
Durham E-Theses

Optimal Thresholds for Classi�cation Trees using

Nonparametric Predictive Inference

ALRASHEEDI, MASAD,AWDH,MOHAMMAD

How to cite:

ALRASHEEDI, MASAD,AWDH,MOHAMMAD (2023) Optimal Thresholds for Classi�cation Trees using

Nonparametric Predictive Inference, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/14793/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/14793/
 http://etheses.dur.ac.uk/14793/ 
http://etheses.dur.ac.uk/policies/


Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk


Optimal Thresholds for Classification

Trees using Nonparametric Predictive

Inference

Masad Awdh M. Alrasheedi

A Thesis presented for the degree of

Doctor of Philosophy

Statistics Group

Department of Mathematical Sciences

University of Durham

England

August 2022



Dedicated

To my father Awadh

To my mother Nawar

for their unlimited love, support and prayers

To my wife Asrar

To my daughter Deem

who make my life convivial during the hardest of times

My friends

for encouraging and believing



Optimal Thresholds for Classification

Trees using Nonparametric Predictive

Inference

Masad Awadh M. Alrasheedi

Submitted for the degree of Doctor of Philosophy

August 2022

Abstract

In data mining, classification is used to assign a new observation to one of a set of

predefined classes based on the attributes of the observation. Classification trees are

one of the most commonly used methods in the area of classification because their

rules are easy to understand and interpret. Classification trees are constructed re-

cursively by a top-down scheme using repeated splits of the training data set, which

is a subset of the data. When the data set involves a continuous-valued attribute,

there is a need to select an appropriate threshold value to determine the classes

and split the data. In recent years, Nonparametric Predictive Inference (NPI) has

been introduced for selecting optimal thresholds for two- and three-class classifi-

cation problems, where the inferences are explicitly in terms of a given number of

future observations and target proportions. These target proportions enable one

to choose weights that reflect the relative importance of one class over another.

The NPI-based threshold selection method has previously been implemented in the

context of Receiver Operating Characteristic (ROC) analysis, but not for building

classification trees. Due to the predictive nature of the NPI-based threshold selec-

tion method, it is well suited for the classification tree method, as the end goal of

building classification trees is to use them for prediction as well.

In this thesis, we present new classification algorithms for building classification

trees using the NPI approach for selecting the optimal thresholds. We first present



iv

a new classification algorithm, which we call the NPI2-Tree algorithm, for building

binary classification trees; we then extend it to build classification trees with three

ordered classes, which we call the NPI3-Tree algorithm. In order to build classifi-

cation trees using our algorithms, we introduce a new procedure for selecting the

optimal values of target proportions by optimising classification performance on test

data. We use different measures to evaluate and compare the performance of the

NPI2-Tree and the NPI3-Tree classification algorithms with other classification al-

gorithms from the literature. The experimental results show that our classification

algorithms perform well compared to other algorithms.

Finally, we present applications of the NPI2-Tree and NPI3-Tree classification

algorithms on noisy data sets. Noise refers to situations that occur when the data

sets used for classification tasks have incorrect values in the attribute variables or

the class variable. The performances of the NPI2-Tree and NPI3-Tree classification

algorithms in the case of noisy data are evaluated using different levels of noise added

to the class variable. The results show that our classification algorithms perform

well in case of noisy data and tend to be quite robust for most noise levels, compared

to other classification algorithms.



Declaration

The work in this thesis is based on research carried out in the Department of Math-

ematical Sciences at Durham University. No part of this thesis has been submitted

elsewhere for any degree or qualification, and it is all my own work unless referenced

to the contrary in the text.

Copyright c© 2022 by Masad Awadh M. Alrasheedi.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v



Acknowledgements

Alhamdulillah, Allah my God, I am truly grateful for everything you have given me

in general and in accomplishing this thesis particularly.

My sincere gratitude and unlimited thanks go to my supervisors Dr. Tahani

Coolen-Maturi and Prof. Frank Coolen for being a source of support in my academic

life. I really appreciate all your patience, calm advice, and invaluable suggestions

during the research. Without their help and guidance, this work would not have

been possible.

I am eternally grateful to my parents for their unlimited support, prayers and

belief in me throughout my life. I would also like to thank my brothers and sisters

for their prayers and for encouraging me to undertake my PhD, I hope they are

proud of this thesis. My special thanks to my wife Asrar for her support, patience

and for understanding that my work kept me very busy.

Thanks to Durham University, Taibah University, and the Saudi government for

the support that has enabled me to study smoothly.

vi



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

2 Preliminaries 5

2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Classification trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Split criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Selecting the classification threshold . . . . . . . . . . . . . . . . . . . 11

2.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Imprecise Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Nonparametric Predictive Inference (NPI) . . . . . . . . . . . . . . . 18

2.7.1 NPI for real-valued observations . . . . . . . . . . . . . . . . . 18

2.7.2 NPI for multiple future observations . . . . . . . . . . . . . . 19

2.7.3 NPI for Bernoulli quantities . . . . . . . . . . . . . . . . . . . 21

2.7.4 NPI for multinomial data . . . . . . . . . . . . . . . . . . . . 22

3 NPI-based binary classification tree 24

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 NPI-based thresholds for two classes . . . . . . . . . . . . . . . . . . 26

3.3 NPI-based binary classification trees . . . . . . . . . . . . . . . . . . 33

3.3.1 Selecting the target proportions . . . . . . . . . . . . . . . . . 36

vii



Contents viii

3.3.2 NPI2-Tree algorithm . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 NPI2-Tree with imprecise split criterion . . . . . . . . . . . . . . . . . 54

3.5.1 Imprecise Information Gain (IIG) . . . . . . . . . . . . . . . . 55

3.5.2 Performance of the NPI2-Tree with the IIG . . . . . . . . . . . 56

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 NPI-based classification trees with three classes 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 NPI-based thresholds for three classes . . . . . . . . . . . . . . . . . . 62

4.3 NPI-based classification trees with three classes . . . . . . . . . . . . 68

4.3.1 Selecting the target proportions . . . . . . . . . . . . . . . . . 70

4.3.2 NPI3-Tree algorithm . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Performance of NPI3-Tree with the IIG . . . . . . . . . . . . . . . . . 86

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 NPI-based classification trees for noisy data 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Noise in classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Adding noise to data sets . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Results for the NPI2-Tree algorithm . . . . . . . . . . . . . . . 99

5.4.3 Results for the NPI3-Tree algorithm . . . . . . . . . . . . . . . 103

5.5 NPI3-Tree with noisy neighbour labels . . . . . . . . . . . . . . . . . 107

5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Conclusions 116

Appendix 119



Contents ix

A Optimisation technique using Genetic Algorithm (GA) 119

A.1 The GA for two classes . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A.2 The GA for three classes . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 124



Chapter 1

Introduction

In data mining techniques, classification is used to assign new observations to one of

a set of predefined classes based on the attributes of the observations. The goal of

classification is to predict the unknown class states (or labels) of observations when

their attribute variable values are known. There are several classification methods

available in the literature that one might use to predict the class states of observa-

tions. Classification (or decision) trees are one of the most commonly used because

their rules are easy to understand and interpret with minimal experience. Classifi-

cation trees are constructed recursively by a top-down scheme using repeated splits

of the training data sets. When a data set contains a continuous-valued attribute,

there is a need to select an appropriate threshold that can be used to determine the

classes and split the data upon it. Thus, several methods have been developed in the

literature using different approaches to find the optimal threshold value. However,

these methods usually use a similar way to select the threshold values, which focus

on maximising the chances of correct classification in the training data sets.

In recent years, Nonparametric Predictive Inference (NPI) has been developed

as a statistical methodology based on imprecise probability theory. NPI is a statis-

tical approach based on Hill’s assumption A(n) [49], given in Section 2.7, with the

use of lower and upper probabilities to make inferences about one or more future

observations. Due to the predictive nature of the NPI approach, it has been applied

in many different applications in statistics, finance, operations research, survival

1



Chapter 1. Introduction 2

analysis and reliability [18, 29, 34, 36]. Alabdulhadi [11] and Coolen-Maturi et al.

[37] introduced NPI for selecting optimal thresholds for two- and three-class classi-

fication problems, where the inferences are explicitly in terms of a given number of

future observations from each class. They present a direct criterion that enables one

to choose target proportions that reflect the relative importance of one class over

another. For example, if giving a medication to people with a disease is critical and

this medication has no serious harmful effects for people without the disease, one

can give more weight to the correctly classified for the diseased class than for the

healthy class. It would be expected that this will increase the proportion of cor-

rectly classified people with the disease while decreasing the proportion of correctly

classified people without it. The NPI-based threshold selection method has been

implemented in the context of Receiver Operating Characteristic (ROC) analysis

[11, 37], but not for building classification trees.

In this thesis, we present new classification algorithms for building classification

trees using the NPI approach for selecting the optimal thresholds [11, 37]. We first

present a new classification algorithm, which we call the NPI2-Tree algorithm, for

building binary classification trees; we then extend it to build classification trees

with three ordered classes, which we call the NPI3-Tree algorithm. The method of

building classification trees using the NPI2-Tree and NPI3-Tree algorithms is novel

in that it builds classification trees by employing the NPI approach for selecting the

thresholds for data with two and three classes using predictive inference. In order

to build a classification tree using our algorithms, we introduce a new procedure

for selecting the optimal values of target proportions by choosing that to maximise

classification performance on unseen data (testing data sets). We carry out exper-

imental analysis on different data sets to evaluate and compare the performance

of the NPI2-Tree and the NPI3-Tree algorithms with other classification algorithms

using several evaluation measures. We also evaluate and compare the performance

of our classification algorithms with others using different levels of noise added to

the data sets. Noise refers to situations that occur when the data sets used for

classification tasks have incorrect values in the attribute variables or class variable.



Chapter 1. Introduction 3

The rest of the thesis is organized as follows: Chapter 2 presents a general

overview of classification trees and some classical methods for selecting the thresh-

olds in classification trees. This is followed by background information about im-

precise probability and the NPI approach.

We begin Chapter 3 by presenting the NPI method for selecting the optimal

threshold for real-valued data and for the two-class classification scenario and pro-

vide an example to explain the overall methodology. We then present a new clas-

sification algorithm, which we call the NPI2-Tree algorithm, for building binary

classification trees using the NPI method for selecting the optimal threshold. A

new procedure for selecting the target proportions is presented to be used with the

NPI2-Tree algorithm for building the binary classification tree. Then, we evaluate

the performance of the algorithm NPI2-Tree on six data sets taken from the UCI

repository of machine learning databases [41], and we compare its performance with

other classification tree algorithms. In addition, we evaluate the performance of

the NPI2-Tree algorithm using a different split criterion based on imprecise prob-

ability, and we compare the results with the classical split criterion. Some results

of this chapter were presented at the 12th Workshop on Principles and Methods of

Statistical Inference with Interval Probability (WPMSIIP 2019), at Durham Univer-

sity, UK, in September 2019. Moreover, part of this chapter’s results was presented

at the 12th International Conference of the ERCIM WG on Computational and

Methodological Statistics (CMStatistics 2019) and 13th International Conference

on Computational and Financial Econometrics (CFE 2019) at the University of

London, UK, in December 2019.

Chapter 4 extends the method of building the classification tree from two classes

to three ordered classes. First, we present the NPI method for selecting the optimal

threshold for the three ordered classes and provide a detailed example to explain

the methodology. We then present a new classification algorithm, which we call the

NPI3-Tree algorithm, for building classification trees with three ordered classes. The



Chapter 1. Introduction 4

process of choosing the target proportions is extended to be used with the NPI3-

Tree algorithm for building classification trees. The performance of the NPI3-Tree

algorithm is evaluated on five data sets, and the results are compared with some

other classification algorithms. Furthermore, we evaluate the performance of the

NPI3-Tree algorithm using imprecise split criteria and compare the results with the

classical split criterion. Some results of this chapter were presented at the 12th Inter-

national Symposium on Imprecise Probability: Theories and Applications (ISIPTA)

at Granada, Spain, in July 2021. In addition, some results of this chapter were also

presented at a seminar at Durham University.

In Chapter 5, we present applications of the NPI2-Tree algorithm, presented in

Chapter 3, and the NPI3-Tree algorithm, presented in Chapter 4, on noisy data

sets. This chapter begins with a brief summary of data noise and presents some

methods for adding noise to the class variable. We then evaluate the performance

of our classification algorithms on different levels of random noise added to the class

variables, and we compare their results with other classification algorithms. This

chapter’s results were presented at a seminar at Durham University.

Finally, in Chapter 6, we provide the conclusions of this thesis, and we suggest

some interesting future works to extend what is presented in this thesis. In the final

sections of Chapters 3, 4 and 5, some of these future works are also discussed.



Chapter 2

Preliminaries

In this chapter, we present the basic concepts from the literature to provide back-

ground information for the topics considered in this thesis. An overview of noisy

data is introduced at the beginning of Chapter 5. First, we present an overview of

classification trees. We present some of the most commonly used split criteria for

building classification trees and the methods used for selecting the threshold value.

Then, we present some evaluation metrics used to measure the performance of clas-

sification trees. After that, we introduce the main idea of imprecise probability and

present some studies that used imprecise probability to build classification trees.

Finally, we provide a brief overview of Nonparametric Predictive Inference (NPI).

2.1 Classification

In data mining, classification is a form of data analysis where a classification algo-

rithm assigns one of a set of predefined classes or categories to new observations

based on the observed values of attribute variables. Basically, a data set comprises

of attribute variables, also called features or input variables {X1, X2, . . . , Xf}, and

a class variable, also called target or output variable C, with a finite set of labels

{C1, . . . , CK}. The attribute variables used in classification tasks could be cate-

gorical or continuous. Categorical attributes are either nominal (non-ordered) such

as colour, gender, etc., or ordered such as low, medium and high. The continuous

attributes would indicate a numerical value, rather than a categorical value, e.g.

5



2.2. Classification trees 6

temperature, weight of a person, age of a person, etc. A classification algorithm is

built using a subset of the data called the training set. On this set, the model finds

the relationship between the values of attribute variables and the values of the class

variable using different techniques. The quality of the model is then verified using

the remaining set of data, called the testing set. The classification task is important

in many fields such as health care, banking, and economics etc. For example, in

healthcare, a classification model could be used to identify persons who are at low,

medium or high risk of acquiring a specific disease. Similarly, in banking, a classi-

fication model could be used to classify bank loan applications if they are safe or

risky. Various classification methods have been presented in the literature to predict

the value or state of a class variable. For example, Support Vector Machines, Naive

Bayes, Logistic Regression, Random Forests and Classification Trees. For more de-

tails and examples about these classification methods, we refer to [57, 71].

In this thesis, we focus only on classification trees because it is one of the most

popular methods used in classification tasks as it provides a number of advantages

over the other classification methods. For example, it is easy to be understood and

interpreted, it can deal with large data without any assumptions and it can handle

different types of attribute variables.

2.2 Classification trees

A classification tree is a predictive model that provides a visual representation of

the relationship between the attribute variables and the class variable. In general,

a classification tree is built in the form of a tree structure that contains three main

parts: a root node, internal nodes and leaf nodes. A root node; it is the topmost

node in the tree which has no incoming edges. An internal node: there can be many

internal nodes, each has exactly one incoming edge and two or more outgoing edges.

Finally, a leaf node: it has exactly one incoming edge and no outgoing edges. In a

classification tree, the internal nodes and the root node contain an attribute vari-

able, each branch represents an outcome of the attribute variable and each leaf node



2.3. Split criteria 7

X1

X3

C2C1

0 1

X2

C2C1

0 1

0 1

1

Figure 2.1: An example of a classification tree.

represents a class label. The paths from the root node to the leaf nodes denote the

classification algorithm. Figure 2.1 shows an example of a classification tree with

three attribute variables X1, X2 and X3, each has two possible values {0, 1}, and a

class variable C with two labels C1 and C2.

Once the classification tree has been built, it can be used to classify new observa-

tions. So, observations are classified based on their attribute variables by navigating

them from the root node of the tree and moving toward the leaf node. For example,

as shown in Figure 2.1, any new observations with X1 = X2 = 0 or X1 = 1, X3 = 0

would be both classified to class C1.

2.3 Split criteria

During the process of building the classification tree, a classification algorithm re-

quires a split criterion which is used to test all available attribute variables at each

node of the tree and select the most useful one to split the data upon. The aim of

using split criteria is to increase a node’s purity and reduce a node’s impurity. A

node is 100% pure when all of its observations belong to the same class, and 100%

impure when its observations are equally split between classes. Many classification

tree algorithms have been developed in the literature using different split criteria.

The most commonly used classic split criteria are: Information Gain, Information

Gain Ratio and Gini index. These split criteria are used to implement the ID3 [66],



2.3. Split criteria 8

the C4.5 [67] and the CART [25] algorithms, respectively. In addition, we briefly

review a split criterion based on imprecise probability, which is Imprecise Informa-

tion Gain. In the following, we explain these split criteria.

The Information Gain (IG) is a measure which was introduced by Quinlan in

1986 as a split criterion for the ID3 algorithm [66]. It can deal only with categorical

attributes. The IG is an impurity-based approach which uses entropy as an impurity

measure. The formula of entropy [73], also called the Shannon Entropy, for a training

data set S with a class variable C, is given by

H(C) = −
K∑
i=1

pi log2(pi) (2.1)

where pi is the proportion of the training data set S belonging to class Ci, for

i = 1, . . . , K. So, K is the total number of classes. Typically, the entropy represents

a level of impurity or uncertainty. If all observations belong to a single class, then

the entropy is equal to 0, and if all classes have equal proportions in S, then the

entropy reaches its maximum value 1 [53], so 0 ≤ H(C) ≤ 1. The IG of an attribute

variable X with different values {x1, . . . , xr}, relative to the training set S and the

class variable C is given by

IG(C,X) = H(C)−H(C|X) (2.2)

where H(C|X) is the entropy of class C given attribute variable X, and is defined

as

H(C|X) =
r∑
i=1

p(X = xi)H(C|X = xi) (2.3)

In order to choose the best attribute variable for splitting the data at each node

of the tree, the IG is used as a split criterion by the ID3 algorithm. Below we

summarise the steps of building classification trees by the ID3 algorithm.

• Considering that all observations do not belong to the same class, calculate

the IG (Formula 2.2) for each attribute variable in the training set S.



2.3. Split criteria 9

• Assign the attribute variable for which the IG is maximum for the root node.

• Split the training set into two or more subsets based on the values of the cho-

sen attribute, then for each subset, repeat the process.

It has been proved that the IG split criterion is biased to attribute variables that

have a large number of states, which could negatively affect the performance of the

ID3 algorithm [66]. Therefore, the Information Gain Ratio (IGR) was introduced

by Quinlan in 1993 [67] to overcome this weakness by using a normalization of the

IG. Unlike the ID3, the C4.5 can handle both numerical and categorical attributes.

In Section 2.4, we will explain how the C4.5 deals with numerical attributes. The

IGR of an attribute X and a class variable C is given by:

IGR(C,X) =
IG(C,X)

SI(X)
(2.4)

where IG(C,X) is given by Equation (2.2), and SI(X) is called the split Informa-

tion, which is the entropy of the variable which does not depend on C, it is given

by:

SI(X) = −
r∑
i=1

p(X = xi) log2 p(X = xi) (2.5)

The value of the SI(C,X) represents the information generated by splitting the

training data set S into v partitions corresponding to the values of the attribute

variable X. The IGR is used as a split criterion for the C4.5 algorithm [67]. As the

IGR is an extension to the IG, hence, the C4.5 algorithm is an alternative version

of the ID3 algorithm. In a similar method to the ID3 method, the C4.5 algorithm

builds classification trees. The main difference is that the C4.5 algorithm uses the

IGR (Formula 2.4) as a split criterion to select the attribute variable at each node.

The Gini Index (GI) was introduced by Breiman [25] as a split criterion for the

Classification And Regression Tree (CART) algorithm. The CART algorithm uses a

binary split when building trees, meaning that each internal node in the classification

tree can have only two branches. In addition, the CART algorithm can work with

both numerical and categorical attributes. We explain how the CART handles



2.3. Split criteria 10

numerical attributes in Section 2.4. The GI is a split criterion that measures the

degree of an attribute’s impurity with respect to the classes. It is defined as

GI(S) = 1−
K∑
i=1

(pi)
2 (2.6)

where pi is the proportion of the observations that belong to class Ci. If all obser-

vations belong to one class, then the Gini Index value becomes zero, on the other

hand, if all classes are equally distributed, then the GI reaches its maximum value

0.5. After splitting the data set into two subsets, then the GI is computed as a

weighted sum for each resulting split. For example, if a binary split on X divides S

into S1 and S2, the GI of the split data is defined as

GI(S,X) = d1GI(S1) + d2GI(S2) (2.7)

where d1 and d2 are the proportions of data sets in S1 and S2, respectively. The

attribute variable that has the minimum GI value is chosen as the splitting attribute.

Finally, the split criterion Imprecise Information Gain (IIG), which is based on

imprecise probability (given in Section 2.6) and general uncertainty measures was

introduced by Abellán and Moral [6]. It is similar to the IG split criterion that is

used in the ID3 algorithm, but the precise probabilities and entropy function have

been replaced with imprecise probabilities and maximum of entropy function. The

IIG for the attribute variable X is given by

IIG(C,X) = H∗(L(C))−
r∑
i=1

p(X = xi)H
∗(L(C|(X = xi)) (2.8)

where H∗(L) is the maximum entropy of a credal set, and L(C) and L(C|X = xi) are

credal sets for the class variable C and for C given the value xi of the attribute vari-

able X, respectively; and i = 1, . . . , n for a partition of the data set; and p(X = xi)

is a probability distribution that belongs to the credal set of the attribute variable

X, i.e. L(X). Credal sets are closed and convex sets of probability distributions.

Further details and explanations of the IIG(C,X) and L(.) are given in Section 3.5.

Building the classification trees using the IIG split criterion can be done with differ-

ent imprecise probability models. For example, one can use the maximum entropy



2.4. Selecting the classification threshold 11

distributions from the credal set obtained from the Imprecise Dirichlet Model (IDM)

[1] or from Nonparametric Predictive Inference for Multinomial data (NPI-M) [7].

These models are given in Section 2.6 and Subsection 2.7.4, respectively. The im-

precise split criterion IIG was presented to compare it with our new algorithms and

other classification algorithms. So, in this thesis, we refer to a classification tree

created with the IIG and the IDM by the IDM algorithm, and the IIG and the

NPI-M by the NPI-M algorithm.

2.4 Selecting the classification threshold

When a data set used for classification tasks contains a continuous-valued attribute

variable, a classification algorithm requires a method which is used to select the

optimal threshold, also known as a split point, to split the data and determine

the classes. Several methods in the literature have been developed using different

approaches for selecting these threshold values. This section will review the most

commonly used methods in the classification tree algorithms. These methods are

later compared with our new method for selecting the optimal threshold values,

proposed in Chapters 3 and 4. We refer to [10, 58] for further information and

explanations about these methods.

One of the most commonly used methods in the classification tree algorithms

is to find the threshold value that maximises the split criterion IGR used in the

C4.5 algorithm [68]. Assume that we have a training data set S and a continuous-

valued attribute X with n distinct values in the ordinal sequence {v1, . . . , vn}. The

C4.5 algorithm uses a binary split on X to evaluate each midpoint between adja-

cent values vi and vi+1 (for i = 1, . . . , n − 1), by computing the IGR, as given by

Equation (2.4). So, the number of possible evaluations for X (assuming that all

observations do not have tied values) is n−1. A threshold value that maximises the

IGR criterion is selected as the optimal threshold for attribute X. After selecting

the threshold value, the training data set is partitioned into two subsets based on



2.4. Selecting the classification threshold 12

the threshold value. The C4.5 algorithm continues recursively by evaluating each

midpoint between adjacent values for each new subset and selecting new thresholds

for each branch. According to Quinlan [68], in order to ensure that any threshold

value used in the classification tree is an actual value from the data set, the C4.5

algorithm chooses the largest value of X that does not exceed each of the midpoint

values. I.e, the C4.5 algorithm chooses the largest value of X in the given training

set that does not exceed the below interval midpoint:

ti =

{
v | v ≤ vi + vi+1

2

}

In classification tree applications, the C4.5 algorithm has been widely used in

several studies for building classification trees with continuous-valued attributes. For

example, in the medical field, Adri et al. [52] used the C4.5 algorithm to identify

the optimal thresholds for a data set containing many continuous-valued attributes

obtained from the Autonomic Nervous System (ANS) unit of University Hospital

Avicenne in Morocco. The classification accuracy results were excellent, and they

suggested that the C4.5 algorithm is useful in choosing the appropriate threshold

for continuous-valued attributes. Mašetic and Subasi [62] used the C4.5 algorithm

in building a classification tree that detects and separates normal and congestive

heart failures (CHF) over a long time period. The experimental analysis showed

that the C4.5 algorithm plays an important role in identifying and classifying ECG

heartbeat signals with classification accuracy 99.86%. On the other hand, many re-

searchers discussed the disadvantages of the C4.5 algorithm in selecting the optimal

thresholds. For example, Fayyad and Irani [43] argued that the C4.5 algorithm does

not select the optimal threshold that gives high classification accuracy for future ob-

servations, but it is a useful method for selecting the threshold value that correctly

classifies the training data. Another disadvantage stated by Fayyad and Irani [43],

is that the C4.5 algorithm must evaluate each attribute n − 1 times, which could

result in a delay in the process of building the trees, particularly for large data sets.

This disadvantage does not exist in our algorithms.



2.4. Selecting the classification threshold 13

Another method for selecting the optimal threshold is used in the CART algo-

rithm [25]. The CART algorithm selects the optimal threshold in a similar way to

the C4.5 algorithm, which both use a binary split on X to evaluate each partition

by computing the GI, as given by Equation (2.7), for all candidate thresholds. A

threshold value that minimises the GI is chosen as the optimal threshold for that

attribute X. Zhang et al. [80] examined the performance of the CART algorithm

and compared its performance with the C4.5 algorithm using real data sets. The

results showed that the CART algorithm performs better than the C4.5 algorithm

for most data sets, so it is considered a suitable alternative to the C4.5 algorithm

in the case of continuous attributes.

Fayyad and Irani [43, 44] showed that it is not necessary to evaluate all possible

values of attribute X as done by the C4.5 and CART algorithms to find the optimal

threshold, as they proved that the optimal threshold value t that maximises the

information must be boundary point. For example, if vi and vi+1 belong to the same

class, then the midpoint between them does not give a partition that maximises

the IGR criterion or minimises the GI criterion. In addition, they suggested using

only the average class entropy to evaluate the partitions created by each candidate

threshold. For example, for the class variable C and attribute X, if the training data

set S is partitioned into two subsets, S1 and S2, based on a candidate threshold t

value, then the average class entropy of the resulting partition is

H(C;X, t) = d1H1(C) + d2H2(C) (2.9)

where di denotes the proportion of S that belongs to Si, for i = 1, 2, and Hi(C) is

the entropy of the class variable, C, in Si. Note that Hi(C) is calculated in the same

way as in H(C), Formula (2.1). A threshold value t which minimises Equation (2.9)

among all candidate thresholds is chosen as the optimal threshold for X. Kohavi

and Sahami [56] examined the method of Fayyad and Irani [43, 44] for selecting the

optimal threshold and compared it with the C4.5 algorithm’s method for selecting

the optimal threshold. Their results showed that Fayyad and Irani’s method per-

formed better than the method used by the C4.5 algorithm.



2.5. Evaluation metrics 14

Several other methods for selecting the optimal threshold have been introduced

in the literature, which are not based on the split criteria. However, these methods

have been used less in classification tree applications than those based on the split

criteria. Some of these methods are based on the Receiver Operating Characteristic

(ROC) curve. The ROC curve is a mapping of Sensitivity (Sn) against 1-Specificity

(Sp) over all possible threshold values t ∈ R. In classification tasks, sensitivity is the

ratio of true positives predicted by the algorithm, while specificity is the ratio of true

negatives predicted by the algorithm. Some of the methods that select the optimal

threshold based on the ROC analyses is the Youden index [46] and the Closest-to-

(0,1) corner methods [26, 76]. In this thesis, we will not use these methods during the

experimental analysis, so we refer to [11, 13, 46] for further details and explanations

about these methods.

2.5 Evaluation metrics

Several evaluation metrics have been used to measure and compare the performance

of classification trees created by different classification algorithms. One of the most

commonly used metrics is the classification accuracy, which is the ratio of the num-

ber of correctly classified observations on the testing set to the total number of

observations in the testing set. Given a confusion matrix, as shown in Table 2.1,

which is used to provide a summary of the predictive performance of an algorithm,

the classification accuracy is calculated as follows

Accuracy =
TP+TN

TP+TN+FP+FN
(2.10)

where TP, TN, FP and FN denote true positive, true negative, false positive and

false negative, respectively. Note that the accuracy as it is defined on Formula

(2.10) is only for binary cases. Similarly, we can calculate the accuracy for any

case by dividing the number of correct predictions (the corresponding diagonal in

the confusion matrix, Table 2.1) by the total number of observations in the testing

set. In practical applications, the classification accuracy is calculated using a k-fold

cross-validation technique [53]. In this method, the model is trained and evaluated



2.5. Evaluation metrics 15

Class 1 (Predicted) Class 2 (Predicted)

Class 1 (Actual) TN FP

Class 2 (Actual) FN TP

Table 2.1: A sample confusion matrix.

using several different subsets of the data set instead of one. The data sets are

randomly divided into k subsets of approximately equal size, called folds. Each fold

of the k folds is used as a testing set to evaluate the performance of the classification

algorithm, and the k − 1 remaining folds are mixed together to use as a training

set. This method is performed k times so that training and testing are performed

k times. In the end, the classification accuracy is computed by taking the average

of the k classification accuracies attained from the k test sets. In this thesis, the

10-fold cross-validation method is used for all of the experimental analyses. We have

chosen k = 10 because it is the most common choice in practice.

Other studies, such as [4, 22, 64], also use other metrics to evaluate the perfor-

mance of the classification algorithms. Some of these metrics are in-sample accuracy

and tree size. The in-sample accuracy is the classification accuracy on the training

data sets. It is calculated as the ratio of correctly classified observations in the train-

ing data set to the total number of observations in the training data set. The tree

size is defined as the number of leaf nodes in the tree. Note that it is referred here to

the tree size as the total number of leaf nodes in the tree, as was done by Bertsimas

and Dunn [22], and by Murthy and Salzberg [64]. However, some researchers may

refer to the tree size as the total number of all nodes in the tree. In this thesis,

we use all three metrics, which are classification accuracy, in-sample accuracy and

tree size, to evaluate and compare the performance of our classification algorithms

with other classification algorithms from the literature. It will be interesting to use

further evaluation measures, such as sensitivity and specificity, or consider different

costs associated with misclassifications, but we leave this as a topic for future re-

search as the aim of this work is to maximise the total classification accuracy rate,

not to minimise misclassification costs.



2.6. Imprecise Probability 16

2.6 Imprecise Probability

In classical probability theory, the probability p(A) that is used to quantify uncer-

tainty about an event A is given by a single value, that is p(A) ∈ [0, 1], where p is

a probability satisfying Kolmogorov’s axioms [17]. The precise probability obtained

from the data in real-world data sets may not be accurate, therefore, the use of im-

precise probability became an alternative approach that may give advantages over

the use of precise probability. The idea of using imprecise probabilities was first

proposed by Boole [23], in the middle of the nineteenth century. In recent years,

many research areas in statistics have been developed based on imprecise probabil-

ity. Augustin et al. [17] have presented a detailed introduction to the main aspects

of imprecise probabilities theory and applications.

Unlike classical probability, in imprecise probability theory an interval proba-

bility is assigned for an event A, that is [P (A), P (A)], where P (A) ∈ [0, 1] is the

lower probability and P (A) ∈ [0, 1] is the upper probability. The classical proba-

bility value is a special case in imprecise probability with P (A) = P (A), whereas

P (A) = 0 and P (A) = 1 represents complete lack of knowledge about an event A.

The structure, M, for set of events A is defined by Weichselberger [78] as

M = {p(.) | P (A) ≤ p(A) ≤ P (A),∀A ∈ A} (2.11)

where p(.) is a probability satisfying Kolmogorov’s axioms. The lower and upper

probabilities for an event A are:

P (A) = inf
p(.)∈M

p(A) (2.12)

and

P (A) = sup
p(.)∈M

p(A) (2.13)

One of the most widely used imprecise probability models is the Imprecise Dirich-

let Model (IDM). This model was introduced by Walley [77] for statistical inference

based on multinomial data. We use a similar notation to [77] to explain this model.



2.6. Imprecise Probability 17

Assume that there is a data set with n observations. Let X be a variable whose

values or categories belong to {x1, . . . , xr}. Let ni denote the total number of ob-

servations in xi, for i = 1, . . . , r. According to the IDM model, the lower and upper

probabilities for the event that the next future observation, Xn+1 will be in xi are

P IDM(Xn+1 = xi) =
ni

n+ s̃
(2.14)

P IDM(Xn+1 = xi) =
ni + s̃

n+ s̃
(2.15)

where s̃ is a given parameter. Note that this parameter was written as s in [77],

but we denote a different symbol because we use s for another value later in the

thesis. This parameter determines the convergence speed of the lower and upper

probabilities when the sample size increases [77]. Walley [77] proposed to choose

the values s̃ = 1 or s̃ = 2, nevertheless, mainly recommends the use of s̃ = 1. As

it is presented in [1], the imprecise probability obtained by the IDM gives rise to

the following credal set (closed and convex set) of probability distributions on the

variable X,

L(X) =

{
p| p(xi) ∈

[
ni

n+ s̃
,
ni + s̃

n+ s̃

]
, i = 1, . . . , r,

r∑
i=1

p(xi) = 1

}
(2.16)

The IDM model has been widely used in many areas of statistics. Bernard [20]

presented some of these applications. However, a number of criticisms of using the

IDM model were made [65]. Some of these criticisms were discussed by Walley

himself [77], and by other researchers. These disadvantages motivate researchers to

develop alternative models for such inference. Coolen and Augustin [30, 31] proposed

a new model for inference from multinomial data called Nonparametric Predictive

Inference for Multinomial data (NPI-M). The NPI-M model, which is based on the

NPI approach, does not make any previous assumptions about the data as the IDM

does. In recent years, building classification trees from an imprecise probability

perspective have been presented in many papers. Abellán and Moral [6] introduced

one of the first applications of building classification trees using imprecise probability

theory, where they presented a new split criterion based on the Imprecise Dirichlet

Model. After this paper, many researchers have presented many papers in which they

build classification trees from imprecise probability approach [4, 6, 61]. Several other



2.7. Nonparametric Predictive Inference (NPI) 18

researches also built classification trees based on Nonparametric Predictive Inference

[2, 7, 8, 18]. It has been shown by Abellán et al. [8] and Baker [18] that using the

NPI-M to build classification trees gives slightly better results than the IDM in

terms of the classification accuracy. In this thesis, we also build classification trees

based on the Nonparametric Predictive Inference approach. We build classification

trees using a new method for selecting the optimal thresholds based on NPI. We

first review the Nonparametric Predictive Inference approach in Section 2.7.

2.7 Nonparametric Predictive Inference (NPI)

2.7.1 NPI for real-valued observations

Nonparametric predictive inference (NPI) is a statistical methodology based on Hill’s

assumption A(n) [49], which gives direct probabilities for one or more future obser-

vations based on n observed values of related random quantities. Inference based on

A(n) is nonparametric and predictive. It was introduced particularly for situations

where there is no prior information about the probability distribution for a ran-

dom quantity of interest, or in cases where one explicitly does not want to use any

such information. Let X1, . . . , Xn, Xn+1 be exchangeable real-valued random quan-

tities. Suppose that the ordered observed values of X1, X2, . . . Xn are denoted by

x1 < x2 . . . < xn, where the assumption is made that there are no ties between ob-

servations. For ease of notation, let x0 = −∞ and xn+1 =∞. Note that xn+1 =∞

is not an observation of the variable Xn+1. These n ordered observations divide

the real-line into n + 1 open intervals Ij = (xj−1, xj), for j = 1, 2, . . . , n + 1. The

assumption A(n) states that the future observation Xn+1 falls equally likely in any

interval (xj−1, xj), for each j = 1, 2, . . . , n+ 1,

P (Xn+1 ∈ Ij) =
1

n+ 1
(2.17)

It is important to emphasize that Hill’s assumption A(n) does not make any further

assumptions on the distribution of probability 1
n+1

within an interval Ij.

NPI uses A(n) for predictive inferences about future observations in the form



2.7. Nonparametric Predictive Inference (NPI) 19

of lower and upper probabilities, also known as imprecise probabilities. Augustin

and Coolen [16] introduced predictive lower and upper probabilities for events of

interest based on assumption A(n), which is essentially an application of De Finetti’s

fundamental theorem of probability [39]. The lower and upper probabilities for the

event Xn+1 ∈ B, with B ⊂ R, based on the intervals Ij, j = 1, 2, . . . , n + 1, and

Hill’s assumption A(n), are given by

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ⊆ B} (2.18)

P (Xn+1 ∈ B) =
1

n+ 1

n+1∑
j=1

1{Ij ∩B 6= ∅} (2.19)

where 1{A} is equal to 1 if A is true and equal to 0 else. The NPI lower probability

(2.18) is obtained by taking only probability mass into account that is necessary

within B, which is only the case for the probability mass 1
n+1

per interval Ij if this

interval is totally contained within B. The NPI upper probability (2.19) is obtained

by taking all probability mass into account that could possibly be within B, which

is the case for the probability mass 1
n+1

per interval Ij if the intersection of Ij and

B is non-empty. NPI has been introduced for a wide range of applications such

as survival analysis, reliability testing, finance and topics in operational research

[29]. In addition, NPI has been introduced for different types of data, including

multinomial data [18, 30], ordinal data [42], and right-censored data [33]. The

following subsections briefly present some NPI results that will be used later in

the thesis, such as NPI for multiple future observations, NPI for Bernoulli data

and NPI for multinomial data. For further details about NPI, we refer to www.

npi-statistics.com.

2.7.2 NPI for multiple future observations

Section 2.7.1 summarised NPI for one future observation, but NPI has also been

introduced for m ≥ 1 future observations, Xn+i for i = 1, . . . ,m [35]. It is impor-

tant to emphasize that the future observations Xn+i are assumed to derive from

the same data collection process as the n data observations. The data and future

observations are linked by consecutive application of A(n), A(n+1), . . . , A(n+m−1) [49].

www.npi-statistics.com
www.npi-statistics.com


2.7. Nonparametric Predictive Inference (NPI) 20

These together are referred to as the A(.) assumptions, which can be considered a

post-data version of a finite exchangeability assumption for n + m random quanti-

ties. The A(.) assumptions imply that all possible orderings of n data observations

and m future observations are equally likely, where the n data observations are

not distinguished among each other and neither is the m future observations. Let

Sj = #{Xn+i ∈ Ij, i = 1, . . . ,m}, then assuming A(.) we have [35]

P (
n+1⋂
j=1

{Sj = sj}) =

(
n+m

n

)−1
(2.20)

where sj are non-negative integers with
∑n+1

j=1 sj = m. Equation (2.20) implies

that all
(
n+m
n

)
orderings of m future observations among the n observations are

equally likely. Let X(r), for r = 1, . . . ,m, be the r-th ordered future observation, so

X(r) = Xn+i for one i = 1, . . . ,m and X(1) < X(2) < · · · < X(m). The probabilities

given in Equation (2.21) are based on Equation (2.20) and derived by counting the

relevant orderings, and hold for j = 1, . . . , n+ 1, and r = 1, . . . ,m [35],

P (X(r) ∈ Ij) =

(
j + r − 2

j − 1

)(
n− j + 1 +m− r

n− j + 1

)(
n+m

n

)−1
(2.21)

For this X(r) ∈ Ij, NPI gives a precise probability, as each of the
(
n+m
n

)
equally

likely orderings of n past and m future observations has the r-th ordered future

observation in precisely one interval Ij [32]. Following Equations (2.18) and (2.19)

in Subsection 2.7.1, the NPI lower and upper probabilities for the event X(r) ∈ B,

where B ⊂ R are derived as follows:

P (X(r) ∈ B) =
n+1∑
j=1

1{Ij ⊆ B}P (X(r) ∈ Ij) (2.22)

P (X(r) ∈ B) =
n+1∑
j=1

1{Ij ∩B 6= ∅}P (X(r) ∈ Ij) (2.23)

The event that the number of future observations in an interval (xα, xβ), with 1 ≤

α < β ≤ n + 1, and denoted by Smα,β, is greater than or equal to a particular value

v ∈ N, has the following precise probability [13],

P (Smα,β ≥ v) =
m∑
i=v

(
n+m

n

)−1(
β − α− 1 + i

i

)(
n− β + α +m− i

m− i

)
(2.24)



2.7. Nonparametric Predictive Inference (NPI) 21

The result of NPI for multiple future observations presented in this subsection

is important in this thesis which will be used in Chapters 3 and 4, for selecting the

optimal thresholds.

2.7.3 NPI for Bernoulli quantities

Coolen [27] presented NPI for Bernoulli quantities (NPI-Bern) which will be used

in Chapter 3. NPI-Bern is based on the assumptions A(.) for m future observations

given n observed data, and a latent variable representation of Bernoulli data. A

latent variable represents the data on the real-line, with a threshold such that data

to one side are successes and to the other side are failures. Suppose there is a

sequence of n+m exchangeable Bernoulli trials where the possible outcomes of each

trial are binary, e.g. ’success’ or ’failure,’ and the data set consists of s successes in

n trials. Let Y n
1 be the random number of successful outcomes in trials 1 to n and

let Y n+m
n+1 be the random number of successful outcomes in trials n+1 to n+m. Due

to the assumption that all trials are exchangeable, a sufficient representation of the

data for the inferences considered is Y n
1 = s. As we are using in this thesis the case

of only one future observation, i.e. m = 1, the NPI lower and upper probabilities

for this case are

P (Y n+1
n+1 = 1|Y n

1 = s) =
s

n+ 1
(2.25)

and

P (Y n+1
n+1 = 1|Y n

1 = s) =
s+ 1

n+ 1
(2.26)

The NPI lower and upper probabilities for general events involving m future

Bernoulli quantities, i.e. m > 1, are given in [27]. Further details and examples

about the NPI for Bernoulli quantities can be found in [9, 11, 27, 38].



2.7. Nonparametric Predictive Inference (NPI) 22

2.7.4 NPI for multinomial data

Coolen and Augustin [16, 30, 31] introduced a new model for inference from multino-

mial data, which is called Nonparametric Predictive Inference for Multinomial data

(NPI-M). The NPI-M model was developed based on the circular-A(n) assumption,

which is different from Hill’s assumption A(n) [30]. Because multinomial data are

represented as observations on a probability wheel rather than a real-line, we use

the assumption made by Coolen and Augustin [28, 30], which is the circular-A(n)

assumption. The NPI-M model has been introduced for the case of unknown num-

ber of classes [30] and for the case of known number of classes [31]. In this thesis,

we only consider the situation where the number of classes, denoted by K, is known.

Suppose that there are K ≥ 3 possible different classes, denoted by C1, . . . , CK .

It is possible to use the NPI-M model for the case K = 2, however, for Bernoulli

data, it is better to use NPI for Bernoulli data, as presented in Section 2.7.3, because

it gives slightly less imprecision. We assume that C1, . . . , Ck, for 1 ≤ k ≤ K, are the

observed classes, and the Ck+1, . . . , CK are unobserved classes. Suppose that there

are nj observations in class Cj, for j = 1, . . . , k, and that
∑k

j=1 nj = n. The general

event of interest can be represented in the following way:

E = Yn+1 ∈
⋃
j∈J

Cj (2.27)

where J ⊆ {1, . . . , K}. Let OJ = J
⋂
{1, . . . , k} represent the index-set for the

classes in the event of interest that have been observed and let UJ = J
⋂
{k +

1, . . . , K} represent the index-set for the unobserved classes. Here r = |OJ | and

l = |UJ |, hence 0 ≤ r ≤ k and 0 ≤ l ≤ K − k. According to Coolen and Augustin

[31], the NPI-M lower and upper probabilities for the event of interest in (2.27)

based on n observations are

P (E) =
nj −min(K − r − l, r)

n
(2.28)

and

P (E) =
nj + min(r + l, k − r)

n
(2.29)



2.7. Nonparametric Predictive Inference (NPI) 23

where nj is the number of observations in class Cj, for j = 1, . . . , k. For further

explanation of the derivation of the NPI-M lower and upper probabilities, we refer

to [31]. Also, some basic properties are presented in [31].

For the singleton events, Yn+1 ∈ Cj, the NPI-M lower and upper probabilities

are

P (Yn+1 ∈ Cj) = max

(
0,
nj − 1

n

)
(2.30)

and

P (Yn+1 ∈ Cj) = min

(
nj + 1

n
, 1

)
(2.31)

It should be clarified that events with only observed classes are generally consid-

ered for classification tasks. Therefore, in this thesis, we will only consider the case

that these singleton events have been observed, i.e. nj > 0.

The NPI-M lower and upper probabilities, for unobserved classes, are

P (Yn+1 ∈ Cj) = 0 (2.32)

and

P (Yn+1 ∈ Cj) =
1

n
. (2.33)

In this chapter, we have presented the main concepts from the literature to

provide background information for the topic considered in this thesis. In the next

chapter, we introduce a new method for building classification trees using the NPI

approach for selecting the optimal thresholds. This method is different from the

classical methods in that it selects the threshold value using predictive inference.

We first introduce this method for building binary classification trees in Chapter 3;

we then extend it to build classification trees with three ordered classes in Chapter

4.



Chapter 3

NPI-based binary classification

tree

3.1 Introduction

In this chapter, we present a new method based on the NPI approach for building

classification trees for data containing continuous-valued attributes and a binary

class variable, while in Chapter 4, we extend this method to data with continuous-

valued attributes and a class variable with three labels. Data sets with continuous

attributes and a binary class variable frequently occur in many real-world appli-

cations. For example, in healthcare, individuals may be classified into one of two

classes, healthy or diseased, based on the body temperature results. The critical

point in building binary classification trees involving continuous-valued attributes

is to select the optimal threshold values that are used to determine the classes and

split the data. The wrong selection of such classification threshold values generally

results in two types of misclassification: observations from class C1 may be classified

as class C2, and observations from class C2 may be classified as class C1. A threshold

value is considered perfect if both classes are correctly classified. Alabdulhadi [11]

and Coolen-Maturi et al. [37] introduced the NPI approach for selecting the optimal

threshold for the two-class classification problem, where the inference is based on

a given number of future observations. A direct criterion for introducing the rela-

tive importance of the two classes has been presented. This relative importance is

24



3.1. Introduction 25

referred to as target proportions, providing weights that are selected to reflect the

desired importance of one class over another.

In this chapter, we present a new classification algorithm for building binary

classification trees using the NPI approach for selecting the thresholds, which we

call NPI2-Tree algorithm. The NPI2-Tree algorithm is a novel method that builds

classification trees by employing the NPI approach for selecting the threshold values

for data sets with continuous attributes and a binary class variable using predictive

inference. To build classification trees using our classification method, we introduce

a new procedure for selecting the optimal values of target proportions by choosing

that to maximise classification accuracy on testing data sets. In order to evaluate

the performance of the NPI2-Tree algorithm, we conduct an experimental analy-

sis using different evaluation measures on several data sets. We also compare the

performance of the NPI2-Tree algorithm with other classification algorithms. In

addition, we evaluate the performance of the NPI2-Tree algorithm using a different

split criterion based on imprecise probability, and the results are compared with the

classical split criterion.

This chapter is organised as follows: Section 3.2 summarises the NPI method for

selecting the optimal threshold for the two-class classification problem [11, 37], and

illustrates the method with an example. In Section 3.3, we present our method for

building classification trees using the NPI apprach for selecting optimal thresholds.

First, we present the new procedure for choosing the optimal values of target pro-

portions in classification trees. Then, we present the new algorithm, the NPI2-Tree

algorithm, which is used to build classification trees for data with two classes. We

also provide an illustrative example to describe the process of building classification

trees based on the NPI2-Tree algorithm. In Section 3.4, we conduct an experiment

analysis on several data sets to evaluate the performance of the NPI2-Tree algorithm

using a classical split criterion, and compare its performance with other classifica-

tion algorithms. In Section 3.5, we also present the performance of the NPI2-Tree

algorithm when it is used to build classification trees using an imprecise split crite-



3.2. NPI-based thresholds for two classes 26

rion. Finally, some concluding remarks are given in Section 3.6.

3.2 NPI-based thresholds for two classes

This section presents the NPI method for selecting the optimal threshold t for a

real-valued random quantity and for a two-class classification scenario as introduced

in [11, 37]. This method is different from the classical methods as it selects the

optimal threshold value which focuses on a number of future observations to which

the threshold will be applied. Assume that we have a continuous random variable

X whose values belong to two classes, C1 and C2, and small values of X are more

likely to belong to class C1, i.e. X ≤ t, and large values of X are more likely to

belong to class C2, i.e. X > t. Let n1 denote the number of observations for class

C1 and n2 the number of observations for class C2. It is assumed that there is full

independence between the two classes, meaning that any information about the ob-

servations in one class does not contain information about the observations in the

other class. In other words, Any information about random quantities from one

class does not affect any (lower and upper) probabilities for events involving only

random quantities of the other class. Let x11 < x12 < · · · < x1n1
denote the ordered

data from class C1 and x21 < x22 < · · · < x2n2
denote the ordered data from class C2.

For ease of notation, let x10 = x20 = −∞ and x1n1+1 = x2n2+1 = ∞. The data for C1

partition the real-line into n1 + 1 intervals I1i = (x1i−1, x
1
i ), for i = 1, 2, . . . , n1 + 1,

and the data for C2 partition the real-line into n2 + 1 intervals, for I2j = (x2j−1, x
2
j),

for j = 1, . . . , n2 + 1. Throughout this thesis, it is assumed that there are no ties

between the data observations, which occur when two or more observations have the

same data. We can break the ties by adding a small amount to the tied observations,

which tend to be zero. This is a popular method for breaking ties in statistics [50].

As the NPI inferences are based on multiple future observations, we consider

m1 future observations from class C1, with data values denoted by X1
n1+r

, where

r = 1, . . . ,m1, and m2 future observations from class C2, with data values denoted



3.2. NPI-based thresholds for two classes 27

by X2
n2+s

, where s = 1, . . . ,m2. Let the m1 ordered future observations from classes

C1 be denoted by X1
(1) < X1

(2) < · · · < X1
(m1)

, and the m2 ordered future observations

from class C2 be denoted by X2
(1) < X2

(2) < · · · < X2
(m2)

. As the NPI-based inferences

are in terms of multiple future observations, Alabdulhadi [11] and Coolen-Maturi et

al. [37] have selected the threshold value t that gives the best classification based

on the m1 and m2 future observations. To this end, the result of NPI for multiple

future observations presented in Section 2.7.2 is used, but we need first to introduce

further notation.

For a particular value of t, we denote the number of correctly classified future

observations from class C1 by L1
t , that is those with data values X1

n1+r
≤ t, for

r = 1, . . . ,m1, and we denote the number of correctly classified future observations

from class C2 by L2
t , that is those with data values X2

n2+s
> t, for s = 1, . . . ,m2. Let

a and b be any two values in the range (0, 1] that are chosen to represent the relative

importance of the correct classification of each one of the classes. We consider the

general event of interest that the number of correctly classified future observations

from class C1 is at least am1 and the number of correctly classified future observa-

tions from class C2 is at least bm2, that is L1
t ≥ am1 and L2

t ≥ bm2. Note that choice

of a and b depends on a person’s beliefs of which class may be more important to be

correctly classified than another. For example, in medicine, one can choose a and

b to reflect that giving a drug to patients is crucial, while it may hvae no serious

harmful effects on healthy people. In such a case the target proportion of correct

classifications of diseased people should be greater than for healthy people. It should

be noted that these values a and b are the target proportions per class, hence the

values of these proportions are not constrained except that they must be in (0, 1).

Of course one can choose a and b to be equal if one gives the same importance of

correct classifications to both classes, but choosing large or small values for a and b

may not change classification performance; this will be illustrated in Example 3.3.1.

In this thesis, we will present a new procedure for choosing the optimal values of

target proportions a and b by optimising classification performance on test data;

this will be given in Sections 3.3.1 and 4.3.1. It shoud be clarified that there is no



3.2. NPI-based thresholds for two classes 28

conflict between saying these values represent one’s beliefs of which class may be

important to correctly classify, and choosing these by optimisation. The first ap-

proach is useful if one would prefer to give one class more importance than another,

whereas the second approach works if one aims to maximise the total classification

accuracy.

Because of the independence assumption of the two classes, the joint NPI lower

and upper probabilities are derived as the products of the NPI corresponding lower

and upper probabilities for the events that involve L1
t or L2

t as follows [11, 37]

P
(
L1
t ≥ am1, L

2
t ≥ bm2

)
= P

(
L1
t ≥ am1

)
× P

(
L2
t ≥ bm2

)
(3.1)

P
(
L1
t ≥ am1, L

2
t ≥ bm2

)
= P

(
L1
t ≥ am1

)
× P

(
L2
t ≥ bm2

)
(3.2)

The NPI lower and upper probabilities in Equations (3.1) and (3.2) are derived

using NPI for multiple future observations as given in Section 2.7.2, in particular

Equation (2.21), as shown below. It is noticed that the event L1
t ≥ am1 is equal to

X1
(dam1e) ≤ t, where dam1e denotes the smallest integer greater than or equal am1.

Similarly, the event L2
t ≥ bm2 is equal to X2

(m2−dbm2e+1) > t. To show how to use the

Equation (2.21) of the NPI results for multiple future observations, we first consider

class C1 and then class C2.

For I1i = (x1i−1, x
1
i ), i = 1, . . . , n1 +1, and t ∈ I1it=(x1it−1, x

1
it), where it = 2, . . . , n1

is defined as that interval I1it which contains t, the NPI lower and upper probabilities

for the event L1
t ≥ am1 are given as follow [11, 37]:

P (L1
t ≥ am1) = P (X1

(dam1e) ≤ t) =
it−1∑
i=1

P (X1
(dam1e) ∈ I

1
i ) (3.3)

P (L1
t ≥ am1) = P (X1

(dam1e) ≤ t) =
it∑
i=1

P (X1
(dam1e) ∈ I

1
i ) (3.4)

where the precise probabilities on the right-hand sides of Equations (3.3) and (3.4)

are obtained from Equation (2.21). For it = 1, we have P (L1
t ≥ am1) = 0 and P (L1

t ≥

am1) = P (X1
(dam1e) ∈ I11 ), and for it = n1 + 1, we have P (L1

t ≥ am1) = 1 −



3.2. NPI-based thresholds for two classes 29

P (X1
(dam1e) ∈ I

1
n1+1) and P (L1

t ≥ am1) = 1. If t is equal to one of the observations

x1i , i.e. t = x1it , then this event has precise probability,

P (L1
t ≥ am1) = P (X1

(dam1e) ≤ t) =
it∑
i=1

P (X1
(dam1e) ∈ I

1
i ) (3.5)

Of course, this implies that we have for such a value of t that P (L1
t ≥ am1) = P (L1

t ≥

am1) = P (L1
t ≥ am1), in this case. Similarly, the NPI lower and upper probabilities

for the event L2
t ≥ bm2 are derived. For I2j = (x2j−1, x

2
j), j = 1, . . . , n2 + 1, and

t ∈ I2jt=(x2jt−1, x
2
jt), jt = 2, . . . , n2, the NPI lower and upper probabilities for the

event L2
t ≥ bm2 are

P (L2
t ≥ bm2) = P (X2

(m2−dbm2e+1) > t) =

n2+1∑
i=jt+1

P (X2
(m2−dbm2e+1) ∈ I2j ) (3.6)

P (L2
t ≥ bm2) = P (X2

(m2−dbm2e+1) > t) =

n2+1∑
i=jt

P (X2
(m2−dbm2e+1) ∈ I2j ) (3.7)

For jt = 1, we have

P (L2
t ≥ bm2) = 1− P (X2

(m2−dbm2e+1) ∈ I21 ) and P (L2
t ≥ bm2) = 1.

And for jt = n2 + 1, we have

P (L2
t ≥ bm2) = 0 and P (L2

t ≥ bm2) = P (X2
(m2−dbm2e+1) ∈ I2n2+1)

Furthermore, when t = x2jt

P (L2
t ≥ bm2) = P (X2

(m2−dbm2e+1) > t) =

n2+1∑
i=jt+1

P (X2
(m2−dbm2e+1) ∈ I2j ) (3.8)

so

P (X2
(m2−dbm2e+1) > t) = P (X2

(m2−dbm2e+1) > t) = P (X2
(m2−dbm2e+1) > t), if t = x2jt .

Now, we can obtain the optimal threshold t for the two classes by maximising

either Equation (3.1) for the lower probability or Equation (3.2) for the upper prob-

ability. To search for the optimal threshold value t, one does not need to go through

each of the n1 + n2 + 1 intervals produced by the data observations. The optimal

threshold t can be only in intervals where the left-end point of the interval is an



3.2. NPI-based thresholds for two classes 30

observation that belongs to class C1 and the right-end point of the interval is an

observation that belongs to class C2 [11, 37]. It is important to clarify that the NPI

lower and NPI upper probabilities, Equations (3.1) and (3.2), may lead to different

optimal thresholds because they are different criteria. In this thesis, we consider

only the optimal threshold value, which is based on the NPI lower probability in

Equation (3.1), for building classification trees. This is because the NPI lower prob-

abilities are based on evidence in favour of events while the NPI upper probabilities

are based on evidence against events. Next, we provide an example illustrating the

NPI method for selecting the optimal threshold. For more details, examples and

discussions of NPI for selecting the optimal thresholds, we refer to [11, 37].

Example 3.2.1 Assume that we have a data set of 20 people, where 10 people

from class C1, i.e. n1 = 10, and 10 people from class C2, i.e. n2 = 10. Suppose

the data set that belong to class C1 are {25, 27, 28, 29, 30, 36, 37, 40, 63, 68 }

and the data set that belong to class C2 are {48, 53, 67, 70, 73, 75, 82, 86, 89, 90}.

In Figure 3.1, we show the box plots for the data sets from the two classes. As we

can see from the figure, there is little overlap between the two classes. In order to

illustrate the NPI method for selecting the threshold values, we have presented the

NPI method for m1 = m2 and for m1 6= m2, and we have considered four different

scenarios for target proportions a and b. Note that, these target proportions are

previously chosen to represent the relative importance of the correct classification of

one class over another. However, in Section 3.3.1, we will present a new procedure

for choosing these values in classification trees.

To select the optimal threshold t, we need to search within each of the n1+n2+1

intervals created by the data observations and then we choose the value t that max-

imises the NPI lower probabilities method, Equation (3.1), or the NPI upper proba-

bilities method, Equation (3.2). Note that as shown in [11, 37], the optimal threshold

value t can only be found in intervals in where the left-end point of the interval is an

observation that belongs to class C1 and the right-end point is an observation that

belongs to class C2. The first and last intervals should also be considered. Thus, we



3.2. NPI-based thresholds for two classes 31

C1 C2

30
40

50
60

70
80

90

D
at

a 
se

t

Figure 3.1: Box-plots for the data set used in Example 3.2.1.

just consider the intervals as shown in [11, 37].

Table 3.1 presents the optimal threshold value t obtained from the NPI lower

probabilities method, Equation (3.1), and the NPI upper probabilities method,

Equation (3.2), along with the corresponding lower and upper probabilities, for

m1 6= m2, while Table 3.2 presents the optimal threshold value t obtained from the

NPI lower and upper probabilities method along with the corresponding lower and

upper probabilities, for m1 = m2. As shown in Table 3.1, the optimal threshold

value t differs for different values of a and b. In Scenario 1, for a = b = 0.25,

the optimal threshold value is t = 40. In this scenario, the values of lower and

upper probabilities for the NPI method are quite high because the required propor-

tions seem easy to achieve. In Scenario 2, we put more emphasis on the number

of correctly classified future observations from class C1 than from class C2, that is

a = 0.50 and b = 0.25. As we can see from Table 3.1, the optimal threshold value

increased to t = 63 in order to optimise the probability, compared to Scenario 1.

For Scenario 3, for a = 0.85 and b = 0.20, we again need this scenario to give a

higher proportion of correctly classified future observations from class C1 than from

class C2. The optimal threshold value increases to t = 68 compared to Scenario 2,

while the corresponding NPI lower probability is less than in Scenario 2, indicating



3.2. NPI-based thresholds for two classes 32

that these proportions a and b are harder to be jointly achieved. In Scenario 4, for

a = b = 0.70, the optimal threshold value is the same as for Scenario 1, where we

have large values of a = b. Of course, the corresponding values of the NPI lower

and upper probabilities are lower than from those in Scenario 1 as a and b here

are larger. For m1 = 100 and m2 = 80, with respect to the optimal threshold, the

optimal thresholds are found to be the same as for m1 = 4 and m2 = 6 regardless

of the values of a and b, except for a = 0.50 and b = 0.25, the optimal threshold is

t = 68. The corresponding lower and upper probabilities are very high compared to

m1 = 4 and m2 = 6.

The results of the NPI method for selecting the optimal threshold value t, as well

as their corresponding NPI lower and upper probabilities for m1 = m2, are presented

in Table 3.2. We have used the same scenarios as in Table 3.1. For m1 = m2 = 8,

the results are quite similar to the results in Table 3.1. With respect to the optimal

threshold, we found that the optimal threshold for a = b = 0.25, a = 0.85 and

b = 0.20, and a = b = 0.70 are the same in both tables. The corresponding NPI

lower and upper probabilities in Table 3.2 are slightly larger than in Table 3.1. A

change in the NPI lower and upper probabilities is here due to the nature of the

event we consider, for example, for m2 = 6 and m2 = 8, and b = 0.25, we need at

least 2 good classifications in both cases, which is easier for m2 = 8 than for m2 = 6,

so then for the latter, the lower and upper are probabilities smaller. We can also

note from Tables 3.1 and 3.2 that the NPI lower and the upper methods provide the

same optimal threshold regardless of the a and b values considered, which is likely

because the data sets used in Example 3.2.1 are small with little overlapping. For

m1 = m2 = 100, the results are the same as for m1 = 100,m2 = 80, given in Table

3.1, for all scenarios of a and b.

To summarise, we have presented the NPI method for selecting the optimal

threshold for a continuous-valued random quantity and for two classes, with illus-

trative example. In the next section, we employ this method to build classification

trees. Due to the predictive nature of the NPI method for selecting the threshold



3.3. NPI-based binary classification trees 33

Scenario Target proportions NPI lower method NPI upper method

# a b t value t value

m1 = 4, m2 = 6

1 0.25 0.25 40 0.98 40 0.99

2 0.50 0.25 63 0.93 63 0.98

3 0.85 0.20 68 0.67 68 0.97

4 0.70 0.70 40 0.28 40 0.51

m1 = 100, m2 = 80

1 0.25 0.25 40 0.99 40 1.00

2 0.50 0.25 68 0.99 68 1.00

3 0.85 0.20 68 0.80 68 0.99

4 0.70 0.70 40 0.60 40 0.84

Table 3.1: Optimal threshold t and corresponding value of the NPI lower and upper

probabilities, for m1 6= m2.

value, it is well suitable for classification trees, as the nature of classification trees

is explicitly predictive as well.

3.3 NPI-based binary classification trees

In this section, we consider a new method for building binary classification trees us-

ing the NPI approach for selecting the optimal threshold value presented in Section

3.2. As clarified earlier, the NPI method determines the optimal threshold in a pre-

dictive way, considering a number of future observations and the target proportion

values a and b, without adding any further assumptions or information. Note that

maximising the NPI lower probability, Equation (3.1), and maximising the NPI up-

per probability, Equation (3.2), are different criteria that may give different optimal

thresholds for a particular attribute. In this chapter, we only consider the optimal

threshold value based on the NPI lower probability, as given in Equation (3.1).

In order to use the NPI approach for selecting the optimal threshold, we need

to set the values of target proportions a and b for each class, respectively. However,

choosing small or high values for a and b is not recommended, as will be illustrated



3.3. NPI-based binary classification trees 34

Scenario Target proportions NPI lower method NPI upper method

# a b t value t value

m1 = 8, m2 = 8

1 0.25 0.25 40 0.99 40 1.00

2 0.50 0.25 68 0.97 68 0.99

3 0.85 0.20 68 0.79 68 0.99

4 0.70 0.70 40 0.31 40 0.58

m1 = m2 = 100

1 0.25 0.25 40 0.99 40 1.00

2 0.50 0.25 68 0.99 68 1.00

3 0.85 0.20 68 0.80 68 0.99

4 0.70 0.70 40 0.60 40 0.84

Table 3.2: Optimal threshold t and corresponding value of the NPI lower and upper

probabilities, for m1 = m2.

and discussed in Example 3.3.1. Researchers should choose wisely these target pro-

portions for their analysis. This section introduces a new method for choosing the

optimal a and b values in classification trees. We need first to introduce further

notation before introducing the proposed method of choosing the values a and b.

Assume that we have a data set D, which has continuous-valued attribute vari-

ables {X1, . . . , Xf} and a binary class variable C, where C = C1 or C = C2.

Throughout this thesis, we assume that the two classes are fully independent, mean-

ing that information about observations in one class does not contain information

about observations in the other. In addition, we assume that there are no ties be-

tween observations, and we can break the ties by adding a small amount to the tied

observations. We divide the data set D into two subsets: training set S and testing

set T . For the training set S, let n1 represent the total number of observations that

belong to class C1, and n2 the total number of observations that belong to class C2,

where n = n1 +n2. As the NPI-based inferences are in terms of future observations,

and because we do not actually know the number of future observations and the

class to which future observations belong, we set the values of the m1 and m2 future

observations based on the total number of observations in the training data set.



3.3. NPI-based binary classification trees 35

Thus, we set m1 equal to the number of observations that belong to class C1 in S,

i.e. m1 = n1, and m2 equal to the number of observations that belong to class C2

in S, i.e. m2 = n2.

Example 3.3.1 Assume that we have a data set of 22 observations, which belong

to two classes. The data has been divided into two sets: training set S with n1 = 7

and n2 = 8, consists of data {25, 28, 36, 37, 48, 63, 68} and {53, 67, 70, 73, 75,

82, 86, 89}, respectively. The testing set T consists of data {36, 52, 65} and {70,

82, 86, 89}, respectively. In Table 3.3, we present the optimal thresholds and the

classification accuracy for different scenarios of predefined target proportions a and

b. These optimal thresholds maximise the NPI lower probability in Equation (3.1)

with m1 = 7 and m2 = 8. The classification accuracy is the percentage of correctly

classified observations in the testing set. As can be seen from Table 3.3, for the first

scenario, a = b = 0.33, the optimal threshold value is t = 63 and the classification

accuracy of the prediction is 85.7 %. For the second scenario, the target proportions

a = b = 0.85 are very high, however, the optimal threshold is the same as in the first

scenario and therefore the classification accuracy is the same of course. In the third

scenario, a and b are very close to the training data proportions, that is a = 0.45 and

b = 0.50. The optimal threshold value is now t = 68 and the classification accuracy

has become 100%.

It is clear from the above results that the optimal threshold t can change depending

on the values of a and b, which also leads to a change in classification performance.

Choosing small or large values for a and b might not change classification perfor-

mance as presented in Example 3.3.1, Table 3.3, where the NPI method gives the

same threshold values for the first two scenarios. However, when we have chosen

the values of the target proportions very close to the data proportions, as in the

third scenario, the optimal threshold and accuracy changed. Note that there was no

specific reason for choosing large or small values of the target proportions or choos-

ing these close to the data proportions, but we show what can be done. Therefore,



3.3. NPI-based binary classification trees 36

Scenario Target proportions Threshold Accuracy

# a b t (%)

1 0.33 0.33 63 85.7

2 0.85 0.85 63 85.7

3 0.45 0.50 68 100

Table 3.3: Comparisons of different scenarios of the a and b fixed.

setting meaningful target proportions for selecting the optimal threshold values for

classification trees should be considered. This will be presented in the next section.

3.3.1 Selecting the target proportions

Instead of prefixing the target proportions a and b, as in Example 3.3.1, in this

section we introduce a data-driven approach for selecting a and b, which aims to

improve the classification performance. Consider the NPI method for selecting the

optimal threshold which is based on the NPI lower probability, Equation (3.1),

P (L1
t ≥ am1, L

2
t ≥ bm2) = P (L1

t ≥ am1)× P (L2
t ≥ bm2)

where P (L1
t ≥ am1) and P (L2

t ≥ bm2) are given in Equations (3.3) and (3.6), re-

spectively, and a, b ∈ (0, 1]. We now consider a and b as parameters instead of

desirable target proportions, and we aim to choose values for a and b that maximise

classification performance. The main questions are how to find or select these values

a and b, and how to validate their performance in classification trees. To this end,

we suggest to use two stages of the k-fold cross-validation (k-fold CV) procedure,

also known as double k-fold cross-validation [74]. This procedure enables us to train

our classification method in which the values of a and b also need to be optimised.

Without this procedure, one can use the same data for finding the optimal values

of a and b and simultaneously evaluate their performance, which may result in a

biased evaluation of the algorithm [74].

Figure 3.2 presents the diagram of the proposed procedure, which is the two

stages of the k-fold cross-validation procedure, where k = 5. We have chosen k = 5



3.3. NPI-based binary classification trees 37

because it reduces the required computation as done in [19]. As shown in Figure 3.2,

there is an outer 5-fold cross-validation loop which is used to validate our method

of selecting the parameters a and b. In addition to the outer loop, there is an inner

5-fold cross-validation loop that is used to optimise the parameters a and b. The

outer loop is repeated 5 times, producing five different training and test sets, result-

ing from the entire dataset. Each fold of the outer training set is again divided into

5 folds and the inner loop is repeated 5 times as well. The inner loop will return only

the model with the most optimal values for a and b to the outer loop, which will use

its test set to evaluate the model’s quality. In the outer loop, we will get 5 different

performance that can be averaged to obtain the final performance. However, as we

still want to use a best value of a and b as the target proportions for a real data set.

Therefore we will take those results from the outer loop, and extracting the best a

and b to be the target proportions for the data set.

For more explanation, we present the method step by step as follows. First,

we randomly divide the data into five folds, k = 5, each containing a training and

testing set. Secondly, each outer training fold (starting with outer training fold 1, as

in the red box in A) is again divided into five inner folds, each containing training

and testing set as in B. In the inner folds, as in B, we discover possible optimal

values of a and b using optimisation techniques. So, we have five possible values of

parameters a and b. After that, we choose the values for the parameters a and b from

the inner folds that give the best classification accuracy on inner testing folds to test

on the outer test fold in A (for example test fold 1). There are many optimisation

methods in the literature that can be used to discover these optimal values, where

a Genetic Algorithm (GA) [47, 48] is one of the most commonly used optimisation

methods in the literature. The GA is a search-based optimisation technique based

on the rules of genetics and natural selection to provide solutions to problems. We

use the GA as additional tuning in order to discover the best values of a and b

in the inner stage. More details about the GA method are given in the appendix.

Thirdly, as in C, we record the result of this outer fold including the values of a and

b and the classification accuracy. Then, we repeat this process for the remaining



3.3. NPI-based binary classification trees 38

data set 

 
 
A. Outer fold 

 
                                          C. Results of outer folds 

1!" outer fold 
 
2#$  outer fold 
 
3%$  outer fold 
 
 
4"& outer fold 
 
 
5"& outer fold 
 

 
B. Inner fold                                                                                                               

 
1!" inner fold 
 
2!" inner fold 
 
3%$  inner fold                                                      D. Choose the best result 
 
4"& inner fold 
 
5"& inner fold 
 

 
 Outer training fold 1  

 

 
Test fold 1 

   

    

   

  

Inner  training fold 1 
 

Test fold 1 

   

   

   

  

1!" outer fold accuracy and 
parameters  
 
2#$  outer fold  
 
3%$  outer fold  
 
4"& outer fold  
 
5"& outer fold  
 
 
5"& outer fold accuracy 
 
 
 

Choose the best outer fold 
result with its parameters a 
and b, and train on full data to 
create final result 
 

Figure 3.2: A diagram of a two-stage 5-fold cross-validation procedure to find the

optimal values of the target proportions a and b.

outer folds. Finally, as in D, we choose the best values of a and b that give the

highest classification accuracy; we then use these values as the optimal values for

the data set. Note that we build the whole classification tree in this process using

all the available attributes, not based on a single attribute. So this is a joint opti-

misation problem, where at each stage we build a full tree. If the number of such

attributes increases, then we probably have an exponential increase in the computa-

tion time for the optimization. Therefore, it would be of interest to investigate the

use of suitable fast optimization techniques, this is left as a topic for future research.

Having explained the process of choosing the values of a and b, we present in

Section 3.3.2 a new algorithm for building binary classification trees using the NPI

approach for selecting the optimal thresholds and the proposed method for choosing



3.3. NPI-based binary classification trees 39

a and b.

3.3.2 NPI2-Tree algorithm

We present a new classification algorithm for building binary classification trees

which we call the Nonparametric Predictive Inference for Binary Classification Trees

(NPI2-Tree) algorithm. Note that this algorithm can only be used to build trees with

two classes. For this reason, we added the number 2 to the abbreviation. The pro-

cedure for building classification trees using the NPI2-Tree algorithm is quite similar

to Quinlan’s C4.5 algorithm [67], given in Section 2.3. The main difference is that

we use the NPI method presented in Section 3.2 as a criterion for selecting the op-

timal threshold for each continuous-valued attribute with our proposed method of

choosing the values of a and b presented in Section 3.3.1. Note that the NPI2-Tree

algorithm uses the information gain ratio as a split criterion to select the attribute

variable at each node. In Section 3.5, we also evaluate the performance of the NPI2-

Tree algorithm using a different split criterion based on imprecise probability.

Suppose that we have a data set, D, which has continuous-valued attributes

{X1, . . . , Xf}, and a binary class variable, C ∈ {C1, C2}. As a first step, we divide

the data set, D, into two subsets: training data set, S, and testing data set, T . Let

n1 represent the total number of observations that belong to class C1, and n2 rep-

resent the total number of observations that belong to class C2. We set the number

of future observations, m1 and m2, based on the S data distribution, that is, we

choose the value of m1 equal to the number of observations that belong to class C1

in S and the value of m2 equal to the number of observations that belong to class

C2 in S. As a starting point, we set the initial values of the a and b equal to the

data proportions, meaning that we choose the value of a equal to the proportion of

the training data S belonging to class C1, i.e. a = n1

n
, and the value of b equal to

the proportion of S belonging to class C2, i.e. b = n2

n
. We have set the initial values

for a and b to be equal to the data proportion because this could help us to make

the optimisation process faster in discovering these optimal values, as this choice

provided a good performance in Example (3.3.1). In Example 3.3.2, we illustrate



3.3. NPI-based binary classification trees 40

how we set the values of m1,m2 and a, b to build classification trees at the beginning.

Example 3.3.2 Assume we have a training data set with 40 observations, 25 ob-

servations from class C1 and 15 observations from class C2. We set the values of the

number of future observations, m1 and m2, based on the training set distribution,

so we have m1 = 25 and m2 = 15. In addition, as a starting point to build the trees,

the values of a and b are set based on the data proportion in S, so we have a = 0.42

and b = 0.58.

For the training data set S we find the optimal threshold values for each of the

continuous-valued attributes, Xi, for i = 1, . . . , f , by maximising the NPI lower

probability given in Equation (3.1). As shown in [11, 37], the optimal threshold

value t can only be found in intervals in where the left-end point of the interval is

an observation that belongs to class C1 and the right-end point is an observation

that belongs to class C2. The first and last intervals should also be considered. This

property is useful when building the classification trees because it speeds up the

process of determining the optimal thresholds.

After selecting the optimal threshold t for Xi, we compute the IGR value (Equa-

tion formula (2.4) ) for all attributes Xi, for i = 1, . . . , f , to find the best attribute

variable for the root node. Once the IGR values are computed for all attributes, the

attribute variable with the highest IGR value is chosen as the best attribute for the

root node. Then, based on the chosen attribute’s threshold, we split the training

data set S into two disjoint subsets, S1 and S2, where S1 ∪ S2 = S and S1 ∩ S2 = ∅.

Here, S1 is the subset of the training data set S with Xi ≤ t, and S2 is the subset of

the data with Xi > t. I.e. small data values are more likely to be from C1 and large

data values from C2, i.e. Xi ≤ t from class C1 and Xi > t from class C2. After select-

ing the best attribute variable at the root node and splitting the training data set

into two subsets, we then again find the optimal thresholds and the IGR values for

both subsets S1 and S2. The NPI2-Tree algorithm continues recursively by selecting



3.3. NPI-based binary classification trees 41

further splitting the data, and hence, the algorithm creates new subtrees for each

branch. The tree branching is stopped when all observations in the subset belong to

a single class, or if there is no attribute left, or when the number of observations per

leaf node reaches the minimum split value. A minimum split number is a value that

must exist in a node before splitting the data . Algorithm 1 summarises the process

of building binary classification trees using the NPI2-Tree classification algorithm.

Note that the value of the minimum split number is sometimes fixed for a par-

ticular value and is considered as a stopping rule when building a classification tree,

as was done by Berry and Linoff [21], and by Bertsimas and Dunn [22]. This value

is selected based on the aim of the analysis and the characteristics of the data set.

For example, Berry and Linoff suggested setting the value of the minimum split

number to be between 0.25% and 1.00% of the training data set in order to avoid

overfitting. Overfitting occurs when a classification algorithm works very well on the

training set but does not work very well on the testing set. In this thesis, in order to

prevent our classification algorithms from building large trees that may overfit the

data and reduce classification performance, we set the value of the minimum split

number equal to five. I.e. if any node in a classification tree contains more than

five observations, we continue to split a node further, otherwise, we stop the tree

branching and fix a leaf node with the most frequent class in that node. This value

of the minimum split number is also used for all considered classification algorithms,

hence the comparison is fair. We have chosen the value of the minimum split num-

ber equal to five after conducting many study experiments and five was shown to

give good performance. It would be interesting to study also further stopping rules

that may be used to prevent one from overfitting. For example, setting the value of

the tree’s maximum depth may also prevent the trees from overfitting. The tree’s

maximum depth is the distance from the root node to the farthest leaf node in the

tree [21].



3.3. NPI-based binary classification trees 42

Algorithm 1 Pseudocode NPI2-Tree algorithm

1. Input:(S, C, Ω)

2. S: Training data set

3. C: Binary class variable C = {C1, C2}

4. Ω: Set of continuous attributes Ω = {X1, . . . , Xf}

5. Procedure NPI2-Tree(S, C, Ω)

6. Create a Root node for the tree

7. if all observations in S have the same class C, then

8. Return the single-node tree with class C

9. if Ω is empty (i.e. there are no attributes available), then

10. Return the single-node tree with most common class C in S

11. Otherwise

12. Select the values of a, b and mi for i = 1, 2

13. Make the initial values of a and b equal to the class proportion in S,

14. i.e. make a = n1
n and b = n2

n

15. Make the values of mi equal to the number of observations in class Ci in S,

16. i.e. make m1 = n1 and m2 = n2

17. for each attribute, Xi in Ω, do

18. Find the threshold value that maximise the NPI lower probability, Eq. (3.1)

19. Compute the IGR value, given in Eq. (2.4)

20. Choose attribute X from Ω, with the highest IGR value

21. Assign the attribute X for the Root node

22. Add a branch below the Root node, corresponding to X ≤ t and X > t

23. Let Si, for i = 1, 2 be the subset of S that has X ≤ t and X > t, respectively

24. if Si is not empty, then

25. Add the subset created by NPI2-Tree (Si, C, Ω− {X})

26. return Root



3.3. NPI-based binary classification trees 43

3.3.3 Examples

This section presents two examples, one illustrates the process of building a classi-

fication tree using the NPI2-Tree algorithm with the proposed method of choosing

the values of a and b, and one is to show a comparison of classification trees using

our method of choosing the values of a and b, and the predefined method of choos-

ing these values. Note that the performance of the NPI2-Tree algorithm with our

proposed method of choosing the values of a and b is evaluated and compared with

other classification algorithms in Section 3.4.

Example 3.3.3 This example illustrates how we build a classification tree using

the NPI2-Tree algorithm, presented in Section 3.3.2, with our proposed method of

choosing the target proportions, presented in Section 3.3.1. To this end, we have

used the Cryotherapy data sets obtained from the UCI repository of machine learn-

ing databases [41], consisting of 90 observations, 5 attribute variables, and a binary

class variable. This data set has been created by medical experts [54, 55], which

contains information about the results of wart treatment with cryotherapy for 90

patients. It is important to clarify that the Cryotherapy data set also has two more

other attributes, which are categorical. However, as mentioned earlier, we only

work with continuous-valued attributes at this stage of developing the NPI2-Tree

algorithm, so the categorical attributes in this data set were ignored. Table 3.4

shows a brief overview of this data set.

The first step to build the NPI2-Tree classification tree is to select the optimal tar-

get proportions a and b using the method introduced in Section 3.3.1. As explained

in this method, the data set is divided into two levels of the 5-fold cross-validation

procedure. In the first level, which is the outer level, we train our classification

algorithm with optimal values of a and b, while in the second level, which is the

inner fold, we use a search function, which is the Genetic Algorithm, given in the

appendix, to tune the values a and b. Using this method, the optimal values that

maximise classification accuracy are a = 0.56 and b = 0.50. Now, we use these



3.3. NPI-based binary classification trees 44

Attribute Attribute Description Attribute type

X1 Age of patient continuous

X2 Time elapsed before treatment continuous

X3 Number of warts continuous

X4 Surface area of the warts continuous

X5 Induration diameter ofinitial test continuous

C Class variable binary

Table 3.4: Attribute description of Cryotherapy data set

values as the optimal target proportions for building the classification tree for the

Cryotherapy data set. In order to show how we build the classification tree using

the NPI2-Tree algorithm with the values of a and b, we divide the Cryotherapy data

set into two subsets: a training data set, about 80% of the data, where n1 = 38 and

n2 = 34, and a testing data set, about 20% of the data. So we set m1 = n1 = 38

and m2 = n2 = 34. Note that this binary splitting of the data set is only used here

to illustrate how the NPI2-Tree classification tree is built. However, in the experi-

mental analysis given in Section 3.4, the performance of the NPI2-Tree algorithm is

evaluated and compared with other classification methods using the 10-fold cross-

validation procedure, introduced in Section 2.5. Thus, splitting the data set into a

training set with 80% and a testing set with 20% is only applied here to illustrate

our examples.

As the next step, we find the threshold value that maximises the NPI lower

probability (Equation (3.1)) for each attribute variable in the training set. Then we

calculate the IGR value (Equation (2.4)) for all attribute variables. These thresh-

olds and the IGR values for each attribute variable are given in Table 3.5. We now

choose the attribute variable with the highest IGR value, which is X2 (Time elapsed

before treatment), to be assigned to the root node for the tree. Hence, we divide the

data set according to the threshold value of X2. Note that we do not use X2 again

for splitting the data in the next stages of building the NPI2-Tree classification tree.

After that, we divide the training data set S into two subsets, S1 and S2, where



3.3. NPI-based binary classification trees 45

Attribute t IGR value

X1 27.66 0.075

X2 10.64 0.280

X3 6.00 0.018

X4 48.00 0.009

X5 6.22 0.008

Table 3.5: The optimal thresholds and the IGR values for all attributes

S1 ∪ S2 = S and S1 ∩ S2 = ∅. Here S1 is the subset of the training data set S with

X2 ≤ 10.64, and S2 is the subset of the training data set with X2 > 10.64. In the

subset S1 of the training data sets, we get a pure subset in which all patients have

class C1. Therefore, this subset is not splitting again, and we fix a leaf node with

class C1. For the second subset S2, we do not get a pure set, i.e. some patients

have class C1, and some patients have class C2. We now need to select the optimal

thresholds and calculate the IGR value for S2, these optimal thresholds and IGR

values are presented in Table 3.6. We then choose the attribute variable with the

highest IGR value as a second splitting variable in the data set, hence, we choose X3

(Number of warts). The data set must be again splitted into two subsets according

to the threshold value of X3. For the subset below the branch of X3 > 5.85, we get

a pure subset, thus, we fix a leaf node with class C2. Similarly, we select X1 as a

third split below the branch of X3 ≤ 5.85 because we do not get pure subset. We

terminate the tree when all patients in each subtree have the same class. So, we

stop here and show the result of the full classification tree as in Figure 3.3, with

classification accuracy 89%. In Section 3.4, we present further analysis of this data

set and when we evaluate the performance of the NPI2-Tree algorithm against other

classification algorithms.

Example 3.3.4 In this example, we compare two way of choosing the target pro-

portions, a and b, in order to select the optimal thresholds and build classification

trees. We first pre-define these proportions, and then we determine them based on

our optimal way, presented in Section 3.3.1. To this end, we have used a data set



3.3. NPI-based binary classification trees 46

Attribute t IGR value

X1 27.66 0.246

X3 5.85 0.267

X4 13.84 0.170

X5 7.87 0.080

Table 3.6: The optimal thresholds and the IGR values for data set with X2 > 10.64

X2

X3

C2X1

C2C1

≤ 27.66 > 27.66

≤ 5.85 > 5.85

C1

≤ 10.64 > 10.64

1

Figure 3.3: Classification tree created by NPI2-Tree algorithm, with a = 0.56 and

b = 0.50.



3.3. NPI-based binary classification trees 47

X1

X2

C2C1

≤ 10.31 > 10.31

X2

C2C1

≤ 10.24 > 10.24

≤ 92 > 92

1

(a) Classification tree with accuracy 72% and a = b = 0.30

X1

X2

C2C1

≤ 10.62 > 10.62

X2

C2C1

≤ 10.29 > 10.29

≤ 91 > 91

1

(b) Classification tree with accuracy 76% and a = b = 0.85

Figure 3.4: Different classification trees with different scenarios of the predefined

target proportions.

obtained from the UCI repository of machine learning databases [41], consisting of

116 observations, two attribute variables, X1 and X2, and a binary class variable

C ∈ {C1, C2}. The data set is divided into two subsets: a training data set, about

80% of the data, and hence n1 = 42, n2 = 49, and a testing data set, about 20% of

the data. So we have m1 = n1 = 42, m2 = n2 = 49.

First, we have built classification trees considering two different scenarios for the

target proportions, which are a = b = 0.30 and a = b = 0.85. Figure 3.4 presents the

classification trees created by each of these scenarios along with their corresponding

classification accuracy results. As we see from this figure, the optimal thresholds

change depending on the a and b values, but they create the same structure of the



3.3. NPI-based binary classification trees 48

X1

X2

C2C1

≤ 6.9 > 6.9

C1

≤ 87 > 87

1

Figure 3.5: Classification tree with our optimal way of choosing a and b, where the

classification accuracy is 84% and the obtained values are a = 0.50 and b = 0.65.

trees. In the first scenario, we have chosen small values, that is a = b = 0.30, as

we can see from Figure 3.4(a), the tree size, which is the number of leaf nodes in

the tree, is equal to 4. The total classification accuracy of this scenario is 72%.

In the second scenario, we have increased the target proportions to a = b = 0.85,

as shown in Figure 3.4(b). The classification accuracy in this scenario increased

slightly to 76%, while the structure of the tree remains the same as the tree created

in the first scenario. Secondly, we have built a classification tree using our suggested

method for choosing the values of a and b as presented in Section 3.3.1. Using this

method, the optimal values are a = 0.50 and b = 0.65. As showing in Figure 3.5,

the structure of the classification tree is different from the trees in Figure 3.4, where

the tree in Figure 3.5 has the smallest tree size (number of leave nodes) compared to

the other trees. In addition, the classification accuracy increased to 84% compared

to the trees in Figure 3.4. The result differs from the previous results because we

set meaningful target proportions for the predictive inferences. In Section 3.4, we

further evaluate the performance of the NPI2-classification trees using our method

of choosing the values of a and b, and we compare its performance with other clas-

sification algorithms from the literature.



3.4. Experiment 49

3.4 Experiment

In this section, we aim to examine the performance of the NPI2-Tree algorithm on

6 data sets taken from the UCI repository of machine learning databases [41]. We

used only six data sets because the NPI2-Tree algorithm works with only continuous-

valued attributes and a binary class variable, and such data sets are uncommon in

public databases. However, it would be interesting to fully automate the NPI2-Tree

algorithm to enable us to analyse more data sets including categorical attributes.

A brief description of the main properties of each data set is given in Table 3.7.

Column ’N’ gives the number of observations in the data set, column ’Attr’ gives

the number of attribute variables, column ’Pro of class 1’ gives the data proportion

in class 1 and column ’Pro of class 2’ gives the data proportion in class 2. Further

details about these data sets can be found in [41]. It is important to note that, as

we only work with continuous-valued attributes, the categorical attributes in the

data sets were ignored. So, the number of attributes in the ’Attr’ column is only

the number of continuous-valued attributes. Therefore, we may not be surprised if

the results found in the literature are different from our results. For example, the

Liver Patients data set has ten attribute variables; nine are continuous and one is

categorical. The classification accuracy obtained in our experiment using the C4.5

algorithm is 77.25%, but in [70], the classification accuracy result using the C4.5 al-

gorithm is 84.86%, where the categorical attribute, which is the gender of the patient,

was used. As the NPI2-Tree algorithm presented in this thesis only functions for

continuous attribute variables, it would be interesting to further develop the NPI2-

Tree algorithm to work with categorical attributes, we leave that for future research.

As a first step, we use the NPI2-Tree algorithm to build a classification tree for

each data set. This was done using the tree-building process presented in Section

3.3.2, with the proposed method of choosing the values of a and b as presented in

Section 3.3.1. We compare the performance of the NPI2-Tree algorithm for each

data set with the most commonly used classical classification trees, which are the

C4.5 and the CART algorithms. More details about these algorithms have been

presented in Sections 2.3 and 2.4. We also compare the performance of the NPI2-



3.4. Experiment 50

Data set N Attr Pro of class 1 Pro of class 2

Breast Cancer 116 9 0.45 0.55

Blood Transfusion 748 3 0.76 0.24

Liver Patients 583 9 0.28 0.72

Haberman’s Survival 306 3 0.73 0.27

Cryotherapy 90 5 0.53 0.47

QSAR Biodeg 1055 14 0.66 0.34

Table 3.7: A brief description of the data sets

Tree algorithm with two imprecise algorithms, which are the NPI-M and the IDM

algorithms. Further details about these algorithms have been presented in Sections

2.3, 2.6 and 2.7.4. As the IDM algorithm depends on the value of the parameter

s̃, we use one recommended value of s̃, which is s̃ = 1. We refer to the IDM with

s̃ = 1, by the IDM1 algorithm.

The R software [69] has been used to carry out this experiment. We used the

RWeka package [51, 79] to implement the C4.5 algorithm, the rpart package [75] to

implement the CART algorithm and the imptree package [45] to implement both

the NPI-M and IDM1 algorithms. Some pre-processing steps in our data sets have

been carried out. The missing values for continuous attributes were replaced with

mean values using the missing value filter in R. In addition, some of the data sets

contain tied observations; we dealt with these by adding a small amount to the tied

observations. We also tested our method without breaking the tied observations and

observed that the results were close. Furthermore, for the NPI-M and the IDM1

algorithms, as they can only handle categorical attributes, therefore, we discretised

the continuous variables presented in Table 3.7 using the mdlp package in R and the

‘discretization’ function. This function converts a continuous variable into a cate-

gorical variable using the Fayyad and Irani method [43, 44], which find a threshold

value using only the avergae class entropy to evaluate the partitions created by each

candidate threshold. These pre-processing steps are essential, and they were carried

out at the beginning of the analysis for all algorithms to ensure a fair comparison

for all algorithms. After that, we applied all classification algorithms to all data sets



3.4. Experiment 51

Data set a b NPI2-Tree C4.5 CART NPI-M IDM1

Breast Cancer 0.57 0.73 87.10 86.89 86.90 87.65 87.86

Blood Transfusion 0.79 0.64 89.48 75.43 74.76 79.56 79.56

Liver Patients 0.32 0.65 80.70 77.25 76.43 80.28 80.28

Haberman’s Survival 0.84 0.42 75.19 75.62 73.18 76.39 76.39

Cryotherapy 0.56 0.50 79.38 80.11 83.48 81.45 80.18

QSAR Biodeg 0.65 0.82 91.22 73.13 77.86 82.16 82.16

Average - - 83.84 78.07 78.72 81.24 81.07

Table 3.8: Average result of classification accuracy of different classification algo-

rithms and the optimal values of a and b for the NPI2-Tree algorithm.

and the results were compared in several ways.

Five classification algorithms, which are the NPI2-Tree, the C4.5, the CART, the

NPI-M and the IDM1 algorithms, have been used in this experiment. The follow-

ing measures were used to evaluate the performance of the classification algorithms:

classification accuracy, in-sample accuracy and tree size. The classification accuracy

is the ratio of the number of correctly classified observations to the total number of

observations in the test data set, while the in-sample accuracy is the classification

accuracy for the training set. The tree size is the number of leaf nodes in the tree

[22]. All results given in this experiment were obtained using the average of a 10-fold

cross-validation scheme, as presented in Section 2.5. With respect to the NPI2-Tree

algorithm, we first found the optimal values of a and b using the method presented

in Section 3.3.1, and then we used the 10-fold cross-validation scheme to report

the final result. The results of this experiment are presented in Tables 3.8 - 3.10.

Table 3.8 presents the results of classification accuracies of the proposed NPI2-Tree

algorithm and other algorithms for each data set, including the optimal values of a

and b used by the NPI2-Tree algorithm. Table 3.9 shows the results of in-sample

accuracy for all classification algorithms. The tree sizes of classification algorithms

are presented in Table 3.10. In all tables, the best results are presented in bold font.

As shown in Table 3.8, the classification accuracies indicate that the NPI2-Tree



3.4. Experiment 52

Data set a b NPI2-Tree C4.5 CART NPI-M IDM1

Breast Cancer 0.57 0.73 88.12 88.22 88.22 88.22 88.22

Blood Transfusion 0.79 0.64 82.78 84.58 84.58 84.40 84.40

Liver Patients 0.32 0.65 89.80 83.93 83.20 81.96 81.62

Haberman’s Survival 0.84 0.42 75.40 76.99 76.99 76.23 76.23

Cryotherapy 0.56 0.50 82.87 82.64 80.34 82.16 82.28

QSAR Biodeg 0.65 0.82 87.39 87.50 88.86 85.96 85.96

Average - - 82.72 83.97 83.71 83.16 83.11

Table 3.9: Average result of the in-sample accuracy of the different classification

algorithms and the optimal values of a and b for the NPI2-Tree algorithm.

algorithm outperforms other classification algorithms for most data sets, and it has

the highest average classification accuracy, followed by the NPI-M, the IDM1, the

CART and the C4.5. For the Breast Cancer data set, all classification algorithms

obtained similar results, with the NPI-M algorithm performing slightly better than

the other algorithms. For the Blood Transfusion and QSAR Biodeg data sets, there

is a noticeable difference in classification accuracies between the classification algo-

rithms, with the NPI2-Tree algorithm clearly outperforming the other classification

algorithms. We have investigated the characteristics of these data sets in order to

gain insight into reasons that may cause this clear difference in the performance of

the NPI2-Tree algorithm, and we found that these data sets are large compared to

other data sets and they have less overlap between their data classes, which could be

a reason why the NPI2-Tree algorithm is superior to the other algorithms on these

data sets. The worst performing algorithms are the CART and C4.5 algorithms.

The NPI-M and IDM1 algorithms obtained very similar classification accuracies.

For the Liver Patients data set, we can see that the NPI2-Tree, the NPI-M and the

IDM1 algorithms perform better than the classical algorithms. For the Haberman’s

Survival data set, the NPI-M and the IDM1 perform slightly better than the other

algorithms, obtaining the same classification accuracy of 76.39%. Finally, for the

Cryotherapy data set, the NPI2-Tree algorithm obtained the worst result, which is

79.38%. For this data set, the NPI2-Tree algorithm built smaller trees than the ones

built by the other algorithms, which might be the reason why it performs a little



3.4. Experiment 53

Algorithm NPI2-Tree C4.5 CART NPI-M IDM1

Average 4.20 4.72 4.46 4.33 4.39

Table 3.10: Average result of the tree size of the different classification algorithms.

less than the other algorithms.

Table 3.9 presents the results of the in-sample accuracy of all classification algo-

rithms. The in-sample accuracy, which is the classification accuracy on the training

set, is not widely used to evaluate classification algorithms, but it gives insight into

how the classification algorithm works on the training set. It is well known that if

the classification algorithm works very well on the training set but does not work

very well on the testing set, it likely indicates overfitting. Therefore, it is useful to

show the classification algorithms’ performance on both training and testing sets,

and hence, to check overfitting as well, as was done in [22, 64]. As we can see from

Table 3.9, the C4.5 algorithm performs slightly better than the other classification

algorithms, followed by the CART, the NPI-M, the IDM1 and the NPI2-Tree. Note

that the C4.5, the CART, the NPI-M and the IDM1 algorithms have better in-

sample accuracy than classification accuracy, but, the performance of the NPI2-Tree

algorithm on the training sets is slightly worse than its performance on the testing

sets. It is possible that these results are due to the fact that the NPI2-Tree algorithm

selects the optimal thresholds by focusing on prediction, unlike the other algorithms

which focus on maximising the correct classification on the training sets. We see

from the results that the C4.5 and the CART algorithms clearly perform better on

the training sets than on the testing sets, which indicates that these algorithms may

be suffering from overfitting. According to the average results of classification accu-

racy and in-sample accuracy, we can state that the NPI2-Tree algorithm works well

on both data sets, training and testing sets, which might indicate that the NPI2-Tree

algorithm does not suffer from overfitting.

Finally, Table 3.10 shows the average results of the tree sizes for all the classifi-

cation algorithms. Note that it is referred here to the tree size as the total number



3.5. NPI2-Tree with imprecise split criterion 54

of leaf nodes in the tree, as was done by Bertsimas and Dunn [22], and by Murthy

and Salzberg [64]. However, some researchers may refer to the tree size as the total

number of all nodes in the tree. Of course, one can use any method to refer to

the size of the tree. Table 3.10 shows that the NPI2-Tree algorithm creates slightly

smaller trees than the other algorithms, followed by the NPI-M algorithm. The C4.5

algorithm creates the largest trees with average tree size of 4.72, which could be the

reason for its good performance on the training sets. The CART algorithm mostly

creates similar trees to the C4.5 algorithm, but in Liver Patients and Cryotherapy

data sets, the CART algorithm has the smallest tree size compared to the C4.5

algorithm, and hence, it gives a smaller average tree size than the C4.5 algorithm.

This study shows that the NPI2-Tree algorithm tends to create smaller trees than

the C4.5, the CART, the NPI-M and the IDM1 algorithms.

Overall, the results of the experimental analysis shows that the NPI2-Tree al-

gorithm performs well compared to the other classification algorithms. According

to the classification accuracy results, the NPI2-Tree algorithm is performing better

than other classification algorithms, followed by the NPI-M, the IDM1, the CART

and the C4.5. Regarding the in-sample accuracy results, the other algorithms are

performing slightly better than the NPI2-Tree algorithm. This is because of the

method of selecting the threshold values, in which the NPI2-Tree algorithm selects

the optimal threshold by focusing on prediction rather than maximising the correct

classification of the training data sets. Finally, the NPI2-Tree algorithm obtained

the smallest average tree size, while the C4.5 has the highest average tree size.

3.5 NPI2-Tree with imprecise split criterion

In this section we aim to evaluate the performance of the NPI2-Tree algorithm using

a different split criterion based on imprecise probability, and compare the results

with the classical split criterion. We use the imprecise split criterion, Imprecise

Information Gain, introduced in Section 2.3, to build the NPI2-Tree classification

trees



3.5. NPI2-Tree with imprecise split criterion 55

3.5.1 Imprecise Information Gain (IIG)

The Imprecise Information Gain (IIG) is a split criterion, which was introduced by

Abellán and Moral [6], to build classification trees from an imprecise probability per-

spective. It is an extension of the Information Gain (IG) split criterion introduced

by Quinlan [66] as the basis of the ID3 algorithm, replacing precise probabilities and

entropy with imprecise probabilities and the maximum entropy over credal sets. As

explained in Section 2.3, one can build different classification trees using the IIG

split criterion. For example, one can build a classification tree using the maximum

entropy distributions from the credal sets associated with the Imprecise Dirichlet

Model (IDM) or with the Nonparametric Predictive Inference for multinomial data

(NPI-M), which are presented in Sections 2.6 and 2.7.4, respectively.

However, as we are working with a binary class variable, it is useful to obtain the

credal sets from the NPI for Bernoulli data (NPI-Bern) [27], introduced in Section

2.7.3. This is useful because the NPI-Bern method leads to slightly less imprecision

than the IDM and the NPI-M methods. In the following, we explain how we obtain

the credal sets from the NPI-Bern approach, and how we maximise the entropy

on the credal sets, for a class variable C. Assume that we have a data set with n

observations and a binary class variable, C ∈ {C1, C2}. In the classical split criterion

IGR, the probability distribution pi, for class i (for i = 1, 2), is the proportion of

the data belonging to class i, that is,

pi =
ni
n
, for i = 1, 2 (3.9)

where n is the total number of observations, and ni is the number of observations

that belong to class Ci. However, when we use the imprecise split criterion, IIG, the

probability pi is given by an interval of probabilities, i.e. P and P . So, using the

NPI-Bern method, but considering only a single future observation, i.e. m = 1, the

probability pi is obtained using an interval of probabilities

pi ∈
[

ni
n+ 1

,
ni + 1

n+ 1

]
, i = 1, 2 (3.10)

This representation provides imprecise probabilities that lead the following closed



3.5. NPI2-Tree with imprecise split criterion 56

convex set of probability distributions for the class variable C,

L(C) =

{
p| pi ∈

[
ni

n+ 1
,
ni + 1

n+ 1

]
, i = 1, 2,

2∑
i=1

pi = 1

}
(3.11)

On this type of credal set, the classification trees are built using the maximum

entropy function. This function is denoted by H∗ and defined as

H∗(L(C)) = max {H(p), p ∈ L(C)} (3.12)

where H is the classical entropy function (Formula 2.1). The following example

illustrates how we use the maximum entropy on credal sets.

Example 3.5.1 Assume that we have a training data set S consisting of an at-

tribute variable X and a binary class variable C. Suppose the data set has 36

observations belonging to class C1 and 40 observations belong to class C2, so n1 =

36, n2 = 40 and n = 76. The credal set of probability intervals on the class variable

C is

L(C) =

{
p| p1 ∈

[
36

77
,
37

77

]
, p2 ∈

[
40

77
,
41

77

]
, p1 + p2 = 1

}
We choose the probability distribution pi, for i = 1, 2, from L(C) that maximises

the entropy, Equation (3.12).

Similarly, we can compute the imprecise split criterion IIG for the attribute vari-

able X and the class variable C, IIG(C,X), as presented in Section 2.3 (Formula

(2.8)). It should be noted that the value of the imprecise split criterion can be

negative, unlike the classical split criterion which cannot be negative. This property

allows the IIG split criterion to detect and discard variables that worsen the infor-

mation on the class variable [3]. Therefore, we consider this property to be useful

as an additional stopping criterion to prevent the tree from branching, as was done

by Abellán and Castellano [3], and by Mantas et al. [60].

3.5.2 Performance of the NPI2-Tree with the IIG

This section shows the performance of the NPI2-Tree algorithm using the imprecise

split criterion, the IIG split criterion with NPI-Bern, and compares its results with



3.5. NPI2-Tree with imprecise split criterion 57

Data set a b IGR IIG

Breast Cancer 0.57 0.73 87.10 87.10

Blood Transfusion 0.79 0.64 89.48 88.24

Liver Patients 0.32 0.65 80.70 80.12

Haberman’s Survival 0.84 0.42 75.19 75.19

Cryotherapy 0.56 0.50 79.38 79.94

QSAR Biodeg 0.65 0.82 91.22 90.83

Average - - 83.84 83.57

Table 3.11: Average result of the classification accuracy of the NPI2-Tree algorithm

using different split criteria.

Data set a b IGR IIG

Breast Cancer 0.57 0.73 88.12 87.17

Blood Transfusion 0.79 0.64 82.78 81.96

Liver Patients 0.32 0.65 79.80 78.65

Haberman’s Survival 0.84 0.42 75.40 78.12

Cryotherapy 0.56 0.50 82.87 82.87

QSAR Biodeg 0.65 0.82 87.39 86.22

Average - - 82.72 82.48

Table 3.12: Average result of the in-sample accuracy of the NPI2-Tree algorithm

using different split criteria.

the NPI2-Tree algorithm using the classical split criterion, the IGR split criterion,

to determine which of these split criteria is more appropriate for the NPI2-Tree al-

gorithm. The tree building process by the NPI2-Tree algorithm using the imprecise

split criterion is very similar to the tree building process by the NPI2-Tree algorithm

using the classical split criterion presented in Agorithm 1 (see Section 3.3.2), but

the IGR replaced by the IIG.

In order to evaluate the NPI2-Tree algorithm using the IIG imprecise split crite-

rion, we have used all tools that have been used in Section 3.4. The same six data

sets presented in Table 3.7, and the same performance measures, namely classifica-

tion accuracy, in-sample accuracy and tree size, are used. We have used the 10-fold



3.5. NPI2-Tree with imprecise split criterion 58

Split criteria IGR IIG

Average 4.20 4.35

Table 3.13: Average result of the tree size of the NPI2-Tree algorithm using different

split criteria.

cross-validation procedure, introduced in Section 2.5. Furthermore, the same values

of a and b as presented in Table 3.8 are used to build classification trees. Table

3.11 presents the average results of classification accuracy of the NPI2-Tree using

the two split criteria, the IGR and the IIG. Table 3.11 shows that the NPI2-Tree

algorithm obtained very similar results with both split criteria. For the Breast Can-

cer and Haberman’s Survival data sets, the NPI2-Tree algorithm obtained the same

accuracy of 87.10% and 75.19%, respectively, for both criteria. Table 3.12 shows

the average results of the in-sample accuracy of the NPI2-Tree algorithm for both

split criteria. Both split criteria have again obtained very similar results, performing

slightly better with the NPI2-Tree using the IGR split criterion. For the Haberman’s

Survival data set, the NPI2-Tree using the IIG criterion performs slightly better than

the NPI2-Tree using the IGR criterion with in-sample accuracy of 78.12. For this

data set, it is noticed that the NPI2-Tree algorithm using the IIG imprecise split cri-

terion creates larger trees, i.e. number of leaves, than the IGR split criterion, which

could be the reason for this result. Finally, tree sizes for the two split criteria are

presented in Table 3.13. The NPI2-Tree algorithm with the IGR has the smallest

average tree size, while the NPI2-Tree algorithm with the IIG has the largest average

tree size. We have noticed during the experimental analysis that when the value

of the IIG for some attributes in data sets, e.g. for the Breast cancer data set, is

negative, the NPI2-Tree algorithm with the IIG creates smaller trees compared to

the NPI2-Tree algorithm with the IGR. This is because we stop the branching of

trees when the value of IIG is negative. Overall, according to the analysis results

presented in Tables 3.11-3.13, the NPI2-Tree algorithm has achieved good results

for both split criteria. The performance of the NPI2-Tree algorithm using the IGR

split criterion has performed slightly better than the NPI2-Tree algorithm using the

IIG split criterion.



3.6. Concluding remarks 59

3.6 Concluding remarks

In this chapter, we have presented a new classification algorithm for building classi-

fication trees with data consisting of continuous-valued attributes and a binary class

variable based on NPI, which we called the NPI2-Tree algorithm. The NPI2-Tree

algorithm uses the NPI approach for selecting the optimal thresholds, where the

threshold values are selected using predictive inference considering a given number

of future observations and target proportions a and b. We have introduced a new

procedure for selecting the values of target proportions by choosing that to max-

imise classification performance, using a two-level k-fold cross-validation procedure

to define these values and to validate their performance in classification trees.

We have carried out an experimental analysis on several data sets in order to

evaluate the performance of the NPI2-Tree classification algorithm, using different

evaluation metrics. We have also compared the results with four different classifica-

tion algorithms, which are the C4.5 and the CART, NPI-M and IDM1 algorithms.

The results of our experimental analysis have indicated that the NPI2-Tree algorithm

performs well and performs slightly better than the other classification algorithms in

terms of both classification accuracy and tree sizes. The results have also suggested

that all classification algorithms have obtained similar results in terms of in-sample

accuracy. In addition, we have evaluated the performance of the NPI2-Tree algo-

rithm using the imprecise split criterion, and the results were compared with the

classical split criterion. The results have shown that the performance of the NPI2-

Tree algorithm is quite similar for both split criteria, but slightly better with the

classical split criterion.

In the experimental analysis, we have restricted attention to using only contin-

uous attribute variables because the aim of this work is about using the thresholds

for continuous attributes and our classification algorithms apply only to continuous

attributes. However, this does not mean that all the attribute variables have to be

continuous attributes. It is possible that, once the optimal desirable proportions

have been computed, the thresholds are computed and the selection of a variable,



3.6. Concluding remarks 60

categorical or continuous, can be done with the information gain ratio; we leave

this opportunity topic for future research. In our work in Chapter 3, we extend the

use of the NPI2-Tree algorithm from building classification trees with two classes to

building classification trees with three classes, however, it is easy to generalise this

method to more than three classes using the same approach. This can be achieved

by generalising first the NPI method for selecting the optimal threshold to include

more than three classes, as this approach is immediately generalisable in the same

way to any number of classes as long as they are ordered. We then can use the

same approach for choosing the target proportions and building the classification

trees. We leave this as a topic for future research. Another idea for future research

is to explore the use of the NPI2-Tree classification method considering the mis-

classification cost. In many practical applications, classification aims to minimize

misclassification costs instead of maximising the total classification accuracy. In

this thesis, we have chosen the values of target proportions that maximise the total

classification accuracy, however, it would be useful to develop the process of choos-

ing these target proportions to consider the misclassification cost. It may also be

useful to determine the kind of data sets for which the NPI2-Tree algorithm works

well. For example, one could analyse the characteristics of the data sets on which

NPI2-Tree performs well. Finally, it will be of interest to investigate the use of the

NPI2-Tree classification algorithm in random forests. The random forest is an en-

semble learning method that make prediction by aggregating majority vote of many

classification trees [24].



Chapter 4

NPI-based classification trees with

three classes

4.1 Introduction

In this chapter, we extend the method for building binary classification trees, pre-

sented in Chapter 3, to build classification trees with three classes. Throughout this

chapter, we assume that there is a natural ordering of the three classes, where obser-

vations from class C1 tend to be smaller than observations from class C2, which in

turn tend to be smaller than observations from class C3. This type of data exists in

many real-world applications; for example, in medical applications, there are three

stages (or classes) in Alzheimer’s disease: early stage, middle stage and late stage

[15]. In the middle stage of Alzheimer’s disease progress, symptoms become more

noticeable, and it is crucial to detect as it is a transition stage to the late stage in

which no medical treatments are efficient [15]. Therefore, in order to determine the

classes and split the data, there is a need to select two optimal thresholds, t1 < t2,

for continuous-valued data. The classical methods usually similarly select these two

thresholds as in the two classes setting, focusing on maximising the probability of

correct classification in the training data set rather than prediction.

In this chapter, we present a new classification algorithm, which we call the NPI3-

Tree algorithm, for building classification trees for data with continuous-valued at-

61



4.2. NPI-based thresholds for three classes 62

tributes and three ordered classes. The NPI3-Tree algorithm uses the NPI approach

for selecting the optimal thresholds for the three ordered classes scenario, where the

inferences are in terms of a given number of future observations and the values of

target proportions. We extend the method of choosing the target proportions for

cases of two-class setting, presented in Chapter 3, to cases of three-class setting.

We conduct an experimental analysis using different measures on several data sets

to measure the performance of the NPI3-Tree algorithm and compare its results

with other classification algorithms. Furthermore, the NPI3-Tree algorithm is also

evaluated using an imprecise split criterion, and the results are compared with the

classical split criterion.

This chapter is organised as follows: In Section 4.2, we present the NPI method

for selecting the optimal thresholds for data with three ordered classes, and we

provide an example to illustrate this method. Section 4.3 presents the method

for building the classification trees using the NPI approach for selecting the opti-

mal thresholds for three ordered classes, with illustrative examples. In Section 4.4,

we evaluate the performance of the NPI3-Tree algorithm using the classical split

criterion and compare its performance with the C4.5, CART, NPI-M and IDM1 al-

gorithms. In Section 4.5, we also assess the performance of the NPI3-Tree algorithm

using a split criterion based on imprecise probability. Finally, some concluding re-

marks are given in Section 4.6.

4.2 NPI-based thresholds for three classes

In Section 3.2, we have presented the results of the NPI method for selecting the

optimal threshold for two classes. In this section, we present the results of the NPI

method for selecting the optimal thresholds for three ordered classes, introduced in

[11, 37], with an illustrative example. As explained in [11, 37], one could naively use

the NPI method, presented in Section 3.2, twice, to find the optimal thresholds t1

and t2 for the three classes, i.e. one can find t1 using C1 and C2 and sequence find t2



4.2. NPI-based thresholds for three classes 63

using C2 and C3. However, because of the assumed ordering of the three classes, se-

lecting the two thresholds in this method may not satisfy the condition that t1 < t2.

In this chapter, we will not use the NPI method for two classes, presented in Section

3.2, twice, but we will use the NPI method for selecting the optimal thresholds for

three ordered classes, which finds two combined optimal thresholds t1 and t2. First,

we summarise the results of [11, 37] using the same notation as presented in Section

3.2, but with additional notation for class C3.

Suppose there are three classes C1, C2 and C3, which have a natural ordering

in the sense that observations from class C1 tend to be smaller than observations

from class C2, which in turn tend to be smaller than observations from C3. Let n3

denote the number of observations in class C3, the ordered data from this class are

denoted by x31 < x32 < · · · < x3n3
. For ease of notation, we define x30 = −∞ and

x3n3+1 = ∞. Again, the n3 observations divide the real-line into n3 + 1 intervals

I3l = (x3l−1, x
3
l ), for l = 1, 2, . . . , n3 + 1. Let m3 denote the number of future ob-

servations in class C3, with random variable X3
n3+d

, for d = 1, . . . ,m3. Let the m3

ordered future observations from class C3 be denoted by X3
(1) < X3

(2) < · · · < X3
(m3)

.

To classify observations into one of the classes, C1, C2 or C3, we want to find the

two optimal thresholds t1 and t2, where t1 < t2, such that observations less than or

equal to t1 are classified as belonging to C1, observations greater than t1 and less

than or equal to t2 are classified as belonging to C2 and observations greater than

t2 are classified as belonging to C3. For particular values of t1 and t2, we denote

the number of correctly classified future observations from class C1, C2 and C3 by

L1
t1

, L2
(t1,t2)

and L3
t2

, respectively. Let denote the target proportions chosen to reflect

the desired importance of the three classes by a, b and c, respectively. Selecting

these values will depend on a person’s beliefs of which class is more important to

be correctly classified than others. There is no constraint on these values except to

be in (0, 1]. One can choose a, b and c to be equal if one gives the same importance

of correct classification to all three classes. In Section 4.3.1, we present a strategy

to optimise these values through some automated algorithm. The general event of

interest which we consider for the three classes C1, C2 and C3 is that the number of



4.2. NPI-based thresholds for three classes 64

correctly classified future observations from class C1 is at least am1, the number of

correctly classified future observations from class C2 is at least bm2, and the num-

ber of correctly classified future observations from class C3 is at least cm3, that is

L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2 and L3
t2
≥ cm3.

Using the assumption of independence between the three classes, the NPI lower

probability for the event of interest is

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(4.1)

and the corresponding NPI upper probability is

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(4.2)

For I1i = (x1i−1, x
1
i ), i = 1, . . . , n1 + 1, and t1 ∈ I1it1 = (x1it1−1, x

1
it1

), where it1 ∈

{2, 3, . . . , n1} is defined as that interval I1it1 which contains t1, the NPI lower and

upper probabilities for the event L1
t1
≥ am1 are [11, 37]

P (L1
t1
≥ am1) = P (X1

dam1e ≤ t1) =

it1−1∑
i=1

P (X1
dam1e ∈ I

1
i ) (4.3)

P (L1
t1
≥ am1) = P (X1

dam1e ≤ t1) =

it1∑
i=1

P (X1
dam1e ∈ I

1
i ) (4.4)

For it1 = 1, these NPI lower and upper probabilities are P (L1
t1
≥ am1) = 0 and P (L1

t1
≥

am1) = P (X1
dam1e ∈ I11 ), and for it1 = n1 + 1, they are P (L1

t1
≥ am1) = 1 −

P (X1
dam1e ∈ I

1
n1+1) and P (L1

t1
≥ am1) = 1.

For I2j = (x2j−1, x
2
j) with j = 1, . . . , n2 + 1 and t1 ∈ I2jt1 = (x2jt1−1, x

2
jt1

), and

t2 ∈ I2jt2 = (x2jt2−1, x
2
jt2

), with jt1 ∈ {1, 2, . . . , n1 + 1} and jt2 ∈ {1, 2, . . . , n2 + 1},

with t2 ≥ t1 so jt2 ≥ jt1 , the NPI lower and upper probabilities for the event

L2
(t1,t2)

≥ bm2 are [11, 37]

P (L2
(t1,t2)

≥ bm2) = P (L2
(x2jt1

,x2jt2−1)
≥ bm2) (4.5)



4.2. NPI-based thresholds for three classes 65

P (L2
(t1,t2)

≥ bm2) = P (L2
(x2jt1−1,x

2
jt2

) ≥ bm2) (4.6)

For jt1 = 1 and jt2 = 2, these NPI lower and upper probabiliites are P (L2
(t1,t2)

≥

bm2) = 0 and P (L2
(t1,t2)

≥ bm2) = P (L2
(−∞,x2jt2

)
≥ bm2).

For I3l = (x3l−1, x
3
l ), l = 1, . . . , n3 + 1, and t2 ∈ I3lt2 = (x3lt2−1, x

3
lt2

) where lt2 ∈

{1, 2, . . . , n3}, the NPI lower and upper probabilities for the event L3
t2
≥ cm3 are

[11, 37]

P (L3
t2
≥ cm3) = P (X3

(m3−dcm3e+1) > t2) =

n3+1∑
l=lt2+1

P (X3
(m3−dcm3e+1) ∈ I3l ) (4.7)

P (L3
t2
≥ cm3) = P (X3

(m3−dcm3e+1) > t2) =

n3+1∑
l=lt2

P (X3
(m3−dcm3e+1) ∈ I3l ) (4.8)

where dcm3e is the smallest integer greater than or equal cm3. For lt2 = 1, these

NPI lower and upper probabilites are P (L3
t2
≥ cm3) = 1 − P (X3

(m3−dcm3e+1) ∈ I31 )

and P (L3
t2
≥ cm3) = 1, and for lt2 = n3 + 1, they areP

(
L3
t2
≥ cm3

)
= 0 and

P
(
L3
t2
≥ cm3

)
= P

(
X3

(m3−dcm3e+1) ∈ I3n3+1

)
.

We obtain the two optimal thresholds, t1 and t2, for the three ordered classes

C1, C2 and C3 by maximising either the NPI lower probability, Equation (4.1), or the

NPI upper probability, Equation (4.2). One needs to search for the values t1 and t2

that maximise the lower or the upper probability within each of the n1 +n2 +n3 + 1

intervals created by the data observations. However, as shown in [11, 37], the op-

timal threshold t1 can only be in intervals where the left-end value of the interval

is an observation from class C1 and the right-end value is an observation from class

C2, that is t1 ∈ (x1, x2). On the other hand, the optimal threshold t2 can only be

in intervals where the left-end value of the interval is an observation from class C2

and the right-end value is an observation from class C3, that is t2 ∈ (x2, x3). In

the following, we provide an example to illustrate the NPI method for selecting the

optimal thresholds for three classes, as presented above. For further explanations,

examples and discussions of this method, we refer to the PhD thesis of Alabdulhadi

[11], and the paper published by Coolen-Maturi et al. [37]. Further fundamental



4.2. NPI-based thresholds for three classes 66

C1 C2 C3

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

D
at

a 
se

t

Figure 4.1: Box-plots of data set for the three classes.

properties of this method are also presented in [11, 37].

Example 4.2.1 Assume that we have a real-valued data set from three ordered

classes C1, C2 and C3, with 22 observations, where n1 = 8 and n2 = n3 = 7, con-

sisting of the data {0.58, 0.59, 0.69, 0.80, 0.83, 1.22, 1.25, 2.29} for C1, {0.92, 1.46,

2.11, 2.41, 2.43, 2.65, 3.03} for C2 and {2.14,2.45, 2.52, 2.63, 3.04, 3.15, 3.32} for C3.

The box plots in Figure 4.1 show the overlap between the data for the three classes.

There is a slight overlap between the three classes, particularly between classes C2

and C3.

Table 4.1 presents the results of the optimal threshold values t1 and t2 obtained

from the NPI method along with their corresponding lower and upper probabilities,

for m1 = 8,m2 = 7 and m3 = 6. To illustrate the NPI method, we have considered

four different scenarios for the target proportions a, b and c. For the first scenario,

we have chosen small values for the target proportions, a = b = c = 0.30, lead-

ing to optimal threshold values t1 = 0.83 and t2 = 2.43. As the required target

proportions are quite easy to achieve, the corresponding NPI lower and upper prob-

abilities are high. The second scenario has a = b = c = 0.7, which are quite high,



4.2. NPI-based thresholds for three classes 67

Scenario Target proportions NPI lower method NPI upper method

# a b c t1 t2 value t1 t2 value

1 0.30 0.30 0.30 0.83 2.43 0.53 0.83 2.43 0.84

2 0.70 0.70 0.70 1.25 2.43 0.07 1.25 2.43 0.38

3 0.70 0.70 0.20 1.25 3.03 0.24 1.25 3.03 0.65

4 0.50 0.75 0.50 0.83 2.43 0.21 0.83 2.43 0.59

Table 4.1: Optimal thresholds (t1, t2) using NPI-based method, and corresponding

values of the NPI lower and upper probabilities, for m1 = 8,m2 = 7 and m3 = 6

Scenario Target proportions NPI lower mathod NPI upper method

# a b c t1 t2 value t1 t2 value

1 0.30 0.30 0.30 0.83 2.43 0.89 0.83 2.43 0.98

2 0.70 0.70 0.70 0.83 2.43 0.06 0.83 2.43 0.41

3 0.70 0.70 0.20 1.25 3.03 0.31 1.25 3.03 0.79

4 0.50 0.75 0.50 0.83 3.03 0.65 0.83 3.03 0.93

Table 4.2: Optimal thresholds (t1, t2) using NPI-based method, and corresponding

values of the NPI lower and upper probabilities, for m1 = m2 = m3 = 10

so the NPI method attempts to make a balance between the three classes to meet

the required target proportions and to find the optimal thresholds that maximise

the NPI lower probability, given in Equation (4.1), and the NPI upper probability,

given in Equation (4.2). The corresponding NPI lower and upper probabilities are

smaller than for the first scenario, which is due to the fact that the required target

proportions are larger. The third scenario has a = b = 0.70, c = 0.20, so there

is emphasis on the number of correctly classified future observations from class C1

and class C2 than from class C3. This leads to t2 being larger than in the other

scenarios. The final scenario has a = 0.50, b = 0.75, c = 0.50, so it puts more em-

phasis on the number of correctly classified future observations from class C2 than

that from C1 and C3. It is noticed that the optimal threshold values and the NPI

lower and upper probabilities changed again in order to meet the target proportions.

To further illustrate the results of the NPI method for selecting the optimal

threshold values, we present in Table 4.2 the optimal threshold values along with



4.3. NPI-based classification trees with three classes 68

the corresponding NPI lower and upper probabilities for m1 = m2 = m3 = 10,

using the same target proportions presented in Table 4.1. The results are similar

to those with m1 = 8,m2 = 7 and m3 = 6 in Table 4.1. For a = b = c = 0.30 and

a = b = 0.70, c = 0.20, the optimal thresholds are the same in both tables, but the

corresponding NPI lower and upper probabilities are greater than those in Table

4.1. It should be clarified that the change in the NPI lower and upper probabilities

here is due to the discrete nature of the event we consider, but it is not a direct

effect of larger m, as larger m still needs the same proportion to be achieved. For

example, for m1 = 8, m1 = 10 and a = 0.3, we need at least 3 good classifications

in both cases, which is easier for m1 = 10 than for m1 = 8, so then for the latter the

NPI lower and upper probabilities are probably smaller. For a = b = c = 0.70, the

NPI method provides the same optimal threshold for t2, but the optimal threshold

for t1 is different, while the values of the NPI lower and upper probabilities for both

tables are quite similar. Finally, for a = 0.50, b = 0.75 and c = 0.50, the optimal

threshold t1 is the same in both tables, but the optimal threshold t2 is different

and the corresponding NPI lower and upper probabilities in Table 4.2 are high

compared with those for the same scenario in Table 4.1. This section has presented

the NPI method for selecting the optimal thresholds for data with three classes,

giving illustrative examples. For more discussion about this method, we refer to

[11, 37].

4.3 NPI-based classification trees with three classes

In this section, we extend the method presented in Section 3.3, for building classi-

fication trees with two classes, to build classification trees with three classes, using

the NPI method for selecting the optimal thresholds t1 and t2 presented in Section

4.2. Note that maximising the NPI lower probability, Equation (4.1), or the NPI

upper probability, Equation (4.2), are different criteria which may give different op-

timal thresholds. However, as in Chapter 3, we only consider the optimal threshold

corresponding to the NPI lower probability, given in Equation (4.1).



4.3. NPI-based classification trees with three classes 69

Following the same notation as presented in Section 3.3, we need to add further

notation. Assume that there is a data set, D, with a set of continuous attribute

variables {X1, . . . , Xf} and a class variable C, where C ∈ {C1, C2, C3}. The three

classes are assumed to be fully independent and have a natural ordering, indicated

by C1 < C2 < C3. These classes could be e.g. low, medium, large or healthy, mild

disease, disease. We first divide the data set D into two subsets: training data set S

and testing data set T . For the training data set S, let n1, n2 and n3 denote number

of observations that belong to class C1, C2 and C3, respectively, where
∑3

i=1 ni = n.

We set the values of m1,m2 and m3 the number of future observations in C1, C2

and C3, respectively, based on the distribution of the training data set S, that is

m1 = n1,m2 = n2 and m3 = n3. This is because we do not actually know the

number of future observations and the classes to which future observations belong.

To select the two optimal thresholds, t1 and t2, that maximise the NPI lower

probability, Equation (4.1), we first need to choose the values of a, b and c for C1, C2

and C3, respectively. The process of choosing particular values of a, b and c depends

on a person’s opinion of the relative importance of correct classification for the

different classes. However, predefining these values may not enhance classification

performance, i.e. the NPI method may perform poorly when the target proportions

are too small or too large. For small values of a, b and c, the NPI method may

achieve the target proportions for each class, but it may not maximise the total

classification accuracy. On the other hand, for large values of a, b and c, the NPI

method may not achieve the target proportions for each class, but it may tend to

achieve the target proportions for one or two classes. The following example illus-

trates this issue further, where the goal is to show the total classification accuracy

using different scenarios of the values of a, b and c.

Example 4.3.1 Assume that we have a data set consisting of 21 observations and

three classes, C1, C2 and C3. Suppose that the training data set, with n1 = 4, n2 = 5

and n3 = 4, consisting of the data {1,2,3,5}, {4,6,7,8,10} and {9,11,12,13} for C1, C2

and C3, respectively, and that the testing data set consists of the data {1,3,5},



4.3. NPI-based classification trees with three classes 70

Scenario Target proportions Optimal thresholds Accuracy

# a b c t1 t2 (%)

1 0.25 0.25 0.50 3 8 75.00

2 0.75 0.75 0.75 3 10 87.50

3 0.60 0.33 0.70 5 8 87.50

Table 4.3: Comparisons of different scenarios of predefined a, b and c values

{7,8,10} and {11,12} for C1, C2 and C3, respectively. So, we have m1 = 4,m2 = 5

and m3 = 4. We consider three different scenarios of values of a, b and c. Table

4.3 presents the results of each scenario and the optimal thresholds along with their

corresponding classification accuracy. The first scenario has small values for the

target proportions, a = b = 0.25 and c = 0.50, leading to optimal thresholds t1 = 3

and t2 = 8, and the classification accuracy is 75.00%. The second scenario has

a = b = c = 0.75. The optimal threshold t2 is now large because we have c = b

which is different from the first scenario that has c > b. This change leads to a

change in the classification accuracy which increased to 87.50%. Finally, the third

scenario has a = 0.60, b = 0.33 and c = 0.70, as it puts more emphasis on the number

of correctly classified future observations from class C1 and C3 than from class C2,

the optimal threshold value increased to t1 = 5 because a > b, and the target

proportions have been achieved for each class. The total classification accuracy is

the same as in the second scenario.

As shown in Example 4.3.1, the predefined choice of the a, b and c values does

not enhance classification accuracy. Therefore, we will do the same as in Chapter

2, in which we choose the values of a, b and c that maximise the total classification

accuracy.

4.3.1 Selecting the target proportions

Following the proposed method of choosing the values of a and b, presented in

Section 3.3, we focus on choosing the values of a, b and c based on the data set

used in classification tasks, not setting them in advance. We will choose the values

that improve classification performance. Consider the NPI method for selecting the



4.3. NPI-based classification trees with three classes 71

optimal thresholds, t1 and t2, which is based on the NPI lower probability, Equation

(4.1),

P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

where P (L1
t1
≥ am1), P (L2

(t1,t2)
≥ bm2) and P (L3

t2
≥ cm3) are given in Equations

(4.3), (4.5) and (4.7), respectively, and a, b, c are any values in (0, 1]. Note that

we now consider a, b and c as parameters instead of achieved target proportions.

As these parameters play an important role in the total classification accuracy, we

propose to choose these parameters that maximise the classification accuracy on the

testing sets. This raises the question of how one can choose the target proportions

that maximise the classification accuracy and how to validate their performance in

classification trees. Similar to Chapter 3, we suggest to use double cross-validation

procedure in order to train our classification algorithm and tune the parameters a, b

and c.

The process of choosing the values of a, b and c using the two levels of the k-fold

cross-validation procedure, where k = 5, is presented in Figure 4.2. As we see from

the figure, the data set is divided into two levels of the 5-fold cross-validation proce-

dure. In the first level, which is the outer level, we validate our method with optimal

parameters of a, b and c, while in the second level, which is the inner fold, we use a

search function, the Genetic Algorithm [47, 48], to tune the parameters a, b and c.

In other word, the inner folds will return only the model with the best values for a

and b to the outer folds, while the outer folds will to validate the model’s quality.

In the outer folds, we will get five different performance with different values of the

parameters a, b and c. However, as we still want for a real data a best value of a, b

and c, therefore we will take those results from the outer folds, and extracting the

best a, b and c. Then we use them as the target proportions for the data set, as in D.

The GA is a search-based optimisation technique based on the rules of genetics

and natural selection to provide solutions to problems [47, 48]. We provide in the

appendix more details about how the GA method works to tune the values of a, b



4.3. NPI-based classification trees with three classes 72

data set 

 
 
A. Outer fold 

 
                                          C. Results of outer folds 

1!" outer fold 
 
2#$  outer fold 
 
3%$  outer fold 
 
 
4"& outer fold 
 
 
5"& outer fold 
 

 
B. Inner fold                                                                                                               

 
1!" inner fold 
 
2!" inner fold 
 
3%$  inner fold                                                      D. Choose the best result 
 
4"& inner fold 
 
5"& inner fold 
 

 
 Outer training fold 1  

 

 
Test fold 1 

   

    

   

  

Inner  training fold 1 
 

Test fold 1 

   

   

   

  

1!" outer fold accuracy and 
parameters  
 
2#$  outer fold  
 
3%$  outer fold  
 
4"& outer fold  
 
5"& outer fold  
 
 
5"& outer fold accuracy 
 
 
 

Choose the best outer fold 
result with its parameters a , b 
and c, and train on full data to 
create final result 
 

Figure 4.2: A diagram of a two-stage 5-fold cross-validation procedure to find the

optimal values of the target proportions a, b and c.

and c in the inner level. Also, we provide examples to show the optimal values of

a, b and c that maximise the classification accuracy using the GA method. After we

have explained the process of choosing the parameters a, b and c based on a given

data set, we present in Section 4.3.2 a new algorithm for building classification trees

using the NPI approach for selecting the threshold values for three classes and our

proposed method of selecting the values of a, b and c.

4.3.2 NPI3-Tree algorithm

In this section, we present a new classification algorithm for building classification

trees with data containing three classes, which we call Nonparametric Predictive

Inference for building classification trees with three classes (NPI3-Tree) algorithm.

It is similar to the NPI2-Tree algorithm, presented in Section 3.3.2, for building



4.3. NPI-based classification trees with three classes 73

classification trees with data containing binary classes, but the main difference is

that the NPI3-Tree algorithm works with data that contains three classes. In the

NPI3-Tree algorithm, we use the NPI method for selecting the optimal thresholds,

t1 and t2, presented in Section 4.2, to find the optimal threshold values, and the

method of choosing the values of a, b and c, presented in Section 4.3.1. The pro-

cedure of building classification trees by the NPI3-Tree algorithm is similar to the

well-known C4.5 algorithm, given in Section 2.3, but we use the NPI-based thresh-

olds method, presented in Section 4.2, and the method of choosing the values of a, b

and c, presented in Section 4.3.1. The following explains the procedure to build a

classification tree using the NPI3-Tree algorithm.

Assume that we have training data set, S, with n observations, which has con-

tinuous attribute variables, {X1, . . . , Xf}, and a class variable with three states,

C ∈ {C1, C2, C3}. The three classes are assumed to have a natural ordering, indi-

cated by C1 < C2 < C3. Let n1, n2 and n3 denote the total number of observations

from class C1, C2 and C3, respectively. So we set the values of number future ob-

servations based on the size of the training sets, that is m1 = n1,m2 = m2 and

m3 = m3. As a starting point for building a classification tree, we set the initial

a, b and c values equal to the training set proportions S belonging to C1, C2 and

C3, respectively. For each continuous attribute variables, Xi, for i = 1, . . . , f , in

the training data set S, we find optimal threshold values, t1 and t2, by maximising

the NPI lower probability, given in Equation (4.3.1). To search for the two optimal

threshold values, t1, and t2, rather than searching for each value that maximising

Equation (4.1) within each of the n1 + n2 + n3 + 1 intervals produced by the data

observations, we only consider the intervals as discussed in [11, 37], which is that the

optimal threshold t1 can only be in intervals where the left-end value of the interval

is an observations from class C1 and the right-end value is an observations from class

C2, that is t1 ∈ (x1, x2). On the other hand, the optimal threshold t2 can only be

in intervals where the left-end value of the interval is an observation from class C2

and the right-end value is an observation from class C3, that is t2 ∈ (x2, x3). Our

classification algorithm uses this property in order to reduce the required computa-



4.3. NPI-based classification trees with three classes 74

tion to search the optimal thresholds.

After selecting the optimal thresholds for each attribute variable, Xi, we compute

the value of the spliting criterion, IGR, (Equation (2.4)), for each attribute variable

to find the most informative one. Once the IGR values are computed for each

attribute variable, we choose the attribute variable with the highest value of the

IGR for the root node, we then split the training data set S into three subsets as

S1, S2 and S3, where S1

⋃
S1

⋃
S3 = S and S1

⋂
S1

⋂
S3 = ∅. Here S1, S2 and S3 are

subsets of S with X ≤ t1, t1 < X ≤ t2 and X > t2, respectively. For each subset,

Si for i = 1, 2, 3, we find the optimal thresholds again and compute the IGR for

the existing attribute variables. The NPI3-Tree algorithm continues recursively by

splitting the training data set further and creating a new subtree for each branch not

yet ending in a node. The tree branching stops when the observations in the subset

all belong to a single class or the minimum split value is reached. The procedure for

building the NPI3-Tree classification tree is described in Algorithm 2, which is similar

to Algorithm 1 used in Chapter 2, but the NPI3-Tree algorithm works with data sets

that contains three classes. In this chapter, we set the value of the minimum split

number equal to five in order to prevent our classification algorithms from building

large trees that may overfit the data and reduce classification performance.

4.3.3 Examples

In this section we provide two examples of the NPI3-Tree algorithm. In the first

example, Example 4.3.2, we illustrate how the NPI3-Tree algorithm can be used to

build a classification tree with the proposed method of choosing the values a, b and

c presented in Section 4.3.1. In the second example, which is Example 4.3.3, we

illustrate two different classification trees, one based on our method of choosing the

values of a, b and c, and one based on the predefined method of the values of a, b and

c. Note that the performance of the NPI3-Tree algorithm is evaluated and compared

with other classification algorithms in Section 4.4.



4.3. NPI-based classification trees with three classes 75

Algorithm 2 Pseudocode NPI3-Tree algorithm

1. Input:(S, C, Ω)

2. S: Training data set

3. C: A class variable C = {C1, C2, C3}

4. Ω: Set of continuous attributes Ω = {X1, . . . , Xf}

5. Procedure NPI3-Tree(S, C, Ω)

6. Create a Root node for the tree

7. if all observations in S have the same class C, then

8. Return the single-node tree with class C

9. if Ω is empty (i.e. there are no attributes available), then

10. Return the single-node tree with most common class C in S

11. Otherwise

12. Select the values of a, b, c and mi for i = 1, 2, 3

13. Make the initial values of a, b and c equal to the class proportion in S,

14. i.e. make a = n1
n , b = n2

n and c = n3
n

15. Make the values of mi equal to the number of observations in class Ci in S,

16. i.e. make m1 = n1, m2 = n2 and m3 = n3

17. for each attribute, Xi in Ω, do

18. Find the threshold values t1 and t2 that maximise the NPI lower probability,

given in Equation (4.1)

19. Compute the IGR value using Equation (2.4)

20. Choose attribute variable X from Ω, with the highest IGR value

21. Assign the attribute X for the Root node

22. Add a branch below Root, corresponding to X ≤ t1, t1 < X ≤ t2 and X > t2,

23. Let Si, for i = 1, 2, 3, be the subset of S that has X ≤ t1, t1 < X ≤ t2 and

X > t2, respectively

24. if Si is not empty, then

25. Add the subset created by NPI3-Tree (Si, C, Ω− {X})

26. return Root



4.3. NPI-based classification trees with three classes 76

Attribute t1 t2 IGR value

X1 5.5 6.1 0.41

X2 2.9 3.3 0.41

X3 1.9 4.7 0.84

X4 0.6 1.7 0.86

Table 4.4: The optimal thresholds and the IGR values for all attributes variables

Example 4.3.2 This example illustrates the process of building classification trees

using the NPI3-Tree algorithm with the method of choosing the a, b and c values.

We have used the Iris data set obtained from the UCI repository of machine learn-

ing databases [41]. The Iris data set has 150 observations and four attribute vari-

ables (sepals length, sepals width, petals length and petals width), denoted here as

X1, X2, X3 and X4, respectively. The class variable has three classes, each contains

50 observations, which refers to the type of the Iris plant, denoted here as C1, C2

and C3. First, we use the method proposed in Section 4.3.1 to find the optimal

values for the target proportions a, b and c. Using this method, we have found that

the optimal values that improve classification performance are a = 0.77, b = 0.75

and c = 0.80.

After selecting the values of a, b and c for the Iris data set, we divide the data

into two subsets: a training data set, about 80% of the data, with n1 = 40, n2 = 41

and n3 = 39, and a testing data set, about 20% of the data. We set the number

of m1,m2 and m3 future observations based on n1, n2 and n3 values, so we have

n1 = m1 = 40, n2 = m2 = 41 and n3 = m3 = 39. This binary split is only applied

here to illustrate how we build the classification tree using the NPI3-Tree algorithm,

however, in Section 4.4, all classification algorithms are evaluated using the 10-fold

cross-validation procedure, given in Section 2.5. Now, for the training set, we select

the threshold values t1 and t2 that maximise the NPI lower probability, given in

Equation (4.1), for all attribute variables, and we then compute the IGR values for

all attributes using Formula (2.4). The optimal thresholds and the IGR values are

presented in Table 4.4.



4.3. NPI-based classification trees with three classes 77

Next, to find the best attribute variable for splitting the data upon it, we choose

the attribute variable that has the highest IGR value. We can see from Table 4.4

that the fourth attribute, X4, has the highest IGR value. Thus, we assign X4 as

the root node in the tree, and we then split the training data set according to its

optimal threshold values. So, we split the training data set into three subsets, with

X4 ≤ 0.6, 0.6 < X4 ≤ 1.7 and X4 > 1.7, respectively. Note that we do not use again

X4 for further splitting in the next levels of the classification tree. As the training

data set has been split into three subsets, we again find the optimal thresholds and

compute the IGR values for each subset. In the subsets of the training data set with

X4 ≤ 0.6 and X4 > 1.7, we get pure subsets, i.e. all observations in each subset

belonging to a single class. Hence, we fix a leaf node for these subsets with the

most common class, which are class C1 and C3, respectively. In the subset of the

training data set with 0.6 < X4 ≤ 1.7, we do not get a pure subset; in this case, we

again calculate the optimal thresholds and the IGR values for this subset. Similarly,

we select X3 as a second split below the branch of 0.6 < X4 ≤ 1.7 because it has

the highest IGR value among the other attribute variables. We stop here the tree

branching and terminate the tree because all observations in each subtree belong to

the same class. The result of the complete classification tree is presented in Figure

4.3. Note that as we have only observations from two classes in X3, in Figure 4.3, we

deal here with this case as in Chapter 3, in which we use the NPI-based threshold

selection method for two classes instead of three classes.

Example 4.3.3 This example illustrates two methods for choosing the target pro-

portions for building a classification tree using the NPI3-Tree algorithm. We first

use the predefined choice for the a, b and c values to determine the thresholds and

build the classification tree, and then we use our optimal way, presented in Section

4.3.1, in which we choose these values that improve classification performance. The

data set used in this example consists of 125 observations, two attribute variables

X1 and X2, and three ordered classes C1, C2 and C3, which is obtained from the UCI

repository of machine learning databases [41]. We first divide the data set into two

subsets: training data set (80%), with n1 = 25, n2 = 32 and n3 = 43, and testing

data (20%) set. So, we have m1 = 25,m2 = 32 and m3 = 43. Note that our aim



4.3. NPI-based classification trees with three classes 78

X4

C3X3

C3C2

≤ 4.9 > 4.9

C1

≤ 0.6
0.6 < X4 ≤ 1.7

> 1.7

1

Figure 4.3: Classification tree of Iris data set created by the NPI3-Tree algorithm,

where a = 0.77, b = 0.75 and c = 0.80.

of this example is not to evaluate our method of choosing the values of a, b and c

with the predefined choice for these values, but we aim to illustrate the resulting

classification trees of these two ways. In the next section, we carry out experiments

to examine the performance of the NPI3-Tree algorithm on several real data sets,

using the proposed method of choosing the a, b and c values, and compare its results

with other classification algorithms.

For the first method, we have predefined the values for the target proportions

equal to a = b = c = 0.80. The classification tree created by these proportions

is given in Figure 4.4. We have found that the tree size qual to 4, and the classi-

fication accuracy, The classification accuracy, which is the ratio of the number of

correctly classified observations to the total number of observations in the test data

set, is 84%. For the second method, we have determined these target proportions

based on our method, the optimisation technique, we found that the optimal target

proportions are a = 0.43, b = 0.87, c = 0.65. As shown in Figure 4.5, the result

of the classification tree is same as the first tree in terms of the tree size, but the

classification accuracy increased to 92% compared to the first method.



4.3. NPI-based classification trees with three classes 79

X2

X1

C3C2

≤ 6.1 > 6.1

C2C1

≤ 1.2
1.2 < X2 ≤ 4.1

> 4.1

1

Figure 4.4: Classification trees created with the predefined choice of the a, b and c

values, where a = b = c = 0.80, and the classification accuracy is 84%.

X2

C3X1

C3C2

≤ 4.9 > 4.9

C1

≤ 1.2
1.2 < X2 ≤ 4.7

> 4.7

1

Figure 4.5: A classification tree created with the proposed method of choosing the

a, b and c, where a = 0.43, b = 0.87, c = 0.65, and the classification accuracy is 92%.



4.4. Experiment 80

4.4 Experiment

In this section, we carry out an experimental analysis to examine the performance of

the NPI3-Tree algorithm and to compare its performance with other classification al-

gorithms on five data sets obtained from the UCI Machine Learning Repository [41].

We compare its performance with the most commonly used classical algorithms, the

C4.5 and the CART algorithms, and with some classification algorithms based on

imprecise probabilities, the NPI-M and the IDM1 algorithms. More information

about these algorithms has been given in Section 2.2. The five data sets used in

this experiment, namely Iris, Seeds, Wine, Contraceptive Method Choice (CMC)

and Fitness data sets, are diverse in terms of their size and the number of attribute

variables. Table 3.7 briefly summarises the main characteristics of these data sets,

where Column ’N’ gives the number of observations in the data set, column ’Attr’

gives the number of continuous attribute variables, column ’Pro of class 1’ gives

the proportion of the data belonging to class C1, column ’Pro of class 2’ gives the

proportion of the data belonging to class C2 and column ’Pro of class 3’ gives the

proportion of the data belonging to class C3. For further information and more de-

tails about these data sets, we refer to [41]. We only used five data sets because the

NPI3-Tree algorithm are only functions for continuous-valued attributes with three

ordered classes, which are not commonly available in the public database. It would

be interesting to fully automate the NPI3-Tree algorithm to enable us to analyse

more data sets including categorical attributes.

The statistical R software [69] has been used to carry out this experiment. All

missing values were replaced with mean values using the missing value filter in R. All

tied observations were dealt with by adding a small amount to the tied observations.

For the NPI-M and the IDM1 algorithms, as they only handle categorical attributes,

we discretised the continuous variables presented in Table 3.7 using the mdlp package

in R and the ‘discretization’ function. This function converts a continuous variable

into a categorical variable using the Fayyad and Irani method [43, 44], which dis-

cretize the continuous variables using a threshold value that minimises Equation

(2.9) among all candidate thresholds. These pre-processing steps are essential and



4.4. Experiment 81

Data set N Attr Pro of class 1 Pro of class 2 Pro of class 3

Iris 150 4 0.33 0.33 0.33

Seeds 210 7 0.33 0.33 0.33

Wine 178 3 0.34 0.39 0.27

CMC 1473 2 0.42 0.24 0.34

Fitness 8020 10 0.36 0.41 0.23

Table 4.5: A brief description of the data sets.

were carried out at the beginning of the analysis for all algorithms to ensure a fair

comparison. After that, we applied all classification algorithms to all data sets, and

the results were compared in several ways.

The Fitness data set has originally four ordered classes and 13374 observations.

However, as the NPI3-Tree algorithm works only with three classes, we removed

one class from this data, where the new data became 8020 observations and three

ordered classes. Combining two neighbouring classes may be possible, but we leave

this as future work. In addition, as the Fitness data set is large, we fix a minimum

split number of 100 observations that must exist before splitting any node further.

Otherwise, the tree is terminated, and the most frequent class in that node is fixed as

a leaf node. A minimum split value has been fixed to reduce the calculation needed

and avoid overfitting, as was done by Berry and Linoff [21], and by Bertsimas and

Dunn [22]. However, all other classification algorithms will be applied to the Fitness

data set using this minimum split value; hence the comparison will be fair for all

algorithms. A minimum split value for all other data sets was fixed to 5, as was

done in Chapter 2.

Five classification algorithms, which are the NPI3-Tree, the C4.5, the CART, the

NPI-M and the IDM1, have been used in this experiment. We used the RWeka pack-

age [51, 79] to build the C4.5 algorithm, the rpart package [75] to build the CART

algorithm and the imptree package [45] to build both the NPI-M and IDM1 algo-

rithms. The NPI3-Tree classification algorithm has been built using the procedure

presented in Section 4.3.2. In order to evaluate the performance of the NPI3-Tree



4.4. Experiment 82

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.77 0.75 0.80 94.61 94.22 94.38 94.69 94.52

Seeds 0.81 0.79 0.78 93.43 89.72 90.42 92.63 92.38

Wine 0.94 0.68 0.87 96.54 93.12 91.14 95.19 94.64

CMC 0.43 0.36 0.52 49.96 50.10 48.40 49.81 49.81

Fitness 0.53 0.64 0.49 79.81 77.31 72.19 77.60 77.82

Average - - - 82.87 80.89 79.30 81.98 81.83

Table 4.6: Average result of the classification accuracy of all algorithms and the

optimal values of a, b and c for the NPI3-Tree algorithm.

algorithm and all other algorithms, we have used three metrics. First, we used the

classification accuracy, which is the ratio of the number of correctly classified obser-

vations to the total number of observations in the test data set. Further information

about the classification accuracy has been given in Section 2.5. Secondly, we use

in-sample accuracy, which is the classification accuracy on the training set. For

more details about this metric, see Section 2.5. Finally, we used a tree size metric

for each classification algorithm. Note that we refer here to the tree size as the

total number of leaf nodes in the tree, as was done by Bertsimas and Dunn [22],

and by Murthy and Salzberg [64]. A 10-fold cross-validation technique, as described

in Section 2.5, has been used to obtain the final results from each of the three metrics.

Tables 4.6 present the results of the classification accuracies of the NPI3-Tree al-

gorithm and all the other classification algorithms for each data set. It also presents

the target proportions a, b and c that correspond to the NPI3-Tree algorithms. As

shown in Table 4.6, the NPI3-Tree algorithm performs better than the other algo-

rithms for most data sets, and it achieves the highest average classification accuracy,

followed by NPI-M, IDM1, C4.5 and CART, respectively. For the Iris data set, all

classification algorithms including the NPI3-Tree have similar results. This simi-

larity between all algorithms’ performance could be because the Iris data set has

150 observations, distributed equally across the three classes, and it has less overlap

between their data classes. For this data set, the values of a, b and c are also similar.

For the Seeds and Wine data sets, the NPI3-Tree algorithm clearly outperforms the



4.4. Experiment 83

classical algorithms, the C4.5 and the CART algorithms, and slightly performs bet-

ter than the NPI-M and the IDM1 algorithms. For these data sets, the NPI3-Tree

classification algorithm built larger trees than the other classification algorithms

which might be the reason why the NPI3-Tree algorithm performs better than the

other algorithms. For the CMC data set, all the classification algorithms including

the NPI3-Tree algorithm have not achieved good results, with the C4.5 algorithm

slightly performing better than the other algorithms, which obtained classification

accuracy of 50.10%. For this data set, the values of a, b and c are also low. We

have analysed this data in-depth in order to give an insight into the characteristics

of this data set that could be causing these results. The CMC data set has 1473 ob-

servations and two continuous attribute variables. However, this data has overlaps

between their data observations’ classes of more than half of the data. This could

be the reason for these results which also match those observed in earlier studies,

e.g. [8, 60]. Finally, for the Fitness data set, the NPI3-Tree algorithm obtained

the highest classification accuracy of 79.81%, where the C4.5, the NPI-M and the

IDM1 algorithms have similar results. On the other hand, the CART obtained the

worst result. Overall, according to the average classification accuracy, we can say

that the NPI3-Tree algorithm tends to perform better than the C4.5 and the CART

algorithms, and it tends to perform slightly better than the NPI-M and the IDM1

algorithms.

Following [22, 64], we have evaluated the performance of the NPI3-Tree algorithm

on the training data set and compared it with the other classification algorithms.

The in-sample accuracy measure, which is the performance of algorithms on the

training set, is not commonly used to indicate classification accuracy, but it would

be useful to give insight into how the classification algorithm works on the train-

ing set. It is well known that if the classification algorithm works very well on the

training set but does not work very well on the testing set, it likely indicates over-

fitting. Therefore, it is useful to show the classification algorithms’ performance on

both training and testing sets, and hence, to check overfitting as well. Table 4.7

presents the results of the in-sample accuracy of the NPI3-Tree algorithm and the



4.4. Experiment 84

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.77 0.75 0.80 94.82 94.82 94.82 94.82 94.82

Seeds 0.81 0.79 0.78 90.66 92.53 92.11 91.16 91.98

Wine 0.94 0.68 0.87 93.54 94.56 94.93 92.40 92.40

CMC 0.43 0.36 0.52 51.68 52.39 51.68 52.78 52.78

Fitness 0.53 0.64 0.49 79.96 80.77 79.61 80.22 80.28

Average - - - 82.13 83.04 82.63 82.27 82.45

Table 4.7: Average result of the in-sample accuracy for all classificaton algorithms

and the optimal values for a, b and c to the NPI3-Tree algorithm.

Algorithm NPI3-Tree C4.5 CART NPI-M IDM1

Average 3.66 5.80 4.48 5.92 5.94

Table 4.8: Average result of the tree size of all classification algorithms.

other classification algorithms. All classification algorithms perform better on the

training data sets than on the testing data sets, except the NPI3-Tree algorithm

whose performance on the train sets is slightly less than its performance on the test

sets. This is due to the fact that the NPI3-Tree algorithm selects the optimal thresh-

olds by focusing on prediction, unlike the other classification algorithms which focus

on maximising the correct classification of the training sets. The C4.5 algorithm

has the highest average result of in-sample accuracy, followed by the CART, the

IDM1, the NPI-M and the NPI3-Tree algorithms. For the Iris data set, although all

classification algorithms do not give the same trees, they have obtained the same

result which is 94.82%. In this experimental analysis, it is noticed that the classi-

cal algorithm, the C4.5 and the CART, clearly perform better on the training data

sets compared to their performance on the testing sets, which could be an indica-

tion they suffer from overfitting. From the results presented in Table 4.7, we can

explain that the NPI3-Tree has good results on both the training and testing data

sets, which may indicate that the NPI3-Tree algorithm does not overfit the data sets.

Finally, the average tree size for all the classification algorithms is given in Table

4.8. As we can see from the table, the NPI3-Tree algorithm creates the smallest



4.4. Experiment 85

trees, which has obtained the smallest result of the average tree size, followed by

the CART, the C4.5, the NPI-M and the IDM1 algorithms. The use of a multiple

split on continuous attributes which is used by the NPI3-Tree algorithm could be

one of the main reasons for creating the smallest trees by the NPI3-Tree algorithm.

The use of a multiple split on an attribute variable usually makes a classification

tree smaller, easier to be understood and faster to build. Unlike the binary split

which makes the trees larger because it allows an attribute variable to appear many

times in the paths from the root of the tree to its leaf. For more clarification, we

illustrate in Figure 4.6 two classification trees created by the C4.5 and the NPI3-Tree

algorithms for one attribute variable, X1, of the Iris data. Figure 4.6(a) presents the

classification tree created by the C4.5 which uses a binary split, e.g. two branches,

while Figure 4.6(b) presents the classification tree created by the NPI3-Tree algo-

rithm, which uses a multiple split, e.g. three branches. As we can see from the two

trees, the classification tree built by the NPI3-Tree algorithm is smaller than the

classification tree built by the C4.5 algorithm for the same data set.

To summarise, from the classification accuracy results presented in Table 4.6, we

can conclude the following regarding the NPI3-Tree algorithm’s performance. The

NPI3-Tree algorithm performs well and slightly better than other classification algo-

rithms. The NPI-M and IDM1 algorithms have quite similar results on all the data

sets. With respect to the in-sample accuracy, the NPI3-Tree algorithm is slightly

performing less than other its performance on the testing data sets, which is due to

the fact that the NPI3-Tree algorithm selects the optimal thresholds by focusing on

prediction rather than maximising the correct classification of the training sets. As

the NPI3-Tree algorithm has good results on both the classification accuracy and

in-sample accuracy, this could indicate that the NPI3-Tree algorithm does not suffer

from overfitting. Finally, the NPI3-Tree algorithm has the lowest average tree size,

while the IDM1 algorithm has the highest average tree size.



4.5. Performance of NPI3-Tree with the IIG 86

X1

X1

C3C2

≤ 5.8 > 5.8

X1

C2C1

≤ 5.4 > 5.4

≤ 5.5 > 5.5

1

(a) Tree with a binary split

X1

C3C2C1

≤ 5.1
5.1 < X1 ≤ 6.2

> 6.2

1

(b) Tree with a multiple split

Figure 4.6: Classification trees with binary and multiple split.

4.5 Performance of NPI3-Tree with the IIG

So far, the NPI3-Tree has been tested using the classic split criterion, the IGR split

criterion, which is based on precise probability theory. This section aims to get

insight into the performance of the NPI3-Tree algorithm using different split crite-

ria based on imprecise probability, which is the Imprecise Information Gain Ratio

(IIG) split criterion, introduced by Abellán and Moral [6]. The IIG is used as a

split criterion for the NPI3-Tree algorithm to build classification trees from an im-

precise probability approach, using the maximum entropy distributions on credal

sets obtained from the Imprecise Dirichlet Model (IDM) [1] or the Nonparamet-

ric Predictive Inference for multinomial data (NPI-M) [7]. For simplicity, and to

avoid confusion, we will refer to the NPI3-Tree algorithm using the IIG based on

the NPI-M model as IIGNPIM , and the NPI3-Tree algorithm using the IIG based

on the IDM1 model as IIGIDM1. Further details about this split criterion have been

presented in Section 2.3.



4.5. Performance of NPI3-Tree with the IIG 87

The procedure of building the NPI3-Tree classification trees using the IIG split

criterion is similar to the procedure of building the NPI3-Tree classification trees

using the IGR split criterion presented in Algorithm 2 (see Section 4.3.2), but the

IGR in Algorithm 2 replaced by either the IIGNPIM or the IIGIDM1. To measure the

performance of the NPI3-Tree using the IIGNPIM and the IIGIDM1 split criteria, the

same five data sets presented in Table 4.5 are used. All tools used with the experi-

mental analysis given in Section 4.4 are also used in this section. For example, we

have applied the following pre-processing method: missing values were replaced with

mean values using the missing value filter in R. Further, the tied observations were

broken by adding a small amount to the tied observations. In addition, we have used

the same metrics, which are the classification accuracy, in-sample accuracy and tree

sizes, to measure the NPI3-Tree algorithm’s performance with the imprecise split

criteria.

Table 4.9 presents the average result of the classification accuracy of the NPI3-

Tree algorithm using the imprecise split criteria, the IIGNPIM and the IIGIDM1 split

criteria. We have also provided the average classification accuracy of the NPI3-Tree

algorithm with the classical split criterion, the IIG split criterion, and the values of

a, b and c. The NPI3-Tree algorithm has a similar performance on all split crite-

ria, where the NPI3-Tree algorithm using the IIGNPIM is performing slightly better

than the other split criteria. For the Wine data set, the NPI3-Tree algorithm has

the same classification accuracy of 96.67% with both split criteria, the IIGNPIM and

the IIGIDM1. For this data set, the NPI3-Tree algorithm also built the same trees

with these split criteria. For the CMC data set, it is noticed that the NPI3-Tree

algorithm with all split criteria again performs poorly. Also, all classification trees

created for this data set were very large. What is interesting about the results

presented in Table 4.9 compared to the results presented in Table 4.6 is that the

NPI3-Tree algorithm performs well with the three split criteria and outperforms the

other classification algorithms presented in Table 4.6.

To investigate the performance of the NPI3-Tree algorithm using the imprecise



4.6. Concluding remarks 88

Data set a b c IGR IIGNPIM IIGIDM1

Iris 0.77 0.75 0.80 94.61 94.58 94.43

Seeds 0.81 0.79 0.78 93.43 92.81 92.81

Wine 0.94 0.68 0.87 96.54 96.67 96.67

CMC 0.43 0.36 0.52 49.96 50.26 50.24

Fitness 0.53 0.64 0.49 79.81 81.22 80.66

Average - - - 82.87 83.10 82.96

Table 4.9: Average result of the classification accuracy of the NPI3-Tree with three

split criteria, and the values of a, b and c.

split criteria and compare them with the classical split criterion, we have calculated

in-sample accuracy for the NPI3-Tree algorithm with all split criteria as presented

in Table 4.10. The results of in-sample accuracy, which is the classification ac-

curacy on the training set, are calculated to show how the NPI3-Tree algorithm

with the imprecise split criteria performs on the training set, and hence, to check

on overfitting as well. As shown in Table 4.10, the average results of in-sample

accuracy are similar for all split criteria and for all data sets. According to the av-

erage results on in-sample accuracy and classification accuracy, we can say that the

NPI3-Tree algorithm works well on all the split criteria, which might indicate that

it does not suffer from overfitting. Finally, to compare different trees built by the

different split criteria, the results of tree size (number of leaf nodes) for each split

criterion are presented in Table 4.11. The NPI3-Tree algorithm using the IGR split

criterion creates the smallest trees, followed by the IIGNPIM and the IIGIDM1 split

criteria. It should be clarified that the NPI3-Tree algorithm creates smaller trees

than the other classification algorithms presented in Table 4.8, with all split criteria.

4.6 Concluding remarks

In this chapter, we have presented a new classification algorithm, which we have

called the NPI3-Tree algorithm, to build classification trees based on the NPI ap-

proach. This algorithm is an extension of the NPI2-Tree algorithm, presented in



4.6. Concluding remarks 89

Data set a b c IGR IIGNPIM IIGIDM1

Iris 0.77 0.75 0.80 94.82 93.90 94.78

Seeds 0.81 0.79 0.78 90.66 91.66 91.66

Wine 0.94 0.68 0.87 93.54 92.40 92.40

CMC 0.43 0.36 0.52 51.68 51.17 52.16

Fitness 0.53 0.64 0.49 79.96 76.63 78.19

Average - - - 82.13 81.15 81.83

Table 4.10: Average result of the in-sample accuracy of the NPI3-Tree with three

split criteria, and the optimal values of a, b and c.

Split criterion IGR IIGNPIM IIGIDM1

Tree size 3.66 3.76 3.94

Table 4.11: Average result of the tree size of the NPI3-Tree using different split

criteria.

Chapter 3, but it has been developed for data with continuous-valued attributes

and three ordered classes. The NPI3-Tree algorithm uses the NPI approach for se-

lecting optimal thresholds, where the inferences are explicitly in terms of a given

number of future observations and target proportions. First, we have presented the

NPI method for selecting the optimal thresholds for three ordered classes, presented

by Alabdulhadi [11] and Coolen-Maturi et al. [37], with illustrative examples to

show the method. We have then extended the procedure for selecting the optimal

values of target proportions, introduced in Chapter 3, to data with three classes by

choosing that to maximise classification performance on testing data sets. Finally,

the NPI3-Tree algorithm has been presented with an example showing how to build

classification trees using this algorithm.

We have carried out an experimental analysis of five data sets taken from the UCI

repository of machine learning databases [41]. We have evaluated the performance

of the NPI3-Tree algorithm on these data sets and compared its performance with

other classification algorithms. We have used the classification accuracy, in-sample

accuracy and tree size to measure the performance of all classification algorithms.



4.6. Concluding remarks 90

According to the results obtained from the experimental analysis, the NPI3-Tree

algorithm performs slightly better than other classification algorithms for most data

sets in terms of classification accuracy. The results have also shown that all clas-

sification algorithms have similar results in terms of in-sample accuracy, where the

other algorithms have slightly higher accuracies than the NPI3-Tree algorithm. In

terms of tree sizes, the results have indicated that the NPI3-Tree algorithm tends to

create smaller trees than other classification algorithms.

This work is explicitly on choosing the threshold, which requireds that there is

a natural ordering of the attribute values with their classes: lowest values for the

first class and greatest values for the last one. We have considered this type of data

because it is important and exists in many practical situations. For non-ordered

classes, we have not considered it yet, but it is probably a quite simple way, for

example, we can consider a pre-processing step in which if the order is not the

appropriate the variable is transformed in some way, e.g. taking the opposite value.

This opportunity is left as a topic for future work. For non-ordered classes, we can

refer to Abdulmajeed’s thesis [12], but this work does not require threshold. One

important topic for future work, which is a similar to one discussed at the end of

Chapter 3, is to develop the NPI3-Tree algorithm considering the misclassification

cost. For example, classification aims to minimize misclassification costs in many

practical applications instead of maximising the total classification accuracy. So, it

would be of interest to develop the process of choosing the target proportions taking

the misclassification cost into account. Another interesting topic to investigate is

to compare the NPI3-Tree classification algorithm with other classification methods

that do not use classification trees. Although the NPI3-Tree algorithm provides

different inferences than other classification methods, such comparisons can provide

valuable information and conclusion. Finally, it would be interesting to extend this

research to apply the NPI3-Tree algorithm to imprecise classification. In imprecise

classification, trees might return a set of classes in leaf nodes rather than one class.

More details about imprecise classification can be found in [63].



Chapter 5

NPI-based classification trees for

noisy data

5.1 Introduction

In real-world applications of classification techniques, the data sets used to learn

the classification algorithms are not always reliable and could suffer from several

issues, the presence of noise is one of these issues. Noise refers to situations that

occur when the data sets used for classification tasks have incorrect values in the

attribute variables or the class variable. If the noise appears in attribute variables,

it is referred to as attribute noise. If the noise appears in the class variable, it is

referred to as class noise or label noise. There are several possible sources that could

cause the class noise, e.g. the class noise may come from poor quality information

or human errors in assigning the class label [4, 81]. The presence of noise can have

substantial consequences on the classification algorithms’ performance. It has been

proved in previous studies that class noise has a more negative impact on classifi-

cation algorithms’ performance than attribute noise [14, 81]. This might due to the

fact that each observation in the data set typically has several attributes, but usu-

ally only has one class variable, which might have significant importance for training

purposes. One of the most commonly used methods for handling noisy data is to

use a classification algorithm that is robust to noisy data [14]. It has been shown

that some classification algorithms are more robust than others.

91



5.2. Noise in classification 92

In this chapter, we consider applications of the NPI2-Tree algorithm, presented

in Chapter 3, and the NPI3-Tree algorithm, presented in Chapter 4, on class noise.

We evaluate the performance of the NPI2-Tree and the NPI3-Tree algorithms in

terms of their classification accuracy using different levels of random noise added

to the class variables. We then compare the performance of these algorithms with

the C4.5, the CART, the NPI-M, and IDM1 algorithms, introduced in Section 2.2,

using the same different levels of noise. We also investigate the performance of the

NPI3-Tree algorithm using different scenarios of adding the noise to the three or-

dered classes.

This chapter is organised as follows: Section 5.2 briefly reviews some of the lit-

erature on classification data noise. Section 5.3 presents some methods for adding

noise to data sets. In Section 5.4, we present the results of the experimental anal-

ysis carried out to evaluate the performance of the NPI2-Tree and the NPI3-Tree

algorithms on data sets with several levels of added random noise, and compare

the results with other classification algorithms. In Section 5.5, we also present the

results of the NPI3-Tree algorithm’s performance with different scenarios of adding

the noise to the three ordered classes. Some concluding remarks and suggestions for

future research are given in Section 5.6.

5.2 Noise in classification

In data classification problems, noise refers to situations that occur when the data

sets used for classification task have incorrect values in attributes or incorrect class

labels. If the noise appears in attribute variables, it is referred to as attribute noise.

If the noise appears in the class variable, it is referred to as class noise or label

noise. Several possible reasons may cause noise in data sets. For example, the noisy

data may come from poor quality information, the data might have been measured

incorrectly, or experts may wrongly assign the class label [4, 81]. In addition, ac-

cording to [59], data encoding or network connectivity problems are major reasons



5.2. Noise in classification 93

for data noise. It has been estimated that real-world data sets contain at least five

percent of encoding errors [81]. It has been shown in previous studies that class

noise has a more negative impact on classification performance than attribute noise

[14, 81]. This effect is because each observation in the data set often tends to have

several attributes, and the value of each attribute may have different importance

for training purposes [14, 81]. On the other hand, for each observation in the data,

there is usually only one class, so noise in the class variable can have a big effect on

the performance of the classification [14, 81]. Of course, the level of impact depends

on the level of class noise and the characteristic of the data set. In this chapter, we

consider only noise on a class variable as it was done in [2, 4, 5, 14, 60, 61].

It is usually difficult to accurately detect observations that have a class noise

because this detection usually needs an expert in the application field, however, due

to a lack of such expertise or the difficulty of manually examining the information

provided in data sets, different solutions have been proposed for handling class noise

[14]. One method for handling class noise is using a noise filter technique. In this

method, possibly noisy observations are identified and removed from the training

data sets before constructing the classification trees. Another method is to use a

noise correction technique. This method is similar to the previous method and first

attempts to identify noisy observations, but instead of deleting them completely

from the data, it changes their current class labels with the probably right class

label. The main challenge is, of course, to decide which observations are noisy.

Usually, this challenge can be solved using classification algorithms themselves. An

observation is considered to be noisy if a classification algorithm is wrongly classify-

ing it, and can then be dealt with by either removing it from the data or changing

its class label to the possible correct class label. However, this could lead to 100%

in-sample accuracy and hence likely poor performance on the data set in reality.

Another way to handle class noise is to use an algorithm that is robust for noisy

data. The robustness of algorithms with regard to data noise would be attractive

for machine learning methods to include such robust algorithms. It should be noted

that the goal of this chapter is neither to detect which observation is noisy, nor to



5.2. Noise in classification 94

remove or correct class noise from training data. Our aim is to examine how the

use of noisy data sets affects the performances of the classification algorithms. We

study the performance of the NPI2-Tree and the NPI3-Tree algorithms when they

are used with noisy data sets, and compare their performance to other classification

algorithms used on the same noisy data sets. The classification accuracy measure is

used to examine the performances of the classification algorithms on noisy data sets.

We compare the performance of the algorithms using the classification accuracy re-

sults obtained from the original (noise-free) data set with those obtained from the

same data set with some added noise. The classification algorithm is considered

robust if the classification accuracy results for noisy data are close to those for the

original data set.

The performance of classification algorithms on noisy data sets is expected to be

less accurate than their performance on noise-free data sets. It is rare to find clas-

sification algorithms that are not sensitive to noisy data; however, some algorithms

are more robust to noise than others. Mantas and Abellán [61] have carried out sev-

eral experimental analyses to check the performance of the Credal-C4.5 algorithm,

which uses a new split criterion based on imprecise probability, and compared its

performance with the C4.5 and the ID3 algorithms. The comparison was carried out

by adding different levels of noise to the class variable. The results showed that on

the original data sets, all classification algorithms achieved similar results, while on

the noisy data, the Credal-C4.5 algorithm performs better than other classification

algorithms. In the work of Abellán and Masegosa [4, 5], they have shown an appli-

cation of bagging credal classification tree on data sets with class noise. The idea

of bagging, also known as Bootstrap aggregating, is to generate multiple versions

of a model, and then use these models to get an aggregated model [5]. Abellán

and Masegosa [4, 5] examined their method and compared it with similar methods

using the C4.5 classification algorithm, and they found that their method is better

than other bagging methods on data sets with a class noise. It is interesting to

compare the NPI2-Tree and the NPI3-Tree algorithms using bagging approaches,

however, we leave such comparisons for future study. For more studies about the



5.3. Adding noise to data sets 95

performance of classification algorithms on data with noisy class variables, we refer

to [2, 4, 5, 14, 60, 61].

5.3 Adding noise to data sets

In order to study the performance and robustness of the classification algorithms on

noisy data, we need to add noise to the data set because many data sets may not con-

tain much noise or it is difficult to know which observations are noisy or not. Adding

noise to data sets allows us to investigate the impact of noisy data on classification

algorithms’ performance and hence we can determine which algorithms are robust

in terms of noisy data, and we can also look for potential methods to improve the

performance of classification algorithms on noisy data sets. Several methods have

been introduced in the literature for adding noise to data sets, in this section, we

briefly present some of these methods. In this thesis, we have restricted attention

to class noise because this type of noise appears in most real-world data sets and

it can affect the performance of classification algorithms more than attribute noise.

It is also interesting to study and investigate the impact of attribute noise on the

performance of the classification algorithms, as this type of noise appears in most

real-world data sets, but we leave this for future work.

One of the most commonly used methods for adding noise to a class variable is

presented by Abellán and Masegosa [4, 5], Mantas and Abellán [61] and Mantas et

al. [60]. In this method, a specific percentage x% of random noise is added to the

class variable in the training set, while the testing set stays unchanged for evaluation

purposes. The process to add the noise into the class variable is as follows: first,

they randomly choose a subset of the observations, based on a given percentage,

and then, they randomly replace the classes of these selected observations by other

possible classes with equal probability. In this chapter, this method is used to add

noise to the class variable in the data set. We randomly choose a given percentage of

observations in the training set and then we flip their current classes to other possible



5.4. Experimental analysis 96

classes. Note that in our experimental analysis in this chapter, the real percentage

will exactly match the theoretical percentage. This means that we exactly corrupt

x% of observations since there is no chance for their original classes to be chosen.

Different levels of added noise have been considered in the literature, ranging from

5% to 50% [2]. In this chapter, we consider four levels of noise: 10%, 15%, 30%

and 50%, which are added only to the training set. In Section 5.4, we present

more details about using this method in our work. In Section 5.5, we also consider a

different method of adding noise to the data that has three ordered classes. In such a

method, we randomly choose a given percentage of observations, and then we change

their classes to other possible classes based on predefined probabilities. More details

about this method are given in Section 5.5. Zhu and Wu [81] introduced another

method of adding noise to class variables. They add noise to the data using a pair of

classes. For given a noise percentage x% and a pair of classes, observations with the

first class have an x% chance of being changed to the second class, and observations

with the second class have an x% chance of being changed to the first class. For

example, for given classes (C1, C2), and noise 30%, observations with class C1 has

30% chance to be changed to class C2, so do observations in the second class. This

method is used because in some situations only specific types of classes are likely to

be mislabeled. Another method for adding noise to a class variable was introduced

by Sáez et al. [72]. They add noise to a class variable using a uniform class noise

method, which replaces the class labels of the observations by randomly changing

a class by another one from the existing classes using uniform distribution, and a

pairwise class noise method, which the majority class observations are changed to

the second majority class. For more explanations about the uniform class noise and

pairwise class noise methods, we refer to [81].

5.4 Experimental analysis

This section studies the performance of the NPI2-Tree algorithm, presented in Chap-

ter 3, and the NPI3-Tree algorithm, presented in Chapter 4, when they are used to

build classification trees involving noisy data. We also compare the performance of



5.4. Experimental analysis 97

these algorithms with four classification algorithms: the C4.5, CART, NPI-M and

IDM1 algorithms. These algorithms have been given in Section 2.2, and they were

used in Chapter 3 and Chapter 4 for our experimental analyses. We use different

levels of noise to measure and evaluate the performance and the robustness of these

classification algorithms with noisy data. We begin this section by presenting the

way that the experiments have been carried out, and then we explain how we add

the noise to the class variable. After that, we present and discuss the experimental

results of the performance of the NPI2-Tree and the NPI3-Tree algorithms and other

classification algorithms.

5.4.1 Experimental setup

In these experiments, we have used the same six data sets, presented in Chapter

3, and the same five data sets, presented in Chapter 4. The NPI2-Tree algorithm

and other classification algorithms have been applied to the six data sets since the

NPI2-Tree algorithm can work only with two classes, while the NPI3-Tree algorithm

and other classification algorithms have been applied to the five data sets since the

NPI3-Tree algorithm can work only with three classes. The characteristic of the six

and five data sets have been given in Tables 3.7 and 4.5, respectively. The statistical

R software [69] has been used to carry out these experiments. All R packages and

the pre-processing steps used in Chapters 3 and 4 have been also used to conduct

our experiments.

In order to check the performance of these classification algorithms on noisy

data, we introduce some noise to the class variables of these data sets. We add noise

to the data because we do not know whether they contain noise or not, and if they

contain noise we do not know how much noise they contain. Therefore, we do not

assume any percentage of noise in the data sets, hence, we use these data sets as

containing no noise. Therefore, the following percentages of noise are added to the

class variable: 10%, 15%, 30%, and 50%. These noise levels are only added to the

training data sets, and the testing data sets are not changed. Of course, it is enough

to add noise to the class variable up to 30%, as was done in many studies in the



5.4. Experimental analysis 98

literature such as [4, 5, 14, 60, 61], but we add noise levels up to 50% because we

want to evaluate these algorithms also on a high level of noise as it was done by

Abellán [2]. The procedure of adding the noise into a class variable is as follows:

we first randomly select x% of the observations in the training set, where x refers

to the needed level of the noise. Then, we replace their class labels with a different

class from the existing classes with equal probability, except the actual class label.

For example, assume that we have a data set with three classes, C1, C2 and C3. If

we want to add noise to observation with class C1, then this observation has a equal

chance to go either to class C2 or C3, but no chance for class C1. We add the different

noise levels to the training sets only, while the testing sets stay unchanged in order to

be a fair comparison when we assess the performance of the classification algorithms.

In our experiments, we only use the most important evaluation measure which is

the classification accuracy. The classification accuracy, which is the ratio of the num-

ber of correctly classified observations to the total number of observations in the test

data set, is used to evaluate the performance of the classification algorithms on noisy

data sets. It would be also useful to consider other evaluation metrics to evaluate the

performance of these algorithms on noisy data. A 10-fold cross-validation technique,

as presented in Section 2.5, is used to obtain the final results of the classification

accuracy. With respect to the NPI2-Tree and NPI3-Tree algorithms, we first use the

double-5-fold cross-validation procedure introduced earlier to find the optimal values

of the target proportions with noisy data. The classification accuracy results of the

classification algorithms on the original training sets (noise-free, denoted as Noise

level 0%) are used as a reference to measure the robustness of these algorithms with

the different noisy levels of data sets. A classification algorithm is considered to be

robust if it achieves similar accuracy results with both the noisy data sets and noise-

free data sets. This method of comparing and measuring the performance of the

classification algorithms on the noisy data sets has been also used by Sáez et al. [72].

The results of our experiments are presented in two phases. First, in Section

5.4.2, we present the results of the performance of the NPI2-Tree, C4.5, CART,



5.4. Experimental analysis 99

NPI-M and IDM1 algorithms on the six data sets that have two classes. After that,

in Section 5.4.3, we present the results of the NPI3-Tree, C4.5, CART, NPI-M and

IDM1 algorithms on the five data sets that have three classes.

5.4.2 Results for the NPI2-Tree algorithm

In this section, we study and present the performance of the NPI2-Tree algorithm

with noisy data, and we compare its performance to the performance of the C4.5,

CART, NPI-M and IDM1 algorithms. We have carried out our experiments using

the same six data sets presented in Table 3.7, where we add different levels of noise to

the class variable only in training data sets in the 10-fold cross-validation procedure.

Table 5.1 presents the classification accuracy results of the NPI2-Tree algorithm and

the other classification algorithms for each data set and for each level of noise, 10%,

15%, 30%, and 50%. We have also provided in this table the results of the classifica-

tion accuracy of these algorithms based on the original data sets, denoted as Noise

level 0%, and the optimal values of the target proportions a and b, corresponding to

the NPI2-Tree algorithm. Figure 5.1 shows a summary of the classification accuracy

results for all the classification algorithms on all the levels of noise. All results given

in this section were obtained using the 10-fold cross-validation procedure. The best

results are highlighted in bold font.

We see from the results in Table 5.1 that all classification algorithms’ perfor-

mances decrease when the level of noise increases. However, the results show that

the NPI2-Tree, the NPI-M and the IDM1 algorithms are more robust to noise than

the C4.5 and the CART algorithms for the most noise levels. As shown in Figure

5.1, the almost parallel lines indicate similar robustness, particularly for the three

algorithms, the NPI2-Tree, the NPI-M and the IDM1 algorithms. For low levels of

noise (10% and 15%), the classification accuracy results are similar, so we comment

on these results together. At these levels of noise, the NPI2-Tree algorithm achieves

the best average classification accuracy followed by the NPI-M, the IDM1, the C4.5

and the CART algorithms. For these levels of noise, the performance of the NPI2-

Tree, NPI-M and IDM1 algorithms are quite similar to their performance on the



5.4. Experimental analysis 100

Data set a b NPI2-Tree C4.5 CART NPI-M IDM1

Noise level 0%

Breast Cancer 0.57 0.73 87.10 86.89 86.90 87.65 87.86

Cryotherapy 0.56 0.50 79.38 80.11 83.48 81.45 80.18

Blood Transfusion 0.79 0.64 89.48 75.43 74.76 79.56 79.56

Haberman’s Survival 0.84 0.42 75.19 75.62 73.18 76.39 76.39

Liver Patients 0.32 0.65 80.70 77.25 76.43 80.28 80.28

QSAR Biodeg 0.65 0.82 91.22 73.13 77.86 82.16 82.16

Average - - 83.84 78.07 78.72 81.24 81.08

Noise level 10%

Breast Cancer 0.82 0.48 85.13 83.32 70.35 86.80 84.12

Cryotherapy 0.52 0.65 80.10 79.56 78.38 80.23 80.73

Blood Transfusion 0.61 0.48 87.32 73.51 71.90 76.11 77.49

Haberman’s Survival 0.87 0.61 74.37 75.76 73.16 75.32 73.81

Liver Patients 0.52 0.79 77.56 75.82 69.41 79.12 78.39

QSAR Biodeg 0.79 0.86 90.14 72.13 75.38 83.12 84.19

Average - - 82.43 76.68 73.09 80.11 79.80

Noise level 15%

Breast Cancer 0.54 0.61 84.19 81.94 70.10 85.91 84.12

Cryotherapy 0.48 0.57 80.54 76.93 76.14 79.30 79.65

Blood Transfusion 0.44 0.49 85.29 72.19 68.81 78.15 75.11

Haberman’s Survival 0.71 0.69 74.14 73.38 71.84 74.59 72.95

Liver Patients 0.43 0.18 75.33 73.16 66.25 79.63 78.06

QSAR Biodeg 0.82 0.54 88.75 71.13 73.68 81.93 82.27

Average - - 81.37 74.78 71.13 79.81 78.69

Noise level 30%

Breast Cancer 0.43 0.27 70.28 60.74 65.82 73.15 70.53

Cryotherapy 0.31 0.46 70.39 65.57 71.28 72.93 74.33

Blood Transfusion 0.52 0.39 71.81 64.32 65.16 65.60 67.81

Haberman’s Survival 0.62 0.46 55.22 63.69 58.96 67.15 64.55

Liver Patients 0.31 0.19 57.11 54.82 56.13 70.13 74.18

QSAR Biodeg 0.58 0.63 73.35 60.41 64.10 67.41 67.12

Average - - 66.36 61.56 63.57 69.39 69.75

Noise level 50%

Breast Cancer 0.19 0.24 51.21 47.15 49.26 54.54 56.30

Cryotherapy 0.24 0.17 45.14 46.68 53.28 48.68 51.98

Blood Transfusion 0.43 0.49 58.91 52.35 48.40 61.39 53.71

Haberman’s Survival 0.53 0.36 47.12 58.16 42.24 46.14 46.59

Liver Patients 0.30 0.72 43.80 41.33 40.71 55.43 57.42

QSAR Biodeg 0.46 0.61 53.22 55.18 51.97 57.38 56.43

Average - - 49.90 50.14 47.64 53.92 53.73

Table 5.1: Classification accuracy results obtained by the NPI2-Tree, C4.5, CART,

NPI-M and IDM1 algorithms, with different levels of added noise.



5.4. Experimental analysis 101

40

50

60

70

80

0% 10% 15% 30% 50%
Noise level

C
al

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 %

 NPI_2−Tree

C4.5

CART

IDM1

NPI−M

Figure 5.1: Classification algorithms performance with different levels of added noise,

two classes case.

original data sets (Noise level 0%). For the Cryotherapy data set, it is noticed that

the performance of the NPI2-Tree algorithm has increased with 10% and 15% noise

levels, but decreased after that with 30% and 50%. This increase in the classifica-

tion results would be due to the randomness in the data and is more likely to occur

for small data sets and low levels of noise. For this data set, we have also noticed

that the IDM1 algorithm has increased with 10% noise level. In general, one would

expect more noise to lead to worse results, but this can vary from one application to

another. It is possible that such a difference in accuracy results might occur in this

data set because it is relatively small with only 90 observations and 4 attributes.

The unexpected increase was as noticed in some previous studies such as [5, 60, 61],

when the performance of some classification algorithms increased with some noise

levels.

For medium level of noise (Noise 30%), as can be seen from Table 5.1, the NPI2-

Tree algorithm achieves the best classification accuracy on two data sets as it attains

a higher average classification accuracy than the classical algorithms, the C4.5 and

the CART. For the Breast Cancer and the Haberman’s Survival data sets, the IDM1



5.4. Experimental analysis 102

algorithm performs slightly better than all other classification algorithms, and for

the Cryotherapy and Liver Patients data sets, the NPI-M algorithm performs slightly

better than other classification algorithms. However, for the Blood Transfusion and

QSAR Biodeg data sets, the NPI2-Tree algorithm achieves the best classification

accuracy when the noise level is 30%. For these two data sets, it is noticed that the

NPI2-Tree algorithm performs clearly better than other algorithms for all the noise

levels considered, excluding noise level 50%, which may be due to the fact that these

data sets are large and they have little overlap between their data classes. This bet-

ter performance of the NPI2-Tree algorithm on these two data sets suggests that the

NPI2-Tree algorithm is more robust than other algorithms to noise levels up to 30%

when the data sets are large and have less overlap. For high level of noise (Noise

50%), all classification algorithms perform less well than their performance with the

other levels of noise. It should be clarified that adding noise to the class variable

up to 30% seems to be sufficient to evaluate the robustness of the classifiers, as was

done in many studies in the literature, such as [4, 5, 14, 60, 61], however, we add

noise levels up to 50% to give insight into how the classification algorithms perform

of this level of noise, as also done by Abellán [2]. Note that in binary classification

with 50% of noise, the data might not contain useful information, so any difference

between classifiers may be due to randomness. For 50% level of noise, the NPI-M

and IDM1 algorithms have obtained the highest classification accuracy, whereas the

CART algorithm is the worst.

In this section, we have presented the performance of the NPI2-Tree with noisy

data sets, and we have compared its performance to other classification algorithms.

From the results given in Table 5.1, we can make the following conclusions about

the performance of the NPI2-Tree algorithm on data sets with different levels of

class noise. The NPI2-Tree algorithm performs quite well and can be considered

a robust algorithm for most levels of noisy data. For data sets with noise levels

equal to 0% (the original data sets), 10% and 15%, the NPI2-Tree algorithm has the

best classification accuracy results. However, when the class noise level is 30%, the

NPI-M and IDM1 algorithms are performing better than the other algorithms, but



5.4. Experimental analysis 103

with a performance very close to the NPI2-Tree algorithm for the same class noise

level. For 50% noise level, the NPI-M and IDM1 algorithms are performing better

than other classification algorithms, where the CART algorithm is the worst. In

the following section, we present the performance of the NPI3-Tree algorithm when

it is applied to data sets with class noise, and we compare its performance to the

performance of classification algorithms.

5.4.3 Results for the NPI3-Tree algorithm

In this section, we study the effect of class noise on the performance of the NPI3-Tree

algorithm when applied to data sets that have three classes. We have carried out

experiments on the same five data sets presented in Table 4.5, and also the same

noise levels, 0% (the original data sets), 10%, 15%, 30%, and 50%, as used in Section

5.4.2. To add noise to a class variable with three states, we first randomly select x%

observations in the training set, where x is the level of noise required. After that, we

replace their class labels with different classes from the existing classes, excluding

the actual class label. The performance of the NPI3-Tree algorithm is also compared

to the performances of the C4.5, CART, NPI-M and IDM1 algorithms, in a similar

approach taken in Chapter 4.

Table 5.2 presents the classification accuracy results obtained from all classifi-

cation algorithms based on noisy data sets with different levels of class noise equal

to 0%, 10%, 15%, 30%, and 50%. The classification accuracy results given in this

table are obtained using the 10-fold cross-validation procedure, and the best results

are highlighted in bold font. The optimal values of target proportions a, b and c,

corresponding to the NPI3-Tree algorithm, are also given in the table. Figure 5.2

shows the average classification accuracy for each classification algorithm and for

each level of noise. Table 5.2 shows that the NPI3-Tree algorithm performs well and

achieves the highest average accuracy rate for most class noise levels, compared to

the other classification algorithms. It performs better than the C4.5 and the CART

algorithms at all levels of noise. For the original data sets (0%) and low levels of

noise (10% and 15%), the NPI3-Tree algorithm performs slightly better than the



5.4. Experimental analysis 104

other classification algorithms, followed by the NPI-M, IDM1, C4.5 and CART al-

gorithms, respectively. Note that the optimal values of target proportions a, b and c

were not much affected by these low levels of noise, compared to the corresponding

values without added noise. For the CMC data set, it is noticed that all classifica-

tion algorithms perform less on all levels of noise including the noise-free data set.

This could be because it is a large data set with 1474 observations and two attribute

variables, but more than half of their data classes overlap, hence, the classification

algorithms are likely to perform poorly. Such less performance on this data set was

also noticed by other studies, e.g. by Abellán et al. [8] and by Manats et al. [60].

For this data set, it is also noticed that the optimal values of target proportions a, b

and c are low.

At the medium level of noise (Noise 30%), the IDM1 algorithm performs slightly

better than the other classification algorithms, but its performance is very close to

the NPI3-Tree and the NPI-M algorithms. This result is consistent with that of

Mantas and Abellán [61], who found that the IDM1 achieved the best average clas-

sification accuracy for many different data sets when the level of random noise is

30%. At this level of noise, the NPI3-Tree algorithm achieves the best accuracy re-

sult on the Fitness data set, the largest data set among these data sets. This finding

matches the result of the earlier experiment, presented in Section 5.4.2, where the

NPI2-Tree algorithm also performed better than the other classification algorithms

for large data sets, and noise level 30%. These results mostly indicate that the

NPI3-Tree algorithm performs slightly better for 30% class noise than other algo-

rithms in large data sets. It would be interesting to analyse more large data sets in

order to give an insight into the performance of the NPI3-Tree algorithm with large

data sets and 30% class noise. One possible investigation for this case, which is left

for future research, is to study the impact of adding class noise on the process of

selecting the optimal thresholds for the NPI3-Tree algorithm. For example, one can

study the effect of each class noise separately on the process of selecting the optimal

thresholds, by adding the noise to only one class and then examine the performance

results of the NPI3-Tree algorithm, and so on for the other classes.



5.4. Experimental analysis 105

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Noise level 0%

Iris 0.77 0.75 0.80 94.61 94.22 94.38 94.69 94.52

Seeds 0.81 0.79 0.78 93.43 89.72 90.42 92.63 92.38

Wine 0.94 0.68 0.87 96.54 93.12 91.14 95.19 94.64

CMC 0.43 0.36 0.52 49.96 50.10 48.40 49.81 49.81

Fitness 0.53 0.64 0.49 79.81 77.31 72.19 77.60 77.82

Average - - - 82.87 80.89 79.30 81.98 81.83

Noise level 10%

Iris 0.81 0.75 0.68 93.60 91.70 92.16 93.33 93.72

Seeds 0.93 0.63 0.72 92.13 85.20 87.40 90.60 90.23

Wine 0.91 0.87 0.83 94.28 92.68 91.78 92.70 91.11

CMC 0.55 0.32 0.62 48.12 46.92 48.30 47.45 47.83

Fitness 0.68 0.45 0.47 79.22 76.12 69.94 77.10 77.31

Average - - - 81.47 78.52 77.91 80.23 80.04

Noise level 15%

Iris 0.79 0.66 0.72 93.49 86.35 85.29 91.64 91.87

Seeds 0.88 0.70 0.63 92.22 83.49 82.75 89.10 86.76

Wine 0.92 0.81 0.74 92.10 90.28 89.44 90.28 88.40

CMC 0.43 0.51 0.48 46.83 44.19 47.98 47.70 48.08

Fitness 0.59 0.43 0.55 78.43 75.91 74.28 77.12 76.94

Average - - - 80.61 76.04 75.95 79.16 78.41

Noise level 30%

Iris 0.74 0.59 0.60 88.19 84.14 83.14 89.93 90.85

Seeds 0.81 0.58 0.74 83.36 76.80 77.78 82.42 82.19

Wine 0.72 0.69 0.43 91.13 89.23 85.84 87.18 89.16

CMC 0.21 0.28 0.40 41.20 45.43 44.31 47.67 49.55

Fitness 0.37 0.56 0.31 75.88 70.34 71.67 75.82 75.11

Average - - - 75.95 73.18 72.54 76.60 77.37

Noise level 50%

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.63 0.48 0.81 74.13 61.40 59.31 69.87 69.13

Seeds 0.59 0.36 0.68 71.23 59.32 57.80 70.15 72.67

Wine 0.48 0.45 0.27 58.48 67.16 49.43 73.84 73.34

CMC 0.42 0.31 0.23 53.12 33.52 30.92 52.13 50.17

Fitness 0.35 0.45 0.29 55.36 58.40 57.91 59.67 59.24

Average - - - 62.46 55.86 51.07 65.13 64.91

Table 5.2: Classification accuracy results obtained by the NPI3-Tree, C4.5, CART,

NPI-M and IDM1 algorithms, with different levels of added noise.



5.4. Experimental analysis 106

50

60

70

80

0% 10% 15% 30% 50%
Noise level

C
al

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 %

Algorithms

 NPI_3−Tree

C4.5

CART

IDM1

NPI−M

Figure 5.2: Classification algorithms performance with different levels of added noise,

three classes case.

Finally, for the high level of noise (Noise 50%), the NPI-M and the IDM1 per-

form better than the other classification algorithms, where the NPI3-Tree algorithm

has a similar result to these algorithms. There is a noticeable difference in the per-

formances of the C4.5 and CART algorithms at this level of noise compared to their

performance at other noise levels. For example, for 30% class noise, their average

accuracy results are 73.18% and 72.54%, respectively, however, for 50% class noise,

their average accuracy results have dropped to 55.86% and 51.07%, respectively. To

summarise, the NPI3-Tree algorithm performs well and can be considered to be a

quite robust algorithm for building classification trees with class noise. It has per-

formed best at levels of noise 0% (the original data sets), 10% and 15%, and it has

performed better than the classical algorithms on all noise levels. The next section

of this chapter presents further analysis of the NPI3-Tree algorithm using different

scenarios of adding the noise to a class variable.



5.5. NPI3-Tree with noisy neighbour labels 107

5.5 NPI3-Tree with noisy neighbour labels

In many real situations, the observations are more likely to be wrongly classified to a

neighbouring class than to a class further away. For example, in medical diagnostics,

it may occur more often to wrongly classify values that are close to a threshold than

if such a value is further away from the threshold. If there are three ordered classes

of temperature and two thresholds, below 37.5 indicates healthy, 37.5 to 38.5 mild

disease, and above 38.5 serious disease, then someone with an actual temperature

37.4 is more likely to be wrongly classified as mild diseased than as diseased. From

this perspective, it would be useful in this section to evaluate the performance of the

NPI3-Tree and the other algorithms in such situations. We aim to consider different

scenarios with different probabilities for adding noise, higher to a neighbouring class

and lower to a class further away. This method can only be performed on the data

sets with three ordered classes, as for data with two classes there is only one possi-

ble wrongly classification. Therefore, we only examine the NPI3-Tree in this section.

To evaluate the performance of the NPI3-Tree algorithm in such cases, we have

used three different scenarios with different probabilities for adding the noise to

a class variable, higher to neighbouring classes and lower to classes further away.

These three different scenarios are given in Table 5.3, where pij is the probability

of replacing observations’ class labels from a class i (for i = 1, 3) to a class j (for

j = 1, 2, 3), excluding the actual class label, i.e. i 6= j. Note that, since the middle

class has two neighbouring classes, it is misclassified to the other class with equal

probability, i.e. with probability 0.5. These scenarios are used to investigate how

the NPI3-Tree algorithm performs on neighbouring noisy classes. However, it would

be interesting to consider more different scenarios for the probabilities of adding

noise to neighbouring classes, but we leave this for future research. The method

of adding noise into a class variable with these three scenarios is given as follows:

we first randomly select x% of the observations in the training set, where x is the

needed level of the noise. We then replace their class labels with new classes from

the available classes based on the probabilities of the three scenarios presented in

Table 5.3.



5.5. NPI3-Tree with noisy neighbour labels 108

# Scenario pij if |i− j| = 1 pij if |i− j| = 2

1 0.6 0.4

2 0.8 0.2

3 1 0.0

Table 5.3: Different scenarios of adding noise to the class variable.

Using these three scenarios for adding noise to the class variable, we have tested

the NPI3-Tree algorithm on the five data sets presented in Table 4.5, using the fol-

lowing noise levels added to the training sets only: 10%, 15%, 30% and 50%. We

compared the performance of the NPI3-Tree algorithm with the C4.5, the CART,

the NPI-M and the IDM1 algorithms for all three scenarios, similar to the method

taken in Section 5.4.3. Tables 5.4, 5.5 and 5.6 present the average results of the clas-

sification accuracy of all classification algorithms for each data set, each scenario and

each level of noise. Figure 5.3 provides graphs showing the accuracy results of all

algorithms for each scenario and each level of noise. The results presented in the

tables were obtained using a 10-fold cross-validation procedure. Bold font indicates

the best results.

For Scenario 1, the probability of replacing observations’ classes with neighbour-

ing ones is 0.60, and the probability of replacing observations’ classes with ones

further away is 0.40. The results in Table 5.4 show that all classification algorithms

have very similar results to their performances in the case of random class noise

presented in Section 5.4.3. For Scenario 2, we have increased the chance of replacing

observations’ classes with neighbouring classes, i.e. the probability of replacing ob-

servations’ classes with neighbouring classes increased to 0.80, while the probability

of replacing observations’ classes with ones further away decreased to 0.20. From

Table 5.5, the results of the average accuracy show that, when the levels of noise

are 10% and 15%, the NPI3-Tree algorithm performs slightly better than the other

classification algorithms. However, for 30% of noise, the results are clearly different

compared to the same level for the first scenario. Here, the NPI3-Tree algorithm



5.5. NPI3-Tree with noisy neighbour labels 109

achieves the highest classification accuracy in four out of five data sets and per-

forms similarly to the imprecise algorithms in the CMC data set. At this level of

noise, it has obtained the highest average accuracy 75.64% among the other algo-

rithms, followed by the NPI-M, IDM1, CART and C4.5 algorithms, respectively. It

is noticed that all other classification algorithms’ performances decreased for 30%

of noise compared to their performances for the same level in the first scenario.

For example, the average classification accuracy of the C4.5 algorithm in the first

scenario is 72.34%, but in the second scenario, it dropped to 69.10%. For the high

level of noise, 50%, the NPI-M and the IDM1 algorithms perform clearly better than

the C4.5 and CART algorithms, but with very close results to the NPI3-Tree algo-

rithm. For Scenario 3, we have again increased the chance of replacing observations’

classes with neighbouring classes, i.e. the probability is 1, while the probability of

replacing observations’ classes with ones further away is now 0. The results in Table

5.6 show that, for 10% and 15% noise levels, the NPI3-Tree performs slightly better

than other algorithms, although the performances of all algorithms are quite similar.

For 30% noise, the NPI3-Tree algorithm again obtains the highest average result of

classification accuracy compared to the other classification algorithm. Finally, with

50% noise level, all algorithms achieve poor results, although the IDM1 performs

slightly better than the other algorithms.

In this section we have given an insight into how the position of noisy data can

affect the performance of the NPI3-Tree algorithm, and compared its performance

to other classification algorithms. We have used three scenarios with different prob-

abilities for adding the noise to the class variable, higher to neighbouring classes

and lower to classes further away. According to the results presented in Tables 5.4

to 5.6, we can say that the NPI3-Tree algorithm is performing well for these three

scenarios, and mostly better than the other algorithms for most noise levels. For

levels of noise equal to 10% and 15%, the NPI3-Tree algorithm performs better than

the other classification algorithms in all scenarios. When the level of the noise is

increased to 30%, the NPI3-Tree algorithm performs also better than the other clas-

sification algorithms in all scenarios, except the first scenario, which performs quite



5.5. NPI3-Tree with noisy neighbour labels 110

similarly to the NPI-M and IDM1 algorithms. Finally, the NPI3-Tree algorithm

performs better than the C4.5 and CART algorithms when the level of noise equal

is 50%, but the IDM1 and NPI-M algorithms perform better in this case.

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Noise level 10%

Iris 0.92 0.82 0.64 93.13 93.98 92.75 93.52 93.52

Seeds 0.87 0.55 0.74 92.95 89.63 87.42 91.32 91.58

Wine 0.74 0.63 0.96 92.87 91.50 91.18 91.64 91.43

CMC 0.52 0.31 0.64 49.30 48.63 49.50 48.71 48.19

Fitness 0.58 0.42 0.60 79.38 77.32 70.82 78.21 78.10

Average - - - 81.52 80.21 78.33 80.68 80.56

Noise level 15%

Iris 0.80 0.78 0.71 93.24 89.74 87.22 91.32 91.15

Seeds 0.83 0.76 0.71 92.28 83.51 82.29 90.17 87.16

Wine 0.87 0.84 0.76 92.20 91.57 91.61 92.84 92.76

CMC 0.49 0.50 0.55 50.41 48.19 50.98 50.70 51.18

Fitness 0.50 0.45 0.66 78.21 74.63 73.90 77.19 77.23

Average - - - 81.26 77.47 77.20 80.44 79.89

Noise level 30%

Iris 0.70 0.72 0.69 85.21 83.10 84.80 89.87 89.12

Seeds 0.81 0.58 0.74 84.36 80.80 79.21 83.50 83.85

Wine 0.72 0.69 0.43 86.48 83.23 85.84 85.54 84.46

CMC 0.21 0.28 0.40 42.63 44.21 44.61 47.67 47.53

Fitness 0.37 0.56 0.31 73.14 70.34 71.67 73.38 73.17

Average - - - 74.36 72.34 73.22 75.99 75.62

Noise level 50%

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.45 0.30 0.61 77.62 72.19 57.50 75.87 74.13

Seeds 0.59 0.36 0.68 75.63 67.18 69.98 73.65 73.11

Wine 0.58 0.49 0.39 61.12 64.53 56.36 69.21 69.84

CMC 0.46 0.51 0.33 39.75 47.52 45.92 50.16 51.98

Fitness 0.38 0.65 0.26 54.65 53.12 51.98 58.17 59.14

Average - - - 62.09 60.90 56.34 65.41 65.64

Table 5.4: Accuracy results of classification algorithms, first scenario.



5.5. NPI3-Tree with noisy neighbour labels 111

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Noise level 10%

Iris 0.88 0.76 0.72 93.26 91.84 90.37 93.58 93.19

Seeds 0.93 0.61 0.80 93.46 85.29 87.40 91.12 90.23

Wine 0.85 0.67 0.92 92.16 92.75 91.88 92.37 92.81

CMC 0.52 0.30 0.64 49.34 49.34 48.50 50.21 50.21

Fitness 0.68 0.45 0.47 79.76 76.32 67.12 78.55 79.43

Average - - - 81.59 79.10 77.05 81.16 81.17

Noise level 15%

Iris 0.80 0.78 0.71 93.26 89.55 90.29 92.54 92.87

Seeds 0.88 0.70 0.63 92.56 86.49 86.75 89.10 90.76

Wine 0.92 0.81 0.74 92.64 90.28 89.44 92.81 92.81

CMC 0.43 0.51 0.48 50.19 51.39 47.98 51.33 51.21

Fitness 0.59 0.43 0.58 78.43 74.91 69.28 77.12 79.14

Average - - - 81.88 78.10 76.74 80.58 81.35

Noise level 30%

Iris 0.83 0.79 0.74 86.58 71.90 76.23 86.34 88.24

Seeds 0.85 0.53 0.78 83.42 78.85 82.21 82.93 83.16

Wine 0.70 0.60 0.79 89.38 80.23 82.84 82.63 83.22

CMC 0.38 0.45 0.44 45.51 44.21 41.61 46.67 46.55

Fitness 0.57 0.49 0.37 73.33 70.34 70.67 71.32 69.11

Average - - - 75.64 69.10 70.71 73.97 73.85

Noise level 50%

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.45 0.30 0.61 59.50 49.88 52.27 64.21 65.47

Seeds 0.59 0.36 0.68 70.98 65.18 64.98 72.65 73.14

Wine 0.58 0.49 0.39 63.79 65.73 59.12 73.81 69.34

CMC 0.46 0.51 0.33 47.98 40.19 46.92 50.76 51.98

Fitness 0.38 0.65 0.26 50.40 60.86 61.49 63.17 58.32

Average - - - 62.40 56.36 56.95 64.92 63.65

Table 5.5: Accuracy results of classification algorithms, second scenario.



5.5. NPI3-Tree with noisy neighbour labels 112

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Noise level 10%

Iris 0.91 0.72 0.68 92.19 91.80 90.73 93.22 93.34

Seeds 0.86 0.64 0.84 92.18 86.11 89.23 91.18 90.17

Wine 0.85 0.71 0.84 91.50 90.78 90.92 91.33 89.41

CMC 0.56 0.32 0.69 50.19 49.63 48.50 48.36 50.23

Fitness 0.63 0.47 0.38 79.64 76.39 67.32 77.54 78.30

Average - - - 80.86 78.94 77.34 80.32 80.29

Noise level 15%

Iris 0.76 0.68 0.75 91.90 85.32 84.29 92.99 93.10

Seeds 0.81 0.56 0.60 89.37 84.49 83.75 87.12 86.77

Wine 0.90 0.69 0.73 90.43 88.46 89.61 90.32 89.70

CMC 0.61 0.39 0.42 50.77 48.92 46.67 51.39 52.68

Fitness 0.58 0.37 0.65 80.10 75.88 74.97 79.73 78.94

Average - - - 80.51 76.61 75.85 80.31 80.23

Noise level 30%

Iris 0.69 0.43 0.59 80.24 78.96 78.21 80.13 80.67

Seeds 0.83 0.51 0.63 79.32 76.19 76.27 78.43 78.98

Wine 0.66 0.49 0.50 78.62 76.25 76.12 79.28 79.72

CMC 0.42 0.29 0.61 49.43 47.21 48.69 46.14 47.50

Fitness 0.40 0.37 0.63 55.41 55.54 53.67 54.87 52.15

Average - - - 68.60 66.83 66.59 67.77 67.80

Noise level 50%

Data set a b c NPI3-Tree C4.5 CART NPI-M IDM1

Iris 0.32 0.58 0.43 63.19 62.40 61.31 62.87 62.14

Seeds 0.49 0.18 0.37 65.25 65.46 65.98 66.65 66.77

Wine 0.33 0.23 0.59 55.32 56.52 56.89 61.16 58.24

CMC 0.21 0.09 0.56 43.21 45.13 47.91 45.68 48.33

Fitness 0.32 0.28 0.41 49.15 45.17 47.68 53.39 52.58

Average - - - 56.89 54.93 55.75 57.95 57.61

Table 5.6: Accuracy results of classification algorithms, third scenario.



5.5. NPI3-Tree with noisy neighbour labels 113

50

60

70

80

10% 15% 30% 50%
Noise level

C
al

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 %

Algorithms

 NPI_3−Tree

C4.5

CART

IDM1

NPI−M

(a) First scenario

50

60

70

80

10% 15% 30% 50%
Noise level

C
al

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 %

Algorithms

 NPI_3−Tree

C4.5

CART

IDM1

NPI−M

(b) Second scenario

50

60

70

80

10% 15% 30% 50%
Noise level

C
al

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 %

Algorithms

 NPI_3−Tree

C4.5

CART

IDM1

NPI−M

(c) Third scenario

Figure 5.3: Performance of the classification algorithms for different scenarios of the

noise adding process.



5.6. Concluding remarks 114

5.6 Concluding remarks

In this chapter, we have presented applications of the NPI2-Tree and NPI3-Tree al-

gorithms to the problem of classification with noisy data. We briefly reviewed some

of the literature on classification data noise. We restricted attention to class noise

because this type of noise appears in most real-world data sets and it can affect the

performance of classification algorithms more than attribute noise. However, it is

also interesting to study and investigate the impact of attribute noise on the per-

formance of the NPI2-Tree and NPI3-Tree algorithms, as this type of noise appears

in most real-world data sets, and it also can affect classification performance, but

we leave this topic as future research. Also, it may be of interest to investigate the

impact of adding noise to both attribute variables and class variables at the same

time. Such studies and investigations might give more insight into the performance

of these algorithms on noisy data sets.

We have carried out an experimental analysis on different data sets and differ-

ent levels of random noise in order to evaluate the performance of the NPI2-Tree

and NPI3-Tree algorithms with noisy data. We have also compared their results

with the C4.5, CART, NPI-M and IDM1 algorithms. All classification algorithms

have been measured and compared using the classification accuracy, i.e. the ratio

of correctly classified observations to the total number of observations. The results

obtained from these experiments have shown that the NPI2-Tree and NPI3-Tree al-

gorithms perform well and provide some robustness to data sets with class noise.

Their performance was slightly better than the other classification algorithms for

most levels of random noise added to the class variable. Furthermore, we examined

the performance of the NPI3-Tree algorithm with a different method to add noise

to the three ordered classes, and we also compared its performance with the other

classification algorithms. We considered three different scenarios giving three differ-

ent probabilities for adding the noise to a neighbouring class. The results also have

shown that the NPI3-Tree algorithm performed better than the other classification

algorithms considered, for most scenarios and for most different noise levels.



5.6. Concluding remarks 115

In this chapter, we have provided an insight into the performance of the NPI2-

Tree and NPI3-Tree algorithms with noisy data sets, however, some other interesting

topics still need to be studied. In this chapter we have examined the performance of

the NPI2-Tree and NPI3-Tree algorithms on noisy data sets using the classical split

criterion, the IGR split criterion, but it will be also interesting to extend this re-

search to consider different split criteria e.g. imprecise split criteria and compare the

results with the classical split criterion. In this chapter we have added noise levels to

training data sets, but it may also be possible to consider other kinds of adding noise

to the data sets. It may be interesting to study the performance of classification

algorithms by adding noise to both training and testing data sets. Another possible

future research is to investigate the performance of the NPI2-Tree and NPI3-Tree

algorithms with more data sets and more levels of noise. Such investigation could

give more conclusions about the performance of these algorithms with noisy data.

Focusing more on the characteristics of the data sets on which application of the

NPI2-Tree and NPI3-Tree algorithms perform well, or perform poorly, could enable

us to determine which characteristics of data sets are appropriate for these classifi-

cation algorithms.



Chapter 6

Conclusions

In this thesis, we introduced a new method to build classification trees based on

Nonparametric Predictive Inference (NPI). We built classification trees using the

NPI approach for selecting optimal thresholds for data sets that involve continuous-

valued attributes. This approach selects the optimal threshold values using predic-

tive inference that considers specific numbers of future observations and the target

proportions. As a first step, we presented our method for binary classification trees,

where the attribute variables are continuous and class variable is binary. A new

classification algorithm, which we called the NPI2-Tree algorithm, was presented

for building binary classification trees. We then extended our method to classifi-

cation trees with three classes, where the attribute variables are continuous and a

class variable has three ordered classes. A new classification algorithm for building

classification trees with three classes was presented, which we called the NPI3-Tree

algorithm. To build classification trees based on the NPI2-Tree and NPI3-Tree algo-

rithms, which are based on NPI approach for selecting the optimal thresholds, we

introduced a new procedure for selecting the target proportions by choosing that to

maximise classification performance on the testing datasets. We used a two-level 5-

fold cross-validation procedure to define these values and validate their performance

in classification trees.

We carried out an experimental analysis on several data sets to evaluate the

performance of the NPI2-Tree and NPI3-Tree classification algorithms and compare

116



Chapter 6. Conclusions 117

their performance with other classification algorithms from the literature. The clas-

sification accuracy, in-sample accuracy and tree size have been used to measure the

performance of all the classification algorithms. The results of the experimental

analysis have indicated that the NPI2-Tree and NPI3-Tree classification methods

perform well, slightly better than the other classification algorithms. We presented

applications of the use of our classification algorithms for cases when there is noise

in the data set. The performances of these algorithms in cases of noisy data were

examined using different levels of noise added to the class variable, and the results

were compared with the other classification algorithms. The results have shown that

our classification algorithms perform well in the case of noise and tend to be quite

robust for most noise levels compared to the others.

The work presented in this thesis provides many possible topics for future re-

search. As a first step to build classification trees based on our methods, we started

with two classes; we then extended our method to build classification trees with

three classes. Now, it would be of interest to extend this method further to involve

more than three classes. This can be achieved by first developing the NPI method for

selecting the optimal threshold to include more than three classes. In this work, we

have restricted attention to using only continuous-valued attributes, it is of interest

to investigate the performance of the NPI2-Tree and the NPI3-Tree algorithms on

data sets that include categorical attributes. Future research may consider different

classification methods; for example, it would be interesting to explore the use of the

NPI2-Tree and NPI3-Tree algorithms with random forests.

One important topic for future work is to develop the NPI2-Tree and the NPI3-

Tree algorithms with consideration for the misclassification cost. In many practical

applications, classification aims to minimize misclassification costs instead of max-

imising the total classification accuracy. In this thesis, we have chosen the values

of target proportions that maximise the total classification accuracy. However, it

would be useful to develop the process of choosing these target proportions while

also considering the misclassification cost. In our work in Chapter 5, we restricted



Chapter 6. Conclusions 118

attention to studying the effect of class noise on the performance of the NPI2-Tree

and NPI3-Tree algorithms; however, it would be interesting to study and investigate

the effect of attribute noise on these algorithms, as this type of noise also appears

in most real-world data sets and can affect classification performance. Such studies

and investigations might provide more insight into the performance of these algo-

rithms on noisy data sets.

Another possible future research is to investigate the performance of the NPI2-

Tree and NPI3-Tree algorithms on a larger number of data sets with more detailed

analysis. Focusing more on the characteristics of the data sets on which these clas-

sification algorithms perform well, or perform poorly, could enable us to determine

which data set characteristics are appropriate for them. It will be interesting to

consider other evaluation metrics, such as nonparametric tests [40], to assess the

performance of our classification algorithms and compare them with other classi-

fication algorithms. Finally, developing the NPI2-Tree and NPI3-Tree algorithms

with imprecise classification would be interesting. In imprecise classification, trees

may sometimes return a set of classes in their leaves rather than a single class.



Appendix A

Optimisation technique using

Genetic Algorithm (GA)

In this appendix, we explain how the optimisation method Genetic Algorithm (GA)

works to find the optimal values for the target proportions. We first explain this

method for the two classes, as used in Chapter 3, and we then explain it for the three

classes, as used in Chapter 4. For more details about this method, we refer to [47, 48].

A.1 The GA for two classes

Consider the NPI lower method for selecting the optimal threshold for two classes,

as given in Section 3.2 (Equation (3.1)). In order to formulate the main optimization

problem, we need to rewrite this equation as follows

f(a, b) = P
(
L1
t ≥ am1, L

2
t ≥ bm2

)
= P

(
L1
t ≥ am1

)
× P

(
L2
t ≥ bm2

)
(A.1.1)

where P (L1
t ≥ am1) and P (L2

t ≥ bm2) are given in Equations (3.3) and (3.6),

respectively. Where a and b are values in (0,1], i.e.

(a, b) ∈ (0, 1]2 (A.1.2)

Using Equation (A.1.1) and condition (A.1.2), we can formulate the main optimisa-

tion problem as follows

F (a, b) = f(a, b)→Max Accuracy (A.1.3)

119



A.1. The GA for two classes 120

where Max Accuracy refers to the maximum classification accuracy on the testing

set. To find the solution of problem (A.1.2) and (A.1.3), we use a Genetic Algorithm

(GA) [47, 48]. The GA is a a search-based optimization technique based on the rules

of genetics and natural selection. For construction of the GA, we need to define two

main functions: crossover function between points from (0, 1]2 and mutation func-

tion form point from (0, 1]2. In the GA, crossover, also called recombination, is a

genetic operator used to combine the genetic information of two parents to generate

new offspring, while mutation is the process of altering the value of gene i.e to re-

place the value 1 with 0 and vice-versa. In the following we explain how these two

main functions are calculated.

For crossover function, consider two points (a1, b1) ∈ (0, 1]2 and (a2, b2) ∈ (0, 1]2,

with values of the optimisation function F (a1, b1) and F (a2, b2). Then crossover

between points (a1, b1) and (a2, b2) are defined by point (acros, bcros):acros = 1
F (a1,b1)+F (a2,b2)

(F (a1, b1)a1 + F (a2, b2)a2)

bcros = 1
F (a1,b1)+F (a2,b2)

(F (a1, b1)b1 + F (a2, b2)b2).

(A.1.4)

For mutation function, consider point (a1, b1) ∈ (0, 1]2. The mutation function

of the point (a1, b1) ∈ (0, 1] to point(amut, bmut) :

(amut, bmut) = (a1, b1) + r ∗ (u1, u2), (A.1.5)

where ui are independent random variables with uniform distribution in [−1, 1], and

r defined as

r = min{a1, 1− a1, b1, 1− b1}. (A.1.6)

After explaining the two main functions of the GA, we can now define the main

algorithm, the GA, for solving the problem (A.1.2) and (A.1.3):



A.2. The GA for three classes 121

1. Choose number of points N , number of mutations in each iteration M < 0.9N ,

number of iterations Iter ;

2. iter = 1;

3. Define initials points (ai, bi), i = 1, . . . , N , which are in (0, 1]2;

4. Calculate F (ai, bi), i = 1, . . . , N ;

5. Ordering points (ai, bi), i = 1, . . . , N by the values of F (ai, bi);

6. Choose 10% of the best points (ai, bi), i = 1, . . . , N with the highest values of

F (ai, bi);

7. Create crossover points (anewi , bnewi ), i = 1, . . . ,M as random crossover of points

from step 5 with 10% points from 90% of the worst points;

8. Mutate all points, which does not used in step 6;

9. iter = iter + 1;

10. Return to 2 until iter ≤ Iter.

A.2 The GA for three classes

The GA for the three classes is very similar as for the two classes. Consider the

NPI lower method for selecting the optimal threshold for three classes, as given in

Section 4.2 (Equation (4.1)). we rewrite this equation as follows

f(a, b, c) =P (L1
t1
≥ am1, L

2
(t1,t2)

≥ bm2, L
3
t2
≥ cm3) =

P (L1
t1
≥ am1)× P (L2

(t1,t2)
≥ bm2)× P (L3

t2
≥ cm3)

(A.2.7)

where P (L1
t1
≥ am1), P (L2

(t1,t2)
≥ bm2) and P (L3

t2
≥ cm3) are given in Equations

(4.3), (4.5) and (4.7), respectively, and a, b, c are any values in (0,1]. So, the main

optimisation problem is formulated as follows

F (a, b, c) = f(a, b, c)→Max Accuracy (A.2.8)

where Max Accuracy is the maximum classification accuracy on the testing set.

To use the GA, we also need to define the two main functions, crossover func-

tion and mutation function. Consider two points (a1, b1, c1) and (a2, b2, c2), each

value must be in (0, 1], with values of the optimization function F (a1, b1, c1) and



A.2. The GA for three classes 122

F (a2, b2, c2). Then crossover between points (a1, b1, c1) and (a2, b2, c2) are defined by

point (acros, bcros, ccros):


acros = 1

F (a1,b1,c1)+F (a2,b2,c2)
(F (a1, b1, c1)a1 + F (a2, b2, c2)a2)

bcros = 1
F (a1,b1,c1)+F (a2,b2,c2)

(F (a1, b1, c1)b1 + F (a2, b2, c2)b2)

ccros = 1
F (a1,b1,c1)+F (a2,b2,c2)

(F (a1, b1, c1)c1 + F (a2, b2, c2)c2)

(A.2.9)

For mutation function, consider point (a1, b1, c1), where each value must be in

(0, 1]. The mutation function of the point (a1, b1, c1) to point (amut, bmut, cmut):

(amut, bmut, cmut) = (a1, b1, c1) + r ∗ (u1, u2, u3), (A.2.10)

where ui are independent random variables with uniform distribution in [−1, 1], and

r defined as

r = min{a1, 1− a1, b1, 1− b1, c1, 1− c1}. (A.2.11)

After defining main function of the GA, we can now use the main algorithm, the

GA, to solve the problem (A.2.8):

1. Choose number of points N , number of mutations in each iteration M < 0.9N ,

number of iterations Iter ;

2. iter = 1;

3. Define initials points (ai, bi, ci), i = 1, . . . , N , which are in (0, 1];

4. Calculate F (ai, bi, ci), i = 1, . . . , N ;

5. Ordering points (ai, bi, ci), i = 1, . . . , N by the values of F (ai, bi, ci);

6. Choose 10% of the best points (ai, bi, ci), i = 1, . . . , N with the highest values

of F (ai, bi, ci);

7. Create crossover points (anewi , bnewi , cnewi ), i = 1, . . . ,M as random crossover of

points from step 5 with 10% points from 90% of the worst points;

8. Mutate all points, which does not used in step 6;

9. iter = iter + 1;



A.2. The GA for three classes 123

10. Return to 2 until iter ≤ Iter.

The following small examples illustrate the optimal values of a, b and c that max-

imise the classification accuracy using the GA optimisation method.

Example A.2.1 Assume that we have a data set of 33 observations belonging to

three classes, C1, C2 and C3. Suppose that the training data set with n1 = n2 =

n3 = 7, consisting of the data {1,2,3,4,5,6,7} for C1, {8,9,10,11,12,13,14} for C2 and

{15,16,17,18,19,20,21} for C3, and the testing data set with m1 = m2 = m3 = 4,

consisting of the data {4,5,6,7} for C1, {10,11,12,13} for C2 and {17,18,19,20} for

C3. Using the GA optimization technique, we found that the values that maximise

the classification accuracy are a = b = c = 1, leading to the optimal thresholds

t1 = 7 and t2 = 14, and the classification accuracy 100%.

Example A.2.2 Consider the same data set described in Example 4.3.1, where

n1 = 4, n2 = 5, n3 = 4, m1 = m2 = 3 and m3 = 2. Using the GA optimization

technique, we found the values of a, b and c that maximise the classification accuracy

are a = 0.66, b = 0.33 and c = 0.50, leading to the optimal thresholds t1 = 5 and

t2 = 10, and the total classification accuracy is 100%.



Bibliography

[1] Abellán, J. (2006). Uncertainty measures on probability intervals from the

imprecise Dirichlet model. International Journal of General Systems, 35, 509–

528.

[2] Abellán, J. (2013). An application of non-parametric predictive inference on

multi-class classification high-level-noise problems. Expert Systems with Appli-

cations, 40, 4585–4592.

[3] Abellán, J. and Castellano, J. (2017). A comparative study on base classifiers

in ensemble methods for credit scoring. Expert Systems with Applications, 73,

1–10.

[4] Abellán, J. and Masegosa, A. (2010). Bagging decision trees on data sets with

classification noise. In International Symposium on Foundations of Information

and Knowledge Systems, pp. 248–265. Springer.

[5] Abellán, J. and Masegosa, A. (2012). Bagging schemes on the presence of class

noise in classification. Expert Systems with Applications, 39, 6827–6837.

[6] Abellán, J. and Moral, S. (2003). Building classification trees using the total

uncertainty criterion. International Journal of Intelligent Systems, 18, 1215–

1225.

[7] Abellán, J., Baker, R. and Coolen, F.P.A. (2011). Maximising entropy on

the nonparametric predictive inference model for multinomial data. European

Journal of Operational Research, 212, 112–122.

124



BIBLIOGRAPHY 125

[8] Abellán, J., Baker, R., Coolen, F.P.A., Crossman, R. and Masegosa, R. (2014).

Classification with decision trees from a nonparametric predictive inference per-

spective. Computational Statistics and Data Analysis, 71, 789–802.

[9] Aboalkhair, A. and Coolen, F.P.A., and MacPhee, I. (2014). Nonparametric

predictive inference for reliability of a k-out-of-m: G system with multiple

component types. Reliability Engineering & System Safety, 131, 298–304.

[10] Ahmad, A. (2009). Data transformation for decision tree ensembles. Ph.D.

thesis, Manchester University.

[11] Alabdulhadi, M. (2018). Nonparametric predictive inference for diagnostic test

thresholds. Ph.D. thesis, Durham University.

[12] Alharbi, A.A. (2022). Direct nonparametric predictive inference classification

trees. Ph.D. thesis, Durham University.

[13] Alqifari, H. (2017). Nonparametric predictive inference for future order statis-

tics. Ph.D. thesis, Durham University.

[14] Amri, N. (2009). Classification techniques for noisy and imbalanced data. Ph.D.

thesis, Florida Atlantic University.

[15] Attwood, K., Tian, L. and Xiong, C. (2014). Diagnostic thresholds with three

ordinal groups. Journal of Biopharmaceutical Statistics, 24, 608–633.

[16] Augustin, T. and Coolen, F.P.A. (2004). Nonparametric predictive inference

and interval probability. Journal of Statistical Planning and Inference, 124,

251–272.

[17] Augustin, T., Coolen, F.P.A., De Cooman, G. and Troffaes, M. (editors) (2014).

Introduction to Imprecise Probabilities. Wiley, Chichester.

[18] Baker, R. (2010). Multinomial nonparametric predictive inference: selection,

classification and subcategory data. Ph.D. thesis, Durham University.



BIBLIOGRAPHY 126

[19] Battineni, G., Sagaro, G., Nalini, C., Amenta, F. and Tayebati, S. (2019).

Comparative machine-learning approach: a follow-up study on type 2 diabetes

predictions by cross-validation methods. Machines, 7, 74.

[20] Bernard, J. (2005). An introduction to the imprecise Dirichlet model for multi-

nomial data. International Journal of Approximate Reasoning, 39, 123–150.

[21] Berry, M. and Linoff, G. (2000). Mastering Data Mining: The Art and Science

of Customer Relationship Management. Wiley, New York.

[22] Bertsimas, D. and Dunn, J. (2017). Optimal classification trees. Machine

Learning, 106, 1039–1082.

[23] Boole, G. (1854). An Investigation of the Laws of Thought: on which are

founded the Mathematical Theories of Logic and Probabilities. Walton and

Maberly, London.

[24] Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

[25] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and

Regression Trees. Wadsworth International Group, Belmont.

[26] Coffin, M. and Sukhatme, S. (1997). Receiver operating characteristic studies

and measurement errors. Biometrics, 53, 823–837.

[27] Coolen, F.P.A. (1998). Low structure imprecise predictive inference for Bayes’

problem. Statistics and Probability Letters, 36, 349–357.

[28] Coolen, F.P.A. (2006). On nonparametric predictive inference and objective

Bayesianism. Journal of Logic, Language and Information, 15, 21–47.

[29] Coolen, F.P.A. (2011). Nonparametric predictive inference. In International

Encyclopedia of Statistical Sciences, pp. 968–970. Springer, Berlin.

[30] Coolen, F.P.A. and Augustin, T. (2005). Learning from multinomial data:

a nonparametric predictive alternative to the Imprecise Dirichlet Model. In

the Fourth International Symposium on Imprecise Probabilities: Theories and

Applications, 5, 125–134.



BIBLIOGRAPHY 127

[31] Coolen, F.P.A. and Augustin, T. (2009). A nonparametric predictive alternative

to the Imprecise Dirichlet Model: the case of a known number of categories.

International Journal of Approximate Reasoning, 50, 217–230.

[32] Coolen, F.P.A. and Maturi, T. (2010). Nonparametric predictive inference

for order statistics of future observations. In: Combining Soft Computing and

Statistical Methods in Data Analysis, pp. 97–104.

[33] Coolen, F.P.A. and Yan, K. (2003). Nonparametric predictive comparison of

two groups of lifetime data. In the Third International Symposium on Imprecise

Probabilities and Their Applications, pp. 148–161.

[34] Coolen, F.P.A. and Yan, K. (2004). Nonparametric predictive inference with

right-censored data. Journal of Statistical Planning and Inference, 126, 25–54.

[35] Coolen, F.P.A., Coolen-Maturi, T. and Alqifari, H. (2018). Nonparametric

predictive inference for future order statistics. Communications in Statistics-

Theory and Methods, 47, 2527–2548.

[36] Coolen, F.P.A., Coolen-Schrijner, P. and Yan, K. (2002). Nonparametric pre-

dictive inference in reliability. Reliability Engineering & System Safety, 78,

185–193.

[37] Coolen-Maturi, T., Coolen, F.P.A. and Alabdulhadi, M. (2020). Nonpara-

metric predictive inference for diagnostic test thresholds. Communications in

Statistics-Theory and Methods, 49, 697–725.

[38] Coolen-Schrijner, P., Coolen, F.P.A., and MacPhee, I. (2008). Nonparametric

predictive inference for system reliability with redundancy allocation. Journal

of Risk and Reliability, 222, 463–476.

[39] De Finetti, B. (1974). Theory of Probability. Wiley, London.

[40] Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

The Journal of Machine Learning Research, 7, 1–30.



BIBLIOGRAPHY 128

[41] Dua, D. and Graff, C. (2019). UCI machine learning repository. University

of California, Irvine, School of Information and Computer Science. http:

//archive.ics.uci.edu/ml.

[42] Elkhafifi, F. and Coolen, F.P.A. (2012). Nonparametric predictive inference for

accuracy of ordinal diagnostic tests. Journal of Statistical Theory and Practice,

6, 681–697.

[43] Fayyad, U. and Irani, K. (1992). On the handling in decision tree of continuous-

valued attributes generation. Machine Learning, 8, 87–102.

[44] Fayyad, U. and Irani, K. (1993). Multi-interval discretization of continuous-

valued attributes for classification learing. In: Proceeding of the 13th Interna-

tional Joint Conference on Artificial Inteligence, pp. 1022–1027.

[45] Fink, P. (2018). imptree: Classification Trees with Imprecise Probabilities. R

package version 0.5.1.

[46] Fluss, R., Faraggi, D. and Reiser, B. (2005). Estimation of the Youden index

and its associated cut-off point. Biometrical Journal, 47, 458–472.

[47] Genlin, J. (2004). Survey on genetic algorithm. Computer Applications and

Software, 2, 69–73.

[48] Haldurai, L., Madhubala, T. and Rajalakshmi, R. (2016). A study on genetic

algorithm and its applications. International Journal of Computer Sciences and

Engineering, 4, 139.

[49] Hill, M. (1968). Posterior distribution of percentiles: Bayes’ theorem for sam-

pling from a population. Journal of the American Statistical Association, 63,

677–691.

[50] Hill, M. (1988). De Finetti’s theorem, induction, and A(n) or Bayesian nonpara-

metric predictive inference (with discussion). Bayesian Statistics, 3, 211–241.

[51] Hornik, K. and Buchta, C. and Zeileis, A. (2009). Open-source machine learn-

ing: R meets Weka. Computational Statistics, 24, 225–232.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


BIBLIOGRAPHY 129

[52] Idri, A., Kadi, I. and Benjelloun, H. (2015). Heart disease diagnosis using C4.5

algorithm - A Case Study. In Proceedings of the International Conference on

Health Informatics, pp. 397–404. SciTePress, Lisbon (Portugal).

[53] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction

to Statistical Learning: with Applications in R. Springer, New York.

[54] Khozeimeh, F., Alizadehsani, R., Roshanzamir, M., Khosravi, A., Layegh, P.

and Nahavandi, S. (2017). An expert system for selecting wart treatment

method. Computers in Biology and Medicine, 81, 167–175.

[55] Khozeimeh, F., Jabbari, F., Mahboubi, Y., Jafari, M., Tehranian, S., Al-

izadehsani, R., and Layegh, P. (2017). Intralesional immunotherapy compared

to cryotherapy in the treatment of warts. International Journal of Dermatology,

56, 474–478.

[56] Kohavi, R. and Sahami, M. (1996). Error-based and entropy-based discretiza-

tion of continuous features. Proceedings of the Second International Cnference

on Knowledge Discovery and Data Mining, pp. 114–119.

[57] Kubat, M. (2017). An Introduction to Machine Learning. Springer, Switzerland.

[58] Lee, C. (2007). A Hellinger-based discretization method for numeric attributes

in classification learning. Knowledge-Based Systems, 20, 419–425.

[59] Maletic, J. and Marcus, A. (2000). Data cleansing: beyond integrity analysis.

In International Conference on Information Quality, pp. 200–209.

[60] Mantas, C., Abellán, J. and Castellano, J. (2016). Analysis of Credal-C4. 5 for

classification in noisy domains. Expert Systems with Applications, 61, 314–326.

[61] Mantas, C. and Abellán, J. (2014). Credal-C4. 5: Decision tree based on

imprecise probabilities to classify noisy data. Expert Systems with Applications,

41, 4625–4637.

[62] Mašetic, Z. and Subasi, A. (2013). Detection of congestive heart failures using

C4. 5 decision tree. Southeast Europe Journal of Soft Computing, 2, 74–77.



BIBLIOGRAPHY 130

[63] Moral, S., Mantas, C., Castellano, J. and Abellán, J. (2020). Imprecise classifi-

cation with nonparametric predictive inference. In International Conference on

Information Processing and Management of Uncertainty in Knowledge-Based

Systems, pp. 53–66. Springer.

[64] Murthy, S. and Salzberg, S. (1995). Decision Tree Induction: How Effective

Is the Greedy Heuristic? Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, pp. 222–227.

[65] Piatti, A., Zaffalon, M. and Trojani, F. (2005). Limits of Learning from Imper-

fect Observations under Prior Ignorance: the Case of the Imprecise Dirichlet

Model. In International Symposium on Imprecise Probability: Theories and

Applications, volume 5, pp. 276–286.

[66] Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

[67] Quinlan, J. (1993). C4.5: Program for machine learning. Morgan Kaufmann.

[68] Quinlan, J. (1996). Improved use of continuous attributes in C4.5. Journal of

Artificial Intelligence Research, 4, 77–90.

[69] R Core Team (2013). R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria.

[70] Rabbi, M., Hasan, S., Champa, A., AsifZaman, M. and Hasan, Md. (2020).

Prediction of liver disorders using machine learning algorithms: a comparative

study. In 2020 2nd International Conference on Advanced Information and

Communication Technology, pp. 111–116. IEEE, Dhaka (Bangladesh).

[71] Rokach, L. and Maimon, O. (2008). Data Mining with Decision Trees: Theory

and Applications. World Scientific.

[72] Sáez, J., Galar, M., Luengo, J. and Herrera, F. (2013). Tackling the problem of

classification with noisy data using multiple classifier systems: analysis of the

performance and robustness. Information Sciences, 247, 1–20.



BIBLIOGRAPHY 131

[73] Shannon, C. (1948). A mathematical theory of communication. Bell System

Technical Journal, 27, 379–423.

[74] Stone, M. (1974). Cross-validatory choice and assessment of statistical predic-

tions. Journal of the Royal Statistical Society: Series B, 36, 111–133.

[75] Therneau, T., Atkinson, B. and Ripley, B. (2015). rpart: Recursive Partitioning

and Regression Trees. R package version 4.1.16.

[76] Unal, I. (2017). Defining an optimal cut-point value in ROC analysis: an

alternative approach. Computational and Mathematical Methods in Medicine,

2017, 3762651–3762651.

[77] Walley, P. (1996). Inferences from multinomial data: learning about a bag of

marbles. Journal of the Royal Statistical Society: Series B, 58, 3–34.

[78] Weichselberger, K. (2000). The theory of interval-probability as a unifying

concept for uncertainty. International Journal of Approximate Reasoning, 24,

149–170.

[79] Witten, I. and Frank, E. (2005). Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, San Francisco.

[80] Zhang, X., Wu, J., Lu, T. and Jiang, Y. (2007). A discretization algorithm

based on Gini criterion. International Conference on Machine Learning and

Cybernetics, 5, 2557–2561.

[81] Zhu, X. and Wu, X. (2004). Class noise vs. attribute noise: A quantitative

study. Artificial Intelligence Review, 22, 177–210.


