
South Dakota State University South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Open PRAIRIE: Open Public Research Access Institutional

Repository and Information Exchange Repository and Information Exchange

Electronic Theses and Dissertations

2022

Sentiment without Sentiment Analysis: Using the Sentiment without Sentiment Analysis: Using the

Recommendation Outcome of Steam Game Reviews as Recommendation Outcome of Steam Game Reviews as

Sentiment Predictor Sentiment Predictor

Anqi Zhang

Follow this and additional works at: https://openprairie.sdstate.edu/etd2

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/
https://openprairie.sdstate.edu/etd2
https://openprairie.sdstate.edu/etd2?utm_source=openprairie.sdstate.edu%2Fetd2%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=openprairie.sdstate.edu%2Fetd2%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=openprairie.sdstate.edu%2Fetd2%2F490&utm_medium=PDF&utm_campaign=PDFCoverPages

SENTIMENT WITHOUT SENTIMENT ANALYSIS:

USING THE RECOMMENDATION OUTCOME OF STEAM GAME REVIEWS AS

SENTIMENT PREDICTOR

BY

ANQI ZHANG

A thesis submitted in partial fulfillment of the requirements for the

Master of Science

Major in Computer Science

South Dakota State University

2022

THESIS ACCEPTANCE PAGE

Anqi Zhang

This thesis is approved as a creditable and independent investigation by a candidate for

the master's degree and is acceptable for meeting the thesis requirements for this degree.

Acceptance of this does not imply that the conclusions reached by the candidate are

necessarily the conclusions of the major department.

11

Kaiqun Fu

Advisor

George Hamer

Department Head

Nicole Lounsbery, PhD
Director, Graduate School

Date

Date

Date

iii

This thesis is dedicated to any of you out there who have been told that you could not

accomplish something. Stay undeterred.

iv

ACKNOWLEDGEMENTS

Dr. Fu, you have been an amazing thesis advisor and provided endless helpful

insights regarding this thesis and beyond. I appreciate you taking the time out of your

busy schedule for our weekly thesis meetings; I have learned so much from each one. I

cannot express my gratitude enough for your guidance and patience; I thank you

sincerely.

Dr. Won, thank you for explaining and reviewing numerous Computer Science

concepts to me when I first took your classes, especially the theoretically tricky ones, and

even afterwards. The one phrase I will never forget you saying is “it’s easy right?” of

which I will carry with me into the future.

Dr. Hamer, you were one of the most passionate and compassionate professors I

have had in a long time; both traits that really elevated the energy of the whole class and

made learning fun. I appreciate your witty humor and Batman is forever awesome.

I would also like to thank my two friends from school who made things less

insufferable, Julie Leidholt and Mengling Ding. They are both wonderful people and I

wish the best for them.

Lastly, I want to thank my significant other, Kevin Zywicki. If it was not for his

unconditional love and kindness, I would not have survived until today.

v

TABLE OF CONTENTS

ABBREVIATIONS .. viii

LIST OF FIGURES ... viii

LIST OF TABLES ... ix

ABSTRACT ... x

CHAPTER 1. INTRODUCTION .. 1

1.1 OVERVIEW ... 1

1.2 BACKGROUND .. 1

1.3 MOTIVATION AND OBJECTIVES ... 2

1.4 THESIS STRUCTURE ... 4

CHAPTER 2. LITERATURE REVIEW .. 5

2.1 CONCEPT REVIEW .. 5

2.2 RELATED WORK ... 5

CHAPTER 3. PRELIMINARY METHODS ... 9

3.1 SENTIMENT ANALYSIS ... 9

3.2 LDA IN TOPIC MODELING .. 9

3.3 TF-IDF AND BOW .. 11

CHAPTER 4. METHODOLOGIES ... 12

4.1 DATA ACQUISITION ... 12

vi

4.2 DATA PREPROCESSING ... 13

4.3 FEATURE GENERATION .. 16

4.4 MODELS .. 19

4.4.1 MULTILINEAR REGRESSION... 22

4.4.2 LASSO REGRESSION ... 22

4.4.3 RIDGE REGRESSION .. 22

4.4.4 SUPPORT VECTOR REGRESSION ... 23

4.4.5 MULTI-LAYER PERCEPTRON REGRESSION 23

CHAPTER 5. EXPERIMENTS AND RESULTS .. 24

5.1 SETUP AND PROCEDURES .. 24

5.1.1 ENVIRONMENT, LIBRARIES, AND DEPENDENCIES 24

5.1.2 HARDWARE SPECIFICATIONS .. 25

5.2 TRAINING PARAMETERS .. 25

5.3 RESULTS AND ANALYSIS ... 26

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 28

REFERENCES .. 30

vii

ABBREVIATIONS

AI Artificial Intelligence

BoW Bag of Words

CSV Comma Separated values

DF DataFrame

LDA Latent Dirichlet Allocation

LR Linear Regression

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLPR Multi-layer Perceptron Regression

MLR Multilinear Regression

NLG Natural Language Generation

NLP Natural Language Processing

NLU Natural Language Understanding

RMSE Root Mean Squared Error

RR Ridge Regression

TF-IDF Term Frequency-Inverse Document Frequency

viii

LIST OF FIGURES

Figure 1. Screenshot of a user review of Shenzhen IO game. ... 2

Figure 2. LDA model representation .. 10

Figure 3. First 5 rows of the DF. .. 13

Figure 4. Prepared DF of dataset. .. 15

Figure 5. Aggregated metrics in details about the 21 games. ... 16

Figure 6. List of text reviews. .. 16

Figure 7. WordClouds of Moleksyntez game. ... 18

Figure 8. WordClouds of Mechanica game. ... 18

Figure 9. Combined final features. ... 19

Figure 10. LASSO regression minimization equation. .. 20

Figure 11. SVR base equation. .. 21

Figure 12. Example of hidden layer. .. 21

ix

LIST OF TABLES

Table 1. Error Comparisons of Recommendation Prediction Based on Different Feature

Groups ... 26

x

ABSTRACT

SENTIMENT WITHOUT SENTIMENT ANALYSIS:

USING THE RECOMMENDATION OUTCOME OF STEAM GAME REVIEWS AS

SENTIMENT PREDICTOR

ANQI ZHANG

2022

This paper presents and explores a novel way to determine the sentiment of a Steam

game review based on the predicted recommendation of the review, testing different

regression models on a combination of Term Frequency-Inverse Document Frequency

(TF-IDF) and Latent Dirichlet Allocation (LDA) features. A dataset of Steam game

reviews extracted from the Programming games genre consisting of 21 games along with

other significant features such as the number of helpful likes on the recommendation,

number of hours played, and others. Based on the features, they are grouped into three

datasets: 1) either having keyword features only, 2) keyword features with the numerical

features, and 3) numerical features only. The three datasets were trained using five

different regression models: Multilinear Regression, Lasso Regression, Ridge

Regression, Support Vector Regression, and Multi-layer Perceptron Regression, which

were then evaluated using RMSE, MAE, and MAPE. The review recommendation was

predicted from each model, and the accuracy of the predictions were measured using the

different error rates. The results of this research may prove helpful in the convergence of

Machine Learning and Educational Games.

1

CHAPTER 1. INTRODUCTION

1.1 OVERVIEW

Machine learning for NLP has been applied extensively on online text reviews for

predicting factors such as the helpfulness of a review [1], success of a product based on

reviews [2], popularity of a product [3], next to other factors that may influence a user’s

behavior and increase profitability of the product [4].

 While there has been a breadth of research and analysis done on NLP aspects

pertaining to online text reviews of products, there have only been a handful that focus

specifically on Steam game reviews and the influence of its user recommendation system.

Furthermore, there has been sparse to none research on how positively recommended

Steam games based on those text reviews can be applied to game-approach learning in

higher education. This research aims to predict and compare the recommendation

outcomes of Steam games within the programming genre using different features of the

reviews through a combination of unsupervised and supervised machine learning models.

1.2 BACKGROUND

Video games have garnered much attention and popularity over the years, across

multiple platforms, accruing a massive user base. One of these platforms is called Steam,

which started as a software client for distributing digital games, but has since expanded

into a digital game market with social aspects, streaming services, a community hub for

PC gamers, and much more. Steam has an extensive library of games ranging from a

multitude of genres, also referred to as “tags”. Users who have purchased games on

Steam can write reviews on the platform that can also be rated by other users in number

2

of upvotes of “helpful” or “funny”, and may even be awarded certain titles. Additionally,

the reviews are classified as either “recommended” or “not recommended” by the

reviewer before the whole post goes live. An example review is as follows:

Fig 1. Screenshot of a user review of Shenzhen IO game

User reviews can be filtered by “positive” or “negative”, language, date range, and

playtime. Aside from filtering the user reviews, one can also filter Steam games in

general through various means. In this research, we will be using game review texts of

users from top-rated “Programming” games in the Steam library.

1.3 MOTIVATION AND OBJECTIVES

Based on some studies done on learning games in academia, it seems beneficial to

incorporate game-based learning in certain aspects of education [18]. In addition, for

someone like me, coming from a social sciences background, specifically psychology,

learning Computer Science has required me to shift my creative and analytical way of

3

thinking quite a bit into a more mathematical and theoretical way of problem-solving that

took me a while to adapt to, and had trouble grasping in the beginning. Not only that, but

many times I would not be able to apply what I learned in class to real-world problems

because of the gap that exists between the theoretical knowledge and the actual

implementation of that knowledge on something like creating and deploying a web

application from scratch, as an example.

I have always clung onto the notion that learning should be fun, just as most

games should be. That notion gave rise to an interesting thought: what if computer games

could be used in higher education in tandem to classes to motivate and engage students in

learning Computer Science concepts that were perceived as challenging by the student?

There have been an abundant number of studies done on how using learning

games/educational games or gamification in grade school through high school can be

beneficial towards students’ success in academics, but sparse studies have focused on

using learning/educational games for higher education for academic success, specifically

computer games in the field of Computer Science.

There are such computer games which can be found on the Steam platform,

specifically Computer Science or Programming games. Some of those programming

games provided a clear visual representation of certain Computer Science concepts, as

well as immersive simulations of real-world engineering applications, which enabled me

to understand what was being taught in class more thoroughly. Of course, the construct of

fun can be debated, but that is not within the scope of our research. Given the time

constraint and scope of our research, however, what can be discussed is whether or not

the accuracy of predicting the user recommendation of programming games can be an

4

indicator of levels of different sentiments, which in turn may be a gateway for future

research on the use of positively recommended Programming games in higher education.

Some ways we might be able to measure the accuracy is by applying and

comparing different ML models to predict if a game is recommended or not on Steam

based on different features of user reviews, as well as by exploring potential correlations

between different groupings of features and their prediction outcomes. More explicitly,

our main objectives will be to explore:

1. How accurate will the prediction of a recommended game be from Steam

Programming game review text with different input features using different ML models?

2. How will different combinations of input features affect the accuracy of

predicted models?

From those objectives, we may be able to explore if user recommendations of

Programming games on Steam have an impact on the sentiment of the review or not.

1.4 THESIS STRUCTURE

 This thesis contains a total of 6 chapters, with Chapter 1 as the introduction. In

Chapter 2, some basic terminologies of this thesis are explained and related works

regarding NLP and learning games are analyzed. Chapter 3 discusses the preliminary

methods used and reviews some vocabulary. Chapter 4 explores data collection and

processing steps, as well as feature generation and discusses models and methods utilized

on the processed dataset. Chapter 5 details the experiments and results. Lastly, Chapter 6

concludes with the conclusion and future works.

5

CHAPTER 2. LITERATURE REVIEW

2.1 CONCEPT REVIEW

Natural Language Processing expands across many disciplines and has been an

important tool in the field of AI. AI contains both ML and NLP at an intersect, but ML is

divided deeper by DL, while NLP is overarching. Even though NLP technically began

sometime in the 1940s, it only started gaining traction towards the 1980s and evolved in

popularity at a fast pace partially due to the availability of larger amounts data, otherwise

known as “big data” [5]. At the core of it all, NLP is a field of study bridging together AI

and Linguistics in which machines try to understand all spheres of human language to the

best of its ability and develop learning models to mimic that in order to predict speech,

text, or other computations.

 Moreover, NLP can be broken down into either Natural Language Understanding

(NLU) or Natural Language Generation (NLG). NLU includes understanding the natural

language through finding meaning or emotion through some corpus, whereas NLG

creates or outputs new text, speech, or other capacities of language [6].

2.2 RELATED WORK

Many works regarding NLP have been useful in the real world in a wide range of

areas. Current advances in NLP can use machines to detect spam emails, extract

information from multiple sources, bring about medical advances, and create sentient-like

chatbots, just to name a few [6]. A big part of NLP includes the use of sentiment analysis

across diverse contexts [29].

6

 In the context of online reviews, sentiment analysis has been routinely utilized.

More precisely, there have been a several studies regarding sentiment analysis in the area

of online game reviews from the Steam platform. One such study was conducted by Zuo

[4] where he showed the complete process of using sentiment analysis with Gaussian

Naive Bayes and Decision Tree algorithms to classify whether or not Steam game

reviews resulted as negative or positive based on the distribution of analyzed words per

review. From his work, we are able to compare between the accuracy results from the

two classifiers. Another paper from Charkrabory et al. [10] uses other algorithms in

addition to Gaussian Naive Bayes, such as Support Vector Machine, Logistic Regression,

and Stochastic Gradient Descent, to evaluate the accuracies from the models. One paper

that explored a variety of machine learning algorithms is Jie Ying Tan’s [10] where they

compared the performance of the aforementioned ML models, in addition to Multi-layer

Perceptron Classifier and Extreme Gradient Boosting Classifier. It was found that their

SVC model produced the best results. Even with a wide selection of classifiers and

algorithms to choose from, there still exists identifiers such as sarcasm or terminology

that is negative by nature, that can prevent the correct sentiment to be predicted [11].

Still, Markos et all proposes that these types of errors can be adjusted for and corrected

accordingly, in their case through testing models on each genre of game.

Aside from only using the review text as an input, we were also interested in other

features such as the helpfulness or funniness of a review, the recommendation criteria,

and eventually the success of a game based on all those features. One measure of success

may be from user text reviews, but it can also come in forms such as the number of

searches, rate of being clicked on from those searches, price, genre, developer of the

7

game, or even video reviews of the game [2]. A game’s success could also be measured

in terms of popularity, which can be determined through the influence of features such as

the release date, supported languages, size, in addition to the previously stated genre and

price [3].

 While predicting the helpfulness of online reviews of products in general is

essential for roles in e-commerce, there are always concerns on how to eliminate low-

quality reviews [1]. Predicting the helpfulness of a Steam game review can assist in

filtering through low-quality reviews by getting rid of essentially bad reviews that users

help assess [12]. This is useful because it can be difficult to differentiate between a good

review that is actually helpful or a bad review that provides ineffectual information [13].

Nonetheless, Eberhard et al presented specific features that differentiate the two. A

similar approach using data mining aspects also analyzed features of helpfulness to

further indicate its importance was used in the research of Ha-Na et al, incorporating

Classification and Regression Tree as well as Artificial Neural Network [14].

 In the realm of learning games or educational games for educational purposes,

there tends to be some discrepancies with respect to the total effectiveness of using

educational games in the classroom setting or higher, due to user acceptance [15]. Even

though students seem to be keen on using educational games for learning, with the notion

that “learning with games can be fun,” and that games can enhance their learning

abilities, other parties such as parents or teachers may have other opinions [15]. What is

interesting about this study is that the participants are information technology university

students, and they are being tested on acceptance factors of specifically online

educational games, which coincides with our area of research as well. Sometimes the lack

8

of acceptance from teachers can come from a lack of resources for the teacher to search

for learning games of specific topics or grade levels [16]. Wielfrid et al proposes a

solution to help teachers with selecting suitable learning games by extracting the

metadata of learning games from the web and creating a catalogue that is easily

accessible [17]. One tangible example of gamification in the real world, Maria’s study

implements educational games in job training of managing logistic projects with not only

undergraduate or graduate students, but also project managers. This demonstrates that

people of all ages may benefit from some form of gamification in their job or education.

However, it is also crucial to note that academic institutions should not rely solely on

educational games a means of overall education, but that learning games should be used

as a companion in learning practices for the best outcome [18].

 Looking at everything as a whole, the convergence of technology, specifically the

field of ML, and education can lead to quicker advancement in online gamification

techniques that can be highly beneficial for future learners of all branches of knowledge

[19]. Especially in these times of the COVID-19 pandemic, many physical processes

have been moved into the online environment. Based on feedback from many online

users of Steam in the midst of the pandemic, Pedro reports that within 2 months, the

amount of positive Steam user reviews increased by 25% [20] which marks a trend in

more online users. If there are already so many active users engaged on the Steam

platform that only seems to be increasing at this time, it would be wise to study what kind

of an impact online learning games would have in the future.

9

CHAPTER 3. PRELIMINARY METHODS

3.1 Sentiment Analysis

Sentiment analysis falls under the category of NLU and is used to predict the

sentiment (positive, negative, or neutral) of some text, and attempts to scale the rating

from -5 to +5. Even though sentiment analysis has been used profusely in English

language corpora, recent work has incorporated other languages as well, such as Hindi or

Arabic [6].

3.2 LDA in Topic Modeling

Topic modeling is an unsupervised machine learning method of NLP and is

important for providing an overview of what a corpus may contain very quickly, and

discover any correlations between each document in a given corpus in terms of “topics”.

Topic modeling results in a list of words from some corpus that corresponds to some type

of undetermined topic, but the words are grouped together in such a way that they are

assumed to have some sort of collective qualities based on some probabilistic calculation.

There can be as many lists of words as there are topics, and usually the user will set that

limit [7]. In other words, topic modeling relays what topics (numerically represented)

there are in a corpus after parsing through all the words and constructing a topic

distribution. It is important to note that topic modeling cannot actually comprehend the

meaning of each word in the corpus, which makes it different from sentiment analysis.

 One of the most popular ways currently to implement topic modeling is through

the Latent Dirichlet Allocation (LDA) method. LDA is an unsupervised statistical model,

more specifically, a “generative probabilistic model” used frequently on texts of

documents [7]. LDA first assumes that all words in a document are related in some

10

manner before assigning them into different topics. As an example, let us assume that we

have a triangle filled with different topics (denoted as dots or points). We want the

machine to differentiate between them through gauging the position of the points relative

to each topic through a calculated percentage, or probability. Based on those probable

topics, the amount of times a certain topic appears in each text is counted. Finally, we can

compute the total number of words in each document that correlates to each topic and

produce a word list per topic. Even though LDA is regularly used on text data, it can

actually be applied to any type of discrete data [8], and is not only restricted to NLP. The

generative steps of LDA using our chosen hyperparameters are displayed below:

1. Select θ (topic distribution for document) with some symmetric parameter of

α< 1, in our case we set our number of topics = 3

2. Select φ (word distribution for topic) with some sparse value of β, in our case

we set our number of words = 4

11

Fig 2. LDA model representation [8]

3.3 TF-IDF and BoW

Term frequency-inverse document frequency is used in NLP for not only

calculating the frequency of words in a corpus, but also the importance of those words.

TF-IDF can be broken down into two parts:

1. Term frequency - the frequency of a specific word relative to the text

which can be measured by:

a) The raw count (# of times)

b) The raw count with adjustment (raw count / #words in document)

c) The raw count scaled logarithmically

d) Boolean count (0 for non-occurrence, 1 for occurrence)

2. Inverse document frequency - the commonness or uncommonness of a

 specific word relative to the text which can be measured by:

a) log (# of documents / # of documents in which the word appears in)

Compared to TF-IDF, the Bag of Words (BoW) model does not take into

consideration the importance of the words nor where they appear in a document. The

purpose of the BoW model is to count only the frequency that a word occurs in a

document. Informally, BoW would be considered to be just the TF part of TF-IDF [9].

12

CHAPTER 4. METHODOLOGIES

4.1 DATA ACQUISITION

This dataset of Steam game reviews was collected using Aesuli’s open-source

steam-crawler [21]. The steam-crawler scraped all games on steam during runtime, so

games published past the scraped date were not included. All game data were collected

from October 30, 2021 to November 4, 2021, totaling to 24,973 games. From the 24,973

games that were scraped from the Steam website, 21 games of interest were selected for

the final data set. The games of interest came from the top-rated “Programming” tag

games on Steam, which had a majority of positive reviews. Programming games with less

than 100 reviews were not considered for this research, and it just so happened that those

games had more neutral to negative reviews. Even so, it would be interesting to see

differences in the use of negative reviews in future research.

The steam-crawler contains five different scripts, executed in order, although only

the first four were used here. Individual game IDs were extracted from the downloaded

data and saved into a CSV file from the second script. The steam-crawler’s third script

saved each game’s data into its own folder with a unique ID, which should have

corresponded to the actual game ID on the Steam website, in this format: “app-370369”.

However, after checking a few game data folders to ensure the correctness of the game

IDs, it was found that some game IDs were actually incorrect, resulting in manual

changes for each game ID of each folder to the given game ID on the Steam website.

Because the game data was in HTML format, all the HTML files were merged and

converted into a single CSV file using the fourth script in the steam-crawler in

preparation for data preprocessing and analysis.

13

 The game data CSV files consist of ten different features in order from leftmost

column to rightmost column as follows: game ID; number of people that found the

review to be useful; number of people that found the review to be funny; username of the

reviewer; number of games owned by the reviewer; number of reviews written by the

reviewer; 1=recommended, -1=not recommended; hours played by the reviewer on the

game; date of creation of the review; text of the review.

4.2 DATA PRE-PROCESSING

In order to fully prepare the dataset for the ML pipeline, the CSV files were

imported into a Jupyter Lab Notebook first for data preprocessing. Next, all CSV files of

the 21 games were joined into one DataFrame (DF) to be processed using Python and the

Pandas library. After that, columns that were unnecessary were dropped and the resulting

columns were organized as: “Date_of_Review,” “Review_Text,” “Num_Helpful,”

“Num_Funny,” “Hours_Played,” and “Recommend.”

Fig 3. First 5 rows of the DF

These features were chosen based on a variety of reasons. The date of a review

may be useful in determining the popularity of a game over a certain period of time,

which can show how well a game is thriving in the digital market [3]. Identifying the

number of funny votes, a review received may gather the sentiment of a particular

14

review, and may even detect levels of sarcasm [22]. The number of hours a game was

played would most likely be an indicator of how much the user enjoyed the game, unless

the game was left running by accident (but then the likelihood of that user leaving a

review would most likely be predictably low). The review text contains a wealth of data

for tasks such as sentiment analysis or other NLP related techniques. The helpfulness of a

review may be valuable for future insights regarding the likelihood of players who are

about to purchase the game [13]. Of course, we would like to predict if the user will

recommend a game or not based on a combination of features.

The “Review_Text” column was dropped to be processed in another step.

Because we also wanted to retain the date as a usable feature in case it would be viable,

we converted the date-time format into epoch time, which is just a numerical value. From

there, all the numerical data was aggregated by total number of occurrences per column

and grouped by the epoch date in order from earliest to latest week, and lastly,

normalized. This DF was saved for use in testing ML models.

15

Fig 4. Prepared DF of dataset

Before the data was normalized, however, we found a total of 20,293 text reviews

starting from July 3, 2011 and ending on November 4, 2021 for the 21 games. This gives

us roughly a time frame of 11 years of our Steam game review data. Presented below are

some more aggregation metrics that give a broader conception of the prepared dataset:

16

Fig 5. Aggregated metrics in details about the 21 games

The previously dropped “Review_Text” column was then used for text cleaning

and formatting in this step. All duplicate rows and n/a rows were dropped, as well as

rows with text that was in another language or text containing special characters. The

review text was saved as a JSON file for further processing.

Fig 6. List of text reviews

4.3 FEATURE GENERATION

The previous JSON file containing the text reviews was loaded into a new Jupyter

Lab Notebook for advanced text cleaning and feature engineering. Lemmatization and

17

tokenization steps were applied to the full corpus and parsed through using the spaCy

library along with Part of speech tagging to include nouns, adjectives, verbs, and adverbs.

In addition, text was also converted into all lower-case letters and digits and punctuation

were removed. Using Genism’s TF-IDF model, frequently used words were removed

from the corpus that were not descriptive of the game itself to account for overfitting the

data, followed by building our own Bag of Words (BoW) model to process the rest of the

text. The removal of stopwords was taken into consideration, but deemed unnecessary

due to previous text cleaning procedures which included some sort of removal of

commonly used non-descriptive words.

 Topic modeling was used to group the most frequently used words from all game

reviews in each epoch week. This was accomplished through utilizing the LDA model,

also from the Genism library, to the processed text list. After experimenting with

different sets of parameters, we settled upon 3 number of topics, chunksize to be 100, and

passes to be 10. From there, we limited the number of words per game to be the 4 most

frequently occurring words, for a total of 88 total keywords as features, after duplicate

keywords were removed. The list of keywords was further vectorized and stored into a

NumPy array in preparation for testing supervised ML models. We were careful to

calculate the correct number of rows to match the rows of the DF from our data

preparation step. From our current dataset, we ended up with 541 rows, 88 columns for

the keyword features, and 5 columns for the numerical DF features.

Besides the feature words list that we generated from all 21 games, we also

wanted to see how each game individually differed from each other by seeing what types

of words they would produce for various topics and check for distinct nuances. The same

18

parameters were used to run the LDA model for each game separately, and visualized

with pyLDAvis and WordClouds. Below is a set of WordClouds of 3 topics from the

game Moleksyntez:

Fig 7. WordClouds of Moleksyntez game

We also experimented with using bigrams and trigrams per the game for comparison

purposes. Below is a set of WordClouds of 3 topics from the game Mechanica

characterizing some bigrams:

19

Fig 8. WordClouds of Mechanica game

While the outcome was interesting, we continued with unigrams for more coherence and

less complexity.

4.4 MODELS

In a new Jupyter Lab Notebook, we set the keywords as the titles of each column

of the NumPy array, and then merged the array with the numerical features from the first

DF. The combined table of final features came out to be 541 rows by 93 columns, as

shown below:

Fig 9. Combined final features

From there, we categorized the input features into 3 different groups for modeling:

1. Combined features = 92 features

2. Keyword-only features = 88 features

20

3. Non-keyword features = 4 features

Even though “Date_Epoch_Week” was initially included, after some testing we decided

to omit “Date_Epoch_Week” as a feature for this study.

 We decided upon the following 5 supervised learning algorithms to compare the

accuracies of the recommendation predictions:

1. Multilinear Regression, which can be compacted to this equation [23]:

 Y = XB + U, where X is a matrix filled with independent variables, Y is a

 matrix with the dependent variable(s), and U is a matrix of errors

2. LASSO Regression, which wants to minimize the sum of squares with the

 constraint of Σ |Bj≤ s [24]:

Fig 10. LASSO regression minimization equation

3. Ridge Regression, which can be compacted into this base equation:

Y = XB + e, where X is a matrix filled with independent variables,

 Y is a matrix with the dependent variable(s), and e is the residual error

4. Support Vector Regression, which can be defined with the parameters of

C > 0 and ε > 0, with the base form of [25]:

21

Fig 11. SVR base equation

5. MLP Regression, which uses a multi-layer perceptron that contains a set of

nodes on the left as the input features, followed by one or more hidden layers in

order that will output values to optimize errors [26].

Fig 12. Example of hidden layer [26]

The accuracies will be based on three different types of error rate metrics:

1. RMSE - root mean squared error

22

2. MAE - mean absolute error

3. MAPE - mean absolute percentage error

4.4.1 MULTILINEAR REGRESSION

As with any regression model, it can be assumed that there is a relationship

between some dependent and independent variable, and the primary purpose should be to

minimize some type of error measurement. Linear Regression (LR) is a commonly used

regression model to show a relationship between two variables, where the more data, the

better and more accurate the results. Then, a line of best fit with the least variance, which

is a line that results in the minimum sum of squared residuals, is created to visualize the

approximation of values. In our case, because we have more than just one variable, we

required a more complex version of LR, notably Multilinear Regression (MLR) which

makes use of multiple dependent variables.

4.4.2 LASSO REGRESSION

The next method we chose was LASSO regression, which is an extension of LR.

LASSO regression is beneficial to use when overfitting occurs, which can be mitigated

through regularization. In regularization, the smaller the coefficient, the better for

minimizing the loss function. In the case of LASSO regression, the coefficients can

ultimately be decreased to zero for improving the performance and reducing variance of

the model.

4.4.3 RIDGE REGRESSION

Another extension of LR is Ridge Regression (RR), which is useful for smaller

sample sizes. This was a good fit for our dataset, as our dataset of user reviews were

23

combined for all games instead of separately manipulated, resulting in a more compact

dataset. RR also puts to use shrinking the coefficient values for regularization purposes to

circumvent overfitting; however, it defers from LASSO regression in that the coefficients

will only ever get close to zero at some point, but not necessarily reach zero explicitly.

4.4.4 SUPPORT VECTOR REGRESSION

While the previous types of regression algorithms are all about reducing error

rates, support vector regression allows us to actually customize the error range that would

be acceptable for our data and then fit the most optimal line within that range [27].

4.4.5 MULTI-LAYER PERCEPTRON REGRESSION

A more complex regression algorithm is the Multi-layer Perceptron Regression

(MLPR) model which utilizes artificial neural networks. What separates MLPR from a

normal regression model such as LR or MLR, is the addition of any number of hidden

layers between the input and output layer [28]. We tried different amounts of hidden

layers from 10 to 100 in increments of 10.

24

CHAPTER 5. EXPERIMENTS AND RESULTS

5.1 SETUP AND PROCEDURES

 In the same Jupyter Notebook in which we loaded the DF, we also tested the

different models there. A Jupyter Notebook is an interactive development environment

that can be accessed via any web browser and allows for modularity of running code.

5.1.1 ENVIRONMENT, LIBRARIES, AND DEPENDENCIES

The libraries and versions used throughout the whole experiment include:

1. Python 3.9.12

2. Pandas 1.4.2 – data analysis tool with simple to use data structures

3. NumPy 1.22.3 – processing of arrays for objects, numbers, etc.

4. Gensim 4.2.0 – LDA and TF-IDF tools

5. Wordcloud 1.8.1 – wordcloud generation

6. Scikit-learn (sklearn) 0.24.2 – machine learning library using Python

a) MinMaxScaler

b) mean_squared_error

c) mean_absolute_error

d) mean_absolute_percentage

e) LinearRegression

f) Lasso

g) Ridge

h) SVR

i) MLPRegressor

25

5.1.2 HARDWARE SPECIFICATIONS

 The four most important factors that may influence the performance of the

models include the processor (CPU), video card (GPU), memory (RAM), and storage

(Drives). These are the hardware specifications of the machine that I used, but much of

the code can still be run with some lower specifications without any negative

implications:

1. CPU: Processor 11th Gen Intel(R) Core(TM) i7-11700K @

3.60GHz, 3600 Mhz, 8 Core(s), 16 Logical Processor(s)

2. GPU: NVIDIA GeForce RTX 3080

3. RAM: 16.0 GB

4. Storage: 1 TB

5.2 TRAINING PARAMETERS

The Scikit-learn library allows us to tune some hyperparameters per regression

model, although some parameters may vary. Overall, the weights or coefficients are

usually the changeable values in each model. The most critical hyperparameter that can

be tuned for LASSO regression on sklearn is the alpha value, or the coefficient that

controls regularization. In our experiment, we tried alpha values of 0.3, 0.2, and 0.1. RR

in sklearn also uses an alpha value. We tried the same alpha values of 0.3, 0.2, and 0.1.

For SVR, we chose ‘rbf’ as the kernel, tested the C values (regularization parameter)

from 0 to 10, and chose different epsilon values from 0.0001 to 0.1 in increments of base

10. For MLPR, we tried different amounts of hidden layers from 10 to 100 in increments

of 10.

26

5.3 RESULTS AND ANALYSIS

Table 1. Error Comparisons of Recommendation Prediction Based on Different

Feature Groups

Method Combined Features Keywords Only Non-Keywords

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MLR
0.0334 0.0179 3.3087

3.1213e

-16

2.3504e

-16

5.6705e

-14
0.0326 0.0149 1.9385

LASSO
0.0765 0.0364 7.2924 0.0765 0.0364 7.2924 0.0765 0.0364 7.2924

RIDGE
0.0334 0.0179 3.3087

4.1584e

-16

2.8446e

-16

9.8450e

-14
0.0326 0.0149 1.9385

SVR
0.0381 0.0206 3.8895 0.0065 0.0039 1.1203 0.0577 0.0151 0.5431

MLPR
0.0545 0.0260 5.9208 0.0585 0.0399 9.6416 0.0455 0.0140 0.8115

The table above shows the comparisons between the 3 different error rates

measurements of the 5 regression models depending on the feature groups. Based on the

above results, we can break down the comparisons for each group in more detail. In

general, however, the smaller the error values are, the more accurate the predictions will

be. Out of all the hyperparameters we tested, the predicted results are the most accurate

based on optimal hyperparameter combinations.

27

From the results, we find that the Keywords only feature produced the smallest

rates of errors across all 3 error metrics, with MAE being the lowest at 2.3504e-16 from

MLR. This outcome could be attributed to MLR being the simplest regression model

without added complexities. It seems that as complexity increases, the performance of the

model decreases, especially with MLPR. This may be due to MLPR, being a neural

network design, is not a linear regression model and perhaps contains too many

unnecessary features that induces more error. RR using the Keywords only feature

seemed to be the next best predictor, while LASSO regression demonstrated to be the

worst on the average across all errors. This may be explained because of our small

dataset size, which RR excels at. Predominately, the regression models we applied were

able to correctly predict recommendations of Steam game reviews to a great degree,

which could indicate a positive sentiment for recommended reviews, and negative

sentiment for non-recommended reviews.

28

CHAPTER 6. CONCLUSION AND FUTURE WORK

Although we were able to predict the recommendations of Steam Programming

game reviews to a high degree of accuracy, the feasibility of using Steam games in higher

education can endlessly discussed. Nonetheless, there are many ways of incorporating

gamification into learning without an added cost to the academic institution. Some

developers of the Programming games on Steam are willing to provide digital copies of

their games for free for educational purposes if the school requests them. One such

developer is Zachtronics, who created the game Shenzhen IO, which is one of the

Programming games from our dataset. It would be interesting to see future research on

measuring how effective Steam Programming games for learning topics in Computer

Science can be, based on highly recommended games.

 Another interesting factor future studies can delve into is to use sentiment analysis

together with the features we have provided and discussed to compare the results of both

methods. In doing so, the differences or similarities in sentiment prediction may be

analyzed, for if a text review is predicted to be recommended, then the sentiment should

also be positive. One other facet we could explore is using the game images as input

features instead of only text or numerical data, and mix in image classification methods.

On a more general level, we could also compare game review text recommendations from

different type of platforms, not just limited to the Steam platform.

 Some limitations of our study included the scope of our research as well as time

and resources. The Steam game reviews data we gathered were only from a certain period

of time, and there will always be an influx of new games uploaded to the Steam store

with new reviews added weekly or even daily. It would be interesting to be able to map

29

those changes in real time, along with further analysis and predictions of Steam game

recommendations with the ebb and flow of time. Another limitation includes the size of

our dataset. We could always increase the dataset in the future to include more than just

Programming games on Steam and even apply more complex deep learning algorithms

on them.

 If we wanted to increase accuracy and reduce the error rate even more in future

experiments, we could fine-tune the regression models through using other methods such

as sklearn’s GridSearchCV module, which would find the most optimal coefficients and

values to use for the hyperparameters automatically. This could potentially save time as

well. All in all, this is only an initial stride in gathering sentiment through successful

Steam game recommendation predictions, and there are plenty of questions still to be

considered and answered.

30

REFERENCES

[1] Park, Y. J. (2018). Predicting the helpfulness of online customer reviews across

different product types. Sustainability (Switzerland), 10(6).

https://doi.org/10.3390/su10061735

[2] Trněný, M. (2017). Machine Learning for Predicting Success of Video Games. 1–

68.

[3] de Luisa, A., Hartman, J., Nabergoj, D., Pahor, S., Rus, M., Stevanoski, B.,

Demšar, J., & Štrumbelj, E. (2021). Predicting the Popularity of Games on Steam.

http://arxiv.org/abs/2110.02896

[4] Zuo, Z. (2018). Sentiment Analysis of Steam Review Datasets using Naive Bayes

and Decision Tree Classifier. Student Publications and Research - Information

Sciences. https://analytics.twitter.com

model size,” arXiv preprint arXiv:1602.07360, 2016.

[5] Hirschberg, J., & Manning, C. D. (2015). Advances in natural language

processing. http://science.sciencemag.org/

64270-64277, 2018.

[6] Khurana, D., Koli, A., Khatter, K., Singh, S., & Tools, M. (2022). Natural

language processing: state of the art, current trends and challenges.

https://doi.org/10.1007/s11042-022-13428-4

[7] Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2017).

Latent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a

survey. http://arxiv.org/abs/1711.04305

31

[8] Blei, D. M., Ng, A. Y., & Edu, J. B. (2003). Latent Dirichlet Allocation Michael I.

Jordan. Journal of Machine Learning Research, 3, 993–1022.

[9] Stephen, A., Lubem, T., & Adom, I. T. (2022). Comparing Bag of Words and TF-

IDF with different models for hate speech detection from live tweets Implicit

Feedback System for the Recommendation of Relevant Web Documents View

project Comparing Bag of Words and TF-IDF with different models for hate

speech detection from live tweets View project. Article in International Journal of

Information Technology. https://doi.org/10.1007/s41870-022-01096-4

[10] Tan, J. Y., Sai, A., Chow, K., & Tan, C. W. (2021). SENTIMENT ANALYSIS ON

GAME REVIEWS: A COMPARATIVE STUDY OF MACHINE LEARNING

APPROACHES.

[11] Viggiato, M., Lin, D., Hindle, A., & Bezemer, P. (2020). What Causes Wrong

Sentiment Classifications of Game Reviews?

https://github.com/asgaardlab/sentiment-analysis-Steam

[12] Wang, Z., Jiaotong, an, Chang, V., & Horvath, G. (2021). Explaining and

Predicting Helpfulness and Funniness of Online Reviews on the Steam Platform.

Journal of Global Information Management, 29(6).

https://doi.org/10.4018/JGIM.20211101.oa16

[13] Eberhard, L., Kasper, P., Koncar, P., & Gutl, C. (2018). Investigating Helpfulness

of Video Game Reviews on the Steam Platform. 2018 5th International

Conference on Social Networks Analysis, Management and Security, SNAMS

2018, 43–50. https://doi.org/10.1109/SNAMS.2018.8554542

32

[14] Kang, H.-N. (2017). A Study of Analyzing on Online Game Reviews Using a

Data Mining Approach: STEAM Community Data. International Journal of

Innovation, Management and Technology, 8(2), 90–94.

https://doi.org/10.18178/ijimt.2017.8.2.709

[15] Ibrahim, R., Masrom, S., Yusoff, R. C. M., Zainuddin, N. M. M., & Rizman, Z. I.

(2018). Student acceptance of educational games in higher education. Journal of

Fundamental and Applied Sciences, 9(3S), 809.

https://doi.org/10.4314/jfas.v9i3s.62

[16] Morie, M. W., Marfisi-Schottman, I., & Goore, B. T. (2020). LGMD: Optimal

Lightweight Metadata Model for Indexing Learning Games. Communications in

Computer and Information Science, 1207 CCIS, 3–16.

https://doi.org/10.1007/978-3-030-45183-7_1

[17] Wielfrid, M. M., Iza, M. S., & Tra, G. B. (2020). Information extraction model to

improve learning game metadata indexing. Ingenierie Des Systemes

d’Information, 25(1), 11–19. https://doi.org/10.18280/isi.250102

[18] Vodenicharova, M. (2022). Gamed-based Learning in Higher Education. TEM

Journal, 11(2), 779–790. https://doi.org/10.18421/TEM112-35

[19] Khakpour, A., & Colomo-Palacios, R. (2021). Convergence of Gamification and

Machine Learning: A Systematic Literature Review. Technology, Knowledge and

Learning, 26(3), 597–636. https://doi.org/10.1007/s10758-020-09456-4

[20] Nuno, P., & Mota, Â. (2021). ASSESSING COVID-19 IMPACT ON USER

OPINION TOWARDS VIDEOGAMES SENTIMENT ANALYSIS AND

STRUCTURAL BREAK DETECTION ON STEAM DATA.

33

[21] Esuli, A. (2020). aesuli/steam-crawler: A set of scripts that crawls STEAM

website to download game reviews. https://github.com/aesuli/steam-crawler

[22] Bais, R., Odek, P., & Ou, S. (2017). Sentiment Classification on Steam Reviews.

1–6.

[23] Gao, X., Rangarajan, A., Banerjee, A., Su, Y., Member, S., Li, X., & Dacheng

Tao, and. (2012). Multivariate Multilinear Regression Related papers A Met hod

for Compact Image Represent at ion Using Sparse Mat rix and Tensor Project

ions O… Multivariate Multilinear Regression. CYBERNETICS, 42(6).

https://doi.org/10.1109/TSMCB.2012.2195171

[24] Ranstam, J., & Cook, J. A. (2018). Statistical nugget LASSO regression.

https://doi.org/10.1002/bjs.10895

[25] Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: A Library for Support Vector

Machines. www.csie.ntu.edu.tw/

[26] Pedregosa FABIANPEDREGOSA, F., Michel, V., Grisel OLIVIERGRISEL, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Vanderplas, J., Cournapeau, D.,

Pedregosa, F., Varoquaux, G., Gramfort, A., Thirion, B., Grisel, O., Dubourg, V.,

Passos, A., Brucher, M., Perrot andÉdouardand, M., Duchesnay, andÉdouard, &

Duchesnay EDOUARDDUCHESNAY, Fré. (2011). Scikit-learn: Machine

Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg

Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL.

Matthieu Perrot. Journal of Machine Learning Research, 12, 2825–2830.

http://scikit-learn.sourceforge.net.

34

[27] Smola, A. J., Sch¨olkopf, B., & Sch¨olkopf, S. (2004). A tutorial on support

vector regression *. Statistics and Computing, 14, 199–222.

[28] Gaudart, J., Giusiano, B., & Huiart, L. (2004). Comparison of the performance of

multi-layer perceptron and linear regression for epidemiological data.

Computational Statistics & Data Analysis, 44(4), 547–570.

https://doi.org/10.1016/S0167-9473(02)00257-8

[29] Chowdhury, G. G. (2003). Natural language processing. Annual Review of

Information Science and Technology, 37, 51–89.

http://eprints.cdlr.strath.ac.uk/2611/

	Sentiment without Sentiment Analysis: Using the Recommendation Outcome of Steam Game Reviews as Sentiment Predictor
	tmp.1672854030.pdf.MFne4

