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ABSTRACT Prognostics and Health Monitoring (PHM) of machinery is a research area with great relevance
to industrial applications as it can serve as a foundation for safer, more cost-efficient operation and
maintenance. The prediction of Remaining Useful Life (RUL) plays an important part in this field and
has seen significant advances from the introduction of machine learning methods. However, these methods
typically require model training with a large number of run-to-failure sequences, which are often not feasible
to obtain due to the required time and cost investments. The present study addresses this issue by introducing
a novel methodology, which first quantifies the deviation from the machine’s health and fault state and then
calculates a machine Health Index (HI) prior to the prediction of RUL. In addition, the start of a degradation
state is determined. Alternative implementations of the proposedmethodology are compared utilising several
methods, including Support Vector Regression (SVR), Long Short-Term Memory (LSTM) Neural Network
(NN), Mahalanobis Distance (MD), and LSTM Autoencoder (AE) NN. The methodology is applied to
the open turbofan degradation (C-MAPSS) and bearing vibration (FEMTO-ST PROGNOSTIA) datasets.
When a reduced subset of training sequences is used, the prediction results demonstrate that the proposed
methodology largely outperforms the baseline method without HI generation. For example, when comparing
prediction errors of the C-MAPSS dataset at a reduction of the available number of training sequences to
5%, the proposed method shows an average prediction improvement by 6.5% - 19.2% relative to the baseline
method. The presented approach is therefore suitable to improvemodel generalisation for cases with a limited
number of training sequences. When the full training set is utilised, the most resource-saving variant of the
proposed approach achieves an average training duration of 8.9% compared to the baseline method. Hence,
an additional contribution of the presented data-efficient approach is the reduction of required computing
resources, which has implications on training time, energy consumption, and environmental impact.

INDEX TERMS Computational efficiency, data fusion, data reduction, environmental impact, feature
reduction, green AI, incomplete data, RUL prediction.

I. INTRODUCTION
The estimation of Remaining Useful Life (RUL) belongs to
the domain of Prognostics and Health Monitoring (PHM)
and aims to quantify the time or number of cycles until
the monitored machinery or component reaches a predefined
degraded state, such as complete failure or a safety-critical
condition. As such, RUL estimation can form amajor part of a
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predictive maintenance approach with the potential to benefit
economical and safety considerations. Costly machine failure
and downtime can be reduced, and maintenance programmes
optimised through prognostics-based planning. Otherwise
potentially undetected faults or degradation conditions can
be spotted, which is especially relevant for safety-critical
applications.

Algorithms in this field can be categorised based on
the level of output information they provide (e.g., detec-
tion, localisation, and/or assessment of faults) [1]. Another
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common categorisation is based on the model foundation
[2], which is either physics-based, data-driven, or a hybrid
combining aspects of both approaches. However, further sub-
categories (such as the distinction of data-driven methods
into statistical and AI-based) and differences in terminology
can be encountered in literature, a detailed survey of which
is given in [3]. Physics-based methods have the potential to
operate on conditions previously never encountered during
monitoring. However, physics-based approaches are often
limited by their inflexibility to updating with on-line data and
become impracticable for high degrees of system complex-
ity and environment noise [2], [4], [5]. On the other hand,
data-driven methods, which often utilise AI-based methods,
typically achieve better statistical performance, are real-time
capable and alleviate the need for manual feature engineering
by algorithmic optimisation and transformations of the input
space towards the prediction task [6], [7], [8], [9]. Data-based
prognostics methods largely benefitted from and developed
alongside the advancements in machine learning, computing
power, and large-scale sensor data. A major limitation of
these methods, however, is typically the large amount of
required training data, which can be unfeasible to obtain due
to time and cost restrictions. For RUL prediction tasks, the
foundation of such training data is typically a multitude of
machine units, which provide measurements across their full
life cycles until failure.

Compared to the acquisition of these run-to-failure
sequences, samples of solely healthy or faulty machinery
data (i.e., without the full life cycle data of the machine) are
muchmore readily available and producible. This observation
is supported by the much smaller number of open run-to-
failure vibration datasets [10], [11], [12] compared to the
number of open vibration datasets covering various faults and
healthy baseline conditions without intermediate life cycle
data [13], [14], [15], [16], [17], [18], [19], [20], [21]. For
the purpose of the present study, such data can be referred
to as binary (i.e., healthy and faulty) condition data. Faulty
condition measurements can be acquired, for example, from
diagnostic field data recorded after occurrence and detection
of a fault. Alternatively, faults can be intentionally induced
into machinery components for experimental acquisition of
fault conditions without the need for potentially resource-
intensive run-to-failure measurements. Such controlled fault
conditions minimise the risk of damaging other interact-
ing components or provoking subsequent complete machine
failure, such that the fault can be rectified cost-effectively.
These observations are used to the advantage of the pro-
posed methodology, as it employs binary condition data (i.e.,
data from healthy and faulty condition) to create models of
machine condition deviation from the healthy and faulty state.

In addition to the labour, hardware and energy cost associ-
ated with comprehensive run-to-failure tests, the environmen-
tal impact should be considered. Adverse effects of energy
consumption, such as greenhouse gas emissions represent an
increasing reason for concern across industries, including the
domains of AI and Machine Learning (ML) [22], [23], [24].

At the same time, only a minority of current publications in
the AI space seem to address the training efficiency of the
proposed methods [22], [24].

Some literature already attempts to use a reduced dataset to
address the issue of incomplete data. However, many of these
methods, such as in [25] use application-specific analytical
approaches to model a specific behaviour, thus limiting the
scope of their application. In other cases, such as in [26] the
practical application of the methodology is limited by over-
simplified approximations of the failure signal, which may
not generalise to all cases. Other methods, whilst making use
of more flexible AI-based approaches [27], fail to explore the
generalisation ability of the approach.

These considerations provide the reasoning for the
proposed methodology. Binary (i.e., health and fault) con-
dition data is used to form models, which quantify the cur-
rent machine deviation from the healthy and faulty state.
As this data is easier to obtain compared to full run-to-
failure sequences, these models can take advantage from
additional training cases, if available. Alternatively, the health
and fault conditions are extracted from the start and end
section of available run-to-failure training sequences. This
condition deviation data is then used to calculate an HI value,
which in turn is processed to detect the occurrence of initial
degradation. The available (often limited) number of run-
to-failure training sequences is then processed to generate
corresponding HI training functions, which are then used to
train a RUL prediction model.

The resulting contributions of the present work are sum-
marised below.
• A novel methodology for RUL prediction and degrada-
tion detection from a limited number of run-to-failure
training sequences is introduced. It is the first approach
taking advantage of distinct (healthy and faulty) con-
dition data for training, in addition to (limited) run-to-
failure training sequences.

• A novel HI calculation method is proposed, imple-
mented using MD and AE, to model the current devia-
tion from the healthy and faulty machine state, followed
by the HI calculation from the ratio of these modelled
condition deviations. In a broader sense, this represents
a novel feature reduction and data fusion approach for
machine condition data.

• Several variants of the proposed methodology (based on
MD, AE, Least Squares, LSTM, and SVR) are imple-
mented and compared in terms of prediction accuracy,
variance, and training time requirements on a varying
reduced number of training sequences.

• In contrast to previous publications dealing with RUL
prediction from limited training data, the proposed
methodology is applied to two public benchmark
datasets (C-MAPSS and FEMTO), indicating its capa-
bility to improve model generalisation compared to
baseline LSTM prediction and providing insights into
reduction of training duration due to training data
reduction.
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The structure of the present paper is outlined in the follow-
ing. The next Section II reviews existing research relevant
to the present study. The subsequent Section III outlines the
theoretical foundation of the main involved methods, which
are utilised by the proposed methodology. An overview of
this methodology is presented in the thereafter following
Section IV with subsections devoted to details of its main
processing steps. Section V covers two open datasets used
for validation and comparison of the proposed methodology,
including the presentation and discussion of obtained results.
Finally, Section VI presents the main findings, giving conclu-
sions, as well as current challenges and suggestions for future
work in the domain of RUL prediction.

II. RELATED WORK
This section gives an overview of existing studies dealing
with related issues of RUL prediction and training data
reduction in this domain. Strengths and limitations of the
reviewed publications are outlined to identify the distinguish-
ing aspects and relevance of the present study.

A. NN-BASED RUL PREDICTION
Deep learning (DL) based approaches for RUL prediction
have grown in popularity in recent years due to a vast
increase in available computational power allowing for a
higher research output, as well as the possibility of more
complex NN models. A variety of RUL application domains
have utilised DL approaches [28], [29], [30]. For instance,
one study [29] proposes an LSTM NN combined with atten-
tion mechanism and Particle Swarm Optimisation (PSO) for
lithium battery RUL prediction. Another study [28] investi-
gates wind turbine gearbox RUL prediction using ML and
concludes that NN based methods provide the best accuracy
out of the compared methods. The authors had access to a
large volume of wind turbine supervisory control and data
acquisition (SCADA) data as well as vibration data and found
that fusing the two types of data as opposed to using just
SCADA data can extend the prediction period from a month
to up to 6 months, which empirically demonstrates the value
of using a variety of data as opposed to just large quantities.
Multi-feature fusion is utilised in this paper to take advantage
of these benefits found in literature.

Recurrent Neural Network (RNN) models are highly pop-
ular for time-series inference tasks due to their long-term
dependency handling ability. For instance, Guo et al. [31]
proposed an RNN HI, which utilises a novel feature selection
process based on correlation and monotonicity. This work
further proves the benefit of multivariate data for data-driven
models as well as the effectiveness of RNN models for time-
series modelling. However, due to the vanishing gradient
problem commonly observed when training RNNs [32], [33],
Long Short TermMemory (LSTM) [34] and Gated Recurrent
Unit (GRU) NNs [35] are preferred to traditional RNN archi-
tectures. These RNN variants subsequently perform better in
the RUL problem that this work covers, and hence, LSTM is
also used as a foundation in the present study. For instance,

Zhang [36] proposes a 2-layer LSTM Network which takes
advantage of attention mechanism to prioritise relevant fea-
ture learning and thereby improve the model efficiency, with
a 1-dimensional Convolutional Neural Network (CNN) for
feature extraction preceding it and a Multi-Layer Perceptron
(MLP) which outputs the RUL value following it. Various
studies make use of CNN [37], [38], which are primarily used
in visual recognition tasks [39] but have also shown promise
with time-series problems [40]. One such study [37] proposes
a Deep CNN (DCNN) for the prediction of RUL. The pro-
posed model is a multi-layered CNN which does not take
advantage of pooling, as the authors noted its unsuitability
for time series-based tasks due to their low dimensionality.
The authors input data from various sensors into the model
with a sliding window and output a single classification of
RUL as the output. The model was empirically validated on
the C-MAPSS degradation dataset from NASA, where the
authors set a maximum constant of 125 for the RUL value
across all motors. However, this means that the proposed
model cannot predict further than 125 cycles from failure,
which can be required in some practical cases. In contrast
to that, the methodology introduced in the present paper
employs degradation detection, which considers the charac-
teristics of individual monitored machine units instead of
applying a global RUL limit, thus indicating and processing
a beginning degradation trend on a unit-by-unit basis.

B. HI-BASED RUL PREDICTION
The calculation of an HI as a means of feature dimensionality
reduction was utilised before in previous studies [30], [31],
[41], [42]. A study byYang et al. [43] compared directlymod-
elling the RUL and using the HI as an intermediate variable to
estimate the RUL, and found that the proposedmethod, which
utilises the latter is able to consistently outperform the former.
The authors further noted that in practice, RUL can fluctuate
based on changes in operating condition and measurement
noise. The authors employ various methods of smoothing the
HI degradation curve to account for these issues. Another
method proposed by Wei et al. [44] uses a dynamic condi-
tional variational autoencoder to construct the HI of multi-
sensor systems. The authors also provide further evidence
that HI-based RUL approaches are more effective than direct
RUL modelling. However, whilst the method makes use of
operating condition information which, as Wei et al. noted,
may not be available for all systems, the authors prove the
effectiveness of their approach regardless of the availability
of this data.

However, in contrast to the present study, the afore-
mentioned studies utilise complete datasets and do not
investigate the prediction performance under limited data
availability. Furthermore, the proposed approach for HI
calculation is based on the MD and AE LSTM NN
(depending on the implementation) and can take advan-
tage of more feasibly obtainable discrete healthy/faulty
condition data, if available, in addition to run-to-failure
sequences.
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C. RUL PREDICTION FROM LIMITED TRAINING DATA
RUL prediction typically requires extensive data, covering
a large amount of run-to-failure life cycle sequences, which
has an adverse environmental footprint and may require sub-
stantial time and financial investments. This applies both for
the acquisition of data itself as well as the subsequent data
processing and model generation.

Several research papers recognised this issue. Certain
methods in the field of transfer learning focus on domain
adaptation and operate on incomplete RUL labels [8], [45],
[47]. In these cases, model training is performed using
labelled samples at certain machine conditions (in the source
domain) in combination with unlabelled samples of other
machine conditions (in the target domain). While these meth-
ods operate on fractionally labelled information, they still
require complete sequences of input features, limiting the
data reduction capability of these methods. The same limi-
tation applies to the method presented in [48], which investi-
gates gradual reduction of labelled training data. However,
the full set of training data is used throughout in a semi-
supervised approach utilising Restricted Boltzmann Machine
(RBM) and LSTM.

In the domain of RUL prediction of cutting tools, a study
[25] utilises incomplete data covering the first part of the
life cycle sequence and cutting it short before the life cycle
end is reached. While sensor data is used for the training of
a NN, the method is based on classic analytical models for
tool wear, like those introduced by Takeyama, Murata [49]
and Usui [50]. Therefore, this approach can be classified as a
hybridmethod and is limited in its application to cutting tools.
Another paper [51] investigates the crack growth of steel
plates and bearing degradation to estimate the RUL using
sparse and fragmented data samples. However, the missing
samples (either individually or in fragments) are randomly
selected from the full life-cycle sequence, approximating the
distribution of the original data range. Another study [26]
constructs a prediction model by fitting a Bernstein distribu-
tion to the lifetime numbers and using its parameters to define
an assumed degradation function. A large reduction in data-
usage is achieved, however the drawback of this approach
is that the initially assumed degradation function may not
be representative of the actual degradation trend. Moreover,
the method operates on a single degradation feature and this
feature reaches a constant end value for every run-to-failure
sequence, limiting the method’s potential for more complex
cases with signals, which are either multivariate or have
varying value ranges per run-to-failure sequence. Two papers
deal with the RUL prediction of wind turbine bearings [27],
[52] from an incomplete life cycle sequence. The earlier study
[52] uses a state-space model constructed from an empirical
equation for bearing wear based on the spalling area propaga-
tion. Online degradation data is then used to update the state
and predict the RUL with a particle filter. As another hybrid
approach, it is limited in its application to rolling element
bearings. In the later study [27], an Elman NN is used to

obtain a data-driven condition model instead. However, the
main limitation of both studies is that just a single run-to-
failure sequence is used for demonstration and validation,
such that its generalisation ability remains questionable.

A study [53] implemented a method based on Support
Vector Machine (SVM), where a reduced training set was
provided. Specifically, between 33% to 36% of bearing
run-to-failure training sequences were shortened, while the
remaining majority of training sequences remained complete.
A limitation of this study is that the method outputs survival
probability values instead of RUL values. Moreover, the pre-
diction is limited to 9 discrete values, which is detrimental
for an accurate prediction of the monitored machine con-
dition. A similar SVM-based approach is followed in [54].
The potential of SVM-based RUL prediction, particularly at
limited availability of training data, is also pointed out in
a review study [3]. This is based on the high training data
demand typically imposed by common NN-based methods in
contrast to SVM and SVR, which motivates the use of SVR
in the present study.

Whilst the topic of RUL is widely covered in literature,
only a small proportion of these papers aims to address the
topic of run-to-failure sequence availability. However, in a
real-world environment, it is not always assured that full
run-to-failure sequences will be available, which means that
any approach which aims to have practical feasibility must
account for a lack of data. To the best of the authors’ knowl-
edge, no currently existing methods for RUL prediction from
limited data use open datasets, limiting reproducibility and
comparability of existing publications. To address this issue,
this paper utilises two open degradation datasets commonly
used to validate RUL approaches, thus allowing for future
studies to compare any new approaches to the present work
and encourage research into more efficient RUL approaches
that focus on data reduction techniques. The intention is
to thereby increase the feasibility of practical application,
where available training sequences might be limited, with an
added environmental benefit of reduced power consumption
of algorithms.

III. THEORETICAL FOUNDATION
This section provides the theoretical introduction to individ-
ual methods utilised in course of this paper, followed by an
illustration of the proposed methodology for data-efficient
RUL prediction.

A. LONG SHORT-TERM MEMORY (LSTM) NEURAL
NETWORK
The LSTMNN is a variant of the RNN architecture proposed
by Hochreiter [34] to mitigate the vanishing gradient problem
[32], [33]. The vanishing gradient commonly occurs when
training a deep RNN using the backpropagation through time
algorithm; when unrolling an RNN to update the weights,
due to the depth of the network, the calculated derivatives
are prone to exponentially ‘‘vanishing’’ or ‘‘exploding’’. This
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FIGURE 1. Schematic architecture of an LSTM cell (courtesy of [34]).

is worsened by the shared weights of the RNN across time,
which results in a higher likelihood of the vanishing or
exploding gradient issue occurring in comparison to a stan-
dard feedforward network.

The LSTM cell architecture, illustrated in Figure 1,
addresses this issue using a specialised gate structure with
three gates: forget gate, input gate and output gate. The forget
gate, which outputs a vector ft , determines which information
is forgotten from the previous cell state based on the previous
hidden cell state ht−1 and cell input xt in the current cell
state. This operation is mathematically represented in (1).
The input gate, which outputs a vector it , controls which
information from the candidate vector C̃t is stored in the
cell state. The input gate equation is described in (2), and
the equation to determine the candidate values is described
in (3). The new cell state is determined by the elementwise
product (also known as the Hadamard product and denoted
by the operator©) of the previous cell state with the forget
gate output. This is followed by an elementwise addition
with the Hadamard product of the input gate output and the
candidate vector C̃t . This is mathematically described in (4).
The output gate output is determined using (5), then used
in the calculation for the new hidden state, described in (6).
Weight matrices and bias vectors are denoted by W and b,
respectively. Subscripts f , i, and o refer to the parameters of
the forget, input, and output gate, respectively.

ft = σ
(
Wf · [ht−1, xt ]+ bf

)
(1)

it = σ (Wi · [ht−1, xt ]+ bi) (2)

C̃t = tanh (WC · [ht−1, xt ]+ bC ) (3)

Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ (Wo · [ht−1, xt ]+ bo) (5)

ht = ot ∗ tanh (Ct ) (6)

1) AUTOENCODER ARCHITECTURE
TheAutoencoder (AE) architecturewas introduced byHinton
[55] as a method of utilising unsupervised learning to acquire
encodings of unlabelled data in latent space. The autoencoder
operates by ‘‘encoding’’ the input values using dimension-
ality reduction into latent space, then ‘‘decoding’’ the latent
space representation to reconstruct the original input values.
This operation is illustrated in Figure 2.

FIGURE 2. Schematic architecture of an Autoencoder model.

B. LEAST SQUARES REGRESSION
Least Squares (LS) is an approach used in regression analysis
to determine an approximated solution for overdetermined
systems. This is accomplished by minimising the total resid-
ual of the sum of squares of the variables observed. There are
two categories of LS approaches that can be used depending
on the problem: linear or non-linear. Linear regression is often
preferred due to simplicity and interpretability but can only be
used when each coefficient is a constant or a product of a vari-
able. Non-linear LS is more flexible modelling capability but
sacrifices the ease of interoperability that linear LS models
offer. The present study will employ the use of a subcategory
of linear LS regression referred to as polynomial LS.

In polynomial LS, a function can be modelled by a poly-
nomial in the form of (7) with polynomial order Np and
coefficients aip .

y = a0 + a1x + . . .+ aipx
ip + . . .+ aNpx

Np , (7)

which can also be represented for N samples of x and y in
matrix form as

y1
y2
...

yN

 =

1 x1 · · · x

Np
1

1 x2 · · · x
Np
2

...
...
. . .

...

1 xN · · · x
Np
N



a0
a1
...

aNp


y = Xa. (8)

For overdetermined systems, i.e., whereNp < N−1, an LS
approximation of the polynomial coefficients can be obtained
from

a =
(
XTX

)−1
XTy. (9)

C. MAHALANOBIS DISTANCE
The Mahalanobis Distance (MD) [56] represents the devia-
tion from a set X of multidimensional samples (i.e., the input
space) to a sample x of the same dimensionality. As a distance
metric, the MD is always positive. In addition, the MD is a
relative quantity in standard deviations, and therefore scale-
invariant towards its input samples, not requiring feature
scaling.
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TheMD is calculated with (10), which contains the inverse
covariancematrixK−1 ofX , the vector of input featuremeans
µ, and the single multidimensional feature sample x.

d (x) =
√
(x − µ)TK−1XX (x − µ) (10)

D. SUPPORT VECTOR REGRESSION
Support Vector Regression (SVR) [57] is a supervised learn-
ing algorithm from the Support Vector Machine (SVM) [58]
family that is used to solve regression problems. In com-
parison to LS regression, which approximates a function to
minimise the sum of squared errors, SVR allows flexibility
to define the error limit acceptable in the model using the
epsilon tube parameter ε, and finds a best fitting function
within the defined error constrains that minimises the L2
norm of the vector coefficients. The SVR algorithm also
accounts for outliers outside the error limit using a slack
variable ξ . This value denotes the deviation from the error
margin ε, as the error margin by itself may be unfeasible for
more complex data trends in some cases. The slack variable
is minimised using a regularisation parameter C in the cost
function, where, asC approaches 0, the tolerance for the slack
variable ξ decreases and as C approaches 1 the tolerance for
slack variables increases.

In the case ofmultidimensional inputs, a hyperplane is used
as the decision boundary instead of a two-dimensional line.
To fit the hyperplane to the data, a kernel is used to map
the training data to a higher dimension. Some examples of
kernels that are commonly used include linear, non-linear,
polynomial and Radial Basis Function (RBF), the latter of
which is utilised in the present study.

This section outlined the theory of methods, which are
part of the proposed methodology for data-efficient RUL
prediction. Their specific application within the proposed
framework is presented next.

IV. PROPOSED METHODOLOGY FOR DATA-EFFICIENT
RUL PREDICTION
This section presents the proposed methodology by first pro-
viding an initial outline, which is then followed up by subsec-
tions covering details of the involved steps and methods.

The proposed methodology consists of three main steps,
which are indicated in the overview graphic in Figure 3
with a reference to the corresponding subsection. First
(Section IV-A), the health and the fault condition models are
created from binary (i.e., healthy or faulty) condition data.
A limited number of run-to-failure training sequences is then
fed into the health and fault models, providing health and
fault condition deviation sequences (dh and df ), respectively.
In the second step (Section IV-B), both values are combined
through the calculation of an HI value. The HI is then used
in a degradation detection step, which provides an additional
component of monitoring information and can be used to sep-
arate relevant degradation data from healthy condition data
downstream. In the final step (Section IV-C), the degradation

FIGURE 3. Overview graphic of the proposed RUL prediction method.

data is processed by a prediction model, which outputs the
final RUL prediction.

The health and the fault model (and thus the HI) are
created based on two approaches, i.e., Mahalanobis Distance
(MD) [56] and LSTM Autoencoder (AE) NN [59]. For the
RUL prediction model, three approaches are used, namely
quadratic polynomial LS extrapolation (QPoly), Support Vec-
tor Regression (SVR) [57], and Long Short-Term Memory
(LSTM) NN [34]. The proposed approaches are presented,
and their results are compared in course of this study.

In addition, a direct RUL prediction based on the dataset
features (i.e., without HI calculation) is performed as the
baseline for the comparison to evaluate the impact of the
introduced condition features.

Table 1 lists all combinations of methods, which are imple-
mented, validated, and compared in this study. Since different
variants of the proposed methodology are implemented based
on different methods, the combined methods, forming the
foundation for each approach, are given in Table 1 as well.

A. MACHINE CONDITION DEVIATION
As the foundation for the HI calculation (addressed in
Section IV-B), the deviation dh of the current machine con-
dition sample x from the completely healthy condition data
Xh on one hand and the deviation df from the completely
degraded condition data Xf on the other hand shall be deter-
mined in an unsupervised manner. With data-efficiency in
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TABLE 1. Implemented and compared RUL prediction methods.

mind, data for both reference conditions are used for training,
while full run-to-failure sequences are not required.

In the present study, two approaches are implemented
and later compared for this task: LSTM AE NN, and MD.
Both methods are utilised to construct two models each. The
‘‘health model’’ (providing the deviation dh) is constructed
from Xh while the ‘‘fault model’’ is conditioned from Xf
(providing the deviation df ).
Condition data Xh and Xf can be obtained from dedi-

cated measurements or available run-to-failure sequences by
assuming that the first and last nhf samples represent the
health and fault condition, respectively. Then, a run-to-failure
sequence X with N samples, can be subdivided into Xh, Xf ,
and the intermediate degradation data Xitm, the latter of which
is not used by the health and fault models. This is described
by (11), where xi represents the ith multivariate data sample
of the sequence X .

X =

 Xh
Xitm
Xf

 =



 x1
...

xnhf


 xnhf+1

...

xN−nhf−1


 xN−nhf...

xN




(11)

1) LSTM AUTOENCODER
After training of the AE NN with binary condition data Xh
or Xf , the desired deviation value dh or df is obtained as
the difference between the current condition sample x and its
corresponding AE reconstruction as described by (12).

dh = x − Dh(Eh(x))

df = x − Df (Ef (x)) (12)

To use multiple features for the AE-based condition devi-
ation models, the deviations of individual features are com-
bined into a single function by standardisation and averaging.
Progressions of a raw feature, its AE reconstruction and the

reconstruction error are shown later in the results section
for both the health and the fault models in Figure 14 and
Figure 15, respectively.

2) MAHALANOBIS DISTANCE
TheMD-based health and fault models are created from (10),
where the health dataXh and fault dataXf are used to calculate
the respective covariance matrixKXX andmean feature vector
µ for the respective health or fault model. The output of (10)
then represents the health deviation dh or fault deviation df ,
respectively.

3) FEATURE SUBSET OPTIMISATION BY THE GENETIC
ALGORITHM (GA)
In frame of the proposed method, the MD is utilised to
quantify the deviation d of current machine condition to a
reference (healthy or faulty) condition. For this purpose, it is
desirable tomaximise theMDbetween opposing (i.e., healthy
and faulty) condition data Xh and Xf . This is achieved by
the selection of a data feature subset S, which is optimised
towards the maximum MD separation dsep defined in (13).
The equation contains MD values dh(Xh) between individual
healthy samples xh and the healthy reference state Xh, as well
as the opposingMDvalues df (Xh) between individual healthy
samples xh and the faulty reference state data Xf . A Genetic
Algorithm (GA) [60] is implemented and employed in the
present study for this optimisation task.

In generation 0, an initial population of feature subsets
is randomly selected. On one hand, the average d̄h of MD
values is calculated between the reference set Xh and each
of its samples xh. On the other hand, the average d̄f of MD
values is calculated between the reference set Xf and each
of the opposing set’s samples xh. The objective function of
averaged MD separation d̄sep is represented by (13), which
is then maximised by the GA. In each generation, the objec-
tive function of each population member (i.e., feature subset
candidate S) is evaluated and 5 highest ranking members
are selected for crossover to breed a descendent population
(i.e., the next generation), assigning or dismissing individual
features based on the parents’ properties. A 30% mutation
rate (chance of random feature inclusion into S) is introduced,
and 5 randomly selected members are retained into the next
generation to avoid convergence on a local optimum.

max
S

d̄sep = d̄h (Xh (S))− d̄f (Xh (S)) (13)

B. HEALTH INDEX (HI) CALCULATION
The HI aims to represent a measure of the relative health con-
dition of the monitored machine, where a value of 1 typically
indicates the condition of a new or unworn machine and a
value of 0 indicates a condition of machine failure, a critical
fault or a degraded condition requiring maintenance.

With data-efficiency in mind, the goal of the proposed HI
generation is to generate HI values at any stage of the engine
life cycle, utilising solely binary (i.e., healthy and faulty)
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conditions for the constructed model. As such, the proposed
method for HI calculation is largely unsupervised.

The variance in condition signatures and degradation pro-
gressions of different monitored machines leads to varying
ranges of the condition deviation output by the fault and
health model. Despite that, a normalised HI within the inter-
val [0, 1] is obtained by calculating a ratio involving the
deviation outputs of the health model dh and fault model df
given in (14). This approach was utilised in a previous study
of the authors for the quantification of harmonic and random
vibration contributions [61]. To balance the contributions of
both the fault and health model, min-max scaling is applied
to the output of the health and fault model individually
based on training data. It should be noted that full run-to-
failure sequences are not required to determine the scaling
parameters, as the minimum and maximum deviation output
is obtained from available healthy and faulty condition data.

HI (x) =
df (x)

dh(x)+ df (x)
(14)

The deviation functions df and dh based on MD are shown
later in the results section in Figure 12 for an exemplary
run-to-failure sequence from the C-MAPSS FD001 training
dataset.

After application of (14), the obtained HI is smoothened by
a moving average. The range of the smoothened HI obtained
from training data Xh and Xf is then used to calculate min-
max scaling parameters for the HI. A HI resulting from the
deviation sequences of Figure 12 is shown in Figure 13.

1) DEGRADATION DETECTION
The determination of the HI can be considered as a feature
reduction process to a single quantity. The occurrence of the
degradation start is detected from the HI by assuming that
a predefined number of initial HI samples of each sequence
represents the healthy machine condition. A threshold is
determined from 3 standard deviations of these initial healthy
HI samples. Additionally, a tolerance of 5 samples exceeding
this threshold is allowed to lower the sensitivity of the trig-
gered degradation detection to outliers.

As seen from the sequence later in Figure 13, a typical pro-
gression of the HI has a consistently high value at the begin-
ning of the run. This phase represents the healthy condition,
as it does not indicate a decline of the machine health. Since
a degradation trend has not yet developed, it is assumed that a
machine-specific and meaningful RUL prediction cannot be
obtained during this phase. A common approach to address
this issue is to exclude all training samples or relabel those
above a certain RUL value to a predefined constant value
(in case of C-MAPSS, typically between 120 and 130) [37],
[48], [62], [63], [64], [65]. However, this approach neglects
variability between individual machine units.

In contrast to that, the two-step procedure of unit-based
degradation detection followed by RUL prediction provides
several advantages. On one hand, earlier RUL prediction is
possible, provided that the specific machine shows an earlier

FIGURE 4. Quadratic polynomial fit for RUL prediction on an MD-based HI
sequence calculated from a C-MAPSS FD001 training sequence at current
cycle 140, leading to a predicted failure cycle overestimation by 58 cycles.

degradation trend. On the other hand, non-meaningful RUL
predictions (on healthy condition data prior to a degradation
trend) can be avoided or indicated as such to the monitoring
operator.

C. REMAINING USEFUL LIFE (RUL) PREDICTION
The RUL prediction step is based on a model, which relates
the determined reduced features (condition deviation and HI)
to the actual RUL value. Three different methods for this task
are presented in the following subsections.

1) POLYNOMIAL LEAST SQUARES REGRESSION
After the degradation point is detected (see Section IV-B-1),
thereafter following HI samples of each sequence are used
to fit a polynomial function using LS. This avoids non-
meaningful predictions on healthy conditions prior to a degra-
dation trend and simplifies the function shape, leading to a
closer fit using lower polynomial orders.

A second order (i.e., quadratic) polynomial is fitted in this
study. Figure 4 and Figure 5 show the same exemplary full
MD-based HI sequence (see Section IV-B) at two different
times, i.e., cycles, of prediction. The polynomial is fitted to
the data between the detected degradation start and the most
recent HI observation at the current cycle tc. Therefore, the
current cycle has an impact on the resulting RUL prediction.
Since more data becomes available in Figure 5 (tc =160)
compared to Figure 4 (tc =140) for the polynomial fit during
the progression through the operating cycles, a better fit is
achieved in Figure 5, i.e., towards the end of the HI sequence,
leading to a more accurate prediction.

The closest polynomial root at a future time value rep-
resents the predicted failure cycle tf ,pred of the correspond-
ing machine. The predicted RUL is then calculated as
RULpred = tf ,pred – tc.
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FIGURE 5. Quadratic polynomial fit for RUL prediction on an MD-based HI
sequence calculated from a C-MAPSS FD001 training sequence at current
cycle 160, reducing the predicted failure cycle overestimation to 27 cycles.

FIGURE 6. Data points of 5 complete C-MAPSS FD001 training sequences
and resulting SVR plane for RUL prediction.

2) SUPPORT VECTOR REGRESSION
To consider time-dependency of the degradation in the SVR
prediction, a lookback is introduced using an HI offset
of -50 samples from the current sample as an additional input
feature. Both the offset and current HI samples are fed into
the SVR model to predict the RUL. As outlined in the theory
Section III-D, the SVR produces a hyperplane, relating the
input features to the predicted output RUL value. Data points
from 5 run-to-failure training sequences from C-MAPSS
FD001 are shown with the resulting 3D plane in Figure 6.

The Radial Basis Function (RBF) is used as the SVR
kernel and the regularisation parameter C and epsilon-tube
parameter ε are optimised as discussed later in Section V.

TABLE 2. Main properties of the C-MAPSS datasets.

3) LSTM NEURAL NETWORK
An LSTM NN, as described in Section III-A, is a common
choice for RUL prediction problems due to the LSTM’s abil-
ity to incorporate time-dependency of input features into the
mapping function to output the desired prediction variable.
For the proposed method, three inputs are used: the condi-
tion deviations from the MD-based fault and health models
(Section IV-A) with the resulting HI ratio (Section IV-B) are
provided as inputs to the LSTM model for RUL prediction.
The proposed method is referred to as MD-LSTM in the
following.

For a baseline comparison with a more traditional
approach, the raw original dataset features are used as inputs
to the LSTM model, without condition deviation and HI
functions. In accordance with the typical approach of exist-
ing literature [37], [48], [62], [63], [64], [65], the effective
prediction range is limited to a maximum RUL of 125 by
relabelling earlier training data to this RUL value. For a direct
comparison of the used input features’ impact, this training
approach is used for both the proposed MD-LSTM method
and baseline LSTM method.

The feature matrix of each engine sequence is then sub-
divided into smaller rolling sequences of a chosen window
length. These overlapping partial sequences serve as samples
fed into the model. The used window length is optimised
together with other model hyperparameters, incl. the num-
ber of hidden LSTM layers, as specified later in Section V.
On each LSTM layer, a dropout rate of 0.2 is applied to
combat overfitting.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Two open datasets are presented and used to compare and
validate the proposed RUL prediction method. Each dataset
section is structured into an introduction of the corresponding
dataset, model training procedure for individual methods, and
performance comparison of different methods as a function of
the number of available run-to-failure training sequences.

A. SIMULATED TURBOFAN ENGINE DEGRADATION DATA
An open dataset of turbofan engine degradation [66] was
developed by NASA through simulation with the software
tool C-MAPSS (Commercial Modular Aero-Propulsion Sys-
tem Simulation). As summarised by Table 2, the full dataset
package consists of 4 datasets, which are referred to as FD001
- FD004 and differ by the number of operating conditions and
failing engine components, i.e., fault conditions.
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TABLE 3. Features of the C-MAPSS dataset.

FIGURE 7. Correlation matrix of C-MAPSS FD001 training dataset
features, constant features displayed in white.

Additionally, the datasets differ by the number of test
sequences and the maximum available number of run-to-
failure training sequences, each of which covers the life span
of an aircraft engine starting from an unknown state of initial
wear. The provided test sequences are cut short before the
failure event at RUL values, which should be estimated by
RUL prediction. Each dataset sample represents one flight-
cycle and includes 26 multivariate features. As all training
sequences reach RUL=0, the target RUL labels are calculated
from the flight cycle vector t as RUL=abs(max(t)-t) and
subsequently added to the available set of features. All dataset
features are listed in Table 3.

A colour-coded correlation matrix of all features in
C-MAPSS FD001 is shown in Figure 7. Some features consist
of constant values without a meaningful representation of
correlation values and are therefore omitted from Figure 7 as
blank entries. Certain features show a clear positive or neg-
ative correlation with the target RUL variable (feature 26),
which indicates their potential value in RUL prediction. How-
ever, the correlation matrix also shows that several features
are highly correlated among each other, potentially providing
redundant information.

1) MODEL TRAINING
In case of the healthy and faulty condition deviation mod-
els (HI generation stage), the first and last nfh samples

FIGURE 8. MD-based GA optimisation of 5 best scoring feature subset
candidates per generation, C-MAPSS FD001 training data.

(representing health and fault condition data, respectively) are
extracted from each sequence of the full training set and used
for training. Prior to this, the following approach is used for
datasets FD002 and FD004 to consider the impact of different
operating conditions on degradation trend signatures: The
samples of each training set are first subdivided into 6 subsets
based on the 6 operating conditions (see Table 2). A separate
condition deviationmodel is then calculated and used for each
distinct operating condition.

According to the procedure outlined in Section IV-A-3),
a GA is executed on C-MAPSS FD001 for 100 generations.
As seen in Figure 8, the GA converges to a maximum average
MD separation after approximately 30 generations, providing
a final list of highest scoring feature subsets.

As a result of the optimisation, the features 13, 15, 19 of
the C-MAPSS dataset are chosen in this study for MD calcu-
lation. While separate optimisations for the FD002 - FD004
datasets and for individual operating conditions could lead
to further performance improvements, the stated MD input
features identified from FD001 are used throughout all
C-MAPSS dataset for consistency and were found to provide
satisfactory results.

Figure 9 shows the MD applied to 7 exemplary run-to-
failure training sequences. The merit of the MD becomes
visible compared to one of the relevant raw input features:
in the two rightmost sequences, the raw feature 13 does not
show a clear degradation trend towards the respective failure
cycle, whereas theMD of the multivariate input from features
13, 15, 19 shows a monotonic increase on average with a
maximum MD at the lifecycle end.

For the initial model training and search of optimised
hyperparameters of the prediction model, a reduced set of
Ntr,red =20 (out of Ntr =100) complete run-to-failure
sequences is assumed to be available.

A randomised grid search of hyperparameters is per-
formed by subdividing the training data of the Ntr,red =20
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FIGURE 9. Progression of raw feature 13 and MD (combining features 13,
15, 19) for 7 complete C-MAPSS FD001 training sequences.

FIGURE 10. Usage of optimised hyperparameters between implemented
methods.

complete sequences into 18 training sequences and 2 vali-
dation sequences for scoring of hyperparameter sets. Each
evaluated set of hyperparameters is repeatedly trained and
scored 10 times, whereafter the mean validation scores are
used to determine the final hyperparameter values.

To reduce the dimensionality of the hyperparameter search
space and computing time, a subset of hyperparameters is
optimised for each of the implemented models (Table 1).

FIGURE 11. Used NN structures: AE condition deviation model (left);
LSTM RUL prediction model (right).

That is, related hyperparameter optimisation results from a
preceding method optimisation are retained for other meth-
ods. This is illustrated with Figure 10, where each method
(represented by a block) lists its optimised hyperparameters.
Arrows indicate which hyperparameter results are taken over
from one optimisation to a different one. The specific search
space per hyperparameter and final optimised values are
given in Table 4. As the hyperparameters shown in the last
column of Table 4 are used for the implementedmodels, these
values simultaneously provide the definition of the used NN
structures, which are also visualised in Figure 11.

As shown in Figure 10, the proposed MD-LSTM method
combines optimised parameters for HI-generation from
MD-SVR and the LSTM hyperparameters optimised for the
baseline LSTM method. By this approach, the direct impact
of the proposed feature set reduction on LSTM model per-
formance with limited data can be observed. It should be
noted that this procedure favours the baseline LSTMmethod,
because a hyperparameter optimisation specifically for the
proposed MD-LSTM method could further improve its per-
formance. For the introduced HI-generation step (in methods
MD-SVR, AE-SVR, MD-LSTM), nhf first and last samples
from each sequence of the full training set are extracted and
used.

2) HEALTH INDEX (HI) CALCULATION
Corresponding to the procedure detailed in Section IV-A,
HI progressions are created by MD on one hand and by
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TABLE 4. C-MAPSS FD001 training hyperparameter search space and final
optimisation values for implemented RUL prediction methods.

LSTM AE on the other hand. Results from both methods are
presented and discussed below.

a: MAHALANOBIS DISTANCE (MD)-BASED HI
Using (10), MD-based models for health condition deviation
dh and fault condition deviation df are conditioned. The
output MD of both models for a complete run-to-failure
validation sequence is plotted in Figure 12.

As per the procedure described in Section IV-B, the HI
shown in Figure 13 is determined from the condition devi-
ation functions shown in Figure 12. In addition, the flight
cycle with a starting degradation is determined according to
Section IV-B-1) and is also highlighted in Figure 13.

b: LSTM AUTOENCODER (AE)-BASED HI
Outputs of the AE-based condition deviation fault and health
models are shown in Figure 14 and Figure 15, respectively.
In addition to early stopping on model convergence, the
number of epochs is used as an optimised hyperparameter (as
shown under AE-SVR in Table 4). It was observed that limit-
ing the number of epochs aids in preventing the adaptation of
the model to unseen data, as the purpose of the AE is to pro-
vide an accurate reconstruction of the reference (healthy or
faulty) condition only. Both figures show that the AE recon-
struction aligns closely to the reference state, while producing
a higher reconstruction error at the opposing state. As a result,

FIGURE 12. Overlaid MD-based health deviation dh and fault deviation
df for an exemplary run-to-failure sequence.

FIGURE 13. HI resulting from MD-based health and fault deviations in
Figure 12 after scaling and rolling average.

the reconstruction error increases towards to faulty condition
in Figure 14 (health model) and decreases towards the faulty
condition in Figure 15 (fault model), as desired.

The resulting AE-based health and fault deviation func-
tions are overlaid in Figure 16 and the corresponding HI is
shown in Figure 17. Compared to the MD-based deviation
and HI functions, the AE-based alternatives show a clearer
distinction between the health and fault conditions.

This is visible in the clearer crossing of the AE-based
condition deviation functions (comparing Figure 12 and
Figure 16) and a lower AE-based HI value at the final degra-
dation cycle (comparing Figure 13 and Figure 17). However,
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FIGURE 14. AE reconstruction for healthy condition data of feature 13.

FIGURE 15. AE reconstruction for faulty condition data of feature 13.

it is important to note that the AE-based method requires
substantially more computing resources compared to the
MD-based counterpart.

3) RUL PREDICTION RESULTS
Based on condition deviations and HI presented in the pre-
vious section, RUL prediction is performed with various
methods presented previously in Section IV-C. Implemented
method configurations are individually listed in Table 1.

It is reasonable to focus on the pairing of the SVR
methods (MD-SVR and AE-SVR) for one comparison, and
the LSTM-based prediction methods (baseline LSTM and
proposed MD-LSTM) for another comparison. The reason
for this is that both SVR methods only differ in the used

FIGURE 16. Overlaid AE-based health deviation dh and fault deviation df
for an exemplary run-to-failure sequence.

FIGURE 17. HI resulting from AE-based health and fault deviations in
Figure 16 after scaling and rolling average.

HI-generation approach (either AE or MD-based) and there-
fore allow a direct comparison of those HI-generation meth-
ods regarding their impact on RUL prediction performance.
On the other hand, the LSTM RUL prediction methods give
insight into the difference of the proposed features (condition
deviation and HI) in comparison to a direct prediction from
raw dataset features. The Least Squares prediction method
(MD-QPoly) is treated separately, as it is the only presented
method, which does not require any training sequences and is
independent thereof.

Figure 18 and Figure 19 show RUL prediction results on
5 validation sequences from training with a reduced number
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FIGURE 18. MD-SVR predictions of RUL based on 20 training sequences
for 5 validation sequences (i.e., engines).

FIGURE 19. AE-SVR predictions of RUL based on 20 training sequences
for 5 validation sequences (i.e., engines).

ofNtr,red =20 sequences, forMD-SVR andAE-SVR, respec-
tively. The merits of degradation detection become appar-
ent as it provides an additional binary assessment of each
machine’s condition and indicates whether ameaningful RUL
prediction can be expected. The determined pre-degradation
(healthy) machine condition is highlighted with green in both
graphs. Except for the second engine sequence in Figure 18
and Figure 19, the AE-SVR shows a similar or earlier
degradation detection compared to MD-SVR. This indicates
a clearer degradation trend in favour of the AE-based HI
method, similar to the observations discussed in the previous
section.

Figure 20 compares the RUL prediction performance on
the C-MAPSS FD001 dataset for all methods listed in Table 1.

To estimate the impact of a limited number of training
sequences, comparisons are conducted for an increasing num-
ber of training sequences Ntr,red plotted on the horizontal
axis of Figure 20 as a percentage of the full training set with
Ntr =100. The root mean square error (RMSE) is calculated
according to (15) between the predicted final RUL values
RULpred and true final RUL values RULtrue of the test dataset
with Nte =100 sequences.

RMSE =

√∑Nte
i=1

(
RULpred,i − RULtrue,i

)2
Nte

(15)

For each box-and-whisker entry in Figure 20, the specified
method (indicated by the legend) is trained 30 times with
the specified number of training sequences (indicated by the
horizontal axis) drawn randomly from the full set ofNtr =100
training sequences. Each of the trainedmodels is evaluated on
the full set of Nte =100 test sequences, providing one RMSE
value. The repetition provides a more reliable performance
assessment and leads to 30 RMSE test scores per test con-
dition, which make up each individual entry in Figure 20.
It should be also noted that increasing intervals of values on
the horizontal axis are used, i.e., percentage point intervals of
5 between 0% - 20%; 15 between 20% - 50%; 25 between
50% - 100%. This is done for a more detailed comparison in
the low data range, because the RMSE values show a higher
gradient in this range (left part of Figure 20) compared to
results from high data usage (right part of Figure 20).

P-values between both SVRmethods (AE-SVR,MD-SVR)
and between both LSTM methods (LSTM, MD-LSTM)
are indicated in Figure 20. Low p-values below 0.05 are
obtained on most comparisons, suggesting statistical signifi-
cance. However, several result distributions (e.g., MD-SVR,
AE-SVR, LSTM at Ntr,red =15 training sequences) are
skewed, as can be seen by the unsymmetrical inter-quartile
ranges and whiskers. As such, the underlying sample dis-
tributions deviate from the normal distribution and p-values
should be interpreted with care in those cases.

The mostly observed positive skewness (with a long tail
towards higher RMSE values) is likely related to the influ-
ence of a few irregular outlier sequences in the full training
set (with Ntr =100 sequences), which are randomly drawn
into the reduced subset of training sequences (e.g., with
Ntr,red =15 sequences). Affected training runs result in a
higher test RMSE. As the number of training sequences is
increased (towards the right side of Figure 20), the proportion,
and thus impact, of an individual outlier sequence is mitigated
by remaining training sequences. Therefore, the resulting
RMSE scores reach a rather symmetrical distribution starting
from Ntr,red =35 training sequences as shown by Figure 20.
A general trend in Figure 20 shows that the RUL prediction

methods benefit from greater numbers of training sequences
both in terms of increased average prediction accuracies as
well as a reduced variance of the prediction results. This
highlights the importance of the presented methodology,
employing 30 repeated training/testing runs per experiment.
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FIGURE 20. Prediction performance on the C-MAPSS FD001 test dataset over 30 runs per each box and whisker (RMSE, lower is better) of
MD-QPoly, MD-SVR, AE-SVR, LSTM, MD-LSTM (∗p<0.05, ∗∗p<0.01).

This is especially relevant at training cases with reduced
numbers of used training sequences, which is the focus of this
paper. However, Figure 20 also shows that even at full (i.e.,
100%) training set utilisation, there is still a significant pre-
diction variance on the NN-based compared methods. At the
same time, most existing publications using the C-MAPSS
dataset (e.g., [30], [62], [67]) report performance based on
a single test evaluation only and thus do not account for the
variance due to the stochastic nature of the presented NN-
based methods. This omits relevant information on prediction
consistency and likely leads to biased results since a best run
might be reported, which is not representative of an average
expected performance in real-word applications.

MD-Qpoly is the onlymethod that functions independently
from training sequences and only requires fault and health
condition data for conditioning of the MD-based fault and
health models. This feature allows MD-Qpoly to be utilised
without any training data containing run-to-failure sequences
but also leads to a wide dispersion of the RMSE range and
highest overall RMSE values compared to othermethodswith
available training sequences in Figure 20. This method can
be further extended by expert knowledge or run-to-failure
training data by employing the constrained LS method. For
example, the range of estimated polynomial coefficients from
run-to-failure training sequences can be stored to set coeffi-
cient boundaries for polynomial fits of HI sequences during
the test or operational stage. The RUL is then predicted on
unseen (i.e., test) data with the function constrains determined
from training data.

At the cost of substantially higher computing demand,
the previous observations in favour of AE-based HI are also
reflected in the RUL prediction performance, as AE-SVR
shows consistently lower overall RMSE values com-
pared to MD-SVR in Figure 20. Nevertheless, MD-based

condition and HI features used in the MD-LSTM method
led to improved prediction performance of the proposed
MD-LSTM method at limited numbers of training sequences
below 20% compared to the baseline LSTM approach. This
demonstrates that the proposed method improves the gener-
alisation ability of the LSTM-based prediction when a vastly
limited number of training sequences is available. In addition,
Figure 20 shows that the proposed MD-LSTM method also
results in the lowest RMSE variance in the low range of
training sequences among the compared methods.

At a larger training set above 75%, the LSTM model can
take advantage of the higher complexity of raw features,
outperforming MD-LSTM by a small margin and performing
similar to AE-SVR. These results suggest that LSTM-based
RUL prediction would likely further benefit from AE-based
HI generation. Such a method (i.e., AE-LSTM) should be
considered for future work, as it has the potential to further
outperform both MD-LSTM and the baseline LSTM method
across the full range of reduced training sequences.

Figure 21 shows the training durations for individual meth-
ods over increasing percentages of used training sequences
on the horizontal axis. On the vertical axis, average dura-
tions (over 30 runs) are provided in percentages relative to
the traditional approach, which is represented by the base-
line LSTM method utilising the full training set with 100%
of training sequences. Model training is performed on an
AMD Ryzen Threadripper 3990X 64-core CPU with 256 GB
RAM. NN-based methods (AE-SVR, LSTM, MD-LSTM)
are trained on an NVIDIA RTXA6000 GPUwith a batch size
of 512 until model convergence (i.e., until no improvement in
validation loss over the past 10 epochs is gained).

A reduction of the number of training sequences is shown
to have a clear impact, reducing training durations across
all methods. NN training accounts for the majority of the

VOLUME 10, 2022 129457



G. Sternharz et al.: Data-Efficient Estimation of Remaining Useful Life for Machinery

FIGURE 21. Average training durations over 30 runs per each data point
of compared methods (C-MAPSS FD001), relative to LSTM (baseline) at
full training set size of 100%.

observed time requirements, while the conditioning of MD
and SVR models are substantially less demanding. As such,
MD-SVR provides a 91% training time reduction for the
full training set at a 14% increase in average RUL RMSE
compared to the LSTMbaseline. Despite a reduced number of
NN inputs in MD-LSTM compared to LSTM, both methods
show a similar progression of training time. The AE-SVR
duration curve has a lower slope compared to LSTM and
MD-LSTM due to the different NN architecture inherent to
the AE NN model.

Concluding from the comparison on the C-MAPSS FD001
dataset, the proposed MD-LSTM method can be considered
as the overall most beneficial for RUL prediction with a
limited number of training sequences as it provides the low-
est overall RMSE scores (along with AE-SVR) and lowest
RMSE variance in the presented case. At the same time, the
training time demand ofMD-LSTM represents a compromise
between NN-free methods (MD-QPoly and MD-SVR) and
the AE-SVR method.

Based on this result, the proposed MD-LSTM method is
compared further on the datasets C-MAPSS FD002 – FD004
in Figure 22 – Figure 24. Supplementary to the box and
whisker plots of the RUL prediction results, the average
and standard deviation values of prediction RMSE from
all C-MAPSS datasets FD001 – FD004 are summarised in
numerical form in Table 5.

It is visible that the overall performance of both the
baseline LSTM and the proposed MD-LSTM methods is
decreased when applied to C-MAPSS FD002 – FD004 (lead-
ing to higher RMSE values in Figure 22 – Figure 24) com-
pared to the FD001 dataset (Figure 20). This is explained
by a higher data complexity due to an increased number of

FIGURE 22. Prediction performance on the C-MAPSS FD002 test dataset
over 30 runs per each box and whisker (RMSE, lower is better) of LSTM
and MD-LSTM (∗∗p<0.01).

FIGURE 23. Prediction performance on the C-MAPSS FD003 test dataset
over 30 runs per each box and whisker (RMSE, lower is better) of LSTM
and MD-LSTM (∗p<0.05, ∗∗p<0.01).

operating and/or failure conditions in the FD002 – FD004
datasets as shown in Table 2. Hence, FD004 shows the
highest absolute RMSE values both for the baseline and
proposed RUL prediction methods in comparison to datasets
FD001 – FD003 (see Table 5). At the same time, FD004
shows the clearest separation between the performance scores
of the baseline LSTM and the proposed MD-LSTM methods
in Figure 24.

As in previous cases, the greatest difference in favour of
the proposed MD-LSTM method is visible at highly reduced
numbers of available training sequences in Figure 24. This
is also reflected by the values in Table 5, where MD-LSTM
shows an average RMSE of 32.8 at a training sequence
reduction to 5%. This corresponds to a 19.2% prediction
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FIGURE 24. Prediction performance on the C-MAPSS FD004 test dataset
over 30 runs per each box and whisker (RMSE, lower is better) of LSTM
and MD-LSTM (∗∗p<0.01).

improvement in relation to the baseline LSTM method with
an average RMSE of 40.6. Additionally, MD-LSTM out-
performs the baseline LSTM method at the whole range of
reduced FD004 training sequences, including the full training
set, i.e., at 100% of used training sequences).

This indicates that the presented approach significantly
reduces data complexity of the raw FD004 dataset features
while preserving relevant degradation information, which
is represented by the generated condition deviation and HI
functions. It should be also noted, that, while the full FD004
training set (with Ntr =249) is larger than e.g., FD001 (with
Ntr =100), it has the lowest ratio of training sequences per
operating and fault conditions (i.e., 249/8 = 31.125) among
all C-MAPSS datasets. Hence, the baseline LSTM method
would likely benefit from a greater number of FD004 training
sequences beyond 100%. This is also supported by the rather
linear trend of decreasing RMSE values displayed by LSTM
(baseline) in Figure 24, which seems further away from
reaching convergence at 100% compared to other datasets in
Figure 20, Figure 22, and Figure 23. At the same time, the
issue of great training data demand is alleviated by the pro-
posedMD-LSTMmethod, providing improved generalisabil-
ity, which explains the clear performance increase especially
on FD004 (Figure 24) in favour of the proposed MD-LSTM
method.

B. VIBRATION DATA OF BEARING DEGRADATION
A bearing degradation dataset [10] was presented in frame
of the IEEE PHM 2012 Data Challenge. The dataset was
generated by the FEMTO-ST institute utilising a mechanical
test rig ‘‘PROGNOSTIA’’. 3 load conditions were applied by
the test rig, promoting an accelerated degradation of the test
bearings. A total of 6 run-to-failure sequences are provided in
the training set and 11 sequences in the test set. Degradation

FIGURE 25. Correlation matrix of FEMTO training dataset features,
constant features displayed in white.

sequences of the test set are truncated to assess the RUL
prediction performance of models based on the estimation
error at the end of those sequences. The dataset contains
accelerometer readings, with time series of acceleration mea-
sured in the vertical and horizontal axes of the test bearings.
Additional temperature measurements are provided in the
dataset as well, but only for 4 out of 6 training sequences
and 7 out of 11 test sequences. For consistency, only the
accelerometer channels are considered in this work. The
accelerometer measurements are divided into segments of
1/10s duration, each obtained in intervals of 10s at a sampling
frequency of 25.6kHz.

Statistical features, commonly used for vibration condi-
tion monitoring [68], are calculated from both acceleration
signals and arranged into a feature matrix. One segment of
continuous 1/10s signals is thereby processed to a single
statistical value sample. The resulting feature set is described
in Table 6 and serves as the foundation of the following
experiments. The dataset contains run-to-failure sequences,
each obtained at one of 3 operating conditions. The operating
condition is denoted by a number 1 (4000 N, 1800 rpm),
2 (4200 N, 1650 rpm), or 3 (5000 N, 1500 rpm), which is
included as feature 2 as shown in Table 6.

Figure 25 shows the correlation matrix of all features of the
training set. Feature 2 (the condition number) shows a blank
field, due to its constant value per run-to-failure sequence.
Most features show a high positive correlation with each
other. As expected, the RUL value (feature 13) is negatively
correlated to the sequence time (feature 1).

Analogous to the procedure in the C-MAPSS dataset, fea-
tures of the FEMTO dataset are processed by GA optimisa-
tion (Section IV-A-3) to determine a feature subset providing
maximum MD separation. Convergence of the 5 best scoring
subsets per generation is shown in Figure 26. The features 4,
7, 8, 9, 12 are determined by this procedure and chosen as
inputs for the MD calculation.

Figure 27 shows a plot of both the acceleration RMS in
vertical direction (feature 4) and an overlay of the MD-based
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TABLE 5. Prediction performance on C-MAPSS test datasets (RMSE, lower is better).

TABLE 6. Features of the FEMTO dataset.

health condition deviation. The full training set of 6 run-to-
failure sequences is covered by Figure 27. While the resem-
blance of feature 4 is visible in the MD, the MD shows
a clearer slope between the start and end of each training
sequence, which is a desired outcome. Figure 27 also illus-
trates challenging characteristics of the dataset: the shown
sequences have a wide range of inconsistent durations, fea-
ture values and noise levels.

TABLE 7. FEMTO training hyperparameter search space and final
optimisation values for LSTM.

FIGURE 26. MD-based GA optimisation of 5 best scoring feature subset
candidates per generation, FEMTO training data.

From the observations on the C-MAPSS results, it was
found that the MD-LSTM method combines satisfying
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TABLE 8. Prediction performance on the FEMTO test dataset (RMSE, lower is better).

FIGURE 27. Progression of raw feature 4 and MD (combining features 4,
7, 8, 9, 12) for 6 complete training sequences.

characteristics in terms of prediction variance, and predic-
tion accuracy at reduced numbers of training sequences.
The MD-LSTM method is therefore applied to the FEMTO
dataset and compared to the baseline LSTM method in the
following.

A similar procedure to the one in Section V-A is used for
the hyperparameter search. Table 7 shows the hyperparameter
search space, which is optimised by a random grid search.
A split of 4 training and 2 validation sequences is used for
the hyperparameter optimisation. The final hyperparameter
values are determined from the best validation score of the
baseline LSTM method.

Afterwards, the final model architecture is applied to both
the baseline LSTM and the proposed MD-LSTM methods.
Model training is performed on bothmethods with an increas-
ing number of training sequences (between 1 and 6) and each
time evaluated on the full test set with 30 repetitions per
model training and evaluation run.

Similar to the C-MAPSS results (Figure 20), an overall
trend of decreasing RUL prediction RMSE is visible over an
increasing number of used training sequences in Figure 28.
However, the differences between the compared the baseline
LSTM and the proposed MD-LSTM methods are less clear

FIGURE 28. Prediction performance on the FEMTO test dataset over
30 runs per each box and whisker (RMSE, lower is better) of LSTM,
MD-LSTM (∗∗p<0.01).

here. The results show similar performance with a wider
RUL dispersion of MD-LSTM up to 4 out of 6 (i.e., 66.7%)
training sequences. At 6 (i.e., 100%) training sequences, how-
ever, MD-LSTM outperforms the baseline LSTM method as
shown in Figure 28.

Several factors likely contribute to a less conclusive
method comparison by the FEMTO dataset compared to
C-MAPSS. In comparison to the C-MAPSS dataset, a smaller
range of possible training sequences (6 in contrast to 100) is
available in the FEMTO dataset for evaluation of an increas-
ing training sequence count. The number of used features
in the FEMTO dataset (Table 6) is smaller than the number
of features in the C-MAPSS dataset (Table 3), so a greater
ratio of feature reduction is achieved by HI generation on the
C-MAPSS dataset. Moreover, the C-MAPSS dataset is based
on 21 sensors, likely encapsulating more relevant information
for RUL estimation compared to FEMTO features, which
stem from only two physical quantities (vibration readings
in two directions). This is also supported by Figure 25, which
shows that most derived features of the FEMTO dataset are
mutually correlated. Introduction of additional features and
tuning of pre-processing parameters (such as a window size
beyond 1/10s) could provide a more informative dataset for
RUL prediction.
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VI. CONCLUSION AND FUTURE WORK
This paper introduced a methodology for RUL prediction
utilising a limited number of run-to-failure sequences, as well
as binary health and fault condition data. The approach can be
considered a feature reduction and data fusion method, aimed
at improving generalisation where few training sequences or
limited computing resources are available.

Several configurations of the method were implemented
and compared to the baseline LSTM method. Using the open
C-MAPSS turbofan degradation dataset, it was shown that
AE-based HI-generation provides a higher RUL prediction
accuracy compared to MD-based HI generation, albeit at
a substantially higher computing effort. Conversely, it was
found that the MD-based approach is especially suited for
conditionswhere quickmodel training is required, or comput-
ing power is limited. Using the full training set, a substantial
training time reduction to 8.9% of the baseline method was
achieved byMD-SVR (Figure 21).When the number of train-
ing sequences is reduced to 5%, the training duration of both
the baseline LSTM method and the proposed MD-LSTM is
47% - 48%,while theMD-SVR training duration reduced fur-
ther to 0.04%. This work therefore has implications on con-
siderations for green AI [24], contributing to the development
of more efficient and environmentally friendly algorithms.

The choice between the application of the proposed
method through either the AE or MD-based approach
therefore depends on the prioritisation between prediction
accuracy or computing time requirements. Nevertheless, the
introduced MD-based LSTM prediction (MD-LSTM) was
able to consistently outperform the baseline LSTM approach
for training cases using under 20% of training sequences
of the full training set. For example, when comparing the
prediction RMSE at a reduction of the available number of
training sequences to 5%, the greatest impact was seen on
the C-MAPSS FD004 dataset, where the proposed method
showed an average prediction improvement by 19.2% rela-
tive to the baseline method. The proposed method therefore
demonstrated an improvement of generalisation from a lim-
ited number of training sequences.

A further RUL prediction approach based on Least Squares
regression was presented. This method is applicable when
no training sequences are available and has the lowest com-
puting demand. On the flipside, it assumes a polynomial
(e.g., quadratic) progression of the HI and showed the highest
prediction error among the compared methods.

An additional comparison of baseline LSTM and
MD-LSTM on the FEMTO dataset of bearing degradation
was less conclusive. The results showed largely similar pre-
diction performance with greater variance in the MD-LSTM
results but also partially improved prediction accuracy in
favour of MD-LSTM. The reasons are likely related to char-
acteristics of the dataset, such as its initially limited size and
a high level of inconsistency between training sequences.

From the obtained findings and literature, the following
areas are highlighted as current challenges and future work in

the research of prognostics and health monitoring for rotating
machinery.
• Due to the demonstrated potential of the MD-based
HI generation, it is suggested to further develop this
method to approach the performance of AE-based HI
generation while retaining the computational efficiency
of the MD-based method. This can be approached
by an optimisation of MD features towards a consis-
tent HI range in addition to a maximisation of MD
separation.

• Conversely, AE-based HI generation offers the potential
to encapsulate complex nonlinear relationships of the
processed condition data and may be effective for data
fusion of complex signal patterns. The reconstruction
ability of AE for various signal types and signal prop-
erties (such as periodic and statistical characteristics)
should be therefore further investigated. At the same
time, techniques tomaximise the reconstruction error for
untrained data should be developed.

• It was shown across all methods that the reduction of
training sequences leads to a wider spread of prediction
performance. In other words, after the random sampling
of limited training sequences, part of the training runs
resulted in a competitive model performance, whereas
models from different samples of training sequences
underperformed. Methods for advance assessment of
training data (regarding data distribution and quality)
should be therefore researched. The desired conse-
quence is optimised training efficiency, leading to min-
imised data and energy consumption.

• A segmentation of machine degradation into different
sections has the potential to improve the prediction per-
formance. In case of the polynomial regression method,
this can be incorporated by fitting a suitable polynomial
(in terms of polynomial order and constraints) to the
identified degradation phase. A common but inflexible
approach in NN-based prediction, is to limit the train-
ing range of RUL values. Expanding on that, separate
models for different prediction ranges (e.g., for long-
term, mid-term and short-term predictions) should be
considered. The presented HI-generation approach in
combination with clustering can contribute to automat-
ically identify relevant degradation phases for further
development in this area.

• Future research should consider contextual data to dis-
tinguish between actual fault information of the mon-
itored component and independent external factors,
such as potential changes in environmental conditions.
Operational Modal Analysis can be used to provide
supplementary context information as it is suited to
assess large-scale structural changes, which are subject
to operating and environmental influence, and global
degradation itself, in turn influencing the response of
localised components. Consideration of both global and
local machine condition could increase the reliability
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and accuracy of the implemented monitoring/prediction
system.
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