instantiation is ground.

Definition 6.1.23 (Finer solution). We say a unification solution U1 is finer than

another unification solution U2, written U1 � U2, if IU1 � IU2 and for every unifier

variable σi, σ
U1
i � σ

U2
i .

Similarly, we say U1 is strictly finer than U2, written U1 ≺U2, if it is finer and at

least one substitution or the instantiation is strictly finer.

Definition 6.1.24 (Evaluation of a unifier expression). Consider a unifier expression ε

and a unification solution U. We define the evaluation of ε over U, written U(ε), to be a

unifier expression in the following way:

• If ε is a first-order variable, then U(ε)≡ ε.

• U(φ(ε1, ...,εm))≡ IU(φ)(U(ε1), ...,U(εn)).

• U(σiδ)≡ σU
i (U(δ))

The reader may wonder why does the evaluation of a first-order variable correspond

to the variable, and whether evaluation should not replace it with a term. The key notion

to understand here is that every first-order unification effect of the unification solution

126 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

U is encoded in the substitutions σU
i ; and similarly, every way in which the unification

solution could affect a unifier expression is explicitly indicated by the unifier variables

σi. In other words, U(X) ≡ X for every unification solution X and every first-order

variable X , but U(σ1X) depends on the specific substitution σU
1 that U contains. This

dependence is included explicitly in the syntax of unifier expressions.

Lemma 6.1.4. For every unification solution U, U(σiσ jε)≡ (σU
i ◦σU

j)(U(ε)).

Proof. By definition,

U(σiσ jε)≡ σ
U
i (U(σ jε))≡ σ

U
i (σ

U
j (U(ε)))

But then σU
i (σ

U
j (U(ε))≡ (σU

i ◦σU
j)(U(ε)).

Definition 6.1.25 (Equality in a solution). Given a unification solution U and two

unifier expressions ε1 and ε2, we say ε1 and ε2 are equal in U, written ε1 ≈U ε2, if

U(ε1)∼=U(ε2).

Similarly, we say two second-order terms φ1 and φ2 are equal in U, written φ1≈U φ2

if IU(φ1)∼= IU(φ2).

Definition 6.1.26 (Unification equation). A first-order unification equation is an equa-

tion of the form ε1 ≈ ε2, where ε1 and ε2 are unifier expressions.

A unification solution U is a solution to a first-order unification equation ε1 ≈ ε2 if

ε1 ≈U ε2.

A second-order unification equation is an equation of the form φ1 ≈ φ2, where φ1

and φ2 are second-order terms.

A unification solution U is a solution to a second-order unification equation φ1 ≈ φ2

if φ1 ≈U φ2.

We call first and second-order unification equations jointly unification equations.

Definition 6.1.27 (Unification system). A system of unification equations is a set of

unification equations.

A unification solution U is a solution to a system of unification equations if it is a

solution to every equation in it.

6.1. Basic pieces 127

Given a unification equation system E , we write U(E) to describe the set of

unification solutions to E .

Definition 6.1.28 (Equivalent equation systems). Given two unification equation sys-

tems E1 and E2, we say E1 and E2 are equivalent, written E1 'E2, if U(E1) = U(E2).

The main use that we will make of equivalent unification equation systems will be to

treat unification equation systems the same when they are equivalent after considering

the transitivity of equations. For example, equation system E1:

ε1 ≈ ε2

ε2 ≈ ε3

is equivalent to equation system E2:

ε1 ≈ ε3

ε2 ≈ ε3

Another way that you could see this is that we consider unification equation systems

“modulo their semantics”. That is, we usually treat equivalent equation systems as the

same system, using the most convenient representation each time.

6.1.5 Meta-CNF formulas

The concepts in this subsection extend the notion of terms and unifier expressions to

consider formulas in a resolution setting, containing unifier variables. However, these

extensions do not appear during the unification algorithm described in the next chapter,

and instead are kept exclusively at the resolution step.

Once again, the particular ideas described here are likely to be exclusive to this

work, but the basic notion is simple: Take the well known and standard concepts of

atom, literal, clause and conjunctive normal form (see §3.2.1), and extend them to our

particular circumstance where we have second-order variables and unification variables.

It is likely similar ideas exist elsewhere in the literature, but we have not taken direct

inspiration from any of them.

Definition 6.1.29 (Meta-atom). A meta-atom is a unifier expression (definition 6.1.19)

that fills the role of an atom. Precisely, a unifier expression whose head is a predicate

symbol or a predicate second-order variable.

128 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Syntactically, it behaves exactly like any other unifier expression, except that it may

never appear as argument to another expression.

A meta-atom must always contain a composition, but it may also have unifier

variables. First-order variables or unifier variables applied to first-order variables are

not valid meta-atoms.

Examples of meta-atoms include p(x),q(),P(x,y),P(F(f (x),y), f (F(y,y))), etc.

Definition 6.1.30 (Truth value of a meta-atom). Given a ground unification solution U

that applies to all second-order variables and unifier variables in a meta-atom A, we

can apply U to A to obtain a first-order atom U(A).

Then, given an interpretation I (see §3.2.1.1) of the signature, U(A) will have a

truth value (true or false). We call this the truth value of A under the solution U and

interpretation I.

For example, a unification solution U that instantiated P to q and F to f{g}, and an

interpretation of the first-order signature that made q(f (g())) “true”, would give a truth

value of “true” to the meta-atom P(F()).

Definition 6.1.31 (Meta-literal). A meta-literal is either a meta-atom A (called a positive

meta-literal) or a negated meta-atom ¬A (called a negative meta-literal).

Given a positive meta-literal A, we call ¬A its negation. Given a negative meta-

literal ¬A, we call A its negation.

Definition 6.1.32 (Truth value of a meta-literal). Given a ground unification solution U,

an interpretation I, and a meta-literal L, we define the truth-value of L under U and I:

• Equal to the truth value of A under U and I if L≡ A for meta-atom A.

• The opposite of the truth value of A under U and I if L≡ ¬A for meta-atom A.

Definition 6.1.33 (Meta-clause). A meta-clause is a disjunction of a finite number of

meta-literals L1∨L2∨ ...∨Ln. n can be zero, in which case we call the meta-clause the

empty clause, which can be written as >.

Definition 6.1.34 (Truth value of a meta-clause). Given a ground unification solution

U, an interpretation I, and a meta-clause C, we define the truth-value of C under U and

I to be true if there is at least one meta-literal in C which is true under U and I, and

false otherwise.

It follows that the empty clause is false for any solution and interpretation.

6.1. Basic pieces 129

Definition 6.1.35 (Meta-CNF). A meta-CNF is a conjunction of a finite number of

meta-clauses C1∧C2∧ ...∧Cn. n can be zero, in which case we call the meta-CNF the

empty CNF, which can be written as ⊥.

Definition 6.1.36 (Truth value of a meta-CNF). Given a ground unification solution U,

an interpretation I, and a meta-CNF N, we define the truth-value of N under U and I to

be true if every meta-clause in N is true under U and I, and false otherwise.

It follows that the empty CNF is true for any solution and interpretation.

6.1.6 Formulas with meta-predicates

The concepts in this section formally are a simplified version of first-order logic (see

§3.2.1), which however we define separately because we use them in conjunction,

but separated, from actual first-order statements. In particular, we define statements

that contain meta-predicates instead of predicates, first-order function and predicate

symbols as first-order constants, and second-order variables as first-order variables.

This is clearly not novel, neither technically (as it is a subet of first-order logic), nor as a

simplified way to implement meta-predicates; and we provide it here for completeness

of definitions.

We note that these formulas are a small use case particularly related with contextual

knowledge (see §4.3), and despite their name, are not directly related in any way with

Meta-CNFs defined above (definition 6.1.35). Meta-CNFs are more complex and

contain more aspects and semantics that we explicitly use as a core part of our solving

algorithm. Formulas with meta-predicates are a simple syntactic tool to define and

utilise contextual knowledge.

Definition 6.1.37 (Formula with meta-predicates). A formula with meta-predicates is a

formula of the form

δ(φ1,φ2, ...,φn) (6.1)

where δ is a meta-predicate symbol with arity n, and the φi are either first-order

predicate or function symbols, or second-order variables.

The semantics is strictly that of its first-order structure. In particular, the additional

semantics of first-order predicate and function symbols in the actual first-order structure

of the logic is not relevant for formulas with meta-predicates at all.

130 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

We note that, as a first-order structure, it is simplified. In particular, there are no
function applications nor quantifiers.

More precisely, we use formulas with meta-predicates exclusively for simple first-

order unification as an aspect of queries in ESQ logic (§6.2). We add formulas with

meta-predicates not containing second-order variables to the first-order theory, and then

may have queries that check for the presence of a formula with meta-predicates.

For example, consider that we add the following formulas with meta-predicates to a

theory:

primitive(icecream)

primitive(pizza)
(6.2)

and then we use a query to find instantiations of the formula with meta-predicates

containing second-order variables:

primitive(P) (6.3)

Then, a simplified first-order unification algorithm applied to each of the formulas

with meta-predicates will yield the results P≡ icecream and P≡ pizza.

We describe this in more detail in §6.2.

6.2 Existential second-order query logic

In this section we describe existential second-order query logic (ESQ logic) formally,

as initially introduced in §4.3.

The formalization is used mostly in the description of the evaluation test cases as

presented in chapter 9 and completed at (https://tinyurl.com/y67nsebs) and the

pattern catalogue presented in chapter 4. In practice, they express the intuitive notions

of the patterns as described in chapters 4 and 5.

All of the concepts in this section are entirely novel to this work, though obviously

they build on the pieces described so far and the cumulative knowledge on automated

theorem proving. In particular, the notions in this section are heavily related to constraint

logic programming (§3.3.1.1). But the definitions here are new and not standard or

trivial variations, to the best of our knowledge.

We will first describe a formalism for the denotational semantics for queries. That is,

https://tinyurl.com/y67nsebs

6.2. Existential second-order query logic 131

for what their solutions should be. We then discuss some computational aspects about

solving queries, though we do not formalize these here.

6.2.1 Denotational semantics

Queries represent semantic conditions having to do with the provability and satisfiability

of first-order formulas with existentially quantified second-order variables in them, as

well as direct unification constraints; and have an associated solution: The (possibly

infinite) set of instantiations (definition 6.1.14) of second-order variables in the logic

signature that fulfil the conditions of the query.

Definition 6.2.1 (Instantiation set). An instantiation set is a set of tuples (including

unary) of second-order terms (definition 6.1.2).

All the tuples must have the same arity, and each second-order term in the same

position in the tuple in the same instantiation set must have the same arity.

Note, however, that because we use curly brackets {} to indicate function

composition and it can get confusing with the curly brackets used for set notation,

any curly brackets inside a tuple (parenthesis) are function composition, and any

curly bracket outside a tuple (parenthesis) indicates set notation. For example,

{(f),(f{g,h})} is an instantiation set with unary tuples.

We will be talking about solutions to queries given theories. In order to formalize

this, we will define what a full ground solution to a query is on a case by case basis.

Full ground solutions are always ground instantiations (definition 6.1.15). We can then

extend this definition in general (for all types of queries) to the definition of a ground

instantiation being a ground solution to a query, and then extending this definition to all

instantiations (ground or not). We do this here first, in general:

Definition 6.2.2 (Ground solution of a query). We say that a ground instantiation IS

of second-order variables in S is a ground solution of a query Q with select clause S,

given theory T , if IS is the restriction of a full ground solution I of Q given T , only to

the variables in S.

Definition 6.2.3 (Solution of a query). We say that an instantiation I of second-order

variables in S is a solution of a query Q with select clause S, given theory T , if, for

every ground instantiation IG that is finer than I, IG is a ground solution to Q given T .

132 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

We will write ST (Q) to describe the set of all solutions to a query given a theory

T . We say that a subset S̄T (Q) ⊂ ST (Q) is a complete set of solutions if for every

ground solution IG of Q given T , there is an instantiation I ∈ S̄T (Q) such that IG is

finer than I. The objective of our algorithm is to compute a complete subset of so-

lutions S̄T (Q). We write GT (Q)⊂ ST (Q) for the set of ground solutions of a query only.

There are two classes of ESQ queries: Basic queries and Composite queries. We

will explain basic queries first.

6.2.1.1 Basic queries

All basic queries have two fundamental elements:

• A body, indicating the constraint that defines the instantiation set.

• A select clause, indicating the instantiation of which second-order variables we

wish to capture.

The select clause is a simple tuple of second-order variables contained in the body.

When we write a query, we always write this clause first.

There are five types of basic queries. We use standard theorem proving notions such

as entailment and satisfiability in these definitions. See §3.2.1 for definitions.

Definition 6.2.4 (Entailment query). An entailment query is written S � F, where F is

a meta-CNF (definition §6.1.35) and S is a subset of the second-order variables in F.

Given a theory T and a ground instantiation I of all second-order variables in F,

we say that I is a full ground solution of S � F if, when substituting the values of I in F,

the resulting first-order formula FI is entailed by T .

For example, consider the theory T :

∀x.p(x)
∀y.p(y) =⇒ q(f (y))

(6.4)

and query Q ≡ (P) � P(a). Then, (P) ≡ (p) and (P) ≡ (q{ f}) are ground solutions

of Q given T ; and {(p{F}),(q{ f{F}})} is a complete set of solutions of Q given T ,

6.2. Existential second-order query logic 133

because any composition whose head is p and any composition whose head is q{ f},
when applied to a, produces a provable formula; and every provable formula of this

shape belongs to one of these two sets. F is a free second-order function variable that

indicates the partial instantiation, including an infinite set of ground instantiations.

Definition 6.2.5 (Satisfiability query). A satisfiability query is written S �∗ F, where F

is a meta-CNF (definition §6.1.35) and S is a subset of the second-order variables in F.

Given a theory T and a ground instantiation I of all second-order variables in F,

we say that I is a full ground solution of S �∗ F if, when substituting the values of I in

F, the resulting first-order formula FI is satisfiable in T .

For example, consider the theory T :

∀x.¬p(f (x))

∀y.q(f (y)) =⇒ p(y)
(6.5)

and query Q ≡ (P) �∗ P(a). Then, (P) ≡ (p), (P) ≡ (q) and (P) ≡ (q{ f}) are

ground solutions of Q given T . However, (P)≡ (p{ f}) and (P)≡ (q{ f{ f}}) are not

solutions, because they are unsatisfiable in T (adding them to the theory would make

it inconsistent). It is in general not easy (and we have not found a way) to find finite

complete sets of solutions for satisfiability queries.

We note that in patterns we may sometimes informally write entailment and sat-

isfiability queries where we use freeform formulas containing second-order variables

instead of strictly meta-CNFs. The meaning of this is clear, as even when containing

second-order variables, the translation of a freeform formula to a meta-CNF is unique

and clearly defined. That is, we merely syntactically restructure the formulas for clarity

when reading the patterns, without introducing any additional meaning.

Definition 6.2.6 (Unification query). A unification query is written S : T1 ' T2, where

T1 and T2 are both second-order terms and S is a subset of the second-order variables

in T1 and T2.

We say that a ground instantiation I of all second-order variables in T1 and T2 is a

full ground solution of S : T1 ' T2 if, when substituting the values of I in T1 and T2, the

resulting first-order terms T1I and T2I are unifiable (as first-order terms).

134 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Note that unification queries (as disunification queries below) are independent of

the theory T .

For example, the query Q≡ (P) : P(f (x))' q(f (y)) has, among its ground solutions,

(P) ≡ (q) and (P) ≡ (q{ f}). However, (P) ≡ (p) and (P) ≡ (q{g}) would not be

solutions as that would make the two terms non-unifiable. It is not trivial to find a finite

complete set of solutions for this query either, and we are unaware if one exists.

Definition 6.2.7 (Disunification query). A disunification query is written S : T1 6= T2,

where T1 and T2 are both second-order terms and S is a subset of the second-order

variables in T1 and T2.

We say that a ground instantiation I of all second-order variables T1 and T2 is a

full ground solution of S : T1 6= T2 if, when substituting the values of I in T1 and T2, the

resulting first-order terms T1I and T2I are not unifiable (as first-order terms).

For example, the query Q≡ (P) : P(f (x)) 6= q(f (y)) has, among its ground solutions,

(P) ≡ (p) and (P) ≡ (q{g})). However, (P) ≡ (q) and (P) ≡ (q{ f}) would not be

solutions as that would make the two terms unifiable. Similarly to before, it is possible

there is no finite complete set of solutions for disunification queries like this one.

Definition 6.2.8 (Meta-predicate query). A meta-predicate query is written S �M F,

where F is a formula with meta-predicates (definition §6.1.37) and S is a subset of the

second-order variables in F.

Given a theory T and a ground instantiation I of all second-order variables in F,

we say that I is a full ground solution of S �M F if, when substituting the values of I

in F, the resulting formula with meta-predicates (but no second-order variables) FI

appears (explicitly) in T .

Meta-predicate queries are the simplest to solve, as they essentially consist in a

simple first-order matching exercise between the query body and the formulas with

meta-predicates in T .

For example, consider the theory T with the following formulas with meta-

predicates:

6.2. Existential second-order query logic 135

δ(p,q)

δ(r,q)
(6.6)

and query Q ≡ (P) �M δ(P,Q). Then (P,Q) ≡ (p,q) and (P,Q) ≡ (r,q) are all the

solutions of Q given T .

6.2.1.2 Composite queries

Composite queries combine two or more other queries to produce a new query whose

set of solutions is related to those of the smaller queries, recursively over the basic

queries. We will define the sets of solutions of composite queries similar to how we

did for basic queries: we will define the set of full ground solutions, and then utilize

definitions 6.2.2 and 6.2.3 to extend it to the definition of ground solutions and solutions

in general.

The main type of composition query is join queries. We have chosen this name

because of its semantic similarity to traditional relational join queries (see any introduc-

tory book to databases. For example [Lake and Crowther, 2013]). A join query takes

two queries and a binding between the second-order variables in both queries, and has

as solutions the union of solutions from both queries where the instantiations for bound

variables match.

We can present this normally. However, similar to relational queries, it is easier to

define a renaming operation first, that allows us to change second-order variables in

queries to enforce or prevent matching.

Definition 6.2.9 (Variable renaming in queries). Let Q be a ESQ query. Let X and Y be

two second-order variables. Then, define the query QY/X to be the query resulting from

taking Q and replacing every instance of X for Y .

We will use the shorthand notation QY1/X1,Y2/X2,...,Yn/Xn ≡ (((QY1/X1)Y2/X2
)
...
)
Yn/Xn

.

Lemma 6.2.1 (Alpha-equivalence of queries). Alpha-equivalent queries have alpha-

equivalent solutions. That is, consider any theory T . If a query Q has set of solutions

ST (Q) and second-order variable Y does not appear in Q, then for any second-order

variable X:

ST (Q) = ST (QY/X) (6.7)

136 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

(Note that the second-order variables do not explicitly appear in the set of solu-

tions, but what happens is that the instantiations of variable X gets replaced with the

instantiations of variable Y).

Proof. It’s trivial. The second-order variables’ connection to the set of solutions is only

that they are replaced in the query. If the variable Y did not previously appear in the

query, then renaming another variable to it causes no change in the semantics of the

query.

We are now in position to define and use join queries.

Definition 6.2.10 (Join query). Let Q1 and Q2 be two ESQ queries. Then, write

Q1 on Q2 for the join of these two queries. We define the select clause S of Q1 on Q2 to

be the union of the select clauses of Q1 and Q2.

Given a theory T and a ground instantiation I of all second-order variables in Q1

and Q2, we say that I is a full ground solution of Q1 on Q2 if it is a full ground solution

to both Q1 and Q2.

The definition of the solution set may lead to thinking that intersection would be

a better name for this type of query. However, closer inspection reveals that joins are

more general than intersections (they also are in relational queries). Depending on

which variables are in common between Q1 and Q2, a join might be an intersection of

solutions, a full cartesian product of solutions or somewhere inbetween.

For example, if Q1 and Q2 have the exact same second-order variables, then clearly

the full ground solutions of Q1 on Q2 are the intersection of those of Q1 and Q2. On

the other extreme, if Q1 and Q2 share no second-order variables whatsoever, then any

combination of a full ground solution of Q1 and a full ground solution of Q2 will be a

full ground solution of Q1 on Q2. When there is a proper intersection, the result is more

complex. The rename operation (definition 6.2.9) allows us to fine-tune how exactly we

want these sets to intersect.

For example of join query, consider the following theory T :

p(a)

q(b)
(6.8)

and query Q≡ ((P,Q) � P(a) =⇒ Q(a))on ((R,Q) � R(b) =⇒ Q(b)).

6.2. Existential second-order query logic 137

(P,Q,R)≡ (q, p, p) is a solution because q(a) =⇒ p(a) is entailed by T (as p(a)

is an axiom), and so is p(b) =⇒ p(b) (tautology).

(P,Q,R)≡ (q,q, p) is also a solution because q(a) =⇒ q(a) is entailed (tautology)

and so is p(b) =⇒ q(b) (q(b) is an axiom).

However, (P,Q,R) ≡ (q, p,q) is not a solution because while q(a) =⇒ p(a) is

entailed by T , q(b) =⇒ p(b) is not entailed (it is satisfiable, so potentially true in some

interpretations, but not necessarily true in all of them). However, (P,Q)≡ (q, p) is a

solution to the left query.

Similarly, (P,Q,R)≡ (p,q, p) is not a solution either because while p(b) =⇒ q(b)

is entailed by T , p(a) =⇒ q(a) is not. However, (Q,R) ≡ (q, p) is a solution to the

right query.

Note that the full ground solutions of join queries are defined in terms of full ground

solutions of the inner queries, and not based on their select clauses. This means that the

join combines all variables present in the queries, not just those that would be output by

the select clause.

We can trivially define n-ary joins (for finite n) as the sequential joins of more

than 2 queries. To do this, it is important to establish that joins are associative and

commutative. This is trivial from the definition.

The other type of composite query is what we call forall queries. These queries

solutions are the intersection of the solutions of one of the queries that appear for every

possible solution of the other query.

Let’s define this formally:

Definition 6.2.11 (Forall query). Let QS and QC be two ESQ queries. Consider the set

VS of second-order variables appearing in QS and the set VC of second-order variables

appearing in QC. Then, write S : ∀QC.QS for the forall intersection of QS over QC,

where S is a subset of VS−VC.

Given a theory T and a ground instantiation I of all second-order variables in

VS−VC, we say that I is a full ground solution of S : ∀QC.QS if, for each full ground

solution IC of QC, there is at least one full ground solution IC
S of QS such that IC

S matches

I on VS−VC and IC
S matches IC on VS∩VC.

138 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Essentially, forall queries are quantifying over the variables in the intersection of

QS and QC, and returning the variables in QS that do not appear in QC that are present

as a solution of QS for every solution of QC.

6.2.2 Computational aspects

The purpose of this section is mainly to explicitly acknowledge questions that have not

been answered in this section, and to give some basic answers for some, point to the

part of the thesis that provides them in others, and simply delineate the gap in others.

6.2.2.1 Satisfiability and disunification

One of the core computational difficulties of solving ESQ queries has to do with a

fundamental theoretical limitation in the decidability of first-order logic itself (even

without second-order variables). Indeed, we presented here satisfiability queries, but

satisfiability of a first-order formula is known to be, in general, co-semi-decidable

[Robinson and Voronkov, 2001]. This means that while an algorithm can be produced

that will always terminate when a formula is not satisfiable (in fact, the resolution

algorithm presented in §3.2.1.2 is one such algorithm), if a formula is satisfiable, for

any algorithm conceivable, it may be the case that the algorithm never terminates.

Similarly, disunification formulas present a difficulty. While first-order disunifica-

tion is in general decidable [Comon, 1990], it is a much more complex problem than

first-order unification, and requires an embedding of term equality in first-order logic

itself. Instead, in our implementation, and because of the much less relevant nature of

disunification queries, we utilize a similar approach to disunification queries as we do

for satisfiability queries, which is to conceive them as the negation of an entailment /

unification query.

In particular, we note that the set of solutions of a satisfiability query is exactly the

complement of that of an associated entailment query; and similarly for disunification

and unification queries. We can present these as two lemmas:

Lemma 6.2.2 (Satisfiability is the opposite of entailment). Consider a theory T , and a

satisfiability query S �∗ F, and its associated set of ground solutions GT (S �∗ F).

6.2. Existential second-order query logic 139

Consider the entailment query S � ¬F. Then, a ground solution G has G ∈GT (S �∗

F) if and only if G /∈GT (S � ¬F).

Proof. G is a ground solution to S �∗ F if and only if, when applying the instantiations

of G to F , for the resulting first-order formula FG, there is an interpretation I that

satisfies all axioms in T and also satisfies FG. But then, in the interpretation I, ¬FG is

not satisfied (since interpretations are always complete). Therefore, ¬FG is not entailed

by T , and therefore G /∈GT (S � ¬F).

Conversely, if G /∈GT (S � ¬F), then that means ¬FG is not entailed by T , and thus

there must be an interpretation I in which ¬FG is not satisfied, and by completeness, FG

must be satisfied. Therefore, FG is satisfiable in T , and thus G ∈GT (S �∗ F).

Lemma 6.2.3 (Disunification is the opposite of unification). Consider a theory T ,

and a disunification query S : T1 6= T2, and its associated set of ground solutions

GT (S : T1 6= T2).

Consider the unification query S : T1 ' T2. Then, a ground solution G has G ∈
GT (S : T1 6= T2) if and only if G /∈GT (S : T1 ' T2).

Proof. It’s the same idea as before but even more obvious due to the definition of

disunification.

G is a ground solution to S : T1 6= T2 if and only if, when applying the instantiations

of G to T1 and T2, the resulting terms (T1)G and (T2)G are not unifiable. But this is

equivalent to G not being a ground solution to S : T1 ' T2, by definition of unification

query solutions.

What we do instead with both of these query types is approximate them, and utilize

the same underlying mechanism for entailment/unification (unification dependency

graphs, described in chapter 7). Semantically, when refining a set of solutions (see

§6.2.2.2) with a satisfiability or disunification query, we could produce the associated

entailment/unification dependency graph, and check / attempt to combine the previous

solutions with the current solutions, and output only those that do not appear in the

associated graph. However, due to the infinite nature (discussed in more detail in

§6.2.2.4) both of the solution sets and the dependency graph unification algorithm

execution, this would be a non-terminating task in general. We can approximate this by

limiting the depth / extent to which we execut the algorithm, and assuming if no result

is found up to that point, noone will. This is exactly our approach.

140 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

6.2.2.2 Combining queries

We introduced two types of composite queries: Joins and Forall queries. Both of these

combine the sets of solutions of underlying queries in different ways. However, there

are two important computational aspects to consider here. First, in many cases we can

solve the combined query a lot more efficiently than solving each query independently

and then combining the solution sets. Second, there are nuances with how we combine

infinite sets computationally speaking. The first topic we discuss here, the second is

discussed in §6.2.2.4.

Forall queries do not benefit from the first aspect: in our implementation, every time

we solve a forall query, we do so by solving each invidual query and then combining

them (how explained in §6.2.2.4). Join queries, however, can greatly benefit from the

first aspect in most cases.

In particular, consider the join of two entailment queries: (S1 � F1) on (S2 � F2).

Semantically, the set of solutions of this query (given a theory) is the set of tuples of

instantiations all variables in S1 and S2 such that when replacing the instantiations in F1

and F2, both are entailed. But note that the select clause of this query is S1∪S2, and

that F1 and F2 are both entailed if and only if F1∧F2 is entailed by the theory. Thus, we

have the following lemma:

Lemma 6.2.4 (Join of entailment queries). For any theory T , sets of variables S1 and

S2 and formulas F1 and F2, the following holds:

ST ((S1 � F1)on (S2 � F2)) = ST ((S1∪S2) � (F1∧F2)).

Proof. The select clause is by definition of join query. F1∧F2 is entailed if and only if

both F1 and F2 are entailed.

More generally, in terms of unification dependency graphs, we can merge depen-

dency graphs to generate a combined graph that has all the constraints of both graphs.

When we join any two queries completely defined by a single dependency graph, merg-

ing the graphs is always enough. This includes entailment queries and unification

queries. Even when joining queries with approximations / multiple graphs, merging

graphs is still a useful tool to generate a more efficient result other than calculating the

sets of solutions independently and then combining them.

6.3. Maximal CNFs and inductive instantiation 141

6.2.2.3 Query order

In the previous section we have described how combined queries can often be merged

in one way or another, but sometimes they may not. For example, the described

approximation for satisfiability and disunification queries (§6.2.2.1) requires starting

from a base dependency graph (product of one query) and producing a set of dependency

graphs that approximate the solution in some way from it. In these circumstances, query

order matters. This, however, is a minor concern, as it does not change things drastically

and it only is required with certain composite queries, but not with all.

We do not have a standard query order depending on query types, but we do

acknowledge the relevance of it. In the implementation, the query order is determined

by the order the query is written. In this sense, we would lose the associativity and

commutativity of certain composite queries.

6.2.2.4 Enumeration of solutions

In general, solution sets of queries are infinite. In the case of entailment queries, our

algorithm (chapter 7) produces a sound and fair (i.e. complete) enumeration of the set,

where every solution is guaranteed to be output after a finite amount of time (under

certain conditions). This is good, as it allows us to produce solutions iteratively without

fear that we may be completely losing important families of them. In practice, this is

done through a lazy evaluation algorithm, explained in more detail in chapter 8.

In general, we can extend this approach to all queries, through the approximations

described above, but also through a generic approach to lazy evaluation and enumeration-

based processing of data. This is done through specific data structures designed to this

effect and combination functions for them that pervasively care about this property.

Chapter 8 contains more specific details about this.

6.3 Maximal CNFs and inductive instantiation

In this section we describe how we adapt the conventional resolution algorithm (see

§3.2.1.2) to existential second-order query logic, by applying minimal commitment,

building what we call maximal CNFs through inductive instantiation.

The theory in this section is not very extensive and it is a direct extension of standard

resolution. However, the extent to which it differs from standard resolution is completely

novel to this thesis.

142 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

We will not prove here8, but will use, the fact that the usual algorithm for transform-

ing a first-order formula into CNF can be used to transform a formula with second-order

variables into a meta-CNF.

Theorem 6.3.1 (Refutation procedure for ESQ logic). Consider a theory (a finite set of

formulas) T and a conjecture F, each of which possibly contains second-order variables.

Consider the meta-CNF result of conjunctively joining T ∧ (¬F) and transforming it

into a meta-CNF. Write NT
F for this meta-CNF.

For each ground unification solution U, consider the first-order formula U(F) result

of applying U to F, and correspondingly U(T) and U(NT
F).

Then, U(T) �U(F) if and only if U(NT
F) is unsatisfiable.

That is, the set of unification solutions that make F entailed by T are the same that

make NT
F unsatisfiable.

There is a standard (and simple) proof that a refutation procedure is correct for

first-order formulas. We will not repeat this here. See [Robinson and Voronkov, 2001,

Bundy, 1983].

For each ground unification solution U , U(F) and U(NT
F) are both first-order

formulas and thus the standard proof applies. The rest of the theorem is just a

restatement of this fact.

Definition 6.3.1 (Inductive instantiation of a meta-CNF). Consider a meta-CNF N that

contains one second-order predicate variable P with arity n. Consider the second-order

signature that we are using S (which contains the second-order variables as well).

Moreover, consider a partial instantiation I of the second-order variables in S. Assume,

without loss of generality, that

N ≡ ((δ1
PP(ε1

1,ε
1
2, ...,ε

1
n)∨A)∧B)

where δ1
P is a negation or empty, each ε1

i is a unifier expression, A is a disjunction of

meta-literals and B is a conjunction of meta-clauses. P may appear in more than one

such meta-literal, in which case we will consider δ2
P,δ

3
P, ... and ε2

i ,ε
3
i , ...

Then, define the inductive instantiation of N over P to be the set of the following

meta-CNFs, each with its own updated signature and instantiation:

8It is conceptually trivial, but tedious

6.3. Maximal CNFs and inductive instantiation 143

• Negated instantiation:

– Add a fresh second-order variable P¬ with arity n to the signature S.

– Add P := ¬P¬ to the partial instantiation I.

– For each j, if δ
j
P is empty, replace it with a negation; if δ

j
P is a negation,

replace it with empty.

– Replace each appearance of P in N with P¬.

• Disjunctive instantiation:

– Add two fresh second-order variables P1 and P2 with arity n to the signature

S.

– Add P := P1∨P2 to the partital instantiation I.

– For each j, if δ
j
P is empty, replace P(ε1, ...,εn) with P1(ε1, ...,εn) ∨

P2(ε1, ...,εn).

– For each j, if δ
j
P is a negation, replace (¬P(ε1, ...,εn) ∨ A) with

(¬P1(ε1, ...,εn)∨A)∧ (¬P2(ε1, ...,εn)∨A)

• Universal instantiation:

– Add a fresh second-order variable Q with arity n+1 to the signature S.

– Add P := λε1...εn.∀x.Q(ε1, ...,εn,x) to the partial instantiation I.

– For each j, if δ
j
P is empty:

* Add a fresh first-order variable x to the signature S (use the same

variable for every j that is positive).

* Replace P(ε1, ...,εn) with Q(ε1, ...,εn,x).

– For each j, if δ
j
P is a negation:

* Add a new function symbol f 9 with arity n to the signature S (use the

same function for every j that is negative).

* Replace ¬P(ε1, ...,εn) with ¬Q(ε1, ...,εn, f (ε1, ...,εn)).

9A Skolem function.

144 Chapter 6. Minimal commitment resolution for ESQ logic: Theoretical results

Let’s show an example. Consider the following meta-CNF:

(P(x,y)∨q(x))∧ (R(z)∨¬P(f (z),z))

Then, the inductive instantiation over P consists in the following formulas:

• Negated instantiation - (¬Q(x,y)∨q(x))∧ (R(z)∨Q(f (z),z))

• Disjunctive instantiation - (P1(x,y)∨P2(x,y)∨q(x))∧ (R(z)∨¬P1(f (z),z))∧
(R(z)∨¬P2(f (z),z))

• Universal instantiation - (Q(x,y,w)∨ q(x))∧ (R(z)∨¬Q(f (z),z,g(f (z),z))),

where w is a fresh first-order variable and g is a new function symbol (Skolem

function).

Theorem 6.3.2 (Soundness and completeness of the inductive instantiation). Let N

be a meta-CNF that contains a second-order predicate P. Let S be the second-order

signature we are using, and I a partial instantiation of the second-order variables in S.

Then, for any ground unification solution U, U makes N unsatisfiable if and only if

U makes one of the meta-CNFs in the inductive instantiation unsatisfiable or U(P) is a

predicate (i.e. does not contain logical connectives)10.

Proof. The basis of the proof is that every logical formula can be described as a

combination of negation, disjunction and universal quantification of predicates. This is

a well known standard fact that we will not prove again here.

We can use this to prove the theorem by noticing that for any solution U , the

instantiation of P is a logical formula function of its arguments, and thus the theorem

mentioned above means that every instantiation’s logical connectives are a combination

of the inductive instantiation steps.

The only thing left is the case when the unification solution instantiates P to a

predicate, but this is specifically covered by the theorem.

The usefulness of the inductive instantiation and the theorem is that we can use

inductive instantiation to forget about the logical connectives in the instantiation and, at

each step, apply the resolution refutation procedure assuming that the instantiation is to

a predicate, and thus, the meta-CNF will be instantiated to an actual CNF.

We can write this down as an algorithm.
10It may, however, contain compositions, so it shall not be necessarily exactly a predicate symbol.

6.4. Summary 145

Algorithm 6.3.2 (Inductive instantiation resolution). Consider a meta-CNF N, a signa-

ture S and a partial instantiation I. Assume we have a procedure resolve that takes a

meta-CNF and finds all the instantiations of the second-order variables that appear in

the meta-CNF in which the second-order variables are instantiated to predicates.

Then, produce the following algorithm to find all instantiations of N in the signature

S with the initial partial instantiation I:

1. Apply resolve to N to find predicate instantiations and output them.

2. If N has no second-order predicate variables, finish the algorithm.

3. Pick a second-order predicate variable P in N. Consider the formulas in the induc-

tive instantiation, and for each of them, non-deterministically run the algorithm

from step 1.

We note that this algorithm is in general non-terminating and produces an infinite

output. But it is a fair enumeration procedure as described in §8.5.

6.4 Summary

In this chapter we describe the two high-level pieces of our technical approach to

automatically detecting faults in ontologies. On one hand, the formalism that allows us

to express ESQ queries and their semantics as patterns that allow us to find instantiations

of second-order variables that relate to entailment in a logical theory. On the other

hand, the notion of inductive instantiation of a meta-CNF formula, that is needed for

the complete exploration of the set of instantiations of predicate second-order variables.

We show basic results about the soundness and completeness of inductive instantiation.

Chapter 7

Dependency graph unification for ESQ

logic: Theoretical results

7.1 Basic pieces

In this section we extend some of the basic concepts introduced in the previous chapter

with some additional concepts exclusive to the internal workings of the unification

dependency graph algorithm. Everything appearing in this chapter is fundamentally

novel to this work, despite building up on all the concepts introduced in chapters 3 and 6.

7.1.1 Dependants

Definition 7.1.1 (First-order dependant). A first-order dependant is either:

• A first-order variable.

• A unifier variable (definition 6.1.18) applied to another dependant.

Definition 7.1.2 (Second-order dependant). A second-order dependant is either:

• A function symbol.

• A projection (see definition 6.1.2).

• A second-order variable.

First-order dependants are, therefore, a subset of unifier expressions; while second-

order dependants are a subset of second-order terms. This will be more relevant later

147

148 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

when we define graphs and the translation of expressions into graphs. The reader

may wonder why we call these dependants (what do they depend on?). They will

be the nodes of dependency graphs and the edges in said graphs will express their

dependencies. Therefore, dependants depend on other dependants, and the dependency

graph expresses how they do so. First-order dependants are function free, and functional

dependencies are expressed through edges.

7.1.2 Equational reasoning

The following lemma is useful to reason more easily about non-deterministic rules in

dependency graphs later on. This is basic set theory but we want to make it explicit

because the handling of solutions, graphs and equations can get tricky and easily

confusing. This allows us to have better grounding on the meaning of non-deterministic

arguments.

Lemma 7.1.1 (Non-deterministic equational reasoning). Consider a system of unifica-

tion equations (definition 6.1.26) E , and consider its set of solutions, U(E). If we can

show that there exist a (possibly infinite) set of systems of unification equations {Ei}
such that for every unification solution U ∈U(E) there is at least one Ei such that

U ∈U(Ei); and also that for every i and for every Ui ∈U(Ei), Ui ∈U(E), then it is

true that E has the same set of solutions as the union of the sets of solutions of the Ei.

Formally,

U(E) =
⋃

i

U(Ei)

This is basic set theory and logic, so we will not spell out the proof.

7.2 Unification dependency graphs

All concepts introduced from this section onwards are novel to this work. Of course

there is inspiration and building on existing concepts, but they are not a variation of a

previously existing approach (to the best of the author’s knowledge). However, some

particular approaches to these definitions so heavily reminisce pre-existing concepts

(even if not being exactly the same), that we use similar terminology. We will explicitly

note these.

7.2. Unification dependency graphs 149

It might be worth noting that, technically, unification dependency graphs

are a particular case of term graph rewrite systems (see §2.3.3, §3.4.1,

[Plump, 2002, Habel and Plump, 1995, Plump, 1999, Barendregt et al., 1987,

Dwork et al., 1984, Plump, 2005]). However, the author of this thesis was not

aware of this relation until after the PhD viva. Clearly, the notion of using graphs

to represent unification problems is very natural. Work such as the one cited above

provides general abstract results on theoretical aspects of term graph rewriting in

general. Most of these requires grounding in an associated string rewriting system,

which we do not have in our case. It is arguable, however, that embracing the general

abstract results could have simplified some of the most difficult theorems and lemmas

in this chapter. We discuss this further in chapter 10. But the reality is that the work

produced here was not directly based in this and merely related in the sense of being a

natural idea in the context of unification. Nonetheless, the theory in the literature would

probably help understand and extend the work produced here. We did not have time to

do this in this thesis, but some thoughts are shared in chapter 10.

A unification dependency graph is, for all intents and purposes, a second-order

unifier. It is a representation of a set of instantiations and associated substitutions.

It differs from conventional unifiers in that a dependency graph represents several

independent unification steps (unifiers) at once, instead of just one. We use unification

dependency graphs as an implicit and compact representation of the set of all ground

instantiations and associated substitutions that make a given set of unification steps

work; in the same way that a conventional first-order unifier is an implicit and compact

representation of the set of all ground substitutions of first-order variables that makes

the unified terms equal.

An important detail is that unifier variables, which are meant to be replaced by

first-order substitutions, do not affect the instantiation of second-order variables. This

is a consequence of the way in which we use second-order variables. We consider

instantiation of second-order variables to happen before considering the replacement

of unifier variables for substitutions. For each instantiation of second-order variables,

there is an associated set of substitutions for the unifier variables, that ultimately are

applied only to the first-order variables. This is one of the fundamental differences

between our problem and general second-order unification.

For example, consider the following system of unification equations:

150 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

σ1 f (X)≈ σ1F(X) (7.1)

σ2σ1F(Y)≈ σ2F(X) (7.2)

Every instantiation for F that would make equation 7.1 hold would have F ≈ f (and

this is independent of σ1, by definition). Then, σ1 can be any substitution (for example

σ1X ≈ g(), but also σ1X ≈ f (g()) or σ1X ≈ X , etc.). This makes it so that equation 7.2

is equivalent, in this case, to σ2σ1 f (Y)≈ σ2 f (X) (because F ≈ f independently of σ1

and σ2). This equation then tells us that σ2 will bind Y to σ1X , whatever σ1X is. This

is part of the reason why unifier variables have an ordering: later unifications may not

conceptually condition the result of earlier unifications.

In the following, we describe a dependency graph informally. A formal definition

requires a lot of layers and is provided later (definition 7.2.1).

For example, a dependency graph for the given set of equations (see figure 7.1) has

four labelled first-order nodes: σ1X , σ1Y , σ2σ1Y , σ2X . It has a vertical edge from σ1Y

to σ2σ1Y , indicating that the latter contains the former as an expression (a simple type

of dependency that we call vertical because it relates different unifier variables (σ1 and

σ2)). It has two second-order labelled nodes: f and F .

It then, more importantly, has an anonymous first-order node (no dependants), with

two incoming horizontal edges. Horizontal edges can be first-order or second-order

and, by definition, have a head (which is always a second-order node, representing

the function that relates the sources with the target), a sequence of sources (first- or

second-order nodes, respectively for first- and second-order edges), and a single target

(a first- or second-order node, respectively). A first-order horizontal edge represents

a functional dependency between unifier expressions via function application, such

as σ1Y ≈ f (σ1X). A second-order edge represents a functional dependency between

second-order terms via function composition, such as F ≈ f{g}. Note that we do

not explicitly indicate the ordering of sources in horizontal edges, but usually these

are presented from left to right in the diagrams. The diagrams are only a simplified

graphical representation of the more abstract mathematical concept of the dependency

graph, in which the sources are ordered.

In our particular example, the anonymous first-order node represents the expression

f (σ1X) (but it’s anonymous because we only use dependants (i.e. function free) as

first-order labels in our graph), and has an incoming horizontal edge with single source

7.2. Unification dependency graphs 151

σ1X and head f , representing the functional dependency of this unifier expression on

the dependant σ1X . More importantly, it has a second incoming horizontal edge, with

single source σ1X and head F , standing for the right side of the equation. These two

edges have the same node as target precisely because the first equation tells us that the

two terms f (σ1X) and F(σ1X) must be equal, once instantiations and substitutions

have applied. Similarly, the second equation is represented by an anonymous node with

two incoming edges, one with head F from source σ2σ1Y and the other with head F

from source σ2X .

Note that the naming of horizontal and vertical edges is related to the notion of

unifier variables representing different levels: Horizontal edges are edges that connect

nodes within the same unifier level, whereas vertical edges are edges that connect

nodes on different unifier levels. Unfortunately, for better visualization in our diagrams,

horizontal edges will often be represented vertically and vertical edges horizontally.

We will use the convention that vertical edges are dotted, curved lines and horizontal

edges are solid, straight lines. Moreover, vertical edges only have a single source and

no head, whereas horizontal edges often have several sources and always have a head.

This should be enough to distinguish them in diagrams.

Let us formalize this. First, we specify the syntax of what a dependency graph

contains, and later we relate this to the semantics of the solutions it represents.

Definition 7.2.1 (Unification dependency graph). A unification dependency graph

consists of:

• A set of second-order nodes. Each second-order node may contain any number

(including zero) of second-order dependants.

• A set of first-order nodes. Each first-order node may contain any number (includ-

ing zero) of first-order dependants, all of which must have the same unifier level

(this applies to no unifier level (⊥) too).

• Second-order horizontal edges, each of which consists of a head (a second-order

node), a sequence (possibly empty) of sources (second-order nodes) and a single

target (a second-order node). Each horizontal edge may be marked as redundant.

While redundancy is formally just a toggle on an edge that we manipulate directly,

conceptually a redundant horizontal edge is used to indicate that there are other

elements in the graph that represent the same information as this edge in ways

152 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.1: A dependency graph.

The graph contains 6 first-order nodes (dark blue), 4 of which containing one dependant

each, and 2 of them containing no dependants (represented by a dot).

It also contains 2 second-order nodes (red), though one of them (containing F) is drawn

three times to simplify edges. It is formally the same node.

It contains 4 first-order horizontal edges (light blue, angled arrows), each of which has 1

source (first-order node), its head (second-order node) and its target (first-order node).

Second-order horizontal edges would have second-order nodes as sources and target.

Horizontal edges can have any number of sources, not necessarily 1, but they always

have a single head and a single target.

The graph contains 1 vertical edge (green). Vertical edges always have a single

first-order node as source and a single first-order node as target.

Colors are only used in this example graph, they will not be used in following graphs.

σ1X σ1Y
σ2

σ2σ1Y σ2X

· ·

f F F F

7.2. Unification dependency graphs 153

that we prefer. We keep these edges in the graph because we may wish to check

whether this information already exists in the graph, and for that purpose the

edges are still useful.

When representing graphs with diagrams in this text, redundant edges will never

be graphically represented. Horizontal edges are never actually removed from

the graph through any of the rewrite rules (§7.4), and marking as redundant will

graphically be represented as removing the edge.

• First-order horizontal edges, each of which consists of a head (a second-order

node), a sequence (possibly empty) of sources (first-order nodes) and a single

target (a first-order node). Each horizontal edge may be marked as redundant.

• Vertical edges, each of which has a single source, a single target, both first-order

nodes, and an associated unifier variable σi. We sometimes interchangeably refer

to the unifier level i of a vertical edge as an equivalent of its unifier variable σi.

See definition 6.1.19 if you want to make sure that this makes sense.

An essential restriction to the above on dependency graphs is that there must never

be different nodes containing the same first-order or second-order dependant. Another

way to think about this restriction is that if two nodes contained the same dependant,

then they must be considered the same node and treated as a single, merged entity in

the dependency graph.

We also note that horizontal edges are considered indistinguishable if they have the

same sources, head and target. While in some rules we will indicate we want to remove

all but one of the edges which have the same sources, head and target, this is, from a

theoretical point of view, unnecessary and meaningless, since each edge (each set of

sources, head and target being related) either is or is not in the graph. Multiple edges

connecting exactly the same nodes have absolutely no effect on the graph.

This is different from explicitly redundant horizontal edges. These are edges that are

not repeated but for which we have verified that their exclusion from the graph would

not change the graph’s semantics. We keep them for easy verification of certain aspects,

but exclude them from other rules that would involve loops if applied to redundant

edges.

We will now define the semantics of dependency graphs. For this, let us first produce

a useful tool.

154 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Definition 7.2.2. We extend unification equations to allow special symbols called

first and second-order proxies. We will usually write κN and χM to represent a first-

order proxy associated with N and a second-order proxy associated with M, respectively.

Given a system of unification equations with proxies, for each unification solution

U, U is defined to be a solution to the system if there is a way to choose a first-order

term for each first-order proxy and a second-order term for each second-order proxy,

such that U is a solution of the unification system result of replacing each proxy for its

corresponding term (U is a solution as long as there is such a choice, whichever the

choice may need to be).

That is, proxies have no meaning other than being a way to link different equations,

stating that, whatever the term is that we replace for the proxy (which will be different for

each specific solution), it will satisfy the equations if replaced the same way everywhere.

The usual way in which we will use proxies when dealing with dependency graphs is to

use them to refer to nodes in the graph and produce transitive equivalence between any

expressions associated with that node, in a succinct way.

For example, we may express the equation system:

σ1X ≈ σ1Y

σ1Y ≈ σ1Z
as

σ1X ≈ κN

σ1Y ≈ κN

σ1Z ≈ κN

Note that, by definition of the unification solutions, for any unification equation

system with proxies, there is a unification equation system without proxies with the

same unification solutions.

Definition 7.2.3 (Dependency graph equations). A unification dependency graph G has

an associated unification equation system E(G). The way to build the set of equations

associated with a dependency graph is as follows.

For each first- and second-order node in the graph, we produce a number of unifier

expressions or second-order terms, respectively, in the following way. The resulting

unification system has equations to establish that all expressions associated with the

7.2. Unification dependency graphs 155

same node are equivalent after unification. These equations are produced by using

proxies.

• For each first-order node N in the graph, produce the following equations:

– For each dependant ε contained in the node, produce an equation κN ≈ ε.

– For each non-redundant incoming horizontal edge to the node, with

head node H and source nodes S1, ...,Sn, produce an equation κN ≈
χH(κS1, ...,κSn)

• For each second-order node M in the graph, produce the following equations:

– For each dependant φ contained in the node, produce an equation χM ≈ φ.

– For each non-redundant incoming horizontal edge to the node, with

head node H and source nodes S1, ...,Sn, produce an equation χM ≈
χH{χS1, ...,χSn}.

• For each vertical edge V in the graph, with source node S, target node T and

unifier variable σi, produce an equation κT ≈ σiκS.

For example, the dependency graph in figure 7.2 has the following associated

unification equation system:

χ1 ≈ f χ2 ≈ F χ3 ≈ g χ4 ≈ h κ1 ≈ σ1X

κ1 ≈ σ1Z κ2 ≈ σ1Y κ3 ≈ χ1(κ1) κ3 ≈ χ2(κ1,κ2) κ4 ≈ σ2σ1Y

κ5 ≈ σ2X κ6 ≈ χ3(κ4) κ6 ≈ χ4(κ5) κ4 ≈ σ2κ2

Reading equations produced this way can be hard due to the sheer number of proxies,

however. We can simplify this system, by considering the transitivity of ≈ to produce

the following equivalent system (same unification solutions):

σ1X ≈ σ1Z f (σ1X)≈ F(σ1X ,σ1Y) g(σ2σ1Y)≈ h(σ2X)

Equations with proxies are useful in a formal way because they systematize proofs

and algorithms, but humans generally find it more convenient to process fewer equations.

We defined and use proxies in the definitions and proofs, but whenever possible we will

avoid them in examples meant to be read by humans.

156 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.2: A dependency graph.

Note that for simplicity and reducing clutter, we use σ1Y instead of {σ1Y} to refer to a

node that contains a singleton set of dependants (just one dependant). In general, we

will omit the curly braces for singleton sets of dependants where it is obvious that the

label is a singleton set of dependants instead of a node label.

{σ1X ,σ1Z} σ1Y
σ2

σ2σ1Y σ2X

· ·

f F g h

Definition 7.2.4 (Dependency graph solutions). A unification solution U is a solution

to a dependency graph G if U is a solution to E(G).

We similarly write U(G) as shorthand notation for U(E(G)).

We will write ε1 ≈G ε2 to mean that for every U ∈U(G), ε1 ≈U ε2.

We should make a note about vertical edges. The equations produced by vertical

edges are fundamentally redundant. If the graph is produced properly1, the equations

produced by vertical edges could be removed and it would produce the same set of

solutions. In that sense, we could have perhaps omitted vertical edges in this theoretical

description of dependency graphs. Vertical edges are used as an implementation

mechanism with two objectives. First, they are used in certain rewrite rules (§7.4)

for dependency graphs to check when there is the kind of dependency that vertical

edges represent in an easy way. Instead of checking whether nodes containing certain

dependants are present in the graph, we can just check whether any vertical edges are

present, being able to describe all rules in a more local and topological way. Second,

this local and topological identification of relevant nodes in a graph allows for the

implementation to be more efficient, since the search during the execution of the

dependency graph solving algorithm is performed using this local mechanism. We

include them here because they are relevant for the correctness of the algorithm, since

it uses these edges as an implementation tool. But an algorithm could be produced

1What this means is not the point of this discussion, which is an informal discussion and only aimed
at helping the reader understand.

7.2. Unification dependency graphs 157

without anything resembling vertical edges that would work. It would just have a more

complicated description and less efficient performance.

In order for this to work, we need to ensure that all the relevant vertical edges in the

graph are present. We do this only once per relevant node, and use the vertical edges as

a persistent witness of this search process that we can reuse over and over. We call this

process vertical alignment. It is a simple operation, that involves ensuring that for each

dependant of the form σiα in a node in the graph, the dependant α is also in the graph,

and there is a vertical edge between them. We may, however, omit some of these nodes

in the diagrams we use to represent dependency graphs in this text, for clarity. When

we do so, it is because they have no other edges or are particularly relevant. In a formal

dependency graph during a dependency graph solving algorithm the way we present it

in this thesis, however, it is necessary to keep these nodes in the graph.

The following produces, from a unification equation system E , a dependency graph

G such that U(E) = U(G):

Algorithm 7.2.5 (Dependency graph from equations).

• When we say that we grab the node associated with a dependant from a graph,

we mean that, if a node exists containing that dependant, we use that node. If no

node exists containing that dependant, we create a new node containing it and use

it. We also must ensure the vertical alignment of the newly created dependant, by

adequately grabbing dependants the node vertically depends on and producing

vertical edges between them.

• When we say that we merge two nodes, we mean that we transform the depen-

dency graph to consider those two nodes equivalent for all intents and purposes.

In practice, this means merging the sets of dependants they contain into a single

node, and combining all edges related to those nodes so that they all relate to the

resulting single node (both incoming, outgoing and those that the node is a head

for).

• Given a unifier expression or a second-order term, we can grab a node associated

with it in the following way:

– If the expression is a dependant, then grab the node associated with that

dependant.

158 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

– If it is an expression containing function symbols, then first normalize it

so that it is a second-order term applied to / composed with a set of sub-

expressions. Then, create an anonymous node (no dependants), recursively

grab the nodes associated with each sub-expression and with the head, and

create an edge with the sub-expression nodes as sources, the second-order

term as head and the anonymous node as target. The anonymous node is the

resulting node.

• Given an equation, we introduce it into a dependency graph by grabbing the nodes

associated with the expressions on each side of the equation and merging them.

• Introduce all equations in the system sequentially (order is irrelevant) to produce

a dependency graph with the same set of solutions as the unification equation

system.

Theorem 7.2.1. Algorithm 7.2.5 correctly produces a dependency graph G from a

unification equation system E such that U(G) = U(E).

Proof. First, we note that the fact that dependants only appear once in the graph and

that only dependants appear in the graph, combined with vertical alignment, guarantees

that all relations between unifier expressions that differ only in application of unifier

variables are preserved by connections to the same node in the dependency graph. For

example, the relation between σ2σ1X and σ1X is represented between the adequate

nodes because of exhaustive application of vertical alignment.

Second, we note that, by definition of the grab process and of the unification

equation system associated to a graph (definition 7.2.3), it is always the case that, for

any given expression ε, the node N(ε) that we obtain by grabbing it in the graph is

such that κN(ε) ≈ ε is an equation in the unification system associated to the graph (or

equivalently for second-order expressions).

Finally, merging nodes N and M in the graph has the consequence, when producing

the unification system associated with the graph, of producing equations transitively

equivalent to κN ≈ κM (or equivalently for second-order expressions). Transitivity of

equations ensures that this is semantically the only relevant consequence that it has

(i.e. the graph may produce more, less or different equations than the original system,

but they will only differ in terms of transitivity of equivalence, which holds in the

7.3. Normalization of dependency graphs 159

semantics of substitution/instantiation solutions).

Therefore, each equation of the form ε1 ≈ ε2 is translated into elements in the graph

ultimately producing equations equivalent to ε1 ≈ κN and ε2 ≈ κN (or equivalently for

second-order expressions). Thus, the unification system associated with the produced

graph has as set of solutions exactly those that equate expressions that were equated by

the original unification equation system, and so their sets of solutions are equal.

7.3 Normalization of dependency graphs

In this section we will define six normalization levels for dependency graphs (most of

which are strictly more constrained than the previous ones). Their purpose is to strike a

balance between the complexity / non-deterministic branching factor of transforming a

dependency graph into such normal forms, and the simplicity with which we can relate

the graph with its set of solutions. Each specific normalization level fills a particular

purpose in this spectrum.

However, acyclicity should be regarded as being at a different level than the

remaining normalization levels. Transforming a cyclic graph into a set of acyclic graphs

may incur non-determinism (see §7.4.4), but transforming an acyclic graph into an

equivalent factorizable or seminormal graph never incurs non-determinism unless a

cyclic graph is produced along the way. These situations are also considerably rare in

practice. Therefore, acyclicity is regarded as a formal condition that is required for

theoretical results but which is rare and algorithmically costly to have to enforce. Not

surprisingly, cycles are related to the usual occurs check in unification theory, and thus

why this is the name chosen for the rule that breaks cycles in dependency graphs.

Clearly, the notion of normalization or its utility to describe subsequent reductions

in the form of a formal representation, and the properties they have to allow us to

perform certain operations with them, is not novel to this work. However, as unification

dependency graphs themselves in the way presented here are completely novel to this

work, so are the particularities of their normalization levels as described in this section.

160 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

7.3.1 Prenormal form

Prenormalization is the least restrictive normalization level. Prenormalization and

factorizability (§7.3.3) are closely related but need to be divided due to acyclicity.

Where factorizability describes the situation in which the graph has been simplified

as much as possible without factorizing2 any edges; prenormalization describes all

conditions that must be enforced to allow acyclicity to be reachable.

In other words, we normally take a dependency graph, apply rules until it is prenor-

mal, then apply the occurs check3, which deals with cycles, then apply prenormalizing

rules again, and keep doing this until no cycles remain. At this point, we can finally

focus on trying to reach factorizability by applying the remaining prefactorizing rules

that require the graph to be acyclic.

Definition 7.3.1 (Prenormal dependency graph). A dependency graph is prenormal if

the following all hold:

1. There is no node in the graph with two outgoing vertical edges with the same

unifier variable.

2. For any node in the graph containing a dependant of the form σiε, there is an

incoming vertical edge whose source contains dependant ε.

3. For each vertical edge in the graph with source S, target T and unifier variable

σi, and each dependant ε in S, dependant σiε is in T .

4. For each vertical edge V in the graph with source S and target T , and each

horizontal edge H whose source or target is S, the edge H[V]4 is in the graph.

5. There are no two non-redundant5 horizontal edges in the graph with the same

source sequence and the same head.

6. The head of every non-redundant horizontal edge in the graph contains only

second-order variables or function symbols.
2Factorization is formally defined later, but the definition of factorizability or prenormalization does

not depend on it, although it is related to it.
3§7.4.4
4Definition 7.4.4. The reason we define this later is because of its relation to the vertical monotony

reduction rule, defined later. These definitions are, though, clearly not circular. Informally, H[V] is
another horizontal edge representing the propagation of the horizontal edge H to higher unifier levels
through the vertical edge V .

5We will remind the reader here that redundancy is a formal tag of horizontal edges explicitly
represented in the implementation of the algorithm.

7.3. Normalization of dependency graphs 161

We will show examples once we have introduced factorizability, due to the strong

connection between these two.

7.3.2 Acyclic form

As the name suggests, acyclicity relates to the presence of directed cycles in the depen-

dency graph. By the definition of vertical edges, cycles can only appear on horizontal

edges, and we consider cycles both from sources to target and from head to target.

Cycles express circular dependencies which usually do not have solutions in finite terms.

However, in §7.4.4 we explain in more detail how in certain situations cycles may be

only apparent and could be broken by adequate instantiations of second-order variables.

Cycles also prevent several of the manipulations that we do with graphs from properly

terminating and may produce infinite loops if not dealt with.

Definition 7.3.2 (Acyclic dependency graph). A dependency graph is cyclic if there is

a set of nodes (either all first-order nodes or all second-order nodes) {Ni}, horizontal

edges {Ei} and indices ji (we call them source indices); for 1≤ i≤ n in the graph such

that:

• For each i < n:

– If ji = 0, then Ni is the head of Ei.

– If ji 6= 0, then Ni is the ji-th source of Ei.

– Ni+1 is the target of Ei.

• The same applies for i = n, except instead of Ni+1, N1 is the target of En.

A graph is acyclic if it is not cyclic.

We recommend that readers make sure that they are convinced that this definition is

equivalent to the usual notion of the graph having no directed cycles, in any way or

shape.

More details on how we break cycles or invalidate graphs with cycles that cannot

be broken, and the meaning of all of this in the semantics of solutions can be found on

§7.4.4.

162 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

7.3.3 Factorizable form

Factorizability describes the situation in which the graph has been simplified as much as

possible without factorizing any edges, and furthermore some situations that represent

the graph has no solutions have been validated.

Definition 7.3.3. In an acyclic graph, define the recursive arity of a second-order node

in the following way:

• If the node has no incoming horizontal edges and contains one or more second-

order dependants all of which have the same arity, then it corresponds to the arity

of said dependants.

• If the node has no incoming horizontal edges and contains no second-order

dependants, then it is defined as zero6.

• If the node has no incoming horizontal edges and contains second-order depen-

dants with different arities, then it is undefined.

• If the node has incoming horizontal edges and the recursive arities of all sources

of all incoming horizontal edges are the same, and it is also the same as the arity

of all dependants in the node, then it corresponds to that arity.

• If the node has incoming horizontal edges but there are sources of incoming

horizontal edges with different recursive arities, or it is different from the arities

of second-order dependants in the node, then it is undefined.

Definition 7.3.4 (Factorizable dependency graph). A dependency graph is factorizable

if the following all hold:

1. It is prenormal.

2. It is acyclic.

3. The head of every non-redundant horizontal edge in the graph has no incoming

horizontal edges.

4. For each second-order node, all non-variable dependants it contains are equiva-

lent.
6This is an extreme case that should not appear in real cases and for which we do not really care of

the arity. However, we consider undefined recursive arities incorrect, and this case is not technically
incorrect, so we just define it as zero in this case.

7.3. Normalization of dependency graphs 163

Figure 7.3: An unnormalized graph G0.

Note that we repeat heads for clarity, but heads with the same dependants are formally

the same node.

The graph is not prenormal nor factorizable because there are edges with same sources

and head (red), an edge with a projection as head (green), and an edge head with an

incoming horizontal edge (orange).

σ1X1

σ1X2σ1X3

σ1X6σ1X4

σ1X5

σ1X7σ1X8

σ1X9

f f f F1
f

F2
π1

1

f

f F3

F4 F5

5. For each second-order node, its recursive arity (definition 7.3.3) is well defined.

6. For each non-redundant horizontal edge, the recursive arity of its head is equal

to the number of sources of the edge.

For example, consider the graph G0 in figure 7.3, assuming a signature where the

only function symbol is f . It is acyclic but it is not prenormal nor factorizable, because it

fails conditions 5 and 6 of definition 7.3.1, and condition 3 of definition 7.3.4. However,

graph G1 in figure 7.4 is factorizable and has the same solutions as G0.

7.3.4 Seminormal form

Seminormalization is the most simplified normalization level that can be achieved for

every graph (so long as the graph never becomes cyclic) without incurring any non-

determinism7. Conceptually, a seminormal graph is a graph that is both factorizable

and cannot be zero factorized8.

Definition 7.3.5. A dependency graph is seminormal if:

7This claim is not strictly formal, but holds for our algorithm and normalization levels.
8The simplest kind of factorization, defined in §7.4.7.1.

164 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.4: A factorizable graph G1 equivalent to G0.

Note that we repeat heads for clarity, but heads with the same dependants are formally

the same node.

The graph is not seminormal because there is a node with multiple incoming horizontal

edges, none of which has a variable head (orange).

σ1X1

{σ1X2,σ1X3}

σ1X6σ1X4

·σ1X5

σ1X7 σ1X8

σ1X9

{F2, f} {F2, f}

F1
{F2, f}

{F2, f}

{F2, f}
{F2, f} F3

F4 F5

1. It is factorizable.

2. For any node N with more than one non-redundant incoming horizontal edge

(edges Ei), there is at least one Ei0 whose head only contains variable dependants.

The graph G1 in figure 7.4 is not seminormal because there is a node with multiple

incoming horizontal edges, and all of the heads of the edges contain non-variable

dependants. In contrast, the graph G2 in figure 7.5 is seminormal and has the same

solutions as G1.

7.3.5 Quasinormal form

Quasinormalization may require non-determinism to reach (there may be a single

dependency graph for which there does not exist any single quasinormal graph with the

same set of solutions; and instead a set of quasinormal graphs are required to express the

full set of solutions). It is relevant because a consistent quasinormal graph is guaranteed

to have a non-empty set of solutions (theorem 7.6.9).

Definition 7.3.6. A dependency graph is quasinormal if:

1. It is seminormal.

7.3. Normalization of dependency graphs 165

Figure 7.5: A seminormal graph G2 equivalent to G1.

Note that we repeat heads for clarity, but heads with the same dependants are formally

the same node.

The graph is not quasinormal because there is a node with multiple incoming horizontal

edges, and some of them do not have variable heads (green).

{σ1X1,σ1X6}

{σ1X2,σ1X3}

σ1X4

·σ1X5

σ1X7 σ1X8

σ1X9

{F2, f}

F1
{F2, f}

{F2, f}

{F2, f}
{F2, f} F3

F4 F5

2. For any node N with more than one non-redundant incoming horizontal edge, all

the heads of its non-redundant incoming horizontal edges contain only variable

dependants.

3. Any second-order node with non-redundant incoming horizontal edges contains

only variable dependants.

The graph G2 in figure 7.5 is not quasinormal because there is a node with multiple

incoming horizontal edges, and some of the heads of the edges contain non-variable

dependants. In contrast, the graphs G3A and G3B in figure 7.6 are quasinormal and each

include a subset of the solutions of G2. If we fully unfolded this into all the possible

quasinormal graphs, these would combine to include all of the solutions of G2.

7.3.6 Normal form

Normalization is the maximum level of simplicity that a dependency graph can reach9.

It is relevant because unification solutions can be extracted directly from normal graphs.

Formally:

Definition 7.3.7. A dependency graph is normal if:
9This is entirely an informal statement.

166 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.6: Two quasinormal graphs G3A and G3B, such that

U(G2)⊇U(G3A)∪U(G3B).

The algorithm would unfold it into further non-deterministic quasinormal graphs but we

only include 2 here to avoid overcrowding the diagram.

Note that we repeat heads for clarity, but heads with the same dependants are formally

the same node.

Neither G3A nor G3B are normal because they both have a node with multiple incoming

horizontal edges (red).

{σ1X1,σ1X6,σ1X4}

{σ1X2,σ1X3}

{σ1X5,σ1X7} σ1X8

σ1X9

{F2, f}

F1
{F2, f}

{F2, f}

F4 F5

{σ1X1,σ1X6}

{σ1X2,σ1X3,σ1X5}

σ1X4

σ1X7 σ1X8

σ1X9

{F2, f}
{F2, f}

F1

{F2, f}

{F2, f}

F4 F5

7.3. Normalization of dependency graphs 167

Figure 7.7: Two normal graphs G4A and G4B, such that U(G3A)⊇U(G4A)∪U(G4B).

The algorithm would unfold it into further non-deterministic normal graphs but we only

include 2 here to avoid overcrowding the diagram.

Note that we repeat heads for clarity, but heads with the same dependants are formally

the same node.

In both G4A and G4B each node has at most one incoming horizontal edge, which

means every equation derived from the graph is either an equality or can be taken as a

definition. This means that we can enumerate solutions in a straightforward way from

the graph. See definition 7.6.4.

{σ1X1,σ1X6,σ1X4}

{σ1X2,σ1X3}

{σ1X5,σ1X7}

{σ1X8,σ1X9}

{F2, f}

F1
{F2, f}

{F2, f}

F4

{σ1X1,σ1X6,σ1X4}

{σ1X2,σ1X3,σ1X8}

{σ1X5,σ1X7,σ1X9}

{F2, f}

F1
{F2, f}

{F2, f}

1. It is quasinormal.

2. There is no node with more than one non-redundant incoming horizontal edge.

The graph G3A in figure 7.6 is not normal because there is a node with multiple

incoming horizontal edges. In contrast, the graphs G4A and G4B in figure 7.7 are normal

and each include a subset of the solutions of G3A. If we fully unfolded this into all the

possible normal graphs, these would combine to include all of the solutions of G3A. The

attractive of normal graphs is that each node has at most one incoming horizontal edge.

This means that we can enumerate solutions in a straightforward way from the graph

(see definition 7.6.4).

168 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

7.4 Rewrite rules for dependency graphs

The way in which we use a dependency graph can be described at a high level as

follows:

1. Translate a system of unification equations into a dependency graph.

2. Apply a series of rewrite rules (see §3.4) to the graph. Each of these rewrite

rules preserves the set of unification solutions of the graph. In order for this to

be possible, these rewrite rules may be non-deterministic, meaning that from a

single dependency graph they may produce a set of dependency graphs, such that

the set of solutions for the original dependency graph is equal to the union of the

sets of solutions for the resulting dependency graphs. In other words, the rewrite

rules are applied to sets of dependency graphs to produce new sets of dependency

graphs (possibly infinite sets).

3. Reach a certain normalization level for the dependency graph. At that normaliza-

tion level, enumeration of unification solutions and/or verification of whether a

given unification solution is represented by the graph is relatively straightforward.

In this section we will describe what the set of rewrite rules is, including the

preconditions that the graph must fulfill for each rule to be applicable. Later on we will

combine these rewrite rules to produce normalizing algorithms.

The intention of each rewrite rule is to change the presentation of the graph, while

preserving its semantics (its set of solutions).

The basics of rewrite systems are described in §3.4 and are not novel to this work.

However, our application to unification dependency graphs is naturally unique to our

approach, and has multiple important complexities and elements that are particular to it,

discussed in this and following sections.

From now on, we use the shorthand notation U(G), where G is a set of dependency

graphs, defined as U(G) =
⋃

G∈G
U(G).

Definition 7.4.1 (Solution preserving rule). Given a rewrite rule R that transforms a

dependency graph G into a countable set of dependency graphs R(G) (non-deterministic

transformation of a dependency graph), we say R is solution preserving if for all G ,

U(R(G)) = U(G).

7.4. Rewrite rules for dependency graphs 169

Figure 7.8: Vertical monotony.

σ1X

σ1Y

σ2

σ2σ1X

σ2

σ2σ1Y

σ1X

σ1Y

σ2

σ2σ1X

σ2

σ2σ1Y

f f f

We now describe the rewrite rules of our system.

7.4.1 Vertical monotony

Propagate dependencies encoded by equivalences (multiple dependants in a node)

and first-order horizontal edges through vertical edges to explicitly represent the

consequences of a horizontal edge on all unifier levels after that. For example, if

σ1Y = f (σ1X), then it must also be true that σ2σ1Y = f (σ2σ1X). Graphically, the two

graphs in figure 7.8 are equivalent.

Vertical monotony unfolds into three separate rules. The first two have to do with

equivalences, and the third one with more complex dependencies. The first one deals

with equivalences that are already explicit in the graph structure, and representing them

in a better way, while the second one deals with syntactic equivalences that are not

explicit in the graph structure.

Rewrite rule 1 (Vertical monotony of explicit equivalences). Vertical monotony of

explicit equivalences is applicable when

• There are two vertical edges V1 and V2 with the same source node S and unifier

variable σi.

and does the following:

• Merge T1 and T2, the targets of V1 and V2 (respectively).

• Remove V1 or V2 (at this point they are absolutely equivalent) from the graph.

You can see a graphical depiction of this in 7.9.

Lemma 7.4.1. Vertical monotony of explicit equivalences is a solution preserving rule.

170 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.9: Vertical monotony of explicit equivalences. General case.

S

σi

T1

σi

T2

S

σi

T1∪T2

Proof. We begin with a dependency graph G1 and end with a dependency graph G2

equal to G1 except that T1 and T2 are merged and V2 (w.l.o.g.) has been removed.

By definition of merging nodes and of the equation system associated with a de-

pendency graph, the equation system of G2 is equivalent to that of G1, with the added

equation κT1 ≈ κT2 , and the equation κT2 ≈ σiκS2 removed.

But in G1, due to the presence of V1, there is an equation κT1 ≈G1 σiκS and because

of V2 we have κT2 ≈G1 σiκS. Combining these through transitivity of ≈, we have

κT1 ≈G1 σiκS ≈G1 κT2 .

Similarly, we have κT2 ≈G2 κT1 ≈G2 σiκS, so the removing of V2 does not change

the associated solutions either.

Therefore, the set of solutions of G1 and the set of solutions of G2 are the same.

Rewrite rule 2 (Vertical monotony of syntactic equivalences). Vertical monotony of

syntactic equivalences is applicable when

• There is a vertical edge V with source node N and unifier variable σi.

• N contains dependants ε1 and ε2.

• Dependants σiε1 and σiε2 are not in the same node.

and does the following:

• Merge the nodes result of grabbing σiε1 and σiε2.

You can see a graphical depiction of this in 7.10.

7.4. Rewrite rules for dependency graphs 171

Figure 7.10: Vertical monotony of syntactic equivalences. General case.

N ⊇ {ε1,ε2}

σi

M1 ⊇ {σiε1}

σi

M2 ⊇ {σiε2}

N ⊇ {ε1,ε2}

σi

M1∪M2 ⊇ {σiε1,σiε2}

As a note on this diagram and some of the subsequent ones, we would clarify the

notation ⊇, in particular in the form N ⊇ {ε1,ε2}. This is just a way to represent a

single node, which we label as N (since the operation does something with it and we

need a way to reference it) while at the same time adding a constraint to the rule stating

that the node N must contain dependants ε1 and ε2.

Lemma 7.4.2. Vertical monotony of syntactic equivalences is a solution preserving

rule.

Proof. We begin with a dependency graph G1 and end with a dependency graph G2

equal to G1 except that the nodes containing σiε1 and σiε2 are merged.

By definition of merging nodes and of the equation system associated with a de-

pendency graph, the equation system of G2 is equivalent to that of G1, with the added

equation σiε1 ≈ σiε2. But in G1 we already have equation ε1 ≈ ε2, and by congruence

of ≈, then we also have σiε1 ≈G σiε2. Therefore, the set of solutions of G1 and the set

of solutions of G2 are the same.

To formally define the vertical monotony of edges in the graph, first we provide a

series of definitions that help us describe it precisely.

Definition 7.4.2 (Lifting of a dependant). Given a unifier variable σi and a dependant

ε, we call the node result of grabbing the dependant σiε in the dependency graph the

lifting of ε to σi.

Definition 7.4.3 (Lifting of a first-order node). Given a first-order node N and a vertical

edge V with unifier variable σi, we define the lifting of N through V , written N[V], to

be a first-order node10 that is the target of the vertical edge with source N and unifier
10If vertical monotony of explicit equivalences has been applied exhaustively then this node is unique.

172 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

variable σi. If N has no outgoing vertical edges with unifier variable σi, then N[V] is

added to the graph as an anonymous node alongside the vertical edge that joins them.

We will also sometimes use the notation N[σi]≡ N[V].

Definition 7.4.4 (Lifting of a horizontal edge). Given a vertical edge V and a horizontal

edge H, the lifting of H through V , written H[V], is a horizontal edge such that:

• The head of H[V] is the same as the head of H.

• For each source Si of H, H[V] has Si[V] as a source.

• If the target of H is T , then the target of H[V] is T [V].

Rewrite rule 3 (Vertical monotony of horizontal edges). Vertical monotony of horizon-

tal edges is applicable when:

• Vertical monotony of explicit equivalences is not applicable.

• Vertical monotony of syntactic equivalences is not applicable.

• There is a vertical edge V with source node N.

• There is a horizontal edge H with either source or target node N.

• H[V] is not in the graph.

and does the following:

• Add H[V] to the graph.

You can see a graphical depiction of this in figure 7.11.

Lemma 7.4.3. Vertical monotony of horizontal edges is a solution preserving rule.

Proof. We begin with a dependency graph G1 and end with a dependency graph G2

that is equal to G1 except that the edge H[V] has been added to the graph.

Let i be the unifier level of V . Let T be the target of H, with F its head and {S j} its

sources. Then, in G1 the equation κT ≈ χF(κS1, ...,κSn) holds.

The target of H[V] is T [V], its sources are {S j[V]} and its head is F . Therefore,

G2 has an equivalent equation system to G1 but with the added equation κT [V] ≈
χF(κS1[V], ...,κSn[V]). Note, however, that for any node N, κN[V] ≈ σiκN holds in G1

7.4. Rewrite rules for dependency graphs 173

Figure 7.11: Vertical monotony of horizontal edges. General case.

The structure of the edge is extended monotonously from the base unifier level to the

unifier level i, using the vertical edges.

Note that the N in the definition could be any of {S1, ...,Sn,T} and V any of the vertical

(dotted) edges (the corresponding one).

S1 ... Sn

T

F
(H)

σi

S1[σi]...
σi

Sn[σi]

σi

T [σi]

S1 ... Sn

T

F
(H)

σi

S1[σi] ...
σi

Sn[σi]

σi

T [σi]

(H[V])

(and G2). This is trivially true if the graph contains dependants, and also true if the

graph is anonymous because κN[V] is defined through its incoming horizontal edges, all

of which will be produced through vertical monotony.

Therefore, the following equations are all true in G1:

κT ≈ χF(κS1, ...,κSn)

σiκT ≈ σiχF(κS1, ...,κSn)

σiκT ≈ χF(σiκS1, ...,σiκSn)

κT [V] ≈ χF(κS1[V], ...,κSn[V])

and so the solutions of G2 are the same as those of G1.

7.4.2 Edge zipping

This rule can be applied to first or second-order edges. It represents the notion that if

there are two edges with the same sources and head, then the targets must be equivalent.

Merge the nodes to represent this. For example, if F ∼= g{ f} and G ∼= g{ f}, then it

must be true that F ∼= G, as depicted in figure 7.12.

Rewrite rule 4 (Edge zipping). Edge zipping is applicable when:

• There are two non-redundant horizontal edges E1 and E2 with the same head and

the same sequence of sources.

174 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.12: Second-order edge zipping.

f

g g

F G

f

{F,G}

g

Figure 7.13: Edge zipping. General case.

Two distinct nodes with equivalent incoming edges must be equivalent.

...S1 Sn

F

T1 T2

...S1 Sn

T1∪T2

F

• The targets T1 and T2 of E1 and E2 are not the same.

and does the following:

• Merge T1 and T2.

• Remove either E1 or E2 from the graph (at this point they are indistinguishable).

You can see a graphical depiction of this in figure 7.13.

Lemma 7.4.4. Edge zipping is a solution preserving rule.

Proof. We will produce parallel proofs for first and second-order zipping, by

considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

We begin with a dependency graph G1 and end with a dependency graph G2 equal

to G1 except that the nodes T1 and T2 have been merged. Therefore, the associated

equation system of G2 will be equivalent to that of G1 with added equation κT1 ≈ κT2 .

7.4. Rewrite rules for dependency graphs 175

Figure 7.14: Projection simplification of first-order edges.

σ1Y σ1Z

π2
2

σ1X

σ1Y {σ1X ,σ1Z}

Let F be the head node of E1 and E2, and {Si} their sources (which are equal for both

edges by definition). Then, the edge E1 produces the equation κT1 ≈ χF(κS1, ...,κSn)

(if first-order; or with second-order instead of first-order proxies and composition

instead of application if second-order nodes). Similarly edge E2 produces equations

κT2 ≈ χF(κS1, ...,κSn). In either case, it is true by transitivity of equivalence that

κT1 ≈ κT2 holds in G1 (or with second-order proxies).

Therefore, G1 and G2 have the same solutions.

7.4.3 Projection simplification

When an edge has a projection as head, then we can remove the edge and merge

the corresponding source with the target. For example, we can replace the equation

σ1X ≈ π2(σ1Y,σ1Z), with a simple σ1X ≈ σ1Z, as depicted in figure 7.14.

The name corresponds to the name of the unifier expression rewrite rule that

produces the same semantic result.

Rewrite rule 5 (Projection simplification). Projection simplification is applicable when:

• There is a non-redundant horizontal edge E whose head node H, contains a

projection πn
i .

• The target T of E is not the same as the i-th source of E, Si.

and does the following:

• Merge Si and T .

176 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.15: Projection simplification. General case.

Merge the i-th target with the source of an edge with πn
i as head.

S1 ... Si ... Sn

πn
i

T

S1 ... Si∪T ...Sn

• Mark E as redundant.

You can see a graphical depiction of this in figure 7.15.

Lemma 7.4.5. Projection simplification is a solution preserving rule.

Proof. We will produce parallel proofs for first and second-order zipping, by

considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

Let {S j} be the sources of the edge E. We begin with a dependency graph G1 and

end with a dependency graph G2 equivalent to G1 except that the nodes Si and T have

been merged, and the edge E has been marked as redundant. This last part is equivalent

to the removal of the edge for semantic purposes, since only non-redundant edges are

considered in the semantics of the graph.

The merging of Si and T produces the equation κSi ≈ κT . The removal of E

removes the pre-existing equation κT ≈ πn
i (κS1 , ...,κSi, ...,κSn) for first-order (replacing

first for second-order proxies and application for composition for second-order nodes).

These equations, however, can be reduced, via the projection simplification rewrite rule

for unifier expressions, to κT ≈ κSi in both cases.

Therefore, the solutions of G1 and G2 are the same.

7.4. Rewrite rules for dependency graphs 177

7.4.4 Occurs check

In usual unification theory, the occurs check refers to the verification that the substitution

of a term does not properly (i.e. not through equality) contain itself. There is no

finite substitution that can satisfy this. For example, first-order unification would

write x ∼ f (x) or, using our unifier variable notation, σix ≈ σi f (x), which implies

σix≈ f (σix).

In terms of graphs, this notion is equivalent to that of directed cycles in the graph

expressing the dependencies between terms. That is, the occurs check in first-order uni-

fication establishes that there may not be non-trivial (i.e. not equality) dependency
cycles.

The occurs check is also one of the more algorithmically complex parts of first-order

unification, and while efficient solutions exist, the fundamental issue is that it cannot

be checked locally and instead requires inspecting the entire unification problem

(equivalently, the whole dependency graph).

The situation in our case is slightly more complicated, due to the presence of second-

order variables, and specifically two ways in which these can be instantiated that affect

the semantics of the occurs check:

• Second-order variables can be instantiated into projections, effectively making

them trivial dependencies. For example, σ1x≈ F(σ1x) can have solutions when

F ≈U π1
1.

• Second-order variables with multiple arguments can be instantiated into second-

order terms that do not actually depend on all of their arguments, effectively

breaking the cycle. For example, σ1x ≈ F(σ1x,σ1y) can have solutions when

F ≈U f{π2
2,π

2
2}.

You can see graphical examples of these situations in figures 7.16 and 7.17.

We can apply minimal commitment reasoning to incorporate these two cases with

the occurs check into a rewrite rule that, when it finds cycles, either invalidates the

graph or instantiates second-order variables in ways that will remove the cycles in the

graph.

This still has the difficulty, that no other rewrite rule in this text has, of being a

global rule that works on entire cycles in the graph of unbounded length, rather than

178 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.16: Directed cycles in a dependency graph that imply the graph has no

solutions.

Any solution U to the left graph would have σ1X ≈U f (σ1X), which is a syntactic

impossibility for any substitution σ1.

The right graph has a similar issue with σ1X ≈U g(σ1X ,σ1Y).

σ1X

f

σ1Y

σ1X

g

Figure 7.17: Directed cycles in a dependency graph that could have solutions

depending on second-order variable instantiations.

For example, if F ≈U π1
1 or G≈U g{π2

2,π
2
2}.

σ1X

F

σ1Y

σ1X

G

7.4. Rewrite rules for dependency graphs 179

on limited parts of the graph.

Note, as well, that when considering cycles formed by second-order nodes, the

heads of the edges are, for all intents and purposes, also sources with respect to graph

cycles.

Rewrite rule 6 (Occurs check). The occurs check is applicable whenever the graph is

prenormal and cyclic. We reproduce definition 7.3.2 here, since the details are relevant

to define the behaviour of the occurs check rule. A graph is cyclic if there is a set of

nodes (either all first-order nodes or all second-order nodes) {Ni}, horizontal edges

{Ei} and indices ji (we call them source indices); for 1≤ i≤ n in the graph such that:

• For each i < n:

– If ji = 0, then Ni is the head of Ei.

– If ji 6= 0, then Ni is the ji-th source of Ei.

– Ni+1 is the target of Ei.

• The same applies for i = n, except instead of Ni+1, N1 is the target of En.

The occurs check rule then does the following (we will consider first and second-order

cases separately here):

• First-order cycle - Produce the following non-deterministic branches:

1. Trivial (equality) dependency - Consider the head Hi of each Ei. If any

of the Hi contains any dependant that is not a second-order variable, do not

produce any branch from this case.

Otherwise, note that in first-order cases, the source index may not be zero

because first-order nodes are not heads of edges. Then, produce a single

branch in which we merge each Hi with π
mi
ji , where mi is the number of

sources of Ei.

2. Eliminate the dependency - For each 1≤ i≤ n, produce a branch in the

following way:

180 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

– Consider the sources {Si,k}, head Hi and target Ti of Ei. Let mi be the

number of sources of Ei.

– Add a fresh second-order variable Vi, with arity mi−1.

– Add a second-order edge E2
i with head Vi, sources π

mi
k for k 6= ji, and

target Hi

– Add a first-order edge E ′i with head Vi, sources {Si,k}, for k 6= ji (in the

same order), and target Ti.

– Mark Ei as redundant.

• Second-order cycle - It depends on whether some of the source indices are not

head indices (0). There are two possibilities:

1. Trivial dependency / Eliminate dependency - There is some ji 6= 0. Then,

produce the same two families of branches as above (cases 1 and 2), but

apply everything only to those i for which ji 6= 0 (and leave the others as is).

As long as there is one ji 6= 0, this will break the cycle.

2. Permutation - If all the ji = 0, then the above cases will not break the

cycle. That is, each node is the head of the edge that moves to the next

one. The only solutions to this situation are those in which the solutions to

each node in the chain are almost equivalent to each other, but possibly with

permutations of their arguments11.

Then, for each Ei, consider the number of sources of Ei, mi. Consider all

the permutations of {πmi
1 , ...,πmi

mi
}. Given one such permutation P, write Pj

to represent the j-th projection in that permutation. Consider as well the

sources Si,k for k ∈ 1..mi of the Ei.

For each combination of choices of n permutations {Pi}, for 1 ≤ i ≤ n,

consider the sequence of compositions of projections:

P ∗ = {P1
1{P2

1{...{Pn
1{...}, ...}...}, ...},P1

2{...}, ...,P1
m1
{...}}

For each combination of permutations for which P ∗ is equivalent (second-

order term equivalence) to {πm1
1 , ...,πm1

m1}, and only for those (we show that

for this to be true, all the mi need to be equal); produce a branch in which

the following is done:

11This is proven on lemma -pendingref-.

7.4. Rewrite rules for dependency graphs 181

– Merge Si,k with Pi
k, for all 1≤ i≤ n and for all 1≤ k ≤ mi.

– Mark En as redundant.

We will now show that occurs check is a solution preserving rule. But for that proof,

it is useful to first show a smaller lemma about the permutation case.

Lemma 7.4.6. Let {Ni} and {Ei} be a second-order cycle in a dependency graph with

every ji = 0. That is, each Ni is the head of each Ei.

Then, for every solution U of the graph, and for every two 1≤ i1 ≤ i2 ≤ n, it is true

that:

• Ni1 and Ni2 have the same arity m.

•
χNi1
≈U χNi2

{P1, ...,Pm}
χNi2
≈U χNi1

{P1, ...,Pm}

where {P1, ...,Pm} is some permutation of {πm
1 , ...,π

m
m}.

In other words, all the Ni are the same function, with the only possible difference of

changing the order of the arguments.

Proof. By virtue of the cycle and the fact that all ji = 0, we have that for every i1, all

the following equations are true:

χNi1
≈

χNi1−1{...} ≈
χNi1−2{...}{...} ≈
...

χN1{...}...{...} ≈
χNn{...}...{...} ≈
...

χNi1
{...}...{...} ≈

χNi1
{πmi1

1 , ...,π
mi1
mi1
}

Which means that the sources of each of the edges in the cycle must be such

that when compounding them with each other, they produce the natural arguments

{πmi1
1 , ...,π

mi1
mi1
}. The important part is that these natural arguments:

• Lose no information. They strictly depend on every argument.

182 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

• Have no compositions with function symbols.

In the solution U , any solution to the nodes {Ni} that would contain function

symbols or ignore some arguments would therefore not fulfill these conditions. If

the Ni had different arities, then the smaller arity nodes would inevitably lose some

information with respect to the larger arity ones.

Thus, all the Ni must have the same arity and all of the sources of these edges must

be permutations of the natural arguments, since these are the only sets of arguments

that contain no function symbols and strictly depend on all of the arguments.

Lemma 7.4.7. Occurs check is a solution preserving rule

Proof. We begin with a dependency graph G1. If the occurs check is applicable,

then that means G1 is prenormal and cyclic. We end with a set of dependency graphs G2.

We will first show that for each graph G2 ∈ G2, U(G2) ⊆ U(G1). Consider the

possibilities for the occurs check rule:

• First-order cycle

1. Trivial (equality) dependency - In this case, the result dependency graph

G2 is the same as G1 except we have merged Hi with π
mi
ji ; but this means we

have added an equation χHi ≈ π
mi
ji , and so the solutions of G2 are strictly

contained in those in G1.

2. Eliminating the dependency - We have n branches (for each 1 ≤ i ≤ n)

with a dependency graph G2 with the new edges E2
i and E ′i and the edge

Ei removed. The introduced edges add equations, which restrict solutions,

so we are not concerned with those now. Instead, we will look at what

equations the marking of Ei as redundant may have removed.

The edge Ei in G1 produces the equation:

κTi ≈G1 χHi(κSi,1, ...,κSi,mi
) (7.3)

But the edge E2
i in G2 produces the equation:

χHi ≈G2 χVi{π
mi
1 , ...,πmi

ji−1,π
mi
ji+1, ...,π

mi
mi
} (7.4)

7.4. Rewrite rules for dependency graphs 183

and the edge E ′i produces the equation:

κTi ≈G2 χVi(κSi,1, ...,κSi, ji−1,κSi, ji+1, ...,κSi,mi
) (7.5)

which is equivalent to:

κTi ≈G2 χVi{π
mi
1 , ...,πmi

ji−1,π
mi
ji+1, ...,π

mi
mi
}(κSi,1, ...,κSi,mi

)

which, combined with equation 7.4, is equivalent to:

κTi ≈G2 χHi(κSi,1, ...,κSi,mi
)

which is equation 7.3, and so U(G2)⊆U(G1).

• Second-order cycle

1. The proofs for the trivial dependency and eliminate dependency cases is

analogous to the first-order case.

2. Permutation - In this case, the only information that might be lost is the

one contained in En. This edge produces the equation

χN1 ≈G1 χNn{Pn
1 , ...,P

n
m} (7.6)

From lemma 7.4.6, we know that in every solution, the arguments of this

equation must be a permutation of the natural arguments (projections).

Moreover, the following equation, derived from combining all the Ei except

En, holds both in G1 and G2:

χNn ≈ χN1{P
−n
1 , ...,P−n

m } (7.7)

where the arguments is a combination of permutations, and therefore a

permutation itself. But every permutation {P1, ...,Pm} has a unique in-

verse permutation {P−1
1 , ...,P−1

m } such that {P1, ...,Pm}{P−1
1 , ...,P−1

m } =
{P−1

1 , ...,P−1
m }{P1, ...,Pm}= {πm

1 , ...,π
m
m}.

Moreover, in G1 we have that the permutation in equation 7.6 and the one

in 7.7 combine to produce the equations:

184 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

χN1 ≈ χN1{P
−n
1 , ...,P−n

m }{Pn
1 , ...,P

n
m}

χNn ≈ χNn{Pn
1 , ...,P

n
m}{P−n

1 , ...,P−n
m }

so {Pn
1 , ...,P

n
m} and {P−n

1 , ...,P−n
m } (we will write Pn and P−n for short) are

inverses.

This means that, following equation 7.7, in G2, the following holds:

χNn{Pn} ≈G2 χN1{P
−n}{Pn} ≈ χN1

which is equivalent to equation 7.6, and so G1 and G2 have the same solu-

tions.

For the second half of the proof, we show that every solution U ∈ U(G1) is a

solution to one G2 ∈G2.

• First-order cycle - Imagine that in U , there is one i0 for which the solution

to Hi0 does not depend on Ni. But then we can rewrite the equation for Ei into

another equation that does not depend on Ni. The dependency graph result of the

eliminate dependency branch for i expresses the most general case possible for

this situation, and this branch only differs from G1 in this particular aspect, and

so U is a solution to the graph in this branch.

Therefore, we can assume from now on, without loss of generality, that each Hi

strictly depends on all of its arguments. Then, we can show that it is not possible

that for any of the i, χHi ≈U f , for any function symbol f . Assume on the contrary

that χHi ≈U f . Then, the edges {E1, ...,En} produce the following equation that

holds in U :

κN1 ≈U κN1(...χHi(...)...)≈U κN1(... f (...)...)

which means that κN1 depends properly on itself, which is a syntactic impossibil-

ity.

And so, each Hi cannot be equivalent, in U , to a function symbol f . But in

a ground solution U , each second-order node has to be instantiated to either a

7.4. Rewrite rules for dependency graphs 185

function symbol or a projection, and so each Hi must, in U , be equivalent to a

projection.

Moreover, because Ei strictly depends on Ni, which is its ji-th argument, we then

know that Hi ≈U π
mi
ji . The trivial dependency branch covers this case.

• Second-order cycle - We first note that for those i for which ji = 0, then Ni is the

head of Ei. Also note that it is not possible to eliminate the dependency of an edge

on its head, so we can reproduce the argument for the eliminate dependency case

for first-order cycles, but only for those i for which ji 6= 0. The others necessarily

depend on Ni.

We can also, similarly to the first-order case, prove that, as long as all the Ei

depend on Ni, then none of the Hi for which ji 6= 0 can be equivalent, in a

solution, to a function symbol, and must thus be projections. The eliminate

dependency case represents exactly this case, with no further added equations,

and thus the solutions that fall under this case are represented by this.

We thus only have left the case where all the ji = 0. Lemma 7.4.6 shows that

every solution U of G1 must be such that one of the sets of permutations described

holds, and so for every solution, one of the permutation branches must cover this

solution.

7.4.5 Function dumping

When an edge has a head that has incoming second-order edges, we can apply the

instantiation represented by the second-order edge to the edge for which it is a head. For

example, if σ1X ≈F(σ1Y,σ1Z) and F ≈G{ f ,g}, then we can replace the first edge with

edges and nodes corresponding to the equation σ1X ≈G(f (σ1Y,σ1Z),g(σ1Y,σ1Z)), as

depicted in figure 7.18.

The name corresponds to the name of the unifier expression rewrite rule that

produces the same semantic result.

Rewrite rule 7 (Function dumping). Function dumping is applicable when:

186 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.18: Function dumping on a first-order edge.

The second-order edge targetting the node containing F remains in the graph, but we

omit it on the right to simplify. We do present it in the general case for full representation.

σ1Y σ1Z

F

σ1X

f

g

G
σ1Y σ1Z

f g

· ·

G

σ1X

• There is a non-redundant (first or second-order) horizontal edge E with head H,

target T and sources Si.

• There is a non-redundant second-order horizontal edge E2 with target H, head

H2 and sources S2
j .

• H does not contain a projection.

and does the following:

• Creates an anonymous node N j associated with each S2
j .

• For each N j, creates a horizontal edge with sources {Si} (all of them, in the same

order), target N j and head S2
j .

• Creates a horizontal edge with sources N j (all of them, in the same order), target

T and head H2.

• Marks E as redundant.

You can see a graphical depiction of this in figure 7.19.

Lemma 7.4.8. Function dumping is a solution preserving rule.

Proof. We will produce parallel proofs for first and second-order function dumping,

by considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

7.4. Rewrite rules for dependency graphs 187

Figure 7.19: Function dumping. General case.

Dump the second-order structure of the head H onto the first-order structure of the

target T .

S1 ... Si ... Sn

T

H

S2
1
...

S2
j

...

S2
m

H2
S1 ... Si ... Sn

H

S2
1

...S2
j

... S2
m

N1 ... N j ... Nm

H2

T

Call {E j} the edges created with the {N j} nodes as target and ET the new edge

with T as target. We begin with a dependency graph G1 and end with a dependency

graph G2 equivalent to G1 except that the edge E has been marked as redundant

(which is semantically equivalent to removing the edge from the graph), the nodes

{N j} have been added, the edges {E j} have been added and the edge ET has been added.

The creation of the nodes {N j} per se does not change the associated equation system

in any way. The removal of the edge E removes the equation κT ≈ χH(κS1, ...,κSn) (or

replacing first for second-order proxies and application for composition for second-

order nodes). Note, however, that the edge E2 (present both in G1 and G2) produces the

equation χH ≈ χH2{χS2
1
, ...,χS2

m
}, and so the equation for E is equivalent to

κT ≈ χH2{χS2
1
, ...,χS2

m
}(κS1, ...,κSn)≈ χH2(χS2

1
(κS1 , ...,κSn), ...,χS2

m
(κS1, ...,κSn))

or the equivalent version with second-order proxies and composition for second-order

nodes.

On the other hand, consider node N j. It has exactly one associated equation,

corresponding to the edge E j, of the form κN j ≈ χS2
j
(κS1, ...,κSn) (or the equivalent

with second-order proxies and composition for second-order nodes). The edge ET

has the corresponding associated equation κT ≈ χH2(κN1, ...,κNm) (or the respective

second-order version). Replacing the expressions, we get

188 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

κT ≈ χH2(χS2
1
(κS1, ...,κSn), ...,χS2

m
(κS1 , ...,κSn))

or the equivalent version with second-order proxies and composition for second-order

nodes.

Thus, the newly created edges produce the exact same equation that was removed,

and so the solutions of G1 are the same as the solutions of G2.

7.4.6 Validate consistency

This rule verifies that certain types of inconsistency (equations that prevent any solutions

from satisfying them) are not present in the dependency graph. For example, f ≈ g, for

constant function symbols f and g would be inconsistent. This rule does not change the

graph itself. Instead, it either validates it or invalidates it. In terms of sets of dependency

graphs, it produces an empty set from a singleton set. Note, however, that this rule is

solution preserving, because it only invalidates a graph when it is verified to have no

solutions at all.

Rewrite rule 8 (Validate consistency). Validating consistency is applicable whenever

the graph is acyclic and prenormal and checks that the following all hold in the depen-

dency graph:

• For each second-order node, all non-variable dependants it contains are equivalent.

• For each second-order node, its recursive arity (definition 7.3.3) is well defined.

• For each non-redundant horizontal edge, the recursive arity of its head is equal to

the number of sources of the edge.

failing (producing an empty set of graphs) if any of them do not hold.

Note that so while this definition is technically declarative, these checks are straight-

forward to implement into an actual algorithm.

Lemma 7.4.9. For any dependency graph G , if the validate consistency rule on G fails,

then the dependency graph G has no solutions.

7.4. Rewrite rules for dependency graphs 189

Proof. We will enumerate the potential reasons for which the validate consistency rule

may fail, and show that each of them indicates a situation producing equations that no

unification solution may satisfy.

• There is a second-order node, N, with two non-variable dependants φ1 and φ2

that are not equivalent.

Since φ1 and φ2 are non-variable, they must be of the form f1 or πn
i1 and f2 or πm

i2 ,

for function symbols f1 and f2. In either case, all of these second-order terms

are independent of instantiations. Because both dependants are in N, then G
must satisfy an equation of the form φ1 ≈ φ2, but these terms are not equivalent

regardless of instantiation, and therefore no instantiation may satisfy this equation.

• There is a second-order node whose recursive arity is undefined. This may

be because it contains dependants with different arities or incoming horizontal

edges with sources with different recursive arities. The recursive arity of node N

corresponds to the arity of second-order terms φ with which equations χN ≈ φ

may appear in the equation system associated with the graph. So, by definition

7.2.3, undefined recursive arity would translate into equations of the form φ1 ≈ φ2,

where the arity of φ1 and φ2 are different. Equivalence between second-order

terms with different arities may never be satisfied because all rewrite rules for
second-order terms preserve arity, which is what defines the relation ≈.

• There is a horizontal edge E, with head H, such that E has n sources and the

recursive arity of H is m, where m 6= n.

It is very important to note that while we just proved the soundness of the validate

consistency rule (it will never fail for satisfiable graphs), it is not in general a complete

rule: there may be dependency graphs which pass the validate consistency rule,
despite having no solutions.

Corollary 7.4.1. Validate consistency is a solution preserving rule.

Proof. Validate consistency either leaves a graph as is, or invalidates it.

190 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.20: Zero factorization over a first-order node.

σ1Y σ1Z

f f

σ1X

{σ1Y,σ1Z}

f

σ1X

If it leaves it as is, then the set of solutions are trivially preserved.

If it invalidates it, by the lemma, we know that the original graph had no solutions.

Thus, the set of solutions was empty and remains empty afterwards.

Therefore, the rule is solution preserving.

7.4.7 Factorization

This is the most complex and most important family of rewrite rules. They are the only

ones that introduce non-determinism12, and normalization levels are defined mostly to

differentiate between which of the different types of factorization are still applicable.

Factorization fundamentally consists in looking at nodes with more than one in-

coming edge and extracting conclusions about those edges’ heads from the equivalence

that this situation represents. We distinguish four types of factorization depending on

the variable / non-variable nature of the heads of those edges. This is very closely

related to flexible / rigid critical pairs in higher-order unification, and is meant mostly

to distinguish situations with very different branching factors in its sets of solutions.

7.4.7.1 Zero factorization

Zero factorization is applicable when all incoming edges to a node have function

symbols as heads. They must be equal and their sources must be equal, respectively.

For example, if we have edges indicating that σ1X ≈ f (σ1Y) and σ1X ≈ f (σ1Z), then

we can conclude that σ1Y ≈ σ1Z. This is depicted in figure 7.20.

Rewrite rule 9 (Zero factorization). Zero factorization is applicable when:
12Except zero factorization, which is still conceptually a factorization rule as per the informal definition

below.

7.4. Rewrite rules for dependency graphs 191

Figure 7.21: Zero factorization. General case.

Merge the heads and sources of incoming edges as long as all heads are non-variable.

Si1, j1 ...Si1, j2 ... Si2, j1 ...Si2, j2

Hi1 ... Hi2

N

∪{Si1, j1, ...,Si2, j1}...∪{Si1, j2, ...,Si2, j2}

∪{Hi1, ...,Hi2}

N

• The dependency graph is factorizable.

• A node N has several non-redundant incoming horizontal edges {Ei}.

• Each head Hi of Ei contains at least one non-variable dependant.

and does the following:

• Checks that all the non-variable dependants contained in each Hi are equivalent.

If they are not, the dependency graph is marked as invalid (i.e. an empty set of

graphs is produced as a result of applying the rule).

Due to the preconditions for the rule, this is the same as checking that all the Hi

are the same node (all the Hi contain equivalent non-variable dependants, but

non-variable dependants which are equivalent must necessarily be equal, and

therefore by definition of dependency graph they are contained in the same node).

• Consider the sources Si, j of edges Ei (Si, j is the j-th source of the i-th incoming

edge). For each j, merge all Si, j
13.

• Remove all but one Ei from the graph (at this point they are indistinguishable).

You can see a graphical depiction of this in figure 7.21.

Lemma 7.4.10. If zero factorization invalidates a dependency graph G , then G had no

solutions.
13Because the graph is factorizable (definition 7.3.4), then the recursive arity of all nodes is well

defined, and so the number of sources of each Ei must be the same.

192 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Proof. We will produce parallel proofs for first and second-order zero factorization,

by considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

We will proceed by reductio ad absurdum. Assume zero factorization invalidates

G but G had solutions. If zero factorization invalidates G , then G has a node N with

at least two non-redundant incoming horizontal edges Ei1 , Ei2 , with heads Hi1 , Hi2

which contain non-variable dependants φHi1
, φHi2

, and such that they are not equal, with

equations χHi1
≈ φHi1

and χHi2
≈ φHi2

. Consider the sources Si1, j of Ei1 and Si2, j of Ei2 .

The edges Ei1 and Ei2 have the same target node N, and therefore they imply the equation

χHi1
(κSi1,1

, ...,κSi1,n
)≈ χHi2

(κSi2,1
, ...,κSi2,n

) (or the equivalent version replacing first for

second-order proxies and application for composition if they are second-order nodes).

This is equivalent to

φHi1
(κSi1,1

, ...,κSi1,n
)≈ φHi2

(κSi2,1
, ...,κSi2,n

)

which must be true in every solution of G .

Since G must be factorizable, then the non-variable heads φHi1
and φHi2

must be

function symbols. This allows us to reconsider the equation above. The heads of both

sides of the equation are function symbols, so the only rewrite rules (for second-order

terms) that may reduce them (to make them have the same normal form) are recursive

reductions on the arguments. Either way, their equivalence means that it must be

φHi1
∼= φHi2

, which, in the case of function symbols, also implies φHi1
≡ φHi2

. This is a

contradiction.

Lemma 7.4.11. Zero factorization is a solution preserving rule.

Proof. We will produce parallel proofs for first and second-order zero factorization,

by considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

Zero factorization begins with a graph G1 and produces a dependency graph G2 or

none, meaning no solutions.

7.4. Rewrite rules for dependency graphs 193

By lemma 7.4.10, whenever the rule invalidates the graph, G1 had no solutions, and

so the set of solutions is preserved.

If G2 is non-empty, it means that all the Hi were equal. The equation system

associated with G2 is equivalent to the one of G1 except for the result of merging the

sources Si, j and the marking of all but one of the Ei edges as redundant (which is

semantically equivalent to removing them from the graph).

In G1, each incoming Ei to N produced an equation κN ≈ χHi(κSi,1, ...,κSi,n) (or

equivalently with second-order proxies and composition for second-order nodes). But by

assumption we know that all the χHi are equivalent, so we will use χH to refer to any of

them. Therefore, for each two different i1 and i2, we have equation χH(κSi1,1
, ...,κSi2,n

)≈
χH(κSi2,1

, ...,κSi2,n
). Because G1 is factorizable, χH must be a second-order variable

or a function symbol. Therefore, the only rewrite rule that may apply to these two

expressions is recursive reduction of their arguments. Thus, we can conclude that, for

all j, κSi1, j
≈G1 κSi2, j

.

Therefore, merging the nodes Si, j does not change the solutions to the graph.

Similarly, the Ei are equal since all their associated equations are equivalent, and

therefore removing all except one of them does not change the solutions.

7.4.7.2 Single factorization

Single factorization is applicable when there are both constant and variable functions as

heads of incoming edges to a node. All constant function symbols must be equal, and

the variable functions may be instantiated in associated solutions to either projections or

compositions whose heads are the constant function. We produce associated graphs for

these options non-deterministically, and potentially some of these may be incompatible

with other elements of the graph. For example, if we have equations stating that

σ1X ≈ f (σ1Y), σ1X ≈ f (σ1Z) and σ1X ≈F(σ1W), then we know that in every solution

σ1Y ≈ σ1Z and then, either F ≈ π1 and σ1X ≈ σ1W , or F ≈ f{G}, for some other

second-order variable G. Note that both options have a large number of consequences,

but all of these consequences will come after making the graph factorizable again. See

figure 7.22 for a graphical depiction of this.

Rewrite rule 10 (Single factorization). Single factorization is applicable when:

194 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.22: Single factorization over a first-order node. The results in this diagram

include some basic propagation after the actual factorization. Specifically, single

factorization will always be followed by projection simplification or function dumping.

σ1Y σ1Z σ1W

f f F

σ1X

{σ1Y,σ1Z}

f

{σ1X ,σ1W}

{F,π1}

{σ1Y,σ1Z}

f

σ1W

G

·

f

σ1X

F

• The dependency graph is factorizable.

• A node N has several non-redundant incoming horizontal edges {Ei}.

• There is at least one head of an Ei that contains a non-variable dependant. Call

{Hc
i } the heads that contain non-variable dependants, and their respective edges

{Ec
i }.

• There is at least one head of an Ei that only contains variable dependants (and

contains at least one). Call {Hv
i } the heads that contain only variable dependants,

and their respective edges {Ev
i }.

and does the following first (this part is equivalent to zero factorization over only the

constant-headed edges):

• Checks that all non-variable dependants contained in all Hc
i are equivalent. If they

are not, invalidate the dependency graph (produce an empty set of dependency

graphs as result). Otherwise, write Hc for one such dependant.

7.4. Rewrite rules for dependency graphs 195

• Consider the sources {Sc
i, j} of edges Ec

i (Sc
i, j is the j-th source of the i-th incoming

edge). Note again that the number of sources of all Ec
i must be the same because

of the definition of factorizable graph (definition 7.3.4). For each j, merge all Sc
i, j.

• Remove all but one Ec
i from the graph (at this point they are indistinguishable).

and then non-deterministically produces different dependency graphs. Pick one head

Hv from Hv
i (arbitrarily14), and its associated edge Ev. Let n be the number of sources

of Ev. Produce the following branches:

1. Merge Hv with the node result of grabbing πn
k , for each k from 1 to n (one

non-deterministic branch for each k), where n is the recursive arity of Hv.

2. An additional branch with the following steps applied:

• Add m fresh second-order variables to the graph. Call their nodes {Vl}, for

l from 1 to m, where m is the recursive arity of Hc.

• Add a second-order edge with Hc as head, all the Vl as sources and Hv as

target.

You can see a graphical depiction of this in figure 7.23.

Lemma 7.4.12. Single factorization is a solution preserving rule

Proof. We will produce parallel proofs for first and second-order single factorization,

by considering application or composition of functions in each case. The proofs are

analogous otherwise so we consider both of them at the same time.

Single factorization departs from a graph G1 and produces a (possibly empty) set of

dependency graphs G2.

If G2 is empty, it means that there were two Hc
i1 and Hc

i2 that were not equivalent.

This is absolutely analogous to the case of zero factorization and so lemma 7.4.10

applies: G1 had no solutions, and therefore the rule is solution preserving in this case.

14This rule is instantiating one second-order variable to everything it can possibly be via non-
determinism. The other second-order variables in the same situation will be dealt with eventually
by this or other rules in each of those non-deterministic branches, after the graph has been made
factorizable again.

196 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.23: Single factorization. General case.

Each variable head among incoming horizontal edges will necessarily be instantiated to

either a projection or a composition with the non-variable head as head.

Sc
i1, j1

...Sc
i1, j2

... Sc
i2, j1

...Sc
i2, j2

Hc
i1

... Hc
i2

...

Hv
i0

... ...

... ...

N

{Sc
i1, j1, ...,S

c
i2, j1} ... {S

c
i1, j2, ...,S

c
i2, j2}

{Hc
i1, ...,H

c
i2}

N

...

{πn
k,H

v
i0}

... ...

... ...

{Sc
i1, j1, ...,S

c
i2, j1} ... {S

c
i1, j2, ...,S

c
i2, j2}

{Hc
i1, ...,H

c
i2}

N

...

Hv
i0

... ...

... ...

V1 ... Vm

k ∈ 1..n

7.4. Rewrite rules for dependency graphs 197

Otherwise, all the Hc
i were equal. Single factorization is a two step rule. First, a

common part (zero factorization) is applied, producing a single dependency graph; and

afterwards, the graph is branched out on different parts. The first step makes changes

equivalent to those produced in zero factorization. Therefore, the arguments provided

in the proof of lemma 7.4.11 are applicable here in exactly the same way. So we can

focus our attention exclusively on the branching aspect. Call the intermediate graph

after producing this first step G1.5

Consider each graph result of merging Hv with πn
k in G1.5. Call such graph Gπn

k
2 .

Similarly, consider the single graph result of adding the variable nodes {Vl} to the graph.

Call this graph GV
2 . By definition of single factorization, G2 = GV

2 ∪
⋃

k∈1..n
Gπn

k
2 . Each of

these graphs has an associated equation system, and we need to show that their union is

equivalent (has the same solutions) as G1.5. We will use lemma 7.1.1. Note that each

of the graphs in G2 has strictly more equations than G1.5, and so the implication in

that direction is trivial, we need only show the implication in the other direction: each

solution of G1.5 is a solution of a graph in G2.

The edge Ev produces the equation κN ≈ χHv(κSv
1
, ...,κSv

n), both in G1.5 and in every

graph in G2. On the other hand, the edge Ec
i (for the i that were not removed in the

first step of the rule) produces the equation κN ≈ χHc
j
(κSc

j,1
, ...,κSc

j,m
), for all j. By

transitivity, we have

χHv(κSv
1
, ...,κSv

n)≈ χHc
j
(κSc

j,1
, ...,κSc

j,m
)

We also know that Hv contains only variable dependants. Consider one such variable

F . We also know that Hc
j contains at least one non-variable dependant. We also know

that G1 was factorizable, and so this dependant may not be a projection. Thus, it is a

function symbol. Call this function symbol f . We therefore have

F(κSv
1
, ...,κSv

n)≈ f (κSc
j,1
, ...,κSc

j,m
)

In each solution of the equation, the evaluations of both sides of the equation have

the same normal form. But, for any unification solution, the only rewrite rule applicable

to the right side of this equation is recursive reduction on its arguments, and so the

normal form associated with it must have f as head. Consider the potential instantiations

for F in a unification solution:

• F is instantiated to a function symbol g. Then, the normal form of the left

198 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

side will, for the same reasons, have head g, and so it must be g ≡ f . But, the

instantiation that instantiates Vl to πn
l is a solution to the dependency graph GV

2 ,

which implies the equation F ≈ f{V1, ...,Vm}, and therefore the instantiation that

instantiates F to g≡ f corresponds to the solution of GV
2 that instantiates the Vl

to projections. GV
2 covers this case.

• F is instantiated to a projection πn
k . But this is equivalent to the equation χHv ≈ πn

k ,

which is covered by the graph Gπn
k

2 .

• F is instantiated to a composition φ0{φ1, ...,φp}, but then the left side is reducible

to

F(κSv
1
, ...,κSv

n)
∗→ φ0(φ1(κSv

1
, ...,κSv

n), ...,φp(κSv
1
, ...,κSv

n))

If φ0 is a projection, then the instantiation of F is reducible to φ j, and we can

recursively consider what the instantiation φ j may be. Thus, we may assume

without loss of generality, not only that φ0 is not a projection symbol but also that

recursively it is not any number of compositions with a projection as head on the

last level. And therefore, the head on the last level of compositions must be a

function symbol, and it will be the head of its normal form, and therefore must be

f . And thus, because solutions are equivalent up to equivalence of expressions /

second-order terms, we can assume, without loss of generality, that φ0 ≡ f . But

then the instantiation that instantiates Vl to φl corresponds to this solution in the

dependency graph GV
2 , and so GV

2 covers this case.

Therefore, the set of solutions of G1.5 is equal to the union of the sets of solutions

of graphs in G2, and so single factorization is a solution preserving rule.

7.4.7.3 Half factorization of function symbols

Half factorization is a degenerate case conceptually related to single factorization but not

easily covered by the graph conditions for single factorization, and instead better dealt

with separately. It happens when, in extreme cases, a dependant with a function symbol

may have incoming second-order edges and still be a consistent graph. Normally,

incoming edges indicate a composition, which can never be syntactically equal to a

function symbol. For this to be consistent, either the source or the head of said edge

7.4. Rewrite rules for dependency graphs 199

Figure 7.24: Half factorization of the function symbol f .

G H

F

f

G H

F

π2
1 π2

2

f

·

must be equivalent to either a variable or the function symbol itself, albeit with possibly

some argument permutation. The way in which we deal with this in graphs is to translate

the graph into an equivalent, very similar one that single factorization itself can deal

with and which does not have function symbols with incoming edges. For example, if

f ≈ F{G,H}, then in each solution U one of the following must be true:

• F ≈U π2
1 and G≈U f .

• F ≈U π2
2 and H ≈U f

• F ≈U f , G≈U πm
1 and H ≈U πm

2 .

• F ≈U f{P}, where P is some permutation of projections, and so are G and H.

However, instead of enumerating all of these cases individually, half factorization

of function symbols simply presents the equation f ≈ F{G,H} in a way that single

factorization can deal with: through multiple incoming edges to the same node. It is

single factorization that produces the branching later on. The way it does this is to

produce an anonymous second-order node with an incoming edge with f as head and

moves all edges from the node containing f to that one.

See figure 7.24 for a graphical depiction of this.

Rewrite rule 11 (Half factorization of function symbols). Half factorization of function

symbols is applicable when:

200 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.25: Half factorization of function symbols. General case.

If a function symbol has incoming horizontal edges, factorize the function symbol out to

let single or zero factorization deal with it.

S1,1 ... S1,n1

H1

... Sp,1 ... Sp,np

Hp

N 3 f

S1,1 ... S1,n1

H1

... Sp,1 ... Sp,np

Hp

M

πm
1 ... πm

m

N 3 f

• The dependency graph is factorizable.

• A second-order node N contains a dependant of the form f , for function symbol

f . Let m be the arity of f .

• N has non-redundant incoming horizontal edges {Ei}, each with head Hi and ni

sources {Si, j}, for j from 1 to ni.

and does the following on the graph:

• Create an anonymous second-order node. Call it M.

• Create an edge EM with head N, sources πm
k , for all k from 1 to m, in the natural

order, and target M.

• Mark each edge Ei as redundant, and add a new edge EM
i with the same heads

and sources as Ei, but target M instead of N.

You can see a graphical depiction of this in figure 7.25.

Lemma 7.4.13. Half factorization of function symbols is a solution preserving rule

7.4. Rewrite rules for dependency graphs 201

Figure 7.26: Half factorization of a projection.

G H

F

π3
2

G∪{π3
2} H

F ∪{π2
1}

G H ∪{π3
2}

F ∪{π2
2}

Proof. Half factorization begins with a graph G1 and produces a dependency graph G2

in which all equations for node N now apply to node M. All the second-order terms φi

associated to the edges Ei such that χN ≈G1 φi are such that χM ≈G2 φi trivially because

we have moved all Ei so that M is their target instead of N. However, expressions

ψ such that χN ≈G1 ψ because ψ corresponds to a dependant in N do not have these

equations trivially. However, we note that the new edge EM produces the equation

χM ≈G2 χN{πm
1 , ...,π

m
m} ∼= χN , and therefore the equation systems of both graphs are

equivalent.

7.4.7.4 Half factorization of projections

This is a complementary rule to half factorization of function symbols that allows us

to get rid of the base case in which projections have incoming edges, reducing the

edge count of the graph. The underlying principle for this rule is that compositions can

only reduce to projections when both the head and every source in the composition are

equivalent to projections. For example, if π3
2 ≈ F{G,H} then there are two possibilities

for unification solutions satisfying this equation:

• F ≈ π2
1 and G≈ π3

2.

• F ≈ π2
2 and H ≈ π3

2.

See figure 7.26 for a graphical depiction of this.

202 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.27: Half factorization of projections. General case.

If a projection has incoming horizontal edges, the head must necessarily be a projection.

S1 ... Sm

H

N 3 πn
i

S1 ... Sm

H ∪{πm
k }

N 3 πn
i

k ∈ 1..m

Formally, it is enough to consider each projection that F may correspond to, since

the merging of the sources with the target will occur naturally through projection

simplification.

Rewrite rule 12 (Half factorization of projections). Half factorization of projections is

applicable when:

• The dependency graph is factorizable.

• A second-order node N contains a dependant of the form πn
i .

• N has a non-redundant incoming horizontal edge E with head H, with arity m,

and sources S j, for j from 1 to m.

and does the following:

• For each k from 1 to m, produce a non-deterministic branch where H is merged

with the result of grabbing the dependant πm
k .

You can see a graphical depiction of this in figure 7.27.

Lemma 7.4.14. Half factorization of projections is a solution preserving rule

Proof. Half factorization of projections begins with a graph G1 and produces a set of

dependency graphs G2.

7.4. Rewrite rules for dependency graphs 203

Each graph in G2 corresponds to the merging of H with a projection πm
k . Call this

graph Gk
2 . We will use lemma 7.1.1. The equations for G1 are the same as those for

each Gk
2 , except each Gk

2 includes the additional equation χH ≈ πm
k . Therefore, it is

true that every solution to a graph in G2 is a solution to G1. We will show that for each

solution U in U(G1), there is a k for which χH ≈U πm
k .

The edge E in G1 produces the equation πn
i ≈ χH{χS1, ...,χSm}. But πn

i is a normal

form, and therefore this means that in the solution U , the right side of this equation

reduces to πn
i . It is therefore enough to show that if a composition reduces to a

projection, the head must be equivalent to a projection. Since we are considering all k

from 1 to m, which projection the head reduces to is irrelevant.

Consider the expression

U(χH{χS1, ...,χSm})∼=U(χH){U(χS1), ...,U(χSm)}

Because the rewrite system for second-order terms is confluent, we can conclude

that it is true that

U(χH){U(χS1), ...,U(χSm)}
∗→ π

n
i

Consider the rewrite rules applicable to the left side of this equation:

• Head simplification. Then the head U(χH)
∗→ πn

i , which is a projection and we

have finished.

• Projection simplification. By definition the head U(χH) is a projection and we

have finished.

• Function dumping. Then the head U(χH)≡ φ0{φ1, ...,φp} and we have that

U(χH){U(χS1), ...,U(χSm)} ∼=
φ0{φ1, ...,φp}{U(χS1), ...,U(χSm)}

∗→
φ0{φ1{U(χS1), ...,U(χSm)}, ...,φp{U(χS1), ...,U(χSm)}}

But then we can recursively assume that φ0 reduces to a projection, and then by

projection simplification

φ0{φ1{U(χS1), ...,U(χSm)}, ...,φp{U(χS1), ...,U(χSm)}}
∗→

φl{U(χS1), ...,U(χSm)}

204 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

But again we can recursively assume that φl reduces to a projection by the same

reasons, and then we have that U(χH)≡ φ0{φ1, ...,φp}
∗→ φl , which is a projection

and we have finished.

• Recursive reduction on the head or the arguments do not change the composition

structure of the expression and therefore we can assume, without loss of generality,

that the reduced head will reduce to a projection, which means that U(χH) reduces

to a projection.

Therefore, in every solution of G1, χH must be equivalent to a projection, and

therefore the solution is a solution to a graph in G2.

Thus, the solutions of G1 are the same as those of G2 and therefore half factorization

of projections is a solution preserving rule.

7.4.7.5 Multiple factorization

Multiple factorization is applicable when all incoming edges to a node have (only)

variables as heads. This is analogous to a flex-flex pair in higher-order unification. The

possibilities are so many that the way we proceed is to non-deterministically partially

instantiate one of the variables to projections or compositions with constant heads.

This introduces an exponential amount of non-determinism with base dependent on

the size of the signature, and therefore we try to avoid it as much as possible. For

example, if F ≈ G{g} and F ≈ H{h}, then one potential branch is doing G≈ f{G1}
and proceeding. See figure 7.28 for a graphical depicition of this.

This rule has multiple critical differences with other rules.

• It depends heavily on the signature, in a sense not being purely diagramatic. It

depends on what potential function symbols the second-order variables may be

replaced with, irrespective of the context of the variable.

• It produces a very large amount of non-deterministic branching. The process can

always be applied again after applying it once, and the branching factor increases

with the number of variables and the number of functions in the signature.

Rewrite rule 13 (Multiple factorization). Multiple factorization is applicable when:

• The dependency graph is factorizable.

7.4. Rewrite rules for dependency graphs 205

Figure 7.28: Example of multiple factorization.

g h

G H

F

g h

G H

Ff

G1

...

• A node N has several non-redundant incoming horizontal edges {Ei}.

• Each head Hi of Ei contains only variable dependants.

and does the following:

• Pick an arbitrary Hi0 .

• Let ni0 be the arity of Hi0 . Produce the following non-deterministic branches:

– For each k from 1 to ni0 , produce a branch in which we merge node Hi0 with

the result of grabbing π
ni0
k .

– For each function symbol f m in the signature (with arity m), add m new

second-order variables V1 to Vm, each with arity ni0 , add them to the graph,

and add a second-order edge with head f m, sources {V1, ...,Vm} and target

Hi.

You can see a graphical depiction of this in figure 7.29.

Lemma 7.4.15. Multiple factorization is a solution preserving rule.

206 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.29: Multiple factorization. General case.

The variable head may be instantiated to either a projection or a composition with a

function symbol as head.

S1,1 ... S1,n1
... Si0,1 ... Si0,ni0

... Sp,1 ... Sp,np

H1 Hi0 Hn

N

S1,1...S1,n1
...Si0,1...Si0,ni0

...Sp,1...Sp,np

H1Hi0 ∪{π
ni0
k }

Hn

N

S1,1...S1,n1
...Si0,1...Si0,ni0

...Sp,1...Sp,np

H1 Hi0 Hn

N

V1 ... Vm

f m
k ∈ 1..ni0 f m ∈ Sig

Proof. We begin with a graph G1 and produce a set of dependency graphs G2. We will

use lemma 7.1.1. Call the graph result of merging Hi0 with π
ni0
k , Gk

2 ; and the result of

partially instantiating Hi0 to a composition with head f m, G f m

2 . These conform the

entirety of G2.

Note that each graph in G2 is strictly more constrained than G1, since they only

add new equations to their unification systems, and therefore every solution of G2 is

trivially a solution to G1.

In the other direction, consider a solution U ∈U(G1). We will show that there is

at least one G2 ∈G2 for which U ∈U(G2). Consider the second-order term U(χHi0
).

It has an equivalent normal form N (U(χHi0
)). By definition of second-order normal

form, this normal form may be either a projection, a function symbol or a composition

with a function symbol as head. Consider each of these cases:

• U(χHi0
)∼= f m for function symbol f m with arity m. Consider the graph G f m

2 . In

this graph, the only equation added with respect to G1 is the equation χHi0
≈

f m{V1, ...,Vm}. But the second-order variables Vj have been just added to the

graph and therefore have no additional equations associated with them, and they

7.5. Normalization and rewrite rules 207

were not present in G1. Therefore, we may, without loss of generality, assume U to

have U(Vj)≡ πm
j , and then U(χHi0

)∼=U(f m{V1, ...,Vm})∼= f m{πm
1 , ...,π

m
m}∼= f m.

Therefore, U is a solution to G f m

2 .

• U(χHi0
)∼= π

ni0
k , for some k. But the graph Gk

2 corresponds exactly to the depen-

dency graph G1 with added equation χHi0
≈ π

ni0
k , and therefore this graph covers

this solution.

• U(χHi0
) ∼= f m{φ1, ...,φm} for function symbol f m with arity m. Consider the

graph G f m

2 . Analogously to the constant function symbol case, the only equation

added in this graph is the equation χHi0
≈ f m{V1, ...,Vm}, where the second-order

variables Vj have no additional equations and were not present in G1. Thus,

we can, without loss of generality, assume U to have U(Vj) ≡ φ j, and then

U(χHi0
) ≈ U(f m{V1, ...,Vm}) ∼= f m{φ1, ...,φm}. Therefore, U is a solution to

G f m

2 .

Therefore, every solution to G1 is a solution to G2, and so the rule is solution

preserving.

7.5 Normalization and rewrite rules

The results related to solution preservation were presented individually for each rewrite

rule, because they can be phrased and proven in a local way, for each individual rule

independently of the others. We now wish to show results that are global and are

associated with sets of rules rather than individual rules. The normalization levels

introduced before will help us describe these groups and their properties. We will group

the rules in six groups, related to the normalization levels that they move the graph

towards. Note, however, that normally after the application of a rule in a latter group,

we have to re-apply rules from previous groups to go back to the normalization level

we were at. In other words, some of these groups contain each other. In §7.6 we show

results relating to termination and fairness of this process.

Definition 7.5.1. We call the set of rules on dependency graphs formed by vertical

monotony (of explicit equivalences (rule 1), of syntactic equivalences (rule 2) and of

horizontal edges (rule 3)), edge zipping (rule 4) and projection simplification (rule 5),

the set of prenormalizing rules. We write R 0 to represent this set of rules.

208 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Lemma 7.5.1. A dependency graph G is prenormal (definition 7.3.1) if and only if no

prenormalizing rule is applicable to it.

Proof. We will first prove that if it is prenormal, then no prenormalizing rule is applica-

ble.

• If vertical monotony of explicit equivalences were applicable, then there are two

vertical edges V1 and V2 with the same source node and unifier variable σi. But

this directly violates the definition of prenormal graph.

• If vertical monotony of syntactic equivalences were applicable, then there are

two dependants σiε1 and σiε2 not in the same node. Dependants ε1 and ε2 are

in node N. Because of vertical alignment (which is applied whenever a new

dependant is added to the node and is not a rewrite rule), we know that there is a

vertical edge from N to a target node T , whose unifier variable is σi. But since

the graph is prenormal, then we know that dependants σiε1 and σiε2 are in T . So

the preconditions do not hold.

• If vertical monotony of horizontal edges were applicable, then there would be

a vertical edge V with source N, and a horizontal edge H with source or target

N, and H[V] is not in the graph. But by definition of prenormal graph, this

situation may explicitly not happen. So vertical monotony of horizontal edges is

not applicable.

• If edge zipping were applicable, then there would be two non-redundant horizontal

edges E1 and E2 with the same head and sources, but by definition of prenormal

dependency graph this may not happen.

• If projection simplification were applicable, then there would be a non-redundant

horizontal edge with a head that contains a projection, but if the graph is prenormal

then the head of every non-redundant horizontal edge must contain only second-

order variables or function symbols, so projection simplification is not applicable.

We will now show that if the graph is not prenormal, then there must be an applicable

prenormalizing rule. Consider the potential reasons for which the graph may not be

prenormal:

• There is a node with two outgoing vertical edges with the same unifier variable.

But these are exactly the preconditions of the vertical monotony of explicit

equivalences rule.

7.5. Normalization and rewrite rules 209

• There is a node containing a dependant of the form σiε but there is no incoming

vertical edge whose source contains ε. But this violates vertical alignment, which

is effected every time a dependant is added to the graph, so it is not possible.

• There is a vertical edge V with source S, target T and unifier variable σi, a

dependant ε in S, but dependant σiε is not in T . But if V has been added to the

graph, it means there must be another dependant ε2 in S such that σiε2 is in T .

But then vertical monotony of syntactic equivalences is applicable.

• There is a vertical edge V with source S, target T and a horizontal edge H whose

source or target is S, but H[V] is not in the graph. Also, assume, without loss of

generality, that vertical monotony of explicit equivalences and vertical monotony

of syntactic equivalences are not applicable. Consider the head F of H. If it

contains a projection, projection dumping is applicable. Otherwise, if it has

incoming horizontal edges, then function dumping is applicable on H. Otherwise,

vertical monotony of horizontal edges is applicable.

• There are two non-redundant horizontal edges with the same sequence of sources

and head. But then edge zipping is applicable.

• There is a non-redundant horizontal edge with a head that does not contain only

second-order variables or function symbols. Since second-order nodes may only

contain second-order dependants, then it must contain a projection. But then

projection simplification is applicable.

Thus, prenormalization is equivalent to non-applicability of prenormalizing rules.

Definition 7.5.2. We call the singleton set of rules on dependency graphs consisting

only of the occurs check (rule 6), the set of decycling rules. We write R 1 to represent

this set of rules.

Note that R 1 + R 0. This is an exception because of acyclicity being a different

kind of normalization level that can be defined independently of prenormalization.

Lemma 7.5.2. A prenormal dependency graph G is acyclic (definition 7.3.2) if and

only if no decycling rule is applicable to it.

Proof. The occurs check is defined precisely to be applicable whenever the graph is

prenormal and cyclic. Thus, if the graph is prenormal and acyclic, the occurs check is

210 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

not applicable to it; and conversely, if the graph is prenormal and the occurs check is

not applicable to it, then the graph cannot be cyclic.

Definition 7.5.3. We call the set of rules on dependency graphs formed by prenormaliz-

ing rules, decycling rules, function dumping (rule 7) and the validate consistency rule

(rule 8), the set of prefactorizing rules. We write R 2 to represent this set of rules.

Lemma 7.5.3. A dependency graph G is factorizable (definition 7.3.4) if and only if no

prefactorizing rule is applicable to it.

Proof. We first show that if the graph is factorizable, then no prefactorizing rule is

applicable to it. By definition, if the graph is factorizable, then it is prenormal and

acyclic, and so by lemmas 7.5.1 and 7.5.2, no prenormalizing or decycling rules are

applicable, so we only have to prove that function dumping and the validate consistency

rule are not applicable.

If function dumping were applicable, then there is a non-redundant second-order

horizontal edge E2 with target H and a non-redundant (first or second-order) horizontal

edge E with head H. But if the graph is factorizable, then the head of every

non-redundant horizontal edge has no incoming horizontal edges. H is the head of a

horizontal edge with incoming horizontal edges, and so it violates this rule. So function

dumping is not applicable.

If validate consistency were applicable, then there would either:

• Be a second-order node with different non-variable dependants.

• Be a second-order node whose recursive arity is not well defined.

• Be a non-redundant horizontal edge for which the recursive arity of itts head is

not equal to the number of sources of the edge.

But all of these are explicitly conditions of factorizability, so the rule is not

applicable.

Now for the other direction, assume no prefactorizing rules are applicable, and

show that the graph must be factorizable. First, by lemmas 7.5.1 and 7.5.2, if no prenor-

malizing or decycling rules are applicable, then the graph must be prenormal and acyclic.

Consider each of the four other conditions of factorizability that may fail:

7.5. Normalization and rewrite rules 211

• There is a non-redundant horizontal edge whose head has incoming horizontal

edges. But the graph is prenormal, and so the head of all horizontal edges do not

contain projections. Thus, all preconditions of the function dumping rule hold

and so function dumping is applicable.

• There is a second-order node that contains two different non-variable dependants.

But then the validate consistency rule would be applicable.

• There is a second-order node whose recursive arity is not well defined. But then

the validate consistency rule would be applicable.

• There is a non-redundant horizontal edge whose head’s recursive arity is not

equal to the number of sources of the edge. But then the validate consistency rule

would be applicable.

And thus, the graph must be factorizable.

Definition 7.5.4. Define the set of seminormalizing rules to be the set of prefactorizing

rules and zero factorization (rule 9). Write R 3 to represent this set of rules.

The occurs check is a problematic rule. This has been discussed in §7.3, §7.4.4,

and will be further discussed in §7.6.1. It needs to be applied to ensure acyclicity

before a graph can be considered factorizable (and thus seminormal), but it is the only

seminormalizing rule that does not fulfill certain key properties. Thus, we will define a

special terminology to refer to all seminormalizing rules other than the occurs check.

Definition 7.5.5. Define the set of acyclic seminormalizing rules to be the set of

seminormalizing rules, except the occurs check. Write R 3∗ to represent this set of

rules.

Lemma 7.5.4. A dependency graph G is seminormal (definition 7.3.5) if and only if no

seminormalizing rule is applicable to it.

Proof. We will first prove that if it is seminormal, then no seminormalizing rule is

applicable to it. First note that by definition of seminormal, G is factorizable, and

therefore, by lemma 7.5.3, no prefactorizing rule is applicable to it. Thus, we only need

to show that zero factorization is not applicable to it either.

But by definition of seminormal, for every node that contains more than one

non-redundant incoming horizontal edge, there is one such edge whose head only

212 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

contains variable dependants, so zero factorization is not applicable to any of those

nodes.

In the other direction, if no seminormalizing rule is applicable to it, then in particular,

no prefactorizing rule is applicable to it. Thus, by lemma 7.5.3, the graph must be

factorizable. If the graph were not seminormal, it would be because there is a node N

with more than one non-redundant incoming horizontal edge, such that each head of

such edges contains at least one non-variable dependant. But that is exactly the pre-

condition for zero factorization to be applicable, and thus the graph must be seminormal.

Therefore, seminormality is equivalent to non-applicability of seminormalizing

rules.

Definition 7.5.6. Define the set of quasinormalizing rules to be the set of seminormaliz-

ing rules, single factorization (rule 10), half factorization of function symbols (rule 11)

and half factorization of projections (rule 12). Write R 4 to represent this set of rules.

Lemma 7.5.5. A dependency graph G is quasinormal (definition 7.3.6) if and only if

no quasinormalizing rule is applicable to it.

Proof. We will first show that if G is quasinormal then no quasinormalizing rule is

applicable to it. First note that by definition of quasinormal, the graph is seminormal.

Thus, by lemma 7.5.4, no seminormalizing rule is applicable. Therefore, we only have

left to prove that neither single factorization, half factorization of function symbols or

half factorization of projections is applicable.

If the graph is quasinormal, if a node has more than one non-redundant incoming

horizontal edge, all their heads must contain only variable dependants. But for single

factorization to be applicable, we would need to have a node with at least two incoming

horizontal edges, one of which contains at least one non-variable dependant. So single

factorization is not applicable.

If the graph is quasinormal, then all second-order nodes with non-redundant in-

coming horizontal edges contain only variables. But then half factorization of function

symbols is not applicable because there must be a second-order node with non-redundant

incoming horizontal edges and containing a function symbol. Similarly, half factoriza-

tion of projections is not applicable because there would need to be a second-order node

with non-redundant incoming horizontal edges containing a projection.

7.5. Normalization and rewrite rules 213

Thus, if G is quasinormal then no quasinormalizing rule is applicable to it.

In the other direction, assume no quasinormalizing rule is applicable. But, in

particular, no seminormalizing rule is applicable. Thus, by lemma 7.5.4, the graph is

seminormal. Consider the reasons for which the graph may not be quasinormal:

• There is a node N with more than one non-redundant incoming horizontal edge,

and one of such heads contains at least one non-variable dependant. Because the

graph has already been shown to be seminormal, we know there is at least one

other of said edges whose head contains only variable dependants. But then the

conditions of single factorization are all met and thus the rule is applicable, which

is a contradiction. So this condition of quasinormalization must be met in G .

• There is a second-order node with non-redundant incoming horizontal edges

containing a function symbol. But the graph has already been shown to be semi-

normal (and thus factorizable), so the conditions of half factorization of function

symbols are all met, so thus the rule is applicable, which is a contradiction. So

this condition of quasinormalization must be met in G .

• There is a second-order node with non-redundant incoming horizontal edges

containing a projection. But the graph has already been shown to be seminormal

(and thus factorizable), so the conditions of half factorization of projections are

all met, so thus the rule is applicable, which is a contradiction. So this condition

of quasinormalization must be met in G .

So the graph is quasinormal.

Therefore, quasinormality is equivalent to non-applicability of quasinormalizing

rules.

Definition 7.5.7. Define the set of normalizing rules to be the set of quasinormalizing

rules and multiple factorization (rule 13). Write R 5 to represent this set of rules.

We note that normalizing rules are all the rules that we have defined on dependency

graphs.

Lemma 7.5.6. A dependency graph G is normal (definition 7.3.7) if and only if no

normalizing rule is applicable to it.

214 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Proof. We first prove that if the graph is normal then no normalizing rule is applicable

to it. By definition of normality, the graph is also quasinormal, so by lemma 7.5.5, no

quasinormalizing rule is applicable. Therefore, we only need to show that multiple

factorization is not applicable. But if the graph is normal, then there is no node

with more than one non-redundant incoming horizontal edge, which makes multiple

factorization not applicable.

In the other direction, if no normalizing rule is applicable, in particular, no quasinor-

malizing rule is applicable, and therefore, by lemma 7.5.5, the graph is quasinormal.

We only need to show that there may be no node with multiple non-redundant incoming

horizontal edges. But for each node with multiple non-redundant incoming horizontal

edges, there may only be three possibilities:

• Each head of such edges contains one non-variable dependant. Then, zero

factorization is applicable.

• There is at least one head that contains one non-variable dependant and at least

one head that contains only variable dependants. Then, single factorization is

applicable.

• All heads contain only variable dependants. Then, multiple factorization is

applicable.

Thus, the graph must be normal.

And therefore we have shown that normality is equivalent to non-applicability of

normalizing rules.

7.6 Termination, productivity, fairness and solution

shape verification

In this section we present results related to the running time of algorithms that apply the

rewrite rules on dependency graphs, including but not limited to termination properties.

These properties will be different depending on the set of rewrite rules we consider, and

we will need some auxiliary definitions.

7.6. Termination, productivity, fairness and solution shape verification 215

These results are all novel, as unification dependency graphs are. However, the

concepts of termination, enumeration, productivity and fairness used here are the

standard ones in computability theory (see §3.5).

First we need an upper boundary to the set of dependants that may be relevant in a

dependency graph. Rules do not increase the number of unifier levels appearing in a

dependency graph.

Theorem 7.6.1 (First-order dependant boundary on dependency graphs). Consider any

dependency graph G . Consider the maximum unifier level (definition 6.1.19) explicitly

appearing on first-order dependants in nodes in the graph, iM. For any possible

application of a rule R ∈ R 5, let G2 be the result of applying the rule to G .

Then, G2 contains no first-order dependants with a unifier level j > iM.

Proof. We will prove it rule by rule:

• Vertical monotony of explicit equivalences, vertical monotony of syntactic
equivalences, edge zipping, projection simplification, function dumping, val-
idate consistency, zero factorization, single factorization - None of these rules

can add new dependants and therefore the result is trivial.

• Vertical monotony of horizontal edges - In order to introduce the edge H[V]

we may need to grab new dependants, but all of them are with unifier level i,

where there was a vertical edge V with unifier level i, and therefore the target of

V already had level i. Therefore, iM ≥ i and thus no new dependant with unifier

level j > iM is added.

• Occurs check, half factorization of function symbols, half factorization of
projections, multiple factorization - These rules may only add second-order

dependants to the graph, and therefore the result is trivial.

Corollary 7.6.1. Let G1 be a dependency graph. There is a finite set of first-order

dependants D1(G1) such that after any number of applications of rewrite rules in R 3

on G1, every first-order dependant in the resulting graph G2 is in D1(G1).

Proof. By the theorem, no new unifier levels may be introduced. No first-order variables

are ever introduced by rules in R 3. We will recursively show that the number of first-

order dependants with a certain unifier level is finite. Let i be a unifier level. Consider

the possible dependants with that unifier level in a fixed signature:

216 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

• If i =⊥, the only unifier expressions in this level do not contain unifier variables

or first-order variables. But dependants, by definition, always contain at least one

first-order variable. That is, there can be no dependants on this unifier level in the

graph (the unifier expressions in this level are expressed entirely through edges

between anonymous nodes).

• If i = 0, then the dependants must be first-order variables. Because the set of

first-order variables in the signature is finite and invariant, this number is finite.

• For i > 0, the dependants must be of the form σiδ, where δ is a dependant with

unifier level j < i. We may recursively assume that there is thus a finite number

of possible dependants δ, and therefore there is also a finite numberof possible

dependants σiδ for unifier level i.

Therefore, for each unifier level the number of dependants that may exist at that

level is finite, and rewrite rules may not introduce new unifier levels. Thus, the total set

of dependants that may ever appear in the graph after any number of applications of

rewrite rules is bounded from above by a finite set.

Theorem 7.6.2. Let G1 be a dependency graph. There is a finite set of second-order

dependants D2(G1) such that after any number of applications of rewrite rules in R 3∗ ,

other than the occurs check, on G1, every second-order dependant in the resulting graph

G2 is in D2(G1).

Proof. First, we note that while the occurs check and multiple factorization may in-

troduce new second-order variables, these rules are not in R 3∗ . Thus, the set of

second-order variables in the signature remains invariant when applying rules in R 3∗

other than the occurs check.

Second, consider the maximum arity amongst function symbols and second-order

variables in the signature. Because this is a finite set, there is a maximum arity m

amongst these. Second-order dependants may be function symbols, which are finite as

defined in the signature, second-order variables, which are finite as defined and invariant

through rules in R 3∗ , and projections. Projections are in principle infinite, but any rule

in R 3∗ that introduces projections into the graph introduces projections with arity equal

to the arity of a node previously existing in the graph. Thus, the maximum arity amongst

projections remains less than or equal to m, and consequently, the set of projections that

a rule in R 3∗ may introduce into the graph after any number of applications is finite.

7.6. Termination, productivity, fairness and solution shape verification 217

7.6.1 The issue with cycles

In §7.3, we already discussed the inconvenience of both cyclic graphs and the method

to make them acyclic. To rehearse, cycles must be eliminated from the graph before

function dumping and validate consistency can be applied, but in order to do so, we

need to apply the occurs check rule (§7.4.4), which has two large issues:

• It is of intrinsically global nature, potentially requiring checking large portions of

the graph.

• It may introduce non-determinism.

There is another added potential issue with the occurs check rule, that is however

related to the non-determinism issue: the occurs check rule may potentially cause
reduction chains that never terminate. We conjecture that, in fact, this does not

happen. We conjecture that the occurs check rule may only be applied a finite number

of times to any given dependency graph, but we have not been able to prove this. We

have not been able to find any instance of a dependency graph in which the occurs check

rule may be applied an infinite number of times, but we also have not been able to prove

that one does not exist.

Pragmatically, however, because the occurs check is already problematic even if it

terminates, the veracity of this conjecture does not fundamentally change the fact that

cycles are an issue.

Thus, we will prove termination results for prenormal graphs, and then we will

extend these to seminormal graphs, under the condition that no cyclic graph is ever
produced while applying seminormalizing rewrite rules. In other words, we will

show that we can extend termination results to acyclic seminormalizing rules.

We first begin by strictly proving the result for prenormal graphs.

7.6.2 Prenormalizing rules: Termination

Let us consider the set of prenormalizing rules, R 0. The application of these rules is

terminating: for any dependency graph, and regardless of the order in which they are

218 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

applied, only a finite number of these rules will be applicable. To show this, we will

define measures15 on dependency graphs, such that each rule strictly decreases one of

them, and we can combine them into a single positive measure that every rule strictly

decreases.

Definition 7.6.1 (Implicit equivalent dependants measure). Define the measure µ≈,

called implicit equivalent dependants measure, on a dependency graph G , to be

the number of pairs of different first-order dependants (ε1,ε2) ∈ D1(G)2 such that

ε1 ≈G ε2 but ε1 and ε2 are on different nodes in the graph; plus the number of pairs of

different second-order dependants (φ1,φ2) ∈D2(G)2 such that φ1 ≈G φ2 but φ1 and φ2

are on different nodes in the graph.

This measure is positive and finite because D1(G) and D2(G) are finite.

Lemma 7.6.1. Let G1 be a dependency graph and consider a rule R ∈ R 3∗ applicable

to G1. Write G2 for the graph result of the application of the rule.

Then, µ≈(G1) ≥ µ≈(G2). Furthermore, for vertical monotony of explicit equiva-

lences, vertical monotony of syntactic equivalences, edge zipping, projection simplifica-

tion and zero factorization, this inequality is strict.

Proof. First, we note that because every rule in R 3∗ is solution preserving, then for any

two first-order dependants ε1 and ε2, ε1 ≈G1 ε2 if and only if ε1 ≈G2 ε2, and equivalently

for second-order dependants.

Moreover, the measure µ≈ is defined with respect to D1(G) and D2(G), which, by

theorems 7.6.1 and 7.6.2, do not change when applying rewrite rules in R 3∗ . Thus,

grabbing new dependants does not change the measure, only merging or splitting nodes

would. But no rule ever splits nodes (separate dependants in the same node), so the

number of equivalent pairs of first-order dependants that are not in the same node may

never increase. This is enough to conclude the proof of the non-strict inequality.

Furthermore, any rule that merges nodes that were not previously the same node will

strictly reduce this value. This is explicitly the case for vertical monotony of explicit

equivalences, vertical monotony of syntactic equivalences, edge zipping and projection

simplification. In the case of zero factorization, note that if the rule is applied and

the resulting graph passes the validity check of this rule, the heads of the edges were

15These are not measures in the sense of measure theory, but rather, functions that measure some
properties of graphs with a finite, positive number.

7.6. Termination, productivity, fairness and solution shape verification 219

necessarily the same. If each source of each edge were the same nodes, then the graph

would not have been prenormal and therefore the preconditions of the rule would not

have applied. Thus, there is at least one source index for which the source nodes of two

different incoming edges were not the same, and they have been merged, and thus µ≈ is

strictly reduced in this case as well.

Definition 7.6.2 (Implicit related first-order dependants measure). Define the measure

µ→, called implicit related first-order dependants measure, on a dependency graph G , to

be the number of combinations of a sequence of first-order dependants εS
1, ...ε

S
n ∈D1(G),

a target dependant εT ∈D1(G) and a second-order dependant φ ∈D2(G) for which

εT ≈G φ(εS
1, ...,ε

S
n) but there is no horizontal edge with sources εS

1, ...,ε
S
n (the result of

grabbing their nodes), target εT and head φ, and it is not the case that εT is in the same

node as one of the εS
i

This measure is finite because D1(G) and D2(G) are finite.

Lemma 7.6.2. Let G1 be a dependency graph and consider a rule R ∈ R 3∗ applicable

to G1. Write G2 for the graph result of the application of the rule.

Then, µ→(G1)≥ µ→(G2). Furthermore, for vertical monotony of horizontal edges,

this inequality is strict.

Proof. First and foremost, note that the definition of µ→ does not exclude redundant

horizontal edges. This is, to put it bluntly, the whole reason we introduced redundant

horizontal edges. Redundant edges are a way to have a witness in the graph that we

have done something and we wish to not do it again, so that this measure can never

increase. In particular, we use them as a witness that vertical monotony of horizontal

edges was already applied on a node, when we wish to semantically remove the edge

from the graph due to, mostly, function dumping (because another, semantically more

precise edge was added in exchange). That is why they have no semantics and are

only used in the preconditions of rules, so that loops in rule application in R 3∗ are not

possible.

We note that because every rule in R 3∗ is solution preserving, then for any combina-

tion of first-order dependants εS
1, ...,ε

S
n, target first-order dependant εT and second-order

dependant φ, εT ≈G1 φ(εS
1, ...,ε

S
n) if and only if εT ≈G2 φ(εS

1, ...,ε
S
n).

Moreover, because the measure µ→ is defined with respect to D1(G) and

D2(G), which do not change when applying rewrite rules, grabbing new dependants

220 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

does not change the measure, only adding or removing edges, or merging nodes

would. But adding edges or merging nodes would decrease the measure, and

removing edges only happens whenever there is an exactly equal edge (so formally

the graph is entirely unchanged in that respect). Therefore, this measure never increases.

Furthermore, vertical monotony of equivalences explicitly adds a horizontal edge

that was previously not in the graph, and therefore µ→ strictly decreases.

Theorem 7.6.3 (R 0 is terminating). Consider an arbitrary dependency graph G . Then,

the application of rules in R 0 to G is terminating, regardless of the order of their

application.

Proof. Consider the lexicographic ordering among dependency graphs which orders

first over the value of µ≈ and over the value of µ→ when this is equal. Write µ∗ to

describe this ordering. The measures µ≈ and µ→ are both finite and non-negative and

so they have a minimum value, and thus µ∗ has a minimum value as well.

If we can show that every rewrite rule in R 0 strictly decreases µ∗, then this means

that only a finite number of applications may be possible before this reaches a minimum

value, and the proof is done. Consider each rewrite rule in R 0:

• Vertical monotony of explicit equivalences, vertical monotony of syntactic
equivalences, edge zipping, projection simplification - By lemma 7.6.1, µ≈

strictly decreases and thus so does µ∗.

• Vertical monotony of horizontal edges - By lemma 7.6.1, µ≈ does not increase.

Moreover, by lemma 7.6.2, µ→ strictly decreases and thus so does µ∗.

7.6.3 Seminormalizing rules: Termination under acyclicity

We now extend the results in the previous section to all acyclic seminormalizing rules.

Definition 7.6.3 (Composite heads measure). Define the measure µ{}, called composite

heads measure, recursively on each second-order node that is the head of a non-

redundant horizontal edge. For second-order node N which is the head of a horizontal

7.6. Termination, productivity, fairness and solution shape verification 221

edge, if N has no non-redundant incoming horizontal edges, then µ{}(N) = 0. If N has

non-redundant incoming horizontal edges, define µ{}(N) to be 1 plus the sum over all

its non-redundant incoming horizontal edges, of µ{}(Hi), where Hi is the head of each

of such edges.

Then, define µ{} on the graph to be the sum over all non-redundant horizontal edges,

of the value of µ{} on their heads.

This measure is well defined and finite as long as the graph is acyclic, since the

number of edges in a dependency graph is always finite and the recursive process

always terminates if no loops are present.

This measure is explicitly introduced to describe the way in which function dumping

reduces some sense of complexity in the graph. Therefore, we are only interested in the

effect function dumping has in it.

Lemma 7.6.3. Let G1 be a dependency graph to which function dumping is applicable.

Write G2 for the graph result of one application of function dumping.

Then, µ{}(G1)> µ{}(G2).

Proof. In function dumping, a horizontal edge is added with target T and head H2,

but another horizontal edge not previously redundant is marked as redundant. The

edge being marked as redundant had as head H, who had a non-redundant incoming

horizontal edge with head H2, and thus its value of µ{} was strictly larger than that of

H2, which is the head of the new edge. Therefore, the value of µ{} has been overall

strictly reduced in the graph.

Theorem 7.6.4 (R 3∗ is terminating). Consider an arbitrary dependency graph G . Then,

the application of rules in R 3∗ to G is terminating, regardless of the order of their

application.

Proof. Consider the lexicographic ordering among dependency graphs which orders

first over the value of µ≈, over the value of µ→ when this is equal, and over the value of

µ{} when this is equal. Write µ∗ to describe this ordering. The measures µ≈, µ→ and

µ{} are all finite and non-negative and so they have a minimum value, and thus µ∗ has a

minimum value as well.

We will first say that the validate consistency rule can, by definition, only be applied

once to a graph, to invalidate it. Therefore, the application of this rule may never be

222 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

a problem for non-termination. If we can show that every other rewrite rule in R 3∗

strictly decreases µ∗, then this means that only a finite number of applications may be

possible before this reaches a minimum value, and the proof is done. Consider each

rewrite rule in R 3∗:

• Validate consistency - As described, this rule can at most be applied once to a

graph, to invalidate it (so no more rules would be applicable), so it may not cause

non-terminating reduction.

• Vertical monotony of explicit equivalences, vertical monotony of syntactic
equivalences, edge zipping, projection simplification, zero factorization - By

lemma 7.6.1, µ≈ strictly decreases and thus so does µ∗.

• Vertical monotony of horizontal edges - By lemma 7.6.1, µ≈ does not increase.

Moreover, by lemma 7.6.2, µ→ strictly decreases and thus so does µ∗.

• Function dumping - By lemma 7.6.3, µ≈ does not increase. Moreover, by

lemma 7.6.2, µ→ does not increase either. Finally, by lemma 7.6.3, µ{} strictly

decreases and thus so does µ∗.

It is important to understand the scope of this result: it does not produce any

guarantees on when cycles may be introduced into a graph (most seminormalizing rules

have the potential ability to introduce them). It establishes that, if we are lucky enough

that cycles are never produced, then the process is terminating. The moment a cycle is

introduced, the occurs check rule needs to be applied, which may potentially undo the

work that the other rules do, and potentially produce non-terminating reduction.

7.6.4 Normalizing rules: Fairness

Unfortunately, it is provably not the case that R 4 or R 5 are terminating as R 3∗ is. In

fact, this would be absurd since for some dependency graphs there is no finite set of

unification solutions that are, in some sense, complete. The last statement makes more

sense when we consider the fact, that will be shown shortly, that normal dependency

graphs are almost directly related to unification solutions. This further makes it absurd

to consider the confluence of the set of rules R 5.

A weaker result to termination is productivity. This establishes that, as long as

not all solutions have been found, a new solution can be produced by applying the

7.6. Termination, productivity, fairness and solution shape verification 223

rewrite rules a finite number of steps. However, this is not strong enough for our

purposes, and furthermore we can prove a stronger result on R 5: fairness. Fairness

implies productivity, but further establishes that for every solution to the dependency

graph, it will be produced by applying the rewrite rules some finite number of times. In

some sense, this says that the non-terminating properties of R 5 are associated with the

intrinsic infinite nature of the set of solutions, rather than with a problem in the search

method itself.

However, in order to properly define any of these results, we first need to formally

establish a constructive connection between dependency graphs and solutions. So far,

that connection has been existential through the notion of the unification equation system

associated to the graph and the set of solutions of the equaiton system. But the purpose

of the rewrite rules is precisely to be able to produce these solutions constructively.

Definition 7.6.4 (General solution of a normal graph). Consider a normal dependency

graph G . Then, constructively produce the general unification solution of G , written

U0(G) in the following way:

• First, we use a technical tool to make sure that we have enough available first-

order variables to express the solution.

Consider the set of first-order variables V0 appearing in G . Then, for each unifier

level i in G , define the following sets:

– V̄0 = V0

– Vi is formed by one fresh first-order variable for each variable in ¯Vi−1

– V̄i =
¯Vi−1∪Vi.

For each first-order variable X ∈ ¯Vi−1, write Vi(X) to be the fresh first-order

variable associated with it. That is, at most, for each unifier variable we may re-

quire one new first-order variable in its “image” (before applying the substitution

associated with the unifier variable) for each first-order variable in its “domain”

(after applying it).

• If a node contains no dependants and has no incoming non-redundant horizontal

edges, ignore it16

16Note that such a node has no effect whatsoever on the associated equation system to the graph and in
fact is never produced through any of our rewrite rules.

224 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

• For each other second-order node N, define the second-order term U0(N) in the

following way:

– If N has no non-redundant incoming horizontal edges and it contains non-

variable dependants, then because the graph is factorizable, they must all

be equivalent. Pick an arbitrary one φ and define U0(N) = φ.

– If N has no non-redundant incoming horizontal edges and all dependants

it contains are variable, then pick an arbitrary such variable, F. Define

U0(N) = F.

– If N has non-redundant incoming horizontal edges, then because the graph

is normal it must only have one such edge, call it E. Write H for the head of

E and Si for its sources. Then, U0(N) =U0(H){U0(Si), ...,U0(Sn)}. Note

that because the graph is acyclic, this recursion is well defined.

• For each other first-order node N in G , define the first-order term U0(N) in the

following way:

– If N has no non-redundant incoming horizontal nor vertical edges, then

it must contain dependants. Each of those dependants ε must have either

#σ(ε) =⊥ or #σ(ε) = 0. But in lemma 7.6.1 we showed that there are no

dependants on unifier level ⊥, so in this case it must be #σ(ε) = 0. Thus, N

must contain a dependant of the form X for a first-order variable X. Then,

U0(N) = X, for one arbitrary variable in N.

– If N has no non-redundant incoming horizontal edges but has incoming

vertical edges, then it must contain at least one dependant of the form σiδ

where δ has unifier level j < i, because vertical edges are only introduced

on nodes who contain these dependants or which have incoming horizontal

edges. Consider the node Nδ in which the dependant δ is in the graph.

Since G is prenormal, δ must also not have any non-redundant incoming

horizontal edges. Therefore, U0(Nδ) can be assumed to recursively be a

first-order variable in V̄ j. Then, define U0(N) = Vi(U0(Nδ))

– If N has non-redundant incoming horizontal edges, then because the graph

is normal it must have only one of such, call it E. Write H for the head of

E and Si for the sources of E. Then, U0(N) = U0(H)(U0(S1), ...,U0(Sn)).

Note that because the graph is acyclic, this recursion is well defined.

7.6. Termination, productivity, fairness and solution shape verification 225

• For each second-order variable F appearing in the graph, let NF be the node in

which F appears. Then, define the instantiation I0 to be such that I0(F) =U0(NF)

as defined above.

• For each unifier level i and each first-order variable X ∈ V0, consider the depen-

dant σiX and the node NσiX in which it appears in the graph. Then, define the sub-

stitution σ
U0
i to be such that σ

U0
i X =U0(NσiX) as defined above, or σ

U0
i X = Vi(X)

if σiX is not in the graph.

• Finally, define the unification solution U0(G) to consist of the instantiation I0 and

the substitution σ
U0
i for each unifier variable σi.

In short, the solution is defined as the most general solution for root nodes in the

graph and the dependants they represent, and then uses the dependencies to propagate

these through the graph to other dependants. This is why normal graphs are useful for

defining solutions: A single incoming non-redundant horizontal edge per node uniquely

defines the solution to that node.

Consider, for example, the normal graph in figure 7.30. If we apply the procedure

above to extract a general solution from it, we will obtain the following (write Xσ1 =

V1(X) to represent the fresh variable associated with X at unifier level 1, and similarly

for Yσ1 = V1(Y), Xσ2 = V2(X), Xσ2σ1 = V2(Xσ1), Yσ2 = V2(Y), Yσ2σ1 = V2(Yσ1)):

U0(F1) = f{g,π2
1}

U0(F2) = g

σ
U0
1 X = Xσ1

σ
U0
1 Y = g(Xσ1,h())

σ
U0
2 X = f (Xσ2σ1,Xσ2σ1)

σ
U0
2 Y = f (Xσ2σ1, f (Xσ2σ1,Xσ2σ1))

Understood as a solution to a unification problem (with two unifiers/substitutions σ1

and σ2) and using conventional first-order unification notation, what this means is that:

• It provides ground instantiations of F1 and F2, the only ones which would satisfy

the graph.

• The substitution σ1 must be such that Y ∼σ1 g(X ,h()).

226 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Figure 7.30: A normal dependency graph, from which we can extract a solution.

X

Y

σ1

σ1X

σ1

σ1Y

σ2

σ2X
σ2

σ2σ1X

σ2

σ2Y
σ2

σ2σ1Y

·

h0

{g2,F2
2 }

f 2

π2
1

F2
1

• The substitution σ2 must be such that X ∼σ2 f (Xσ2σ1,Xσ2σ1) and Y ∼σ2

f (Xσ2σ1,X).

Theorem 7.6.5 (Generality of the general solution of a normal graph). Let G be a nor-

mal dependency graph whose consistency has been validated. Let U be any unification

solution.

Then, U is a unification solution to G if and only if U is finer (definition 6.1.23)

than U0(G).

Proof. Note that U is finer than U0(G) by definition if we can compose the instantiation

and each substitution of U0(G) on the left to produce U . Also note that U is a solution

to G by definition if it satisfies every equation in the unification equation system

associated to G .

First, let us show that for every unification solution U to G , U is finer than U0(G).

The following holds true for every solution U to G :

7.6. Termination, productivity, fairness and solution shape verification 227

• For each second-order variable F , let NF be the node in which the dependant F

is. Then, because the graph is normal, exactly one of the following possibilities

hold:

– NF has no non-redundant incoming horizontal edges and contains no non-

variable dependants. Then U0(NF) = G, for G a second-order variable in NF .

But for any solution U , the equation F ≈U G holds, and thus whichever the

instantiation of U is, it must be the same for F and G, and this instantiation

is finer than U0, which merely implies the equality of these two variables.

– NF has no non-redundant incoming horizontal edges but contains exactly

one non-variable dependant (it may not contain more than one because it

is a prenormal graph) φ. Then U0(NF) = φ. But for any solution U , the

equation F ≈U φ holds, and thus whichever the instantiation of U is, it must

be such that U(F) = φ. Thus, this instantiation is finer than U0.

– NF has an incoming horizontal edge E with head H and sources Si. Then

U0(NF)=U0(H){U0(S1), ...,U0(Sn)}. Because the graph is acyclic, we may

recursively assume that for nodes H and Si, the instantiation of U is finer

than U0. Moreover, the graph implies the equation F ≈U χH{χS1, ...,χSn}.
These two facts together imply that, for any U , its instantiation is finer than

the instantiation U0(F) =U0(χH){U0(χS1), ...,U0(χSn)}.

• For each unifier variable σi and each first-order variable X , let NσiX be the node

in which the dependant σiX is. Then, because the graph is normal, exactly one of

the following possibilities hold:

– NσiX has no non-redundant incoming horizontal edges. It does, however,

contain at least one incoming vertical edge from a node without incoming

horizontal edges. Thus, U0(NσiX) =Y , where Y is a fresh first-order variable

thus not assigned to any other node in the graph. This literally means that

the substitution σi is not constrained at all for its value on X . Note as well

that for every other dependant δ in NσiX , the equation δ≈U σiX holds, and

therefore, whatever the substitution σU
i is, it will be finer than U0 for σiX .

– NσiX has exactly one non-redundant incoming horizontal edge E with head

H and sources Si. Then, U0(NσiX) = U0(H)(U0(S1), ...,U0(Sn)). Because

the graph is acyclic, we may recursively assume that for nodes H and

228 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Si, the substitutions and instantiation of U is finer than U0. Moreover,

the graph implies the equation σiX ≈U χH(κS1, ...,κSn). These two facts

together imply that, for any U , its instantiation is finer than the instantiation

U0(σiX) =U0(χH)(U0(κS1), ...,U0(κSn)).

Now in the other direction, consider a solution U finer than U0 and show that it must

be a solution to G .

• Consider each second-order variable F on second-order node NF and each equa-

tion associated with it in the equation system associated to G . U is a solution to

G if it satisfies every equation. There are the following possibilities for NF :

– There are no non-redundant incoming horizontal edges to NF and it contains

only variable dependants. Then U0(NF) = G for a second-order variable G

in NF . But also, the only equations associated with NF are establishing the

equivalence of all second-order variables in NF , including F ≈G G. Thus,

any solution U finer than U0 will satisfy these equations.

– There are no non-redundant incoming horizontal edges to NF and exactly

one non-variable dependant φ in NF (there can be no more than one because

the graph is prenormal). Then, U0(NF) = φ. The equations associated with

NF are establishing the equivalence of all dependants in NF , and thus their

equivalence with φ. But φ is a non-variable dependant, and therefore any

solution U finer than U0 must be such that U(F) = φ, which thus satisfies

the equations.

– There is exactly one non-redundant incoming horizontal edge E to NF , with

head H and sources Si. Then, U0(NF) =U0(H){U0(S1), ...,U0(Sn)}, and in

particular this is the value for F . Note that because the graph is quasinormal,

NF must contain only variable dependants. Therefore, all the equations

associated with NF establish that all these variables are instantiated to equiv-

alent terms, and the equation associated to the edge: χNF ≈ χH{χS1 , ...,χSn}.
But because instantiations are defined on second-order variables, any finer

instantiation U to U0(NF) =U0(H){U0(S1), ...,U0(Sn)}must be of the form

U(NF) =U(H){U(S1), ...,U(Sn)}, and thus the equation is satisfied.

• Consider each unifier variable σi and each first-order variable X . Consider the

node NσiX containing the dependant σiX and each equation associated with it in

7.6. Termination, productivity, fairness and solution shape verification 229

the equation system associated with G . There are the following possibilities for

NσiX :

– NσiX has no non-redundant incoming horizontal edges. It does, however,

contain at least one incoming vertical edge from a node without incoming

horizontal edges. Thus, U0(NσiX) = Y , where Y is a first-order variable

not assigned to any other node in the graph. But then the only equations

associated with NσiX establish the equality of all dependants in the node.

By definition of U0, these equations are already satisfied in U0, and so they

must be in any finer solution U .

– NσiX has exactly one non-redundant incoming horizontal edge E with head

H and sources Si. Then U0(Nσix) = U0(H)(U0(S1), ...,U0(Sn)). All the

equations associated with NσiX establish that all the dependants contained in

it are substituted by equivalent terms, and the equation associated to the edge:

κNσiX
≈ χH(κS1, ...,κSn). But because substitutions are defined on first-order

variables, any finer substitution to U0(NσiX) = U0(H)(U(S1), ...,U(Sn))

must be of the form U(NF) =U(H)(U(S1), ...,U(Sn)), and thus the equa-

tion is satisfied.

The above result is to be read the following way: A normal dependency

graph is equivalent to an explicit solution to the unification equation system it repre-

sents, and thus we can consider to have solved the graph if we reduce it to a normal one.

In the following we will deal directly and formally with non-determinism. In order

for that process to be smooth, we provide a few definitions and general results that apply

beyond dependency graphs and unification systems.

Definition 7.6.5. Let R be a set of non-deterministic rewrite rules, each of which

R ∈ R , when applicable, produces, from an element G of a certain kind, a (possibly

empty) set R(G) of the same kind.

Given an initial element G0, we define a search tree with root G0 to be any directed

tree containing elements of the kind of G0, whose root is G0, and such that for each

non-leaf node Gi, it is such that its set of children is the result R(Gi) of applying an

applicable rewrite rule R to Gi.

230 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

We say that a search tree T is complete with respect to R if for each leaf Gi in

T , no rule in R ∈ R is applicable to Gi (every leaf is irreducible). We write L(T) to

describe the set of leaves of T .

There are several things to unpack in this definition that are worth describing

explicitly, specially when it comes to cardinalities:

• For the same initial element G0, there may be several and very different search

trees, and in general an infinite amount of them. This is because at each level we

choose only one rule to explore. Different trees would choose different rules at

each level, from the set of applicable ones.

• If R is countable (and the number of potential ways in which each is applicable to

any given graph is countable), then the number of nodes (and thus the number of

leaves) of any search tree must also be countable. This can be seen by considering

that nodes correspond to finite sequences of natural numbers (which branch to

take at each division until we reach the node).

• However, it is not in general true that the number of paths in a search tree with

countable R is countable. Infinitely deep, infinitely branching branches may

occur that produce uncountable numbers of infinitely deep branches. This can be

seen by considering that this would correspond to infinite sequences of natural

numbers (and thus equipotent to irrational numbers).

Search trees allow us to consider non-deterministic spaces declaratively, without

thinking explicitly about the order in which we explore them. We are, however, inter-

ested in building algorithms and procedures that explore these search trees. Fortunately,

we can provide generic results that establish that any search tree with countable R can

be explored in a fair way: every leaf is eventually explored.

Definition 7.6.6 (Fair exploration of search trees). Let R be a countable set of rewrite

rules. Let children be a function that, for an arbitrary search tree T , and given

a node G ∈ T , produces the (potentially infinite) list of its children and isleaf a

function that, given a node G ∈ T identifies if G is a leaf in T . Then, an algorithm D is

a fair exploration algorithm if, using the children and isleaf functions, it produces,

given the root G0 of an arbitrary T , a (potentially infinite) list D(G0) such that every

leaf L ∈ L(T) is in D(G0) (with finite index, of course).

7.6. Termination, productivity, fairness and solution shape verification 231

It is very important to note the order of the quantifiers in the statement of the

fairness problem. A fair exploration algorithm is not one algorithm for each search tree:

such a solution is trivial to obtain. Rather, there must be a single algorithm D that,

when applied to an arbitrary search tree, correctly produces a fair exploration of its

leaves.

The following is the pseudocode for D (diagonalize), an algorithm that solves the

fairness problem. The way that we work with infinite lists in this algorithm is the way

that lazy languages like Haskell do so: function calls are to be understood as assignment

of expressions that are only evaluated when the expression is pattern matched against.

This allows infinite recursion expressions that are productive (generate some partial

results over the recursion process) to correctly correspond to infinite lists whose every

element has a finite index. Note that we use an additional element (..) to represent a

computation step that does not produce any result but is finite. We will call elements

that are not (..) actual elements. This is crucial to the fairness of the algorithm, as it

prevents a child with no leaves underneath it from blocking other children producing

leaves.

Algorithm 7.6.7 (Diagonalization of a search tree). .

fun diagonalize(G):

return collapse(diagonalize_uncollapsed(G))

fun diagonalize_uncollapsed(G):

if isleaf(G):

return [G]

else:

cs <- children(G)

return diagonalize_apply(diagonalize_uncollapsed,cs)

-- Takes a function that produces a (potentially infinite) list from an

element

-- and a (potentially infinite) list of elements, and combines

-- the result of applying the function to each element

-- together into a single, fair, (potentially infinite) list.

-- The result list may, however, contain newly introduced (..) elements

232 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

to ensure

-- the fairness of the search.

fun diagonalize_apply(F,L):

case L of

[]: return []

-- We apply the function to the first element to produce a single

(potentially infinite) list.

-- And also recursively diagonalize the remainder of the list.

-- We interleave these two results for fairness.

-- However, this is not enough,

-- because diagonalize_apply may call itself recursively to find

the first element

-- in a sub-tree with no leaves, never finding an inexistent

-- first element, blocking the rest of the tree from being explored.

-- We use (..) to let the parent function call know that we did

some work,

-- even if we did not produce any leaf yet.

(x:xs): return interleave(F(x),diagonalize_apply(F,xs))

end fun

-- Combines two (potentially infinite) lists into a single, fair,

infinite list,

-- by interleaving the two lists.

fun interleave(L1,L2):

case L1 of

[]: return (..):L2

-- We swap the order of the lists at each step to ensure the

fairness.

(x:xs): return (x:interleave(L2,xs))

-- Removes any (..) elements from an infinite list.

-- Of course, if the list has no more elements, this function produces a

non-terminating list.

-- But if between any two elements there is a finite amount of (..),

then it removes them without issues.

fun collapse(L):

7.6. Termination, productivity, fairness and solution shape verification 233

case L of:

[]: return []

((..):xs): return collapse(xs)

(x:xs): return x:collapse(xs)

Theorem 7.6.6 (Fairness of diagonalization). D is a fair exploration algorithm.

Proof. To properly produce this proof, and due to how the algorithm relies on lazy

evaluation, it is important to differentiate between the following three things, given a

list in the program:

• The list’s thunk itself. This is the exact expression with which the list is

defined. For example, for collapse([(..),1,(..),2]), the thunk is exactly
collapse([(..),1,(..),2]).

• The one-step pattern match of the thunk, after matching the thunk with a cons
structure head:tail. This may incur evaluation of functions and expressions just
as much as necessary to obtain the head and tail of the thunk, as unevaluated

thunks themselves.

For example, for collapse([(..),1,(..),2]), the one-step pattern match evalu-

ates the collapse function, which evaluates to the thunk collapse([1,(..),2]),

which must still be evaluated, producing the thunk x:collapse([(..),2]),

which is in the desired shape and is thus the one-step pattern match of

collapse([(..),1,(..),2]).

• The abstract semantic sequence that the list represents. This is a mathematical

element result of fully evaluating (including an infinite number of steps) the thunk,

and is better understood as a sequence that produces elements rather than a static

list. In order to reason about the abstract semantic list, it is not enough to consider

inductive definitions and individual steps, but instead we will need to consider

universally quantified reasoning and infinitely many steps at once.

For example, the abstract semantic sequence of collapse([(..),1,(..),2]) is

the finite sequence [1,2]. However, the abstract semantic sequence result of

applying collapse to a list consisting exclusively of an infinite number of (..) is

an a non-terminating sequence that never produces any elements.

We say that a list is well defined if every element in its abstract semantic sequence

has a finite index. In other words, there is only a finite number of elements that

234 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

come before it in the list.

For example, the list result of naively concatenating the list of all natural numbers

with itself is not well defined, because some elements are hidden behind infinite

numbers of elements. However, interleaving the list of natural numbers with itself

is a well defined list.

We say that a list L is fair if its abstract semantic sequence is productive for as

long as it has not terminated, and for every element in L, there is only a finite

number of elements that come before it in L.

First, we note that if a non-empty list L is fair, then producing its one-step pattern

match is a terminating computation. If the list is not empty, then it has elements in it.

Thus, and because it is fair, it must be productive. Which by definition means that we

can compute the one-step pattern match.

Next, we note that if L is a well defined fair list, then collapse(L) is also

well defined and fair, and produces exactly the actual elements of L in the same

order. This is clear as collapse leaves the list as-is except it removes (..) one

at a time, and every actual element will by definition appear after a finite amount of (..).

Second, we claim that if L1 and L2 are well defined fair lists, then

interleave(L1,L2) is a well defined fair list whose actual elements correspond to the

union of all the actual elements in L1 and L2. To see this, consider that interleave

never throws away any elements in L1 or L2: every time it extracts one from them, it

includes them in the result; nor does it introduce any actual elements not in L1 or L2.

L1 is fair and thus either it is empty or its one-step pattern match can be computed.

Furthermore, for every element in L1 or L2, because the lists are well defined, they will

appear in the abstract semantic sequences of those lists after a finite number of steps.

Thus, because interleave explores both lists at the same time one step at a time, there

is only a finite number of computations (and thus also a finite number of elements)

before each element on each of the two lists in the abstract semantic sequence of

interleave(L1,L2), and thus it is well defined and fair.

At the centre of this proof is the proof that if F terminates for every element in

L, L is a well defined fair list and F(x) is a well defined fair list for every x in L,

7.6. Termination, productivity, fairness and solution shape verification 235

then diagonalize_apply(F,L) is a well defined fair list containing the union of all

F(x) for x in L. To see this, first consider that if L is non-empty and fair, then its

one-step pattern match x:xs can be computed in finite time. Thus the evaluation of

diagonalize_apply(F,L) will terminate in finite time and, if L is non-empty, return

interleave(F(x),diagonalize_apply(F,xs)). Next, note that interlave(L1,L2) will

never be an empty list. It may contain no actual elements, but it will always contain at

least one (..). Thus, and since interleave’s first element will be either F(x)’s first ele-

ment if it has one or (..), we will always be able to produce the one-step pattern match

of interleave(F(x),diagonalize_apply(F,xs)), and thus we will always be able to

produce the one-step pattern match of diagonalize_apply(F,L) (and we have proven

this without relying on the well definedness or fairness of diagonalize_apply(F,L)).

Therefore, the first depth of the execution of

interleave(F(x),diagonalize_apply(F,xs) will terminate and produce either

the first element of F(x) or (..). The second depth will terminate and produce either

the first element of diagonalize_apply(F,xs) or (..). But we already knew that,

unless xs is empty, the first element of diagonalize_apply(F,xs) will be either the first

element of F(x2) (where x2 is the first element of xs) or (..). By recursion, this shows

that the first element of every F(x), for x in L is produced. Similarly, the third depth

of interleave(F(x),diagonalize_apply(F,xs) will terminate and produce either the

first element of the tail of F(x) (which is the second element of F(x)) or (..) if there is

no such element. By recursion, we can see this produces all the elements in every F(x)

after a finite number of steps. Thus, diagonalize_apply(F,L) is a well defined fair list

containing the union of all F(x) for x in L.

Now show that diagonalize_uncollapsed(G) is a well defined fair list containing

all leaves under G in (T). Here we can use induction over the structure of (T),

because we are only concerned about leaves, which thus appear in the search tree

at a finite depth. If G is a leaf, then diagonalize_uncollapsed(G) trivially returns

[L], which is a fair list containing all leaves under G. If G is not a leaf, then it has

children. By induction, we may assume that diagonalize_uncollapsed(c) is a well

defined fair list containing all leaves under c for each child c of G. By definition,

the leaves under G are the union of all the leaves under each c. Thus, and because

we proved the well definedness and fairness of diagonalize_apply, we know that

diagonalize_apply(diagonalize_uncollapsed,cs) will be a well defined fair list

containing the union of all leaves under each child c of G, which is the same as a well

236 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

defined fair list containing the union of all leaves under G, and we are finished.

Finally, we already showed that if diagonalize_uncollapsed(G) is a well defined

fair list, then collapse(diagonalize_uncollapsed(G)) will be a well defined fair list

containing exactly the same actual elements, and thus it is a well defined fair list

containing exactly the union of all leaves under G.

As a side note, the reader should convince themselves that the collapsing of the

lists must happen at the end of the algorithm: the separation between diagonalize

and diagonalize_uncollapsed is necessary. If we diagonalized over the collapsed

list, then we would not be able to ensure productivity of each sub-list, which could

make sub-trees with no leaves kidnap the algorithm’s execution and prevent exploring

other sub-trees. Collapsing in the end is fine, because then the only thing that may

happen is that if there are no leaves under G then diagonalize(G) may not terminate or

produce any results: this is acceptable for the general tree, but not for each sub-tree.

Corollary 7.6.2. Let R be a countable set of non-deterministic rewrite rules. Assume

that for each rule R ∈ R there is an algorithm that tells us whether R is applicable to a

given element G , and if it is, it produces a well defined fair list of the results of applying

R to G .

Then, for any arbitrary choice of rewrite rule application order, there is an algorithm

that, given an element G , produces a fair list of all the irreducible elements result of

applying the rules in said order to G .

Proof. The assumptions give us the children and isleaf functions. The arbitrary

choice of rewrite rule application order gives us a search tree T . Then, we need only to

apply diagonalize to the root G to obtain the fair list.

Going back to R 5 and dependency graphs, we can use this result to show that R 5 is

fair regardless of application order. For that, though, we still need to show that every

solution to a dependency graph will be represented by a leaf in any valid search order.

That is a task of its own, but it can be reduced to defining an appropriate measure on

dependency graphs.

7.6. Termination, productivity, fairness and solution shape verification 237

The result that we eventually want to prove is that for any search tree T complete

with respect to R 5 and root G , all solutions U ∈ U(G), are represented by a leaf

GN
U ∈ L(T). But note that by definition of complete search tree, GN

U is a leaf in T if

and only if GN
U is irreducible in R 5, and by lemma 7.5.6, this is equivalent to GN

U being

a normal graph. Moreover, note that because all rules in R 5 are solution preserving,

we know that for every non-leaf node in T , its set of solutions is equal to the set of

solutions of its children. This implies that, if T were finite, then every branch would

eventually end in a leaf, and the result would be trivially true. However, this is not,

in general, the case: infinitely deep branches (that never produce leaves) may occur

in T . Note as well that it would not be enough to show that every branch has a leaf

underneath it, since there could be a core set of solutions that permanently remained in

the infinitely deep branches of the graph with no leaves underneath it. But we can give

a twist to this approach to make it work. What we will do instead is to show that there

is a measure µN on dependency graphs that increases as we move further down the

graph, such that for every solution U , there is a maximum MµN
U amongst all dependency

graphs for which U is a solution. This requires further precision.

The measure µN need not strictly increase for every rule in R 5. In theorem 7.6.4

we showed that for every graph G , there may only be a finite number of rules in R 3∗

applied to it, regardless of order. Thus, if we show that µN strictly increases for rules

in R 5−R 3 (that is, single factorization, half factorization of function symbols, half

factorization of projections and multiple factorization) and it does not decrease for

any rule in R 3∗ , then between any two applications of rules in R 5−R 3∗ , there may

only be a finite number of applications of rules in R 3∗ , and the measure increases

for each application of rules in R 5−R 3∗ , and therefore for any number n, there is a

depth dn such that all dependency graphs in the search tree T with depth greater than

dn have µN > n. In the previous conclusion we are using the fact that, for any given

tree T , and for each specific value of µN , the number of finite steps before no more

acyclic seminormalizing rules can be applied is bounded among branches. This is a

consequence of the fact that all rules in R 5 produce only a finite number of dependency

graphs.

This means that as we move down the depth of the search tree, and as long as cycles

are not produced in the graph, we inexorably increase µN . Because at any depth, the set

of solutions of all graphs at that depth must be equal to the set of solutions of the root

(except for solutions accounted for in leaves at smaller depths), and all graphs for which

each solution is a solution have bounded µN , then every solution of the root graph must

238 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

eventually be accounted for by a leaf, and thus a normal dependency graph, in T .

Therefore, and as a conclusion to this initial part of the proof, we have shown that

the eventual result we wish to show can be shown (as long as no cycles are produced in

the graph) by producing a measure µN such that:

• µN is finite for every dependency graph.

• µN does not decrease when applying any rule in R 3∗

• µN strictly increases when applying any rule in R 5−R 3.

• For every ground unification solution U , there is a maximum value MµN
U such that

U can never be a solution to a dependency graph G> for which µN(G>)>
MµN

U .

• µN is not dense with respect to the rewrite rules: from an initial graph G and for

any given value of µN , only a finite number of rules may be applied before a value

of µN greater than or equal is reached.

To define µN , we will, once again, combine several individual measures into one.

Definition 7.6.8 (Depth of instantiation measure). For each second-order node N in an

acyclic graph, define µI(N), the depth of instantiation measure to be 0 if the node has

no incoming horizontal edges, or 1 plus the maximum of the recursive µI(N) on the

sources of all incoming horizontal edges if it has incoming horizontal edges.

For each second-order variable F, define µI(F) to be µI(NF), where NF is the node

in which F appears in the graph.

Then, define the measure µI on the graph to be the sum of µI(F) for all second-order

variables F in the graph.

Lemma 7.6.4. Let R be any rewrite rule in R 5, and G1 a dependency graph to which

R is applicable. Let G2 be the set of dependency graphs after applying the rule. Then,

for every G2 ∈G2, µI(G2)≤ µI(G1).

Moreover, for the partial head instantiation branches of single factorization and

multiple factorization, µI strictly increases.

7.6. Termination, productivity, fairness and solution shape verification 239

Proof. Since horizontal edges are never removed in the graph, µI may only change if

horizontal edges are added to the graph or nodes are merged. But both of these actions

may only increase µI , so no rule may decrease it.

The partial head instantiation branch of single factorization takes the node Hv that

contains only second-order variables, which does not have incoming horizontal edges

because it is the head of a horizontal edge and the graph is factorizable, and adds an

incoming horizontal edge to it. Thus, µI strictly increases for all the second-order

variables of it, and therefore it strictly increases globally in the graph.

Similarly, the head instantiation branch of multiple factorization takes the node

Hi0 that contains only variable dependants, which does not have incoming horizontal

edges because it is the head of a horizontal edge and the graph is factorizable, and adds

an incoming horizontal edge to it. Thus, µI strictly increases for all the second-order

variables of it, and therefore it strictly increases globally in the graph.

Definition 7.6.9 (Instantiated variables measure). Define the instantiated variables

measure on a dependency graph, written µI≈ , to be the number of second-order variables

F in the dependency graph for which the dependant F is in the same node as a non-

variable dependant.

Lemma 7.6.5. Let R be any rewrite rule in R 5, and G1 a dependency graph to which

R is applicable. Write G2 to be the set of dependency graphs that R produces when

applied to G1. Then, for each G2 ∈G2, µI≈(G1)≤ µI≈(G2).

Moreover, for the projection merging branches of single factorization and multiple

factorization, the inequality is strict.

Proof. No rule removes variables from the graph or splits nodes that are together. This

alone makes it impossible for the measure to ever decrease.

The projection merging branches of single factorization and multiple factorization

explicitly merge a node containing only second-order variables with a projection (non-

variable), and thus the measure is strictly increased.

We will use the measure µ≈ defined in definition 7.6.1.

240 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Lemma 7.6.6. µ≈ does not increase when applying half factorization of function

symbols or half factorization of projections.

Proof. An important part of the definition of µ≈ is that it is dependent on D1(G) and

D2(G). We showed that rules in R 3∗ did not change these sets. Neither do they change

when applying half factorization rules, since they do not add second-order variables.

This is important for the correctness of this proof.

Since half factorization of function symbols is solution preserving and deterministic,

it produces one graph with exactly the same set of solutions as the original graph, and

so µ≈ may only change when nodes are merged, decreasing it.

On the other hand, half factorization of projections is non-deterministic, but each

result graph is absolutely equal to the original graph, except the node H has been merged

with a projection πm
k . The only difference there may therefore be in the sets of solutions

between the original graph and each individual result graph is that the equation πm
k ≈ χH

holds afterwards and possibly did not before. But this equation is explicitly represented

by the dependants being in the same node in the graph, so µ≈ does not increase for half

factorization of projections either.

Definition 7.6.10 (Inverse implicit equivalent dependants measure). Define the measure

µ−≈, called the inverse of the implicit equivalent dependants measure, as the number of

elements in D1(G)∪D2(G) minus the value of µ≈.

Lemma 7.6.7 (Increasing inverse implicit equivalent dependants measure). Let R be

any rewrite rule that does not change D1(G) or D2(G), then, µ−≈ is strictly increasing

or non-decreasing respectively if µ≈ is strictly decreasing or non-increasing.

Proof. It is straighforward from the definition of the inverse measure and the fact that

the boundary sets do not change.

Definition 7.6.11 (Target function symbols measure). Define the target function sym-

bols measure, written µ→
c

on a dependency graph G to be the number of function

symbols f , each on node N f , for which N f has non-redundant incoming horizontal

edges.

Lemma 7.6.8. Let G1 be a dependency graph for which half factorization of

function symbols is applicable. Let G2 be the result of applying the rule to it. Then,

7.6. Termination, productivity, fairness and solution shape verification 241

µ→
c
(G1)> µ→

c
(G2).

Also, let G1 be a dependency graph for which vertical monotony of horizontal edges

is applicable. Let G2 be the result of applying the rule to it. Then, µ→
c
(G1)≥ µ→

c
(G2).

Finally, let G1 be a dependency graph for which function dumping is applicable.

Let G2 be the result of applying the rule to it. Then, µ→
c
(G1)≥ µ→

c
(G2).

Proof. Half factorization of function symbols explicitly marks as redundant every

incoming horizontal edge to a node with a function symbol in it, and thus µ→
c

strictly

decreases.

Vertical monotony of horizontal edges does not change anything related to

second-order nodes or edges except making them the head of edges, and thus it does

not change µ→
c
.

Finally, function dumping marks a horizontal edge as redundant, but adds a new

one with the same target in its place. Therefore, the number of function symbols with

incoming horizontal edges does not change.

Definition 7.6.12 (Inverse target function symbols measure). Define the inverse target

function symbols measure on a dependency graph G , written µ−→
c
, to be such that

µ−→
c
(G) = D2(G)−µ→

c
(G).

Lemma 7.6.9. Let R be a rewrite rule that does not change D2(G) and for which

µ→
c

is non-increasing or strictly decreasing. Then, µ−→
c

is non-decreasing or strictly

increasing respectively for this rule.

Proof. It is a direct consequence of the definition of µ−→
c

and the fact that D2(G) does

not change.

Definition 7.6.13 (Target projections measure). Define the target projections measure,

written µ→
π

on a dependency graph G to be the number of non-redundant second-order

horizontal edges whose head does not contain a projection but whose target does.

242 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

Lemma 7.6.10. Let G1 be a dependency graph to which half factorization of projections

is applicable. Let G2 be the set of result dependency graphs after applying the rule.

Then, for any G2 ∈G2, µ→
π

(G1)> µ→
π

(G2).

Also, let G1 be a dependency graph to which half factorization of function symbols

is applicable. Let G2 be the result of applying the rule to it. Then, µ→
π

(G1)≥ µ→
π

(G2).

Moreover, let G1 be a dependency graph to which vertical monotony of hori-

zontal edges is applicable. Let G2 be the result of applying the rule to it. Then,

µ→
π

(G1)≥ µ→
π

(G2).

Finally, let G1 be a dependency graph to which function dumping is applicable. Let

G2 be the result of applying the rule to it. Then, µ→
π

(G1)≥ µ→
π

(G2).

Proof. Half factorization of projections precisely merges the head of an incoming edge

to a projection that did not previously contain a projection with a projection, therefore

strictly decreasing µ→
π

.

On the other hand, if half factorization of function symbols is applicable, then

the graph is factorizable. This means that the node N containing a function symbol

cannot contain projections. The rule marks as redundant edges incoming to this node

and which therefore cannot be relevant for µ→
π

since their target does not contain a

projection, and adds new edges whose target is a new anonymous second-order node,

which therefore does not contain projections either. Thus, µ→
π

may not increase.

Vertical monotony of horizontal edges does not change anything related to

second-order nodes or edges except making them the head of first-order edges, and thus

it does not change µ→
π

, because no edges with target a projection may be created or

marked as redundant.

Finally, function dumping marks a horizontal edge as redundant, but adds a new one

with the same target in its place. Furthermore, the edge being marked as redundant did

not contain a projection by definition of function dumping. Therefore, if the added edge

has as target a node with a projection, then so did the edge being marked as redundant,

and therefore µ→
π

does not increase.

7.6. Termination, productivity, fairness and solution shape verification 243

Definition 7.6.14 (Inverse target projections measure). Define the inverse target pro-

jections measure on a dependency graph G , written µ−→
π

, to be such that µ−→
π

(G) =

D2(G)−µ→
π

(G).

Lemma 7.6.11. Let R be a rewrite rule that does not change D2(G) and for which

µ→
π

is non-increasing or strictly decreasing. Then µ→
π

is non-decreasing or strictly

increasing respectively for this rule.

Proof. It is a direct consequence of the definition of µ→
π

and the fact that D2(G) does

not change.

Definition 7.6.15 (Normalizing measure on dependency graphs). Define the ordering

µN on dependency graph G to be the lexicographic ordering which considers the

ordering induced by the following measures (giving most priority to the first one and

least to the last one):

• µI

• µI≈

• µ−≈

• µ−→
π

• µ−→
c

Lemma 7.6.12 (Non-decreasing normalizing measure). Let R be any rule in R 3∗ and

G1 a dependency graph to which R is applicable. Write G2 for the set of dependency

graphs result of applying the rule.

Then, for every graph G2 ∈G2, µN(G1)≤ µN(G2).

Proof. Consider each rule in R 3∗ :

• Validate consistency - This rule does not change the graph, other than to invali-

date it, so the measure does not change unless a branch is terminated.

244 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

• Vertical monotony of equivalences, edge zipping, projection simplification,
zero factorization - By lemma 7.6.4, µI does not decrease. By lemma 7.6.5, µI≈

does not decrease either. By lemma 7.6.1, µ≈ strictly decreases, and since this

rule does not modify D1(G) or D2(G), by lemma 7.6.7, µ−≈ strictly increases,

and thus so does µN .

• Vertical monotony of horizontal edges, function dumping - By lemma 7.6.4,

µI does not decrease. By lemma 7.6.5, µI≈ does not decrease either. By lemma

7.6.1, µ≈ does not increase, and since this rule does not modify D1(G) or D2(G),

by lemma 7.6.7, µ−≈ does not decrease either. By lemma 7.6.10, µ→
π

does not

increase and then by lemma 7.6.11, µ−→
π

does not decrease either. Finally, by

lemma 7.6.8, µ→
c

does not increase and then by lemma 7.6.9, µ−→
c

does not

decrease either. Therefore, µN does not decrease.

Lemma 7.6.13 (Increasing normalizing measure). Let R be any rule in R 5−R 3 and

G1 a dependency graph to which R is applicable. Write G2 for the set of dependency

graphs result of applying the rule.

Then, for every graph G2 ∈G2, µN(G1)< µN(G2).

Proof. Consider each rule in R 5−R 3:

• Single factorization - By lemma 7.6.4, µI does not decrease. By lemma 7.6.5,

µI≈ does not decrease either. Moreover, for the partial instantiation branch, lemma

7.6.4 establishes that µI strictly increases. For the projection merging branches,

7.6.5 establishes that µI≈ strictly increases. These are all the branches that single

factorization produces, and therefore µN strictly increases in every case.

• Half factorization of function symbols - By lemma 7.6.4, µI does not decrease.

By lemma 7.6.5, µI≈ does not decrease either. By lemma 7.6.6, µ≈ does not

increase, and since this rule does not modify D1(G) or D2(G), lemma 7.6.7

implies that µ−≈ does not decrease. By lemma 7.6.10, µ→
π

does not increase,

and thus by lemma 7.6.11, µ−→
π

does not decrease. Finally, by lemma 7.6.8, µ→
c

strictly decreases, and thus by lemma 7.6.9, µ−→
c

strictly increases, and thus so

does µN .

• Half factorization of projections - By lemma 7.6.4, µI does not decrease. By

lemma 7.6.5, µI≈ does not decrease either. By lemma 7.6.6, µ≈ does not increase,

7.6. Termination, productivity, fairness and solution shape verification 245

and since this rule does not modify D1(G) or D2(G), lemma 7.6.7 implies that

µ−≈ does not decrease. Finally, by lemma 7.6.10, µ→
π

strictly decreases, and

thus by lemma 7.6.11, µ−→
π

strictly increases, and thus so does µN .

• Multiple factorization - By lemma 7.6.4, µI does not decrease. By lemma

7.6.5, µI≈ does not decrease either. Moreover, for the partial instantiation branch,

lemma 7.6.4 establishes that µI strictly increases. For the projection merging

branches, 7.6.5 establishes that µI≈ strictly increases. These are all the branches

that multiple factorization produces, and therefore µN strictly increases in every

case.

We are only missing now the association with the solutions.

Lemma 7.6.14. Let U be a ground unification solution. Then, there is a maximum value
MµN

U such that for every dependency graph G for which U is a solution, µN(G)≤ MµN
U .

Proof. Consider the second-order variables in U . Assume, without loss of generality,

that the instantiations are normal. For each of them, consider the depth of its instantiation

dI , defined recursively as 0 if they are instantiated to a function symbol or projection,

and 1 plus the maximum amongst the depth of instantiation of its arguments if it is

instantiated to a composition. Consider the sum ∑F dI(F). If G has µI(G)> ∑F dI(F),

then U cannot possibly be a solution to G , because the total depth of instantiation of all

its variables would need to be greater than ∑F dI(F).

Thus, there is a maximum value for µN such that any dependency graphs with greater

value for µN cannot possibly have U as solution.

Lemma 7.6.15. Given an initial dependency graph G , and a specific value µN
0 of µN ,

there is a maximum number of applications of rewrite rules (other than the occurs

check) such that after that number of applications, all dependency graphs that are in

the result set have µN greater than µN
0 .

Proof. First note that since µI is the governing measure in µN and µI is a natural number

(and therefore not dense), if we show that for any graph with a certain value of µI , there

is a maximum number of applications of rules before all result graphs have µI greater

than the original, this may only happen a finite number of times and the lemma would

246 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

be implied. So we can focus only on the remaining measures.

But if µI does not increase when applying rewrite rules, then none of those rules

are multiple factorization. All the rules in R 5 except the occurs check and multiple

factorization preserve D1(G) and D2(G), and in particular the number of second-order

variables in the graph. Thus, µI≈ will have a maximum value amongst those graphs (the

total number of second-order variables), and similarly will the measures µ−≈, µ−→
π

and µ−→
c

which are always between zero and a finite number dependent on D1(G) and

D2(G). All of these measures are natural numbers and therefore there can only be a

finite number of them before they reach the maximum value.

By lemma 7.6.13, every rule in R 5−R 3 strictly increases µN . Also, by lemma

7.6.12, no rule in R 3∗ decreases it, and by theorem 7.6.4, only a finite number of

these rules may be applied to any dependency graph. Therefore, between every two

applications of a rule in R 5−R 3, there may only be a finite number of applications of

a rule in R 3∗ , and thus, for every value of µN , it will be reached after a finite number of

applications of these rewrite rules.

Theorem 7.6.7 (Eventual non-deterministic confluence of R 5 under acyclicity). Let T
be any search tree that is complete with respect to R 5, that contains no cyclic graphs,

and has root G . Let U ∈U(G) be a solution to G .

Then, there is a leaf GN
U ∈ L(T) such that U is finer than the general solution

U0(GN
U) of the normal graph GN

U .

Proof. By lemma 7.6.15, at any given depth of the search tree, there is a minimum

value of µN that every dependency graph at that level must have. But by lemma 7.6.14,

there is a maximum MµN
U of µN amongst graphs that have U as solution. Since every

rule is solution preserving, this must mean that U must be a solution to a leaf GN
U at

depth at most MµN
U . GN

U is normal because of lemma 7.5.6 and the definition of complete

search tree. But then, by theorem 7.6.5, U is finer than U0(GN
U).

Theorem 7.6.8 (Solution finding algorithm for dependency graphs). For every way to

choose rewrite rules amongst applicable ones to dependency graphs, there exists an

algorithm that, given an arbitrary dependency graph G , produces a well defined fair

list of unification solutions UN
i such that every unification solution U ∈U(G) is finer

than one of the UN
i .

7.6. Termination, productivity, fairness and solution shape verification 247

Proof. It is a direct consequence of theorem 7.6.7 and corollary 7.6.2.

7.6.5 Quasinormalizing rules: Solution shape verification

Theorem 7.6.8 is the principal result about our rewrite rule system. However, as we

described when we introduced the rule, multiple factorization is a very undesirable rule

to apply because it introduces a large amount of non-determinism, largely increasing

the size of the search space. Moreover, it may make sense at times to want to verify if

there exists a solution to a set of equations with a certain shape, rather than to obtain

the explicit solutions. It is important to understand the difference between this and the

solution being an actual solution to the set of equations.

Definition 7.6.16 (Solution shape verification). Let E be a unification equation system.

Let U be a unification solution. We say that E has a solution with the shape of U if

there is a unification solution UR �U (finer than U) such that UR ∈U(E).

Of course, if U is a solution to E, then E has a solution with the shape of U . But the

reciprocal is not always true.

The important result in this section is the following: a quasinormal graph always has

at least one unification solution. And the relevant application of this is the following:

we can verify if a graph G has a solution with the shape of a solution U by replacing

the values of U in the graph and then checking if G can be quasinormalized while

leaving one consistent result graph. The remainder of this section details this.

Theorem 7.6.9 (Quasinormal graphs have solutions). Let G be a quasinormal depen-

dency graph. Then, U(G) is not empty.

Proof. We begin this proof by noting that theorem 7.6.5 implies that this is true for

normal graphs: the general solution is one solution and therefore U(G) is not empty.

What we will do is to show that, given a quasinormal graph G , it can be modified

into a normal graph GN such that every solution of GN is a solution of G . Then, since

U(GN) is not empty, then neither is it U(G).

The difference between quasinormality and normality is that while normality pre-

vents any presence of multiple non-redundant incoming horizontal edges to a graph,

248 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

quasinormaly admits these as long as the heads of all of these edges are all second-order

variables. Furthermore, a quasinormal graph is factorizable, and thus these heads have

no incoming horizontal edges. This is important since it allows these variables to

be instantiated to anything in solutions. Even further, any second-order node with

non-redundant incoming horizontal edges contain only variable dependants. This gives

total freedom to these variables, and only relative dependency between them. Let’s use

this formally.

Consider all nodes Vi in G that contain only second-order variables and whose nodes

have no non-redundant incoming horizontal edges, and each second-order variable F

in them. Write EV
j to describe all the edges in the graph whose heads contain only

second-order variables. Choose an arbitrary function symbol f with arity 0 in the

signature17. Note that, just like a function symbol of arity n can have its arity artificially

increased by composing it with projections (for example g1{π3
1} has arity 3), the same

can be done with function symbols of arity 0, except that they do not have explicit

projections composed. That is, we can consider a second-order term of arbitrary arity

which ignores all of its arguments and returns a constant. Form the graph GN to be the

graph G with the following changes:

• For each Vi, let n be the arity of Vi. If n is zero, merge Vi with f . Otherwise, add

an incoming horizontal edge to it with f as head and no sources (to adapt f to the

arity of Vi).

• Remove all edges EV
j

• For each node N that had at least one incoming edge EV
j , add an incoming edge

to N with head f and no sources.

We note that GN is normal. Because the Vi had no non-redundant incoming

horizontal edges and contained only variables, neither the new incoming horizontal

edges nor the merging of nodes can violate factorizability. Because G was quasinormal,

the node containing f could not have non-redundant incoming horizontal edges, and

thus the new edges replacing the removed ones do not violate factorizability either.

Furthermore, all the nodes with more than one non-redundant incoming horizontal edge

had all such edges be one of the EV
j , all of which have been removed and replaced

17We do assume one exists in the signature. This assumption is often made in Herbrand model
reasoning and it does not alter the fundamental notion of solution, rather only ensuring the syntactic
expressivity is there to sustain it.

7.6. Termination, productivity, fairness and solution shape verification 249

by an individual edge per node, and thus the normality condition is now met (and in

particular quasinormality and seminormality).

Because GN is normal, it has, by theorem 7.6.5, at least one solution U ∈U(GN).

It will satisfy all the equations in the equation system associated with GN , and thus

automatically all the equations in the equation system of G , except those that were

removed when producing GN . These must thus be associated with the edges EV
j removed.

Note that since U is a solution to GN , Vi ≈U f for every Vi. For each node N in G with

incoming edges EV
j , consider whether N is a first or second-order node:

• If it is a first-order node, then the equations removed from G are of the form

κN ≈Vi(κS1, ...,κSn). But, in U , each Vi is the constant function f which ignores

its arguments, and thus these equations are all of the form κN ≈ f (). These

equations are held trivially since they only relate to each other, and each node N

is only defined by these equations. It is important to note that vertical monotony

ensures that any constraints at lower unifier levels that may extend to this level

would come in the shape of incoming horizontal edges to the node that would

have propagated through vertical monotony.

• If it is a second-order node, then the equations removed from G are of the form

χN ≈Vi{χS1, ...,χSn}. But, in U , each Vi is the constant function f which ignores

its arguments, and thus these equations are all of the form χN ≈ f . These equations

may not come in conflict with dependants in N since G was quasinormal and

therefore the node N, with non-redundant incoming horizontal edges, could only

contain variable dependants.

Thus, U is a solution to G and the theorem is proven.

Definition 7.6.17 (Solution shape verification algorithm). Assume we have an algorithm

that chooses rewrite rules amongst applicable ones in R 4 to dependency graphs. Then,

define the solution shape verification algorithm V that takes as input a dependency

graph and, as long as no cyclic graphs are produced, when it terminates, returns with

true or false:

• Diagonally apply (see corollary 7.6.2) the rewrite rules in R 4, except the occurs

check.

250 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

• If an irreducible graph is produced, return true.

• If all branches end in failure, return false.

Of course, the attractiveness of V is that it need not apply multiple factorization,

thus considerably reducing its complexity.

Theorem 7.6.10 (Correctness and semidecidability of the solution shape verification al-

gorithm under acyclicity). Let G be a dependency graph. If V terminates when applied

to G , then its result correctly indicates whether the graph has solutions. Furthermore,

if G has solutions, then V will terminate as long as no cyclic graphs are produced.

Proof. The correctness comes from theorem 7.6.9. Each rule in R 4 is solution

preserving, and an irreducible graph with respect to R 4 is quasinormal by lemma 7.5.5.

Thus if an irreducible graph is produced, then said graph has solutions and thus those

solutions are also solutions of the root graph G . Furthermore, if all branches end in fail-

ure, by the solution preserving properties of the rules, this means that G had no solutions.

The second part of the theorem is a consequence of the proof of theorem 7.6.7. If G
has solutions, then by applying rules in R 5, there would be leaves (irreducible graphs)

in the search tree. But the same would trivially be true from rules in R 4, because an

irreducible graph with respect to R 5 is also irreducible to R 4, and we imposed no

ordering in the application of rules in theorem 7.6.7. Thus, if G has solutions, then the

complete search tree with respect to R 4 has leaves, which can thus be enumerated fairly

by corollary 7.6.2. Since we are only looking for one such solution, the algorithm will

terminate in this case.

Note that if the graph has no solutions it is possible for the algorithm to continue

indefinitely applying rules but never quite invalidating every branch in the graph. There

is no solution to this particular situation. The problem is semidecidable.

7.7 Relation to standard higher-order unification

In this section, we discuss the inspiration, similarities and differences, at a technical

level, between the algorithm described and standard higher-order unification and other

closely related algorithms (see §3.2.2 or [Huet, 1975, Dowek, 2001]).

7.7. Relation to standard higher-order unification 251

Generally speaking, the approach is very similar to any other unification algorithm:

we express the unification problem systematically and structurally proceed through

it, instantiating variables when necessary and propagating information. One notable

difference between our algorithm and standard higher-order logic is that we use a graph,

as opposed to equations, to express the unification problem. In §7.7.1 we explain this in

more detail, but fundamentally the aim of this is to allow us to propagate information

and choose the next part of the problem to tackle more effectively. More precisely, our

algorithm proceeds by:

• Normalizing terms to enable effective comparison between them.

• Instantiate variables based on the constraints presented in them when necessary.

This produces non-determinism.

• Propagating information generated through instantiation in parts of the problem

to every part of the problem that is affected by it.

• Checking for situations that indicate the problem has no solutions to stop the

search.

All of these are achieved through the rewrite rules. We explain how in more detail in

§7.7.2. We note that normalization of terms is in general assumed / enforced throughout

in standard higher-order unification. In that case, it is also easier than in our algorithm

because the scope of the standard algorithm is a single equation / unification problem,

whereas in our algorithm we solve multiple unification equations simultaneously. We

describe this aspect more in detail in §7.7.1. This also relates to the value of propagating

information through different parts of the problem, also explained in §7.7.1. Standard

higher-order unification does not check for complex situations that indicate the problem

has no solutions (e.g. occurs check). This is primarily due to the goal of checking

for unifiability rather than for an enumeration of all unifiers that allows this and other

algorithms to be more clever about the exploration of the search space, and makes

verification of some of these situations unnecessary / unhelpful. We talk about this in

§7.7.2 and §7.7.4. We do note that, in the implementation of the algorithm, we decided

to forgo some of these checks for practical reasons as well. This is explained in more

detail in chapter 8. Finally, both our algorithm and standard higher-order unification

algorithms incur non-determinism. We explore this aspect in §7.7.3.

252 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

7.7.1 Why graphs

Dependency graphs express relations between terms and other elements; the same

type of relations that unification equations do. Indeed, definition 7.2.3 and algorithm

7.2.5 establish this connection. However, a dependency graph allows more explicit and

consequential relations between elements. As a particularly relevant case, they allow the

representation of multiple unification equations at once. Multiple representation is not,

per se, a fundamental difference, but combined with the more direct representation of

all the connections and relations between multiple elements in the system (for example,

a variable appearing in multiple parts of the equation system), it also enables us to

propagate information about instantiations throughout the graph in a more targetted

manner, and to choose the next aspects of the problem to focus on in a more informed

way (in particular, when multiple valid non-deterministic options are possible). This is

what [Dowek, 2001] calls don’t care non-determinism.

In practice, this (among other things) is embodied by the application of prefactoriz-

ing rules (definition 7.5.3) to exhaustion (factorizable graph, definition 7.3.4) before

applying any factorization rules, and the priority in the application between multiple

factorization rules. This closely relates to what in higher-order unification are called

rigid-rigid, flexible-rigid and flexible-flexible pairs. A rigid head is a head of a function

application that contains no variables, whereas a flexible head is one that contains

variables. Unifying two terms with rigid heads is deterministic and straightforward, and

therefore efficient (and is exactly what zero factorization (§7.4.7.1) does). Unifying

a flexible and a rigid term incurs non-determinism but in a limited manner, and also

allows us to constrain the instantiation of the variables, so it is also desirable (this is

what single factorization (§7.4.7.2) does). Unifying multiple flexible heads incurs a lot

of non-determinism, essentially equivalent to enumerating potential instantiations of a

variable (this is what multiple factorization (§7.4.7.5) does).

A graph being factorizable, when representing multiple unification equations possi-

bly containing the same second-order variables, means that we can safely ensure we will

solve all rigid-rigid (zero factorization) and flexible-rigid (single factorization) pairs

(tuples, in fact, since these rules are defined for more than 2 incoming edges to a node)

before solving flexible-flexible tuples, throughout the entire system. An important fact

that underlies this property about factorizable graphs is that unifiers do not directly

affect second-order variables (see chapter 5 for a clear description of why this is the

7.7. Relation to standard higher-order unification 253

case). Being able to solve head pairs in this order is more efficient, as is well known in

the higher-order unification literature.

7.7.2 Rewrite rules and their roles

When comparing dependency graph unification with higher-order unification, it is useful

to consider what aspect each rewrite rule is related to. We describe this explicitly in this

subsection.

• Vertical monotony and vertical alignment rules relate to the propagation of

information between multiple unification problems. It does not have an equivalent

in standard higher-order unification because that algorithm traditionally solves

single unification problems.

• All prefactorizing rules except the occurs check and validating consistency, and

half-factorization rules (§7.4.7.3, §7.4.7.4), relate to the normalization of terms

to ensure that comparison between them is adequate and effective.

• The occurs check and validate consistency rule aim at stopping the search in sit-

uations that will yield no solutions. In particular, at avoiding infinite unproductive

search. This is not necessary / ineffective in the standard higher-order unification,

and the reasons behind this relate closely to the topics described in §7.7.4.

• Zero factorization, single factorization and multiple factorization are the actual

unification rules that produce instantiations of second-order variables, and relate

to rigid-rigid, flexible-rigid and flexible-flexible pairs in higher-order unification,

as explained above.

7.7.3 Non-determinism

Higher-order and second-order unification, as well as the majority of their variations,

are fundamentally non-deterministic. Unlike first-order unification, there is not a single

most general unifier. An important classification of non-determinism (sometimes, like

in [Dowek, 2001], called don’t care and don’t know non-determinism) is between non-

determinism where the order in which the search space is explored does not change its

results (don’t care), and non-determinism where we have to explore multiple possible

options independently (don’t know).

254 Chapter 7. Dependency graph unification for ESQ logic: Theoretical results

In our algorithm, don’t care non-determinism is reduced to the choice of which rule

to apply to which nodes and edges within the priorities defined by the algorithm. Don’t

know non-determinism is embodied by explicit non-determinism in the result of rules.

This is the most costly kind of non-determinism, and that’s why in our algorithtm it is

reduced primarily to single factorization and multiple factorization, which are applied

at the lowest priority.

One family of optimizations of higher-order unification and second-order uni-

fication has to do with utilizing unification schemata instead of individual uni-

fiers, to represent families of unifiers with a common structure. For example, in

[Zaionc, 1987, Farmer, 1988]. We have not explored this or how it could affect depen-

dency graph unification.

7.7.4 Unifiability versus explicit unifiers

One of the most important differences in scope, introduced already in chapter 5, between

our algorithm and its application, and standard higher-order logic applications, is our

need to produce explicit and exhaustive instantiations of second-order variables, as

opposed to simply checking for unifiability. This is a major difference that conditions

a lot of our decisions and the approach of the algorithm. Most or all of these have to

do with Huet’s lemma, establishing that a unification problem where all unification

pairs are flexible-flexible always has at least one solution (in standard higher-order

logic). See section 4.2.3 of [Dowek, 2001] for more details. When only unifiability is

a concern, a flexible-flexible pair means acceptance of the problem as unifiable and

stopping the search. However, because we are looking for all possible instantiations,

we need to continue the search through this search space with a huge branching factor.

It is also important to understand that focusing on unifiability rather than finding

explicit unifiers is a systematic feature of higher-order unification algorithms, rather than

a choice that can be easily avoided. For example, when one instantiation does not work

in our approach, it is not feasible to simply produce a different one: the higher-order

unification algorithms work is conditioned to assume that this is not relevant and

is exploited to guide the search itself, and cannot be easily modified with an “exception”.

Some of the ways in which this aspect conditions our approach include:

• One of the reasons we choose to solve multiple unification problems at once is to

7.8. Summary 255

reduce the search space as much as possible in the case of flexible-flexible pairs.

• The propagation of information as much as possible before committing to instan-

tiations, which is enabled by the graph approach, is primarily aimed at reducing

or eliminating the need to explore flexible-flexible pairs.

• The prioritization of rules is also closely related to this last aspect. This would

not be possible in a straightforward way without the graph data structure and the

rewrite rule approach. See §7.4.7.

• Our particular concern and systematic approach to non-determinism is necessary

due to the large amount of non-determinism generated by flexible-flexible pairs.

• The Validate Consistency, and specially the Occurs Check rules, are necessary

/ useful in our algorithm, and not present in standard higher-order unification,

mainly due to the necessity to reduce unproductive search while preserving

productive search.

7.8 Summary

This chapter formalizes dependency graphs as a tool to solve unification equation sys-

tems and the basic pieces needed to do so. It introduces a set of non-deterministic

solution preserving rewrite rules on these dependency graphs, that change their rep-

resentation while keeping the set of solutions they represent. We introduce a set

of normalization levels for dependency graphs and use adapted versions of standard

techniques in rewrite systems to show that the set of rewrite rules are, under certain

conditions, confluent to the specified normalization levels, and that we can use these

normalized graphs to produce or verify explicit solutions in a simple way. All of this

comes together into an algorithm for producing sound and fair enumerations of the set

of unification solutions of a unification equation system.

In the last section of the chapter, we describe the similarities and differences between

our algorithm and standard higher-order unification, and how this relates to the nature

of our problem and the specific decisions in the way our algorithm is designed.

Chapter 8

Implementation

I have produced an implementation in Haskell of most of the ideas presented in this

thesis. This is a proof of concept implementation rather than a general tool ready for

industrial use, and it includes a representation of ESQ logic, an implementation of all

the patterns in the catalogue in appendixA, and most relevantly, an implementation of

minimal commitment resolution for ESQ logic as described in chapter 5.

The entirety of this (large) implementation can be found at https://github.com/

Undeceiver/metaunif. In this chapter we provide a very general overview of the

pieces it consists of, while stopping to describe a few relevant details about it. An

empirical evaluation of the implementation can be found on chapter 9.

8.1 Terms and unifier expressions

One of the most basic pieces in the program is the definition of the term and unifier

expression structures. It is, however, a relatively simple piece with few complexities

compared to the rest of the program.

One of the important aspects about the implementation of this part is that it is a

very general and modular approach, in which many different pieces are implemented

more or less independently and combined. For example, we define the general

notion of a type being a “term structure” meaning that it can be built and unbuilt

into a head and set of arguments. Both first-order terms, second-order terms and

second-order atoms implement their own versions of this structure. Similarly,

we have type classes indicating what we require of a type to be considered a

“variable” in terms of what can be done with them that is relevant for the algo-

257

https://github.com/Undeceiver/metaunif
https://github.com/Undeceiver/metaunif

258 Chapter 8. Implementation

rithm. We then have four different implementations of this type class: first-order

variables, second-order function variables, second-order predicate variables and

unifier variables. Each has their own properties, but they share some structure which

is used commonly in many places. There are many other such instances of this approach.

One of these common aspects is the normalization of terms and unifier expressions.

Apart from having a common structural definition, we implement this individually

for first-order terms, second-order terms, second-order atoms and unifier expressions.

These correspond to the definitions of normal elements in these types defined in §6.1.

The implementation is relatively easy and follows almost directly the formal definition

of the rewrite rules.

8.2 ESQ logic

At the other side of the spectrum, at the highest level, is the implementation of ESQ

logic, which expresses how to define ESQ queries in the program and translates them

into a set of minimal commitment resolution for ESQ logic operations to run to find the

solutions.

This layer is actually quite simple, most of the complexity being present in the

lower layers of resolution and unification. The main concern is having the ability to

properly express and differentiate the queries, and how each of them translates into

combinations of applications of the refutation procedure.

One relatively tricky aspect of this layer is the difficulty in representing implicit

combinations of queries and the corresponding applications of the refutation procedure

while only explicitly running when it is necessary. This is closely related to the topics

discussed in §8.5.

8.3 Resolution

In this layer we implement the process of producing and maintaining maximal CNFs

as described in §5.5.1, as well as the resolution rule with implicit unification and

generation of unification equations, as described in §5.5.2.

8.3. Resolution 259

This mostly involves using a suitable data structure for CNFs that not only keeps

track of current clauses and literals, but also which ones can be unified (possible

unification steps), including groups of literals to do with factoring, as described in

§5.5.2.

In relation to this, a relevant implementation aspect of automated theorem proving

based on resolution for first-order logic is the choice of an heuristic for deciding which

resolutions to apply at each moment, since it cannot be known beforehand which

will lead to a proof. Good heuristics often reduce the running times of this process

dramatically.

While the heuristics we have adopted in our implementation are rather simple

(mainly, choosing the resolution step that will produce the clause with the least size),

we have made sure to leave a clear space for this to be changed easily if necessary.

Some references to literature on more up-to-date first-order automated theorem proving

techniques can be found on §2.3.

A critical aspect of our particular implementation of the handling of maximal

CNFs is that we have decided to completely forgo inductive instantiation of second-

order variables, as described in §5.5.1. This means that the set of instantiations that

our implementation will output is limited to atomic instantiations and no composite

instantiations like conjunctions, disjunctions or negations. This does mean the resulting

procedure is not complete in the sense of instantiations of second-order variables

containing logical connectives. Atomic instantiations do, however, remain complete.

There are three main reasons for this decision:

• Inductive instantiation greatly increases the size of the search space, and thus the

running time, of the program.

• We argue that in most fault detection cases, the most interesting instantiations,

or in fact sometimes the only ones that are relevant, are atomic ones. Generally

speaking, whenever a pattern is interested in a certain structure, it will explicitly

present it in the associated query, using separate atomic second-order variables.

Inductive instantiation is still theoretically fundamental to present the complete-

ness of the approach and consider alternative approaches, but it makes sense to

avoid it.

• The real time required for me to develop this part of the program would be

260 Chapter 8. Implementation

relevant and given the time constraints of this PhD, I decided it was best to instead

spend that time in other more core tasks.

8.4 Unification

This is without a doubt the largest, most complex and most core element of the

implementation. It consists of several modules working together to implement the

functionality of dependency graphs for solving systems of unification equations, as

described in §5.5.3.

Apart from the underlying basic modules describing term structures as described

in §8.1, and the handling of non-determinism and fair enumerations described in §8.5,

there are mainly two modules that implement the unification algorithm itself: one

concerned with dependency graphs as an abstract concept in terms of equivalence of

elements, operations and correctness of the semantics of dependency graphs themselves;

and another concerned with applying this abstract structure to the specific problem of

finding instantiations of second-order variables that satisfy a set of unification equations.

The first one is a relatively standard (though still intricate) exercise in data structures,

whereas the second one is more specific and implements things like the rewrite rule

system described in chapter 7.

There are a couple of important aspects of this second module that are worth

discussing, other than the transversal aspects discussed in §8.1, §8.5 and §8.7.

First, in chapters 5 and 7, when describing the rewrite rule system, we heavily rely

on the notion of levels of normalization for dependency graphs, that help us understand

the issue and show some of its most important properties. In practice, however, there are

reasons to avoid explicitly describing these normalization levels in the implementation,

for performance and simplicity reasons. Instead, what we do is we give a precise priority

order to the application of rewrite rules, ensure that they are applied exactly when they

are, in fact, applicable (as described formally in chapter 7), and use a queue to handle

the set of rewrite rules that need applying. As we describe in chapter 9, this part turned

out to be one of the most problematic in terms of performance, due to the unavoidable

need to constantly check a lot of preconditions for rules.

This means that rewrite rules will only be applied to dependency graphs which

8.4. Unification 261

fulfill all preconditions for them, including their normalization level, even if this is

not explicit. The correctness of this approach is embodied by theorems 7.5.1, 7.5.3,

7.5.4, 7.5.5 and 7.5.6, that connect the normal levels with the applicability of each of

the families of rewrite rules.

Second, in §7.6.1 we discuss the issue that cycles in dependency graphs produce

with the algorithm and why the occurs check is a theoretically complete solution to

this, but also a practically unsatisfactory one1. As a consequence of this, and also the

complexity of the occurs check rule both in development time and computational time,

we decided to not implement it in full. Instead, we replace it with a check for cycles

that gets flagged up in the algorithm, but not solved (the search is halted when a cycle

is found). This allows us to notice the prevalence of this situation in our cases, to be

able to take measures to correct it if necessary, without dealing with the aforementioned

complexities. Clearly, this once again will make the algorithm fail in certain situations

where theoretically it should not. We have, however, given reasons why this is not a

big theoretical problem, and our unit tests show that it is almost never problematic in

practice.

There is an important exception to this, however. A very specific and simple

case of cycles in the graph is produced systematically by other rules. In particular,

factorization rules work in a recursive way by instantiating second-order variables to

partial compositions and introducing new variables. One of the fundamental base cases

for this is when the composition cannot possibly have any more depth, which in practice

means that a second-order variable needs to be instantiated to a projection, ending the

recursion. The way this appears in the graph is by having an edge which has its target be

the same as one of its sources (a cycle) and the head be the second-order variable. See

figure 8.1. These cycles appear even when the initial graph is completely acyclic. Thus,

in the implementation, we check for this exact specific case and solve it by instantiating

the second-order variable to an adequate projection. Apart from this only working for

unary cycles, this approach is also limited in that another possible instantiation would

be to remove the dependency on some of the sources. Nonetheless, in our unit tests (see

§8.7), every single case that did not have a fundamental cycle to begin with could be

solved with this exception, while over half of them needed this exception to avoid failure.

1But we have shown why it cannot be relevantly improved upon.

262 Chapter 8. Implementation

Figure 8.1: A unary cycle produced by the application of factorization rules.

σ1X

F

8.5 Non-determinism

Non-determinism is used extensively in both our theoretical description and our imple-

mentation of the algorithm. This is a transversal aspect, and our usage of it is among

the most complex that can be conceived, for several important reasons:

• Most importantly, our search spaces are, in general, infinite. Moreover, the search

trees that some aspects of our algorithm describes are not just infinite in depth,

but also in width; meaning that from a single state an infinite number of different

new states can be reached in just one step.

• We are very concerned with the fairness of the search procedure. Obviously, an

infinite search space cannot be explored in finite time. However, enumerable

search spaces can be attempted to be explored in a fair way, so that for each

element within it, it can be reached within finite time.

• The order of the search and in general the width and depth of the different branches

in the search tree can greatly affect the computational complexity (running time)

of different parts of the algorithm.

• An overarching topic in our contributions in this thesis is the usage of implicit

representations of large sets of solutions that we can do operations with, rather

than explicitly finding solutions that we will never use. This needs to be explicitly

implemented in the program, in ways that allow us to operate with implicit

solutions and use them semi-transparently as if they were explicit solutions, while

only explicitly evaluating them when necessary.

One big ally in this process is the fact that Haskell is a lazily evaluated language.

This allows even simple list data structures in Haskell to be infinite and allowing

computations with them. Lazy evaluation falls far from the topic of this thesis, but the

fundamental idea is precisely that computations are represented implicitly by default

8.5. Non-determinism 263

and only evaluated when the shape of the result is required to make decisions about the

rest of the program (pattern matching).

However, both basic Haskell data structures (like lists) and existing libraries fall

short of some of the behaviours and capabilities that we needed. Thus, we implemented

three different modules to deal with three very closely related aspects of this problem:

• Enumeration procedures - This is a replacement data structure for lists that

presents one additional capability and enhanced operations with much more

attractive properties for our purposes.

The additional capability is the ability to represent within the data structure

itself the notion of a computation step that did not produce any result. This

is fundamental in ensuring fairness, because it allows us to “quantize” infinite

computations that never produce results into an infinite set of terminating steps

that do not produce results. This prevents these unproductive search branches (that

cannot, however, be distinguished beforehand), from holding the computation

capabilities of the programs hostage and preventing other productive search

branches from producing their results.

Enhanced operations generally involve variations of usual list operations, and

some additional operations, all of which explicitly ensure the fairness of the

resulting list: each element in the result can be produced in finite time.

One key operation in this module is the diagonalization of an enumeration

procedure over a function. This is an explicit implementation of definition 7.6.7

and theorem 7.6.6. It also happens to be a monadic structure over the type of

enumeration procedures that preserves fairness.

• Non-deterministic algorithms - This module builds on enumeration procedures

to allow the implicit representation of non-deterministic computations, with plenty

of fundamental and useful operations like composing them, combining them,

currying and uncurrying functions, providing provenance for elements, etc.

One key aspect of this module is the separation of the definition of the non-

deterministic algorithm in terms of its search space, and the chosen search order.

To be precise, an algorithm in this module represents a search space which only

makes assumptions about the search order that are explicitly indicated when

264 Chapter 8. Implementation

physically building the algorithm data structure itself (and are not necessary at

all). When trying to produce the set of results of an algorithm (which will be

a fair enumeration procedure like expressed above), the chosen search order

must be indicated, producing different enumeration procedures depending on

it. Examples of search orders include depth-first search, breadth-first search,

iterative deepening, diagonalization and other variations of these.

• Answer sets - In this module, we provide infrastructure to be able to handle

implicit and explicit representations of sets of solutions (of any kind) opaquely.

At a basic level, an answer set represents a conceptual set of solutions, but it

may be expressed explicitly or implicitly (or partial combinations of these two),

while providing operations for applying functions to these, combining them,

enumerating them and building non-deterministic algorithms over them, that

allow us to only make them explicit when it is absolutely necessary.

8.6 Dependency graph data structure

An aspect of the implementation that has turned out to be relevant for some of the con-

siderations and limitations of this approach has been the way in which the dependency

graph data structure is implemented. There are a series of aspects of what this data

structure needs to represent and how it is used that play important factors in this:

• Cyclicity - Apart from the thoroughly discussed directed cycles, even on directed

acyclic graphs (which is what is relevant for the abstract algorithm’s purpose),

we may have undirected cycles. For example, two edges coming out of a node to

different targets, and then two edges coming out of these two different nodes and

targetting another, same, final node.

In Haskell specifically, there are two properties of the language that make these

structures problematic to deal with naturally. First, immutability of data structures.

Data structures can be efficiently pattern matched and reproduced, but one cannot

modify a Haskell data structure in-place. Second, all Haskell data structures are

fully acyclic by construction. Pointers or references to data structures are not

something that Haskell provides to the user in a usable way. This is by design,

and has to do with the aforementioned immutability of data structures.

This means that in order to represent cyclic dependency graphs in Haskell, we

8.6. Dependency graph data structure 265

need to explicitly create a pointer/reference system and maintain it, while copying

entire data structures often (instead of changing internal aspects of them).

• Node merging - One of the most important and common operations in our rewrite

systems is merging two nodes, combining both the dependants they contain and

the edges that go in and out from them. It is a challenge to make both the process

of merging the nodes and the process of traversing the graph from nodes to edges

to nodes to edges efficient. Our implementation is based on the usual union/find

algorithm for representing disjoint sets [Tarjan, 1975], with particular details

aimed at our particular problem.

• Edge redundancy/deletion - While dependants and nodes are, by definition,

never removed from the graph (in fact, every dependant is implicitly in the graph

from the beginning, but only explicitly added when we need to use it), edges can

be marked as redundant. We still need to keep them in the graph, but we need

to treat them differently. This is not a huge challenge, but it complicates thing

a little more, and also adds to the algorithmic complexity of operations on the

graph that require looking at edges.

• Accessing nodes “by name” - In many rewrite rules, and also when encoding

unification equation systems into a dependency graph, we need to access nodes

not based on their topological situation in the graph (which other edges/nodes

they may be connected to), but rather based on the dependants they contain.

For example, we often will want to find things like “the node that contains the

dependant σ2σ1X”.

Our implementation of the dependency graph data structure was done with some

of these abstract ideas in mind, but not specifically optimized for the particular ways

in which the algorithm uses it. As such, it consists in about ten dictionaries with

different types of keys and values. For example, a dictionary mapping first-order

dependants to the first-order nodes in which they originally were. Another dictionary

mapping first-order nodes to first-order nodes they were merged with, implementing the

union/find aspect of the data structure. Another dictionary mapping each first-order

node to a list of all the first-order dependants contained in it. Etc. Some local traversal

exists, namely, each node contains direct references to all incoming and outgoing edges

it has, and edges have direct references to all nodes involved in it. Keeping these local

data structures updated, specially in an immutable language like Haskell, also proves

266 Chapter 8. Implementation

problematic.

This approach means that no individual operation will be particularly problematic,

but it also means (as we discovered when attempting to evaluate the algorithm) that

over large sequences of operations, a very large amount of lookups on dictionaries

are necessary. Moreover, the immutability of data structures in Haskell means that

dictionaries are less efficient to use than in other languages.

At the latter stages of this PhD, a profiling study of the performance of the program

made me aware of the scale of this problem, consuming upwards of 70% of the pro-

gram’s running time over problematic test cases of between 10 and 30 seconds (that did

not produce any results). I tried some optimizations, like using a better dictionary data

structure or optimizing pointer chains every so often to reduce to more direct links, and

while some improvement was noticed, none proved enough.

Later on (after the first submission of this thesis), and as we discuss in chapter 9, a

more profound analysis of this problem and its relevance was carried out, and it turned

out to be one of the fundamental problems with the computational performance of the

implementation. The fact that it is related to Haskell’s limitations gives some cause for

hope that a re-implementation in a different language that allowed more efficient data

structures could improve the computational properties of the algorithm (though there

are no guarantees of this).

I discuss this further in chapter 9, but overall, it is a possibility that an implemen-

tation of the dependency graph data structure and its basic operations that is more

carefully tailored to the particular ways in which the rewrite rule system handles them,

making operations more local and streamlined and avoiding “global” searches over the

graph so often; and using a different language that does not make dealing with mutable

and cyclic data structures so hard, could greatly boost the performance of the program.

I also imagine there are other performance-deteriorating factors in the implementation

that I did not get the chance to observe due to this being the largest one.

This is an important and challenging problem with the implementation and the

approach, and it is unclear whether it could be sufficiently improved upon so as to

change the conclusions of the evaluation in this thesis.

8.7. Unit tests 267

8.7 Unit tests

It should be noted that, while not all, most aspects of this program have extensive sets

of unit tests that we have used to verify correctness throughout changes in the way the

program works. More relevantly, the two main modules of the unification aspect have

seen the most changes and variations, and sets of unit tests for these, while not entirely

complete, have proven extremely useful.

The following is a summary of the extent and purpose of the unit tests contained in

https://github.com/Undeceiver/metaunif:

Test file Module under
test

Tests Summary of tests

AnswerSetTest.hs Implicit/explicit

answer sets

2 Simple check that implicitly

and explicitly defined answer

sets can be accessed in the

same manner.

CesqLogicTests.hs ESQ logic queries 29 Tests of simple and composite

queries returning the adequate

instantiations on simpler and

more complex theories.

DependencyGraphTests.hs Dependency

graph data

structure

6 Very high-level simple tests

to check that building and

modifying dependency graphs

produces adequate data struc-

tures.

https://github.com/Undeceiver/metaunif

268 Chapter 8. Implementation

EnumProcTests.hs Infinite lists /

enumeration

procedures with

lazy evaluation

that can be com-

bined preserving

lazy evaluation,

with void steps

for possibly

non-terminating

computations.

6 Simple tests verifying that this

data structrure can be used to

combine multiple operations

with potential infinite, non-

productive computation pro-

cesses that can be then ex-

plored lazily without running

into non-productive infinite

rabbit holes.

ESUnificationTests.hs Unification depen-

dency graph oper-

ations

428 Exhaustive tests on each indi-

vidual operation type of unifi-

cation graphs in multiple dif-

ferent circumstances of vary-

ing complexities.

ESUnificationExtraTests.hs Unification depen-

deny graph opera-

tions

2 Some additional high-level

tests for the complete opera-

tion of unification dependency

graph logic.

HeuristicsTest.hs Heuristics for

search procedures

4 Basic checkes that the heuris-

tics defined are being followed

in searches utilizing the de-

fined types.

MetaLogicTests.hs Highest level of

term definitions

38 Verification that parsing and

combination of terms defined

using the module work prop-

erly.

ObjectLogicTests.hs Intermediate

level of term

definitions

87 Verification that parsing and

unification of terms defined

using the module work prop-

erly.

8.8. Summary 269

SOResolutionTests.hs Resolution from

second-order

equations to

instantiations

using dependency

graphs

50 Exhaustive verification that

the correct instantiations are

produced in different systems

of equations of varying com-

plexities and particularities.

8.8 Summary

I have produced a Haskell implementation of the ideas included in this thesis. This fol-

lows quite accurately the theoretical descriptions included in this text. Some variations

have been introduced from the theory, mostly to do with performance optimizations or

reasonable simplifications of the theory. Some of these do affect the results produced

by the algorithm but I have taken measures to place adequate boundaries around these.

The core and most detailed modules of the implementation have to do with the

unification procedure via dependency graphs and minimal commitment; but also with

the non-determinism present throughout the entirety of the ideas in this thesis.

Important issues with performance arose, which are discussed further in chapter

9. I discovered some of these have to do with the implementation of the dependency

graph data structure and the properties of the Haskell programming language. I was not

able to overcome these, and they present a difficult challenge for the feasibility of the

algorithm that is unclear if it could be overcome.

Chapter 9

Evaluation

In this chapter I first describe the evaluation methodology followed and then present the

actual results produced. While not entirely independent, the methodology is presented

relatively independently of the results, so as to describe not only the actual results

that I obtained, but also those that I did not, those that I would have wanted to, and a

few details about the story of how I encountered these during the development of the

program and the PhD.

There are two main (related) research hypotheses that we evaluate in this thesis:

Hypothesis 1. minimal commitment resolution for existential second-order query logic

(the algorithm/procedure described in chapter 5 and more formally defined in chapters 6

and 7) is a sound, complete and computationally feasible implementation of existential

second-order query logic.

Some clarifications:

• By sound we mean that all solutions output by the algorithm/procedure are

members of the answer set of the input query (for all valid queries and theories).

• By complete (also sometimes referred to as fair) we mean that all elements of the

answer set of the input query are output as solutions by the algorithm/procedure

after finite running time (for all valid queries and theories).

• By computationally feasible we mean that the running times and memory con-

sumption numbers for the algorithm are such that it outputs relevant solutions to

small inputs based on application cases in a reasonable time.

271

272 Chapter 9. Evaluation

Note that we talk about computational feasibility but not about complexity in a

theoretical sense. While in principle it could be considered, the complexity of theorem

proving in first-order logic (which is a much simpler problem than the one presented

here) is known to be at least exponential. Therefore, theoretical complexity results for

this particular problem are likely to be of little relevance for real world applications. We

could offer empirical complexity approximations that would be more relevant for the

scope of this algorithm, but we have several reasons to forgo a systematic approach to

this as well:

• There are no other algorithms or procedures that solve similar problems to com-

pare to.

• The implementation and running context are still experimental and unoptimized,

so these results would likely not be reliable.

• The performance will depend strongly on the specific examples, and thus empir-

ical performance or complexity would be measured with respect to a standard

benchmark, which does not currently exist, and the production of which is not

part of this PhD.

• The results of most inputs to the algorithm are infinite sets of solutions that

are output sequentially. Thus, performance or complexity measurements should

account for the dependency on how many and which solutions are output. This

increases the uncertainty of the measurements further.

This contrasts with the properties of soundness and completeness in this hypothesis,

which are used in the usual and formal sense. We prove these theoretically in chapters

6 and 7, but we also evaluate them with respect to the actual implementation of the

algorithm in the current chapter. It is worth stating that we have not formally verified

the implementation and therefore it is possible that implementation errors have made it

incorrect, even if the theoretical algorithm has been proven correct.

Definition 9.0.1. Meta-ontology fault detection is the framework by which we encode

abstract and common sense patterns (originating either from independent ontology

development research, agreed upon good and bad practices or intuition) formally

(including a precise definition of what is and what is not an instance of a pattern) and

use automated methods to detect instances of these patterns.

That is, the framework described in chapter 4.

273

Hypothesis 2. Meta-ontology fault detection, used by encoding patterns in existential

second-order query logic, has the potential to be an effective and feasible approach to

detecting common faults in ontologies formalized in first-order logic.

A few clarifications are due:

• By effective we mean both that the method detects the faults that it was designed

to detect, and in particular that it has high precision and high recall. We define

these terms more precisely below.

• By high precision we mean that a large proportion of the initial1 potential fault

instances output by the system are considered to indeed be faulty by a trusted

oracle2, and that this proportion may drop as we continue into the latter potential

faults output by the system, but will do so at a progressive and not excessively

fast pace.

• By high recall we mean that a large proportion of the fault instances provided by

a trusted oracle will be eventually detected by the system, and that the distribution

of these detected faults leans noticeably towards the initial potential fault instances

output by the system, with progressively smaller proportions being found in latter

outputs.

• By feasible we mean that the running times, memory consumption numbers and

the specificity of fault patterns provided remain low, and within the limits of what

is technically viable for realistic results in the current time and age.

• By specificity of fault patterns, we refer to the degree to which a pattern is able

only to detect specific faults in specific ontologies, or by contrast, is able to detect

multiple faults in different ontologies (low specificity).

There are a few still largely subjective terms used here, such as “large proportion”,

“trusted oracle”, “progressive and not excessively fast”, “leans noticeably towards”,

“progressively smaller proportions”, “low”, “within the limits of what is technically

viable and realistic”, etc. This is done on purpose, and rather than trying to provide

objective (but more likely misleading or confusing, and definitely arbitrary) measures

1i.e. the ones output first by the system
2In our case, this will consist in labeling performed by myself and collaborators before running the

evaluation tests (based on the original research sources of the encoded patterns), but also on a posteriori
qualitative evaluation of the outputs to reflect on their actual faultiness.

274 Chapter 9. Evaluation

for these, we acknowledge their subjectivity here and make a point of keeping the

qualitative and quantitative aspects of the evaluation as clearly separate as possible.

In other words, the evaluation of this hypothesis will be unavoidably qualitative in a

large proportion. This is due to several factors, the most important of which are:

• The lack of previous work with the same scope, and standard benchmarks to

evaluate it, or even evaluation sets that could be applied to this work.

• The still experimental and initial nature of this work. We are not providing a

tool, nor prescribing a specific methodology. We are investigating the feasibility

of a conceptual approach. Limitations and issues of this first attempt do not

necessarily indicate fundamental limitations and issues of the approach, and a

qualitative approach will work better to identify directions for future work and

differentiate them from intrinsic properties.

Moreover, the effectiveness of the meta-ontology fault detection approach is closely

connected with the pattern catalogue as described in chapter 4. This means that as part

of this evaluation we will evaluate the framework in general, the pattern catalogue and

the specific implementation as much independently as working together. We describe

this in more detail in §9.1.

Finally, a word about the reasons for dividing the research hypothesis into two

separate (and possibly at a glance similar) hypotheses. The main difference between the

two hypotheses is that hypothesis 1 is about the technical properties of an algorithm,

whereas hypothesis 2 is about the pragmatic properties of a framework. Their connec-

tion is that the algorithm is the way that we have developed to implement the framework.

As such, some properties of the framework will inevitably depend on the properties of

the algorithm (e.g. computational feasibility), specially when evaluated empirically.

However, the algorithm is evaluated mostly for its correctness, whereas the framework

is evaluated mostly for its usefulness. Moreover, there are other potential uses of the

algorithm and parts of it, and other potential implementations of the framework and

parts of it (such as the pattern catalogue). This is why we have chosen to evaluate them

separately.

9.1. Evaluation methodology 275

9.1 Evaluation methodology

At this point, we need to look ahead a bit and explain some aspects of the actual results

of the evaluation to properly understand the evaluation methodology and how it relates

both to the hypotheses and the results.

My original and ideal intention was to perform an evaluation based on a moderate

number of clearly defined test cases with different patterns and ontologies, run by the

program, and focus on different aspects of these results to evaluate the different aspects

of the hypotheses as described before.

Indeed, in preparation for this, I produced a large document (large enough not

to include it even as an appendix of this thesis) containing detailed and technical

descriptions of these test cases (https://tinyurl.com/y67nsebs). Moreover, I

partially implemented all of these test cases as automated tests in Haskell.

However, as it turned out, the current implementation is still unfortunately mostly

computationally infeasible. Only a very small proportion of the test cases in this test

suite actually produced any results at all within reasonable running times (in the order

of hours or days). The details of this are described in detail in §9.3, §9.4 and chapter

10, but at this point it is relevant in two ways:

1. While we will present and describe this evaluation test set, it has not been used in

the way that we anticipated.

2. Due to the difficulties with using this test set, we have produced other alterna-

tive ways of empirically evaluating the effectiveness of the meta-ontology fault

detection framework. These are described in the following.

3. The soundness and completeness of minimal commitment resolution for existen-

tial second-order query logic has been successfully demonstrated in several ways.

First, through the theoretical proofs in chapters 6 and 7. Second, even though the

larger test set could not be systematically used, smaller unit tests have been used

throughout the entire development (as described in chapter 8; the full tests can

be found on the GitHub repository linked in that chapter), that have shown the

correctness of the implementation in producing the expected results in each case;

as well as a small proportion of the large test set that was indeed computationally

feasible and produced exactly the expected results (discussed further in §9.3 and

§9.4).

https://tinyurl.com/y67nsebs

276 Chapter 9. Evaluation

9.1.1 Extensive pattern test cases

We now describe how we would have evaluated each of the aspects of the two hy-

potheses empirically3, should we not have had the computational feasibility challenges

discussed, or how we would, should we be able to, in the future, produce a better version

of the approach that overcomes these challenges:

• Hypothesis 1:

– Soundness - All the solutions output by the algorithm within the time given

to it to run will be manually verified to be actual solutions to the formal

query presented to the algorithm.

– Completeness - The expected solutions presented pre-evaluation in this

document will be verified to be within the solutions output within the time

given to the algorithm to run.

– Computational feasibility - This will be evaluated in multiple ways for
each test case.

* The expected solution is output within the time given to the algorithm

to run (yes/no).

* We will take measurements of the times it takes the algorithm to present

each sequential solution, and provide summaries of these, but perform

no systematic analysis of this.

• Hypothesis 2. To evaluate this hypothesis, we will not only run each of the test

cases, but also do crossover runs of patterns from some test cases on the theories

of other test cases. This will allow us to more accurately evaluate the precision,

recall and, more importantly, specificity of these patterns when used outwith the

theory they were designed for:

– Precision - For each of the solutions output for each of the runs of the

algorithm, including crossover runs, we will manually check (and judge)

which can be considered to be actual faults in the ontology, as intended to

be targetted by the pattern.

3As described, some of them are also proven theoretically in chapters 6 and 7

9.1. Evaluation methodology 277

– Recall - The expected solutions presented pre-evaluation in this document

will be verified to be within the solutions output within the time given to the

algorithm to run.

– Computational feasibility - This will be measured the same way that

computational feasibility is measured for hypothesis 1, but it will be applied

to the crossover runs as well.

– Specificity - This will be evaluated by comparing the precision, recall

and computational performance values of the intended theory / pattern

pair with those of the crossover runs. Similar results would indicate lower

specificity (which is desirable), whereas different results would indicate

higher specificity.

In the large test set, we present individual test cases with different expected results.

We will, however, try to provide multiple test cases for the same pattern with different

situations that would likely give rise to different potential problems and concerns for

the algorithm. This is knowingly done based on relatively arbitrary criteria, i.e. my

own judgement; due to the lack of better, more standard criteria to prepare these tests.

This is a known and long standing problem in the field where this works stands, and the

approach followed is the usual way to deal with it.

Therefore, even with a computationally feasible evaluation, statistic measurements

on the tests would be largely uninformative and definitely inconclusive. Anyone

potentially reutilizing this benchmark may choose to do statistics, but should be aware

of the source of the data and the challenge that it presents to the validity of statistic

measurements on these tests. Instead, we will focus on qualitative analysis of the results

and extraction of rational explanations of the behaviour observed.

For each test case we will present the following pre-evaluation information:

• Background theory in which the pattern will be detected (a set of first-order logic

axioms).

• Additional contextual information. While this will also be part of the theory,

it is worth separating it as this will often contain second-order functions and

predicates, and the source of this information in a practical implementation would

be an external (simple) analyzer of the theory and the way it is expressed, separate

from the theory itself.

278 Chapter 9. Evaluation

• Pattern to be detected (am ESQ4 query).

• A set (often just a single element) of instances of the pattern that an algorithm

should detect.

• Additionally, we may present comments on the source of the test, its relevance,

importance and whatnot.

As already mentioned, note that we do not include in this thesis nor in its appendices

the entirety of the test suite, due to its length. Therefore, it should be understood that the

set of test cases itself is not a contribution that this thesis should be assessed on. Instead,

the actual contributions in this section are, on the one hand, the approach followed for

the preparation of the patterns based on the existing research on good ontology practices

and, on the other, the evaluation results.

We will present here a couple of example test cases to showcase the approach and

the format, with the remnant being available at https://tinyurl.com/y67nsebs.

9.1.2 Pattern completeness and specificity against original re-

search

An alternative way to qualitatively evaluate the effectiveness of the meta-ontology fault

detection framework is to take the patterns from the pattern catalogue and go back to

the original research which motivated them, looking at the examples presented there,

and evaluating:

1. Whether the pattern would correctly identify those faults in the original ontologies

they come from. This is to be understood qualitatively and not automatically.

That is, I will provide informal, semi-formal and formal (e.g. manually produced

examples of algorithm runs) arguments, using the original research’s language as

much as possible, to justify why the framework and its implementation would

correctly identify those faults should the computational feasibility challenge be

overcome.

2. The specificity of the produced patterns. I will do this by comparing fault families

and types in different pieces of research and showing how some of our patterns

would work for all of them, or would in fact improve on many of them.

4Existential second-order query logic

https://tinyurl.com/y67nsebs

9.2. Pattern test case examples 279

Clearly, the validity of this evaluation method is less than ideal; due to its qualitative

and manually produced nature. However, the arguments produced here can be ade-

quately reproduced and discussed by other researchers, including the proposers of the

original fault detection approaches. Moreover, in the face of the computational feasibil-

ity challenge to our current implementation, these arguments provide other researchers

a way to understand the potential capabilities of the approach should this challenge be

overcome. In other words, while less than ideal, we consider this evaluation method

useful and relevant, which is the reason we have performed it and included it in this

thesis.

9.2 Pattern test case examples

In order to illustrate the nature of these test cases, we include here a couple of examples.

However, for reasons of space, and as explained, we only include two example test cases,

and one of its corresponding crossover tests, the rest (26 base tests and 52 crossover

tests) being available at https://tinyurl.com/y67nsebs.

9.2.1 SpicyTopping pattern test case

In this case, the class spicyTopping should not be primitive, but defined as any topping

that has spiciness in it. This is meant to be detected by using the pattern that there

should not be a primitive class that is independently subsumed by two different primitive

classes.

• Theory -

∀X .spicyTopping(X) =⇒ (pizzaTopping(X)∧ (∃Y.hasSpiciness(X ,Y)∧ spicy(Y)))

∀X .meatTopping(X) =⇒ pizzaTopping(X)

∀X .spicyBeefTopping(X) =⇒ (meatTopping(X)∧ spicyTopping(X)

∀X ,Y.hasSpiciness(X ,Y) =⇒ (pizzaTopping(X)∧ spiciness(Y))

∀X ,Y.hasTopping(X ,Y) =⇒ (pizza(X)∧pizzaTopping(Y))
(9.1)

• Contextual knowledge -

https://tinyurl.com/y67nsebs

280 Chapter 9. Evaluation

primitive(spicyTopping)

primitive(meatTopping)

primitive(spicyBeefTopping)

primitive(pizza)

primitive(spiciness)

explicit property(hasSpiciness)

explicit property(hasTopping)

(9.2)

• Full theory (CNF) -

¬spicyTopping(X)∨pizzaTopping(X)

¬spicyTopping(X)∨hasSpiciness(X ,x(X))

¬spicyTopping(X)∨ spicy(x(X))

¬meatTopping(X)∨pizzaTopping(X)

¬spicyBeefTopping(X)∨meatTopping(X)

¬spicyBeefTopping(X)∨ spicyTopping(X)

¬hasSpiciness(X ,Y)∨pizzaTopping(X)

¬hasSpiciness(X ,Y)∨ spiciness(Y)

¬hasTopping(X ,Y)∨pizza(X)

¬hasTopping(X ,Y)∨pizzaTopping(Y)

primitive(spicyTopping)

primitive(meatTopping)

primitive(spicyBeefTopping)

primitive(pizza)

primitive(spiciness)

explicit property(hasSpiciness)

explicit property(hasTopping)

(9.3)

• Pattern -

9.2. Pattern test case examples 281

((P,Q,R) �∗ (∃X .P(X)∧¬Q(X))∧ (∃X .Q(X)∧¬P(X)))on

on ((P,Q,R) � (∀X .R(X) =⇒ P(X))∧ (∀X .R(X) =⇒ Q(X))on

on ((P,Q,R) �M primitive(P)∧primitive(Q)∧primitive(R))

(9.4)

• Target instantiations -

1.

P = spicyTopping

Q = meatTopping

R = spicyBeefTopping

(9.5)

9.2.2 ProteinLoversPizza pattern test case

In this example, the proteinLoversPizza class is inferred as subsumed by vegetarianPizza.

This is due to a faulty definition of proteinLoversPizza, in which the logical “and” is

used instead of the logical “or”, resulting in the entailment that proteinLoversPizzas

must not have any toppings. This is detected by using the pattern that subsumptions with

universal property restrictions (all toppings in a vegetarian pizza must be vegetables)

that are only satisfied trivially (proteinLoversPizza satisfies this because it cannot have

any toppings) are generally faulty.

A universal property restriction establishes that whenever a property (binary relation)

between two elements happens, and the first element is of a certain class, then the

second element must be of another certain class. In this instance, whenever the relation

hasTopping happens between a vegetarian pizza and a topping, then that topping has

to be of the class (¬meatTopping∧¬cheeseTopping∧¬seafoodTopping), representing

any toppings that are not meat nor cheese nor seafood. In first-order logic, this would

look like:

∀x,y.(vegetarianPizza(x)∧hasTopping(x,y)) =⇒

(¬meatTopping(y)∧¬cheeseTopping(y)∧¬seafoodTopping(y))
(9.6)

• Theory -

282 Chapter 9. Evaluation

∀X .proteinLoversPizza(X) ⇐⇒ (pizza(X)∧ (∀Y.hasTopping(X ,Y) =⇒

(meatTopping(Y)∧ cheeseTopping(Y)∧ seafoodTopping(Y))))

∀X .vegetarianPizza(X) ⇐⇒ (pizza(X)∧ (∀Y.hasTopping(X ,Y) =⇒

(¬meatTopping(Y)∧¬cheeseTopping(Y)∧¬seafoodTopping(Y))))

∀X .meatTopping(X) =⇒ ¬cheeseTopping(X)

∀X .meatTopping(X) =⇒ ¬seafoodTopping(X)

∀X .cheeseTopping(X) =⇒ ¬seafoodTopping(X)

∀X ,Y.hasTopping(X ,Y) =⇒ (pizza(X)∧pizzaTopping(Y))

∀X .meatTopping(X) =⇒ pizzaTopping(X)

∀X .cheeseTopping(X) =⇒ pizzaTopping(X)

∀X .seafoodTopping(X) =⇒ pizzaTopping(X)
(9.7)

• Contextual knowledge -

univ class prop restriction(vegetarianPizza,hasTopping,

(¬meatTopping∧¬cheeseTopping∧¬seafoodTopping))

univ class prop restriction(proteinLoversPizza,hasTopping,

(meatTopping∧ cheeseTopping∧ seafoodTopping))

primitive(pizza)

primitive(meatTopping)

primitive(cheeseTopping)

primitive(seafoodTopping)

primitive(pizzaTopping)

explicit property(hasTopping)

(9.8)

• Full theory (CNF) -

9.2. Pattern test case examples 283

¬proteinLoversPizza(X)∨pizza(X)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨meatTopping(Y)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨ cheeseTopping(Y)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨ seafoodTopping(Y)

¬pizza(X)∨proteinLoversPizza(X)∨hasTopping(X ,y(X))

¬pizza(X)∨proteinLoversPizza(X)∨

¬meatTopping(y(X))∨¬cheeseTopping(y(X))∨¬seafoodTopping(y(X))

¬vegetarianPizza(X)∨pizza(X)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬meatTopping(Y)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬cheeseTopping(Y)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬seafoodTopping(Y)

¬pizza(X)∨ vegetarianPizza(X)∨hasTopping(X ,y2(X))

¬pizza(X)∨ vegetarianPizza(X)∨

meatTopping(y2(X))∨ cheeseTopping(y2(X))∨ seafoodTopping(y2(X))

¬meatTopping(X)∨¬cheeseTopping(X)

¬meatTopping(X)∨¬seafoodTopping(X)

¬cheeseTopping(X)∨¬seafoodTopping(X)

¬hasTopping(X ,Y)∨pizza(X)

¬hasTopping(X ,Y)∨pizzaTopping(Y)

¬meatTopping(X)∨pizzaTopping(X)

¬cheeseTopping(X)∨pizzaTopping(X)

¬seafoodTopping(X)∨pizzaTopping(X)

univ class prop restriction(vegetarianPizza,hasTopping,

(¬meatTopping∧¬cheeseTopping∧¬seafoodTopping))

univ class prop restriction(proteinLoversPizza,hasTopping,

(meatTopping∧ cheeseTopping∧ seafoodTopping))

primitive(pizza)

primitive(meatTopping)

primitive(cheeseTopping)

primitive(seafoodTopping)

primitive(pizzaTopping)

explicit property(hasTopping)
(9.9)

284 Chapter 9. Evaluation

• Pattern -

((P,Q,R) �

(∀X .P(X) =⇒ Q(X))∧

(∀X .P(X) =⇒ ¬∃Y.R(X ,Y)))on

on ((Q,R) �

∃X ,Y.Q(X)∧R(X ,Y))

(9.10)

• Target instantiations -

1.

P = proteinLoversPizza

Q = vegetarianPizza

R = hasTopping

(9.11)

9.2.3 ProteinLoversPizza / Primitive subsumption cycles pattern

test case

This is a crossover test from the two tests above, using the pattern from the first test

case in the theory of the second test case. The intention here is to see how patterns

perform in ontologies they are not designed for.

• Theory -

9.2. Pattern test case examples 285

∀X .proteinLoversPizza(X) ⇐⇒ (pizza(X)∧ (∀Y.hasTopping(X ,Y) =⇒

(meatTopping(Y)∧ cheeseTopping(Y)∧ seafoodTopping(Y))))

∀X .vegetarianPizza(X) ⇐⇒ (pizza(X)∧ (∀Y.hasTopping(X ,Y) =⇒

(¬meatTopping(Y)∧¬cheeseTopping(Y)∧¬seafoodTopping(Y))))

∀X .meatTopping(X) =⇒ ¬cheeseTopping(X)

∀X .meatTopping(X) =⇒ ¬seafoodTopping(X)

∀X .cheeseTopping(X) =⇒ ¬seafoodTopping(X)

∀X ,Y.hasTopping(X ,Y) =⇒ (pizza(X)∧pizzaTopping(Y))

∀X .meatTopping(X) =⇒ pizzaTopping(X)

∀X .cheeseTopping(X) =⇒ pizzaTopping(X)

∀X .seafoodTopping(X) =⇒ pizzaTopping(X)
(9.12)

• Contextual knowledge -

univ class prop restriction(vegetarianPizza,hasTopping,

(¬meatTopping∧¬cheeseTopping∧¬seafoodTopping))

univ class prop restriction(proteinLoversPizza,hasTopping,

(meatTopping∧ cheeseTopping∧ seafoodTopping))

primitive(pizza)

primitive(meatTopping)

primitive(cheeseTopping)

primitive(seafoodTopping)

primitive(pizzaTopping)

explicit property(hasTopping)

(9.13)

• Full theory (CNF) -

286 Chapter 9. Evaluation

¬proteinLoversPizza(X)∨pizza(X)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨meatTopping(Y)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨ cheeseTopping(Y)

¬proteinLoversPizza(X)∨¬hasTopping(X ,Y)∨ seafoodTopping(Y)

¬pizza(X)∨proteinLoversPizza(X)∨hasTopping(X ,y(X))

¬pizza(X)∨proteinLoversPizza(X)∨

¬meatTopping(y(X))∨¬cheeseTopping(y(X))∨¬seafoodTopping(y(X))

¬vegetarianPizza(X)∨pizza(X)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬meatTopping(Y)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬cheeseTopping(Y)

¬vegetarianPizza(X)∨¬hasTopping(X ,Y)∨¬seafoodTopping(Y)

¬pizza(X)∨ vegetarianPizza(X)∨hasTopping(X ,y2(X))

¬pizza(X)∨ vegetarianPizza(X)∨

meatTopping(y2(X))∨ cheeseTopping(y2(X))∨ seafoodTopping(y2(X))

¬meatTopping(X)∨¬cheeseTopping(X)

¬meatTopping(X)∨¬seafoodTopping(X)

¬cheeseTopping(X)∨¬seafoodTopping(X)

¬hasTopping(X ,Y)∨pizza(X)

¬hasTopping(X ,Y)∨pizzaTopping(Y)

¬meatTopping(X)∨pizzaTopping(X)

¬cheeseTopping(X)∨pizzaTopping(X)

¬seafoodTopping(X)∨pizzaTopping(X)

univ class prop restriction(vegetarianPizza,hasTopping,

(¬meatTopping∧¬cheeseTopping∧¬seafoodTopping))

univ class prop restriction(proteinLoversPizza,hasTopping,

(meatTopping∧ cheeseTopping∧ seafoodTopping))

primitive(pizza)

primitive(meatTopping)

primitive(cheeseTopping)

primitive(seafoodTopping)

primitive(pizzaTopping)

explicit property(hasTopping)
(9.14)

9.3. Results 287

• Pattern -

((P,Q,R) �∗ (∃X .P(X)∧¬Q(X))∧ (∃X .Q(X)∧¬P(X)))on

on ((P,Q,R) � (∀X .R(X) =⇒ P(X))∧ (∀X .R(X) =⇒ Q(X))on

on ((P,Q,R) �M primitive(P)∧primitive(Q)∧primitive(R))

(9.15)

9.3 Results

In this section we lay out the results of running the evaluation methodologies described

in the previous sections. We will provide some context and a basic way of understanding

the results, but the analysis of the meaning and validity of these and their relation with

the research hypotheses is discussed in §9.4.

9.3.1 Pattern automated test cases

Unfortunately, one of the primary results of this part of the evaluation is that, in

its current implementation, the algorithm for minimal commitment resolution for
existential second-order query logic is computationally infeasible. This is clear

from the fact that out of the 26 base test cases described, only 1 of them finished with

results within reasonable time. While we did not try all 26 test cases individually, and

we did not try any of the 52 crossover test cases at all (since we would expect even

worse running times for these), we tried the ones that were potentially simplest, and

only test number 20 (discussed in the following) produced results (in fact, it produces

the first result extremely quickly, in the neighbourhood of 1 second on my computer).

The following is the test case that produced correct results quickly:

9.3.1.1

• Theory -

∀X .falls(X) ⇐⇒ waterfall(X) (9.16)

• Contextual knowledge -

288 Chapter 9. Evaluation

primitive(falls)

primitive(waterfall)

equivalent classes(falls,waterfall)

(9.17)

• Full theory (CNF) -

¬falls(X)∨waterfall(X)

¬waterfall(X)∨ falls(X)

primitive(falls)

primitive(waterfall)

equivalent classes(falls,waterfall)

(9.18)

• Pattern -

((P,Q) � primitive(P)∧primitive(Q))on

on ((P,Q) �M equivalent classes(P,Q))
(9.19)

• Target instantiations -

1.
P = falls

Q = waterfall
(9.20)

As it can be noticed, this test case is particularly simple. It utilizes three very

straightforward axioms in the theory, and uses only contextual information (as we

shall explain later in this section, this has turned out to be the fundamental factor

why this test case is so fast), with no transitive inference. Nonetheless, it involves

second-order variable instantiation and multiple chained queries, which indicates that

the fundamental approach can be adequate in at least some cases.

Another relevant (though, as it turns out, not critical) factor in this query is that

it only uses entailment queries (translated into unsatisfiability queries), rather than

satisfiability queries, which are computationally semi-decidable and approximated in

a much more computationally costly way. The issues with satisfiability queries are

explained in more detail in chapter 5 and more formally in §6.2.

By contrast, consider what we consider to be the simplest test case that we could

not get the program to run properly in reasonable time:

9.3. Results 289

9.3.1.2

• Theory -

∀X .(∃Y.hasTopping(X ,Y)∧ edamTopping(Y)) =⇒

¬(∃Y.hasTopping(X ,Y)∧mozzarellaTopping(Y))

∀X .(∃Y.hasTopping(X ,Y)∧mozzarellaTopping(Y)) =⇒

¬(∃Y.hasTopping(X ,Y)∧ edamTopping(Y))

∀X .fourCheesePizza(X) =⇒ (pizza(X)∧

(∃Y.hasTopping(X ,Y)∧mozzarellaTopping(Y))∧

(∃Y.hasTopping(X ,Y)∧ edamTopping(Y))∧

(∃Y.hasTopping(X ,Y)∧ cheddarTopping(Y))∧

(∃Y.hasTopping(X ,Y)∧parmezanTopping(Y)))

(9.21)

Note that the first two axioms are equivalent, and therefore redundant. This is not

obvious at first glance, it was not to me until I converted them both to CNF and

realized they were equal. Thus why I leave them both in the non-CNF version of

the theory. I only include it once in the final CNF version.

• Contextual knowledge -

primitive(edamTopping)

primitive(mozzarellaTopping)

primitive(cheddarTopping)

primitive(parmezanTopping)

(9.22)

• Full theory (CNF) -

290 Chapter 9. Evaluation

¬hasTopping(X ,Y)∨¬edamTopping(Y)∨¬hasTopping(X ,Z)∨¬mozzarellaTopping(Z)

¬fourCheesePizza(X)∨pizza(X)

¬fourCheesePizza(X)∨hasTopping(X ,y(X))

¬fourCheesePizza(X)∨mozzarellaTopping(y(X))

¬fourCheesePizza(X)∨hasTopping(X ,y2(X))

¬fourCheesePizza(X)∨ edamTopping(y2(X))

¬fourCheesePizza(X)∨hasTopping(X ,y3(X))

¬fourCheesePizza(X)∨ cheddarTopping(y3(X))

¬fourCheesePizza(X)∨hasTopping(X ,y4(X))

¬fourCheesePizza(X)∨parmezanTopping(y4(X))

primitive(edamTopping)

primitive(mozzarellaTopping)

primitive(cheddarTopping)

primitive(parmezanTopping)
(9.23)

• Pattern -

((P) � ¬∃X .P(X))on

on ((P) �M primitive(P))
(9.24)

• Target instantiations -

1.

P = fourCheesePizza (9.25)

This test case also has a very simple pattern, with no satisfiability queries. However,

it has a slightly more complicated theory, and more importantly, includes a (simple)
query with a second-order variable in the form of a first-order formula. In the

following I discuss what the relevant differences between these two test cases are,

and where the line between tractable and intractable seems to lie for examples of my

algorithm. I also discuss some issues on the design of the algorithm that are particularly

difficul to deal with, that have to do with the computational feasibility problems.

9.3. Results 291

9.3.2 Detailed profiling and debugging of an intermediate test case

In an attempt to better understand the computational feasibility issues of the program,

I identified a variation of the example in §9.3.1.1 that would still produce results, but

takes a relevant amount of time to produce the first. This example is still extremely

simple but presents a fundamental difference from the original (§9.3.1.1): it includes

first-order formulas.

Here is the description of this example (we focus on the CNF form exclusively due

to the technical focus of this section). I note this example contains no second-order

variables, and thus the task consists merely in proving the specified formula using my

algorithm:

9.3.2.1

• Full theory (CNF) -

¬falls(X)∨waterfall(X)

¬waterfall(X)∨ falls(X)

primitive(falls)

primitive(waterfall)

equivalent classes(falls,waterfall)

(9.26)

• Pattern (CNF) -

(() � falls(X)∧¬waterfall(X)) (9.27)

The intended proof is very simple, and consists in resolving the pattern with the first

clause in the theory twice, each of them eliminating one of the literals, to obtain the

empty clause.

I should note that my algorithm does produce a correct solution for this case in

approximately 11 seconds on my computer. This runtime is extremely high for such a

simple case, and my exploration of it shows interesting data that we believe explain the

problems with the current implementation of the algorithm.

Before going into the details, however, let me note that the debugging task in

itself was not only challenging and time consuming, but also problematic. The main

292 Chapter 9. Evaluation

reason behind this is related to my decision to use Haskell as programming language

to implement the program. As I explained in chapter 8, there were two main attractive

properties of Haskell behind this decision:

1. Abstract structures like terms and unifier expressions are easy to encode and work

with.

2. Lazy evaluation helps implement non-determinism in effective ways.

One well known downside of Haskell as a programming language, though, (see,

for example, [Ennals and Jones, 2003, Schilling, 2011]) is that it is incredibly difficult

to debug. This is a fundamental issue with the approach of the language and has no

singular and simple solution. Haskell is difficult to debug mainly because of its laziness

and because its computations have no side effects (which makes introducing observers

/ manipulators in the middle of computations extremely hard). I shall note that it is

not as simple as using monads (intended to encode side effects in computations in a

way that respects the philosophy of the language) to bypass this difficulty. Monads

require declaration in the data types of all functions that utilize them, and while tools

like monad transformers intend to ease up this process, they by no means remove it or

provide a systematic solution. This is well known in the Haskell community. In other

words, simple debugging approaches that in other languages may involve adding a line

of code, in Haskell may involve changing the type signature of your entire program and

introducing high-level instructions to ensure that the computation is produced in the

order that we want / expect it to happen (so as to avoid lazy evaluation producing non-

representative results). This is particularly hard as well when our program, by design,

requires lazy evaluation to function properly, and the computations in our program

involve many layered functions of different type with more and less generic types that

weave with each other.

The relevance of these debugging issues to the results presented here are that the

results are not as complete and not as conclusive as I would like. However, I believe

they show clear patterns of issues that I can relate to the implementation of the program

and that explain the performance issues.

The main target of this exercise is to locate what the main sources of performance

bottlenecks are. To this end, we measure the running time (in real time) of both the

whole program up until the first solution is produced, and exclusively the unification

9.3. Results 293

part (that means, the dependency graph algorithm, excluding the resolution search

aspect of the proof (we explain why this is relevant later.)). We also include traces that

tell us how many times a non-deterministic branch happens, and how many times each

of the dependency graph rules are run (and how many of those are aborted (meaning

explained later)). Here is the data:

• 10.988 seconds total runtime.

• 5.691 seconds runtime exclusively unification.

• 578 non-deterministic branches.

• At least 497 branches happen exclusively during resolution (before any unifica-

tion takes place).

• 4 sets of unification equations that would solve the problem are found.

• 1583 applications of the vertical monotony of explicit equivalences rule (number

of abortions not tracked).

• 1583 applications of the vertical monotony of syntactic equivalences rule (number

of abortions not tracked).

• 1583 applications of the vertical monotony of horizontal edges rule (number of

abortions not tracked).

• 6504 applications of the vertical alignment rule (number of abortions not tracked).

• 279 applications of the second-order zip rule (number of abortions not tracked).

• 2718 applications of the first-order zip rule (of which 2457 were aborted).

• 182 applications of the projection simplification for first-order edges rule (number

of abortions not tracked).

• 1760 applications of the projection simplification for second-order edges rule

(number of abortions not tracked).

• 1051 applications of the (simplified) occurs check rule (number of abortions not

tracked).

• 182 applications of the second-order function dumping rule (number of abortions

not tracked).

294 Chapter 9. Evaluation

• 1760 applications of the first-order function dumping rule (all 1760 of which

were aborted due to finding no edges incoming to the edge’s head).

• 2 applications of the zero factorization rule.

This information says a lot when processed adequately, as I will try to do in the

following.

First, note the distinction between the resolution and unification parts of the

program. This is explained in detail in chapter 5. In principle, it would have been

sensible to think that the performance issues have to do with bad resolution heuristics

that are leading to unproductive search and applications of the resolution rule. However,

the data shows that at least half of the running time is spent in the unification aspect

of the program, which should be the simplest in this example. Therefore, even if

resolution search was optimized, the performance issues would not be reduced in a

relevant way5. Thus, we can conclude the problem is not primarily related with
the resolution search and instead lies in dependency graph unification.

Second, another sensible initial idea for potential performance issues is unnecessary

non-deterministic branching that would incur too much parallel search without reaching

deep enough solutions. This would have already been strange given the simplicity

of the example, but it was an important aspect to consider. However, out of the 578

branches produced in the example, at least 497 of them happen before any dependency

graph unification takes place, and entirely in the resolution search part of the program.

This, combined with the knowledge explained in the previous paragraph stating that

most of the delay does not happen in the resolution search, says that the problem is
not primarily related with non-deterministic branching.

Having discarded those two principal suspects, we look at the data to find what it

can tell us about the real culprit. One thing that stands out is that the number of rule

applications is considerably large for such a simple example. One of the main reasons

behind this can be found when looking at the number of abortions of the two rules for

which I tracked abortion rates6 (first-order zip, of which 2457 out of 2718 (90.4%) were

5Note that the rest of the data shows that the scaling of the unification part of the program has issues,
so it is not reasonable to expect that this would remain constant or near constant in larger examples.

6These were the two rules with most surprising numbers when considering the properties of the
particular example and when rules should be run.

9.3. Results 295

aborted; and first-order function dumping, of which all 1760 (100%) were aborted). I

should explain what an abortion means in this case.

The rewrite rules for dependency graphs as described in chapter 7 are defined

in terms of a series of pre-conditions on a local part of the graph. The termination,

productivity and fairness properties of the algorithm are proven using measures on

the graph that are reduced / increased with each rule, ensuring certain convergence

properties. However, at no point in the theoretical description of the algorithm did we

specify an exact moment in which to decide to run each specific rule. Thus, in the

implementation, we achieve complete and correct application of the rules through two

mechanisms (briefly described in chapter 8):

1. A priority queue of rules to be run on the graph, from which rules are pulled one

at a time.

2. To push rules into the queue, I use a local but complete approach: after each

successful rule application, I add to the priority queue every possible rule that

could have not been applicable before but may be applicable now after the changes

in the graph. It is only when the rule is pulled to be run that the complete set of pre-

conditions for its applicability are checked. I note that these pre-conditions need

to be explicitly checked and cannot be simply assumed from the local context,

since a lot of them might have to do with parts of the graph that are unrelated to

the rule that just finished application. Thus, checking for these pre-conditions

before pushing into the priority queue would simply be bringing forward this

computation, and not actually avoiding any.

When a rule is pulled from the priority queue and its pre-conditions fail, the rule

is aborted.

Thus, the large number of abortions in the rules measured (which are the most

relevant ones in this case, and can be safely assumed by construction to apply to most

other rules), indicates not that a lot of rules need to be run in the graph, but rather that a

large number of potential rule applications happen, and the program spends a lot of

time checking for their applicability.

It is important to note at this point that a large number of rule applications does

not necessarily imply a large amount of runtime spent, specially when it’s in the order

of thousands, which is still not, in this day and age, a relevantly large number of

computations, if they are small. Are they small?

296 Chapter 9. Evaluation

The answer to this question comes when we dig a bit deeper into profiling the

program. While Haskell debugging is difficult and problematic, it does have an auto-

matic profiler. This profiler can also be problematic (in this instance, for example, the

generated file has over 50000 lines of different cost centres), but with patience and

clever investigation, some insights can be extracted. The following is an extract of the

information produced by the profiler for this example, indicating the top 5 cost centres

of the program, in terms of runtime spent in them:

Cost centre % runtime

ghashWithSalt:40:5-36 6.7%

ghashWithSalt:36:5-62 6.1%

gtraceM:(34,1)-(35,25) 4.5%

hashWithSalt:227:5-38 3.7%

runESUStateTOp:(862,1)-(872,244) 3.3%
I note that these cost centres amount to 24.3% of the total runtime of the program; and

the top 20 cost centres amount to 54.2% of the total runtime of the program.

As described, Haskell’s debugging issues make this information hard to process and

understand, but let’s try.

One first conclusion coming from the distribution of runtime cost of the program

is that there is no single fundamental part of the program that is consuming most of

the time. This generally means that the most basic and fundamental optimization of

performance have already been done and it is more abstract and subtle optimizations

that need to be done, or total reworks of the approach.

From the five top cost centres, number four is gtraceM, which is the debugging

function we used to count the number of rule applications. Thus, we can ignore this line

since while relevant, it is not fundamentally altering the performance of the program,

and it’s not present when not debugging.

The other 4 are functions run at the low levels of the dependency graph data structure

handling. It is hard to check, but I tried to get an accurate approximation of the number

of times the first cost centre is called, and the number for the execution of this example

lies somewhere between 500,000 and 2,000,000.

Why so many? When each of the rewrite rules for the graph are run (even if aborted!

the checking of pre-conditions also incurs a lot (most) of this), we use operations on the

dependency graph data structure that involve looking up hash maps multiple times to

9.3. Results 297

locate the particular nodes/edges that we are talking about. This can build up due to the

merging and renaming of nodes and edges that may make finding a specific node/edge

that we are looking for involve quite a few look ups.

In other words, the data presented here together shows that it is very likely that the

main reason for the performance issues of the program is that the graph data structure:

1. Is accessed too many times even for simple cases, due to the need to constantly

check pre-conditions for rules even when they will not be applied.

2. Each time it is accessed, and due to its design, the complexity of the algorithm

and some difficulties having to do with Haskell’s inability to use actual pointers

and instead having to rely on hash maps, we incur a considerable amount of hash

map lookups.

These two factors combine to produce extremely high numbers of basic operations

being run even for extremely simple examples, which, as the profiling shows, make up a

large proportion of the program’s runtime. Note that most of the other cost centres with

relevant runtime costs, not presented here, are also related to this data structure access.

As a conclusion thus far, we can say that it is the design of the dependency graph
data structure and the properties of how the algorithm needs to access it that are
responsible for the largest proportion of the performance issues of the program.

In section §9.4 and chapter 10 we discuss in larger depth what this means in terms of

the value of the algorithm and what potential solutions or paliatives could and could not

be implemented.

9.3.3 Qualitative evaluation of patterns on original research exam-

ples

The full results of applying the pattern catalogue to the set of examples present in

the original research from which we produced the pattern catalogue can be found in

appendix C. Here we summarize this information.

All the patterns would be able to detect the specific examples which motivated them.

Moreover, the majority of the examples appearing in the literature used to produce the

catalogue would be covered by at least one fault pattern. There is, however, a relevant

298 Chapter 9. Evaluation

portion of examples that were not covered by any. These are generally related to one of

two situations:

• The fault is fundamentally about a mismatch between the preferred model of the

author or authors of the ontology and the actual model the ontology represents.

The model the ontology represents is perfectly coherent in all senses, but just is

not what the author had in mind. These cannot be detected with pure semantic

methods like the ones we propose here.

• The fault has to do with naming conventions and systems, or other purely formal

elements such as the particular order or structure in which elements are defined.

We actually cover some of these faults with some of our patterns, by using contex-

tual information to detect it, but specially when it comes to naming conventions,

our approach is completely unprepared to tackle this, essentially by design.

Moreover, a lot of the examples from the literature of these two kinds could be

argued to not be faults by other authors (including myself). These often boil down to a

subjective opinion on what is the best way to define ontologies, rather than to actually

incorrect ontologies.

When it comes to the overlap, generality and specificity of the patterns, we note that

there are some patterns that cover plenty of examples (for example, unsatisfiable classes,

or subsumption cycles). There are also families of patterns that have a very similar

nature but apply to slightly different cases of related faults. This could signal a lack of

generality of the approach, but it could also signal that a better, more general pattern

could exist that we have not found that would encompass all of these sub-patterns.

9.4 Analysis

In this section we focus on utilizing the results described in §9.3 to reach a conclusion

on the research hypotheses presented.

Hypothesis 1. minimal commitment resolution for existential second-order query logic

(the algorithm/procedure described in chapter 5 and more formally defined in chapters 6

and 7) is a sound, complete and computationally feasible implementation of existential

second-order query logic.

9.4. Analysis 299

• Soundness - First, we note that in chapter 7 we provide a formal proof of this.

Moreover, in all the unit tests, the specific evaluation test case that the algorithm

produced proper results for, and in every case that did not produce results, this

property is respected. In other words, no instance of unsoundness was found in

the implementation.

Thus, we conclude that Minimal commitment resolution for existential
second-order query logic is a sound algorithm.

• Completeness - We provide some formal proof of certain slightly restricted

versions of this in chapter 7. Empirical evaluation did not show clear issues with

this, but failed to produce sufficient evidence, due to the computational issues.

Thus, we conclude that minimal commitment resolution for existential second-
order query logic is probably a complete algorithm, under certain restric-
tions, but not enough evidence has been produced to adequately ascertain the

practical implications of said restrictions.

• Computational feasibility - The current implementation of the algorithm is

clearly not computationally feasible. While some ideas for re-implementations

of the algorithm or changes in approach are presented in this thesis that could

improve this situation, it is still a reasonable conclusion that the fundamental idea

of the algorithm is inherently computationally problematic.

Thus, we produce the following two conclusions:

– The current implementation of minimal commitment resolution for ex-
istential second-order query logic is computationally infeasible.

– Some relevant challenges remain to be overcome for any potential im-
plementation of minimal commitment resolution for existential second-
order query logic, and it is unclear whether these challenges can be
overcome or not.

Hypothesis 2. Meta-ontology fault detection, used by encoding patterns in existential

second-order query logic, has the potential to be an effective and feasible approach to

detecting common faults in ontologies formalized in first-order logic.

300 Chapter 9. Evaluation

• Effectiveness - High precision - In all of our empirical tests and all examples

qualitatively considered, the issues have mostly been with not detecting enough

faults, rather than with false positives. Precision has not been a problem at any

point.

• Effectiveness - High recall - While the results are generally favourable in this

regard, empirical evidence of the program is lacking due to the computational

feasibility issues. The qualitative analysis suggests good but definitely improvable

and limited recall, meaning that this approach would either not be complete or

would need much better patterns to be complete.

• Effectiveness - Thus, we conclude that meta-ontology fault detection is a mod-
erately effective approach to detecting common faults in ontologies, with

open avenues for relatively easy improvement to be explored.

• Feasibility - Computational - In the current implementation, the approach is

clearly computationally infeasible. We are not currently aware of alternative

algorithms to implement the meta-ontology fault detection framework that would

be adequate. Similarly, while we have identified the main challenges in the current

algorithm’s computational infeasibility, as we discussed the potential solutions

for these require further investigation and it is unclear whether they could be

overcome or not.

• Feasibility - Specificity - The current pattern catalogue and the qualitative

evaluation of their application to the original research suggests a moderate degree

of generality, which is positive and is one of the main attractive aspects of this

approach as opposed to the approaches suggested by the original research. Room

for improvement remains, however, with some patterns being very similar but

applying to different instances, and some patterns seeming quite specific to some

instances.

• Feasibility - Thus, we conclude that meta-ontology fault detection is a mod-
erately general approach to detecting common faults in ontologies, is more
general than previously existing approaches, and has room for easy improve-
ment in the generality aspect. However, the fundamental challenge to this

approach is that meta-ontology fault detection currently does not have an
algorithmic implementation that has been shown to be computationally fea-
sible.

9.5. Summary 301

We further analyze and discuss the implications of these results in chapter 10.

9.5 Summary

Our two research hypotheses evaluate the power and the feasibility of both the minimal

commitment resolution for existential second-order query logic algorithm, and the more

general meta-ontology fault detection approach. The former, from a purely technical
point of view. The latter, from a pragmatic point of view.

The main way in which we aimed to evaluate these research hypotheses was with a

moderately sized test suite of faults in small ontologies to be run through the algorithm

with our pattern catalogue. Unfortunately, the current implementation of the algorithm

has proven to be computationally unable to produce results for most of these. All the

results produced were correct and expected, but not enough results were produced.

An alternative qualitative way to evaluate the pattern catalogue and the pragmatic

aspects of the meta-ontology fault detection framework was to analyze every example

present in the original research that motivated the patterns in the catalogue, and discuss

whether the catalogue would or would not be able to detect the faults described in them,

should the algorithm be computationally feasible. We did that, with moderately good

results, but with some room for improvement.

As a result of all of this, on top of the theoretical results already formally proven

about the algorithm, we conclude that the algorithm is sound and complete under certain

restrictions, but has important computational feasibility challenges; and it is unclear

whether they could be overcome.

Similarly, we conclude that the meta-ontology fault detection framework is mod-

erately effective and practically feasible, except for the computational feasibility chal-

lenges related to our current implementation of the algorithm supporting it.

Chapter 10

Conclusions

I started this PhD with the goal of understanding the state of the research in ontology

debugging, and in particular automated approaches to the detection and repair of faults in

logical ontologies, and exploring new and ideally more general approaches, mechanisms

and solutions in this field.

Ontology engineering is still not a large mainstream field, and researchers and

practitioners typically agree in some of the most relevant obstacles for a more extensive

adoption. Finding effective methodologies, techniques and tools for ontology debugging,

both in terms of preventing, detecting or correcting human error, but also in terms of

providing support for other computational processes like ontology merging and ontology

alignment, is one of these obstacles. The difficulties are large and too many to even

properly summarize at once, let alone overcome.

Thus, almost all of the existing research in this field focuses on smaller sub-problems

or simplified versions, and/or remains at a purely explorative level of qualitatively and

informally understanding some aspects of these difficulties.

Once I understood this context, my main direction of work became to try to provide

some generality, systematicity and a more unified approach to the field. Not so much to

solve the entire problem (which I knew would be impossible within the constraints of a

PhD), but rather to hopefully contribute to a slowly growing basic foundation to the

particular subfield of ontology debugging.

To this end, one of the most useful revelations that I had was that different pieces of

research on ontology debugging did not even use the same language or formal methods

at all. Mutual awareness and communication is there, but there is no foundation, other

than the foundations of the larger field of ontology engineering itself (which are, in fact,

303

304 Chapter 10. Conclusions

very solid themselves at this point, but fail to capture all the intricacies of the ontology

debugging subfield).

This is what motivated me to analyze different pieces of existing research in

ontology debugging from a more abstract and theoretical point of view, and to try to

extract some common themes, approaches and ideas in a way that could be expressed

systematically and formally. The hope was that this could also lead to algorithmical

and/or methodological tools that had a greater scope than the previously existing

research.

Looking back, and even though the results have been mixed and often disappointing,

I have no doubt that this was an avenue of work that was worth exploring. I believe (and

I believe I have given good arguments for others to believe) that some of the results

contained in this thesis are strong, useful and worth building on. Among these I include:

• The formalism of existential second-order query logic.

• The fundamental ideas behind the meta-ontology fault detection framework.

• The pattern catalogue as an initial and partial attempt at an explicit general

approach to ontology debugging.

• The theoretical principles behind the dependency graph unification for ESQ logic

algorithm.

• The theoretical results about the algorithm proven from the aforementioned

theoretical principles.

• The systematic and well-grounded approach to the handling of infinite and

infinitely branching search spaces and the implementation of an independent

Haskell library to handle this.

However, I must acknowledge that other results have been disappointing and signal

at the very least important challenges with some of the ideas proposed, if not outright

presenting a fundamental issue with them. Specifically:

• The generality of the meta-ontology fault detection approach and its technical

implementation through ESQ logic is attractive and moderately effective, but does

not fully or most adequately capture every relevant aspect of ontology debugging.

It is not entirely general.

305

• There are important and difficult challenges to finding a computationally feasible

implementation of meta-ontology fault detection. I do not feel confident pro-

ducing a prediction as to whether these challenges may be overcome or not. I

have provided specific ideas and directions for exploring this, but it also may end

up being an insurmountable problem. Automation is currently computationally

infeasible and it is not clear whether it would ever be feasible.

Nonetheless, these two conclusions were not evident before this PhD, and I believe

the identification of these challenges to be a relevant positive contribution of the PhD.

This dual result of positive contributions but important challenges is best expressed

through our analysis of the two research hypotheses, as provided in chapter 9. Some

aspects of the research hypotheses have a clear and rotund positive answer, some have

a moderate but promising balance, and some are blocked by large and difficult problems.

The work carried out was always meant to be mostly exploratory. The implementa-

tion was never meant to end up as a readily available tool for practitioners, the pattern

catalogue was not meant to be complete, etc. In §10.2 we discuss this in more detail,

but we feel there are three main types of directions for future work from this PhD, each

of them with abundant topics in them:

• Attempting to overcome the difficult challenges to the approaches and methods

produced, such as the computational properties of the implementation of minimal

commitment resolution for ESQ logic.

• Further developing and consolidating moderately successful results, such as

extending the pattern catalogue or refining ESQ logic as a formalism to express

fault patterns.

• Applying some of the successful results to other fields. For example, extending

dependency graph unification to full higher-order logic and comparing it with

classical higher-order unification as described by Huet (see chapter 3).

That there would be such open ended results was known since the beginning of the

PhD, and I believe that it is in identifying them and giving useful and solid notions on

how to continue pursuing them that the contributions of this PhD mainly lie in.

It it thus most appropriate, and in relation to the notion, expressed before, of

contributing to a foundation and systematic methods for ontology debugging, that I

306 Chapter 10. Conclusions

clearly describe in the following sections the relation of the work done in this PhD

and the conclusions extracted from it to both existing work by other researchers, and

directions for future work.

10.1 Related work

I first provide context on related work, how it differs from the work presented in this

thesis and how the ideas in either of them can inform the other in relation to future

work.

10.1.1 Meta-ontology fault detection

The most obvious body of work to compare this PhD to is the original re-

search from which we extracted the fault patterns [Poveda-Villalón et al., 2010,

Poveda-Villalón et al., 2012, Rector et al., 2004, Prince Sales and Guizzardi, 2017],

as well as similar work in ontology debugging [Kindermann et al., 2019,

Balaban et al., 2015, Blomqvist, 2010, Copeland et al., 2013, Gkaniatsou et al., 2012,

Guarino and Welty, 2009, Hammar and Presutti, 2017, Haverty, 2013,

Lambrix and Liu, 2013, Markakis, 2013, Mikroyannidi et al., 2012, Pinto et al., 2009,

Poveda Villalón, 2016]. I have already discussed this quite thoroughly throughout the

thesis, but I can conclude this comparison here by incorporating the evaluation results.

Our approach is, by design, more general than those bodies of work. To the best

of our understanding, none of the cited works aim or attempt to introduce a generic

approach for detecting ontology faults, and rather focus on particular families of faults,

sometimes offering detection methods, some of which are automated. Our approach

has a unified formalism to describe the patterns (ESQ logic), and a single algorithmic

approach to obtain results from them. Moreover, an important pro of our more general

approach is the ability to understand the theoretical and abstract properties of the specific

patterns in a less context-dependent and isolated setting.

However, it is clear both that our approach did not fully capture everything that

those approaches were designed to capture (the ones that we had time to implement

as patterns), and more importantly, that our approach is currently computationally

infeasible, whereas those other approaches are, in one way or another, practically

applicable (even if with limitations in many cases). Thus, I would argue that, at least

in part, our approach is more interesting in the grand scheme of things and worthy of

10.1. Related work 307

further work, but in short term applications is insufficient and the previously existing

approaches remain superior.

The fact that most previous approaches were less general, and the challenges that

we found in ours are not independent facts. The previously existing approaches were

more constrained by design, because the authors were aware of the existence of some of

the difficulties that I have faced, and the necessity to understand some particular aspects

about the nature of ontology faults before pursuing such a general approach. My choice

was to pursue the more general avenue because I felt it would be a valuable contribution

at this point, knowing well that it would involve some added difficulties and challenges.

As an exception to this, the work in [Bundy and Mitrovic, 2016, Urbonas, 2019,

Urbonas et al., 2020] (aimed towards repair in the face of an already detected fault),

all of which is performed within my research group (and the last two of which I am

a co-supervisor/co-author in) do offer a general and systematic approach. However,

while this work is closely related to mine, mainly to the overlap of people working

in it, it focuses on a different aspect of the problem (repair instead of detection), so

comparisons would not make much sense: this work works from a preferred structure

that states the desired statements that the ontology should infer, and its scope is limited

to notions of incompatibility (false facts that are inferred) and insufficiency (true facts

that are not inferred), with little room for more flexible definitions of fault.

At a more conceptual level, another field with obvious similarities is belief revision

(see §2.2.1). However, there are important diferences. First, work in belief revision is

done mostly under the assumption that maintaining consistency is fundamental. Our

approach considers more general notions of faultiness and how to detect them. Second,

and more importantly, belief revision is concerned with the process of updating the

knowledge base when new information is found, and with the properties of these update

operations. In meta-ontology fault detection, we work within the ontology to find errors

in it, relying on the fault patterns and with no newly introduced information to work

from.

Another field of work to compare the meta-ontology fault detection framework to,

mentioned before in chapter 2, is automated bug detection and bad smells in software

engineering. The situation in that subfield is similar to the one I described for ontology

debugging, at least when it comes to automated methods. Software engineering is a

larger and more established field than ontology engineering (which could be said to be

308 Chapter 10. Conclusions

a subfield of software engineering in practice), and debugging in software engineering

is to the date mostly handled through both methodological approaches and systematic

ways to enhance those methodological approaches. For example, the usage of type safe

programming languages, software modeling methodologies, programming techniques

like inversion of control or the ever present notion of modularity are just some examples

of this. These notions are also applied in ontology engineering, but mainly due to the

far reaching inference mechanisms of logical ontologies and how these interact with

bugs, automated methods seem more attractive. Automated methods to bug detection

and bad smell detection in software engineering are very similar to the ones used in

ontology debugging, being incomplete and/or ad hoc for the most part, with no or few

well established general approaches.

Moreover, the application of the principles of meta-ontology fault detection

to automated detection of bugs or bad smells is not absurd, since programs can

be interpreted as logical ontologies containing facts. However, we have not

explored the details of this at all, so I cannot offer any relevant insights on this av-

enue of work, other than it seems as unexplored as its application to ontology debugging.

10.1.2 Minimal commitment resolution for ESQ logic

The application of a pattern-based and inference-backed approach to automated

detection of faults in ontologies is novel to the best of our knowledge. While a relevant

proportion of the research discussed in the previous section uses the notion of pattern

or similarly conceptualized terms in it, these are detected either manually or in a

purely morphological manner: they do not exploit the inference properties of the

ontology itself and the embedding of patterns within it to find these patterns. In other

words, our framework detects inferred patterns, and not just explicit or semi-explicit

ones. This was part of the design of our approach and one of the strengths I believe it

has. However, it is also in large measure related to the reasons of the computational

difficulties we have faced.

The relation between the technical problem of automatically detecting instantiations

of ESQ queries and existing technical approaches is discussed at great length in §5.4.

There we concluded there was no obvious path of application of those approaches to

our problem, though we identified potential avenues of future research in adapting

10.1. Related work 309

some of that work to our problem, including higher-order theorem provers, SMT and

ASP solvers with restricted versions of ESQ logic.

Moreover, technically speaking, minimal commitment resolution for ESQ logic is

closely related and to a degree inspired by higher-order unification [Huet, 1975]. The

main differences between them (described in much more depth in §5.3, §5.4.1 and §7.7)

being:

• The ability to find all instantiations of patterns.

• The usage of dependency graphs as a way to prioritize and guide the search for

unifiers.

One of the most promising directions for future work, that we will discuss in more

detail in §10.2, is precisely the transportation of the two added capabilities of our

algorithm to usual higher-order unification, whether by utilizing dependency graphs if

the fundamental limitations to them can be overcome, or by translating the ideas to the

usual ways in which higher-order unification is implemented.

One of the extensions of first-order unification that our dependency graph unification

algorithm introduces is that of unifier variables. This concept is fundamentally

the same as that of binders in the nominal unification literature [Urban et al., 2004,

Schmidt-Schauß et al., 2019, Levy and Villaret, 2010, Calvès, 2013]. Nominal unifi-

cation is usually concerned with unifying equations containing binders, as a general,

higher-order problem. As such, it concerns itself with complex concepts such as

freshness constraints that explicitly indicate disequality relationships between regular

variables in a unification problem. Effectively, this makes the scope of binders in

terms of variables and the way in which the general unification problem relates to the

binders explicit. Ultimately, the primary problems of conventional unification that

nominal unification concerns itself with are preserving α-equivalence when introducing

explicit binders in the language and the related issues of variable capture and variable

renaming. However, while these issues do appear in our problem, their semantics

are very much grounded in those of first-order unification: minimal commitment

resolution for existential second-order logic is explicitly defined as an extension of

first-order resolution (and thus first-order unification) in which we delay unification by

making it implicit and solving it using the dependency graph unification algorithm; but

310 Chapter 10. Conclusions

every solution to one of such unification problems results in an ordered sequence of

first-order unifiers, and thus not only is the scope of unifier variables (binders) clearly

defined, but it is also simple, sequential, and our algorithm heavily relies and utilizes

these semantics in its definitions. In contrast, the primary applications of full power

nominal unification are for programming languages in which binding operations are

an explicit and core aspect of the language, rather than a byproduct of the unification

algorithm itself, and thus have much more general semantics. It is possible, though, that

there may be something to learn from a more thorough grounding of unifier variables

in dependency graph unification in nominal unification terms. Some results may be

simplified and some aspects of our algorithm streamlined. Direct application of general

nominal unification algorithms to our problem is unlikely to be effective, however.

Another important connection is to bounded second-order

unification[Schmidt-Schauß, 2004]. Late in this PhD (in fact, after the viva),

we discovered that in principle this algorithm could be applied to our problem.

However, as described in §5.4.2.1, it is likely that this would have computational

feasibility issues of its own, with the bounded second-order unification algorithm being

provably NP-hard. Nonetheless, it is an avenue worth exploring.

Finally, the technical approach followed in the implementation of our dependency

graph unification algorithtm is a particular case of term graph rewriting (§2.3.3, §3.4.1).

The exploration of this field happened mostly in the post-viva modifications of this thesis,

and it seems like most results in it have to do with establishing intuitive results such as

the soundness, completeness and termination/confluence properties of the algorithms,

with no big surprises. We have proven these results for our particular algorithm. It is

possible, however, that a more thorough analysis and reformulation of the unification

dependency graph algorithm and the theorems proven in chapter 7, from the point of

view of the term graph rewriting literature, could yield some useful insights into the

algorithm and its properties, though it is very unlikely it would change the fundamental

results that we have discussed.

10.2 Future work

Having laid out the positive and negative results of the work in this PhD and their

relation to existing approaches, I can now formulate the main ways in which I think it

10.2. Future work 311

can be further explored in the future.

10.2.1 Minimal commitment resolution for ESQ logic

We will first discuss the most obvious line of future work: improving the algorithm and

attempting to tackle some of the computational challenges. While some direct further

exploration into this, in the form of more profiling, better data structure design, heuristics

and across-the-board optimization of the implementation would be warranted1, at this

point I believe that perhaps a more effective approach would be to take the principles

and theoretical algorithm described in this thesis and embedding them into an existing

theorem prover that already has a lot of the optimization work done, perhaps iteratively

with small and clearly separated layers building on top of each other. This would not

only save a lot of the optimization work to be done in the current implementation, but

also help debug and identify a lot better the issues with the approach, by reducing the

number of possible sources of complexity problems. There were two main reasons for

which the current implementation was made independently rather than embedded into

an existing theorem prover:

• Learning the ins and outs of the internal code of an existing theorem prover would

have required copious amounts of time and the permission and collaboration of

the people responsible for them.

• More importantly, the current state of our understanding of minimal commitment

resolution for ESQ logic is the product of this PhD, not something that we had

beforehand; and the flexibility of having an independent implementation that is

not constrained by particular rationales and idiosyncrasies of an existing theorem

prover has been key to enabling and speeding up this process of understanding.

In other words, I believe that it is now, that we have a formal description, theoretical

real estate and insights into the limitations and difficulties of the approach, that the

task of combining it with the pre-existing complexities of a theorem prover should be

tackled. Having attempted this before would have made the task perhaps even more

overwhelming than it already has.

Another potentially useful way to explore how to make the algorithm more

practically applicable would be to reduce the expressivity of the underlying logic in
1The only reason I did not do this during the PhD was a lack of time.

312 Chapter 10. Conclusions

which we are trying to find instantiations of the patterns. This makes particular sense

in the context of ontology engineering. I chose first-order logic as the underlying

object-level formalism for ESQ logic because, from a theoretical point of view,

it is simpler and easier to understand. However, in practice, ontologies typically

use less expressive formalisms such as OWL (see §3.1) or Datalog, precisely for

performance reasons. Even first-order theorem proving approaches often limit the

theories to Horn clauses (such as the Prolog programming language, see §3.2.1).

Choosing one or several of these limited expressivity logics and simplifying the

algorithm to leverage the simplifications that these offer could prove to be a relatively

simple and effective way of making the algorithm computationally feasible. This

would also allow the exploration of some of the existing approaches with limited

expressivity discussed in §5.4, such as SMT, ASP or Lambda Prolog. Specific, justified

choices of expressivity limitations would need to be made and adequately connected

to existing approaches, and the particular implementations built and understood in detail.

Another aspect not pursued during this PhD that would be of benefit for both

points above and for other potential future applications of the ideas here, would be to

implement the theoretical concepts presented here within a formal proof system. To be

clear, we are not discussing about extending a formal proof systems with these ideas,

but rather, and not related to the fact that the ideas here are related to formal proofs,

to use a formal proof system to check and streamline the proofs in chapters 6 and 7.

Potentially also to verify that the patterns described in the pattern catalogue (appendix

A) are in fact capable of detecting the faults they were designed to detect to begin

with, without the search and general aspect that the algorithm implemented in this PhD

carries out (verification rather than automation). Formalizing the theory and patterns in

this thesis to this level of detail might provide additional insights and signal issues not

identified thus far.

10.2.2 Pattern catalogue

Another clear direction for future work is the extension of the pattern catalogue, using

ESQ logic (or a refinement of it) to express more patterns from the literature.

This is promising, at least from a conceptual point of view as a way to discuss the

abstract and general implications of ontology debugging, which was one of the goals of

this PhD.

10.2. Future work 313

However, the current state of the algorithm’s implementation would mean that this

would not, right now, translate into any practical capabilities of automatically detecting

faults in ontologies. Moreover, we have discussed how there are some other limitations

(albeit not as blocking) to the semantic systematic approach of ESQ logic’s ability to

express certain patterns that have a more lexical (i.e. naming) or methodological nature

(see chapter 9 and appendix C).

I believe it would still be valuable work, even if perhaps it would be more effective

to further refine the approach first.

Another step in relation to the pattern catalogue that would be wise to take should

the ideas in this thesis be developed further, would be to formalize not just the patterns

themselves (which has already been done), but rather the full second-order problem

associated with the examples they are based on. This would give a more objective,

formal goal for our algorithm and any other competing algorithms to solve. We have

not done this during this PhD for the reasons listed above relating to the issues with the

implementation, and a lack of time.

10.2.3 Higher-order unification

As mentioned before, one of the most interesting extensions of the work in this PhD

to problems outwith ontology debugging is the possibility of some of the theoretical

principles and approaches, and in particular dependency graph unification, to improving

existing higher-order unification [Huet, 1975] algorithms.

While it is clearly not certain that the exploration of this avenue would yield direct

results, I strongly believe there is, at the very least, a lot to learn about higher-order

unification from this direction of work; and there may be some improvement to be had

in its capabilities from it. In order to do this, the first step would be to generalize the

dependency graph approach through a graph rewrite system to full higher-order logic

rather than just ESQ logic. While this is no small task, there are no reasons to believe

it would have any fundamental challenges, since the basic ideas of dependency graph

unification are core to the definition of unification rather than to the specificities of ESQ

logic. After this has been achieved, we could use the dependency graph point of view

to try to find:

• Heuristic or pseudo-heuristic ways in which looking at the dependency graph

314 Chapter 10. Conclusions

could allow us to optimize the non-determinism and thus search inherent in

higher-order unification (which is the single source of computational challenges

to it).

• Theoretical results that could be extracted from the dependency graph point

of view that would allow us to better understand the details of higher-order

unification and potentially find other improvements to it, using dependency

graphs only as a theoretical tool and not an implementation tool.

• An implementation that would allow us to find instantiations of queries rather

than individual proofs in higher-order logic, as efficiently as possible.

It is worth noting that higher-order theorem proving is an incredibly generic prob-

lem with enormous applications ranging from formal verification to type checking

in programming languages, going through ontology engineering itself. Two of the

main reasons its use is not more widespread are precisely its technical complexity and

performance challenges. A potential enhancement to the performance of higher-order

theorem proving algorithms could have important long-term consequences in a variety

of fields.

10.2.4 Other applications of ESQ logic

There are at least two problems outwith ontology debugging to which I believe ESQ

logic patterns and an automated way to find their instantiations could be of potential

use, although we imagine some more may exist. These are obviously avenues of future

work that we have not explored in much detail so we are not certain of how far we

could go.

The first of them is for type inference in functional-style programming languages

(like Haskell). Type inference in strictly typed functional languages is and is treated, for

all intents and purposes, as a theorem proving problem. This is based on the well known

Curry-Howard isomorphism [Sørensen and Urzyczyn, 2006]. I think it is possible that

ESQ logic, and specifically the pattern instantiation aspect novelty in it, when applied

to type inference, may enable certain abilities that current type checkers do not have.

In particular, the ability to auto-complete inferrable types or automatic implemen-

tation of multiple differently typed versions of the same function from its type definition.

10.2. Future work 315

Similarly, in usual first-order theorem proving, finding intermediate lemmas for

inductive proofs has long been a known source of problems. Approaches like

[Bundy et al., 1993] use similar but less powerful ideas of pattern matching to po-

tentially find such lemmas. It is conceivable that an adaptation of ESQ logic would

allow us to generate patterns for these intermediate lemmas and find them automatically.

10.2.5 Enumeration procedures and infinite search spaces

Our systematic and computationally sound treatment of infinite and infinitely branching

search spaces, as discussed in chapter 8, is based on well-known theoretical principles

in mathematics and theoretical computer science, like cardinality, diagonalization and

enumeration procedures. However, existing implementations, at least in Haskell, of

such approaches, do not offer all the guarantees and properties that our approach does.

For example, we found that the most advanced Haskell library available for this sort of

approach does not have the capability to fairly interleave two search processes: One that

never produces any results, and another one that does. Instead, the unproductive search

process will take the processing thread hostage and never return it, not allowing the

productive process from producing any results. This gets further complicated when you

consider infinitely many processes, each of which could potentially be unproductive,

that need to be interleaved in a fair way. Our implementation tackles all of these

problems and guarantees fairness in all cases.

It is my opinion that the reason why existing approaches do not tackle all of

these issues is that problems which involve traversing an infinite search space are

often dismissed as computationally intractable, or replaced by different versions of the

problem that have a finite search space or that can find a single solution within finite

time. Situations where the set of solutions is infinite and the search space is infinitely

branching are not typically tackled directly.

However, producing standard libraries to this end, and perhaps more importantly,

properly describing what traditional mathematical theory says and does not say about

the productivity and usefulness of traversing infinite search spaces, from the point of

view of actual implementation rather than pure computational theory, could have the

potential of opening up a new way to tackle certain problems with large and complex

search spaces like ours, that would not help their performance, but could enable them to

be implemented in the first place.

Thus, properly and independently presenting the enumeration procedure approach

316 Chapter 10. Conclusions

we have followed, its properties and providing a clean and reusable implementation of

it in Haskell could be a productive direction of work.

10.3 Summary

This PhD had as a principal goal providing more general and abstract common

languages, formalisms and techniques in the field of ontology debugging and in

particular automatic detection of faults in ontologies. To this end, we inspected the

existing literature, produced a novel formalism that could capture a large proportion

of the notions in it in a unified way, and designed a novel algorithm that could

automatically detect instantiations of patterns in this formalism.

In practice, this algorithm has proven to be computationally infeasible in its current

implementation, with important challenges that are not clear whether they could be

overcome. While this is disappointing, the formalism itself and the partial pattern

catalogue developed by expressing notions in the literature within it are by themselves

valuable contributions that move the field towards the goal of having a common

foundation. Moreover, identifying the sources of the computational challenges and

some of the strengths of the algorithm offers us insights into the general problem.

Finally, it is still possible that subsequent attempts at implementing algorithms based

on the one presented here could end up proving computationally adequate, providing a

general and entirely new way to detect patterns in ontologies.

Due to its nature as exploratory work, there are few definitive conclusions from

this work. Ideas have been explored, insights have been gathered, results have been

produced, challenges have been found and new ideas have been laid down. Ontology

debugging remains a challenging field and an important limitation on the capabilities

of ontology engineering as a larger field, but I hope to have produced some useful

knowledge in how it could be conquered or how its fundamental limits may eventually

be understood.

Appendix A

Pattern catalogue

A.1 Fault information

For each example, the following information is given:

• Description of the example.

• Reasoning behind considering it a fault.

• Formalism in which the example is originally represented. For example, OWL,

first-order logic, etc.

• Conceptual source of the fault. For example, an inadequate blend of ontologies,

an imprecision in a natural language processing technique or a misconception by

an ontology designer.

• Specific source of the example. A reference to an existing ontology where it was

found, a paper where it was mentioned, etc.

• Detection strategy

• (Optional) Repair suggestions. These are always quite informal and non-

systematic, but they may still be quite useful in many cases. We do not explore

repair mechanisms in this thesis, but it is an obvious avenue of future work and

when compiling the pattern catalogue it made sense to make some notes about it.

• Formal fault pattern. Expressed using ESQ logic (see chapter 4).

• Additional contextual information that is used at the meta-level for defining the

patterns.

317

318 Appendix A. Pattern catalogue

As an additional note regarding formulation: take into account that whenever the

present tense is used to make a statement (for example, “a chocolate ice-cream is not

a pizza”), we mean that in the preferred model1 a chocolate ice-cream is not a pizza,

whereas the faulty ontology might entail so.

A.2 Fault patterns

A.2.1 OWL: Primitive versus defined classes (Spicy topping)

In OWL, class definitions may be made partial or complete. A partial definition gives

rise to what is called a primitive class. In other words, it only has necessary conditions

but not sufficient conditions. On the other hand, a complete definition gives rise to a

defined class, having both necessary and sufficient conditions.

A common error in OWL is to make primitive classes which should be defined,

defined classes which should be primitive or make subsumptions between them which

are awkward and can even, for example, make certain classes unsatisfiable.

The following definition of SpicyTopping, SpicyBeefTopping and MeatTopping,

the three of them as primitive classes, is faulty.

class(SpicyTopping partial

PizzaTopping

restriction(hasSpiciness someValuesFrom {“Spicy”}))
class(MeatTopping partial

PizzaTopping)

class(SpicyBeefTopping partial

MeatTopping

SpicyTopping)

A.2.1.0.1 Why is it a fault

A topping is a spicy topping whenever it is spicy. SpicyBeefTopping is a SpicyTopping

because it is spicy, not the other way around. While it is correct that SpicyBeefTopping

1In some sense, what we consider to be really true.

A.2. Fault patterns 319

is both a MeatTopping and a SpicyTopping, other toppings which were spicy could fail

to be subsumed by SpicyTopping because of SpicyTopping being a primitive class when

it should be defined.

A.2.1.0.2 Formalism

OWL.

A.2.1.0.3 Conceptual source of the fault

A misconception or a mistake from the ontology designer. They have failed to correctly

use the language constructs.

A.2.1.0.4 Specific source of the example

[Rector et al., 2004]

A.2.1.0.5 Detection strategy

As mentioned in [Rector et al., 2004], a good way to detect these kinds of faults is to

generally assume that

1. Primitive classes do not inherit from multiple other primitive classes.

2. Defined classes do not subsume primitive classes

Robert Stevens, external examiner of this thesis, and co-author of

[Rector et al., 2004], on which this pattern is based, has noted that their inten-

tion in said paper was to apply this pattern only to asserted subsumptions rather than all

inferred subsumptions, which is the way in which we apply it here. I have, however,

chosen to keep this pattern applied to all asserted classes for multiple reasons:

• It exhibits the capabilities of the algorithm much better.

• This particular example is not asserted multiple inheritance, so that pattern would

fail to detect this fault.

• Changing it in our pattern catalogue and all test cases would involve a large time

consumption at the late stages of this PhD.

320 Appendix A. Pattern catalogue

• The specific semantics of the patterns is not a primary contribution or particularly

relevant aspect of this thesis.

However, it made sense to add this clarification here for correctness and complete-

ness of the arguments.

In the pizza ontology, this would succeed to detect this fault.

A.2.1.0.6 Repair suggestions

Essentially, any way of breaking any of the subsumptions that produce the fault seems

like a sensible repair suggestion. When a primitive class inherits from multiple other

primitive classes, making one of them inherit the other will also avoid the faulty situation.

We call this ordering the classes.

A.2.1.0.7 Fault pattern

Due to multiple inheritances over arbitrary classes (first-order expressions) being too

broad, and limiting ourselves to primitive classes (which are finite in the ontology), the

search can start with the finite enumeration of primitive classes and then uses this to

constrain further search. In order to check for multiple inheritance, we not only have to

check for proven subsumption but for unproven subsumption, which is equivalent to

satisfiability checks, which are, in general, not computable. In order to deal with this,

we leave this part of the query the latest (leftmost), so that it can be implemented last

and using approximate methods. Formally:

((X ,Y,Z) �∗ (∃x.X(x)∧¬Y (x))∧ (∃x.Y (x)∧¬X(x)))on
on ((X ,Y,Z) � (∀x.Z(x) =⇒ X(x))∧ (∀x.Z(x) =⇒ Y (x)))on
on ((X ,Y,Z) �M primitive(X)∧primitive(Y)∧primitive(Z))

(A.1)

This is to be read this way:

1. Find classes X , Y and Z such that Z is subsumed by both X and Y ...

2. ... but remaining limited to primitive classes...

3. ... and for each of them check whether it is the case that neither X subsumes Y

nor viceversa.

A.2. Fault patterns 321

For the second pattern (defined classes that subsume primitive classes), it is even

easier to express:

((X ,Y) � ∀x.Y (x) =⇒ X(x))on
on ((X ,Y) �M defined(X)∧primitive(Y))

(A.2)

A.2.1.0.8 Related contextual information

The predicates primitive(X) and defined(X) are contextual information, as it is related

to the partial and complete constructs of OWL. While a class definition in OWL is

simply a labelling of a logical condition, the fault pattern relies on how that condition

is expressed (which is contextual information). A primitive class definition indicates

that any object that falls under that label must satisfy its definition. A defined class

definition indicates that it is equivalent to its definition.

A.2.2 Missing necessary conditions (Margherita pizza)

This example, drawn from [Rector et al., 2004], and within the commonly used Pizza

ontology in OWL, is faulty because it fails to indicate that Margherita pizza necessarily

has only mozzarella and tomato toppings.

class(MargheritaPizza partial

Pizza

restriction(hasTopping someValuesFrom Mozzarella)

restriction(hasTopping someValuesFrom Tomato))

A.2.2.0.1 Why is it a fault

A Margherita pizza cannot have any other toppings other than mozzarella and tomato.

More abstractly, the definition of a Margherita pizza not only says which toppings it

needs to have, also those which it cannot have. If I ask for a Margherita pizza, then

there is no doubt about what toppings it should have; whereas, if I asked for a vegetarian

pizza, I would only be stating some conditions over the toppings of the pizza that I want.

This is related to the notion of defined and primitive classes.

A.2.2.0.2 Formalism

OWL.

322 Appendix A. Pattern catalogue

A.2.2.0.3 Conceptual source of the fault

A misconception or a mistake from the ontology designer. They have failed to state all

the axioms for a Margherita pizza.

A.2.2.0.4 Specific source of the example

[Rector et al., 2004]

A.2.2.0.5 Detection strategy

It is related to the defined versus primitive problem, but is not exactly so. In a sense,

with respect to the hasTopping property, Margherita pizza should be defined, but it is

primitive.

However, we have been unable to identify any characteristic situation in this

example which would allow us to detect it as faulty, and which does not at the

same time mistakenly detect faults in correct examples. In a way, it is a purely

semantic fault that is happening here, where something is simply incorrect but

has no particular shape that would allow us to detect it without having some

additional knowledge. At least, it is not possibly by only looking at the defini-

tion of the Margherita pizza; in a more complete ontology where the Margherita

pizza is related to other parts of the ontology, this situation might become more apparent.

A.2.3 Incorrect subclass axioms (Four cheese pizza)

In general, it is odd to use global subclass axioms in OWL, as subclass axioms are

generally specified locally in the subsumed class. This generally points out a fault.

As explained in [Rector et al., 2004], the reasons for introducing global subclass

axioms might be related to their meaning of implication being misunderstood.

For example, we might want to state that Mozzarella and Edam are necessarily

different kinds of cheese, so that Mozzarella is not Edam and Edam is not Mozzarella.

The correct way to state this would be to make MozzarellaTopping and EdamTopping

disjoint classes. This would be equivalent to the following (correct) subclass axioms:

A.2. Fault patterns 323

EdamTopping SubClassOf not (MozzarellaTopping)

MozzarellaTopping SubClassOf not (EdamTopping)
However, because cheese toppings are always conceived in the context of pizzas, it

is possible for an ontology designer to (incorrectly) think that this incompatibility is

in fact related to pizzas and their toppings, and so instead use the following subclass

axioms
(hasTopping someValuesFrom EdamTopping) SubClassOf (not (hasTopping someVal-

uesFrom MozzarellaTopping))

(hasTopping someValuesFrom MozzarellaTopping) SubClassOf (not (hasTopping

someValuesFrom EdamTopping))
If this is combined with the definition of a four-cheese pizza

class(FourCheesePizza partial

Pizza

restriction(hasTopping someValuesFrom MozzarellaTopping)

restriction(hasTopping someValuesFrom EdamTopping))

restriction(hasTopping someValuesFrom CheddarTopping))

restriction(hasTopping someValuesFrom ParmezanTopping))
The result is that FourCheesePizza is unsatisfiable.

A.2.3.0.1 Why is it a fault

FourCheesePizza is unsatisfiable. The sub-class axioms are stating the incorrect notion

that no pizza can have both Mozzarella and Edam, when what they were introduced for

was to state that Edam and Mozzarella are two different kinds of cheese.

A.2.3.0.2 Formalism

OWL.

A.2.3.0.3 Conceptual source of the fault

The ontology designer used global subclass axioms incorrectly. In general, as indicated

in [Rector et al., 2004], global class axioms are rarely a correct construct to use.

A.2.3.0.4 Specific source of the example

While I personally invented this example, the motivation for this kind of example

(incorrect usage of subclass axioms) comes from [Rector et al., 2004].

324 Appendix A. Pattern catalogue

A.2.3.0.5 Detection strategy

In [Rector et al., 2004], it suggests that any usage of global subclass axioms is prone to

be faulty. Moreover, in this particular example, the presence of the unsatisfiable class

FourCheesePizza certainly points out to an error.

A.2.3.0.6 Repair suggestions

If the source of the fault is indeed considered to be the global subclass axiom, then

removing it would remove the fault, but it likely would also remove a relevant chunk

of semantics that we do not wish to remove. Moreover, if we use the approach of

considering the general case of unsatisfiable classes, then it is near impossible to give a

generic repair suggestion.

A.2.3.0.7 Fault pattern

It is easy to express that unsatisfiable primitive classes are likely faulty.

((X) � ¬∃x.A(x))on
on ((X) �M primitive(X))

(A.3)

A.2.3.0.8 Related contextual information

The primitive predicate was already discussed in a previous example.

A.2.4 Incoherent domain axioms (Chocolate ice-cream)

As described in [Rector et al., 2004], domain and range axioms which are incoherent2

with other parts of an ontology in OWL may produce very unexpected results.

If we have the following domain axiom for the hasTopping property in our Pizzas

ontology:

hasTopping domain Pizza

2Note here that incoherent is intentionally used as an informal and imprecise word describing some
lack of regularity or relation between different parts of the same whole.

A.2. Fault patterns 325

But then we (incoherently) use the hasTopping property to talk about ice-cream

toppings, the ontology would use reasoning to conclude faulty facts: that a chocolate

ice-cream is a pizza.
class(ChocolateIceCream partial

IceCream

restriction(hasTopping someValuesFrom ChocolateTopping))

A.2.4.0.1 Why is it a fault

A chocolate ice-cream is not a pizza.

A.2.4.0.2 Formalism

OWL

A.2.4.0.3 Conceptual source of the fault

An incoherence in the use of the hasTopping predicate. On one hand, it is stated that it

only applies to pizzas, but later it is also used for ice-creams.

A.2.4.0.4 Specific source of the example

[Rector et al., 2004]

A.2.4.0.5 Detection strategy

In this particular fault related to domain axioms, the result is that ChocolateIceCream

is a primitive class which inherits both IceCream and Pizza. Thus, it violates the

principle, mentioned before, that primitive classes should form a tree. Meta-ontology

fault detection using this pattern would detect this fault. Another way to detect this

fault would be if we further indicated that IceCream and Pizza are disjoint classes. This

would make ChocolateIceCream an unsatisfiable class, which would, in turn, also be

detected as a fault.

A.2.4.0.6 Repair suggestions

The repair suggestions included in the previous example of non-tree primitive classes

would also work perfectly for this example.

326 Appendix A. Pattern catalogue

A.2.5 Assuming universal quantification implies existential quan-

tification (Empty pepper pizza)

In [Rector et al., 2004], it is mentioned that one of the most common sources of errors

for ontology designers unfamiliar with OWL is to assume that universal quantifiers

imply existential quantifiers. A class which only has a universal quantifier as an axiom

for a property may have that axiom satisfied trivially by having an empty range for that

property.

As an example, consider the following definition of a PepperPizza:
class(PepperPizza complete

Pizza

restriction(hasTopping allValuesFrom PepperTopping))
And now consider the following definition of MargheritaPizza:

class(MargheritaPizza complete

Pizza

restriction(hasTopping allValuesFrom Nothing))
The ontology then entails that a margherita pizza is a pepper pizza, which is not

conceptually what we refer to when we talk about pepper pizzas.

A.2.5.0.1 Why is it a fault

A margherita pizza is not a pepper pizza. A pepper pizza needs to have some pepper in

it.

A.2.5.0.2 Formalism

OWL

A.2.5.0.3 Conceptual source of the fault

A failure, by the ontology designer, to express all conditions that define a PepperPizza.

An assumption that universal quantification entails existential quantification.

A.2.5.0.4 Specific source of the example

I have concocted this example based on the ideas expressed in [Rector et al., 2004].

A.2. Fault patterns 327

A.2.5.0.5 Detection strategy

A good approach is to check if there is any class subsumption (PepperPizza subsumes

MargheritaPizza) which is only enabled by a trivial satisfaction of a universal quantifier

in the definition of PepperPizza. While there may be some legitimate cases where

this kind of subsumption is correct (for example, a MargheritaPizza is arguably a

VegetarianPizza), it is a good start to signal these cases.

An important note should be made here. If tomato and mozzarella were considered

toppings in the ontology, then this fault would be harder to detect, at least with the

approach described here. While having no toppings is an extreme case that seems

easier to flag, having no toppings except mozzarella or tomato (or any other kind of

composite predicate like that) seems too broad to signal as a fault. For example, if we

had a concept PepperPizza which could have green, red or yellow peppers and then a

RedPepperPizza that could have only red peppers, it would be foolish to suggest that it

is a fault that the subsumption between RedPepperPizza and PepperPizza is spurious: it

is not. There is no structural difference, without lexical knowledge about what pepper

pizzas are, that differentiates this from the Margherita pizza being subsumed by Pepper

pizza.

A.2.5.0.6 Repair suggestions

A sensible suggestion is to explicitly remove the trivial case from the definition of the

class. This is easily done by adding a condition that there are at least some toppings in

pepper pizzas.

A.2.5.0.7 Fault pattern

To put the idea described previously more precisely, we are looking for classes A

(Pizza), B (MargheritaPizza) and C (PepperPizza), property R (hasTopping) and class P

(PepperTopping) such that:

1. C subsumes B. We can use the previously defined macro subsumes(C,B).

2. C has a universal property restriction to it. We require contextual informa-

tion to identify this as being something explicitly indicated in the ontology3.
3We could find any entailed universal property restriction for a class, but that would make the purpose

of the pattern moot as we are looking for definitions that are not used, in some sense, not for entailments
that are not used.

328 Appendix A. Pattern catalogue

class property restriction(C,R,P). There is a class property restriction indicat-

ing that for every x of class C (every pepper pizza), it is related through relation

R only to elements y of class P (it only has pepper toppings).

3. All instances of B have that universal property restriction fulfilled trivially.

∀x.B(x) =⇒ ¬∃y.R(x,y), which is read as, for every element of class B, there is

no element to which it is related through property R.

A key difference with this case, and one that showcases the usefulness of the

instantiation set approach as compared to more ad-hoc procedures, is that the subsumed

class (X) is not constrained by the domain constraint, and so any class may work there.

However, we can still leverage the computational properties of the rest of the pattern to

ideally find instances quick, using equational reasoning while keeping account of what

we are limited to.

The resulting pattern would be:

((X ,Y,R) � (∀x.X(x) =⇒ ¬∃y.R(x,y))∧ (∀x.X(x) =⇒ Y (x)))on
on ((Y,R) �M class property restriction(Y,R,P))

(A.4)

A.2.5.0.8 Related contextual information

We have introduced the new contextual predicate class property restriction to express

that something is expressed as a class property restriction explicitly in the OWL ontology.

It is fundamental for the intuition behind this fault pattern.

A.2.6 Incorrect usage of logical constraints (ProteinLoversPizza)

Another example of trivial satisfaction of universal quantifiers, but due to a different

underlying reason. It is worth including as an example in order to showcase the differ-

ent applications that a single rule (looking for only trivially satisfiable classes) may have.

class(ProteinLoversPizza complete

Pizza

restriction(hasTopping allValuesFrom (MeatTopping and CheeseTopping and Seafood-

Topping)))

A.2. Fault patterns 329

Since MeatTopping, CheeseTopping and SeafoodTopping have been indicated as

disjoint classes, the result is that ProteinLoversPizza necessarily has no toppings, and

consequently, is a VegetarianPizza.

A.2.6.0.1 Why is it a fault

The intended meaning is that a ProteinLoversPizza only has either meat or cheese or

seafood, not that it only has the intersection of them (which is empty).

A.2.6.0.2 Formalism

OWL

A.2.6.0.3 Conceptual source of the fault

A misuse of the logical construct “and”, instead of “or” by the ontology designer.

A.2.6.0.4 Specific source of the example

[Rector et al., 2004]

A.2.6.0.5 Detection strategy

This fault can also be detected by looking for universal quantifications which are only

trivially satisfiable. That is, it should be detected by the same pattern specified in

the previous example. ProteinLoversPizza is subsumed by VegetarianPizza, but only

through a trivial satisfaction of its class property restrictions.

Another potential approach to detect this fault is to consider unsatisfiable relative

properties. That is, classes and properties (that are meant to be related, a fact that we

can derive from classes the class is subsumed by) such that it is entailed by the ontology

that there is no possible instance of that relation.

A.2.6.0.6 Repair suggestions

Unlike the previous case, however, the repair suggestion is no longer sensible in this

case. The problem is not that VegetarianPizzas need to have some toppings (they don’t),

it is that ProteinLoversPizza needs to have some. This could be dealt with by extending

the repair suggestion in the previous case with another option, being a fix to the lack of

330 Appendix A. Pattern catalogue

toppings on ProteinLoversPizza.

If considering the unsatisfiable relative property approach, then it is hard to provide

a particular suggestion as to how to make the subsumed class have some elements it is

related to, similarly to how it was difficult in the unsatisfiable class case to provide a

generic repair suggestion.

A.2.6.0.7 Fault pattern

The trivial satisfaction of universal quantifications is discussed in a previous example.

The formalization of a pattern to detect unsatisfiable relative properties would be:

((X ,Y,R) � (∀x.Y (x) =⇒ X(x))∧ (∀x.Y (x) =⇒ (¬∃y.R(x,y))))on
on ((X ,R) � ∃x,y.X(x)∧R(x,y))

(A.5)

As usual, this does not necessarily indicate a fault, but it is likely a sufficiently

uncommon situation so as to offer relevant potential faults. It could also be improved

and extended by including conditions on the elements it is related to or considering only

direct subsumptions, making it applicable to fewer cases.

A.2.7 Heterogeneus collective: Technical administrative group

This example, coming from [Prince Sales and Guizzardi, 2017], is presented in said

work as an example of an heterogeneous collection. The anti-patterns presented here

are fully defined in the context of the Unified Foundational Ontology (UFO)4.

In this ontology, there are four kinds of parthood relations: subQuantityOf,

subCollectiveOf, memberOf and componentOf, each with their semantics. A

memberOf relation has amongst its semantics the notion that different members of the

same collective are undistinguishable w.r.t. the relation. A heterogeneous collective

happens when the ontology implies that there is a way to distinguish the members of

the collective.

An example of this situation is given in [Prince Sales and Guizzardi, 2017], as

included in figure A.1.

4https://ontouml.org/ufo/

https://ontouml.org/ufo/

A.2. Fault patterns 331

Figure A.1: Technical administrative group: a heterogeneous collective

The issue with this example is that a Technical Administrative Group is formed

by employees, which can be Administrative Support Employees or Technical Support

Employees, but if Technical Administrative Group is regarded as a collective, then there

should be no way to distinguish between these from the point of view of the collective,

and the ontology implies so, by using different classes both related to the Group class

through the memberOf relation.

A.2.7.0.1 Why is it a fault

If Technical Administrative Group is a collective, then from its point of view, its

members should not be distinguishable. They are all members of the group.

A.2.7.0.2 Formalism

OntoUML

A.2.7.0.3 Conceptual source of the fault

A misunderstanding by the ontology developer of the notion of collective and what

it truly means. They should either change the type of parthood relation or use an

intermediate Employee class.

A.2.7.0.4 Specific source of the example

[Prince Sales and Guizzardi, 2017].

A.2.7.0.5 Detection strategy

The paper gives a very specific anti-pattern to detect this particular type of fault.

332 Appendix A. Pattern catalogue

A.2.7.0.6 Repair suggestion

The paper is also quite explicit about this. It is either not a collective, or the relationships

used are not correct. Potentially, the distinguishing property between the two classes

is not correct. So either change it to a functional complex, change at least one of the

relationships to a different one or get rid of the distinguishing property. This last case is

very generic and seemingly hard to make more concrete.

A.2.7.0.7 Fault pattern

The ideas expressed in the paper can be quite easily translated into fault detect-

ing axioms in the context of meta-ontology fault detection, if we assume the on-

tology is linked with the UFO. A way to explain the anti-pattern described in

[Prince Sales and Guizzardi, 2017] is the following:

1. There is a “whole” class which is stereotyped as one of collective, subkind, phase,

role, category, roleMixin or mixin.

2. If it is stereotyped as subkind, phase or role, then it should be a subclass of a

collective

3. If it is stereotyped as mixin, category or roleMixin, then all its subclasses should

be collective or meet the previous condition.

4. There is two or more “part” classes which are stereotyped as one of the same

stereotypes as the whole or the kind stereotype.

5. Each of these part classes are related to the whole through a memberOf relation.

We can express this easily as fault detecting axioms if we assume the existence of

the corresponding classes and relations.

• When working with inferred subsumptions, we can summarize the first three

conditions as... “any subclass of the whole class is a subclass of collective, and

the class is either a subclass of collective itself or category, roleMixin or mixin”.

Note that “any subclass” here refers to any explicit sub-class.

We can consider this a domain constraint that relies on the universal quantification

over a finite set for S. Formally, we first define a domain constraint for explicit S

that are collectives:

A.2. Fault patterns 333

DS =

((S) � ∀x.S(x) =⇒ collective(x))on
on ((S) �M explicit(S))

(A.6)

On the side, we produce a domain constraint for X’s, which involves search but

should yield a fairly reduced answer set:

DX =

((X) � (∀x.X(x) =⇒ collective(x))∨ (∀x.X(x) =⇒ category(x))∨
(∀x.X(x) =⇒ roleMixin(x))∨ (∀x.X(x) =⇒ mixin(x)))

(A.7)

We then combine these two to produce X’s that satisfy the domain constraint for

all S that subsume them:

QX =

(X ,S) : ∀(((X ,S) � ∀x.S(x) =⇒ X(x))on DS).DX
(A.8)

This is to be read in the following way: Consider all explicit classes S that are

subsumed by collective. For each of those, find all X’s in the answer set of DX

which subsume it. From those, keep only those X’s that fulfill that condition for

all S’s, and those are the X’s that we will execute the rest of the query against.

In other words, we use a forall query to find this query dependent on another query.

We will use this same domain constraint on each of the three variables X , Y and

Z in the final query.

• Same thing for classes Y and Z, and add that ∀y.Y (y) ⇐⇒ Z(y) is not entailed

(its negation is satisfiable) to indicate that they are different classes.

• ∀y.Y (y) =⇒ (∃x.X(x) ∧ memberOf (y,x)) and ∀z.Z(z) =⇒ (∃x.X(x) ∧
memberOf (z,x)), to indicate the relations.

An important thing to note is that the pattern to indicate that Y and Z are different

classes would, in principle, be a satisfiability pattern. However, it is syntactic difference

that we are looking between Y and Z, not semantic one (or, at least, it would be more

than enough for our purposes). We can do this via a check Y 6= Z that indicates syntactic

334 Appendix A. Pattern catalogue

distinction between their instantiations. We do this in the end, however, because doing

it before could possibly hinder the possibility of performing the complex query over

implicit instantiation sets, and instead force us to do it over large explicit instantiation

sets. We do not want to generally do the simplest query first, but rather the one that

produces the most simply expressed instantiation set.

The final pattern would then be:

((X ,Y,Z) � Y 6= Z)on
on ((X ,Y,Z) � (∀y.(Y (y) =⇒ (∃x.X(x)∧memberOf (y,x))))∧
∧(∀z.(Z(z) =⇒ (∃x.X(x)∧memberOf (z,x)))))on
on (QX on QXY/X ×QX Z/X)

(A.9)

It is worth noting that a difference (which I consider an advantage) of using

meta-ontology fault detection to detect this anti-pattern is that meta-ontology fault

detection will detect any such anti-pattern in the inferred ontology, not only in the

explicit definition of the ontology, which brings up potentially a lot harder to detect

cases.

However, a very different (and simpler) approach can be pursued in meta-ontology

fault detection by appealing to inference and elements instead of classes, stating that if

two distinguishable members of a collective exist, then there is a fault:

((X) � ∃x,y,z.X(z)∧memberOf (x,z)∧memberOf (y,z)∧P(x)∧¬P(y))on
on ((X) � ∀x.X(x) =⇒ collective(x))

(A.10)

This showcases the usefulness of being able to have meta-variable P that ranges

over any subformulas and not just actual predicates in the signature.

A.2.7.0.8 Related contextual information

We have introduced the predicate explicit to indicate that a class is epxlicitly defined in

the ontology.

A.2. Fault patterns 335

Figure A.2: IT component: a homogeneous functional complex

A.2.8 Homogeneous functional complex: IT component

Another example from [Prince Sales and Guizzardi, 2017], called a homogeneous

functional complex. This situation happens when the ontology implies that all the

components of a functional complex are indistinguishable.

An example of this situation is given in [Prince Sales and Guizzardi, 2017], as

included in figure A.2.

A functional complex has several, different, parts. This example implies that, from

the point of view of the relation, all components of the architecture are equal, which

means that it is not truly a functional complex.

A.2.8.0.1 Why is it a fault

If IT Architecture is a functional complex, then from its point of view, it should have

different components.

A.2.8.0.2 Formalism

OntoUML

A.2.8.0.3 Conceptual source of the fault

A misunderstanding by the ontology developer of the notion of functional complex and

what it truly means. They should either change the type of parthood relation or remove

the intermediate class.

336 Appendix A. Pattern catalogue

A.2.8.0.4 Specific source of the example

[Prince Sales and Guizzardi, 2017].

A.2.8.0.5 Detection strategy

The paper gives a very specific anti-pattern to detect this particular type of fault.

A.2.8.0.6 Repair suggestion

The paper is also quite explicit about this. It is either not a functional complex, or the

relationships used are not correct. So either change it to a collective, or change at least

one of the relationships to a different one.

A.2.8.0.7 Fault pattern

Once again in a very similar way to the previous anti-pattern, the ideas expressed in

the paper can be quite easily translated into fault detecting axioms in the context of

meta-ontology fault detection, if we assume the ontology is linked with the UFO:

1. There is a “whole” class which is stereotyped as one of kind, subkind, phase, role,

category, roleMixin or mixin.

2. If it is stereotyped as subkind, phase or role, then it should be a subclass of a kind

3. If it is stereotyped as mixin, category or roleMixin, then all its subclasses should

be kind or meet the previous condition.

4. There is exactly one “part” class which is stereotyped as one of the same stereo-

types as the whole.

5. The two classes are related through a componentOf relation.

We can express this easily as fault detecting axioms if we assume the existence of

the corresponding classes and relations.

DS =

((S) � ∀x.S(x) =⇒ kind(x))on
on ((S) �M explicit(S))

(A.11)

A.2. Fault patterns 337

Produce a similar domain constraint for the actual classes to check (X):

DX =

((X) � (∀x.X(x) =⇒ kind(x))∨ (∀x.X(x) =⇒ category(x))∨
(∀x.X(x) =⇒ roleMixin(x))∨ (∀x.X(x) =⇒ mixin(x)))

(A.12)

and combine them to produce the X’s that satisfy the domain constraint for all S that

subsume them:

QX =

(X ,S) : ∀(((X ,S) � ∀x.S(x) =⇒ X(x))on DS).DX
(A.13)

Finally, the global pattern would look like this:

((X ,Y) � (∀x,y.(X(x)∧ componentOf (y,x)) =⇒ Y (y))

∧(∀y.Y (y) =⇒ (∃x.X(x)∧ componentOf (y,x))))on
on QX on QXY/X)

(A.14)

Similarly to the previous example, a very different approach is to consider that if

a functional complex has no undistinguishable elements, then something is incorrect.

However, note that in this case, this is not exactly the same condition, as the elements

themselves might be distinguishable, but maybe not directly through the direct relation

they have with the functional complex. It is arguable, however, that this is an advantage

and not a disadvantage.

As it turns out, in this case it requires a universal quantifier over a second-order

variable (two elements are undistinguishable if all predicates are equal over them, so

this cannot be expressed in ESQ logic the way it currently is.

A.2.9 Creating synonyms as classes

Pitfall P2 on [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], defining several

classes which are merely synonyms, while not directly harmful, is confusing and bad

practice, and particularly dangerous as the ontology evolves.

An example would be to define two classes, Falls and Waterfall, indicating an

equivalence between them:

EquivalentClasses(Falls Waterfall)

338 Appendix A. Pattern catalogue

A.2.9.0.1 Why is it a fault

It provides unnecessary redundancy that can be considerably dangerous as the ontology

evolves.

A.2.9.0.2 Formalism

Mostly OWL, but it is applicable to other formalisms.

A.2.9.0.3 Conceptual source of the fault

It depends. It could be due to two initially different concepts evolving to become the

same, or due to miscoordination between different ontology developers.

A.2.9.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.9.0.5 Detection strategy

It is fairly simple. Any equivalent class axiom in which both classes are primitive

classes is most likely faulty in the misrepresentation sense explained.

Note that, at least in the way it is approached in [Poveda-Villalón et al., 2010], when

the classes are equivalent but this is inferred and not an equivalent classes axiom, it is

not likely to be faulty. It still presents a fairly strange situation, but we will not include

it here.

A.2.9.0.6 Repair suggestions

Either remove the axiom, or make one of the classes defined.

A.2.9.0.7 Fault pattern

We can easily translate what’s explained above into a pattern:

((X ,Y) �M primitive(X)∧primitive(Y))on
on ((X ,Y) �M equivalent classes(X ,Y))

(A.15)

A.2. Fault patterns 339

A.2.9.0.8 Related contextual information

Aside from the primitive class definition that we use throughout, we are using contextual

information equivalent classes that indicates that there is an equivalent classes axiom

between A and B.

A.2.10 Subsumption cycles

Pitfall P6 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], having (primitive)

classes A and B transitively subsume each other (through explicit subsumption

definitions) but not be explicitly equivalent indicates that one of such subsumptions is

likely faulty.

For example, consider that an ontology correctly indicates that Professor is a subclass

of Person, and Person is a subclass of Individual, but then incorrectly indicates that

Individual is a subclass of Professor:
class(Professor partial

Person

)

Person SubClassOf Individual

Individual SubClassOf Professor

A.2.10.0.1 Why is it a fault

It generates a pletora of incorrect semantics. The original one is that not all individuals

are professors.

A.2.10.0.2 Formalism

OWL

A.2.10.0.3 Conceptual source of the fault

A double understanding of the meaning of the class Individual, or a mistake in the

ordering of the classes when defining the subclass axiom.

340 Appendix A. Pattern catalogue

A.2.10.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.10.0.5 Detection strategy

In essence this example is completing the one presented in the previous example, by

stating that inferred equivalence of primitive classes is also faulty.

A.2.10.0.6 Repair suggestions

Removing one of the subsumptions from the chain of subsumptions seems like the most

obvious repair. However, if this subsumptions are inferred, how to do this exactly could

be complicated and very dependent on the particular case.

A.2.10.0.7 Fault pattern

As mentioned, this example is completing the one presented in the previous example,

by stating that inferred equivalence of primitive classes is also faulty. Therefore, both

of them could be detected with a single pattern:

((X ,Y) � ∀x.X(x) ⇐⇒ Y (x))on
on ((X ,Y) �M primitive(X)∧primitive(Y))

(A.16)

A.2.10.0.8 Related contextual information

Once again, we use the primitive class definition. We also introduced the notion of

explicit subsumption (a subsumption that is directly expressed in the ontology, either in

the definition of the subsumed class or through a SubClassOf axiom).

A.2.11 Missing domain or range properties

Pitfall P11 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], properties which

have no domain or range constraints are regarded as prone to faults.

For example, consider the following ontology:

class(Writer)

class(LiteraryWork)

ObjectProperty(writesLiteraryWork)

A.2. Fault patterns 341

A.2.11.0.1 Why is it a fault

Without domain or range constraints, writesLiteraryWork could in theory apply to any

object in the semantics. This has many unwanted consequences, such as the inability

to infer useful theorems about the property because its wide domain and range mean

that strange situations can appear, the potential for the property itself to interfere with

the inference of other parts of the ontology for the same reason, and all the secondary

consequences these may have.

A.2.11.0.2 Formalism

OWL

A.2.11.0.3 Conceptual source of the fault

Most likely the author forgot to include the domain and range constraints.

A.2.11.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.11.0.5 Detection strategy

It is in principle easy to detect. Look for explicit properties in the ontology that have no

domain or range constraints.

It is very interesting that in [Poveda-Villalón et al., 2012], the authors acknowledge

that their detection mechanism is limited in the sense that it will not count inherited

domain or range constraints for these purpose. Our approach in principle goes even

further to consider any inferred domain or range constraints as valid, enabling the

author of the ontology to rely on reasoning to provide these, and meaning that our

automated detection mechanism is even more useful for working with these situations

while still having a way to check whether we forgot to provide them.

However, because we are looking for properties that do not have range or domain

constraints, we are not finding an instantiation of these domain or range constraints that

makes them provable, but rather, that are satisfiable.

342 Appendix A. Pattern catalogue

A.2.11.0.6 Repair suggestions

It is very hard to provide useful repair suggestions for this fault pattern, as that would

imply having knowledge about what the domain or range of the property should be.

A.2.11.0.7 Fault pattern

((P) �∗ ∀x.∃y.P(x,y))on ((P) �M explicit property(P))

((P) �∗ ∀x.∃y.P(y,x))on ((P) �M explicit property(P))

(A.17)

A.2.11.0.8 Related contextual information

We have introduced the predicate explicit property to indicate that a property is explic-

itly defined in the ontology.

A.2.12 Missing inverse properties

This relates to pitfall P13 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016],

although we consider it as two separate (albeit related) faults with separate detection

methods.

Firstly, the definition of the pitfall in [Poveda-Villalón et al., 2010,

Poveda Villalón, 2016] presumes that any property without an inverse property

is likely faulty. This is arguable, but the pattern can be included whenever we work un-

der such assumptions. Yet again, the detection method in [Poveda-Villalón et al., 2012]

only finds properties without explicit inverse properties. However, we do not see a way

to extend this to inferred inverse properties. Any property necessarily has an inferred

property that is its inverse: its inverse, by definition (formally, swapping the order of

the arguments).

A sub-part of the problem (explicitly considered in [Poveda-Villalón et al., 2012])

is to have two explicit properties such that the explicit domain of one is the explicit

range of the other and which are not explicit inverses. We can extend this to (still

explicit) properties such that the inferred domain of one is the inferred range of the

other, and which are not inferred inverses. This provides, yet again, potentially a larger

and more interesting fault detection space. The reason to stick to explicit properties is,

as mentioned above, the fact that the inverse property is always definable as an inferred

A.2. Fault patterns 343

property.

An example of a situation that includes both cases, taken from

[Poveda Villalón, 2016] is the following:

class(AdministrativeArea)

class(Language)

ObjectProperty(hasOfficialLanguage

domain(AdministrativeArea)

range(Language))

ObjectProperty(isOfficialLanguageOf

domain(Language)

range(AdministrativeArea))

A.2.12.0.1 Why is it a fault

The no explicit inverse property case assumes that it is always relevant to have access to

the inverse property, and that lacking it is faulty in that the ontology is incomplete. In

the case where both properties are present but they are not related, it is faulty because

the relationship between the two properties is neither explicit nor inferred. This is a

clearer faulty situation.

A.2.12.0.2 Formalism

OWL

A.2.12.0.3 Conceptual source of the fault

Forgetting to include the inverse relationships between the properties.

A.2.12.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.12.0.5 Detection strategy

The first case is very easy to detect because it relies exclusively on explicitly included

information.

344 Appendix A. Pattern catalogue

The second case can be detected by looking for properties such that the domain of

one is the range of the other, but they are not inverse.

A.2.12.0.6 Repair suggestions

In the first case, the repair suggestion would be to add a new property that is the inverse

of the existing one. In the second case, to explicitly indicate that they are inverses.

A.2.12.0.7 Fault pattern

The first case is an explicit check, which however requires a forall query to be able to

check for all second-order variables.

((P) : ∀(Q) � explicit property(Q).¬explicit inverse(P,Q))on
on ((P) �M explicit property(P))

(A.18)

As for the second case, we can find it with satisfiability checking:

((Q,P) �∗ (∃x,y.¬(P(x,y) ⇐⇒ Q(y,x))))on
on ((Q,X ,Y) � ∀x,y.Q(x,y) =⇒ (Y (x)∧X(y)))on
on ((Q) �M explicit property(Q))on
on ((X ,Y,P) � ∀x,y.P(x,y) =⇒ (X(x)∧Y (y)))on
on ((P) �M explicit property(P))

(A.19)

A.2.12.0.8 Related contextual information

The explicit property predicate previously explained, and a explicit inverse relation that

relates properties with their explicit inverses.

A.2.13 Inkless books

Pitfall P14 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016]. It is closely related

to the fault described in §A.2.5, although the pattern used there cannot be directly

applied to detect this fault. A book is (mistakenly) defined to be anything produced by

a writer that only uses paper, instead of anything produced by a writer that uses at least

paper. This is a particular case of the issue with intuition making users think that univer-

sal quantification implies existential quantification, or simply confusing the two of them.

A.2. Fault patterns 345

An example ontology:

class(Book partial)

EquivalentClasses(Book ((producedBy someValuesFrom Writer) and (uses allValues-

From Paper)))
Thus, a book cannot use ink.

A.2.13.0.1 Why is it a fault

Books use other things apart from paper, such as ink. It is an incorrect definition for the

Book class.

A.2.13.0.2 Formalism

OWL

A.2.13.0.3 Conceptual source of the fault

A misuse of universal quantification where existential quantification should have been

used.

A.2.13.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.13.0.5 Detection strategy

Related to, but not the same as, the pattern in §A.2.5, we can indicate that, generally, a

universal property restriction (potentially inferred instead of explicit) for a primitive

class lacking an associated existential property restriction is likely to indicate a fault.

In fact, this pattern would also detect the fault in §A.2.5, without the need for the

subsumed class VegetarianPizza. It just would also trigger more false positives.

Note that [Poveda-Villalón et al., 2012] provides no automated detection for this.

A.2.13.0.6 Repair suggestions

Replacing the universal quantification with an existential quantification, or adding an

existential quantification constraint, depending on the case. In the particular book case,

replacing it would be the most adequate repair.

346 Appendix A. Pattern catalogue

A.2.13.0.7 Fault pattern

As explained, finding any primitive class with a universal property restriction (over an

explicit property) that lacks an associated existential property restriction should do the

trick. Note that we do not require the class it is associated to to be primitive, as that

would fail to detect a lot of fault cases (for example, say we indicated that a Book only

used paper or ink, it would still be faulty, as it also uses covers). Formally:

((X ,Y,P) �∗ ∃x.X(x)∧¬(∃y.(P(x,y)∧Y (y))))on
on ((X ,Y,P) � ∀x.X(x) =⇒ ∀y.(P(x,y) =⇒ Y (y)))on
on ((X) �M primitive(X))on
on ((P) �M explicit property(P))

(A.20)

A.2.13.0.8 Related contextual information

primitive and explicit property, which had previously been defined.

A.2.14 Vegetarian pizzas with meat

Pitfall P15 in [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], it is related to

the fault in §A.2.6 and also to §A.2.5, and in [Poveda-Villalón et al., 2010], even

[Rector et al., 2004] is cited in relation to it. However, it is not exactly the same

thing.

This fault occurs when the negation of existential property restrictions is misused,

resulting in expressing that a vegetarian pizza is a pizza with some topping that is not

meat instead of a pizza with no toppings that are meat. Formally, the following ontology

would be faulty:
class(VegetarianPizza complete restriction(hasTopping someValuesFrom (not MeatTop-

ping)))

A.2.14.0.1 Why is it a fault

Pizzas with meat and vegetables would be considered vegetarian, and it is not.

A.2.14.0.2 Formalism

OWL

A.2. Fault patterns 347

A.2.14.0.3 Conceptual source of the fault

The interchange of the existential property restriction and the negation.

A.2.14.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.14.0.5 Detection strategy

Once again, it is hard to provide a pattern that would be general, would detect this

fault and would not trigger a lot of false positives. Our approach is generally to not

worry too much about the amount of false positives, specially if these happen at larger

instantiations of the patterns (which will therefore be detected later). That is, our fault

patterns aim to trigger potential faults, rather than signal almost definitive faults.

In that sense, we can say that a defined class that has an existential property restric-

tion whose body is the negation of an explicit class in the ontology is likely to indicate

a fault, as it is a very small restriction for a defined class. This pattern would, however,

depend on this negation being directly on an explicit class. A more general approach

would not be easily achieved, as any class is the negation of its negation, and thus a

pattern like ¬P(x), where P is non-restricted, is non-restricted itself.

A.2.14.0.6 Repair suggestions

Swapping the negation from within the existential quantification to outside it.

A.2.14.0.7 Fault pattern

We simply make explicit what we described in the detection strategy:

((X ,P,Z) �M class property restriction(X ,P,Z))on
on ((Y,Z) � (∀x.Y (x) ⇐⇒ ¬Z(x)))on
on ((X) �M defined(X))on
on ((P) �M explicit property(P))on
on ((Y) �M explicit(Y))

(A.21)

348 Appendix A. Pattern catalogue

A.2.14.0.8 Related contextual information

We use defined, class property restriction, explicit and explicit property. These were

all defined before in this document.

A.2.15 Unsatisfiable domains or ranges

It is related to pitfall P19 of [Poveda-Villalón et al., 2010, Poveda Villalón, 2016], but

it is at the same time more general and more specific than it, in several senses. In the

original source, the pitfall is described as “swapping intersection and union”, which

is more general than the one specified here. However, the description of the pitfall

focuses on the case where this happens in the domain or range of properties. The

example presented there implies defining the intersection of two classes as the range of

a property instead of their union, resulting in an unsatisfiable range.

This fault really is a generalization to binary predicates (properties) of the fault

specified in §A.2.3.

A concrete example, taken from [Poveda Villalón, 2016], of this fault is the follow-

ing:

class(Event)

class(City)

class(Nation)

ObjectProperty(takesPlaceIn domain(Event) range(City and Nation))

This ontology, per se, does not imply an unsatisfiable property, it implies that the

range of the property is in the intersection of cities and nations. However, it is to be

expected that other axioms imply that cities and nations are disjoint (possibly due to

classes they inherit from that are disjoint).

If we add the disjointness axiom to the ontology, the fault follows:

DisjointClasses(Nation City)

A.2.15.0.1 Why is it a fault

Technically, the property takesPlaceIn is useless because there will be no instances of it.

Conceptually, the ontology claims that events take place in places that are both cities

and nations. In repair suggestions we discuss what exactly is semantically wrong with

this, but it certainly is not correct.

A.2. Fault patterns 349

A.2.15.0.2 Formalism

OWL

A.2.15.0.3 Conceptual source of the fault

A misuse of an intersection (conjunction) when it should have been a union (disjunction).

A.2.15.0.4 Specific source of the example

[Poveda-Villalón et al., 2010, Poveda Villalón, 2016]

A.2.15.0.5 Detection strategy

As mentioned, we will flag as likely faulty (and in this case it is almost certain it is),

any property for which it is entailed that there may be no instance of it.

A.2.15.0.6 Repair suggestions

Changing the intersection to a union is the most obvious solution. However, another

possibility is to separate the property into two, one which indicates in what city the

event takes place, and the other in what country the event takes place. However, this is

probably less adequate. More importantly, a takes place property is probably transitive

through geographic inclusions. That is, if an event takes place in a city, then it also

takes place in the country that city is in, so a disjunction would be able to express this

adequately.

A.2.15.0.7 Fault pattern

A pattern describing that unsatisfiable explicit properties are faulty would be:

((P) � ¬∃x,y.P(x,y))on
on ((P) �M explicit property(P))

(A.22)

A.2.15.0.8 Related contextual information

The explicit property that we have used throughout.

Appendix B

Additional theoretical results and

proofs

Theorem B.0.1 (Normalization of second-order terms). Every second-order term φ is

equivalent to a unique normal second-order term N (φ).

This theorem was originally presented in theorem 6.1.1.

Proof. We use standard techniques for rewriting systems. In order to do this, we first

must show that our notion of normality (definition 6.1.4) corresponds to normality over

second-order reducibility. That is, we show that a second-order term is normal if and

only if it is not reducible.

Reducibility may be produced through one of the three direct reducibility rules,

transitively or through structural induction over the term structure. Assume φ is a normal

second-order term. Then, it is either not a composition or, if it is a composition, its

head is not a composition nor a projection, all its arguments are recursively normal and

either there is an i for which the i-th argument is not πm
i or the arity of the arguments

is different from the arity of the head. If it is not a composition, then neither of the

three direct reducibility rules apply, and it is not an inductively defined second-order

term, so it is not reducible. Head simplification cannot be applied because there is an

i for which the i-th argument is not πm
i or the arity of the head is different from the

arity of the arguments. Projection simplification cannot be applied because the head

is not a projection. Similarly, function dumping cannot be applied because the head is

not a composition. Finally, inductive reduction cannot be applied because the head is

not a composition (and therefore cannot be reduced) and the arguments are recursively

351

352 Appendix B. Additional theoretical results and proofs

assumed to be normal.

On the other direction, we will show that if a second-order term is not normal,

then it can be reduced. If φ is not normal, then it must be a composition; whose head

is a composition or a projection or its arguments are not normal or all its arguments

are πm
i , and the head has arity m. If any of its arguments are not normal, then we

may recursively assume we may reduce those through inductive reduction. If all

its arguments are πm
i , where m is the arity of the head, then we may apply the head

simplification rule. Therefore, the only remaining case is that φ is a composition whose

head is a composition or a projection. If its head is a projection, then the projection

simplification rule may be applied. If its head is a composition, then the function

dumping rule may be applied. In either case, it is reducible.

We will now show that the rewrite system ∗→ is confluent. In order to do this, we

will show it is locally confluent and terminating, and apply the diamond lemma. This,

together with the irreducibility of normal forms, implies the theorem.

We first show termination. Define a measure d on second-order terms indi-

cating the depth of compositions, defined as 0 for non-compositions and d(φ0) +

max{d(φ1), ...,d(φn)}+ 1 for φ0{φ1, ...,φn}. Next, define the ordering d̄ to be the

lexicographic ordering that orders over the value of d first, over the value of d on

the composition’s head when d is equal, and recursively over the value of d̄ on the

composition’s arguments (lexicographically on the ordering of the arguments) in other

cases. Since d is greater than or equal to 0 in every second-order term, and non-

compositions do not have a head or arguments, there is a minimum, corresponding to

non-compositions. We will now show that every rewrite rule reduces it.

The head simplification rule φ0{πn
1, ...,π

n
n}→ φ0 reduces d from d(φ0)+0+1 (since

the πn
i all have d = 0) to d(φ0). The projection simplification rule πn

i {φ1, ...,φn}→ φi

reduces d from 0+max{d(φ1), ...,d(φn)}+1 to d(φi)≤max{d(φ1), ...,d(φn)}.
The function dumping rule preserves the value of d, going from

(d(φ0)+max{d(φ1), ...,d(φn)}+1)+max{d(ψ1), ...,d(ψm)}+1

to

d(φ0)+max{(d(φ1)+max{d(ψ1), ...,d(ψm)}+1), ...,(d(φn)+max{d(ψ1), ...,d(ψm)}+1)}+1

353

Since the max{d(ψ1), ...,d(ψm)} is common among all elements over which the

maximum is calculated in the last version, we can see these two sums are equal in all

circumstances. However, the measure d on the head of the composition goes from

d(φ0)+max{d(ψ1), ...,d(ψm)}+1 to d(φ0), so in the lexicographic ordering we have

gone down.

Finally, we may recursively assume that when applying the inductive rule, the

measure has been strictly reduced for the head or one of the arguments. d itself may not

increase in this case, because it never increases under any reduction rule, recursively. It

may, however, stay the same. In such case, if d̄ has been reduced on the head, then d̄

has been reduced on the composition by the lexicographic ordering. Similarly, when

the head remained the same, arguments that have not been changed remain with the

same value of d̄, but there is at least one of them for which d̄ has been reduced, and so

their lexicographic ordering must have been reduced, so the overall value of d̄ has been

strictly reduced.

This concludes the proof of termination.

We will now show local confluence of the set of rules. There are four rules for

reducibility other than reflexivity and transitivity: head simplification, projection simpli-

fication, function dumping and inductive reduction over the head or an argument. For

each pair of these that can stem from the same source, we will show there is a common

term they can both be reduced to. We write φ for the original second-order term.

If φ matches the conditions for head simplification and projection simplification,

then it must be of the form πn
i {πn

1, ...,π
n
n}. Head simplification reduces it to πn

i , and

projection simplification reduces it to πn
i similarly, so they are locally confluent.

If φ matches head simplification and function dumping, then it must be of the

form φn
0{φm

1 , ...,φ
m
n }{πm

1 , ...,π
m
m}. Head simplification reduces it to φ1 ≡ φn

0{φm
1 , ...,φ

m
n }

and function dumping to φ2 ≡ φn
0{φm

1 {πm
1 , ...,π

m
m}, ...,φm

n {πm
1 , ...,π

m
m}}. But we may

apply head simplification on each of the arguments of φ2, via induction, to obtain

φ2 ∗→ φn
0{φm

1 , ...,φ
m
n } ≡ φ1, and so they are locally confluent.

If φ matches head simplification and inductive reduction, then it must be of the form

φn
0{πn

1, ...,π
n
n}, and there is a πn

i that can be recursively reduced. But this is impossible

since no rule’s conditions matches πn
i .

If φ matches projection simplification and function dumping, then it must be of

the form πn
i {φ1, ...,φn} but also of the form φn

0{φm
1 , ...,φ

m
n }{ψ1, ...,ψm}. But this is

impossible since the head of this term must be πn
i and also a composition φn

0{φm
1 , ...,φ

m
n }.

354 Appendix B. Additional theoretical results and proofs

If φ matches projection simplification and inductive reduction, then it must be of

the form πn
i {φ1, ...,φn}, where there is a φ j

∗→ φ2
j , and so we must conflate the result

of applying projection simplification φ1 ≡ φi with the result of inductively reducing

φ j: φ2 ≡ πn
i {φ1, ...,φ

2
j , ...,φn}. If j 6= i then trivially φ2→ φi ≡ φ1 through projection

simplification. If j = i, then φ2→ φ2
j through projection simplification, but then φi ≡ φ j

and therefore φ1 ≡ φi
∗→ φ2

j , so they are locally confluent.

If φ matches function dumping and inductive reduction on the head, then it must be

of the form

φ
n
0{φm

1 , ...,φ
m
n }{ψ1, ...,ψm}

where φn
0{φm

1 , ...,φ
m
n }

∗→ ψm
0 , and we must conflate

φ
1 ≡ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

with

φ
2 ≡ ψ

m
0 {ψ1, ...,ψm}

For local confluence, we can consider only direct reduction steps on the head itself

and use recursion, so we consider the cases for that:

• Head simplification.

φ≡ φ
n
0{πn

1, ...,π
n
n}{ψ1, ...,ψm}

It must then be n = m and so

ψ
m
0 ≡ φ

n
0

and

φ
1 ≡ φ

n
0{πn

1{ψ1, ...,ψn}, ...,πn
n{ψ1, ...,ψn}}

which by inductively applying projection simplification on each argument reduces

to

φ
1 ∗→ φ

n
0{ψ1, ...,ψn}

355

On the other hand

φ
2 ≡ ψ

m
0 {ψ1, ...,ψm} ≡ φ

n
0{ψ1, ...,ψn}

so they are locally confluent.

• Projection simplification.

φ≡ π
n
i {φm

1 , ...,φ
m
n }{ψ1, ...,ψm}

and so

ψ
m
0 ≡ φ

m
i

and

φ
1 ≡ π

n
i {φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

which after applying projection simplification reduces to

φ
1 ∗→ φ

m
i {ψ1, ...,ψm}

On the other hand

φ
2 ≡ ψ

m
0 {ψ1, ...,ψm} ≡ φ

m
i {ψ1, ...,ψm}

so they are locally confluent.

• Function dumping.

φ≡ φ
p
0,0{φ

n
1, ...,φ

n
p}{φm

1 , ...,φ
m
n }{ψ1, ...,ψm}

and so

ψ
m
0 ≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}

and

356 Appendix B. Additional theoretical results and proofs

φ
1 ≡ φ

p
0,0{φ

n
1, ...,φ

n
p}{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

which by applying function dumping reduces to

φ
1 ∗→ φ

p
0,0{φ

n
1{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}, ...,φn

p{φm
1 {ψ1, ...,ψm}, ...,φm

n {ψ1, ...,ψm}}}

On the other hand

φ
2 ≡ ψ

m
0 {ψ1, ...,ψm} ≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}{ψ1, ...,ψm}

which by applying function dumping, and then function dumping inductively on

each argument, reduces to

φ
2 ∗→ φ

p
0,0{φ

n
1{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}, ...,φn

p{φm
1 {ψ1, ...,ψm}, ...,φm

n {ψ1, ...,ψm}}}

so they are locally confluent.

• Inductive reduction on the head. So there is a ψn
0,0 such that

φ
n
0
∗→ ψ

n
0,0

and

φ
m
0 ≡ ψ

n
0,0{φm

1 , ...,φ
m
n }

and so

φ
1 ≡ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

which by inductive reduction on the head reduces to

φ
1 ∗→ ψ

n
0,0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

On the other hand

357

φ
2 ≡ ψ

m
0 {ψ1, ...,ψn} ≡ ψ

n
0,0{φm

1 , ...,φ
m
n }{ψ1, ...,ψm}

which by function dumping reduces to

φ
2 ∗→ ψ

n
0,0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

so they are locally confluent.

• Inductive reduction on an argument. So there is a ψm
i such that

φ
m
i
∗→ ψ

m
i

and

φ
m
0 ≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }

and so

φ
1 ≡ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

which by inductive reduction reduces to

φ
1 ∗→ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,ψm
i {ψ1, ...,ψm}, ...,φm

n {ψ1, ...,ψm}}

On the other hand

φ
2 ≡ φ

m
0 {ψ1, ...,ψm} ≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }{ψ1, ...,ψm}

which by funciton dumping reduces to

φ
2 ∗→ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,ψm
i {ψ1, ...,ψm}, ...,φm

n {ψ1, ...,ψm}}

so they are locally confluent.

358 Appendix B. Additional theoretical results and proofs

If φ matches function dumping and inductive reduction on an argument, then it must

be of the form φn
0{φm

1 , ...,φ
m
n }{ψ1, ...,ψm}, where there is a ψ j

∗→ ψ2
j , and so we must

conflate the result of applying function dumping

φ
1 ≡ φ

n
0{φm

1 {ψ1, ...,ψm}, ...,φm
n {ψ1, ...,ψm}}

with the result of inductively reducing ψ j:

φ
2 ≡ φ

n
0{φm

1 , ...,φ
m
n }{ψ1, ...,ψ

2
j , ...,ψm}

But we may apply inductive reduction over ψ j
∗→ ψ2

j on each argument of φ1 to obtain

φ
1 ∗→ φ

n
0{φm

1 {ψ1, ...,ψ
2
j , ...,ψm}, ...,φm

n {ψ1, ...,ψ
2
j , ...,ψm}}

and apply function dumping on φ2 to obtain

φ
2 ∗→ φ

n
0{φm

1 {ψ1, ...,ψ
2
j , ...,ψm}, ...,φm

n {ψ1, ...,ψ
2
j , ...,ψm}}

so they are locally confluent.

Finally, if φ matches inductive reduction on the head and on an argument, then it

must be of the form φm
0 {ψ1, ...,ψm}, and there is a ψm

0 such that φm
0
∗→ ψm

0 and a ψ2
j

such that ψ j
∗→ ψ2

j , and so we must conflate

φ
1 ≡ ψ

m
0 {ψ1, ...,ψm}

with

φ
2 ≡ φ

m
0 {ψ1, ...,ψ

2
j , ...,ψm}

But we may apply inductive reduction on the argument ψ j to reduce

φ
1 ∗→ ψ

m
0 {ψ1, ...,ψ

2
j , ...,ψm}

and similarly apply inductive reduction on the head to reduce

φ
2 ∗→ ψ

m
0 {ψ1, ...,ψ

2
j , ...,ψm}

so they are locally confluent.

Thus, the rewrite system is locally confluent and terminating, and therefore, by the

diamond lemma, it is confluent. Since we have proven that second-order normal forms

359

correspond exactly to the irreducible terms in this rewrite system, we have shown that

the rewrite system reduces every second-order term to a unique equivalent second-order

normal form.

Theorem B.0.2 (Normalization of first-order terms). Every first-order term α is equiv-

alent to a unique normal first-order term N (α).

This theorem was originally presented in theorem 6.1.2.

Proof. The proof is analogous to the one for second-order terms. We begin by showing

that our notion of normality (definition 6.1.8) corresponds to normality over first-order

reducibility. That is, we show that a first-order term is normal if and only if it is not

reducible.

Reducibility may be produced through one of two direct reducibility rules, transi-

tively or through structural induction over the term structure. Assume α is a normal

first-order term. Then, it is either a first-order variable or, if it is an application, its head

is not a composition nor a projection, and all its arguments are recursively normal. If it

is a first-order variable, then neither of the direct reducibility rules apply, and it is not

an inductively defined first-order term, so it is not reducible. Projection simplification

cannot be applied because the head is not a projection, and function dumping cannot be

applied because its head is not a composition. Finally, inductive reduction cannot be

applied because the head is not a composition (and therefore cannot be reduced) and

the arguments are recursively assumed to be normal.

In the other direction, we will show that if a first-order term is not normal, then

it can be reduced. If α is not normal, then it must be an application, whose head is

a composition or a projection, or one of its arguments is not normal. If any of its

arguments are not normal, then we may recursively assume we may reduce those

through inductive reduction. Otherwise, α must be an application, and its head a

composition or a projection. If its head is a projection, then the projection simplification

rule may be applied. If its head is a composition, then the function dumping rule may

be applied. In either case, it is reducible.

We will now show that the rewrite system ∗→ is confluent. In order to do this, we

will show it is locally confluent and terminating, and apply the diamond lemma. This,

together with the irreducibility of normal forms, implies the theorem.

360 Appendix B. Additional theoretical results and proofs

We first show termination. Define a measure d on second-order terms indi-

cating the depth of compositions, defined as 0 for non-compositions and d(φ0) +

max{d(φ1), ...,d(φn)}+1 for φ0{φ1, ...,φn}. Next, define the measure d∗ on first-order

terms to be 0 for first-order variables and d(φ)+max{d∗(α1), ...,d∗(αn)}+1 for the

application φ(α1, ...,αn). Finally, define the ordering d̄ on first-order terms to be the

lexicographic ordering that orders over the value of d∗ first, over the value of d on the

application’s head when d∗ is equal, and recursively over d̄ on the arguments of the

application in other cases. Since d∗ is greater than or equal to 0 in every first-order term,

and non-applications do not have arguments, there is a minimum to d̄, corresponding to

non-applications. We will now show that every rewrite rule strictly reduces d̄.

The projection simplification rule πn
i (α1, ...,αn) → αi reduces d∗ from 0 +

max{d(α1), ...,d(αn))}+1 to d(αi)≤max{d(α1), ...,d(αn)}.
The function dumping rule preserves the value of d∗, going from

(d(φ0)+max{d(φ1), ...,d(φn)}+1)+max{d∗(α1), ...,d∗(αm)}+1

to

d(φ0)+max{(d(φ1)+max{d∗(α1), ...,d∗(αm)}+1), ...,(d(φn)+max{d∗(α1), ...,d∗(αm)}+1)}+1

Since the max{d∗(α1), ...,d∗(αm)} is common among all elements over which the

maximum is calculated in the last version, we can see these two sums are equal in

all circumstances. However, the measure d on the head of the application goes from

d(φ0)+max{d(α1), ...,d(αm)}+1 to d(φ0), so in the lexicographic ordering we have

gone down.

Finally, we may recursively assume when applying the inductive rule, that either

d has been strictly reduced for the head, or d∗ has been strictly reduced for one of the

arguments. d∗ itself may not increase in this case, because it never increases under any

reduction rule, recursively. It may, however, stay the same. In such case, if d has been

reduced on the head, then d̄ has been reduced on the application by the lexicographic

ordering. Similarly, when the head remained the same, arguments that have not changed

remain with the same value of d̄, but there is at least one of them for which d̄ has been

reduced, and so their lexicographic ordering must have been reduced, so the overall

value of d̄ has been strictly reduced.

This concludes the proof of termination.

361

We will now show local confluence of the set of rules. There are four rules for

reducibility other than reflexivity and transitivity: projection simplification, function

dumping and inductive reduction over the head or an argument. For each pair of these

that can stem from the same source, we will show there is a common term they can both

be reduced to. We write α for the original first-order term.

If α matches the conditions for projection simplification and function dumping, then

it must be of the form πm
i (α1, ...,αm) but also of the form φn

0{φm
1 , ...,φ

m
n }(α1, ...,αm).

But this is impossible since the head of this term must be πm
i and also a composition

φn
0{φm

1 , ...,φ
m
n }.

If α matches projection simplification and inductive reduction, then it must be

of the form πn
i (α1, ...,αn), where there is a α j

∗→ α2
j (because inductive reduction

of the head cannot possibly match), and so we must conflate the result of applying

projection simplification α1 ≡ αi with the result of inductively reducing α j: α2 ≡
πn

i (α1, ...,α
2
j , ...,αn). If j 6= i then trivially α2 → αi ≡ α1. If j = i, then α2 → α2

j

through projection simplification, but then αi ≡ α j and therefore α1 ≡ αi
∗→ α2

j , so they

are locally confluent.

If α matches function dumping and inductive simplification of the head, then it

must be of the form φn
0{φm

1 , ...,φ
m
n }(α1, ...,αm), where φn

0{φm
1 , ...,φ

m
n } → ψm

0 , and so

we must conflate α1 ≡ φn
0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)) with α2 ≡ ψm

0 (α1, ...,αm).

For local confluence, we can consider only direct reduction steps on the head itself and

use recursion, so we consider the cases for that:

• Head simplification.

α≡ φ
n
0{πn

1, ...,π
n
n}(α1, ...,αm)

It must then be n = m and so

ψ
m
0 ≡ φ

n
0

and

α
1 ≡ φ

n
0(π

n
1(α1, ...,αn), ...,π

n
n(α1, ...,αn))

which by inductively applying projection simplification on each argument reduces

to

362 Appendix B. Additional theoretical results and proofs

α
1 ∗→ φ

n
0(α1, ...,αn)

In the other hand

α
2 ≡ ψ

m
0 (α1, ...,αm)≡ φ

n
0(α1, ...,αn)

so they are locally confluent.

• Projection simplification.

α≡ π
n
i {φm

1 , ...,φ
m
n }(α1, ...,αm)

and so

ψ
m
0 ≡ φ

m
i

and

α
1 ≡ π

n
i (φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

which after applying projection simplification reduces to

α
1 ∗→ φ

m
i (α1, ...,αm)

On the other hand

α
2 ≡ ψ

m
0 (α1, ...,αm)≡ φ

m
i (α1, ...,αm)

so they are locally confluent.

• Function dumping.

α≡ φ
p
0,0{φ

n
1, ...,φ

n
p}{φm

1 , ...,φ
m
n }(α1, ...,αm)

and so

ψ
m
0 ≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}

363

and

α
1 ≡ φ

p
0,0{φ

n
1, ...,φ

n
p}(φm

1 (α1, ...,αm), ...,φ
m
n (α1, ...,αm))

which by applying function dumping reduces to

α
1 ∗→ φ

p
0,0(φ

n
1(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)), ...,φ

n
p(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)))

On the other hand

α
2 ≡ ψ

m
0 (α1, ...,αm)≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}(α1, ...,αm)

which by applying function dumping, and then function dumping inductively on

each argument, reduces to

α
2 ∗→ φ

p
0,0(φ

n
1(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)), ...,φ

n
p(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm)))

so they are locally confluent.

• Inductive reduction on the head. So there is a ψn
0,0 such that

φ
n
0
∗→ ψ

n
0,0

and

φ
m
0 ≡ ψ

n
0,0{φm

1 , ...,φ
m
n }

and so

α
1 ≡ φ

n
0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

which by inductive reduction on the head reduces to

α
1 ∗→ ψ

n
0,0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

364 Appendix B. Additional theoretical results and proofs

On the other hand

α
2 ≡ ψ

m
0 (α1, ...,αm)≡ ψ

n
0,0{φm

1 , ...,φ
m
n }(α1, ...,αm)

which by function dumping reduces to

α
2 ∗→ ψ

n
0,0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

so they are locally confluent.

• Inductive reduction on an argument. So there is a ψm
i such that

φ
m
i
∗→ ψ

m
i

and

φ
m
0 ≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }

and so

α
1 ≡ φ

n
0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

which by inductive reduction reduces to

α
1 ∗→ φ

n
0(φ

m
1 (α1, ...,αm), ...,ψ

m
i (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

On the other hand

α
2 ≡ φ

m
0 (α1, ...,αm)≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }(α1, ...,αm)

which by function dumping reduces to

α
2 ∗→ φ

n
0(φ

m
1 (α1, ...,αm), ...,ψ

m
i (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

so they are locally confluent.

365

If α matches function dumping and inductive reduction on an argument, then it must

be of the form φn
0{φm

1 , ...,φ
m
n }(α1, ...,αm), where there is a α j

∗→ α2
j , and so we must

conflate the result of applying function dumping

α
1 ≡ φ

n
0(φ

m
1 (α1, ...,αm), ...,φ

m
n (α1, ...,αm))

with the result of inductively reducing α j:

α
2 ≡ φ

n
0{φm

1 , ...,φ
m
n }(α1, ...,α

2
j , ...,αm)

But we may apply inductive reduction over α j
∗→ α2

j on each argument of α1 to

obtain

α
1 ∗→ φ

n
0(φ

m
0 (α1, ...,α

2
j , ...,αm), ...,φ

m
n (α1, ...,α

2
j , ...,αm))

and apply function dumping on α2 to obtain

α
2 ∗→ φ

n
0(φ

m
1 (α1, ...,α

2
j , ...,αm), ...,φ

m
n (α1, ...,α

2
j , ...,αm))

so they are locally confluent.

Finally, if α matches inductive reduction on the head and on an argument, then it

must be of the form φm
0 (α1, ...,αm), and there is a ψm

0 such that φm
0
∗→ ψm

0 and a α2
j such

that α j
∗→ α2

j , and so we must conflate

α
1 ≡ ψ

m
0 (α1, ...,αm)

with

α
2 ≡ φ

m
0 (α1, ...,α

2
j , ...,αm)

But we may apply inductive reduction on the argument α j to reduce

α
1 ∗→ ψ

m
0 (α1, ...,α

2
j , ...,αm)

and similarly apply inductive reduction on the head to reduce

α
2 ∗→ ψ

m
0 (α1, ...,α

2
j , ...,αm)

so they are locally confluent.

366 Appendix B. Additional theoretical results and proofs

Thus, the rewrite system is locally confluent and terminating, and therefore, by

the diamond lemma, it is confluent. Since we have proven that second-order normal

forms correspond exactly to the irreducible terms in this rewrite system, we have shown

that the rewrite system reduces every first-order term to a unique equivalent first-order

normal form.

Theorem B.0.3 (Extensionality of second-order terms). Two second-order terms φ1

and φ2, both with arity m, are equivalent if and only for all sequences of first-order

terms α1, ...,αm, φ1(α1, ...,αm) and φ2(α1, ...,αm) are equivalent.

This theorem was originally presented in theorem 6.1.3.

Proof. First, assume that φ1 and φ2 are equivalent, and take an arbitrary sequence of first-

order terms α1, ...,αm. By corollary 6.1.1, φ1 and φ2 have the same normal form N (φ),

such that φ1
∗→N (φ) and φ2

∗→N (φ). By definition of first-order reduction, this im-

plies that φ1(α1, ...,αm)
∗→ N (φ)(α1, ...,αm) and φ2(α1, ...,αm)

∗→ N (φ)(α1, ...,αm).

Therefore, φ1(α1, ...,αm)∼= N (φ)(α1, ...,αm)∼= φ2(α1, ...,αm).

Now assume that for all sequences of first-order terms α1, ...,αm, α1 ≡
φ1(α1, ...,αm) ∼= φ2(α1, ...,αm) ≡ α2. In particular, let αi ≡ Xi for distinct first-order

variables Xi. φ1 and φ2 have their respective normal forms φ1 ∼= N (φ1) and φ2 ∼= N (φ2).

By inductive reduction, this implies that φ1(X1, ...,Xm) ∼= N (φ1)(X1, ...,Xm) and

φ2(X1, ...,Xm) ∼= N (φ2)(X1, ...,Xm). Consider the potential cases for each of N (φ1)

and N (φ2), and for each of them, calculate the normal form of α1 and α2:

• N (φk)≡ f for function symbol f . Then, N (αk)≡ f (X1, ...,Xm).

• N (φk)≡ F for second-order variable F . Then, N (αk)≡ F(X1, ...,Xm).

• N (φk)≡ πm
i . Then, αk ∗→ πm

i (X1, ...,Xm)→ Xi ≡N (αk).

• N (φk) ≡ f n{ψk
1, ...ψ

k
n} for function symbol f with arity n, where each ψk

j is

normal.

Then, αk ∗→ f n{ψk
1, ...,ψ

k
n}(X1, ...,Xm)

∗→ f n(ψk
1(X1, ...,Xm), ...,ψ

k
n(X1, ...,Xm)).

Since each ψk
j is normal, then either this is the normal form, or (if any of them

are projections) some (though not all) of the ψk
1(X1, ...,Xm) may reduce to X j,

or (if any of them are normal compositions) some may reduce to higher depth

applications.

367

• N (φk)≡ Fn{ψk
1, ...,ψ

k
n} for second-order variable F with arity n, where each ψk

j

is normal.

Similarly to the previous case, αk ∗→Fn(ψk
1(X1, ...,Xm), ...,ψ

k
n(X1, ...,Xm)), where

some, though not all, of the arguments may reduce to X j and some may reduce to

higher depth applications.

From the previous list, and by looking at whether the head is a function symbol

or a second-order variable (or the term is a first-order variable) and the maximum

depth of applications present in the first-order term, we gather that if α1 ∼= α2 then, by

corollary 6.1.1, we know that N (α1)≡N (α2), and this may only happen if both φ1

and φ2 fall under the same category of the five kinds of normal forms indicated above,

because each of them produce different heads and/or maximum application depths for

N (αk). Moreover, within each category, it is only possible that N (α1) ≡ N (α2) if

N (φ1)≡N (φ2), and so φ1 ∼= φ2.

Theorem B.0.4 (Normalization of unifier expressions). Every unifier expression ε is

equivalent to a unique normal unifier expression N (ε).

This theorem was originally presented in theorem 6.1.4.

Proof. The proof is analogous to the one for first-order terms. We begin by showing

that our notion of normality (definition 6.1.21) corresponds to normality over unifier

expression reducibility. That is, we show that a unifier expression is normal if and only

if it is not reducible.

Reducibility may be produced through one of three direct reducibility rules, tran-

sitively or through structural induction over the expression structure. Assume ε is a

normal unifier expression. Then, it is function free or its head is a function symbol

or a second-order variable; and all its arguments are recursively in normal form. If it

is function free then it either is a first-order variable or σiδ, where δ is a recursively

function free expression. If it is a first-order variable then it does not match any of the

reduction rule heads or has any inductive structure over which to reduce, so it is not

reducible. If it is of the form σiδ, where δ is function free, then we can recursively as-

sume δ is not reducible, and moreover, we know that δ is not an application. Projection

simplification and function dumping do not match, and neither does unifier variable

dumping because δ is not an application. And since δ is not reducible, then ε cannot be

inductively reduced either. So ε is not reducible. The only case left is if ε≡ φ(ε1, ...,εn),

368 Appendix B. Additional theoretical results and proofs

where φ is a function symbol or a second-order variable, and all its arguments are

recursively in normal form. Projection simplification does not match because φ is not

a projection. Neither does function dumping because φ is not a composition. Unifier

variable dumping does not match either because it has no unifier variable. Moreover,

because φ is a function symbol or second-order variable, it is normal and therefore

irreducible. Similarly, the εi are normal by assumption and therefore we can recursively

assume them to be irreducible. Thus, inductive reduction does not apply either. So ε is

irreducible.

On the other direction, we will show that if ε is not normal, then it can be reduced.

If ε is not normal, then it must not be function free, and it must be a substitution or

an application whose head is a composition or a projection. If ε is a substitution,

it is of the form ε ≡ σiδ. But δ may not be function free, because ε is not function

free, and so δ cannot be normal unless it is an application. If δ is an application,

then ε ≡ σiφ(ε1, ...,εn) and so the unifier variable dumping rule applies. If δ is not

normal, then we may recursively assume it is reducible and therefore ε is inductively

reducible. The only case left is when ε is an application whose head is a composition or

a projection. But if ε is an application whose head is a composition then the function

dumping rule applies. Finally, if ε is an application whose head is a projection then the

projection simplification rule applies. In any case, ε is reducible.

We will now show that the rewrite system ∗→ is confluent. In order to do this, we

will show it is locally confluent and terminating, and apply the diamond lemma. This,

together with the irreducibility of normal forms, implies the theorem.

We first show termination. First, define a measure d on second-order terms in-

dicating the depth of compositions, defined as 0 for non-compositions and d(φ0)+

max{d(φ1), ...,d(φn)}+ 1 for φ0{φ1, ...,φn}. Next, define the measure d∗ on unifier

expressions to be 0 for first-order variables, d(φ)+max{d∗(ε1), ...,d∗(εn)}+1 for the

application φ(ε1, ...,εn) and d∗(δ) for the substitution σiδ. Finally, define the ordering

d̄ on unifier expressions to be the ordering that orders over the value of d∗, considers

substitutions to be higher in the ordering than non-substitutions when d∗ is equal, or-

ders over the lexicographic ordering of the value of d on the application’s head and

the recursive value of d̄ on the arguments when comparing two applications with the

same value of d∗, and orders over the recursive value of d̄ of the sub-expression when

comparing two substitutions with the same value of d̄. Since d∗ is greater than or equal

369

to 0 in every unifier expression, and there is no recursive ordering in non-inductive

expressions, there is a minimum to d̄, corresponding to non-inductive expressions. We

will now show that every rewrite rule strictly reduces d̄.

The projection simplification rule πn
i (ε1, ...,εn) → εi reduces d∗ from 0 +

max{d(ε1), ...,d(εn)}+1 to d(εi)≤max{d(ε1), ...,d(εn)}.
The function dumping rule preserves the value of d∗, going from

(d(φ0)+max{d(φ1), ...,d(φn)}+1)+max{d∗(ε1), ...d∗(εm)}+1

to

d(φ0)+max{(d(φ1)+max{d∗(ε1), ...,d∗(εm)}+1), ...,(d(φn)+max{d∗(ε1), ...,d∗(εm)}+1)}+1

Since the max{d∗(ε1), ...,d∗(εm)} is common among all elements over which the

maximum is calculated in the last version, we can see these two sums are equal in

all circumstances. However, the measure d on the head of the application goes from

d(φ0)+max{d(ε1), ...,d(εm)}+1 to d(φ0), so in the lexicographic ordering we have

gone down.

The unifier variable dumping rule preserves the value of d∗ as well, since substi-

tutions do not change the value of d∗ on either side of the rule, and they are equal

otherwise.

Finally, we may recursively assume when applying the inductive rule, that either

d has been strictly reduced for the head, or d∗ has been strictly reduced for one of the

arguments, or d∗ has been strictly reduced for the sub-expression. d∗ itself may not

increase in this case, because it never increases under any reduction rule, recursively. It

may, however, stay the same. In such case, if d has been reduced on the head, then d̄ has

been reduced on the application by the lexicographic ordering. Similarly, when the head

remained the same, arguments that have not changed remain with the same value of d̄,

but there is at least one of them for which d̄ has been reduced, and so their lexicographic

ordering must have been reduced, so the overall value of d̄ has been strictly reduced.

Similarly, if it is a substitution, then the value of d̄ must have been strictly reduced on

the sub-expression, and therefore so has it on the substitution.

This concludes the proof of termination.

We will now show local confluence of the set of rules. There are six rules for

reducibility other than reflexivity and transitivity: projection simplification, function

370 Appendix B. Additional theoretical results and proofs

dumping, unifier variable dumping and inductive reduction over the head, an argument,

or the sub-expression. For each pair of these that can stem from the same source, we

will show there is a common term they can both be reduced to. We write ε for the

original unifier expression.

If ε matches the conditions for projection simplification and function dumping,

then it must be of the form πm
i (ε1, ...,εm) but also of the form φn

0{φm
1 , ...,φ

m
n }(ε1, ...,εm).

But this is impossible since the head of this term must be πm
i and also a composition

φn
0{φm

1 , ...,φ
m
n }.

ε may not match projection simplification and unifier variable dumping either, since

then it would have to be a substitution and an application at the same time.

If ε matches projection simplification and inductive reduction, then it must be of the

form πn
i (ε1, ...,εn), where there is a ε j

∗→ ε2
j (because inductive reduction of the head

cannot possibly match), and so we must conflate the result of applying projection sim-

plification ε1 ≡ εi with the result of inductively reducing ε j: ε2 ≡ πn
i (ε1, ...,ε

2
j , ...,εn). If

j 6= i then trivially ε2→ εi ≡ ε1. If j = i, then ε2→ ε2
j through projection simplification,

but then εi ≡ ε j and therefore ε1 ≡ εi
∗→ ε2

j , so they are locally confluent.

ε may not match function dumping and unifier variable dumping, since then it would

have to be a substitution and an application at the same time.

If ε matches function dumping and inductive simplification of the head, then it

must be of the form φn
0{φm

1 , ...,φ
m
n }(ε1, ...,εm), where φn

0{φm
1 , ...,φ

m
n }→ ψm

0 , and so we

must conflate ε1 ≡ φn
0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm)) with ε2 ≡ ψm

0 (ε1, ...,εm). For

local confluence, we can consider only direct reduction steps on the head itself and use

recursion, so we consider the cases for that:

• Head simplification.

ε≡ φ
n
0{πm

1 , ...,π
n
n}(ε1, ...,εm)

It must then be n = m and so

ψ
m
0 ≡ φ

n
0

and

ε
1 ≡ φ

n
0(π

n
1(ε1, ...,εn), ...,π

n
n(ε1, ...,εn))

371

which by inductively applying projection simplification on each argument reduces

to

ε
1 ∗→ φ

n
0(ε1, ...,εn)

On the other hand

ε
2 ∗→ ψ

m
0 (ε1, ...,εm)≡ φ

n
0(ε1, ...,εn)

so they are locally confluent.

• Projection simplification.

ε≡ π
n
i {φm

1 , ...,φ
m
n }(ε1, ...,εm)

and so

ψ
m
0 ≡ φ

m
i

and

ε
1 ≡ π

n
i (φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

which after applying projection simplification reduces to

ε
1 ∗→ φ

m
i (ε1, ...,εm)

On the other hand

ε
2 ≡ ψ

m
0 (ε1, ...,εm)≡ φ

m
i (ε1, ...,εm)

so they are locally confluent.

• Function dumping.

ε≡ φ
p
0,0{φ

n
1, ...,φ

n
p}{φm

1 , ...,φ
m
n }(ε1, ...,εm)

and so

372 Appendix B. Additional theoretical results and proofs

ψ
m
0 ≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}

and

ε
1 ≡ φ

p
0,0{φ

n
1, ...,φ

n
p}(φm

1 (ε1, ...,εm), ...,φ
m
n (ε1, ...,εm))

which by applying function dumping reduces to

ε
1 ∗→ φ

p
0,0(φ

n
1(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))), ...,φ

n
p(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm)))

On the other hand

ε
2 ≡ ψ

m
0 (ε1, ...,εm)≡ φ

p
0,0{φ

n
1{φm

1 , ...,φ
m
n }, ...,φn

p{φm
1 , ...,φ

m
n }}(ε1, ...,εm)

which by applying function dumping, and then function dumping inductively on

each argument, reduces to

ε
2 ∗→ φ

p
0,0(φ

n
1(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))), ...,φ

n
p(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm)))

so they are locally confluent.

• Inductive reduction on the head. So there is a ψn
0,0 such that

φ
n
0
∗→ ψ

n
0,0

and

φ
m
0 ≡ ψ

n
0,0{φm

1 , ...,φ
m
n }

and so

ε
1 ≡ φ

n
0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

which by inductive reduction on the head reduces to

373

ε
1 ∗→ ψ

n
0,0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

On the other hand

ε
2 ≡ ψ

m
0 (ε1, ...,εm)≡ ψ

n
0,0{φm

1 , ...,φ
m
n }(ε1, ...,εm)

which by function dumping reduces to

ε
2 ∗→ ψ

n
0,0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

so they are locally confluent.

• Inductive reduction on an argument. So there is a ψm
i such that

φ
m
i
∗→ ψ

m
i

and

φ
m
0 ≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }

and so

ε
1 ≡ φ

n
0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

which by inductive reduction reduces to

ε
1 ∗→ φ

n
0(φ

m
1 (ε1, ...,εm), ...,ψ

m
i (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

On the other hand

ε
2 ≡ φ

m
0 (ε1, ...,εm)≡ φ

n
0{φm

1 , ...,ψ
m
i , ...,φ

m
n }(ε1, ...,εm)

which by function dumping reduces to

ε
2 ∗→ φ

n
0(φ

m
1 (ε1, ...,εm), ...,ψ

m
i (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

so they are locally confluent.

374 Appendix B. Additional theoretical results and proofs

If ε matches function dumping and inductive reduction on an argument, then it

must be of the form φn
0{φm

1 , ...,φ
m
n }(ε1, ...,εm), where there is a ε j

∗→ ε2
j , and so we must

conflate the result of applying function dumping

ε
1 ≡ φ

n
0(φ

m
1 (ε1, ...,εm), ...,φ

m
n (ε1, ...,εm))

with the result of inductively reducing ε j:

ε
2 ≡ φ

n
0{φm

1 , ...,φ
m
n }(ε1, ...,ε

2
j , ...,εm)

But we may apply inductive reduction over ε j
∗→ ε2

j on each argument of ε1 to obtain

ε
1 ∗→ φ

n
0(φ

m
0 (ε1, ...,ε

2
j , ...,εm), ...,φ

m
n (ε1, ...,ε

2
j , ...,εm))

and apply function dumping on ε2 to obtain

ε
2 ∗→ φ

n
0(φ

m
1 (ε1, ...,ε

2
j , ...,εm), ...,φ

m
n (ε1, ...,ε

2
j , ...,εm))

so they are locally confluent.

If ε matches function dumping and inductive reduction on the sub-expression, then

it must be of the form φn
0{φm

1 , ...,φ
m
n }(ε1, ...,εm) and also of the form σkδ, but this is

impossible.

If ε matches unifier variable dumping and inductive reduction on the head or an

argument, then it must be of the form σkδ and also φm
0 (ε1, ...,εm), but this is impossible.

If ε matches unifier variable dumping and inductive reduction on the sub-expression,

then it must be of the form σkφm
0 (ε1, ...,εm), where φm

0 (ε1, ...,εm)
∗→ δ, and so we must

conflate the result of applying unifier variable dumping

ε
1 ≡ φ

m
0 (σkε1, ...,σkεm)

with the result of applying inductive reduction on the sub-expression:

ε
2 ≡ σkδ

For local confluence, we can consider only direct reduction steps on the sub-

expression itself and use recursion, so we consider the cases for that:

• Projection simplification.

ε≡ σkπ
m
i (ε1, ...,εm)

375

and so

ε
1 ≡ π

m
i (σkε1, ...,σkεm)

and

ε
2 ≡ σkεi

But we can apply projection simplification on ε1 to obtain

ε
1→ σkεi

so they are locally confluent.

• Function dumping.

ε≡ σkφ
p
0,0{φ

m
1 , ...,φ

m
p }(ε1, ...,εm)

and so

ε
1 ≡ φ

p
0,0{φ

m
1 , ...,φ

m
p }(σkε1, ...,σkεm)

and

ε
2 ≡ σkφ

p
0,0(φ

m
1 (ε1, ...,εm), ...,φ

m
p (ε1, ...,εm))

But we can apply function dumping on ε1 to obtain

ε
1 ∗→ φ

p
0,0(φ

m
1 (σkε1, ...,σkεm), ...,φ

m
p (σkε1, ...,σkεm))

and we can apply unifier variable dumping and then inductive unifier variable

dumping on the arguments on ε2 to obtain

ε
2 ∗→ φ

p
0,0(φ

m
1 (σkε1, ...,σkεm), ...,φ

m
p (σkε1, ...,σkεm))

so they are locally confluent.

376 Appendix B. Additional theoretical results and proofs

• Unifier variable dumping. This is not possible because ε would have to be of the

form σkφm
0 (ε1, ...,εm) and also σkσlδ, which is impossible.

• Inductive reduction on the head. Then there is a ψm
0 such that φm

0
∗→ ψm

0 and

ε
1 ≡ φ

m
0 (σkε1, ...,σkεm)

and

ε
2 ≡ σkψ

m
0 (ε1, ...,εm)

But we may apply inductive reduction on the head of ε1 to obtain

ε
1 ∗→ ψ

m
0 (σkε1, ...,σkεm)

and also apply unifier variable dumping on ε2 to obtain

ε
2 ∗→ ψ

m
0 (σkε1, ...,σkεm)

so they are locally confluent.

• Inductive reduction on the arguments. Then there is a εi such that εi
∗→ ε2

i and

ε
1 ≡ φ

m
0 (σkε1, ...,σkεm)

and

ε
2 ≡ σkφ

m
0 (ε1, ...,ε

2
i , ...,εm)

But we may apply inductive reduction on σkεi to reduce it to σkε2
i , and apply this

reduction inductively on ε1 to obtain

ε
1 ∗→ φ

m
0 (σkε1, ...,σkε

2
i , ...,σkεm)

and also apply unifier variable dumping on ε2 to obtain

ε
2 ∗→ φ

m
0 (σkε1, ...,σkε

2
i , ...,σkεm)

so they are locally confluent.

377

• Inductive reduction on the sub-expression. This is not possible because ε would

have to be of the form σkφm
0 (ε1, ...,εm) and also σkσlδ, which is impossible.

If ε matches inductive reduction on the head and on an argument, then it must be of

the form φm
0 (ε1, ...,εm) and there is a ψm

0 such that φm
0
∗→ ψm

0 and a ε2
j such that ε j

∗→ ε2
j ,

and so we must conflate

ε
1 ≡ ψ

m
0 (ε1, ...,εm)

with

ε
2 ≡ φ

m
0 (ε1, ...,ε

2
j , ...,εm)

But we may apply inductive reduction on the argument ε j to reduce

ε
1 ∗→ ψ

m
0 (ε1, ...,ε

2
j , ...,εm)

and similarly apply inductive reduction on the head to reduce

ε
2 ∗→ ψ

m
0 (ε1, ...,ε

2
j , ...,εm)

so they are locally confluent.

Finally, if ε matches inductive reduction on the head or on an argument and also on

the sub-expression, then it must be of the form φm
0 (ε1, ...,εm) and also of the form σkδ,

but this is impossible.

Thus, the rewrite system is locally confluent and terminating, and therefore, by the

diamond lemma, it is confluent. Since we have proven that unifier expression normal

forms correspond exactly to the irreducible unifier expressions in this rewrite system,

we have shown that the rewrite system reduces every unifier expression to a unique

equivalent normal unifier expression.

Appendix C

Qualitative evaluation of fault pattern

coverage

In this chapter, we produce all the necessary information to reproduce the qualitative

evaluation of the completeness and specificity of the pattern catalogue against the

original research that motivated the patterns.

This consists in what we consider to be a complete list of all the examples of faults

as described in the original research, each of which with an explanation for why one of

the patterns in our catalogue would adequately identify it.

Specifically, each example consists of the following information:

• Source - Reference and specific page in which it is described.

• Description - Brief, just enough to follow the example.

• Applicable patterns - References to patterns in chapter A that would detect it.

• Explanation - An explanation of why the pattern would successfully detect the

fault.

• Result - One of three: success, failure or partial, indicating the degree by which

we qualitatively see the patterns to have succeeded in detecting the fault.

379

380 Appendix C. Qualitative evaluation of fault pattern coverage

C.1 Examples

C.1.1 MeatyVegetable

• Source - [Rector et al., 2004], page 3.

• Description - Meat and Vegetable have a common subclass MeatyVegetable,

which should have no instances.

• Applicable patterns - §A.2.1, §A.2.3

• Explanation - As described in [Rector et al., 2004], this fault is internally fully

consistent until a disjointness axiom is addded between meat and vegetable.

However, assuming MeatyVegetable was a primitive class, pattern §A.2.1 would

detect it, since MeatyVegetable would be a primitive class that is subsumed

by two different primitive classes, Meat and Vegetable, which do not have any

subsumption relation between them.

Moreover, once the disjointness axiom is added, pattern §A.2.3 would also detect

it. Meat and Vegetable being disjoint means there is no element that is an instance

of both classes. But an instance of MeatyVegetable would be an instance of both.

Thus, MeatyVegetable would be a primitive class that can have no instances, and

this is exactly what pattern §A.2.3 detects.

• Result - Success.

C.1.2 Margherita pizzas with unwanted toppings

• Source - [Rector et al., 2004], page 4.

• Description - A margherita pizza defined only as having some tomato and some

mozzarella could end up having all sorts of extra ingredients that would not be

appropriate for a margherita pizza.

• Applicable patterns - §A.2.2.

• Explanation - We explicitly consider this situation on §A.2.2. However, we

were unable to find a pattern (the authors of [Rector et al., 2004] also failed to do

so) that would detect this.

• Result - Failure.

C.1. Examples 381

C.1.3 Pizzas with cheese that are not cheesy

• Source - [Rector et al., 2004], page 5.

• Description - If the definition of cheesy pizza is not made complete (defined

class), then there would exist a lot of pizzas with cheese that would not be cheesy

pizzas by the definition.

• Applicable patterns - §A.2.1.

• Explanation - The argument, extracted from [Rector et al., 2004], and distilled

into a formal pattern, that primitive classes should not form subsumption cycles,

could potentially detect this error, since CheesyPizza would be incorrectly be

indicated as primitive. However, this would depend on the contextual ontology.

• Result - Partial.

C.1.4 Non-vegetarian margherita pizzas

• Source - [Rector et al., 2004], page 6.

• Description - This is really just an extension of the problem in §C.1.2 which

becomes clear when defining a VegetarianPizza class.

• Applicable patterns - §A.2.2.

• Explanation - As described in §C.1.2, we currently have no patternt that would

detect this situation.

• Result - Failure.

C.1.5 A chocolate ice-cream that is a pizza

• Source - [Rector et al., 2004], page 8.

• Description - The property hasTopping is used for both ice-creams and pizzas,

but a domain constraint is indicated on hasTopping that says only Pizzas can have

toppings. This makes the chocolate ice-cream class either subsumed by pizza or

an unsatisfiable class, depending on other factors.

• Applicable patterns - §A.2.4, §A.2.1, §A.2.3.

382 Appendix C. Qualitative evaluation of fault pattern coverage

• Explanation - In §A.2.4 we examine this particular situation and show how

the pattern already described in §A.2.1, stating that primitive classes should not

form subsumption cycles, already would detect this situation as a potential fault.

Alternatively, the pattern in §A.2.3 would detect this if IceCream and Pizza were

indicated to be disjoint.

• Result - Success.

C.1.6 Empty pizzas

• Source - [Rector et al., 2004], page 10.

• Description - An empty pizza fulfills the definition of a vegetarian pizza, because

we only used universal restrictions of the definition of vegetarian pizza.

• Applicable patterns - §A.2.5, §A.2.13.

• Explanation - While §A.2.5 is a slightly different example, it follows exactly

the same pattern as this example: universal restrictions that are satisfied only

trivially. This is exactly what the pattern described in §A.2.5 detects.

The pattern in §A.2.13 is more generic and would also detect this fault.

• Result - Success.

C.1.7 Vegetarian protein lovers pizza

• Source - [Rector et al., 2004], page 10.

• Description - An incorrect usage of an “and” operator instead of an “or” operator

on disjoint classes makes a universal property restriction trivially satisfiable,

producing unexpected subsumptions, like a ProteinLoversPizza being a vegetarian

pizza, besides the intention of defining it as containing only fish and meat.

• Applicable patterns - §A.2.6, §A.2.5, §A.2.13, §A.2.14, §A.2.15.

• Explanation - Our pattern catalogue explicitly considers this example, and offers

two completely different ways to detect it. First, the one discussed above about

universal property restrictions that are satisfied only trivially (§A.2.5, and the

more general §A.2.13). But moreover, in this case we can detect another fault

related to the presence of what we describe as an “unsatisfiable property”. This is

C.1. Examples 383

described in more detail in §A.2.6, and is also described in a slightly different

way in §A.2.15.

This is related to the pattern in §A.2.14, in that it describes very similar situations,

although the latter pattern would not detect this particular example.

• Result - Success.

C.1.8 Protein lovers pizzas do not exist

• Source - [Rector et al., 2004], page 12.

• Description - The incorrect definition of protein lovers pizza by using “and”

instead of “or”, combined with one sensible definition of a pizza, makes Pro-

teinLoversPizza unsatisfiable.

• Applicable patterns - §A.2.3.

• Explanation - The issue is that an unsatisfiable class is produced. This is dealt

with specifically via the pattern in §A.2.3.

• Result - Success.

C.1.9 Untangling of spicy toppings

• Source - [Rector et al., 2004], page 13.

• Description - SpicyBeefTopping is both a spicy topping and a meat topping.

This can often be described incorrectly, specially when defined and primitive

classes are used inadequately. Making SpicyTopping a primitive class makes

certain toppings not be subsumed by it when they should.

• Applicable patterns - §A.2.1.

• Explanation - This situation can be detected by both patterns described in

§A.2.1, detecting subsumption cycles on primitive classes or defined classes that

subsume primitive classes.

• Result - Success.

384 Appendix C. Qualitative evaluation of fault pattern coverage

C.1.10 Heterogeneous technical administrative group

• Source - [Prince Sales and Guizzardi, 2017], page 10.

• Description - A technical administrative group is characterized as a collec-

tive (see [Prince Sales and Guizzardi, 2017] for a precise definition), meaning

its members should be indistinguishable from the point of view of the adminis-

trative group. However, it contains two families of employees that are clearly

distinguishable within it.

• Applicable patterns - §A.2.7.

• Explanation - The multiple pattern alternatives specified in §A.2.7 are all de-

signed specifically around this particular example. One does so by using the

specific structural elements of the UFO ontology, and the other by using a more

generic and flexible approach based on finding any property that allows us to

distinguish elements of the collective. Both of those patterns apply directly to

this specific example.

• Result - Success.

C.1.11 Homogeneous IT architecture

• Source - [Prince Sales and Guizzardi, 2017], page 11.

• Description - An IT architecture is characterized as a functional complex (see

[Prince Sales and Guizzardi, 2017] for a precise definition), meaning its members

should have different roles. However, it is formed exclusively by IT components

which are homogeneous from the point of view of the IT architecture.

• Applicable patterns - §A.2.8.

• Explanation - The multiple pattern alternatives specified in §A.2.8 are all de-

signed specifically around this particular example. One does so by using the

specific structural elements of the UFO ontology, and the other by using a more

generic and flexible approach based on finding whether there is any property at

all that would allow us to distinguish ellements of the functional complex. Both

of those patterns apply directly to this specific example, though in the second

case other contextual aspects of the ontology could potentially prevent it from

being detected.

C.1. Examples 385

• Result - Success.

C.1.12 Theatre in a theatre

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A class Theatre is used to represent multiple elements, such as the

artistic discipline and the family of buildings in which the plays are performed at

the same time.

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. We note that the original authors do not propose any system-

atic way to detect this either.

• Result - Failure.

C.1.13 Cars, motorcars and automobiles

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - Multiple classes are created for synonyms that represent exactly the

same element (and then they are made equivalent). For example, cars, motorcars

and automobiles.

• Applicable patterns - §A.2.9.

• Explanation - The pattern in §A.2.9 is simple, straightforward and designed to

deal specifically with this kind of situation. It is very easy to automatically detect

explicitly equivalent primitive classes. Moreover, we could change our pattern to

detect any equivalent classes at all.

• Result - Success.

C.1.14 An actor “does is” a man

• Source - [Poveda-Villalón et al., 2010], page 6.

386 Appendix C. Qualitative evaluation of fault pattern coverage

• Description - An “is” property / relation is created instead of using class sub-

sumption.

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Perhaps in large ontologies using such a property, some

pattern of the semantics of such a property would emerge, but we are not aware

of it.

• Result - Failure.

C.1.15 Members of non-existent teams

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - The property memberOfTeam is created in complete disconnection

from the rest of the ontology. There is not even a Team class to relate it to.

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. While a pattern checking whether there exists any other

element of the ontology that has any relation of some kind with this element

could be conceived, it would be extremely complicated, probably incomplete

and create lots of performance problems. This seems to be a perfect example of

a situation where more rudimentary methods might be more effective than the

semantic approach of this thesis.

• Result - Failure.

C.1.16 The item sells the buyer

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - The ontology defines the properties sells and buys as inverses,

when they are not. The inverse of sells is isSold, and the inverse of buys is

isBought.

C.1. Examples 387

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Again, the fault is a fault because of the differences between

the actual model and the preferred model of the person representing it, but cannot

be inferred purely semantically, at least in general. We note that the original

authors do not propose methods to detect these faults either.

• Result - Failure.

C.1.17 All persons are professors

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A subsumption cycle is created between primitive classes, in

which all professors are persons, and all persons are professors.

• Applicable patterns - §A.2.10, §A.2.1.

• Explanation - Pattern §A.2.10 is designed specifically to detect this kind of

situation, and is quite simple. While pattern §A.2.1 would not directly apply

to the most basic version of this fault, in practice it would trigger in a large

proportion of cases in which the fault was present, since the fault combined with

usual definitions would produce cycles in the sense of pattern §A.2.1.

• Result - Success.

C.1.18 Style and period

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A class StyleAndPeriod is created to represent multiple concepts

at the same time (an artistic style in a specific period of history).

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Again, the fault is a fault because of the differences between

388 Appendix C. Qualitative evaluation of fault pattern coverage

the actual model and the preferred model of the person representing it, but cannot

be inferred purely semantically, at least in general. We note that the original

authors do not propose methods to detect these faults either.

• Result - Failure.

C.1.19 Product or service

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A class ProductOrService is created to represent multiple concepts

at the same time (a product or a service, possibly to represent things that can be

sold), rather than using a more adequate name.

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Again, the fault is a fault because of the differences between

the actual model and the preferred model of the person representing it, but cannot

be inferred purely semantically, at least in general. We note that the original

authors do not propose methods to detect these faults either.

Moreover, we note that in this case, the fault is not really one of semantic

definition, but rather of naming. The concept of something that can be sold by a

company is a single concept, but there is no adequate single word that represents

this concept. If such a word were found, changing the name of the class would

get rid of the entire problem.

• Result - Partial.

C.1.20 Routes that start but do not end

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A property startsIn is created to denote where routes start, but no

property endsIn is created to denote where routes end.

• Applicable patterns - None.

C.1. Examples 389

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Again, the fault is a fault because of the differences between

the actual model and the preferred model of the person representing it, but cannot

be inferred purely semantically, at least in general. We note that the original

authors do not propose methods to detect these faults either.

• Result - Failure.

C.1.21 Followed but not preceded

• Source - [Poveda-Villalón et al., 2010], page 6.

• Description - A property follows is created to denote a sequence of elements,

but no property precedes is created to traverse them in the opposite order.

• Applicable patterns - §A.2.12.

• Explanation - While we did not design any pattern to deal with

this fault specifically, or in the context in which it was introduced in

[Poveda-Villalón et al., 2010], either of the versions of the pattern in §A.2.12

would in fact detect this situation, as precedes is the inverse property of follows.

• Result - Success.

C.1.22 Numbers that are both odd and even

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - Classes Odd and Even are not defined as disjoint, allowing the

possibility of numbers that are both odd and even.

• Applicable patterns - We did not address this pitfall from

[Poveda-Villalón et al., 2010] precisely because we could not find a gen-

eral notion that could be characterized generically about it. Again, the fault is

a fault because of the differences between the actual model and the preferred

model of the person representing it, but cannot be inferred purely semantically, at

least in general. We note that the original authors do not propose methods to

detect these faults either.

390 Appendix C. Qualitative evaluation of fault pattern coverage

• Result - Failure.

C.1.23 Numbers that are both prime and composite

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - Classes Prime and Composite are not defined as disjoint, allowing

the possibility of numbers that are both prime and composite.

• Applicable patterns - We did not address this pitfall from

[Poveda-Villalón et al., 2010] precisely because we could not find a gen-

eral notion that could be characterized generically about it. Again, the fault is

a fault because of the differences between the actual model and the preferred

model of the person representing it, but cannot be inferred purely semantically, at

least in general. We note that the original authors do not propose methods to

detect these faults either.

• Result - Failure.

C.1.24 Objects writing emotions

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - A property hasWritten is created, but no domain or range con-

straints indicating that only Writers write, and they write LiteraryWork is not

described.

• Applicable patterns - §A.2.11.

• Explanation - The pattern in §A.2.11 was designed specifically to detect this

kind of situation. It also does so semantically, rather than checking explicit

definitions of domain or range. Classes that are defined explicitly but which have

no restrictions whatsoever on its domain and/or range are flagged as potentially

faulty.

• Result - Success.

C.1. Examples 391

C.1.25 My city is not a CITY

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - Two classes which clearly represent the same conceptual element

from different ontologies that are combined are not defined to be equivalent.

• Applicable patterns - We did not address this pitfall from

[Poveda-Villalón et al., 2010] precisely because we could not find a gen-

eral notion that could be characterized generically about it. The fault has to do

with naming conventions and the conceptualization of multiple authors, but

cannot be inferred purely semantically, at least in general. We note that the

original authors do not propose methods to detect these faults either.

• Result - Failure.

C.1.26 Referees being referees in matches

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - Properties hasReferee and isRefereeOf are defined in the ontology,

but they are not indicated as being inverse properties.

• Applicable patterns - §A.2.12.

• Explanation - The patterns in §A.2.12 were designed explicitly to detect the

situation in which properties do not have inverses or inverses are not indicated as

such. These two situations are dealt with separately with two different patterns,

one of which finds that there is no explicit inverse property, the other of which

checks whether two properties have all the semantic conditions required to be

potential inverses.

• Result - Success.

C.1.27 Inkless books

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - A Book is defined to be something produced by a Writer that only
uses Paper, so if it uses Ink, then it cannot be a Book.

392 Appendix C. Qualitative evaluation of fault pattern coverage

• Applicable patterns - §A.2.13, §A.2.5, §A.2.14.

• Explanation - The pattern in §A.2.13 is designed specifically to deal with this

type of situation. It detects when a universal property restriction is present without

an existential one. This is related to the pattern in §A.2.5, although the latter

would not detect this partitcular example without additional context.

The pattern in §A.2.14 is very closely related to this situation, but this pattern

would not detect this particular example based on the way this example defines

the situation.

• Result - Success.

C.1.28 Vegetarian pizzas with some vegetables

• Source - [Poveda-Villalón et al., 2010], page 7.

• Description - An existential restriction over a negated property is used instead

of a negated existential restriction. That is, a VegetarianPizza is defined as a Pizza

with some toppings that are not meat, rather than stating that it is a Pizza which

does not have some toppings that are meat.

• Applicable patterns - §A.2.14, §A.2.6, §A.2.5.

• Explanation - The pattern described in §A.2.14 detects any class which is

defined with a property restriction as general and unlikely to be of any use as

an existential restriction over a negated property. This would find this example,

although it would have some likelihood of triggering false positives.

Once again, this example is very related to the patterns in §A.2.6 and §A.2.5, but

the particular situations are slightly different, and these patterns would not detect

the fault in this particular example.

• Result - Success.

C.1.29 Many Madrids and many Barcelonas

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - Individuals, such as Madrid and Barcelona, are created as classes

subsumed by the class City, rather than as individuals of the class.

C.1. Examples 393

• Applicable patterns - §A.2.3.

• Explanation - In most cases, a definition such as this would make these classes

unsatisfiable. This would be detected by the pattern in §A.2.3. However, the defi-

nition of individuals as classes itself does not necessarily make them unsatisfiable.

Once again, we are in a case of preferred model issues that are undetectable in a

purely semantic way.

• Result - Partial.

C.1.30 Only cities have an official language

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - The range of the property isOfficialLanguage is restricted to the

class City, rather than considering that more general notions may also have an

official language.

• Applicable patterns - None.

• Explanation - We did not address this pitfall from [Poveda-Villalón et al., 2010]

precisely because we could not find a general notion that could be characterized

generically about it. Again, the fault is a fault because of the differences between

the actual model and the preferred model of the person representing it, but cannot

be inferred purely semantically, at least in general. We note that the original

authors do not propose methods to detect these faults either.

• Result - Failure.

C.1.31 Olympics happen in city-nations

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - A property takesPlaceIn is defined, whose domain is

OlympicGames, and whose range is the intersection of City and Nation, meaning

that only cities that are also nations can have olympic games take place in them.

The union should have been used instead.

• Applicable patterns - §A.2.15, §A.2.6.

394 Appendix C. Qualitative evaluation of fault pattern coverage

• Explanation - The pattern in §A.2.15 is specifically designed to detect this

situation. This is very closely related to the pattern to detect unsatisfiable relative

properties described in §A.2.6, but the latter is more specific and would not apply

in this case.

• Result - Success.

C.1.32 Incorrectly labelled crossroads

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - The label and comment properties of a class are used in the

opposite way that they should.

• Applicable patterns - None.

• Explanation - This is almost exactly the opposite of a semantic fault, one

exclusively related with meta-properties of the ontology, which our patterns

currently do not analyze at all. It is not completely impossible that some patterns

in our framework would be able to deal with this, but currently they certainly do

not.

• Result - Failure.

C.1.33 Other river element

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - A miscellaneous sub-class (presumedly primitive) is created under

another class whose only purpose is to contain instances of the super-class that

do not belong to other sub-classes. OtherRiverElement is simply any Hydro-

graphicalResource that is not classified as some other particular sub-class of

HydrographicalResource.

• Applicable patterns - None.

• Explanation - Once again, this does not seem to be a semantically detectable

fault, since it requires identifying OtherRiverElement as a different class from

all the other sub-classes. No current pattern is implemented that would detect

C.1. Examples 395

this. The authors of the original research suggest at most lexical (i.e. based on

the naming) ways to detect this sort of issue.

• Result - Failure.

C.1.34 animalorigin

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - No consistent naming convention is used, a class is named “ani-

malorigin”, as a sub-class of “Ingredient”.

• Applicable patterns - None.

• Explanation - Purely lexical fault, cannot be detected through semantic methods

like the approach we follow without further context.

• Result - Failure.

C.1.35 Yes and No as instances

• Source - [Poveda-Villalón et al., 2010], page 8.

• Description - Instead of using a boolean attribute isEcological for the class Car,

a property is used with the instances Yes and No as range.

• Applicable patterns - None.

• Explanation - I am actually surprised I did not include a pattern for this in my

pattern catalogue. Detecting a class that only has two instances and suggesting

that should possibly be a datatype attribute instead is something our approach

could do, but I overlooked it when designing the catalogue. It will likely be

included in future versions (if they are produced).

• Result - Partial.

C.1.36 hasFork if and only if it hasFork

• Source - [Poveda-Villalón et al., 2010], page 9.

• Description - A recursive definition in which the range of the hasFork property

is defined as exactly those elements that have an incoming hasFork relationship.

396 Appendix C. Qualitative evaluation of fault pattern coverage

• Applicable patterns - §A.2.11.

• Explanation - Our extension of the original suggested pattern by the authors of

[Poveda-Villalón et al., 2010, Poveda-Villalón et al., 2012] that detects not only

failing to provide explicit domain or range constraints, but also in general failing

to provide them, would actually detect this fault as well. The range definition in

this example results in a tautology that means the range is everything. The purely

semantic pattern in §A.2.11 would detect this.

• Result - Success.

Bibliography

[Alchourrón et al., 1985] Alchourrón, C. E., Gärdenfors, P., and Makinson, D. (1985).

On the logic of theory change: Partial meet contraction and revision functions. The

journal of symbolic logic, 50(2):510–530.

[Andrews, 2010] Andrews, P. B. (2010). An Introduction to Mathematical Logic and

Type Theory: To Truth Through Proof. Springer Publishing Company, Incorporated,

2nd edition.

[Angele et al., 2009] Angele, J., Kifer, M., and Lausen, G. (2009). Ontologies in

F-Logic (Handbook on ontologies (Second edition)).

[Armando et al., 1999] Armando, A., Castellini, C., and Giunchiglia, E. (1999). Sat-

based procedures for temporal reasoning. In European Conference on Planning,

pages 97–108. Springer.

[Armando et al., 2004] Armando, A., Castellini, C., Giunchiglia, E., and Maratea, M.

(2004). A sat-based decision procedure for the boolean combination of difference

constraints. In International Conference on Theory and Applications of Satisfiability

Testing, pages 16–29. Springer.

[Baader and Ghilardi, 2011] Baader, F. and Ghilardi, S. (2011). Unification in modal

and description logics. Logic Journal of IGPL, 19(6):705–730.

[Baader et al., 2009] Baader, F., Horrocks, I., and Sattler, U. (2009). Description

Logics (Handbook on ontologies (Second edition)).

[Bafandeh Mayvan et al., 2017] Bafandeh Mayvan, B., Rasoolzadegan, A., and

Ghavidel Yazdi, Z. (2017). The state of the art on design patterns: A systematic

mapping of the literature. Journal of Systems and Software, 125:93–118.

[Baget et al., 2018] Baget, J.-F., Garcia, L., Garreau, F., Lefèvre, C., Rocher, S., and

Stéphan, I. (2018). Bringing existential variables in answer set programming and

397

398 Bibliography

bringing non-monotony in existential rules: two sides of the same coin. Annals of

mathematics and artificial intelligence, 82(1):3–41.

[Balaban et al., 2015] Balaban, M., Maraee, A., Sturm, A., and Jelnov, P. (2015). A

pattern-based approach for improving model quality. Software & Systems Modeling,

14(4):1527–1555.

[Balduccini, 2009] Balduccini, M. (2009). Representing constraint satisfaction prob-

lems in answer set programming. In Proceedings of ICLP, volume 9, pages 61–70.

Citeseer.

[Barendregt, 1992] Barendregt, H. P. (1992). Lambda calculi with types.

[Barendregt et al., 1987] Barendregt, H. P., van Eekelen, M. C., Glauert, J. R., Kenn-

away, J. R., Plasmeijer, M. J., and Sleep, M. R. (1987). Term graph rewriting. In

International conference on parallel architectures and languages Europe, pages

141–158. Springer.

[Barrett et al., 2002] Barrett, C. W., Dill, D. L., and Stump, A. (2002). Checking

satisfiability of first-order formulas by incremental translation to sat. In International

Conference on Computer Aided Verification, pages 236–249. Springer.

[Beck, 1987] Beck, K. (1987). Using pattern languages for object-oriented programs.

http://c2. com/doc/oopsla87. html.

[Beth, 1955] Beth, E. W. (1955). Semantic entailment and formal derivability.

[Blomqvist, 2010] Blomqvist, E. (2010). Ontology patterns: Typology and experiences

from design pattern development. In The Swedish AI Society Workshop May 20-21;

2010; Uppsala University, number 48, pages 55–64. Linköping University Electronic

Press; Linköpings universitet.

[Bongio et al., 2008] Bongio, J., Katrak, C., Lin, H., Lynch, C., and McGregor, R. E.

(2008). Encoding first order proofs in smt. Electronic Notes in Theoretical Computer

Science, 198(2):71–84.

[Bozzano et al., 2005] Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum,

P. v., Schulz, S., and Sebastiani, R. (2005). An incremental and layered procedure for

the satisfiability of linear arithmetic logic. In International Conference on Tools and

Algorithms for the Construction and Analysis of Systems, pages 317–333. Springer.

Bibliography 399

[Brachman and Schmolze, 1989] Brachman, R. J. and Schmolze, J. G. (1989). An

overview of the kl-one knowledge representation system. In Mylopolous, J. and

Brodie, M., editors, Readings in Artificial Intelligence and Databases, pages 207 –

230. Morgan Kaufmann, San Francisco (CA).

[Brewka et al., 2011] Brewka, G., Eiter, T., and Truszczynski, M. (2011). ASP at a

glance. Communications of the ACM.

[Brickely and Guha, 2014] Brickely, D. and Guha, R. (2014). Rdf schema 1.1. [Online

(https://www.w3.org/TR/rdf-schema/); accessed 19-December-2016].

[Brummayer and Biere, 2009] Brummayer, R. and Biere, A. (2009). Boolector: An

efficient smt solver for bit-vectors and arrays. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, pages 174–177.

Springer.

[Bundy, 1983] Bundy, A. (1983). The computer modelling of mathematical reasoning,

volume 10. Academic Press London.

[Bundy and Mitrovic, 2016] Bundy, A. and Mitrovic, B. (2016). Ref-

ormation: a domain-independent algorithm for theory repair. [On-

line (http://www.research.ed.ac.uk/portal/en/publications/reformation-a-

domainindependent-algorithm-for-theory-repair(cac700ba-6e37-4609-9b4f-

22b166e831cf).html); accessed 10-September-2017].

[Bundy et al., 1993] Bundy, A., Stevens, A., Van Harmelen, F., Ireland, A., and Smaill,

A. (1993). Rippling: A heuristic for guiding inductive proofs. Artificial intelligence,

62(2):185–253.

[Calvès, 2013] Calvès, C. (2013). Unifying nominal unification. In RTA 2013-24th

International Conference on Rewriting Techniques and Applications, volume 21,

pages 143–157. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Casanova, 2017] Casanova, J. (2017). Meta-ontology fault detection (master of sci-

ence by research). [Online (https://tinyurl.com/yb72r3ch); accessed 3-October-2017].

[Church, 1936] Church, A. (1936). An unsolvable problem of elementary number

theory. American journal of mathematics, 58(2):345–363.

400 Bibliography

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types. The

journal of symbolic logic, 5(2):56–68.

[Comon, 1990] Comon, H. (1990). Equational formulas in order-sorted algebras. In

International Colloquium on Automata, Languages, and Programming, pages 674–

688. Springer.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing, pages

151–158.

[Copeland et al., 2013] Copeland, M., Gonçalves, R. S., Parsia, B., Sattler, U., and

Stevens, R. (2013). Finding Fault: Detecting Issues in a Versioned Ontology, pages

113–124. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Cox and Pietrzykowski, 1986] Cox, P. T. and Pietrzykowski, T. (1986). Causes for

events: Their computation and applications. In Siekmann, J. H., editor, 8th Inter-

national Conference on Automated Deduction, pages 608–621, Berlin, Heidelberg.

Springer Berlin Heidelberg.

[Davis et al., 1962] Davis, M., Logemann, G., and Loveland, D. (1962). A machine

program for theorem-proving. Communications of the ACM, 5(7):394–397.

[Dionne et al., 1992] Dionne, R., Mays, E., and Oles, F. J. (1992). A non-well-founded

approach to terminological cycles. In AAAI, volume 92, pages 761–766.

[Dionne et al., 1993] Dionne, R., Mays, E., and Oles, F. J. (1993). The equivalence of

model-theoretic and structural subsumption in description logics. In IJCAI, pages

710–717.

[Dowek, 2001] Dowek, G. (2001). Higher-order unification and matching. Handbook

of automated reasoning, 2:1009.

[Dwork et al., 1984] Dwork, C., Kanellakis, P. C., and Mitchell, J. C. (1984). On the

sequential nature of unification. The Journal of Logic Programming, 1(1):35–50.

[Emerson, 1991] Emerson, E. A. (1991). Temporal and modal logic, handbook of

theoretical computer science (vol. b): formal models and semantics.

Bibliography 401

[Ennals and Jones, 2003] Ennals, R. and Jones, S. P. (2003). Hsdebug: debugging lazy

programs by not being lazy. In Proceedings of the 2003 ACM SIGPLAN workshop

on Haskell, pages 84–87.

[Farmer, 1988] Farmer, W. M. (1988). A unification algorithm for second-order

monadic terms. Annals of Pure and applied Logic, 39(2):131–174.

[Farmer, 1991] Farmer, W. M. (1991). Simple second-order languages for which

unification is undecidable. Theoretical Computer Science, 87(1):25–41.

[Ferreirós, 2001] Ferreirós, J. (2001). The road to modern logic—an interpretation.

Bulletin of Symbolic Logic, 7(4):441–484.

[Fontana et al., 2012] Fontana, F. A., Braione, P., and Zanoni, M. (2012). Automatic

detection of bad smells in code: An experimental assessment. Journal of Object

Technology, 11(2):5–1.

[Fowler, 1999] Fowler, M. (1999). Bad smells in code, pages 63–73. Addison-Wesley

Professional.

[Gärdenfors, 1992] Gärdenfors, P. (1992). Belief Revision. Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press.

[Gärdenfors, 2003] Gärdenfors, P. (2003). Belief revision, volume 29. Cambridge

University Press.

[Girard, 1987] Girard, J.-Y. (1987). Linear logic. Theoretical computer science,

50(1):1–101.

[Gkaniatsou et al., 2012] Gkaniatsou, A., Bundy, A., and Mcneill, F. (2012). Towards

the automatic detection and correction of errors in automatically constructed ontolo-

gies. In 2012 Eighth International Conference on Signal Image Technology and

Internet Based Systems, pages 860–867.

[Gomes et al., 2008] Gomes, C. P., Kautz, H., Sabharwal, A., and Selman, B. (2008).

Satisfiability solvers. Foundations of Artificial Intelligence, 3:89–134.

[Guarino et al., 2009] Guarino, N., Oberle, D., and Staab, S. (2009). What Is an

Ontology? (Handbook on ontologies (Second edition)).

402 Bibliography

[Guarino and Welty, 2009] Guarino, N. and Welty, C. A. (2009). An Overview of

OntoClean (Handbook on ontologies (Second edition)).

[Habel and Plump, 1995] Habel, A. and Plump, D. (1995). Unification, rewriting,

and narrowing on term graphs. Electronic Notes in Theoretical Computer Science,

2:110–117.

[Hammar and Presutti, 2017] Hammar, K. and Presutti, V. (2017). Template-based

content odp instantiation. In Advances in Ontology Design and Patterns :, number 32

in Studies on the Semantic Web.

[Haverty, 2013] Haverty, T. (2013). Automated error classification in the KnowItAll

ontology. Unpublished (Master of Science dissertation).

[Herbrand, 1930] Herbrand, J. (1930). Recherches sur la théorie de la démonstration.

PhD thesis, Université de Paris.

[Heyting, 1966] Heyting, A. (1966). Intuitionism: an introduction, volume 41. Else-

vier.

[Horridge, 2011] Horridge, M. (2011). Justification based explanation in ontologies.

PhD thesis, University of Manchester.

[Horridge et al., 2009] Horridge, M., Jupp, S., Moulton, G., Rector, A., Stevens, R.,

and Wroe, C. (2009). A practical guide to building owl ontologies using protégé 4

and co-ode tools edition1. 2. The university of Manchester, 107.

[Huet, 1975] Huet, G. (1975). A unification algorithm for typed λ-calculus. Theoretical

Computer Science, 1(1):27 – 57.

[Huet and Oppen, 1980] Huet, G. and Oppen, D. C. (1980). Equations and rewrite

rules: A survey. In BOOK, R. V., editor, Formal Language Theory, pages 349–405.

Academic Press.

[Jaffar and Lassez, 1987] Jaffar, J. and Lassez, J.-L. (1987). Constraint logic program-

ming. In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages, pages 111–119.

[Jaśkowski, 1934] Jaśkowski, S. (1934). On the rules of suppositions in formal logic.

Bibliography 403

[Kerkhoff et al., 2014] Kerkhoff, S., Pöschel, R., and Schneider, F. M. (2014). A

short introduction to clones. Electronic Notes in Theoretical Computer Science,

303:107–120.

[Kindermann et al., 2019] Kindermann, C., Parsia, B., and Sattler, U. (2019). Detecting

influences of ontology design patterns in biomedical ontologies. In International

Semantic Web Conference, pages 311–328. Springer.

[Kowalski, 2014] Kowalski, R. (2014). Logic for Problem Solving, Revisited. BoD–

Books on Demand.

[Kripke, 2007] Kripke, S. (2007). Semantical considerations of the modal logic.

[Kripke, 1959] Kripke, S. A. (1959). A completeness theorem in modal logic. The

journal of symbolic logic, 24(1):1–14.

[Kurian et al., 2013] Kurian, M. et al. (2013). A survey on tools essential for semantic

web research. Int. J. Comput. Appl, 62(9):26–29.

[Lake and Crowther, 2013] Lake, P. and Crowther, P. (2013). Concise Guide to

Databases: A Practical Introduction. Undergraduate Topics in Computer Science.

Springer London, London, 2013 edition.

[Lambrix and Liu, 2013] Lambrix, P. and Liu, Q. (2013). Debugging the missing is-a

structure within taxonomies networked by partial reference alignments. Data and

Knowledge Engineering, 86:179 – 205.

[Lassila and Swick, 1999] Lassila, O. and Swick, R. R. (1999). Resource description

framework(rdf) model and syntax specification. [Online (https://www.w3.org/TR/PR-

rdf-syntax/); accessed 19-December-2016].

[Levy, 1996] Levy, J. (1996). Linear second-order unification. In International Confer-

ence on Rewriting Techniques and Applications, pages 332–346. Springer.

[Levy, 1998] Levy, J. (1998). Decidable and undecidable second-order unification

problems. In International Conference on Rewriting Techniques and Applications,

pages 47–60. Springer.

[Levy and Veanes, 2000] Levy, J. and Veanes, M. (2000). On the undecidability of

second-order unification. Information and Computation, 159(1-2):125–150.

404 Bibliography

[Levy and Villaret, 2010] Levy, J. and Villaret, M. (2010). An efficient nominal unifi-

cation algorithm.

[Li et al., 2018] Li, X., Bundy, A., and Smaill, A. (2018). Abc repair system for datalog-

like theories. In 10th International Joint Conference on Knowledge Discovery,

Knowledge Engineering and Knowledge Management, volume 2, pages 335–342.

SCITEPRESS.

[Mall, 2018] Mall, R. (2018). Fundamentals of software engineering. PHI Learning

Pvt. Ltd.

[Markakis, 2013] Markakis, Z. (2013). Repairing the KnowItAll Ontology. Unpub-

lished (Master of Science dissertation).

[Mikroyannidi et al., 2011] Mikroyannidi, E., Iannone, L., Stevens, R., and Rector, A.

(2011). Inspecting regularities in ontology design using clustering. In Aroyo, L.,

Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., and Blomqvist,

E., editors, The Semantic Web – ISWC 2011, pages 438–453, Berlin, Heidelberg.

Springer Berlin Heidelberg.

[Mikroyannidi et al., 2012] Mikroyannidi, E., Stevens, R., Iannone, L., and Rector, A.

(2012). Analysing syntactic regularities and irregularities in SNOMED-CT. Journal

of Biomedical Semantics, 3(1):8.

[Miller, 2021] Miller, D. (2021). Lambda-prolog: Logic programming in higher-order

logic. [Online (http://www.lix.polytechnique.fr/Labo/Dale.Miller/lProlog/); accessed

30-June-2021].

[Motik et al., 2012] Motik, B., Patel-Schneider, P. F., and Parsia, B. (2012). Owl 2

web ontology language. structural specification and functional-style syntax. [Online

(https://www.w3.org/TR/owl2-syntax/); accessed 19-December-2016].

[Nadathur and Miller, 1988] Nadathur, G. and Miller, D. (1988). An overview of

lambda-prolog.

[Newman, 1942] Newman, M. H. A. (1942). On theories with a combinatorial defini-

tion of” equivalence”. Annals of mathematics, pages 223–243.

[Nieuwenhuis et al., 2006] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Solv-

ing sat and sat modulo theories: from an abstract davis–putnam–logemann–loveland

procedure to dpll (t). Journal of the ACM (JACM), 53(6):937–977.

Bibliography 405

[Paulson, 1989] Paulson, L. C. (1989). The foundation of a generic theorem prover.

CoRR, cs.LO/9301105.

[Peirce, 1901] Peirce, C. S. (1901). On the logic of drawing history from ancient

documents, especially from testimonies. The Essential Peirce, 1893-1913, 2:75–114.

[Peirce, 1906] Peirce, C. S. (1906). Prolegomena to an apology for pragmatism. The

Monist, 16(4):492–546.

[Pinto et al., 2009] Pinto, H. S., Tempich, C., and Staab, S. (2009). Ontolgy Engineer-

ing and Evolution in a Distributed World Using DILIGENT (Handbook on ontologies

(Second edition)).

[Plump, 1999] Plump, D. (1999). Term graph rewriting. Handbook Of Graph Gram-

mars And Computing By Graph Transformation: Volume 2: Applications, Languages

and Tools, pages 3–61.

[Plump, 2002] Plump, D. (2002). Essentials of term graph rewriting. Electronic Notes

in Theoretical Computer Science, 51:277–289.

[Plump, 2005] Plump, D. (2005). Confluence of graph transformation revisited. In

Processes, Terms and Cycles: Steps on the Road to Infinity, pages 280–308. Springer.

[Poveda-Villalón et al., 2010] Poveda-Villalón, M., Suárez-Figueroa, M. C., and

Gómez-Pérez, A. (2010). A double classification of common pitfalls in ontolo-

gies. Workshop on Ontology Quality.

[Poveda Villalón, 2016] Poveda Villalón, M. (2016). Ontology Evaluation: a pitfall-

based approach to ontology diagnosis. PhD thesis, ETSI Informatica.

[Poveda-Villalón et al., 2012] Poveda-Villalón, M., Suárez-Figueroa, M. C., and

Gómez-Pérez, A. (2012). Validating Ontologies with OOPS!, pages 267–281.

Springer Berlin Heidelberg, Berlin, Heidelberg.

[Prince Sales and Guizzardi, 2017] Prince Sales, T. and Guizzardi, G. (2017). ”is it a

fleet or a collection of ships?”: Ontological anti-patterns in the modeling of part-

whole relations.

[Prior, 1962] Prior, A. N. (1962). Tense-logic and the continuity of time. Studia Logica,

13(1):133–148.

406 Bibliography

[Rector et al., 2004] Rector, A., Drummond, N., Horridge, M., Rogers, J., Knublauch,

H., Stevens, R., Wang, H., and Wroe, C. (2004). OWL Pizzas: Practical Experience

of Teaching OWL-DL: Common Errors & Common Patterns, pages 63–81. Springer

Berlin Heidelberg, Berlin, Heidelberg.

[Robinson and Voronkov, 2001] Robinson, A. J. and Voronkov, A. (2001). Handbook

of automated reasoning, volume 1. Gulf Professional Publishing.

[Robinson et al., 1965] Robinson, J. A. et al. (1965). A machine-oriented logic based

on the resolution principle. Journal of the ACM, 12(1):23–41.

[Schilling, 2011] Schilling, T. (2011). Challenges for a trace-based just-in-time com-

piler for haskell. In International Symposium on Implementation and Application of

Functional Languages, pages 51–68. Springer.

[Schmidt-Schauß, 2004] Schmidt-Schauß, M. (2004). Decidability of bounded second

order unification. Information and Computation, 188(2):143–178.

[Schmidt-Schauß et al., 2019] Schmidt-Schauß, M., Sabel, D., and Kutz, Y. D. (2019).

Nominal unification with atom-variables. Journal of Symbolic Computation, 90:42–

64.

[Sipser, 1996] Sipser, M. (1996). Introduction to the theory of computation. ACM

Sigact News, 27(1):27–29.

[Smith, 1987] Smith, R. (1987). Panel on design methodology. In Addendum to the

proceedings on Object-oriented programming systems, languages and applications

(Addendum), pages 91–95.

[Sørensen and Urzyczyn, 2006] Sørensen, M. H. and Urzyczyn, P. (2006). Lectures on

the Curry-Howard isomorphism. Elsevier.

[Steen, 2020] Steen, A. (2020). Extensional paramodulation for higher-order logic and

its effective implementation leo-iii. KI-Künstliche Intelligenz, 34(1):105–108.

[Steen and Benzmüller, 2018] Steen, A. and Benzmüller, C. (2018). The higher-order

prover leo-iii. In Galmiche, D., Schulz, S., and Sebastiani, R., editors, Automated

Reasoning, pages 108–116, Cham. Springer International Publishing.

[Sterling and Shapiro, 1994a] Sterling, L. and Shapiro, E. (1994a). Meta-Interpreters,

pages 303–330. MIT Press, Cambridge, MA, USA.

Bibliography 407

[Sterling and Shapiro, 1994b] Sterling, L. and Shapiro, E. Y. (1994b). The art of

Prolog: advanced programming techniques. MIT press.

[Stumme, 2009] Stumme, G. (2009). Formal Concept Analysis (Handbook on ontolo-

gies (Second edition)).

[Sure et al., 2009] Sure, Y., Staab, S., and Studer, R. (2009). Ontology Engineering

Methodology (Handbook on ontologies (Second edition)).

[Šváb-Zamazal and Svátek, 2008] Šváb-Zamazal, O. and Svátek, V. (2008). Analysing

ontological structures through name pattern tracking. In Gangemi, A. and Euzenat,

J., editors, Knowledge Engineering: Practice and Patterns, pages 213–228, Berlin,

Heidelberg. Springer Berlin Heidelberg.

[Tarjan, 1975] Tarjan, R. E. (1975). Efficiency of a good but not linear set union

algorithm. Journal of the ACM (JACM), 22(2):215–225.

[Tsarkov and Horrocks, 2006] Tsarkov, D. and Horrocks, I. (2006). Fact++ description

logic reasoner: System description. In International joint conference on automated

reasoning, pages 292–297. Springer.

[Turing, 1937] Turing, A. M. (1937). On computable numbers, with an application

to the entscheidungsproblem. Proceedings of the London mathematical society,

2(1):230–265.

[Urban et al., 2004] Urban, C., Pitts, A. M., and Gabbay, M. J. (2004). Nominal

unification. Theoretical Computer Science, 323(1-3):473–497.

[Urbonas, 2019] Urbonas, M. (2019). A Heuristic Approach for Guiding Automated

Theory Repair for the ABC Theory Repair System. Unpublished (Undergraduate

fourth year dissertation).

[Urbonas et al., 2020] Urbonas, M., Bundy, A., Casanova, J., and Li, X. (2020). The

use of max-sat for optimal choice of automated theory repairs. In International

Conference on Innovative Techniques and Applications of Artificial Intelligence,

pages 49–63. Springer.

[Van Dalen, 1986] Van Dalen, D. (1986). Intuitionistic logic. In Handbook of philo-

sophical logic, pages 225–339. Springer.

408 Bibliography

[Wikipedia contributors, 2022a] Wikipedia contributors (2022a). Congruence relation

— Wikipedia, the free encyclopedia. [Online; accessed 5-September-2022].

[Wikipedia contributors, 2022b] Wikipedia contributors (2022b). Horn clause —

Wikipedia, the free encyclopedia. [Online; accessed 12-May-2022].

[Wikipedia contributors, 2022c] Wikipedia contributors (2022c). Np-completeness —

Wikipedia, the free encyclopedia. [Online; accessed 23-May-2022].

[Zaionc, 1987] Zaionc, M. (1987). The regular expression descriptions of unifier set in

the typed λ-calculus. Fundamenta Informaticae, 10(3):309–322.

Index of concepts and definitions

Abduction, 12

abstract clone, 113

acyclic, 161

acyclic seminormalizing rules, 211

acyclicity, 159, 161

algorithm, 54

aligning, 2

anonymous, 150

anti-patterns, 330

application, 113, 150

arguments, 109, 113, 119

arities, 30

arity, 108, 109

asserted, 59, 319

atoms, 30, 31

automated theorem prover, 34

automated theorem proving, 15

automatic detection, 14

automatic generation of ontologies, 2

Automatically generated ontologies, 2

Bad smells, 14

bad smells, 307

Basic queries, 132

Belief revision, 11

binary predicates, 27

binders, 117, 309

body, 37, 46, 91, 132

bounded, 40

bounded second-order unification, 40,

92

bounded second-order unification

problem, 40

capture, 309

class, 24, 27

classes, 7, 24, 45

clause, 34

clauses, 34, 46

collective, 384

Complete, 23

complete, 34, 132, 189, 230, 271, 381

completeness, 272, 275

complexity, 272

composed, 116, 117

composite, 99

composite heads measure, 220

Composite queries, 132

composition, 109, 150

computational feasibility, 272

computationally feasible, 271

computationally infeasible, 275

concepts, 7, 24

confluence, 22, 49, 50, 222

409

410 INDEX OF CONCEPTS AND DEFINITIONS

confluent, 23, 50

conjunction, 31

conjunctive normal form, 34, 97

conjunctive normal forms (CNF), 34

connectives, 31

constants, 30

constrained expressivity, 44

Constraint Logic Programming, 47

constraint logic programming, 20

Constraint programming, 45

constraint solving, 21

contextual information, 298

contextual knowledge, 60, 62

cost centres, 296

cuts, 46

cyclic, 161, 179

decidable, 54

decision problem, 54

declarative equations, 97

decycling rules, 209

defined, 28, 60

defined class, 381

defines, 28

definition, 263

dependant, 147

dependants, 104, 148, 150

dependencies, 104

dependency graph for unification

equations, 97

dependency graphs, iv, 103, 106

depth of instantiation measure, 238

description logic, 27

Description Logics, 8

description logics, 44

design patterns, 13

detects the faults that it was designed to

detect, 273

diagonalization, 55, 263

diamond lemma, 22

direct reduction rules, 49

directed acyclic graphs, 22

directed cycles, 161, 177

directly reducible, 112, 114, 120

disjunction, 31

disunification query, 134

domain, 29, 60

don’t care, 253

don’t know, 253

eager, 19, 43

eager SMT algorithm, 43

Edges, 104

effective, 273

effectiveness, 274, 275, 278

eliminate dependency, 183

elimination, 40

empty clause, 128

empty CNF, 129

entailed, 33, 59

entailment query, 132

enumerating, 54

enumeration of all unifiers, 251

enumeration procedure, 54

equal in U , 126

equivalence relation, 112, 114, 121

errors, 1

ESQ logic, 73

evaluation, 125

evaluation test case, 299

INDEX OF CONCEPTS AND DEFINITIONS 411

existential, 32, 62

existential second-order query logic, iii,

3, 63, 72, 273, 299

existential second-order unification, 39

explanation, 10, 12

expressivity, 16

factoring, 100

factorizability, 161

factorizable, 162

Factorization, 160

factorization, 253

factorizing, 160, 162

Facts, 47

facts, 20

fair, 105, 230, 234, 271

fair exploration, 230

fairness, 223

false, 12

fault, 1

fault detection, 9

fault patterns, iii

faults, iii, 58

feasible, 273

finer, 116, 117, 125

first and second-order terms, 107

First-order horizontal edges, 153

first-order nodes, 151

first-order term, 113

first-order unification equation, 126

first-order variables, 108

flexible, 252

flexible-flexible, 252

flexible-rigid, 252

forall intersection, 137

forall queries, 137

formula with meta-predicates, 129

formulas, 31

framework, 10

freshness constraints, 309

full ground solution, 131–134, 136, 137

function dumping, 112, 114, 120

function free unifier expression, 123

Function symbols, 30

function symbols, 30, 108

functional complex, 384

functional dependency, 150

general resolution, 101

general unification solution, 223

globally, 52

goal, 46, 91

goal-oriented refutation procedure, 46

Goals, 48

goals, 91

grab, 157, 158

graph homomorphism, 53

graphs, 52

ground, 31, 110, 113, 116, 117, 125

ground instantiations, 131

ground solution, 131

ground solutions, 132

head, 46, 91, 109, 113, 119, 150, 151,

153

head simplification, 112

Herbrand base, 33

Herbrand bases, 32

Herbrand interpretation, 33

Herbrand interpretations, 32

Herbrand structure, 32

412 INDEX OF CONCEPTS AND DEFINITIONS

Herbrand structures, 32

Herbrand universe, 32

Herbrand universes, 32

Herbrand’s theorem, 33

hereditary Harrop formulas, 91

heterogeneous collection, 330

heterogeneous collective, 330

heuristic, 259

heuristics, 16

high precision, 273

high recall, 273

higher-order logic, 17, 36

higher-order unification, 37, 47

homogeneous functional complex, 335

horizontal edges, 150

Horn clause, 46

hypergraphs, 23, 52

immutability, 264

implication, 31

implicit equivalent dependants measure,

218

implicit related first-order dependants

measure, 219

implicit representations, 262

implicit unification, 102

incompatibility, 307

inconsistent, 29

indeterminacy, 98

individuals, 27, 45

inductive instantiation, 99, 141, 142,

145, 259

inference system, 33

inferred, 59, 308, 319

instance, 28

instances, 24, 27

instantiated, 98

instantiated variables measure, 239

instantiation, 61, 115, 116

instantiation set, 131

insufficiency, 307

interleaving, 54, 55

interpretation, 32, 42

interpretations, 32

Intuitionistic, 48

inverse, 240

inverse target function symbols

measure, 241

inverse target projections measure, 243

irreducibility, 22

is solution preserving, 168

iteration, 40

join, 136

join queries, 135, 136

joins, 136

justification, 10

labelled edges/nodes, 52

lambda abstraction, 37

lambda abstractions, 37

Lambda Prolog, 47

lazily evaluated language, 262

lazy, 19, 43

Lazy evaluation, 292

lazy SMT algorithm, 44

levels, 151

levels of normalization, 260

lifting, 171

Linear second-order unification, 39

linear second-order unification, 92

INDEX OF CONCEPTS AND DEFINITIONS 413

Linear terms, 39

linear terms, 39, 92

literal, 31

local confluence, 51

locally confluent, 22

logic programming, 20

logical knowledge base, 11

logically closed, 11

Maximal CNFs, 98

maximal CNFs, 141

maximal conjunctive normal form, 98

merge, 157

merging, 265

meta-atom, 98, 127

meta-clause, 128

meta-CNF, 129

meta-literal, 128

meta-ontology, 64

Meta-ontology fault detection, iii, 2,

272

meta-ontology fault detection, 65, 73

meta-ontology fault detection

framework, 3, 64

meta-predicate query, 134

meta-predicate symbols, 108

meta-predicates, 63

methodological, 9

minimal change, 11

minimal commitment, 38, 97, 104

minimal commitment approach, 3

Minimal commitment resolution for

ESQ logic, 96

minimal commitment resolution for

ESQ logic, iv, 3, 73, 76, 106

minimal commitment resolution for

ESQ logic algorithm, 3

minimal commitment resolution for

existential second-order query

logic, 3, 271, 298

model, 33

modeling languages, 13

models, 33

monadic, 40, 263

monadic second-order term, 40

monadic second-order unification, 41,

92

monotonicity, 11

most general unifier, 35, 253

necessary, 28

negation, 31, 128

negative meta-literal, 128

Newman’s lemma, 22

Nodes, 104

nominal unification, 117, 309

non-deterministic rewrite rules on

dependency graphs, 105

normal, 105, 165

normal form, 22, 50, 110, 114

normalization, 22, 105, 159, 258

normalization level, 168

normalization levels, 255

normalization of terms, 253

normalizing rules, 213

occurs check, 159, 177, 179, 181, 217,

253

one-step pattern match, 233

ontologies, iii, 1

ontology, 7

414 INDEX OF CONCEPTS AND DEFINITIONS

ontology alignment, iii

ontology debugging, iii, 2, 7, 303

Ontology engineering, iii

ontology evaluation, 7, 9

ordering, 320

pattern catalogue, iii, 3

patterns, 2

permutation, 181

pitfalls, 9

positive meta-literal, 128

Predicate symbols, 30

predicate symbols, 30, 108

prefactorizing, 53

prefactorizing rules, 210, 253

preferred structure, 307

prenormal, 160, 179

prenormalizing rules, 207

primitive, 28, 60

productivity, 222

projection simplification, 112, 114, 120

proof, 33

properties, 8, 27, 45

property, 28

Propositional logic, 42

propositional variable, 42

propositional variables, 42

proxies, 154

quantifiers, 30, 31

quasinormal, 105, 164

quasinormalizing rules, 212

queries, 3, 91

query, 46, 62, 77

range, 29, 60

reason, 15

recursive arity, 162

reducibility relation, 112, 114, 120

redundancy, 160

redundant, 151, 153

refactoring, 13

Reformation, 12

refutation, 36, 97

renaming, 309

renaming operation, 135

reproduce, 379

Resolution, 34

resolution, 16, 35

resolvent, 35

rewrite rules, 21, 168

Rewrite systems, 21, 49

rewrite systems, 49

rigid, 94, 252

rigid-rigid, 252

Rules, 47

rules, 20

satisfiability, 71

satisfiability problem, 42

satisfiability query, 133

satisfiable, 42

satisfies, 42

search order, 263

search space, 263

search tree, 229

Second-order horizontal edges, 151

Second-order logic, 36

second-order logic, 17

second-order nodes, 151

second-order term, 109

second-order term equivalence, 112

INDEX OF CONCEPTS AND DEFINITIONS 415

second-order unification equation, 126

second-order unification signature, 118

second-order variables, 108

select clause, 132, 136

semantic patterns, 59

semi-decidable, 36, 54

seminormal, 163

seminormalizing rules, 211

signature, 30, 108

Skolem functions, 34

Skolemized, 34

solution, 131

solution preserving, 105, 255

solution preserving rule, 53

solution shape verification algorithm,

249

solution to, 126, 154, 156

solutions, 131

Sound, 23

sound, 34, 105, 271

soundness, 189, 272, 275

source indices, 161, 179

sources, 150, 151, 153

specificity, 273

standardization, 118

strictly finer, 116, 117, 125

Strong negation, 48

structural subsumption, 24

sub-expression, 119

substitution, 115, 116

subsumes, 28

subsuming, 28

sufficient, 28

symbolic unifiers, 117

syntactic equality, 110, 113

system of unification equations, 126

tableaux, 16

target, 150, 151, 153

target function symbols measure, 240

target projections measure, 241

term, 22

term graph rewrite systems, 149

term graph rewriting, 22, 52, 310

term rewrite systems, 22

Terminating, 23

terminating, 51, 217

terminating processes, 53

termination, 22, 49, 51

terms, 22, 30, 31, 52

theory, 33

thunk, 233

triples, 8

trivial dependency, 183, 185

true, 12

truth value of A under the solution U

and interpretation I, 128

truth-value of C under U and I, 128

truth-value of L under U and I, 128

truth-value of N under U and I, 129

unary predicates, 27

unifiability, 17, 37, 84, 251

Unification, 35, 47

unification, 16, 34, 46

unification dependency graph, 151

unification dependency graphs, 23

unification equation system, 102

unification equations, 102, 126

unification query, 133

unification schemata, 41, 42, 254

416 INDEX OF CONCEPTS AND DEFINITIONS

unification solution, 103, 125

unifier expression, 119

unifier expressions, 98, 103, 118

unifier first-order expression, 119

unifier level, 119, 153

unifier variable, 119

unifier variable dumping, 120

unifier variables, 102, 117, 118, 150,

309

unit tests, 299

universal, 31

universe of discourse, 30, 32

unsatisfiable, 29, 36

unsatisfiable class, 29

validate consistency, 253

Variables, 30

variables, 30, 46

vertical alignment, 157, 253

vertical edge, 150

Vertical edges, 153

Vertical monotony, 253

vertical monotony, 160

well defined, 233

with the shape of, 247

witnesses, 79

Index of notation

Here we try to capture some of the least standard technical notations that are used

throughout the thesis whose meaning may not be entirely clear, and reference the

sections in which they are defined, so that they can be more easily found. While we do

include some standard notation here, this is not exhaustive, and in general for standard

notations, consider looking at chapter 3 and the standard literature cited there.

Note that, while in general avoided, in some occasions the same symbol might mean

different things in different contexts. Normally this only happens when the context is

absolutely clear.

General mathematical symbols

≡ - Equivalence - Used to indicate that the two elements are syntactically equivalent at

the most abstract level.

:= - Assignment - Used to indicate that we define the left element to be the second

element.

First-order logic standard syntax

¬ - Negation - Definition 3.2.4.

∧ - Conjunction - Definition 3.2.4.

∨ - Disjunction - Definition 3.2.4.

417

418 INDEX OF CONCEPTS AND DEFINITIONS

=⇒ - Implication - Definition 3.2.4.

∀ - Universal quantification - Definition 3.2.5.

∃ - Existential quantification - Definition 3.2.6.

� - Entailment - Definition 3.2.14.

` - Provability - Definition 3.2.16.

> - True/Empty CNF - §3.2.3.

⊥ - False/Empty clause - §3.2.3.

X ,Y... - Typically used to reference First-order variables - Definition 6.1.1.

f ,g... - Typically used to reference Function symbols - Definition 6.1.1.

πi - Projection function on the i-th argument - Definition 6.1.2.

p,q... - Typically used to reference Predicate symbols - Definition 6.1.1.

N (∗) - Normal form - Theorems 6.1.1, 6.1.2 and 6.1.4.

Higher-order logic standard syntax

λ - Lambda abstraction - §3.2.2.

φ,ψ - Typically used to reference Second-order terms - Definition 6.1.2.

F,G... - Typically used to reference Second-order function variables - Definition 6.1.1.

P,Q... - Typoically used to reference Second-order predicate variables - Definition 6.1.1.

INDEX OF CONCEPTS AND DEFINITIONS 419

Unification

∼ - Unification - §3.2.1.2.

→ - Variable substitution - §3.2.1.2.

≈ - Unification equation - Definition 6.1.26.

Rewrite systems

→ - Direct reduction - §3.4.

∗→ - Reduction - Definitions 6.1.5, 6.1.9.

i→ - Non-transitive reduction - Definition 6.1.5.

Term syntax

◦ - Unary function composition - Definition 6.1.2.

∗{∗,∗, ...} - General function composition - Definition 6.1.2.

∼= - Term equivalence - Definitions 6.1.5, 6.1.9.

Existential second-order query logic

� - Entailment query - Definition 6.2.4.

�∗ - Satisfiability query - Definition 6.2.5.

' - Unification query - Definition 6.2.6.

420 INDEX OF CONCEPTS AND DEFINITIONS

6= - Disunification query - Definition 6.2.7.

�M - Meta-predicate query - Definition 6.2.8.

on - Join query - Definition 6.2.10.

∀ - Forall query - Definition 6.2.11.

S∗(∗) - Solution set of a query - Definition 6.2.3.

S̄∗(∗) - Complete solution set of a query - Definition 6.2.3.

G∗(∗) - Ground solution set of a query - Definition 6.2.3.

δ - Typically used to reference Meta-predicate symbols - Definition 6.1.1.

σi - Unifier variable - Definition 6.1.18.

I - Typically used to reference Instantiations - Definition 6.1.14.

�,≺ - Finer instantiations / substitutions - Definitions 6.1.13 and 6.1.17.

U - Typically used to reference Unification solutions - Definition 6.1.22.

U() - Typically used to reference a set of Unification solutions - Definition 6.1.22.

Q - Typically used to reference Queries - §6.2.

Dependency graph unification

α,β - Typically used to reference Unifier expressions - Definition 6.1.19.

ε - Typically used to reference Unifier expressions - Definition 6.1.19.

INDEX OF CONCEPTS AND DEFINITIONS 421

#σ(∗) - Unifier level of a unifier expression - Definition 6.1.19.

⊥ - No unifier level - Definition 6.1.19.

E - Typically used to reference a Unification equation - Definition 6.1.26.

E - Typically used to reference a System of unification equations - Definition 6.1.26.

κ - First-order proxy - Definition 7.2.2.

χ - Second-order proxy - Definition 7.2.2.

N,M.. - Typically used to reference dependency graph nodes - Definition 7.2.1.

Si - Typically used to reference source nodes of graph edges - Definition 7.2.1.

T - Typically used to reference the target node of a graph edge - Definition 7.2.1.

Ei - Typically used to reference dependency graph edges - Definition 7.2.1.

G - Typically used to reference a Dependency graph - Definition 7.2.1.

G - Typically used to reference a set of Dependency graphs - Definition 7.2.1.

H - Typically used to reference a Horizontal edge - Definition 7.2.1.

V - Typically used to reference a Vertical edge - Definition 7.2.1.

N[V]/N[σi] - Lifting of a node through a vertical edge or unifier variable - Definition

7.4.3.

H[V]/H[σi] - Lifting of a horizontal edge through a vertical edge or unifier variable -

Definition 7.4.4.

R - Typically used to reference Rewrite rules in dependency graphs - Definition 7.4.1.

422 INDEX OF CONCEPTS AND DEFINITIONS

R ∗ - Important sets of dependency graph Rewrite Rules - Definitions 7.5.1, 7.5.2, 7.5.3,

7.5.4, 7.5.5, 7.5.6, 7.5.7.

D1(∗),D2(∗) - Dependant boundary sets - Lemmas 7.6.1 and 7.6.2.

µ - Typically used to reference measures of dependency graphs - §7.6.

	Cover Sheet.pdf
	s1674597_JuanCasanova_Thesis_20221018.pdf
	1 Introduction
	2 Literature review
	2.1 Knowledge management and ontology engineering
	2.1.1 Ontology debugging

	2.2 Other topics in knowledge revision
	2.2.1 Belief revision
	2.2.2 Abduction
	2.2.3 Conceptual change and other logic based approaches
	2.2.4 Systematic and automatic approaches to software development

	2.3 Automated theorem proving and related topics
	2.3.1 Fundamentals of the semantics and algorithmics of logic
	2.3.2 Heuristics, domain-specific approaches and other modern topics
	2.3.3 Rewrite systems
	2.3.4 Description logics

	3 Background
	3.1 Web Ontology Language (OWL)
	3.2 Logic and automated theorem proving
	3.2.1 First-order logic
	3.2.2 Higher-order logic
	3.2.3 SAT and SMT
	3.2.4 Description logics

	3.3 Constraint programming
	3.3.1 Logic programming
	3.3.2 Answer Set Programming

	3.4 Rewrite systems
	3.4.1 Graph rewrite systems

	3.5 Termination / decidability and enumeration procedures

	4 Faults as patterns
	4.1 Semantic patterns
	4.2 Reasoning outside of the box
	4.3 Existential second-order query logic
	4.4 The meta-ontology fault detection framework
	4.5 Pattern catalogue
	4.5.1 Fault pattern 1: Assuming universal quantification implies existential quantification (Empty pepper pizza)
	4.5.2 Fault pattern example 2: Missing domain or range properties

	4.6 Summary

	5 Automatic detection of patterns
	5.1 Automated theorem proving
	5.2 Brute force search
	5.3 Technical challenges
	5.3.1 Second-order
	5.3.2 Queries

	5.4 Utilizing existing approaches
	5.4.1 Higher-order logic
	5.4.2 Decidable subsets of second-order logic
	5.4.3 Constraint programming

	5.5 Minimal commitment resolution for ESQ logic
	5.5.1 Maximal CNFs
	5.5.2 Resolution and implicit unification
	5.5.3 Dependency graph unification

	5.6 Summary

	6 Minimal commitment resolution for ESQ logic: Theoretical results
	6.1 Basic pieces
	6.1.1 Terms
	6.1.2 Substitution / instantiation
	6.1.3 Unifier expressions
	6.1.4 Unification solutions and equations
	6.1.5 Meta-CNF formulas
	6.1.6 Formulas with meta-predicates

	6.2 Existential second-order query logic
	6.2.1 Denotational semantics
	6.2.2 Computational aspects

	6.3 Maximal CNFs and inductive instantiation
	6.4 Summary

	7 Dependency graph unification for ESQ logic: Theoretical results
	7.1 Basic pieces
	7.1.1 Dependants
	7.1.2 Equational reasoning

	7.2 Unification dependency graphs
	7.3 Normalization of dependency graphs
	7.3.1 Prenormal form
	7.3.2 Acyclic form
	7.3.3 Factorizable form
	7.3.4 Seminormal form
	7.3.5 Quasinormal form
	7.3.6 Normal form

	7.4 Rewrite rules for dependency graphs
	7.4.1 Vertical monotony
	7.4.2 Edge zipping
	7.4.3 Projection simplification
	7.4.4 Occurs check
	7.4.5 Function dumping
	7.4.6 Validate consistency
	7.4.7 Factorization

	7.5 Normalization and rewrite rules
	7.6 Termination, productivity, fairness and solution shape verification
	7.6.1 The issue with cycles
	7.6.2 Prenormalizing rules: Termination
	7.6.3 Seminormalizing rules: Termination under acyclicity
	7.6.4 Normalizing rules: Fairness
	7.6.5 Quasinormalizing rules: Solution shape verification

	7.7 Relation to standard higher-order unification
	7.7.1 Why graphs
	7.7.2 Rewrite rules and their roles
	7.7.3 Non-determinism
	7.7.4 Unifiability versus explicit unifiers

	7.8 Summary

	8 Implementation
	8.1 Terms and unifier expressions
	8.2 ESQ logic
	8.3 Resolution
	8.4 Unification
	8.5 Non-determinism
	8.6 Dependency graph data structure
	8.7 Unit tests
	8.8 Summary

	9 Evaluation
	9.1 Evaluation methodology
	9.1.1 Extensive pattern test cases
	9.1.2 Pattern completeness and specificity against original research

	9.2 Pattern test case examples
	9.2.1 SpicyTopping pattern test case
	9.2.2 ProteinLoversPizza pattern test case
	9.2.3 ProteinLoversPizza / Primitive subsumption cycles pattern test case

	9.3 Results
	9.3.1 Pattern automated test cases
	9.3.2 Detailed profiling and debugging of an intermediate test case
	9.3.3 Qualitative evaluation of patterns on original research examples

	9.4 Analysis
	9.5 Summary

	10 Conclusions
	10.1 Related work
	10.1.1 Meta-ontology fault detection
	10.1.2 Minimal commitment resolution for ESQ logic

	10.2 Future work
	10.2.1 Minimal commitment resolution for ESQ logic
	10.2.2 Pattern catalogue
	10.2.3 Higher-order unification
	10.2.4 Other applications of ESQ logic
	10.2.5 Enumeration procedures and infinite search spaces

	10.3 Summary

	A Pattern catalogue
	A.1 Fault information
	A.2 Fault patterns
	A.2.1 OWL: Primitive versus defined classes (Spicy topping)
	A.2.2 Missing necessary conditions (Margherita pizza)
	A.2.3 Incorrect subclass axioms (Four cheese pizza)
	A.2.4 Incoherent domain axioms (Chocolate ice-cream)
	A.2.5 Assuming universal quantification implies existential quantification (Empty pepper pizza)
	A.2.6 Incorrect usage of logical constraints (ProteinLoversPizza)
	A.2.7 Heterogeneus collective: Technical administrative group
	A.2.8 Homogeneous functional complex: IT component
	A.2.9 Creating synonyms as classes
	A.2.10 Subsumption cycles
	A.2.11 Missing domain or range properties
	A.2.12 Missing inverse properties
	A.2.13 Inkless books
	A.2.14 Vegetarian pizzas with meat
	A.2.15 Unsatisfiable domains or ranges

	B Additional theoretical results and proofs
	C Qualitative evaluation of fault pattern coverage
	C.1 Examples
	C.1.1 MeatyVegetable
	C.1.2 Margherita pizzas with unwanted toppings
	C.1.3 Pizzas with cheese that are not cheesy
	C.1.4 Non-vegetarian margherita pizzas
	C.1.5 A chocolate ice-cream that is a pizza
	C.1.6 Empty pizzas
	C.1.7 Vegetarian protein lovers pizza
	C.1.8 Protein lovers pizzas do not exist
	C.1.9 Untangling of spicy toppings
	C.1.10 Heterogeneous technical administrative group
	C.1.11 Homogeneous IT architecture
	C.1.12 Theatre in a theatre
	C.1.13 Cars, motorcars and automobiles
	C.1.14 An actor “does is” a man
	C.1.15 Members of non-existent teams
	C.1.16 The item sells the buyer
	C.1.17 All persons are professors
	C.1.18 Style and period
	C.1.19 Product or service
	C.1.20 Routes that start but do not end
	C.1.21 Followed but not preceded
	C.1.22 Numbers that are both odd and even
	C.1.23 Numbers that are both prime and composite
	C.1.24 Objects writing emotions
	C.1.25 My city is not a CITY
	C.1.26 Referees being referees in matches
	C.1.27 Inkless books
	C.1.28 Vegetarian pizzas with some vegetables
	C.1.29 Many Madrids and many Barcelonas
	C.1.30 Only cities have an official language
	C.1.31 Olympics happen in city-nations
	C.1.32 Incorrectly labelled crossroads
	C.1.33 Other river element
	C.1.34 animalorigin
	C.1.35 Yes and No as instances
	C.1.36 hasFork if and only if it hasFork

	Bibliography
	Index of concepts and definitions
	Index of notation

