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Abstract
Cultural processes can reduce self-selection into math and science fields, but it remains 
unclear how confidence in computer science develops, where women are currently the least 
represented in STEM (science, technology, engineering, and mathematics). Few studies evaluate 
both computer skills and self-assessments of skill. In this paper, we evaluate gender differences in 
efficacy across three STEM fields using a data set of middle schoolers, a particularly consequential 
period for academic pathways. Even though girls and boys do not significantly differ in terms 
of math grades and have similar levels of computer skill, the gender gap in computer efficacy is 
twice as large as the gap for math. We offer support for disaggregation of STEM fields, so the 
unique meaning making around computing can be addressed.
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Introduction

Some scholars have suggested that gender differences in STEM (science, technology, engineer-
ing, and mathematics) skills account for the underrepresentation of women in computing occupa-
tions (Hedges and Nowell 1995). But there is evidence that, like math scores, the gender difference 
in computer skills has narrowed (Aesaert and van Braak 2014) or does not exist. Other research 
shows that stereotypical beliefs and messages that men are “naturally” better at math and science 
have consequences for computing paths. Women tend to underestimate their skills in fields in 
which gendered stereotypes are active, and culminate in “biased” self-assessment (Correll 2001; 
Eccles et al. 1993).

For computing, the evidence of this phenomenon is less clear. Young people are assumed to 
develop computer skills in the course of engaging with the tech around them, but these notions 
are rarely unpacked. Surveys often focus on undergraduate populations, yet self-assessments of 
ability take form prior to college. Middle school is particularly consequential for the pipeline 
because it is when decisions are made about college preparation (Legewie and DiPrete 2014), but 
computer education is decoupled from U.S. early education (Google and Gallup 2015). Girls’ 
perceptions of computer ability may be dampened in the key period of middle school, perhaps 
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more so than in other STEM fields, but without substantial controls for computer skills and com-
parisons among other STEM fields, the role of self-assessments in computing pathways will 
remain elusive.

In the current paper, we offer further clarification on the intersection of gender, skill, and self-
assessments in STEM by providing cross-field comparisons. Specifically, we evaluate gender 
differences in academic efficacy (Bandura et al. 2001) across math, science, and computing with 
controls for skill and STEM grades. We do so using a diverse data set of 3,902 children in middle 
school, a particularly consequential period for academic pathways. We find that even though girls 
and boys have similar levels of computer skill, and do not statistically differ in math grades, the 
gender gap in computer efficacy is twice as large the gap for math. Self-reported math and sci-
ence grades strongly correlate with their ability to learn measures and vary little by gender, but 
they offer minor predictive power for computer efficacy.

While our study is limited in that it is cross-sectional, our results suggest that the socio- 
psychological processes which affect self-assessments of ability may disadvantage girls, espe-
cially because they are not consistent in ways that promote or scaffold cross-field confidence. 
Children who perform well in math courses may not necessarily come to perceive they have 
substantial capacity to also learn computer science, for example, even when they are skilled in 
using digital devices.

Literature Review

The field of computing has significant consequences for communities, industries, and the state in 
terms of control over access, speech, privacy, marketing, and national security (Eubanks 2018; 
O’Neil 2016; Thebaud and Charles 2018), but it has so far been challenging to bring different 
voices to the field. A more equitable gender ratio in the computer industry, for example, may 
reduce some of the hostility experienced by women and other groups already working in the field 
and offer more role models to young people considering this path. But the most recent data trends 
show that 18 percent of computer science majors are women—approximately half the current 
representation in the other physical sciences and in a decline since 1986 (Corbett and Hill 2015; 
DuBow and Gonzalez 2020; National Science Foundation 2014). In this same period, women 
made significant inroads in other STEM majors such as the physical and health sciences, where 
the proportion of degrees conferred to women rose from 27 to 40 percent (Corbett and Hill 2015; 
DuBow and Gonzalez 2020; National Science Foundation 2014).

While sociologists have tended to address the demand-side processes which contribute to 
occupational gender segregation such as job queues and statistical discrimination, supply-side 
explanations may be equipped to shed more light on the computer science pipeline, investigating 
the factors which shape skills, attitudes, and occupational aspirations. Such phenomenon appears 
to influence interest, course planning, and the pursuit of a college major in STEM (Correll 2001; 
Riegle-Crumb, Moore, and Ramos-Wada 2011), especially in wealthy, liberal, individualistic, 
postindustrial countries such as the United States (Charles and Bradley 2006).

Prior research into the supply-side processes across STEM fields such as computer science 
has been somewhat limited because most studies are conducted within one or two domains of 
STEM and often draw from undergraduate samples. Decisions about pursuing science most often 
take place far before college, in middle school (DeWitt, Archer, and Osborne 2013; Jacobs et al. 
2002; Tai et al. 2006). Thus, ability, experience, and socio-psychological processes could reduce 
women’s self-selection in computing, but it remains unclear how this differs from developing 
skill and confidence in math and science. Recent research shows that as early as elementary 
school, computer science and engineering gender stereotypes are stronger than stereotypes about 
math and science (Leslie et al. 2015; Master et al. 2017), and thus more evidence is needed about 
self-assessments across fields in this key period. Our review places focus on these comparisons.
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Sources of Gender Differences in STEM Self-conceptualizations

Ability and performance.  An explanation traditionally cited in the debate around women’s under-
representation in STEM fields is that girls do not perform as well as boys in the core subject of 
mathematics (Hedges and Nowell 1995). Often considered a subject integral to all STEM fields, 
gender differences in math scores and other math outcomes are very minimal on average or do 
not exist (Else-Quest, Hyde, and Linn 2010; Reardon et al. 2019). In fact, girls tend to outperform 
boys on math tests in elementary school (Gibbs 2010), and the correlation between girls’ perfor-
mance in mathematics and their aspirations for jobs involving mathematics appears very small 
(Charles and Bradley 2006). Boys are slightly more likely than girls to be represented among the 
very top math and science scorers in high school, but this small difference has probably minor 
impact on selection into STEM majors (see Cheryan et al. 2017). High school math scores for-
merly increased the statistical likelihood of majoring in computer science, but this relationship 
has slowly diminished over the last four decades, perhaps as computing has become an academic 
field of its own (Sax et al. 2015; Sax et al. 2017).

Alternatively, some have suggested that gender differences in computer skills may explain the 
decrease in women’s representation in majors, an assumption that is still alive and well as shown 
in a 2017 memo by former Google engineer James Damore. Research into computing task-skills 
is unfortunately rare for children. Although operational skills are possibly more influential when 
it comes to computing paths (Hargittai 2010; Helsper 2012), the limited evidence available shows 
that girls actually have more Web skills than boys (Aesaert and van Braak 2014). To better under-
stand the role of computer skills in computing paths, the present study evaluates a range of 
tasks—Web skills as well as operational.

Experiences at home and school.  A source of the gendered variation in STEM self-conceptualiza-
tions may derive from the contexts in which children learn these skills. Children increasingly 
encounter digital devices as babies and  those from higher SES households may have more access 
and derive more familiarity with technology than other children (Xie et al. 2015; DiMaggio et al. 
2004). A body of research suggests that children develop more interest and confidence when 
equal access is provided in low-stakes experiences which signal that children of all genders can 
engage and enjoy learning, thus countering stereotypes (Gee 2015; Hayes 2008). There is also 
some evidence that parents tend to give children toys which correspond with gender identity, a 
culmination of gendered store layouts, subconscious choices, and marketing (Coyle and Liben 
2016; Weisgram 2016). Research has found that boys have greater access to STEM-related mate-
rials than girls (Archer et al. 2012), which may also apply to computers (Margolis and Fisher 
2003). Even when home technologies are equally distributed, boys may more often monopolize 
alone time on a shared family computer, a significant advantage when it comes to the develop-
ment of key operational skills gained in play (Gee 2003; Margolis and Fisher 2003). Similar 
phenomenon also shapes children’s experiences when it comes to early math and science learn-
ing at home (Bhanot and Jovanovic 2005; Crowley et al. 2001; Ford et al. 2006). Parents with 
more time and money to spend may reinforce children’s gender-stereotypical interests to a greater 
extent than other parents or simply invest in more gendered ways that extend already existing 
stereotypes (Dotti Sani and Treas 2016; Hao and Yeung 2015; Raley and Bianchi 2006).

School is also a context in which children develop attitudes toward learning. Math and science 
classes in K-12 are less likely to be taught by women than other subjects (Banilower et al. 2013) 
and teachers may reinforce gender stereotypes (Upadyaya and Eccles 2015). It could be that math 
and science and their designation as “core” curricula have been successful in that it builds chil-
dren’s skills and confidence in these fields. The gender difference in math competence net of 
math scores is well documented (Correll 2001; Eccles 1994; Eccles et al. 1993), and children 
who perform well in high school math and science are generally more likely to choose a STEM 
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field in college (Wang, Eccles, and Kenny 2013). Indeed, women have made great strides in 
recent years in STEM fields overall (DuBow and Gonzalez 2020; National Science Foundation 
2014). But a growing body of evidence suggests that girls with more options available to them 
are less likely to choose computing. That is, when children with high math competence also have 
high verbal competence, they are less likely to pursue STEM careers. More often than boys, girls 
develop competence in both areas (Ceci and Williams 2010; Ceci, Williams, and Barnett 2009; 
Wang et al. 2013).

Thus, the current debate about computing paths has tended to shift from considerations of 
where girls are deficient to rather the ways in which girls develop interest (Ceci and Williams 
2010). In the United States, many children have less experience with computer science as an 
academic pursuit in comparison with math and the life sciences because the former is rarely part 
of early education curricula (Google and Gallup 2015; Puckett 2019). In a survey of 1,697 ele-
mentary school principals, 60 percent reported that their school did not offer any computer sci-
ence courses, most often citing a lack of state evaluation of this particular subject matter. Of the 
courses offered, only 21 percent included learning “what makes computers work the way they 
do” (Google and Gallup 2015:43). When computer science courses are available, most often they 
are not required or “core” which lessens the rate at which girls elect to take them (Buchmann and 
Dalton 2002; Charles and Bradley 2006, 2009). Even when girls elect to take computer courses, 
math and science grades have not been shown to have significant correlation with middle school-
ers’ interest and self-assessments of computer ability (Leaper and Brown 2008: 689). Girls may 
have higher academic standards for themselves than boys (Mann and DiPrete 2016), relying 
more on grades to inform their identity, which might be a disadvantage when it comes to aca-
demic subjects not part of the core curriculum, such as computing.

Culturally shaped beliefs.  In addition to skill and experiences, culturally shaped beliefs such as 
those embodied by stereotypes may impact self-conceptualizations differently across STEM. 
Beliefs about the importance of a particular field, the people who work therein, and the overall 
climate may impact self-conceptualizations. Research finds that women tend to underestimate 
their skills in fields which are traditionally associated with men and culminate in “biased” self-
assessment (Correll 2001; Eccles et al. 1993). That is, even when skills are taken into account, 
women and girls perceive that they know less than similarly skilled men and boys. Performance 
and skill development may be dampened when there is a perceived threat of being viewed as an 
imposter in a masculine field (Steele 1997), but the meanings attached to distinct fields likely 
vary and also play a part (Correll 2004).

More recent research suggests that self-conceptualizations are influenced by the history of 
individual fields, the occupations therein, and perceptions of who has tended to signal ability and 
interest in them (Thebaud and Charles 2018; Wynn and Correll 2017). While it is often assumed 
that children will develop positive attitudes toward learning computer science on their own 
(Prensky 2001), the “boy hacker icon” is unique to the field of computing. A culmination of bril-
liance, a rebellious personality, and raw talent (Margolis and Fisher 2003), this stereotype is 
common in American culture, such as in the case of the social cache applied to “tech gurus” such 
as Steve Jobs. “Brilliance narratives” around what is essential for success in these fields—intel-
ligence and agency as opposed to communal traits—broadly maps onto the distribution of men 
and women across STEM fields (Cheryan et  al. 2017; Leslie et  al. 2015). Fields which are 
believed to require natural ability—such as computer science, engineering, and physics—are 
also the fields in which women are most underrepresented in comparison with fields such as biol-
ogy (Leslie et al. 2015; Meyer, Cimpian, and Leslie 2015). This is especially important for young 
people because beliefs around innate ability or a “fixed” mind-set as opposed to a growth mind-
set may not only dampen academic performance (Perez-Felkner, Nix, and Thomas 2017; Yeager 
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and Dweck 2012) but bias people’s understanding of their own aptitudes and affinities (Charles 
2017; Correll 2004).

Self-conceptualizations which include confidence in learning computer science may also be 
different from simple understandings of one’s current tech skills. For example, while perceptions 
of skill may be grounded by tasks a child can execute on a device as well as test scores, grades, 
and other outcomes, abstract notions of interest and ability may be more vulnerable to stereo-
types. Self-rated skills and confidence measures have tended to be grouped together as “expec-
tancies” in other STEM research (Wigfield and Eccles 1992). This is partly justified by research 
finding that math scores are positively related to math confidence (Perez-Felkner et al. 2017) as 
well as career aspirations in math and science (Riegle-Crumb et al. 2011). However, perceived 
skill and confidence in computing may not be as strongly related when it comes to tech and tech 
fields due to gender-differentiated feedback in various modalities of usage (Cotten, Anderson, 
and Tufekci 2009; Lent, Brown, and Hackett 1994). Psychologists and others have noted that the 
consideration of one’s current capabilities is fundamentally different from understanding one’s 
potential to succeed in an academic field (Bandura 1997; Lent et al. 2011; Watt 2006). For exam-
ple, even though many girls develop interest and confidence in using the devices around them, 
the computer science stereotype is currently that of an isolated, antisocial individual, which can 
be unappealing because it is incongruent with gender norms (Cheryan et al. 2009). In the last 20 
years, the number of devices available commercially has vastly expanded which may be a good 
thing because it affords children more opportunities to learn technology (Prensky 2001). On the 
contrary, the inundation of digital assistance technology, digital gaming devices in addition to 
cell phones and computers, may elicit more messaging about gender and innate ability than in 
science and math, especially because tech learning primarily takes place in informal settings such 
as the home.

The Current Project

Given the important role of self-conceptualizations in STEM pathways, we explore gendered 
self-assessments for distinct fields within STEM. We do this in two ways, first evaluating gender 
differences in children’s confidence in their ability to learn computing, math, and science, and 
use Albert Bandura’s (1997; Bandura et al. 2001) measure of academic efficacy, asking students 
to report their perceptions of competence in these three subjects, a reliable indicator suited for 
children. We also separately examine perceptions of computer skill to explore the extent to which 
they are affected by various measures associated with home and school experiences. As men-
tioned above, we do so using a unique data set of middle school students, a key period for STEM 
pathways. Middle school is when decisions are made about college preparation (DeWitt et al. 
2013; Legewie and DiPrete 2014), yet authentic performances of gender are especially prized in 
early adolescence, perhaps more so than at any other time in the life course (Crouter et al. 2007; 
Williams 2006). Developmentally and socially, the middle school grades tend to be a period of 
gender intensification. Often the conglomeration of several elementary schools, it is a time in 
which norms and social hierarchies shift to become more influenced by friendships than by par-
ents and increasingly complex. Same-sex friendships become especially important for social 
support and identity (Wentzel, Barry, and Caldwell 2004) as children are introduced to more 
specialized classes and more involved extracurricular activities (Hill, McQuillan, Spiegel, and 
Diamond 2017; Sáinz and Eccles 2012). While math and science interest also declines over the 
course of the middle school grades (Hill, McQuillan, Talbert, et al. 2017; Simpkins, Davis-Kean, 
and Eccles 2006), computer efficacy may decline more dramatically over the middle school 
grades as students attend to their core classes.

Most studies of academic efficacy have focused on a single domain in STEM, usually math. Few 
studies distinguish between the different STEM fields and no studies, to our knowledge, test these 
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three fields separately in this population. Although our research design and measures are limited, 
such comparisons may shed light on how computer science develops at this stage of the life course. 
Some research has not found a gender difference in science self-assessments in comparison with 
math, for example (Simpkins et al. 2006), while others have found a gender difference in middle 
schooler’s science efficacy (Hill, McQuillan, Spiegel, and Diamond 2017). In a survey of fourth and 
fifth graders, Shank and Cotten (2014) find that boys have more math and science efficacy than girls 
by 0.55 standard deviation (SD) units while the gender difference, still skewed toward boys, is con-
siderably lower for technology efficacy: 0.15 SD units. However, they use a combined measure for 
math and science and inconsistent controls for skill across the domains.

To be clear, our study does not have the capacity to determine exactly why there may be gen-
der differences in academic efficacy or perceived skill, nor will the causal relationship between 
interest and confidence come to bare. Moreover, we cannot fully account for skills in such a way 
that only “biases” remain. Although not ideal, math grades, science grades, and a task-based skill 
measure will serve to disentangle somewhat the issue of skill from self-assessment, possibly 
teasing apart the more grounded aspects of computer knowledge from more ambiguous notions 
around self-competence. Using ordinary least squares (OLS) regression, we will compare gender 
differences in SDs across the different models presented.

Based on our review of the literature, we therefore hypothesize the following: Even though 
STEM fields broadly require very similar forms of ability, the gender differences in computer 
efficacy may be larger due to the aforementioned role of parent resources, a lack of computer 
education in school, and more strongly gendered stereotypes in computer science.

Hypothesis 1 (H1): Net of grades and computer skills, the male advantages in computer effi-
cacy will be larger than that for math and science.

Even though they are often grouped as “expectancies” in Eccles et  al.’s expectancy-value 
models (Eccles 2005; Eccles and Wigfield 2002; Wigfield and Eccles 2002), we are interested in 
the ways in which computer skill and self-assessed ability may show different gender gaps—per-
haps deriving from different social processes (Watt 2006). We hypothesize that perceived com-
puter skill gender differences will not be as large as the difference in computer efficacy because 
it is more grounded in computer task-skills.

Hypothesis 2 (H2): Net of grades and computer skills, the male advantages in computer effi-
cacy will be larger than the gender difference in perceived computer skill.

Method

Sample and Data Collection

This study reports analyses of a sample of middle school students in the Southeastern United States. 
The qualitative results were collected between November 2013 and October 2014, consisting of 
eight focus groups across two schools that included a total of 93 students. In-depth interviews were 
also conducted with 24 students which were then transcribed and coded. The survey instrument was 
developed in light of the findings of the qualitative phase. We then piloted 300 surveys in one school 
prior to full data collection. After preliminary analysis, questions were added to the survey, and the 
instrument was finalized with the institutional review board (IRB). The survey was then adminis-
tered to the main sample in the fall of 2015 through the spring of 2016. The survey was administered 
in classrooms, in a paper-and-pencil format, resulting in an initial sample of 5,235 students (see 
below). On average, surveys were completed in 30 minutes.
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Respondents derive from a stratified sample of middle schoolers in three school districts in the 
Southeastern United States. We focused on obtaining a sample that was diverse and large enough 
to allow us to answer our research questions with sufficient statistical power (Cohen 1992). The 
selection of schools was based on the proportion of children qualifying for reduced lunch as well 
as proportions of Black, Hispanic, and Asian students according to publicly available informa-
tion. We gained permission to survey 15 schools in total, including 13 public schools (magnet 
and nonmagnet) and 2 private schools. The proportion of students surveyed in each school was 
dependent on degree of access (including sign on from principals and teachers) and surveyor 
resources. The student response rate was high, partly due to receiving IRB approval for an “opt 
out” form.1 We aimed for a near census of the schools to which we gained access and, on average, 
we sampled a median of 83 percent of the school populations according to publicly available 
information about each school. In the circumstance that we were not able to survey all students 
due to limited staffing and other issues, a convenience sample was achieved, though we were 
careful to include a representative sample whenever possible. As such, the proportion of White, 
Black, Hispanic, and Asian students surveyed in each school very closely resembles each school’s 
publicly reported information.2

As mentioned above, the three counties we surveyed are located in the Southeastern 
United States. The U.S. South has higher poverty rates than the national average, and there 
is some evidence that gender differences in math and English language arts scores in the 
Southern region reflect more traditional stereotypes about gender-appropriate careers (Pope 
and Sydnor 2010). Reardon et al. (2019) find that the gender difference in math and English 
language arts state accountability tests tend to reflect the Pope and Sydnor findings but there 
is considerable variation by school district. The three counties we surveyed are representa-
tive of the majority of counties in the United States in that the gender difference in math is 
−0.05 to 0.05 SD units and −.35 to −.25 SD units for English language arts. This is not to say 
that the respondents do not have less traditional notions of gender norms, only that this is not 
evidenced by the available information. Unfortunately, we do not have measures to evaluate 
respondent gender beliefs, and readers should take caution in this respect.

A significant portion of respondents in our sample had at least one parent who worked in a 
STEM field, but this information was missing for almost half of respondents. Among those with 
nonmissing information, 37 percent reported a parent in a STEM field. This means that the true 
value in our sample is at least as high as the national average of 20 percent (Sax et al. 2015), and 
likely higher due to the academic and industrial makeup of the survey area.3 Our respondents 
may be more knowledgeable of STEM fields than other children in the United States, and thus 
caution should be taken when generalizing from the results.

We identified a consistent analytic sample with information for all models. This sample was 
demographically similar to overall. Applying listwise deletion reduced our sample by 25 percent 
but did not significantly change the mean SES, the gender differences across the models, nor the 
substantive results. Demographic characteristics of the sample are described in Table 1. Overall 
36 percent of the sample is estimated to receive reduced cost lunch. While typically underrepre-
sented in surveys of this kind, Black students comprise 16.9 percent of the data set (658 respon-
dents), Hispanics 11.6 percent (430 respondents), Asian Americans 10.8 percent (420 
respondents), and multiracial children 16 percent (623 respondents).

We have also included the device ownership measures in Table 1. Although the trends found 
in our sample are similar to those found nationally (Anderson and Jiang 2018), there is addi-
tional granularity when it comes to computer access. That is, we distinguish between sharing 
and owning a computer because more autonomous access may be a factor in learning and 
attitudes (Margolis and Fisher 2003). Notable is the large gender difference in gaming console 
access with 35 percent of girls and 67 percent of boys reporting that they owned this device. 
Adding those who share a console to those who own, girls and boys had about equal access to 
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gaming consoles in the home (similar to Anderson and Jiang 2018—84 and 94 percent, 
respectively).

Measures

Dependent variables.  As mentioned above, academic efficacy is a measure which evaluates per-
ceived competence in a specific field of academic study and was developed by Albert Bandura 
et al. (2001). We emulate this wording and scale. Students in the survey were asked: “Please rate 
how well you feel you are able to do each of the things described below” with the numbers 1 
through 10 listed for them to circle. “Learn math,” “learn science,” and “learn computers” were 
included in the list of five items (see Figure 1). Our measure is future-oriented and specific to 
academic learning of computers, math, and science.

Perceived computer skill is a measure similar to Eszter Hargittai and Steven Shafer (2006). 
Prior research suggests that access, usage, and skill associated with computers are generative in 
computer science pathways, more so than other devices (Goode 2010; Margolis et  al. 2017; 
Margolis and Fisher 2003).4 Perceived skill is a dependent variable in the second multivariate 
analysis to examine its correlates. It is derived from the question on the survey, “How skilled are 
you in each of the following?” and reported on a scale of 1 to 10, similar to Hargittai and Shafer 
(2006), though these authors used a scale of 1 to 5.

Variables of interest.  Our task-based skill measure (or “task-skill” for brevity) is a scale generated 
from a list of 12 tasks that students reported to have done on a computer (0–12). Respondents 
netted an additional point on the scale for each task completed. Self-reported task familiarity 
constructs have good predictive power of actual skills completed in a lab environment (Hargittai 
2005, 2008; Hargittai and Hsieh 2011; Hargittai and Kim 2010). Our index consists of a battery 
of self-reported literacy items in using software, hardware, and the Internet, and is similar, in 

Table 1.  Demographics of Combined Sample (N = 3,902).

Gender N Percent
  Female 2,009 48.5%
  Male 1,893 51.5%
Race/ethnicity
  White 2,155 44.8%
  Black/African American 658 16.9%
  Hispanic/Latino 454 11.6%
  Asian American 420 10.8%
  Other 623 16.0%
Receive reduced cost lunch (estimate) 36.0%
Grade
  6th grade 1,132 29.0%
  7th grade 1,408 36.1%
  8th grade 1,362 34.9%
Computer
  Own 1,927 49.4%
  Share with others in home 1,751 44.9%
  No home computer 224 5.7%
Cell phone (own) 3,140 80.5%
Tablet (own) 2,123 54.4%
Game console (own) 3,448 50.0%
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many respects, to a more recent survey, the National Assessment of Educational Progress Com-
puter Access and Familiarity Study (NAEP 2019). Specifically, respondents were asked to report 
whether they had attached a file to an email, rebooted a computer, connected to wifi, uninstalled 
programs, used task manager to stop a nonresponsive application, operated a computer from its 
command line, and so on. The Cronbach’s alpha for the tasks is .76. As task difficulty increased 
(attaching a file to an email, for example, as opposed to using a computer from the command 
line), the proportion of children who had “done” the task declined. Also, between computer effi-
cacy and perceived computer skill, the task-based skill measure is the only one which is posi-
tively associated with grade level, corresponding with skill accumulation over the middle school 
grades (see Table 3). Although self-reported tasks do not necessarily indicate actual skill, this 
method of gauging skill may be an improvement from other measures, such as time spent on a 
computer per week, one or two survey items that address Web-related tasks (such as in the case 
of the General Social Survey), or overall self-rated skill (Hargittai 2005, 2010). We nevertheless 
take caution when interpreting this variable as it is subject to self-report error. Children who do 
not recognize a particular term might underreport their experience in having done a task or sim-
ply not recall having done a task. Although we also asked respondents in a separate measure if 
they had “heard” of each of the items and not done it (as opposed to having heard of the term and 
done it), there is a possibility that self-reports may be inflated if students are particularly confi-
dent with computers and other technology.

Given the limitations of our computer task-skill measure, we also include the perceived skill 
measures in the academic efficacy models as they may provide coverage for other skills which 
are not included in the battery of questions which make up the task-skill measure, for example. 
We include all of the perceived skill measures (perceived skill in using a computer, cell phone, 
tablet, and console) in the academic efficacy analyses as controls to indicate the kind of experi-
ence respondents have in using specific devices at home or at school.

Control variables.  SES is likely related to self-conceptualizations, but children tend to lack knowl-
edge of parental income and family wealth (see Kolenikov and Angeles 2009). Our measure of 
SES is a composite adapted from the measure of SES in PISA (Programme for International 

Figure 1.  Measures of academic efficacy in survey.
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Student Assessment 2014, Chapter 16), a well-known cross-national comparison of 15-year-old 
student achievement. PISA combines parents’ highest education, highest occupation socioeco-
nomic index,5 and an index of 23 household items intended to measure wealth, cultural posses-
sions, and educational resources. The weights assigned to each component are empirical; they 
come from the principal components analysis. We emulate the PISA measure of SES, the only 
exception being that we use a different index in the place of home possessions. While PISA uses 
items in the home such as dishwashers, televisions, and telephones, we expected that there would 
not be enough variance in these items to be indicative of the differences in wealth and resources 
across our sample. PISA also includes computers in their list of home possessions but, as an item 
of interest in our study, this item needed to be used separately in the analysis. Our modification 
for the purposes of this project was to use books in the home as a measure of human capital 
together with parental education (used by PISA as well as the Trends in International Mathemat-
ics and Science Study [TIMSS] and the NAEP), as well as a measure of home crowding, a proxy 
for a household’s consumption capacity or a resource constraint. Other research has looked at 
number of siblings as a constraint on financial resources as well as parental attention (Cowan 
et al. 2012), but home crowding should better reflect the abundance or lack of resources across 
different outcomes of interest compared with home possessions.6 Our analysis showed that our 
SES composite measure explains more variation in respondent math grades than simple house-
hold size.7 Our SES variable has a mean of 0 and an SD of 1, and ranges from −5.58 to 1.52.

Our variables describing race and ethnic origins derive from an item on the survey, “What is 
your race or origin? Check all that apply” with the following categories: “White,” “Black or 
African American,” “Hispanic/Latino/Spanish,” “Asian (including India/Pakistan),” “Native 
American,” and “other: specify.” Our measure is similar to the combined race and ethnicity ques-
tion, described in Krogstad and Cohn (2014), which has been found to significantly improve the 
identification of Hispanics (Cohn 2017). Only those respondents who placed themselves in the 
single-race category were coded as such. The “other” category was checked for answers consis-
tent with multiracial identity. Children who indicated “White” and also reported European 
American lineage in the “other” section were coded as White. The “other” category consists of 
Native American and multiracial children. Readers thus need to be careful when interpreting the 
“other” category or making comparisons to it.8 The “race” categories in all regression analyses 
are dummy variables. The omitted category is “White.”

As mentioned above, we distinguish between sharing and owning devices. The tech owner-
ship measures are constructed from a question on the survey which asked respondents whether 
they own a computer, cell phone, tablet, or gaming system, and whether they have their own 
device, whether they shared it with people in their family, or whether they did not have the 
device. Answers to these questions were coded as “owning,” “sharing,” or “not having.” 
Ambiguous answers were coded as missing.

Math grades and science grades are self-reported. Higher values indicate As, lower values 
indicate Ds, and so on. To be clear, this measure is not a sufficient control for skills in math and 
science. As Robinson and Lubienski (2011) show, the gender gap in math achievement scores 
widens over the elementary grades, with boys outscoring girls. Furthermore, teachers tend to rate 
girls’ math abilities higher than those of boys despite boys’ higher performance on achievement 
tests. In addition, respondents may inflate their performance when they report their grades, espe-
cially if they are lower performing (Rosen, Porter, and Rogers 2017). Without measures to 
account for these phenomena, there are limitations on our ability to isolate the effect of math and 
science skills from math, science, and computing efficacy. Readers are advised to take these 
issues into account when considering the analyses below, and we address this further in the 
“Limitations and Future Work” section.
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Missing Values

Stata applies listwise deletion to observations with at least one missing value in any variable. 
Without accounting for this, sample sizes will change from model to model, which limits the ability 
to compare the effect of gender across all analyses. We identified a consistent analytic sample with 
information for all models by generating a dummy variable using Stata’s missing() feature. The 
following descriptive statistics, correlations, and regression models include only those respondents 
who have nonmissing data across all models. While this reduces our sample size overall by about 
25 percent (from 5,235 to 3,902), the substantive conclusions reached did not change.

Analytical Strategy

Our analysis takes place in two main parts. First, bivariate analyses evaluate the extent of the 
gender differences across the dependent variables—academic efficacy (math, science, com-
puting) and perceived computer skill (Table 2)—and then the correlations are presented 
(Table 3). Task-skill, grades, and perceived skill in using devices are included as we are 
attempting to isolate self-assessments from actual skill. Second, multivariate analyses (OLS 
regressions) reflect our two hypotheses and evaluate gender differences across the three aca-
demic efficacy measures as well as perceived computer skill, net of computer task-skill, 
grades, and the control variables. To make comparisons across the two kinds of dependent 
variables in the multivariate analyses (four dependents in total), we standardized them. 
Computer task-skill is also standardized in the multivariate analyses. Thus, the coefficients in 
Tables 4 and 5 should be interpreted as changes in SD units in the dependent variable. We use 
the notation of “SD” to denote this.

Results

Bivariate Analyses

The bivariate results provide support for some of the predicted gender differences and show 
evidence of internal validity (Table 2). Notably, the sample mean for computer efficacy is 
lower for all respondents in comparison with math and science (6.75 compared with 7.78 and 
7.65 on a scale of 1–10). Also, the gender difference in computer efficacy is larger in compari-
son with math and science efficacy. Of the two self-conceptualization measures, academic 
efficacy and perceived skill, the standard deviation is higher for computer efficacy. The gen-
der differences in these two measures vary. There is a much larger gender gap for computer 
efficacy, −1.43 on a scale of 1 to 10 which is the equivalent of −0.55 standard deviation 
units.9 Girls rate themselves lower in perceived computer skill than boys though this differ-
ence is smaller (0.43 less on a scale of 1–10, or −0.2 SD).

The results of the bivariate analysis also show gender differences in task-based computer skill. 
The average girl in our survey reported that they had done 0.66 fewer tasks on a scale of 0 to 12 
(or −0.23 SD). While the mean gender difference is negligible, there are more boys in our sample 
with a high level of skill than girls. Of the 11 percent of sample in the 90th percentile of computer 
skills (having done 11 or 12 tasks out of 12 asked), the proportion of boys was 15 percent, com-
pared with 6 percent of girls. Boys were more likely to report that they had operated a computer 
from a command line (a 12 percent difference) and used task manager to stop an application (a 
16 percent difference), suggesting that the gender difference grows as task complexity increases. 
The average boy in our survey has slightly more technical/operational skills while girls have 
slightly more Web-based skills, a finding consistent with Helsper and Eynon’s (2013) sample of 
adults.
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There is no significant gender difference in math grades, as found elsewhere (Gibbs 2010). 
Girls report significantly higher science grades than boys, though the difference is small (about 
one-tenth of a shift between letter grades, −0.09).

Correlation Matrix

Bivariate correlations are shown in Table 3. Consistent with prior research, the female indicator 
(boys = 0 and girls = 1) has a negative relationship with task-based computer skill, all of the 
academic efficacy measures, and perceived computer skill. In comparison to computer efficacy 
and perceived computer skill, task-based computer skill is the only measure which is significantly 
related to grade level (at .2). This may be consistent with skill accumulation over the course of 

Table 2.  Bivariate Analyses for Dependent Variables and Variables of Interest.

 

Range

All
N = 3,902

M (SD)

Girls
n = 1,892

M (SD)

Boys
n = 2,010

M (SD)Variable

Dependent variables
  Academic efficacy measures
    Math efficacy 1–10 7.78 (2.09) 7.62 (2.18) 7.95 (1.99)***
    Science efficacy 1–10 7.65 (2.00) 7.47 (2.08) 7.85 (1.90)***
    Computer efficacy 1–10 6.75 (2.59) 6.06 (2.61) 7.49 (2.36)***
  Perceived computer skill 1–10 7.00 (2.00) 6.79 (1.96) 7.22 (2.00)***
Variables of interest
  Perceived cell phone skill 1–10 8.24 (1.90) 8.43 (1.77) 8.05 (2.02)***
  Perceived tablet skill 1–10 7.51 (2.23) 7.51 (2.25) 7.52 (2.21)
  Perceived game console skill 1–10 6.56 (3.08) 5.26 (2.97) 7.95 (2.55)***
  Math grades 1–4 3.40 (0.84) 3.39 (0.83) 3.40 (0.85)
  Science grades 1–4 3.46 (0.82) 3.50 (0.77) 3.41 (0.86)***
  Task-based computer skill 0–12 7.16 (2.82) 6.84 (2.64) 7.50 (2.97)***

Note. SD = standard deviation.
***Statistically significant gender difference (p < .001).

Table 3.  Correlation Matrix—Variables of Interest (N = 3,902).

Variable 1 2 3 4 5 6 7 8 9 10

1. Female indicator 
(0 = boys, 1 = girls)

1.00  

2. Socioeconomic 
status

–.00 1.00  

3. Grade in school –.00 .02 1.00  
4. Own computer –.00 .21*** .09*** 1.00  
5. Math grades –.01 .37*** .01 .08*** 1.00  
6. Science grades .06*** .40*** –.02 .08*** .49*** 1.00  
7. Task-based 
computer skill

–.12*** .19*** .20*** .23*** .13*** .15*** 1.00  

8. Math efficacy –.08*** .21*** –.03 .05 .56*** .31*** .17*** 1.00  
9. Science efficacy –.09*** .20*** –.05*** .05 .19*** .47*** .17*** .44*** 1.00  
10. Computer 
efficacy

–.28*** .15*** –.04 .12*** .15*** .15*** .41*** .32*** .36*** 1.00

11. Perceived 
computer skill

–.11*** .11*** –.02 .17*** .04 .07*** .43*** .15*** .20*** .51***

***Statistically significant correlation (p < .001).



Ashlock et al.	 567

middle school grades. Importantly, there is a robust relationship between math and science effi-
cacy (.44), but computer efficacy is not strongly related to the math and science grades (both cor-
related at .15). Similarly, task-based skills and perceived computer skills are only weakly associated 
with math and science grades. The perceived computer skill measure is more strongly related to 
computer efficacy (.51) than to task-based computer skills (.43). Besides task-skill and perceived 
skill, there are no other stronger correlates to computer efficacy in our survey.

Multivariate Analyses

Computer, science, and math efficacy.  Looking now toward the motivation for the present paper, 
we estimated OLS regressions using the academic efficacy measures as dependent variables, 
standardized. The multivariate regression analyses of math, science, and computer efficacy 
measures are presented in Table 4. While girls report lower math and science efficacy than 
boys, the gender gap in computer efficacy is larger even with controls for math and science 
grades. In fact, comparing constrained models 1, 4, and 7 in Table 4, the gender difference in 
computer efficacy is approximately three times as large as the gender difference for math 
(−0.54 standard deviation units or SD in comparison with −0.16 SD) and twice as large as the 
gender difference for science (−0.24 SD). Adding task-skill and then the perceived skill mea-
sures to the models reduces the gender coefficient for computer efficacy to −0.34, still about 
twice as large as math and science with the same controls (models 3, 6, and 9). For context, 
recall the bivariate results in Table 2; the gender coefficient of −0.34 for computer efficacy in 
Table 4 represents a gender difference of nine-tenths of a unit on the Bandura academic effi-
cacy scale of 1 to 10 in comparison with a 0.36-unit gender difference in math and science 
efficacy. H1 is supported.

Across the perceived STEM efficacy measures, we also find that computer efficacy is less 
sensitive to grades than math and science efficacy. That is, while the association between math 
and science grades on their corresponding efficacy measures appears to be large (0.63 and 0.57 
SDs, respectively), they have minor association with computer efficacy (Table 4; models 7, 8, 
and 9). In addition, computer efficacy appears more sensitive to the variables associated with the 
home. Model 9 shows that each SD of SES increases computer efficacy by 0.04 SD, an effect that 
is not borne out in any of the math and science models. There is no significant interaction between 
gender and SES when predicting computer efficacy. In combination, perceived skill in using 
computers and computer task-skills are most associated with computer efficacy in model 9 (0.37 
and 0.21 SDs, respectively). In contrast, the computing skill measures have only minor associa-
tion with math and science efficacy. Not shown here, the gender difference in computer efficacy 
persists even when the uneven gender distribution of task-skills is taken into account. Furthermore, 
the perceived skill measures for each device have more statistical power in the models than 
device ownership. The device ownership variables are included in the base model, but when 
perceived skill is added to the analyses, these measures are no longer statistically significant.

Perceived skill.  The second motivation for this paper is to compare the gender difference in per-
ceived skill with the gender difference in computer efficacy as they may tap different social 
processes. In our models, the gender differences in perceived skill appear smaller than the gender 
difference for computer efficacy, and H2 is supported. Prior research has indicated much larger 
differences in perceived skill, though in an adult sample (Hargittai and Shafer 2006). Initially 
−0.21 SD, the gender difference is reduced to −0.09 SD when the task-based skill measure is 
included in the model, a change of 57 percent (see Table 5). Although readers should keep in 
mind that our task-skill measure is subject to response bias and not necessarily reflective of 
actual skill, this relationship is congruent with previous findings which suggest that girls view 
their computer skills lower than they actually are, but not to the extent that other research has 
found. With the coefficient for task-skill at 0.43, there is a much stronger relationship between 
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task-skill and perceptions of skill than prior analyses have suggested (Hargittai and Shafer 2006), 
and task-skill also appears more closely related to perceived skill than to computer efficacy. 

Although not reported in Table 5, boys’ computer task-skills have a slightly greater effect on 
their perceived computer skill. Boys’ task-skill is associated with perceived computer skill at 14 
percent in comparison with girls’ skills, a modest but significant difference. In contrast, Correll 
(2001) found that boys’ math scores were less associated with perceptions of math skill. When it 
comes to computers, our results suggest that it is not boys who are inflating their sense of skill 
but rather girls devaluing theirs.

Importantly, devices and the degree of autonomous usage appear related to perceptions of 
skill. As suggested by other authors (Cotten et al. 2009; Hargittai and Shafer 2006), this is not a 
simple matter of “having” or “not having,” but is associated with usage patterns with particular 
devices. In addition, the freedom associated with owning a cell phone, tablet, and gaming con-
sole is not as strongly associated with perceptions of computer skill as having a computer of 
one’s own. These other devices are, however, significantly associated with perceived skill and 
suggest that all home devices are part of the way that computer skill develops, though this is dif-
ficult to know without panel data and more detailed measures which also assess devices that 
children may use at school.

Discussion

This paper was primarily motivated to evaluate the gender difference in computer efficacy as it 
plays a significant role in the development of interest and skill in early computer science path-
ways. Few studies have teased apart skills from self-assessments in this particular field of STEM. 
We thus assessed the gender gaps in academic efficacy across three STEM fields—computing, 
math, and science—in the key developmental period of middle school, hypothesizing that the 
gender gap in computing would be larger. While our analyses suggest that girls appear slightly 
behind boys when it comes to operational computer skills and presents an important issue for 
future exploration, this difference is rather small and unlikely to explain the current state of their 
participation in computer science paths overall. Net of skills and our other controls, we find the 
gender difference in computer efficacy is over twice as large as the difference in math and science 
efficacy. In contrast, the gender gap in perceived computer skill is smaller than for the gender 
difference in computer efficacy, and thus both hypotheses are confirmed. The remainder of this 
section delineates the various ways that these findings may shed light on the current state of 
gender dynamics in computing pathways, as well as its limitations.

Young people are often assumed to develop computer skills in the course of engaging with the 
tech around them as “digital natives.” While this may be true to some extent, our results suggest 
that even when girls and boys are similar in terms of skill and perceived skill, girls’ self-assess-
ment of computing ability is lower than their assessment of their math ability. These data are 
limited due to a cross-sectional survey design, and the measures cannot speak to the nature of 
gendered stereotypes in the formation of interest and identity. With these cautions in mind, it is 
our hope that the results support further inquiry into the distinctions between STEM fields. Still 
emerging as field, the current pathways into computer science were shaped over the course of 
several decades, now to the point that many young people expect that a college degree in comput-
ing is a required credential for entrance into tech occupations. This was not the case just 20 years 
ago when many people developed programming skills informally through in-person interaction 
(such as gaming), online discussion forums, or bulletin board system services (BBS), motivated 
to better understand how to modify or improve their own hardware or software which was not 
commercially available to the extent that it is today. Thus, the stereotype of a self-taught “genius” 
is congruent with all nascent fields to some extent or at least those unassociated with femininity. 
That computing is not integrated into early education in the United States is perhaps not 
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surprising if we consider this context. What we can say is that there are signs from our analyses 
that the culturally shaped beliefs about ability may be stronger for computing than other core 
STEM curriculum. The earlier in life that one imagines themselves as someone who is proficient 
in the field of computing—not just currently having skill—the more dividends might be accumu-
lated from in-person and online performances (Crowley et al. 2001; Funk and Parker 2018), not 
to mention the information or validation derived from signaling tech enthusiasm to teachers and 
other adults (Calarco 2011; Lareau 2003; Paino and Renzulli 2013; Puckett and Nelson 2019).

Our results also suggest that computer efficacy is more sensitive to experiences associated 
with home environments. The SES composite measure and perceived computer skill measures 
were more influential in the computer efficacy models than in the math and science efficacy 
models, though no significant gender interactions with SES were found in our models of com-
puter efficacy. As a field which in many ways is defined by its devices, this finding parallels 
research which suggests that SES may increase the resources children have to explore technology 
(Xie et al. 2015; Margolis et al. 2017; DiMaggio et al. 2004), but it does not support evidence 
from some studies which find that higher SES parents reinforce their children’s gendered STEM 
interests to a greater extent than other parents (Dotti Sani and Treas 2016; Hao and Yeung 2015; 
Raley and Bianchi 2006). Additional study of this phenomenon is greatly needed, in particular 
why computing may differ from other STEM fields in this respect.

Grades in math and science do not appear to significantly reduce the gender gap in computer 
efficacy. In contrast, math and science efficacy appear more strongly related to math and science 
grades. This does not mean that school experiences are irrelevant to computer efficacy, only that 
we did not detect it in our limited analysis. School subjects may be socially isolated from learning 
computer science to some extent due to their current decoupling from middle school education. 
Thus, self-conceptualizations that incorporate the confidence learned in math may not be easily 
connected to confidence in computing in the current circumstances of early education. In addi-
tion, girls may have higher standards for themselves than boys (Mann and DiPrete 2016), relying 
more on grades to inform their identity. Without such feedback about computing proficiency in 
the classroom, girls may set their sights on other fields. Furthermore, the small effect of grades 
on perceptions of computing ability suggests that even when they do poorly in school, boys may 
still believe they have innate ability, a reality which may buffer them from obstacles they encoun-
ter in STEM pathways (Sanabria and Penner 2017).

Overall, our results suggest that gender differences in STEM self-assessments vary by the 
skill measure used. Our results imply that the gender gap in computer efficacy is fairly persistent 
in that grades and two measures of skill reduced the gender difference to one-third of an SD 
which is double the gender gap found in math and science efficacy. By contrast, our analysis of 
perceived skill shows that the gender difference is much narrower than other research has sug-
gested and shows a closer association with computer task-skill. Our models imply that while girls 
underestimate their skills, this effect is somewhat small in comparison with other surveys 
(Hargittai and Shafer 2006; Huffman, Whetten, and Huffman 2013). While these efficacy and 
perceived skill measures have tended to be grouped together as “expectancies” and used inter-
changeably to predict educational and occupational choices (Eccles 1994; Wigfield and Eccles 
1992), skill perceptions may be less susceptible to the influence of computer science stereotypes 
because they are anchored in direct observation. As Bandura (1997) and Watt (2006) have sug-
gested, self-assessments of current capabilities may be fundamentally different from perceived 
ability to be successful in a particular academic pathway. The distinction between these two self-
assessments may contribute to the understanding of computing paths independently from other 
STEM paths. Because academic learning of computing is not typically available in early school-
ing and masculine cultures may be stronger in this field, attitudes and self-assessments of ability 
may be more consequential than skill in developing interest in computing paths (Master and 
Meltzoff 2020). Computer efficacy may influence how children come to pursue career paths as 
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well as professional identity, the embodiment of ability (Cech et al. 2011). Our results suggest 
that when examining participation in computer science paths, choices around self-assessment 
measures should be carefully considered.

Invariably, however, our study is not equipped to demonstrate how or why there are larger 
gender differences in computing self-assessments than in math and science. Messages about 
these fields are pervasive in the media, there is well-documented evidence of a “chilly climate” 
in STEM classrooms, and girls have difficulty finding same-gender role models in computer sci-
ence, just to name a few possible reasons. Ultimately, we hope to contribute to the conversation 
about the role of computer skills in early computer science paths. There are signs from our analy-
ses that the gender gap in computer science pathways is not about ability alone which continues 
to be the subject of much debate in some spaces.

Some researchers and educators have advocated for required computer curriculum in middle 
school, and our results suggest that this change could be successful if these spaces offer the 
opportunity for all children to engage and enjoy learning, thus countering stereotypes (Cheryan 
et al. 2009; Thebaud and Charles 2018). Our results indicate that girls and boys have very similar 
levels of skill, which suggests that we are missing out on some talented girls who might be suc-
cessful in computing. Computer classes in middle school may also allow for children to see how 
their interest in math and science connects with computing. Early classroom experiences which 
facilitate adult-led, inclusive learning might provide more objective standards and competing 
narratives which dispel notions of men’s “innate” computer ability and link up with math profi-
ciencies. Research which investigates the role of computer science curriculum—especially com-
paring the effects of required and optional or “elective” courses in early education—would be 
well served.

Limitations and Future Work

Our methodology allows for a comparison of gender differences in self-conceptualizations, but it 
does not offer the ability to evaluate the processes by which these perceptions come about. 
Readers should consider the effect of reverse causality. While skill—perceived and task-based—
may very well bring about computer efficacy, it is likely that the reverse is also true as interest 
and motivation may bring about skills when children are more invested in the pursuit (Wigfield 
and Eccles 1992).

Readers should also consider the study’s methodological limitations when it comes to assess-
ing skill in math, science, and computing. We did not have access to achievement tests, and self-
reported math and science grades are subject to report bias, especially for lower performing 
students (Rosen et al. 2017). Even if students accurately report their grades, some evidence sug-
gests that teacher assessment can be biased in favor of girls (Robinson and Lubienski 2011). 
Readers are advised to take these measurement issues into account, and future research should 
aim to disentangle these issues further.

Work should also continue to examine why the gender difference is greater in computer effi-
cacy than in other STEM fields. Our respondents are children, and we do not have measures 
which are typically used to evaluate outcomes such as intended college major. Thus, our findings 
may not apply to the entire computer science pipeline, though other research can be used to con-
textualize our results (Cheryan et al. 2017; Sax et al. 2017). Finally, due to our research site loca-
tion, parent labor force participation in STEM fields is very likely above the U.S. average. While 
controls for parent occupation did not change the regression results, our respondents’ knowledge 
of STEM fields may be higher than other children in the United States. Additional research which 
disaggregates STEM fields would be beneficial, including that which examines the relationship 
between SES and gender. Although others have found an interaction between SES and gender 
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when modeling STEM interest (e.g., Charles and Bradley 2006), we did not find an interaction 
between gender and SES when modeling computer efficacy.

Conclusion

Digital technology is ubiquitous, yet the ways in which it intersects with social inequalities are 
often obscured or deeply embedded in informal interactions. We extend the scholarship on digital 
inequality by disaggregating the STEM fields and establishing some baseline differences in aca-
demic efficacy across math, science and computing. We find that when girls and boys in the criti-
cal period of middle school have similar task-based skill—and even similar perceptions of 
skill—girls may be less likely to view themselves as having ability to learn computing. For some 
time, scholarship has explored how masculine cultural narratives shape children’s experiences 
when it comes to early math and science learning. The meaning making around computer path-
ways will continue to be elusive until more emphasis is placed on self-assessments and digital 
technology in both the private and public sphere. Additional investigation of these issues is 
greatly needed as the significance of computing and machine learning continues to grow in sci-
entific research, national security, infrastructure, consumer behavior, and private life.
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Notes

1.	 Opt-out forms were provided in English and in Spanish. Overall, 34 students opted out of the survey 
via forms sent home with students. In addition, approximately 40 students opted out of the survey due 
to special needs and/or language needs.

2.	 Additional information is available upon request.
3.	 We omit this variable from all analyses due to the level of missing values, which disproportionately 

exclude lower socioeconomic status (SES) students. Substantive conclusions were similar in models 
controlling for this variable in the limited sample (results available upon request).

4.	 While we do not rule out the effect of perceived skill in using other devices in computer pathways, 
perceived computer skill is more strongly correlated with computer efficacy than the other perceived 
skill measures in our survey (at .50). Perceived cell phone skill is correlated with computer efficacy at 
.11, tablet skill at .21, and console skill at .26.

5.	 Parent occupation derived from three open-ended questions on the survey—current job title, location, 
and tasks done on the job. Two raters independently read and reviewed all answers to determine place-
ment into occupational categories. The general occupation schema for the survey reflects Department 
of Labor groupings and includes additional granularity in our specific areas of interest (available upon 
request). Ambiguous answers were coded as “unable to determine.” Preliminary coding and interrater 
reliability testing of the parent occupational data in the pilot study (n = 93) informed some modifica-
tions to the occupational schema, and then parent occupations were coded in the full sample (N = 
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5,235) independently by the two raters. The kappa statistic for interrater reliability was .73 for fathers 
and .80 for mothers. The raters then reviewed all coding disagreements and decided on proper designa-
tions. Parent occupations were then converted into socioeconomic index (SEI—from the 2012 General 
Social Survey) for the purpose of the SES composite. Single parents are included.

6.	 A basic advantage over other measures, when children are respondents, is that responses should be less 
prone to error. Our home crowding measure is a summary measure consisting of number of people per 
bedroom, per bathroom, and shared bedroom or not. The weights for these components are determined 
through principal components analysis (available upon request).

7.	 Additional information about the construction of the SES measure is available upon request.
8.	 For example, it includes a number of children who identify as White and Asian, and presumably they 

live in very different circumstances than those who identify as White and black, and so on.
9.	 To calculate the gender difference in computer efficacy in such a way that it can be compared with the 

gender difference in perceived skill, we multiply the mean gender difference (–1.43 in this case) by the 
standard deviation for this variable (2.59).
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