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Abstract: Software-defined networks (SDNs) are computer networks where parameters and devices
are configured by software. Recently, artificial intelligence aspects have been used for SDN programs
for various applications, including packet classification and forwarding according to the quality of
service (QoS) requirements. The main problem is that when packets from different applications pass
through computer networks, they have different QoS criteria. To meet the requirements of packets,
routers classify these packets, add them to multiple weighting queue systems, and forward them
according to their priorities. Multiple queue systems in routers usually use a class-based weighted
round-robin (CBWRR) scheduling algorithm with pre-configured fixed weights for each priority
queue. The problem is that the intensity of traffic in general and of each packet class occasionally
changes. Therefore, in this work, we suggest using the particle swarm optimization algorithm to
find the optimal weights for the weighted fair round-robin algorithm (WFRR) by considering the
variable densities of the traffic. This work presents a framework to simulate router operations by
determining the weights and schedule packets and forwarding them. The proposed algorithm to
optimize the weights is compared with the conventional WFRR algorithm, and the results show
that the particle swarm optimization for the weighted round-robin algorithm is more efficient than
WFRR, especially in high-intensity traffic. Moreover, the average packet-loss ratio does not exceed
7%, and the proposed algorithms are better than the conventional CBWRR algorithm and the related
work results.

Keywords: computer network; software defined network; artificial intelligence; PSO algorithm

1. Introduction

Communication networks consist of large sets of hardware devices with specific con-
trol logic or algorithms used to manually configure devices and operate different network
functions. They comprise distributed control plane architectures that are difficult to inte-
grate. However, the rapid increase in data traffic and the use of data centers and virtual
machines require the automatic integration and configuration of network components.
Therefore, the concept of a software-defined network (SDN) is proposed. SDNs use ded-
icated hardware devices to control network traffic using software-based controllers or
application programming interfaces (APIs) to communicate with underlying hardware
infrastructure and direct traffic on a network. The idea behind SDNs is to use a central
controller for the control plane [1,2]. The SDN control plane can integrate a diverse set of
devices and tune them at the run-time through programmable APIs, which are called south-
bound APIs. SDNs can also integrate information with applications through northbound
APIs. Therefore, an SDN looks like a single logical network device [3]. These software
functions increase control with greater speed and flexibility, allow network administrators
to optimize the flow of data through the network, prioritize applications that require more
availability, and increase security [4,5]. Adding artificial intelligence (AI) concepts to SDN
functions shifts the computer network to an AI-based SDN. Current research efforts focus
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on improving the task of the control plane in SDNs using the following AI sub fields:
machine learning, optimization algorithms, and fuzzy inference systems. AI subfields
are used to improve various functions in SDNs, such as network applications [6], load
balancing [7], network security [8,9], routing [10,11], and wireless sensor networks [12].

The routers’ tasks were also considered in AI-based SDN research efforts. One of
these tasks involves managing packet forwarding. Routers use queues to keep the packets
when the outgoing interface is not available [13]. Keeping packets in the queue has two
main advantages. The first one is disciplining the flow of packets between networks which
varies in their speed. The second advantage is to schedule the packets according to their
priority. The queuing system within routers mostly uses multiple queues and schedulers.
The scheduler is the key part of the queuing system because it prioritizes one queue over
another according to one or more priority criteria. Cisco router devices use a variant of
the round-robin scheduling algorithm, which is called a class-based weighted round-robin
algorithm (CBWRR), as a schedular. In CBWRR, deciding the appropriate weights is crucial
to increase the throughput of packet forwarding [14]. However, unappropriated weights
results in starvation [15]. Starvation occurs when one or more packets has low priority;
therefore, it is not forwarded by the router and is eventually dropped [16].

The significance of this research lies in its aim to automatically decide the appropriate
weights of each priority queue to reduce the starvation problem. The proposed algorithm
considers the quality of service (QoS) criteria to discriminate the priorities among packets
from different applications and count the numbers of forwarded packets and dropped-out
packets to decide the appropriate weights of the multiple priority queues. The particle
swarm optimization (PSO) algorithm, which is a powerful stochastic and evolutionary
optimization technique [17], is proposed as the AI technique in this research to optimize the
weights of priority queues. As various research papers have shown that this algorithm is an
effective optimization tool, it has been used extensively in many application fields [18–20].

This work proposes and implements a framework that uses the PSO algorithm to
optimize and adjust weights of the multilevel queue system within routers periodically
and automatically. Accordingly, the weights of queues become more flexible to accept
variable traffic intensity and forward packets which will suffer less from packet dropping
and starvation.

The main contribution of this work is improving the control plane in SDN using the
PSO optimization algorithm, which is one of swarm intelligence algorithms, to configure
the queue weights in the weighted round-robin scheduling approach dynamically and
automatically in response to the QoS metrics and the number of packets of different QoS
requirements. The aim is to investigate and achieve a better performance and reduce the
starvation and packet loss problems. The results that we present in this paper show that
using the PSO algorithm is promising to adjust and optimize the weights in multilevel
queueing systems. Additionally, the results are compared to the results of the conventional
CBWRR algorithm, which is implemented within the proposed framework, and the results
show that the PSO-based algorithm is better to reduce the effect of starvation and packet-
dropping problems.

This paper is divided into six parts. Section 2 reviews the related work in the research
fields. Section 2 presents the theoretical background of the problem and the proposed
system methodology, and Section 4 shows the results of the proposed system. Finally,
Section 5 contains the conclusion and suggestions for future work.

2. Related Work

Research has suggested improving the work of SDN by using AI methods. Rezaee
et al. [21] suggested improving the round-robin scheduling algorithm by adding a fuzzy
inference system as an AI technique and QoS measurement component. The proposed
algorithm uses a knowledge base to configure the queue weights dynamically and au-
tonomously in response to recent QoS metrics to improve the performance and QoS. To
evaluate the performance of the proposed algorithm, the loss ratio versus the workload for
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the round robin and the proposed algorithm is measured. The result shows a lower loss
ratio in the proposed fuzzy-based algorithm. Han et al. [22] investigated the problem of
scheduling jobs under multiple factors. They applied their idea to the body and paint shop
problem. In this problem, there could exist multiple waiting queues for multiple classes of
jobs. Therefore, the main problem is optimizing the multi-queue limited buffer scheduling
problems in a flexible flow shop with setup times. They applied a genetic algorithm (GA)
to optimize this type of problem, and improve production efficiency and economic profit.
The results of simulation experiments proved that combining GA with the proposed rules
for local dispatching solved multi-queue scheduling problems in a flexible flow shop with
reduced setup times.

Ahmed et al. [23] investigated the quality of service for real-time traffic to improve
the performance of the end-to-end network. To achieve this aim, they proposed a low
latency queue (LLQ) packet-scheduling algorithm. The improved algorithm used QoS, LLQ
scheduling, and multiple queuing with optimized parameters. The performance of the LLQ
scheduling algorithm was evaluated in different scenarios. The simulation results proved
that this scheduling algorithm reduced the ratio of delay and packet loss and improves
utilization. Although this work investigated the problem of scheduling packets from the
multi-queue system, it did not use AI techniques.

The PSO algorithm has been used to solve scheduling algorithms in cloud environ-
ments. Rekha and Kalaiselvi [24] proposed an algorithm to schedule the requests of virtual
machines for resources. The proposed algorithm uses a multilevel priority queue system
in the cloud computing context and the particle swarm optimization (PSO) algorithm for
splitting the ready queue into certain longer queues. The result shows that it has a lower
cost, better throughput, and less delay than using only one queue or different algorithm.
Khan et al. [25] investigated IT services provided to customers by cloud environments
and the service level agreements (SLAs). They proposed an algorithm to provide cloud
service with reliable Quality of service (QoS) and to maintain Service level agreements.
It is important for cloud service providers to predict possible service violation before it
happens to perform the required countermeasure for it. The major considered violation
in this work are response time, accessibility, availability, and speed. In this paper, two
variants of Particle swarm optimization (PSO) algorithm are used for the detection and
predictions of QoS violations in terms of these concerns. The proposed methods were
compared according to accuracy and speed measurements.

The main contribution of this work is that the PSO algorithm was proposed to optimize
the queue weights in weighted round-robin scheduling in multi-queue systems for packet-
scheduling within core routers in SDN. This approach dynamically and automatically
changes the weights of the queues within routers in reaction to the QoS metrics and density
of packets of different QoS requirements. The aim is to investigate and achieve a better
performance and reduce starvation and packet loss.

3. Methods
3.1. Queuing and Priorities in Routers

DiffServ is an architecture classifying and marking packets as belonging to a specific
class of service using 8 bits for the differentiated services (DS) field in the IP header [26]. This
field is composed of two parts, and the six most significant bits identify the differentiated
services code point (DSCP), while the two least significant bits define the explicit congestion
notification (ESN). Classification is based only on the DSCP field. Each router is configured
to differentiate traffic based on its set of classes [27,28].

Three types of DSCP values are used in DiffServ. The first is expedited forwarding
(EF), which needs low latency (delay), low jitter, and low loss, the specific DSCP value
(decimal 46). Often, QoS plans use EF to mark voice payload packets. The second is assured
forwarding (AF), which defines a set of 12 DSCP values meant to be used in concert with
each other. It defines the concept of four separate queues in a queuing system and three
levels of drop priority within each queue for use with congestion avoidance tools. With
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four queues and three drop priority classes per queue, 12 different DSCP markings are
available one for each combination of queue and drop priority. The third is best effort (BE),
which has a value of 0 for DSCP [5,29]. Table 1 summarizes the type of traffic classification
according to the QoS requirements.

Table 1. Traffic types and parameters.

Traffic Type DSCP Value DiffServ DSCP Size of IP Packet

Video traffic 10
12

AF11
AF12 160

Voice traffic 46 EF 120

FTP traffic 0 BE 480

HTTP traffic 18
20

AF21
AF22 240

The term “queuing” refers to the management of a set of queues that hold packets
while they wait their turn to be forwarded. Most networking devices have a queuing
system with multiple queues. To use multiple queues, the queuing system needs a classifier
function to choose which packets are placed into which queue according to its DSCP
value [28,29]. Furthermore, the queuing system needs a scheduler deciding which message
to forward next when the interface becomes available. The scheduler is the most interesting
part because it can perform prioritization, which refers here to the QoS of each packet
within the traffic. One of the most common schedulers used by routers is the weighted
round-robin algorithm. Round-robin scheduling includes the concept of weighting. The
scheduler considers queues’ priorities and weights to take and forward a different number
of packets from each queue. Queuing systems uses a low-latency queue (LLQ) or priority
queue to meet the QoS requirements for low delay, low jitter, and low loss of traffic in that
queue by providing a high weight, which results in a greater time or bandwidth to this
queue. However, if the traffic is mostly a type of voice traffic, then the scheduler never
services the other queues, which is known as starvation and leads to packet loss when
packets are not forwarded [5,30–32].

3.2. Class-Based Weighted Round-Robin Algorithm

One function of routers is classifying and scheduling packets according to their priori-
ties. Routers mostly use round-robin scheduling with weights for each queue in a multilevel
queueing system. The router interface forwards a dissimilar number of packets from each
queue, prioritizing one queue over the others. According to Cisco, routers use class-based
weighted fair queuing (CBWFQ) to provide the bandwidth amount to each class. CBWFQ
uses a weighted round-robin scheduling algorithm configuring weightings as a percentage
of the link bandwidth. For example, for three-level queuing system, weight may be given
for each queue as 20, 30, and 50 percent of the specified bandwidth or time [5,33,34].

3.3. Particle Swarm Algorithm

Artificial intelligence is a collection of techniques inspired by nature. Particle swarm
optimization (PSO) is inspired by birds [35]. The PSO algorithm, which has undergone vari-
ous improvements since its founding in 1990, is used to solve a wide spectrum of problems.
The superiority of PSO algorithm over other metaheuristic algorithms and ability to solve
complex problems come from its many advantages [36]: easily implemented, few numbers
of parameters, ability to run parallel computations, robustness, fast convergence, and low
computational time. However, the PSO algorithm suffers from a few disadvantages [36]:
control parameters are difficult to tune, and trapping into the local minima on solving
high-dimensional problems.
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3.4. The Proposed Framework of the PSO-Based Weighted Round-Robin Algorithm

This work implements a framework to represent and simulate the proposed scheduling
algorithm (psoWRR). The framework consists of the following three main parts.

Packet generating: a packet is represented as a structure named packet consists of
the following five fields: name of packet, packet size (in bytes), latency time, arrival time,
and priority type. All these fields are integers for simplicity and are generated using the
random function, except the names of the packets are a series of numbers. This information
is used to decide which queue to send this packet to and prioritize one packet over another
when forwarding. This step simulates receiving a packet at an edge router, which decides
its DSCP value, marks the packet, and sends it to the core router.

Queueing: queues are represented as a structure consisting of the following three
fields: an array of structure of type packet, front and rear values both are of integer type.
The number of queues is decided and provided as the input to the algorithm. For the test
and comparison, we have proposed a three-level queuing system. The highest queue is
the EF queue, the second queue is the AF queue, and the lowest one is the BE queue. The
multilevel architecture is represented as an array of queue types. In this work, we have
tested the architecture of a multilevel queue with three queues. Packets are enqueued
to one of the three levels according to their priority value, which simulates the DHCP
marking value in real packets. The marked packets are queued in the EF, AF, and BE
queues, respectively. At this point, the psoWRR algorithm is applied to optimize the weight
of each queue to forward packets from this queue according to the available time quantum.

Packet-scheduling and forwarding: This part of the architecture represents dequeuing
packets and forwarding them depending on the weight of the queue. Weights are used
in this work as the time specified for each queue to forward packets. Forwarding begins
with the non-empty highest priority queue and count down until the specified time of this
queue equals zero. Each time a packet is compared with the remaining time to the packet at
the front of the queue, if the remaining time is more than zero, then the packet is forwarded,
otherwise it is dropped. The scheduler will dequeue packets from the first queue with the
W1, which contains packets of voice traffic and DSCP mark is EF. Later, the scheduler will
dequeue packets from the second queue with the W2 time, which contains packets with
DSCP mark AF. After serving packets in the second queue, the scheduler will serve the
packets with DSCP marks of type BE, with W3 time quantum.

Classification task in the router assigns each packet to one of the queue levels according
to its DSCP field value. When the forwarding interface becomes available and the number
of packets in the multi-queue is greater than 1, the packet that is currently being forwarded

is the highest priority packet within queue level j, where j = 0 or
j−1
∑

j=0
Pj = 0. Therefore, the

packet (Pj) will be forwarded if it satisfies the following rule:

(Pj|(max(pr(Qj)), Wj > 0)

where Pj is a packet allocated to queue j, pr(Qj) is the priority of queue j, and Wj is the
remaining time of Qj.

Pj is forwarded when it reaches the front of the non-empty highest priority queue and
the remaining time (weights) of queue j is greater than zero. If Qj is nonempty and Wj
equals zero, then the packet that is in the front of the next priority queue is forwarded.

Wj in psoWRR are the dimensions of the particles which correspond to each priority
queue as shown in Figure 1. Wj is decreased by subtracting the latency time of the forwarded
packets from the weights of the queue until Wj becomes 0.
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Figure 1. The proposed queuing architecture and psoWRR algorithm.

3.5. PSO-Based Scheduling Algorithm

In this work, we proposed using the PSO algorithm to find the appropriate weight
to represent the inter-queues time quantum in the round-robin schedular that reduces the
starvation problem and allows the dynamic and self-aware adjustment of these weights
according to the changes in the intensity of traffic types. From now on, the proposed
algorithm is called the particle swarm optimization for the weighted round-robin algorithm
and abbreviated as psoWRR. The calculation of the time quantum of the queues occurs in
the proposed system for the following reasons:

• Variations in the intensities of one or more traffic types;
• An interval time decided by the network administrator;
• Increments in the ratio of dropped out packets.

The proposed algorithm receives input parameters related to the problem in ques-
tion, such as the number of queues and particles’ maximum number of swarms during
initialization. The general framework of the proposed psoWRR can be seen in the pseudo
code in Algorithm 1. In the proposed algorithm, the global best particle is based on the
best weights found in the swarm by following the PSO algorithm. The proposed algorithm
consists of a PSO framework that allows it to be used to search for optimal queuing archi-
tectures, including the initialization of a swarm of particles, fitness evaluation of individual
particles, velocity computation, and particle update. These operations are detailed in the
following subsections.

Particle Swarm Initialization
Initializing the swarm is the first step in the proposed psoWRR. This function creates

several swarms that are equal to the specified swarm size (sz) with random weights. The
dimension of a particle is a vector of size (qn) equal to the number of queues. Each particle
will have a random number of weight ranges [pmin–pmax].

Fitness Evaluation
The fitness evaluation algorithm is shown in Equation (1). This step of the algorithm

includes calculating the number of packets of each queue, then according to the quantum
time, the packet is removed from the corresponding queue. If the packets of the queue are
all forwarded on time, then the forwarding interface is available directly to the next queue.
If the weight is not enough to forward all packets in the corresponding queue, then the
architecture moves the forwarding interface when the weight ends. When the weights of
all the queues are in the architecture, the round restarts. If some packets are not forwarded
within the required latency time, the system drops them. For each particle swarm of
weights, the numbers of forwarded packets and dropped-out packets are calculated. The
fitness function is evaluated according to the following equation:

Fitness =
{

FP + 1
DP i f weight− sum ≤ pmax

FP + 1
DP − 1 i f weight− sum > pmax

(1)
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where FP is the number of forwarded packets, and DP is the number of dropped packets.
The value of the weight sum equals the sum of dimensions values within each particle. The
particle in psoWRR consists of three dimensions. Therefore, the value of weight-sum is the
sum of the values of the three dimensions.

Algorithm 1 psoWRR algorithm

Input:
Qn—Number of queues
Sz—Swarm size
itr—Maximum number of iterations
w—Control parameter value
D—Problem dimensionality
c1 = c2 = 2

Output: gt best—the best position (solution) found so far

1: Start
2: Initialize the swarm randomly
3: for i = 1 to sz do
4: for j = 1 to qn do
5: x0

ij ← a random vector within [pmin, pmax] D

6: v0
ij ← a random vector within [vmin, vmax] D

7: end for
8: calculate f0

i
9: p0 besti ← x0

i
10: end for
11: Calculate n the position of the greatest f0

i
12: g0

best = p0
bestn

13: for t = 1 to itr do
14: for i = 1 to sz do
15: r1, r2← two independent values randomly generated from [0, 1]
16: Vt

i = w Vt-1
i + c1 r1 (pbestt-1

i - Xt-1
i) + c2 r2 (gbestt-1

i - Xt-1
i)

17: Xt
i = Xt-1

i + Vt
i

18: calculate ft
i

19: if ft
i > pt-1

besti
20: pt

besti ← ft
i

21: end if
22: end for
23: calculate n the position of greater ft

i
24: If pt

n best > pt-1
gbest i

25: Pt
gbest i = pt

besti
26: end if
27: end for
28: End

The fitness function should be maximized and its value made approximate or equal to
the sum of packets in all queues. Therefore, all the variables in the equation are maximizing
the fitness value if the particle dimension values are increasing the number of forwarded
packets (FP) and decreasing the number dropped packets (DP). The variable DP is added to
equation (1) by dividing 1 by DP. The value of 1/DP is increased as the number of dropped
packets is decreased. In the code, to avoid division by zero when DP equals 0, we consider
1 is the minimum value for DP.

The swarm’s dimensions values are generated as random values ranging from pmin
to pmax. The legal swarm is the swarm with weight-sum value equals or less than pmax.
Otherwise, the swarm is penalized by subtracting 1 from the fitness value.

Velocity Computation
The velocity is initialized as an array of random numbers from [−200 to 200]. The

velocity is arranged as an array of size (sz). Then, the velocity is updated in each iteration
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depending on Equation (2) based on the calculation of pbest, the historically best fitness of
a specific swarm, and gbest, the best fitness in the whole previous iterations.

Vt
i = w Vt−1

i + c1× r1×
(

pbestt−1
i − Xt−1

i

)
+ c2× r2×

(
gbestt−1

i − Xt−1
i

)
(2)

Swarm Update
Updating a swarm is straightforward in the psoWRR algorithm. The update occurs

according to Equation (3).
Xt

i = Xt−1
i + Vt

i (3)

where Xt
i is the dimention i of a particle at time t and Vt

i velocity of a particle at time t.
Updating the dimensions of all the population of particles happens once at each

iteration until the optimal fitness value is reached or the stopping condition becomes valid.
Parameters of the psoWRR Algorithm
The parameters used in the proposed psoWRR are as follows: number of itera-

tions, swarm size, and w. These parameters are used to control the behavior of the
psoWRR algorithm.

The number of iterations controls the total number of iterations that the proposed
algorithm will run before considering that the optimization is finished. The swarm size
represents the number of swarms in each iteration, and the w parameter is used to control
the convergence of the optimized weight of the multilevel queue. All these parameters are
set according to experiments to find the best value for each of them.

4. Experimental Results and Analysis

This section presents the results obtained from applying the psoWRR algorithm, a
discussion of the results, and a comparison of the results with the conventional round-robin
algorithm. The results of applying psoWRR were obtained from a framework that was
implemented to simulate the scheduling and forwarding of packets. The framework was
implemented using C++ language and contained the following functions: generating pack-
ets of different QoS requirements, multilevel queue implementation, and a classification
function to enqueue packets to the corresponding queue, the PSO algorithm to find the
optimal weight for each of the queues, forwarding packets, and finally reporting result. This
framework was implemented to ensure that the proposed algorithm psoWRR improved
with the optimized weights to schedule and forward packets by reducing the starvation
and packet loss problems.

PSO algorithm efficiency depends on various parameters, therefore the proposed
psoWRR algorithm has undergone many experiments to adjust the value of these parame-
ters to accelerate convergence of optimal weights and avoid local minimums. The results
of these experiments are shown in Figures 2–6. The size of the population is one of the
parameters in the PSO algorithm that needs to be adjusted. The high population size
contributes to the convergence of the optimal result. However, a high population size con-
sumes memory space, which is considered a drawback for algorithms. Therefore, the value
of population size must be selected carefully. Using the particle swarm algorithm requires
processing a population of candidate solutions at each iteration. Keeping the population
size as small as possible is important to preserve the memory space in the router. Therefore,
we need to consider the minimum population size that allows a minimum convergence
time. Minimum convergence time is gained by the reach to the best fitness value within
minimized number of iterations.

In psoWRR, the size of the population was tested with values ranging from 3 to 10,
and the results are shown in Figure 2.

Figure 2 shows the relationship between the number of packets and fitness value in the
following four population size values: 3, 5, 7, and 10. The 7 and 10 population sizes gave
the highest fitness values, and both may be considered good numbers for the population
size because both values are not large enough to challenge the memory space, and they
provide a good fitness value for various packet densities.
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Figure 2. Relation between the number of packets within 10 s. and fitness value for different
population sizes.

Additionally, the relationship between the number of packets and fitness value has
been studied considering the time available to schedule the various numbers of packets,
ranging from 10 packets to 100 packets, which must be scheduled within a limited time
range of 10 s to 1 min. As shown in Figure 3, when there is a low number of packets
in all queues, the fitness value of psoWRR is high and equals to the number of packets
approximately. For instance, when the number of packets equals 10, 20, and 30, fitness
value is 10, 20, 30, respectively. However, when the number of the packets is high in one or
all the queues, the fitness value is retreated even for high available time, e.g., when number
of packets 100, the fitness value is less than 85 for variant available time ranging from 10
to 60 s. The reason behind this problem is the limited size of the queues and some of the
packets are lost because the queue is full. In this experiment, the population size was 10,
the number of iterations was 10, and the maximum queue size was 60.
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The number of iterations in the psoWRR algorithm is also an important parameter
that must be optimized. A high number of iterations does not ensure the optimal swarm
convergence, as it may lead to overfitting and consumes time and memory space. Therefore,
we need to find the best and smallest number of iterations that optimize the weights’ values
of the multilevel queuing system in routers. The relationship between the number of
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packets and fitness values is studied according to the following number of iterations: 3, 5,
10, 15, and 20. Both 10 and 15 iterations gave good values for fitness within various number
of packets, i.e., the number of forwarded packets is approximating the whole number of
packets. In these experiments, although higher number of iterations may provide better
results without suffering from overfitting, we have considered 20 for highest number of
iterations is to limit execution time and keep it as small as possible. Figure 4 shows the
result of experiments for the number of iterations parameter adjustment. For a small
number of packets, even 3 and 5 iterations result in optimal fitness values. For the number
of packets ranging from 40 to 100, both 10, 15, and 20 iterations gave the best fitness values.
We consider 10 and 15 to be the best number of iterations as they gave the best fitness
values in a smaller number of iterations. Although 20 iterations gave the highest values
for some experiments, we have considered 10 and 15 as the best because the difference of
fitness values among the three numbers of iterations are very convergent.
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One of the important parameters in the PSO algorithm that should be adjusted is the
w value. The optimal w value controls the speed of convergence to prevent local minima.
Therefore, adjusting this parameter is crucial to find the optimal swarm that gives the
global best fitness value. Figure 5 shows the relation between various packet densities and
fitness values when the value of w changes in each experiment with the following values:
0.5, 1, 1.5, 2, and 2.5. The results of previous experiments suggest that 1.5 is the best w value
for the psoWRR algorithm. The fitness value of psoWRR gave the best value for various
numbers of packets and in the majority of experiment results, fitness value is maximized
when w = 1.5. In addition, w = 1.5 is an intermediate value as it is not small enough to slow
down the convergence or large enough to make convergence premature.

psoWRR Algorithm Efficiency Measurement
The global best (gbest) fitness value resultant after all the determined iterations of

psoWRR is compared with the result of scheduling the same packets using the CBWRR
algorithm.

The same generated packets in the framework are also scheduled using the conven-
tional round-robin algorithm, and the result of the round-robin algorithm is computed
using Equation (4).

RR− result = FP +
1

DP
(4)

Here, FP is the sum of forwarded packets, and DP is the sum of the dropped packets
when scheduling using the CBWRR algorithm.

The time for the test is 10 s, and these 10 s are used to schedule packets, starting from
10 packets and increasing to 100 packets. Each experiment was repeated 100 times, and the
results were reported for both CBWRR and psoWRR algorithms. The weights in CBWRR
algorithm were set as [2000, 3000, 5000] in milliseconds as an example [13].

The result of the comparison shows that keeping static weights CBWRR algorithm
increases the number of dropped packets due to the variance in traffic intensity. Therefore,
optimizing the weights of the queues using psoWRR algorithm reduces the dropped
packets and increases the forwarded packets which resultant in packet loss ratio reduction.
The majority of dropped packets are the packets from the lower priority queue. Therefore,
reducing the number of dropped packets will result in reducing packet starvation.
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The comparison between psoWRR and CBWRR algorithms is shown in Figure 6;
the number of dropped packets is reduced in the psoWRR. Although the difference is
very small when the number of packets is low, in higher queues intensities, the difference
is higher.

The proposed psoWRR is compared with references [21,23] according to the packet
loss ratio, and the result are shown in Table 2. In psoWRR algorithm, packet loss ratio is
calculated using Equation (5) for 100 times repeated experiments to the algorithm.

psoWRR Loss Ratio =
no. of dropped packets

no. of Packets
× 100 (5)

while the packet loss ratio of FDWFQ [21] and LLQ [23] are calculated according to results
shown in these works.

Table 2. A comparison between the related work and proposed psoWRR for the packet loss ratio.

Work Packet Loss Ratio

FDWFQ [21] 35%

LLQ [23] 7% (only for voice packets)

psoWRR 7% (for all types of packets)

5. Conclusions and Suggestions for Future Work

In this work, we implemented a PSO-based network traffic scheduling algorithm. The
conventional round-robin algorithm uses fixed size weights for each queue in the multilevel
queue system within routers. Considering the variable traffic density, we suggest making
the weights dynamic rather than static. Using dynamic weights in multilevel queue
scheduling reduces the following two common problems: packet loss and starvation. The
proposed psoWRR algorithm is implemented within a framework and simulates scheduling
packets in a router. The proposed algorithm and framework were tested using a number of
experiments, and the comparison of the results of psoWRR, round robin, and the related
works [21,23] shows that the proposed algorithm is better to schedule a larger number of
packets within a specific time. Additionally, the proposed algorithm reduces the problem
of packet loss that results from the starvation of low-priority packets. Moreover, the work
in [23] reduces the packet loss of voice packets using an LLQ. However, other types of
packets will suffer more from packet loss due to using LLQ.

It is also possible to create templates of weights to replace applying psoWER algorithm
if a pattern of traffic intensity is continuing for a period of time. This approach will reduce
the time to apply psoWRR and accelerate forwarding tasks.

In this work, only the latency time is considered as criteria for the QoS. In future
work, other criteria, such as delay and jitter, should be considered. Furthermore, other
optimization algorithms should be investigated, especially for the required processing time
and memory space.
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