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Abstract
In biomedical studies, survival data with a cure fraction (the proportion of subjects cured of disease) are commonly

encountered. The mixture cure and bounded cumulative hazard models are two main types of cure fraction models

when analyzing survival data with long-term survivors. In this article, in the framework of the Cox proportional hazards

mixture cure model and bounded cumulative hazard model, we propose several estimators utilizing pseudo-observations

to assess the effects of covariates on the cure rate and the risk of having the event of interest for survival data with a cure

fraction. A variable selection procedure is also presented based on the pseudo-observations using penalized generalized

estimating equations for proportional hazards mixture cure and bounded cumulative hazard models. Extensive simulation

studies are conducted to examine the proposed methods. The proposed technique is demonstrated through applications

to a melanoma study and a dental data set with high-dimensional covariates.
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1 Introduction
In the time-to-event analyzes, it is usually assumed that all subjects will eventually experience the event of interest if the
follow-up period is sufficiently long. However, in many research fields, including biomedical, genetic, and social studies,
some subjects may never experience the event of interest in their lifetime. These subjects are referred to as the cured or
nonsusceptible subjects. For example, in a melanoma progression study,1 the cured patients never experience a melanoma
relapse after the initial treatment. On the other hand, in a dental study,2 the cured subjects are the teeth that underwent
proper periodontal treatments and can last a lifetime. In general, it is difficult to identify the cured subjects, but their pres-
ence is signaled by a leveling of the Kaplan-Meier (KM) survival curve at the end of the follow-up, for example,
Figure 1(a). Standard models do not account for the cure fraction and could lead to biased estimates of the survival of sus-
ceptible subjects.3 Even if the cure fraction is accounted for, the dental study posts additional challenges on high-
dimensionality. More than 50 predictors relevant to decision making in periodontal treatments are potential risk factors
affecting the teeth’ survival. Motivated to tackle these emerging and challenging scientific questions, we propose a new
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estimating procedure using a pseudo-observations approach for the statistical inference on the parameters of interest and
extend the proposed methods to regularized regression.

Two types of cure models have been popular in the literature, with most emphasis on the mixture cure (MC) model.4 The
MC model assumes that the population consists of two types of patients, a cured group in which the patients are not at risk
of experiencing the event and a susceptible group in which they eventually experience the event. The MCmodel consists of
two components, incidence and latency. The former indicates whether the subject is susceptible, and the latter represents
the time to the event when the patient is in the susceptible group. For the incidence component, a logistic regression model
is often used to describe the covariate effects on the cure fraction. In contrast, parametric and semiparametric models have
been proposed for the latency component to describe the underlying failure time distribution of susceptible subjects.
Among those, Weibull model,4 generalized F model,5 Cox proportional hazards (PH) model,6 and accelerated failure
time model7 have been studied.

The second type of cure model is the bounded cumulative hazard (BCH) model, also known as the promotion time cure
model, which models the survival times through an improper survival function, e.g Tsodikov8 The idea was first introduced
by Yakovlev et al.9 in biological considerations, in which cancer recurrence is promoted by the number of carcinogenic
cells and disease progression. Thus, the parameters specified in the BCH model bear exact biological meaning.
Treating the carcinogenic cell counts as latent and nuisance, the BCH model is suitable for any survival data types as
long as it is reasonable to assume the data have a cure fraction.10 Incorporating covariates into the BCH model modifies
the cure fraction and introduces a long-term covariate effect on the survival. The BCHmodel has a PH structure through the
long-term effect parameter. Tsodikov et al.11 further incorporated covariates to the baseline survival function through
another PH structure, introducing a short-term covariate effect on survival. The two-component BCH model of
Tsodikov et al.11 is termed the PHPH model. The MC model and the PHPH model consist of different covariate
effects, each providing unique clinical interpretations.

Existing estimating procedures for the MC model and the PHPH model usually involve updating the parameters via
expectation-maximization (EM) algorithms to account for latent variables, for example, cure fraction, in the likelihood.
However, these approaches could be computationally expensive in high-dimensional data or when the bootstrap
method is used in variance estimation. Thus, estimating procedures such as the pseudo-observations approach that does
not rely on the EM algorithm are more appealing for practical use. The concept of the pseudo-observations approach is
to create pseudo values for the quantities of interest at individual levels using the analogy of leave-one-out cross-validation.
These pseudo values are then treated as complete data where standard methods can be conveniently applied. Specifically,
for subject i = 1, . . . , n, let Ti be independent and identically distributed random variables and X i be a vector of covariates.
The interest lies in modeling E[f (Ti)|X i], where f is a pre-specified transformation function of Ti. Due to censoring, not all
f (Ti) are observed. However, the observed or unobserved f (Ti) can be replaced by its pseudo-observations ϱ̂i = nϱ̂− (n− 1)ϱ̂−i

where ϱ̂ is a consistent and (approximately) unbiased estimator for the expectation ϱ = E[f (T )] and ϱ̂−i is the estimator
for ϱ using the remaining n− 1 subjects, leaving subject i out from the sample. The pseudo-observations approach was
first proposed by Andersen et al.12 to model the transition probabilities in multi-state models. Since then, the
pseudo-observations approach has been applied to many settings in survival analysis, including survival estimates,13

the restricted mean survival times,14 the cumulative incidence function,15 the relative survival function,16 the illness-
death model with interval-censored data,17 and the causal inference for recurrent event data.18 Large sample properties
have also been thoroughly investigated.19–21 However, the pseudo-observations approach has not been applied to the
analysis of survival data with a cure fraction.

Regularization and variable selection are commonly used in high-dimensional data analysis, but it has been less studied
for cure models. Regularized procedures minimize an objective function that consists of a penalty function to reflect sparsity.
Some of the popular penalty functions are the least absolute shrinkage and selection operator (LASSO),22 adaptive LASSO
(ALASSO),23 and smoothly clipped absolute deviation (SCAD).24 In the Cox MC models, Liu et al.25 used LASSO and
SCAD penalties to select variables based on penalized likelihood functions. Masud et al.26 performed the variable selection
based on the ALASSO penalty while considering the linear and nonlinear effects in both components. Masud et al.27 further
utilized the ALASSO penalty to the CoxMC and the BCHmodels. In both works, an EM algorithm was adopted to estimate
the parameters, and the bootstrap resampling procedure was used to obtain standard error estimates. Their works can be
computationally intensive in high-dimensional data. The penalized BCH model of Masud et al.27 has limited application
as it requires additional information on the latent carcinogenic cell counts, making their approach not applicable for survival
data without similar biological interpretations. Moreover, the short-term covariate effect is not considered in their approach,
limiting the understanding of the covariate impact on the timing of disease occurrence.

In this article, we develop new estimating procedures based on the pseudo-observations approach for both the MC and
the BCH models. We further extend the proposed method by adopting the penalized generalized estimating equations
(PGEE) approach28 to perform variable selection. The proposed work closes the gap on variable selection in cure rate
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models with pseudo-observations techniques. The proposed approaches are attractive in several aspects. First,
pseudo-observations can be straightforwardly used as complete outcomes for the generalized linear model (GLM)
without indication of censoring. Second, the proposed estimating procedures are computationally efficient and faster in
running time than standard approaches that adopt the EM algorithm for estimation and bootstrapping for standard
errors as the unknown regression parameters are estimated via the generalized estimating equations (GEE) approach

Figure 1. The Kaplan-Meier survival curves for the melanoma data and the tooth loss data to access potential cure fraction.
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with corresponding variance estimates obtained by sandwich estimators. Third, unlike the estimation and variable selection
of regression parameters in the incidence and latency component of the MC model6,27 or the short-term and long-term
effects of the BCH model11,27 are performed simultaneously within one model, our proposed methods using
pseudo-observations can perform the estimation and variable selection separately in each component of the MC model
or each effect of the BCHmodel. Specifically, once the pseudo-observations for the quantity of interest for each component
of the MC model or each effect of the BCH model are generated for each subject, they can be modeled with standard
methods like GLMs. The GEE and PGEE estimating methods can be applied for parameter estimation and variable selec-
tion. Finally, the proposed regression estimators can be easily implemented via standard statistical software.

The remainder of the article is organized as follows. The MC model and the BCH model are reviewed in Section 2. The
construction of pseudo-observations is described in Section 3. Inference procedure, model diagnosis, and variable selection
are presented in Section 4. Comprehensive simulation results are reported in Section 5. The analysis of two real datasets is
provided in Section 6. Concluding remarks are given in Section 7. Asymptotic properties and additional simulation results
are provided in the online Supplemental Materials.

2 The cure models
Let Y denote the cure status of a subject, where Y = 1 if the subject eventually experiences an event (uncured, susceptible),
and Y = 0 if the subject is a survivor (cured, non-susceptible). Let T = YT∗ + (1− Y ) ×∞ be the survival time, where
T∗ <∞ is the failure time if the subject is susceptible. In the presence of right censoring, we assume the observed data
consist of n independent replicates (T̃ i, δi, X i, Z i), i = 1, . . . , n, which are copies of (T̃ , δ, X , Z), where
T̃ = min {T , C}, δ = I (T ≤ C), C is the censoring time, and X and Z are vectors of covariates with dimensions p and
q, respectively. We allow X and Z to be completely distinct, overlapped, or identical. When δ = 1, the subject experienced
an event and Y = 1. However, when δ = 0, the cure status Y is not observed.

2.1 MC model
The MC model expresses the population survival function as

S(t) = (1− π)+ πSu(t), (1)

where π = P(Y = 1) is the uncured rate and Su(t) is the conditional survival function of T∗ given Y = 1. The incidence
component π is assumed to follow a logistic regression model

π(X ) = P(Y = 1|X ) = exp (α0 + α⊤X )

1+ exp (α0 + α⊤X )
, (2)

where α0 is a scalar and α is a p-column vector. For the latency component, we model the conditional survival function via
the Cox proportional hazards model

λ(t|Z) = λ0(t) exp (β
⊤Z), (3)

where β is a q-column vector of regression coefficients, and λ0(t) is the unspecified baseline hazard function with the cumu-

lative function Λ0(t) =
�t
0λ0(u)du. Under models (2) and (3), the MC model is called the PHMC model.6

2.2 BCH model
Suppose Λ(t) is the cumulative hazard function of T∗ such that Λ(∞) = θ > 0. Under the BCH model, the population
survival function can be written as

S(t) = exp {−θF(t)}, (4)

where F(t) = Λ(t)/θ is a proper cumulative distribution function of a nonnegative random variable with F(0) = 0 and
F(∞) = Λ(∞)/θ = 1. As t → ∞, one has limt→∞ S(t) = exp (−θ) which indicates the cure rate. The covariate effects
can be assumed on the impact of the parameter θ with θ(X ) ≡ θ(X , γ0, γ), where θ(X , γ0, γ) is a known function that
relates a p × 1 vector of regression coefficients γ to X with an intercept term γ0. This modeling strategy leads to the
improper PH model,29 and the covariates have a long-term effect because θ describes the long-term survival probability.8
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A common choice of θ(·) is the exponential parameterization θ(X ) = exp (γ0 + γ⊤X ). Tsodikov8 extends the improper PH
model by adding a short-term effect by incorporating covariates into F(t) or survival function �F(t) = 1− F(t).
Specifically, the PHPH model of Tsodikov et al.11 has the form

S(t) = exp [−θ(X ){1− �F(t)η(Z)}], (5)

where η(Z) = exp (ϕ⊤Z) and ϕ is a q-column vector of regression coefficients. To avoid overparameterization, we assume
the coefficients ϕ do not contain an intercept term as suggested in Tsodikov et al.11When the cure fraction is the only par-
ameter of interest, it makes no difference which model formulation (1) or (4) is chosen to estimate the cure rate nonpar-
ametrically. However, the two models become different when additional model assumptions are imposed on the cure rate
and the latency distribution of T∗ in the MC model.

3 Pseudo-observations

3.1 Pseudo-observations for MC model
A common approach for constructing pseudo-observations is to generate those from a nonparametric estimator of the par-
ameter of interest. The MC model has two parameters, uncured rate π and the conditional survival function Su(t), to be
estimated. There are two candidate estimators for the uncured rate π. The first one is proposed by Maller and Zhou,30

in which the cure rate 1− π was estimated by ŜKM(tmax), where ŜKM(t) is the KM estimator31 and tmax is the maximum
of the observed event times. The result implies that π can be estimated by π̂KM = 1− ŜKM(tmax). Following the construc-
tion of pseudo-observations in Andersen et al.,12 one can define the pseudo-observations for subject i by

π̂iKM = n · π̂KM − (n− 1) · π̂−i
KM, (6)

where π̂−i
KM = 1− Ŝ−i

KM(tmax) is the estimator for π using the remaining n− 1 subjects, leaving subject i out from the
sample. The second estimator is based on the estimation of θ in Tsodikov32 through the connection between models (1)
and (4). To be specific, let t(1) < t(2) < . . . < t(D) be unique observed failure times, and let t(0) = 0 and t(D+1) = ∞. LetMj =∑n

i=1 I (T̃ i = t(j), δi = 1) and Nj =
∑n

i=1 I(t(j) ≤ T̃ i < t(j+1), δi = 0) be the number of failure times at time t(j) and the
number of censored times in the interval [t(j), t(j+1)), respectively. Under model (4), θ can be estimated by

θ̂NP = ∑D
k=1 θ̂k , where θ̂k = − log {(

∑D
ℓ=k+1 Mℓ +

∑D
ℓ=k Nℓ)/(

∑D
ℓ=k Mℓ +

∑D
ℓ=k Nℓ)}, k = 1, . . . , D− 1, and

θ̂D = − log (ND/(ND +MD)). Consequently, F(t) can be estimated by F̂NP(t) =
∑

{j : t(j)≤t} Ĵ j, where Ĵ j = θ̂ j/θ̂NP is the

estimated jump size at time t(j). Instead of using the Lagrange multiplier method,32 we use the change of variables approach

under the condition
∑D

k=1 Jk = 1 to obtain θ̂NP and F̂NP(t). The estimating procedure is summarized in Web Appendix A.

Since models (1) and (4) have the same cure rate, one could estimate π by π̂NP = 1− exp (−θ̂NP) and create the
pseudo-observations for π by

π̂iNP = n · π̂NP − (n− 1) · π̂−i
NP, (7)

where π̂−i
NP is the estimator of π obtained when leaving subject i out from the sample. Web Appendix B shows the behavior

of pseudo-observations from (6) and (7) based on simulated data. One can see that these pseudo-observations are not neces-
sary within the range [0,1].

To create the pseudo-observations for Su(t), one can express Su(t) = π−1 · (S(t)− (1− π)) from model (1) and imply
that Su(t) can be estimated by Ŝu,KM(t) = {ŜKM(t)− ŜKM(tmax)}/{1− ŜKM(tmax)}. The pseudo-observations for Su(t)
can then be created by

Ŝiu(t) = n · Ŝu,KM(t)− (n− 1) · Ŝ−i
u,KM(t), (8)

where Ŝ−i
u,KM(t) = {Ŝ−i

KM(t)− Ŝ−i
KM(tmax)}/{1− Ŝ−i

KM(tmax)} is the estimator for Su(t) when leaving subject i out from the sample.

3.2 Pseudo-observations for BCH model
Under model (4), we propose two approaches to create pseudo-observations for θ and F(t), respectively. Since the cure rate
limt→∞ S(t) = exp (−θ) can be nonparametrically estimated by ŜKM(tmax), θ can be estimated by θ̂KM = − log ŜKM(tmax).
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Moreover, as mentioned in Section 3.1, θ can also be estimated by θ̂NP. Thus, the pseudo-observations for θ can be created
by one of the following two approaches

θ̂iKM = n · θ̂KM − (n− 1) · θ̂−i
KM, (9)

θ̂iNP = n · θ̂NP − (n− 1) · θ̂−i
NP. (10)

Based on Tsodikov,8 F(t) can be consistently estimated by F̂KM(t) = log (ŜKM(t))/ log (ŜKM(tmax)). As mentioned in
Section 3.1, F(t) can also be estimated by F̂NP(t) =

∑
{j : t(j)≤t} Ĵ j. Thus, the pseudo-observations for F(t) can be created

by one of the following two approaches,

F̂i
KM(t) = n · F̂KM(t)− (n− 1) · F̂−i

KM(t), (11)

F̂i
NP(t) = n · F̂NP(t)− (n− 1) · F̂−i

NP(t), (12)

where F̂−i
KM(t) and F̂−i

NP (t) are estimators of F(t) when leaving subject i out from the sample.

4 Statistical inference
The statistical inference of the pseudo-observations approach is based on the asymptotic unbiased property of the
pseudo-observations for the parameter of interest.33 Following Jacobsen and Martinussen20 and Overgaard et al.,21 we
present the proofs of the asymptotic unbiased property for proposed pseudo-observations in Web Appendix C of the
online Supplemental Materials.

4.1 Estimation of parameters under MC model
Based on the pseudo-observations in Section 3.1, the parameters (α0, α⊤) in the incidence component and β in the latency
component of the PHMC model with (2) and (3) can be estimated separately. To estimate (α0, α⊤), we consider the follow-
ing GLM

g1
(
E[Yi|X i]

)
= α0 + α⊤X i, (13)

where g1(x) = log {x/(1− x)} is the logit link function for a binary variable. The parameters (α0, α) can be estimated based
on the GEE approach34 using pseudo-observations π̂i, i = 1, . . . , n by solving the estimating equations

U(α0, α) =
∑n
i=1

∂g−1
1 (α0 + α⊤X i)

∂(α0, α)
V−1
1,i

(
π̂i − g−1

1 (α0 + α⊤X i)
)
= 0, (14)

where π̂i is the pseudo-observations for π, and V1,i is the working variance. Let (α̂PO0,KM, α̂
PO
KM) and (α̂PO0,NP, α̂

PO
NP) be the

estimators from (14) as π̂i is replaced by π̂iKM and π̂iNP, respectively.
To estimate β, the pseudo-observations for Su(t) are evaluated at several time points and used as responses in the GLM

for the covariate effects. Specifically, let t = {t1, . . . , tH} be a set of distinct times between 0 and the maximum of
observed event time, and let Ŝiu(th) be the pseudo-observations (8) for subject i at time th for h = 1, . . . , H . We assume
the GLM with

g2
(
E[I(T∗

i > th)|Z i]
)
= ξth + β⊤Z i, (15)

where ξth is the intercept at time th, β is the regression parameters, and g2(x) is a link function. Common choices for g2
include the log-log function log {− log (x)} and log function log (x). Model (15) becomes the Cox PH model (3) when
g2(x) = log {− log (x)} and ξth = logΛ0(th). We use the following GEE to estimate the unknown parameters β and
ξH = {ξt1 , . . . , ξtH }

U(ψ) =
∑n
i=1

∂g−1
2 (t, ψ; Z i)

∂ψ
V−1

2,i

(
Ŝiu(t)− g−1

2 (t, ψ; Z i)
)
= 0, (16)
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where ψ = (ξH , β), Ŝiu(t) = (Ŝiu(t1), . . . , Ŝ
i
u(tH ))

⊤, g−1
2 (t, ψ; Z i) is a H × 1 vector whose jth component equals

g−1
2 (ξtj + β⊤Z i), and V 2,i is a H × H working covariance matrix that accounts for the correlation inherent from the

pseudo-observations.12We denote ψ̂PO = (ξ̂POH , β̂PO) as the estimators obtained from solving (16).

4.2 Estimation of parameters under BCH model
Under PHPH model (5), the short-term and long-term covariate effects can be estimated separately. To estimate the long-
term effect (γ0, γ), we consider the following GLM

g3(θ̂i) = γ0 + γ⊤X i + εi, (17)

where εi, i = 1, . . . , n, are independent and identically distributed (i.i.d.) with mean zero, and g3 is a link function. Possible
choices of g3(·) are the log link function log (x) and the log-log function log {− log (x)}. Of these, setting g3(x) = log (x)
leads to the assumption θ(X i) = exp (γ0 + γ⊤X i) of model (5), which motivates us to estimate the parameters (γ0, γ) based
on pseudo-observations created by θ̂iKM or θ̂iNP via

U(γ0, γ) =
∑n
i=1

∂g−1
3 (γ0 + γ⊤X i)

∂(γ0, γ)
V−1
3,i

(
θ̂i − g−1

3 (γ0 + γ⊤X i)
)
= 0, (18)

where θ̂i is the pseudo-observations for θ, and V3,i is a working variance of θ̂i. Let (γ̂PO
0,KM, γ̂

PO
KM) and (γ̂PO

0,NP, γ̂
PO
NP) be the

estimators obtained from (18) when θ̂i is replaced by θ̂iKM and θ̂iNP in (9) and (10), respectively. Under the assumption

η(Z i) = exp (ϕ⊤Z i), we have log [− log (1− Fi(t))] = ϕ⊤Z i + log [− log (�F(t))], where Fi(t) = 1− �F(t)η(Z i). We thus
consider the GLM with

g4(1− F̂i(th)) = ςth + ϕ⊤Z i + ϵi, (19)

where ςth = log {− log (�F(th))}, th ∈ t = {t1, . . . , tH}, g4(x) = log {− log (x)}, and ϵi, i = 1, . . . , n, are i.i.d. with mean
zero. We consider the following GEE to estimate ϕ and ςH

U(Θ) =
∑n
i=1

∂g−1
4 (t, Θ; Z i)

∂Θ
V−1

4,i

(
(1− F̂i(t))− g−1

4 (t, Θ; Z i)
)
= 0, (20)

where Θ = (ςH , ϕ), F̂i(t) = (F̂i(t1), . . . , F̂i(tH ))
⊤ is the vector of pseudo-observations for Fi(t) calculated at t =

{t1, . . . , tH} for subject i, g−1
4 (t, Θ; Z i) is the H-column vector whose jth component equals g−1

4 (ςtj + ϕ⊤Z i), and V 4,i

is a H × H working covariance matrix. Let Θ̂PO
KM = (ς̂POH ,KM, ϕ̂

PO
KM) and Θ̂PO

NP = (ς̂POH ,NP, ϕ̂
PO
NP) be the estimators obtained

from equations (20) while F̂i(t) is replaced by F̂i
KM(t) and F̂i

NP(t) in (11) and (12), respectively.

4.3 Variance estimation and model diagnosis
All estimators obtained from solving estimating equations mentioned in Sections 4.1 and 4.2 can be using the geese func-
tion in the R package geepack.35 We adopt the approximate jackknife variance estimates,36 which is available in the geese
function. Note that adopting a sandwich estimator might lead to inconsistent and upward biased results for variance esti-
mation; however, this has an insignificant impact in practical applications.20 We follow the idea of pseudo-residuals33 to
assess the goodness-of-fit for (13) and (15) for the PHMC model. Define the pseudo-residuals {π̂i − g−1

1 (α̂0 + α̂⊤X i);

i = 1, . . . , n} based on either π̂iKM or π̂iNP, and {Ŝiu(t)− g−1
2 (ξ̂POt + β̂PO

⊤
Z i); i = 1, . . . , n} calculated at a given time

t ∈ t. If the model fits the data well, no trend should be perceptible when plotting residuals against a covariate.

Similarly, we consider pseudo-residuals {θ̂iKM − g−1
3 (γ̂PO0,KM + γ̂PO

⊤

KM X i); i = 1, . . . , n} or {θ̂iNP − g−1
3 (γ̂PO0,NP + γ̂PO

⊤

NP X i); i =
1, . . . , n} for model (17) and the pseudo-residuals {(1− F̂i

KM(t))− g−1
4 (ς̂POt,KM + ϕ̂PO⊤

KM Z i); i = 1, . . . , n} or {(1−
F̂i
NP(t))− g−1

4 (ς̂POt,NP + ϕ̂PO⊤

NP Z i); i = 1, . . . , n} at a given time t ∈ t for model (19). The idea of pseudo-residuals is illu-
strated in the melanoma data in Section 6.1.
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4.4 Variable selection
The proposed pseudo-observations approach allows variable selection and parameter estimation to be simultaneously
implemented in each component of the PHMC model and the PHPH model by penalizing the corresponding
GEEs.28Specifically, for the incidence component of the PHMC model, we penalize the GEE in (14) by

S(α0, α) = U (α0, α)− qλ1 (|(α)|) ◦ sign(α), (21)

where for some p × 1 vectors u and v, qλ1 (u) = {qλ1 (|u1|), . . . , qλ1 (|up|)}⊤ is a vector of penalty functions for some tuning
parameter λ1, sign(u) = {sign(u1), . . . , sign(up)}⊤, sign(x) = I(x > 0)− I(x < 0), and u ◦ v is the element-wise product of
u and v. The intercept term α0 is not penalized and has been left out of the penalty term in (21). Similarly, we consider the
following PGEE for ψ for the latency component of the PHMC model by extending (16)

S(ψ) = U(ψ)− qλ2 (|β|) ◦ sign(β), (22)

where λ2 is the tuning parameter, and the intercept term, ξH , is left out of the penalty term.
For the long-term effect of the PHPH model, we extend (18) to the following PGEE

S(γ0, γ) = U(γ0, γ)− qλ3 (|γ|) ◦ sign(γ), (23)

where λ3 is the tuning parameter and the intercept term γ0 is not penalized.
Lastly, for the short-term effect of the PHPH model, we penalize (20) through

S(Θ) = U(Θ)− qλ4 (|ϕ|) ◦ sign(ϕ), (24)

where λ4 is the tuning parameter and ςtH is not penalized. In the simulation studies and data analyzes, we illustrate the pro-
posed procedure with the SCAD penalty24 and select the tuning parameters via five-fold cross-validation, where the data
are randomly partitioned into five subsets of approximately equal sizes. For a given tuning parameter λ, we calculate the

overall cross-validated prediction error CV (λ) = |N (k)|−1 ∑
j∈N (k) m−1

j

∑mj

ℓ=1 (PR(ϑ̂
(−k)⊤W jℓ))

2 where ϑ̂(−k) is the PGEE

estimator based on data without the kth subset, |N (k)| is the size of the kth subset, mj is the number of pseudo-observations

for subject j, and PR(ϑ̂(−k)⊤W jℓ) are the pseudo-residuals as defined in Section 4.3 with covariates W jℓ. We use the esti-
mates obtained from the unpenalized GEEs as the initial values in the iteration of PGEEs and cross-validation.

5 Simulation
Simulation studies are conducted to assess the finite sample performance of proposed estimators. We first evaluate the per-
formance under the PHMC model. Specifically, we generate the cure status according to the logistic model (2) with one
covariate Xi, i = 1, . . . , n, generated from a Bernoulli(0.5) distribution. The regression coefficient is set at α = (α0, − 1)
so that the treatment group (e.g. those with Xi = 1) are more likely to be cured. The intercept is chosen to be α0 = 2.8, α0 =
2 or α0 = 0.9 to achieve the average cure rates of 10% (14.1% among those with Xi = 1), 20% (26.7% among those with
Xi = 1) or 40% (52.3% among those with Xi = 1), respectively. On the other hand, the survival times are generated from
the Cox PH model (3), with λ0(t) = 1/3, and (Zi1, Zi2) generated from independent Bernoulli(0.5) and Uniform(0, 1),
respectively. We set the regression coefficient in (3) at β = (1, 0.5) and generated the censoring times from Uniform(0, c),
where c is chosen to make 10% of the censored subjects susceptible. Throughout the simulations, the pseudo-observations
are calculated at 10 time-points from the quantitles of observed event times between 0 and tmax.

Table 1 summarizes the simulation results of 20% and 40% cure rates scenarios based on (14) and (16) with link functions
g1(x) = log {x/(1− x)}, g2(x) = log {− log (x)} and ξth = logΛ0(th). The scenario with 10% cure rate is presented in Table 1
in Web Appendix E. We only present the results with a working independence assumption among the pseudo-observations.
Adopting a more complicated covariance structure provides no obvious improvement as presented in Klein and Andersen37

and Graw et al.19The proposed estimates are compared with the EM-algorithm estimators obtained from Peng and Dear6

with B = 100 bootstrap samples for standard error estimation. For each estimator, we report the average bias (Bias), the empir-
ical standard error (ESE), the average of the standard error estimator (SEE), and the empirical coverage rate (CR) of 95% con-
fidence interval based on 500 replicates with sample size n = 200, 400, 600, and 1000. Overall, the proposed estimators
perform reasonably in all scenarios with Bias, ESE, and SEE all decreasing with increasing n while CRs are close to the
nominal level of 0.95. The estimators (α̂PO0,NP, α̂

PO
NP) and (α̂PO0,KM, α̂

PO
KM) have similar performance, indicating that

pseudo-observations constructed by (6) or (7) are both appropriate. Compared to the estimates of Peng and Dear,6 our
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estimators have higher ESE and SEE under various sample sizes, indicating a loss of efficiency. Specifically, based on our
simulation settings, the smallest relative efficiency loss for the latency component is around 12% with n = 1000 under the
10% cure rate scenario. The smallest relative efficiency loss for the incidence component is around 9% with n = 1000
under the 40% cure rate scenario. This loss efficiency situation is likely due to a discrete approximation to the baseline
hazard function with a continuous time scale, for example, 10 selected time-points for the latency component in our approach.
Note that the latency component yields smaller ESE and SEE under 10% cure rate compared to 20% and 40% cure rates scen-
arios as more noncured subjects contribute to the estimation of β.

On the other hand, Table 2 in Web Appendix E reports the average computing time in seconds for each estimator under
the 10% cure rate scenario based on 500 replicates. For each fixed n, our proposed estimators including variance estimation
have smaller total computing times (summation of latency and incidence) than that of the EM-algorithm estimate6 using
B = 100 bootstrap samples for standard error estimation. Computing times increase as long as the sample size increases.
Among our proposed estimators for the incidence component, the computing time for the KM estimator (6) is faster than
that of the estimator (7). Note that all results of computing times are implemented in R and performed on a Linux machine
with an Intel Core i7-8565U processor and 15.4 GB memory.

Table 1. Simulation summaries under the PHMC model based on 500 replicates.

Incidence Latency

n α̂PO0,NP α̂PO1,NP α̂PO0,KM α̂PO1,KM α̂EM0 α̂EM1 β̂PO1 β̂PO2 β̂EM1 β̂EM2

20% cure rate, 30% censoring rate

200 Bias 0.040 −0.037 0.038 −0.034 0.048 −0.026 0.011 0.005 0.009 0.001

ESE 0.431 0.507 0.423 0.503 0.396 0.468 0.226 0.379 0.209 0.321

SEE 0.473 0.560 0.469 0.556 0.349 0.477 0.232 0.381 0.207 0.335

CR 0.954 0.963 0.957 0.963 0.923 0.968 0.964 0.966 0.960 0.968

400 Bias 0.018 −0.027 0.019 −0.028 0.032 −0.036 0.016 0.022 0.013 0.017

ESE 0.328 0.377 0.327 0.377 0.286 0.325 0.159 0.277 0.138 0.230

SEE 0.323 0.387 0.324 0.387 0.271 0.351 0.166 0.272 0.142 0.232

CR 0.956 0.962 0.956 0.960 0.930 0.958 0.960 0.964 0.958 0.960

600 Bias 0.014 −0.013 0.011 −0.012 0.021 −0.017 0.009 −0.013 0.007 −0.013
ESE 0.260 0.300 0.254 0.299 0.215 0.251 0.124 0.233 0.109 0.190

SEE 0.266 0.316 0.264 0.315 0.205 0.272 0.136 0.223 0.115 0.188

CR 0.960 0.954 0.964 0.950 0.956 0.976 0.970 0.932 0.974 0.936

1000 Bias −0.010 0.008 0.008 0.010 0.015 −0.014 −0.001 −0.004 −0.002 0.000

ESE 0.216 0.236 0.217 0.246 0.164 0.188 0.093 0.172 0.086 0.143

SEE 0.201 0.230 0.199 0.238 0.161 0.206 0.104 0.173 0.088 0.144

CR 0.940 0.954 0.954 0.958 0.940 0.974 0.964 0.946 0.958 0.946

40% cure rate, 50% censoring rate

200 Bias −0.027 −0.001 −0.025 −0.001 −0.012 −0.008 0.011 −0.045 −0.008 −0.044
ESE 0.334 0.425 0.335 0.425 0.288 0.363 0.311 0.586 0.279 0.404

SEE 0.312 0.411 0.312 0.411 0.242 0.368 0.328 0.556 0.271 0.439

CR 0.926 0.958 0.926 0.958 0.886 0.950 0.954 0.946 0.936 0.964

400 Bias −0.018 −0.019 −0.019 −0.020 −0.021 −0.004 −0.010 −0.014 −0.019 −0.010
ESE 0.290 0.339 0.298 0.351 0.192 0.234 0.228 0.492 0.192 0.299

SEE 0.266 0.331 0.283 0.347 0.162 0.251 0.239 0.412 0.184 0.298

CR 0.938 0.974 0.934 0.976 0.892 0.966 0.944 0.942 0.944 0.954

600 Bias −0.018 0.015 −0.018 0.015 −0.018 0.007 −0.012 −0.032 −0.008 −0.008
ESE 0.169 0.224 0.169 0.225 0.156 0.199 0.161 0.367 0.137 0.248

SEE 0.173 0.227 0.172 0.227 0.153 0.202 0.185 0.316 0.147 0.237

CR 0.940 0.956 0.940 0.960 0.940 0.950 0.965 0.945 0.962 0.932

1000 Bias −0.015 0.016 −0.015 0.009 −0.010 0.002 −0.024 −0.023 −0.017 −0.010
ESE 0.129 0.168 0.128 0.168 0.119 0.153 0.119 0.234 0.108 0.185

SEE 0.128 0.169 0.129 0.170 0.120 0.154 0.134 0.229 0.111 0.182

CR 0.942 0.945 0.942 0.952 0.940 0.956 0.958 0.938 0.940 0.942

Bias: bias of parameter estimator; ESE: the empirical standard error; SEE: average of the standard error estimator; CR: coverage rate of the 95% confidence

interval; PHMC: proportional hazards mixture cure; (α̂EM0 , α̂EM1 ) and (β̂EM1 , β̂EM2 ) are EM-algorithm based estimators with standard errors are estimated

based on B = 100 bootstrap samples6 which can be implemented via the R package smcure.38
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We next evaluate the performance of the proposed estimators under the PHPH model (5). For subject i, two independent
covariates Xi1 and Xi2 are generated from Bernoulli(0.5) and standard normal distribution, respectively. We set
θ(X i) = exp (γ0 + γ1Xi1), η(Z i) = exp (ϕ1Xi1 + ϕ2Xi2) and �F(x) = exp (− 2x). It is not straightforward to simulate sur-
vival time from the improper survival function of model (5) as it has a positive mass at ∞. We thus utilize the connection
between the MC model (1) and the PHPH model (5) to generate survival times. The data generation algorithm is summar-
ized inWeb Appendix D. We set γ1 = −0.1, (ϕ1, ϕ2) = (0.4, − 0.3) with two different values of γ0, 0.5 and−0.05, which
correspond to 20% and 40% cure rate, respectively. The censoring times are independently generated from Uniform(0,c),
where c is chosen so that 10% of the censored subjects are susceptible. Tables 3 and 4 presented in Web Appendix E show
the results of estimators (γ̂PO0,KM, γ̂

PO
1,KM) and (γ̂PO0,NP, γ̂

PO
1,NP) obtained from (18) and estimators (ϕ̂PO

1,NP, ϕ̂
PO
2,NP) and

(ϕ̂PO
1,KM, ϕ̂

PO
2,KM) obtained from (20), respectively. A maximum likelihood estimator (MLE) is implemented for comparison.

The proposed estimates are virtually unbiased. The SEE is reasonably close to the ESE, and the CR is close to the nominal
level. The two constructions of the pseudo-observations yield a similar pattern, indicating that both approaches are feasible
for constructing pseudo-observations. The proposed estimators have higher ESE and SEE than MLE under different
sample sizes, indicating a loss of efficiency. For example, the relative efficiency losses are around 19% and 25% for long-
term and short-term effects, respectively, under the scenario, n = 1000, 40% cure rate, and 50% censoring rate.

To study the performance of variable selection under the PHMCmodel, we consider the covariate X = (X1, . . . , X20) in
which X1, X2 are independently generated from Uniform(0,1), X3 and X4 are independently generated from Bernoulli(0.5),
and X5, . . . , X20 are generated from a multivariate normal distribution with E(Xi) = 0 and Cov (Xi, Xj) = 0.5|i−j|, for
i, j = 5, . . . , 20. We set the regression coefficients at α0 = 1.1, α = (0, 1, − 1.2, 0, 0, − 0.9, 0.8, 0, 0, . . . , 0)⊤, and
β = (−0.7, 0, 1, 0, − 0.5, 0.8, 0, 0, 0, . . . , 0)⊤, and the baseline hazard function λ0(t) = 1/3. Those configurations
yield a cure rate of 30%. The censoring times are independently generated from Uniform(0, c), where c is chosen so
that either 10% or 30% of the censored subjects are susceptible. For each simulated data set, we fit the GEE full model
that considers all covariates, the GEE Oracle model that only includes covariates with nonzero coefficients, the proposed
PGEE model with SCAD penalty, and the PHMC model with LASSO and ALASSO penalties proposed by Masud et al.27

Table 2 summarizes the results for variable selection under the PHMC model with n = 200 and 600. Based on 200
replicates, the average mean square error (MSE), true positives (TP), and false positives (FP) are reported. The MSE is
defined as

∑200
j=1 ‖α̂ j − α‖2/200 for incidence component and

∑200
j=1 ‖β̂ j − β‖2/200 for latency component, where α̂ j

and β̂ j are the estimators of α and β based on the jth generated dataset. The TP and FP are calculated as the average
number of selected covariates that have actual nonzero and zero coefficients, respectively. Five-fold cross-validation
is used to determine the tuning parameter. For the incidence component, the two pseudo-observations approaches yield
similar performances, making them practically identical. For all scenarios, the MSE of proposed PGEE approaches is
smaller than that of the full model but is larger than that of the oracle model. However, it becomes closer to the MSE of
the oracle model as n increases. In addition, when the censoring rate is 40%, the proposed PGEE approaches behave
closer to the oracle model, have TP closer to the number of nonzero covariates, and decreasing FP as n increases. On the
contrary, the FP of the LASSO and ALASSO estimators do not seem to decrease with increasing n. For the latency
component, we consider the proposed PGEE with three different correlation structures: independence, exchangeable,
and AR(1). The results of PGEE with independent structure tend to have slightly higher TP and FP and lower MSE than
that of the PGEE with exchangeable and AR(1) correlation structure. However, the performances are close when the
sample size is large and with 40% censoring rate, indicating that little advantage gains while specifying complicated
correlation structure among pseudo-observations for variable selection. When the censoring rate is 60%, the TP
decreases and the MSE increases for all the presented methods. Compared to the results based on LASSO and
ALASSO, our proposed PGEE performs reasonably in identifying important variables with n = 600. The results
with n = 400 and 1000 reveal a similar trend and are presented in Table 5 in Web Appendix E.

To investigate variable selection performance under the PHPH model, we generate the covariate vector following the
PHMC model’s configuration to specify the short-term and long-term effects. In this case, we set γ0 = 0.85,
γ = (0, 0, − 0.9, 0, 0, − 0.7, 0, 1, 0, . . . , 0), ϕ = (− 0.5, 0, 0.8, 0, − 0.7, 0, 0, 0, 0, . . . , 0), and the baseline function
�F(x) = exp (− 2x), resulting in a cure rate of 30%. The censoring times are independently generated from Uniform(0, c),
where c is chosen so that either 10% or 30% of the censored subjects are susceptible. Tables 6 and 7 in Web Appendix E
depict the simulation results for long-term and short-term effects based on different sample sizes. The definition of the MSE
for the long-term and short-term effects is similar to that of the incidence and latency components mentioned in the above
paragraph. We observe that the two constructions of pseudo-observations yield similar results. For each sample size n, the
MSE of the PGEE is smaller than that of the full model but is larger than that of the oracle model. As n increases, the MSE
of the PGEE decreases and is close to that of the Oracle model. Also, the TP increases and the FP decreases. However, as
expected, the MSE increases and the TP decreases when the censoring rate increases to 60%. Finally, based on our simu-
lation results, we observe minimal performance gains when specifying complicated correlations among
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pseudo-observations. With the same simulation specifications, we observe an improvement in FP and a loss in TP (results
not shown here) when a one-standard error rule is used to select the optimum tuning parameter.

6 Data analysis

6.1 The melanoma data
We apply the proposed method to a melanoma dataset from the Eastern Cooperative Oncology Group phase III clinical trial
e1684,1 which is available from the R package smcure.38 The primary objective is to determine whether the high dose

Table 2. Simulation summaries for variable selection on the incidence and latency component of the PHMC model with 30% cure rate.

40% censoring rate 60% censoring rate

n MSE TP FP MSE TP FP

Incidence
200 Full.NP 7.44 – – 10.96 – –

Full.KM 7.45 – – 10.96 – –

Oracle.NP 1.66 4 0 4.54 4 0

Oracle.KM 1.65 4 0 4.54 4 0

SCAD.NP 5.23 2.77 7.40 6.21 1.49 4.87

SCAD.KM 5.18 2.77 7.59 6.36 1.49 4.72

LASSO 3.33 1.12 0.78 4.56 0.26 0.15

ALASSO 3.23 1.26 0.69 4.54 0.23 0.19

600 Full.NP 1.39 – – 4.96 – –

Full.KM 1.35 – – 4.99 – –

Oracle.NP 0.39 4 0 3.57 4 0

Oracle.KM 0.38 4 0 3.63 4 0

SCAD.NP 0.68 3.87 0.42 4.64 0.98 0.63

SCAD.KM 0.68 3.86 0.42 4.69 1.00 0.70

LASSO 1.20 3.81 2.06 4.24 0.86 0.86

ALASSO 1.17 3.80 1.88 4.23 0.93 0.66

Latency
200 Full.indep 1.61 – – 3.87 – –

Full.exch 2.39 – – 4.44 – –

Full.ar1 2.23 – – 4.78 – –

Oracle.indep 0.42 4 0 1.06 4 0

Oracle.exch 0.41 4 0 1.80 4 0

Oracle.ar1 0.41 4 0 1.30 4 0

SCAD.indep 0.99 3.17 2.32 2.40 0.54 0.95

SCAD.exch 1.08 2.86 0.75 2.40 0.31 0.35

SCAD.ar1 1.04 2.98 0.86 2.51 0.28 0.20

LASSO 1.38 2.26 1.70 2.26 0.34 0.36

ALASSO 0.67 3.34 0.79 1.90 1.36 0.58

600 Full.indep 0.35 – – 1.30 – –

Full.exch 0.41 – – 2.17 – –

Full.ar1 0.37 – – 1.36 – –

Oracle.indep 0.12 4 0 0.58 4 0

Oracle.exch 0.13 4 0 0.71 4 0

Oracle.ar1 0.12 4 0 0.61 4 0

SCAD.indep 0.21 3.87 0.77 1.20 2.38 1.50

SCAD.exch 0.24 3.82 0.18 1.54 1.89 0.86

SCAD.ar1 0.24 3.83 0.16 1.23 1.72 0.38

LASSO 0.31 3.94 2.64 1.48 2.35 1.43

ALASSO 0.14 3.96 0.27 0.66 3.45 0.49

Full: model includes all covariates; Oracle: model only includes the covariates with nonzero coefficients; Acronyms that ends with .NP or .KM indicates

pseudo-observations π̂iNP or π̂
i
KM, respectively; Acronyms that ends with .indep, .exch and .ar1 indicates independence, exchangeable and AR(1) correlation

structure among pseudo-observations, respectively; LASSO: PHMC model with LASSO penalty; ALASSO: PHMC model with ALASSO penalty; MSE: the

average estimated mean square error; TP: the average true positives; FP: the average false positives;PHMC: proportional hazards mixture cure.
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interferon alpha-2b (IFN) regimen in postoperative adjuvant therapy would lead to a significantly prolonged interval of
relapse-free for melanoma. The event of interest is the relapse of melanoma. The interested covariates include treatment
(0=placebo, 1=IFN), gender (0=male, 1=female), and age (centered to zero). After excluding missing data, a total of
284 subjects is included in the analysis. The overall censoring rate is 30.9%. Figure 1(a) shows the KM estimates stratified
by treatment and gender. The KM estimates level off at the end of the study, suggesting a fraction of nonsusceptibility to
the recurrence of melanoma. This observation is confirmed by the Maller-Zhou test30 with a p-value of <0.001. Based on
the KM curves, a male has a higher cure rate than a female in the treatment group, whereas it is reversed in the control
group, implying an interaction between the treatment and gender. Thus, the interaction term is also considered in the
data analysis.

The top panel of Table 3 presents the results from the PHMC model obtained by (14) and (16) with g1(x) =
log {x/(1− x)}, g2(x) = log {− log (x)}, and ξth = logΛ0(th). The lower panel of Table 3 presents the results from the
PHPH model obtained by (18) and (20) with g3(x) = log (x), g4(x) = log {− log (x)}, and ςth = log {− log (�F(th))}. For
comparison, we included the estimator6 based on the EM-algorithm with standard errors obtained from 500 bootstrapped
samples. The two constructions π̂iKM and π̂iNP of the pseudo-observations for π yield similar patterns. For the incidence
component, our proposed estimates α̂PO

NP and α̂PO
KM are similar to the estimate α̂EM. The treatment has a significantly

adverse effect on the susceptibility (noncured), which means the treatment substantially improves the relapse-free

Table 3. Parameter estimates for the melanoma data.

PHMC model

Incidence

α̂EM α̂PO
NP α̂PO

KM

Est. SEE p-value Est. SEE p-value Est. SEE p-value

Intercept 1.502 0.366 <0.001 1.671 0.563 0.003 1.737 0.584 0.003

Treatment −0.866 0.426 0.042 −1.272 0.612 0.037 −1.294 0.633 0.040

Gender −0.442 0.492 0.368 −0.614 0.614 0.315 −0.628 0.635 0.320

Age 0.018 0.014 0.189 0.024 0.013 0.066 0.024 0.013 0.066

Treatment:Gender 0.648 0.665 0.329 0.886 0.734 0.225 0.903 0.755 0.228

Latency

β̂EM β̂PO

Est. SEE p-value Est. SEE p-value

Treatment −0.012 0.236 0.958 −0.009 0.299 0.975

Gender 0.266 0.258 0.303 0.151 0.310 0.629

Age −0.007 0.007 0.266 −0.009 0.007 0.206

Treatment: Gender −0.334 0.369 0.365 −0.151 0.383 0.696

PHPH model

Long-term effect

γ̂PONP γ̂POKM

Est. SEE p-value Est. SEE p-value

Intercept 0.519 0.167 0.002 0.538 0.164 0.001

Treatment −0.689 0.275 0.012 −0.668 0.266 0.012

Gender −0.266 0.223 0.229 −0.259 0.218 0.231

Age 0.012 0.006 0.044 0.012 0.006 0.044

Treatment: Gender 0.467 0.390 0.228 0.453 0.378 0.227

Short-term effect

ϕ̂PO
NP ϕ̂PO

KM

Est. SEE p-value Est. SEE p-value

Treatment 0.586 0.500 0.247 0.565 0.487 0.252

Gender 0.557 0.482 0.253 0.537 0.469 0.258

Age −0.017 0.010 0.104 −0.017 0.010 0.101

Treatment: Gender −0.718 0.572 0.214 −0.689 0.557 0.220

Est.: Parameter estimate; SEE: Standard error estimate; α̂EM and β̂EM are EM-algorithm estimators with standard errors are estimated based on 500

bootstrap samples obtained from the R package smcure.38
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(cured) rate, especially for males. The positive age effect indicates that older patients tend to have a higher relapse rate of
melanoma. In the latency component, none of the four covariates are significantly associated with the failure time if patients
are susceptible. However, female patients tend to have a lower risk of recurring melanoma than male patients in the treat-
ment group but higher in the control group.

Under the PHPH model, the treatment has a significantly negative effect on the long-term effect, indicating that high
dose IFN regimen increase the rate of relapse-free melanoma, especially for males. Older patients have a high possibility
of recurring melanoma even though the effect is not statistically significant at the 5% nominal level. Those results are con-
sistent with the findings in the incidence of the PHMC model. None of the four covariates are statistically significant at the
5% nominal level related to the short-term effect. The estimates indicate females are likely to have a more rapidly devel-
oping melanoma within the treatment group. However, the result is reversed in the control group, i.e., males are expected to
experience melanoma sooner than females. Those findings are verified in Figure 1(a), where the KM estimate drops rela-
tively faster for the females than for the males in the treatment group. In contrast, the KM estimates drop faster for the males
than females in the control group.

To understand the covariate effect of cure rates in two models, we calculate the estimated cure rates in each group while
holding the age variable at the average. The results presented in Table 6 of Web Appendix E suggests that there are higher
cure rates among the treatment groups, echoing our finding that the treatment substantially improves the relapse-free
(cured) rate. The estimated cure rates based on α̂PO

NP and α̂PO
KM under the PHMC model are close to that based on

ŜKM(tmax); however, the results based on γ̂PONP and γ̂POKM under the PHPH model tend to have higher cure rate except for
the female in the treatment group. This suggests that the PHMC model is more conservative in estimating cure rates.
To assess the goodness of fit, Figure 2 in Web Appendix F presents the boxplots of pseudo-residuals for models (13)
and (15) of the PHMC model. The top panel shows the boxplots of pseudo-residuals stratified by treatment and gender
based on the pseudo-observations π̂iKM from (6) and its corresponding estimators. The pseudo-residuals fluctuate around
zero, indicating the adequacy of the proposed GLM even though the pseudo-residuals have a larger variation in the
Control/Male group. The bottom panel illustrates the boxplots of pseudo-residuals based on pseudo-observations Ŝiu(t) cal-
culated at four given time points chosen from the quantiles of observed event times. The residuals are symmetric around 0
at any given time point, which implies the proposed GLM model fits the data well even though the variation of the
pseudo-observations increases in the Control/Male group as the time increases. The boxplots of pseudo-residuals stratified
by treatment and gender based on GLMs (17) and (19) under the PHPH model are also presented in Figure 3 of Web
Appendix F. The top panel shows the residuals calculated based on pseudo-observations θ̂iKM and its resulting estimators,
and the bottom panel presents the pseudo-residuals calculated based on pseudo-observations F̂i

KM(t) at four given time
points. Compared to Figure 2 in Web Appendix F, the pseudo-residuals under the PHPH model tend to have more con-
siderable variations. This result might suggest that the PHMC model fits the data better than the PHPH model.

6.2 The dental data
We apply the proposed PGEE approaches to a dental dataset from the Creighton University School of Dentistry.2The
dataset contains dental records from 5336 patients with periodontal disease collected between August 2007 and March
2013. In this work, the outcome of interest is the time to the first tooth loss due to periodontal reasons for each patient,
yielding a censoring rate of 74.1%. The data analysis includes a total of 44 risk factors, whose detailed descriptions can
be found in Tables 3 and 4 in Calhoun et al.2 The length of the follow-up was 5.7 years, and the last event occurred at
5.37 years for both molar and non-molar groups. There were 35 and 20 teeth censored between the last event and the
end of the study for the malor group and non-molars group, respectively. Figure 1(b) shows the KM survival curves strati-
fied by the tooth type (3456 molars vs. 1880 non-molars) leveling off to nonzero probabilities, indicating a possible pres-
ence of a cured fraction in the population. This is also confirmed by the Maller-Zhou test30 with a p-value of <0.001.

As the study aims to identify which factors are associated with tooth loss, the proposed PGEE provides a logical tool for
risk factor screening. We perform the variable selection procedure in both the PHMC model and the PHPH model. Under
the PHMC model, we apply the proposed PGEEs in (21) and (22) with pseudo-observations created by π̂iKM and Ŝiu(t),
respectively. While under the PHPH model, we apply the proposed PGEEs in (23) and (24) with pseudo-observations
created by θ̂iKM and F̂i

KM(t), respectively. In both the PHMC model and the PHPH model, a working independence correl-
ation is incorporated for the ten pseudo-observations obtained from the quantitles of observed event times. The tuning para-
meters are selected via five-fold cross-validation. For comparison, we also fit the PHMCmodel with LASSO and ALASSO
penalties proposed by Masud et al.27 implemented in the R package intsurv.39In the variable selection procedure, the molar
variable’s coefficient is not penalized since the variable effect is the research of interest. Tables 4 and 5 present the variable
selection results. Under the PHMC assumption, when predicting whether a tooth is cured, the LASSO and ALASSO
selected more variables as we observed in the simulation studies; see Table 2 and Table 5 in Web Appendix E. The
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Table 4. Estimated coefficients based on different penalization approaches for the dental dataset.

PHMC PHPH

LASSO ALASSO PGEE PGEE

Incidence Latency Incidence Latency Incidence Latency Long-term Short-term

Tooth-level factors
molar −0.327 −0.268 −0.392 −0.224 −0.618 −0.063 −1.303 −0.048
mobil 0.541 0.328 0.718 1.125 0.751 0.671

bleed 0.003 0.002 0.002 −0.003
plaque 0.002 0.013 0.002

pocket_mean 0.428 0.417 0.746

pocket_max

cal_mean

cal_max 0.063 0.066

fgm_mean

fgm_max

filled 1.372

decay_new 0.063 0.111 0.119 1.591 0.815 0.744

decay_recurrent 0.194 0.165 1.619 0.590 0.547

dfs −1.295
crown 0.020

endo 1.091 1.088 2.074 −0.683
filled tooth −0.431 −0.066 −0.450 −0.690 −0.859 −0.842
decayed tooth 0.524 0.577 −1.434 −1.522

Table 5. (Continuation of Table 4) Estimated coefficients based on different penalization approaches for the dental dataset.

PHMC PHPH

LASSO ALASSO PGEE PGEE

Incidence Latency Incidence Latency Incidence Latency Long-term Short-term

Subject-level factors
bleed_ave 0.006 −0.019 0.006

plaque_ave −0.007 0.041 −0.007
pocket_mean_ave 0.013 0.021

pocket_max_ave 0.017 0.023

cal_mean_ave

cal_max_ave

fgm_mean_ave

fgm_max_ave

filled_sum −0.007 0.011 −0.001
filled_ave

decay_new_sum 0.016 0.005

decay_new_ave 0.788 0.493 1.286

decay_recur_sum 0.097 0.087 0.427 −0.009 0.015 −0.028
decayed_recur_ave −3.686
dfs_sum −0.002 0.033 −0.006
dfs_ave

filled_tooth_sum 0.033 0.033

filled_tooth_ave

decayed_tooth_sum 0.044 0.049 0.034

decayed_tooth_ave −0.981 0.619 0.641

missing_tooth_sum

missing_tooth_ave −1.683 0.597 0.988

total_tooth 0.002

Demographic factors
age at baseline 0.013 0.013 0.005 0.009 0.005

gender −0.051 −0.032
Health factors
diabetes 0.589 0.654

Tobacco use 0.171 0.159 0.362
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common selected factors based on presented methods include mobility score (mobil), bleeding on probing (bleed), peri-
odontal probing depth (pocket_mean), decayed surfaces new (decayed_new), decayed surfaces recurrent (decayed_recur-
rent), endodontic therapy (endo), filled tooth (filled_tooth) and recurrent decayed surfaces (decay_recur_sum). Only the
variable filled tooth increases the chance of cure while others decrease the chance of cure. In addition, for the latency,
the PGEE tends to identify more risk factors in predicting tooth survival time. The mobility score (mobil), decayed surfaces
new (decayed_new) and filled tooth (filled_tooth) are three common selected factors related to the tooth survival time based
on PGEE and LASSO. Under the PHPHmodel assumption, our proposed PGEE approach suggests that factors plaque score
(plaque), bleeding on probing (bleed_ave), plaque index (plaque_ave), filled surfaces (filled_sum), recurrent decayed sur-
faces (decay_recur_sum), decayed and filled surfaces (dfs_sum), number of decayed teeth (decayed_tooth_sum) and age at
baseline (baseline_age) are importantly associated with the long-term effect. Moreover, 20 factors are identified in associ-
ation with the short-term effect, indicating losing the tooth more rapidly. Interestingly, we observe that 15 variables are both
selected by the PGEE in the latency component of the PHMC model and the short-term effect of the PHPH model even
though covariates are interpreted differently in the two models.

7 Conclusions
This article extends the pseudo-observations approach to the context of right-censored survival data with a cure fraction for
two popular cure models, the MCmodel and the BCHmodel. Several estimators for the regression parameters related to the
cure rate and the risk of experiencing the event are proposed under the PHMC model and the PHPH model. The proposed
methods allow researchers to estimate the covariate effects separately and identify essential factors associated with the cure
rate and the risk of failure. Simulation studies show that the proposed methods perform reasonably under finite sample
sizes. We also demonstrate the proposed methodology on two real applications involving survival data with a cure fraction.

In this work, for the MC model, we propose two different incidence regression estimators α̂PO
KM and α̂PO

NP. For the BCH
model, we consider two different regression estimators γ̂PO

KM and γ̂PO
NP for long-term effects and two different regression esti-

mators ϕ̂PO
KM and ϕ̂PO

NP for short-term effects. In the simulation studies, each of the pairs of estimators performs similarly.
However, from the computing time point of view, we recommend that researchers consider estimators based on KM esti-
mator as its computing times is fast. On the other hand, as we showed in the simulation studies, our proposed estimators
based on pseudo-observations under both MC and BCH models have larger ESE and SEE than those from the usual MC
and BCH models. This efficiency loss is commonly seen in the pseudo-observations literature.12,40 As pointed out by a
referee, the efficiency loss is a limitation for our proposed pseudo-observations approach on the cure models when the
number of covariates is small, like our real data analysis in Section 6.1. However, modeling pseudo-observations consti-
tutes a general and straightforward approach to simplify survival analysis. In our applications, the pseudo-observations
approach brings several advantages. First, it is more flexible and feasible for parameter estimation and variable selection
when the number of covariates is large. The estimating procedure can be performed separately for each component in the
MC model and each effect in the BCH model. Second, the computing time based on the pseudo-observations approach is
faster than standard approaches that use the EM algorithm for estimation and bootstrapping for standard errors. Finally,
pseudo-residuals can be applied for model diagnosis via residual plots.

Our PHPH model links the short-term effect to the baseline survival function via a proportional hazard model. The pro-
posed PHPH model can be extended to accommodate non-proportional hazard assumptions by considering an exponential
transformation or an accelerated failure time model in the short-term effect.8On the other hand, we applied the
pseudo-observations approach to the PHMC model. Another commonly used MC model is the accelerated failure time
MC (AFTMC) model,7 in which the logistic regression model is considered to model the cure status in the incidence com-
ponent and the AFT model, log (T ) = X⊤β+ ε, is used to model the conditional survival function in the latency compo-
nent, where ε is the error term with survival distribution Sε(·). Under AFTMCmodel, our proposed pseudo-observations (6)
and (7) using GEE approach can be directly applied to estimate the unknown parameters in the incidence component. For
the latency component, we discuss the feasibility of using the pseudo-observations approach to estimate β under AFT
model in two folds. First, when the survival distribution Sε(·) is known; that is, a parametric AFT model, one can write
S−1
ε (Su(t)) = log (t)− X⊤β and treat it as a GLM with link function S−1

ε (·). To estimate β, one can create the
pseudo-observations for Su(t) with given time points t ∈ {t1, . . . , tH} based on KM estimator as we proposed in equation
(8) and then the GEE approach can be applied to obtain the estimates for β. However, one might need to program the esti-
mating equation on their own because the geese function in the R package geepack35 only provides commonly seen link
functions. Second, when the survival distribution Sε(·) is unknown in a semi-parametric AFT model, it may not be straight-
forward to use the pseudo-observations approach to estimate β even though the pseudo-observations for Su(t) can be
created. The main issue is the unknown survival function Sε(·), so is the inverse function S−1

ε (·). Further investigation
is required and will be an interesting topic for future research.
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We note some limitations of our proposed work for variable selection. Based on our simulation studies, the TP rate
seems to be low for the incidence component of the MC model when n = 200. This results might be induced because
only one time point is used to create the pseudo-observations for the cure rate. When applying our proposed approach
to a small sample sizes like 200 in our simulation, researchers can investigate the stability of variable selection via the boot-
strap approach proposed by Royston and Sauerbrei.41 In this work, we only report the selected coefficient estimates from
the penalized approach for the dental data analysis. In practice, one might adopt a two-stage approach in which the infer-
ence is based on the selected model to obtain standard errors.27The validity of inferences based on the penalization and the
goodness-of-fit assessments will be studied in future work.
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