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ABSTRACT 

SENTIMENT WITHOUT SENTIMENT ANALYSIS:  

USING THE RECOMMENDATION OUTCOME OF STEAM GAME REVIEWS AS 

SENTIMENT PREDICTOR  

ANQI ZHANG 

2022 

This paper presents and explores a novel way to determine the sentiment of a Steam 

game review based on the predicted recommendation of the review, testing different 

regression models on a combination of Term Frequency-Inverse Document Frequency 

(TF-IDF) and Latent Dirichlet Allocation (LDA) features. A dataset of Steam game 

reviews extracted from the Programming games genre consisting of 21 games along with 

other significant features such as the number of helpful likes on the recommendation, 

number of hours played, and others. Based on the features, they are grouped into three 

datasets: 1) either having keyword features only, 2) keyword features with the numerical 

features, and 3) numerical features only. The three datasets were trained using five 

different regression models: Multilinear Regression, Lasso Regression, Ridge 

Regression, Support Vector Regression, and Multi-layer Perceptron Regression, which 

were then evaluated using RMSE, MAE, and MAPE. The review recommendation was 

predicted from each model, and the accuracy of the predictions were measured using the 

different error rates. The results of this research may prove helpful in the convergence of 

Machine Learning and Educational Games.  
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CHAPTER 1. INTRODUCTION 

1.1 OVERVIEW 

Machine learning for NLP has been applied extensively on online text reviews for 

predicting factors such as the helpfulness of a review [1], success of a product based on 

reviews [2], popularity of a product [3], next to other factors that may influence a user’s 

behavior and increase profitability of the product [4]. 

 While there has been a breadth of research and analysis done on NLP aspects 

pertaining to online text reviews of products, there have only been a handful that focus 

specifically on Steam game reviews and the influence of its user recommendation system. 

Furthermore, there has been sparse to none research on how positively recommended 

Steam games based on those text reviews can be applied to game-approach learning in 

higher education. This research aims to predict and compare the recommendation 

outcomes of Steam games within the programming genre using different features of the 

reviews through a combination of unsupervised and supervised machine learning models.          

1.2 BACKGROUND 

Video games have garnered much attention and popularity over the years, across 

multiple platforms, accruing a massive user base. One of these platforms is called Steam, 

which started as a software client for distributing digital games, but has since expanded 

into a digital game market with social aspects, streaming services, a community hub for 

PC gamers, and much more. Steam has an extensive library of games ranging from a 

multitude of genres, also referred to as “tags”. Users who have purchased games on 

Steam can write reviews on the platform that can also be rated by other users in number 



2 

 

of upvotes of “helpful” or “funny”, and may even be awarded certain titles. Additionally, 

the reviews are classified as either “recommended” or “not recommended” by the 

reviewer before the whole post goes live. An example review is as follows: 

 
 

Fig 1. Screenshot of a user review of Shenzhen IO game 

 

User reviews can be filtered by “positive” or “negative”, language, date range, and 

playtime. Aside from filtering the user reviews, one can also filter Steam games in 

general through various means. In this research, we will be using game review texts of 

users from top-rated “Programming” games in the Steam library. 

 

1.3 MOTIVATION AND OBJECTIVES  

Based on some studies done on learning games in academia, it seems beneficial to 

incorporate game-based learning in certain aspects of education [18].  In addition, for 

someone like me, coming from a social sciences background, specifically psychology, 

learning Computer Science has required me to shift my creative and analytical way of 
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thinking quite a bit into a more mathematical and theoretical way of problem-solving that 

took me a while to adapt to, and had trouble grasping in the beginning. Not only that, but 

many times I would not be able to apply what I learned in class to real-world problems 

because of the gap that exists between the theoretical knowledge and the actual 

implementation of that knowledge on something like creating and deploying a web 

application from scratch, as an example.  

I have always clung onto the notion that learning should be fun, just as most 

games should be. That notion gave rise to an interesting thought: what if computer games 

could be used in higher education in tandem to classes to motivate and engage students in 

learning Computer Science concepts that were perceived as challenging by the student? 

There have been an abundant number of studies done on how using learning 

games/educational games or gamification in grade school through high school can be 

beneficial towards students’ success in academics, but sparse studies have focused on 

using learning/educational games for higher education for academic success, specifically 

computer games in the field of Computer Science. 

There are such computer games which can be found on the Steam platform, 

specifically Computer Science or Programming games. Some of those programming 

games provided a clear visual representation of certain Computer Science concepts, as 

well as immersive simulations of real-world engineering applications, which enabled me 

to understand what was being taught in class more thoroughly. Of course, the construct of 

fun can be debated, but that is not within the scope of our research. Given the time 

constraint and scope of our research, however, what can be discussed is whether or not 

the accuracy of predicting the user recommendation of programming games can be an 
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indicator of levels of different sentiments, which in turn may be a gateway for future 

research on the use of positively recommended Programming games in higher education.  

Some ways we might be able to measure the accuracy is by applying and 

comparing different ML models to predict if a game is recommended or not on Steam 

based on different features of user reviews, as well as by exploring potential correlations 

between different groupings of features and their prediction outcomes. More explicitly, 

our main objectives will be to explore: 

1. How accurate will the prediction of a recommended game be from Steam 

Programming game review text with different input features using different ML models? 

2. How will different combinations of input features affect the accuracy of 

predicted models? 

From those objectives, we may be able to explore if user recommendations of 

Programming games on Steam have an impact on the sentiment of the review or not. 

 

1.4 THESIS STRUCTURE 

 This thesis contains a total of 6 chapters, with Chapter 1 as the introduction. In 

Chapter 2, some basic terminologies of this thesis are explained and related works 

regarding NLP and learning games are analyzed. Chapter 3 discusses the preliminary 

methods used and reviews some vocabulary. Chapter 4 explores data collection and 

processing steps, as well as feature generation and discusses models and methods utilized 

on the processed dataset. Chapter 5 details the experiments and results. Lastly, Chapter 6 

concludes with the conclusion and future works. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 CONCEPT REVIEW 

Natural Language Processing expands across many disciplines and has been an 

important tool in the field of AI. AI contains both ML and NLP at an intersect, but ML is 

divided deeper by DL, while NLP is overarching. Even though NLP technically began 

sometime in the 1940s, it only started gaining traction towards the 1980s and evolved in 

popularity at a fast pace partially due to the availability of larger amounts data, otherwise 

known as “big data” [5]. At the core of it all, NLP is a field of study bridging together AI 

and Linguistics in which machines try to understand all spheres of human language to the 

best of its ability and develop learning models to mimic that in order to predict speech, 

text, or other computations.  

 Moreover, NLP can be broken down into either Natural Language Understanding 

(NLU) or Natural Language Generation (NLG). NLU includes understanding the natural 

language through finding meaning or emotion through some corpus, whereas NLG 

creates or outputs new text, speech, or other capacities of language [6].   

2.2 RELATED WORK 

Many works regarding NLP have been useful in the real world in a wide range of 

areas. Current advances in NLP can use machines to detect spam emails, extract 

information from multiple sources, bring about medical advances, and create sentient-like 

chatbots, just to name a few [6]. A big part of NLP includes the use of sentiment analysis 

across diverse contexts [29]. 
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 In the context of online reviews, sentiment analysis has been routinely utilized. 

More precisely, there have been a several studies regarding sentiment analysis in the area 

of online game reviews from the Steam platform. One such study was conducted by Zuo 

[4] where he showed the complete process of using sentiment analysis with Gaussian 

Naive Bayes and Decision Tree algorithms to classify whether or not Steam game 

reviews resulted as negative or positive based on the distribution of analyzed words per 

review.  From his work, we are able to compare between the accuracy results from the 

two classifiers. Another paper from Charkrabory et al. [10] uses other algorithms in 

addition to Gaussian Naive Bayes, such as Support Vector Machine, Logistic Regression, 

and Stochastic Gradient Descent, to evaluate the accuracies from the models. One paper 

that explored a variety of machine learning algorithms is Jie Ying Tan’s [10] where they 

compared the performance of the aforementioned ML models, in addition to Multi-layer 

Perceptron Classifier and Extreme Gradient Boosting Classifier. It was found that their 

SVC model produced the best results. Even with a wide selection of classifiers and 

algorithms to choose from, there still exists identifiers such as sarcasm or terminology 

that is negative by nature, that can prevent the correct sentiment to be predicted [11]. 

Still, Markos et all proposes that these types of errors can be adjusted for and corrected 

accordingly, in their case through testing models on each genre of game.   

Aside from only using the review text as an input, we were also interested in other 

features such as the helpfulness or funniness of a review, the recommendation criteria, 

and eventually the success of a game based on all those features. One measure of success 

may be from user text reviews, but it can also come in forms such as the number of 

searches, rate of being clicked on from those searches, price, genre, developer of the 
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game, or even video reviews of the game [2]. A game’s success could also be measured 

in terms of popularity, which can be determined through the influence of features such as 

the release date, supported languages, size, in addition to the previously stated genre and 

price [3].  

 While predicting the helpfulness of online reviews of products in general is 

essential for roles in e-commerce, there are always concerns on how to eliminate low-

quality reviews [1]. Predicting the helpfulness of a Steam game review can assist in 

filtering through low-quality reviews by getting rid of essentially bad reviews that users 

help assess [12].  This is useful because it can be difficult to differentiate between a good 

review that is actually helpful or a bad review that provides ineffectual information [13]. 

Nonetheless, Eberhard et al presented specific features that differentiate the two. A 

similar approach using data mining aspects also analyzed features of helpfulness to 

further indicate its importance was used in the research of Ha-Na et al, incorporating 

Classification and Regression Tree as well as Artificial Neural Network [14].  

 In the realm of learning games or educational games for educational purposes, 

there tends to be some discrepancies with respect to the total effectiveness of using 

educational games in the classroom setting or higher, due to user acceptance [15]. Even 

though students seem to be keen on using educational games for learning, with the notion 

that “learning with games can be fun,” and that games can enhance their learning 

abilities, other parties such as parents or teachers may have other opinions [15].  What is 

interesting about this study is that the participants are information technology university 

students, and they are being tested on acceptance factors of specifically online 

educational games, which coincides with our area of research as well. Sometimes the lack 
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of acceptance from teachers can come from a lack of resources for the teacher to search 

for learning games of specific topics or grade levels [16]. Wielfrid et al proposes a 

solution to help teachers with selecting suitable learning games by extracting the 

metadata of learning games from the web and creating a catalogue that is easily 

accessible [17]. One tangible example of gamification in the real world, Maria’s study 

implements educational games in job training of managing logistic projects with not only 

undergraduate or graduate students, but also project managers. This demonstrates that 

people of all ages may benefit from some form of gamification in their job or education. 

However, it is also crucial to note that academic institutions should not rely solely on 

educational games a means of overall education, but that learning games should be used 

as a companion in learning practices for the best outcome [18].  

 Looking at everything as a whole, the convergence of technology, specifically the 

field of ML, and education can lead to quicker advancement in online gamification 

techniques that can be highly beneficial for future learners of all branches of knowledge 

[19]. Especially in these times of the COVID-19 pandemic, many physical processes 

have been moved into the online environment. Based on feedback from many online 

users of Steam in the midst of the pandemic, Pedro reports that within 2 months, the 

amount of positive Steam user reviews increased by 25% [20] which marks a trend in 

more online users. If there are already so many active users engaged on the Steam 

platform that only seems to be increasing at this time, it would be wise to study what kind 

of an impact online learning games would have in the future. 
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CHAPTER 3. PRELIMINARY METHODS 

3.1 Sentiment Analysis 

Sentiment analysis falls under the category of NLU and is used to predict the 

sentiment (positive, negative, or neutral) of some text, and attempts to scale the rating 

from -5 to +5. Even though sentiment analysis has been used profusely in English 

language corpora, recent work has incorporated other languages as well, such as Hindi or 

Arabic [6].  

3.2 LDA in Topic Modeling 

Topic modeling is an unsupervised machine learning method of NLP and is 

important for providing an overview of what a corpus may contain very quickly, and 

discover any correlations between each document in a given corpus in terms of “topics”. 

Topic modeling results in a list of words from some corpus that corresponds to some type 

of undetermined topic, but the words are grouped together in such a way that they are 

assumed to have some sort of collective qualities based on some probabilistic calculation. 

There can be as many lists of words as there are topics, and usually the user will set that 

limit [7]. In other words, topic modeling relays what topics (numerically represented) 

there are in a corpus after parsing through all the words and constructing a topic 

distribution. It is important to note that topic modeling cannot actually comprehend the 

meaning of each word in the corpus, which makes it different from sentiment analysis.  

 One of the most popular ways currently to implement topic modeling is through 

the Latent Dirichlet Allocation (LDA) method. LDA is an unsupervised statistical model, 

more specifically, a “generative probabilistic model” used frequently on texts of 

documents [7]. LDA first assumes that all words in a document are related in some 
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manner before assigning them into different topics. As an example, let us assume that we 

have a triangle filled with different topics (denoted as dots or points). We want the 

machine to differentiate between them through gauging the position of the points relative 

to each topic through a calculated percentage, or probability. Based on those probable 

topics, the amount of times a certain topic appears in each text is counted. Finally, we can 

compute the total number of words in each document that correlates to each topic and 

produce a word list per topic. Even though LDA is regularly used on text data, it can 

actually be applied to any type of discrete data [8], and is not only restricted to NLP. The 

generative steps of LDA using our chosen hyperparameters are displayed below: 

1. Select θ (topic distribution for document) with some symmetric parameter of 

α< 1, in our case we set our number of topics = 3 

2. Select φ (word distribution for topic) with some sparse value of β, in our case 

we set our number of words = 4 

 

 



11 

 

Fig 2.  LDA model representation [8] 

 

3.3 TF-IDF and BoW 

Term frequency-inverse document frequency is used in NLP for not only 

calculating the frequency of words in a corpus, but also the importance of those words. 

TF-IDF can be broken down into two parts: 

1. Term frequency - the frequency of a specific word relative to the text  

which can be measured by: 

a)  The raw count (# of times) 

b)  The raw count with adjustment (raw count /  #words in document) 

c)  The raw count scaled logarithmically 

d)  Boolean count (0 for non-occurrence, 1 for occurrence)  

2.  Inverse document frequency - the commonness or uncommonness of a 

 specific word relative to the text which can be measured by: 

a)  log (# of documents / # of documents in which the word appears in) 

Compared to TF-IDF, the Bag of Words (BoW) model does not take into 

consideration the importance of the words nor where they appear in a document. The 

purpose of the BoW model is to count only the frequency that a word occurs in a 

document. Informally, BoW would be considered to be just the TF part of TF-IDF [9].  



12 

 

CHAPTER 4. METHODOLOGIES 

4.1 DATA ACQUISITION 

This dataset of Steam game reviews was collected using Aesuli’s open-source 

steam-crawler [21]. The steam-crawler scraped all games on steam during runtime, so 

games published past the scraped date were not included. All game data were collected 

from October 30, 2021 to November 4, 2021, totaling to 24,973 games. From the 24,973 

games that were scraped from the Steam website, 21 games of interest were selected for 

the final data set. The games of interest came from the top-rated “Programming” tag 

games on Steam, which had a majority of positive reviews. Programming games with less 

than 100 reviews were not considered for this research, and it just so happened that those 

games had more neutral to negative reviews. Even so, it would be interesting to see 

differences in the use of negative reviews in future research.  

The steam-crawler contains five different scripts, executed in order, although only 

the first four were used here. Individual game IDs were extracted from the downloaded 

data and saved into a CSV file from the second script. The steam-crawler’s third script 

saved each game’s data into its own folder with a unique ID, which should have 

corresponded to the actual game ID on the Steam website, in this format: “app-370369”. 

However, after checking a few game data folders to ensure the correctness of the game 

IDs, it was found that some game IDs were actually incorrect, resulting in manual 

changes for each game ID of each folder to the given game ID on the Steam website. 

Because the game data was in HTML format, all the HTML files were merged and 

converted into a single CSV file using the fourth script in the steam-crawler in 

preparation for data preprocessing and analysis.   
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    The game data CSV files consist of ten different features in order from leftmost 

column to rightmost column as follows: game ID; number of people that found the 

review to be useful; number of people that found the review to be funny; username of the 

reviewer; number of games owned by the reviewer; number of reviews written by the 

reviewer; 1=recommended, -1=not recommended; hours played by the reviewer on the 

game; date of creation of the review; text of the review. 

4.2 DATA PRE-PROCESSING 

In order to fully prepare the dataset for the ML pipeline, the CSV files were 

imported into a Jupyter Lab Notebook first for data preprocessing. Next, all CSV files of 

the 21 games were joined into one DataFrame (DF) to be processed using Python and the 

Pandas library. After that, columns that were unnecessary were dropped and the resulting 

columns were organized as: “Date_of_Review,” “Review_Text,” “Num_Helpful,” 

“Num_Funny,” “Hours_Played,” and “Recommend.”  

 
 

Fig 3. First 5 rows of the DF 

 

These features were chosen based on a variety of reasons. The date of a review 

may be useful in determining the popularity of a game over a certain period of time, 

which can show how well a game is thriving in the digital market [3]. Identifying the 

number of funny votes, a review received may gather the sentiment of a particular 
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review, and may even detect levels of sarcasm [22]. The number of hours a game was 

played would most likely be an indicator of how much the user enjoyed the game, unless 

the game was left running by accident (but then the likelihood of that user leaving a 

review would most likely be predictably low). The review text contains a wealth of data 

for tasks such as sentiment analysis or other NLP related techniques. The helpfulness of a 

review may be valuable for future insights regarding the likelihood of players who are 

about to purchase the game [13]. Of course, we would like to predict if the user will 

recommend a game or not based on a combination of features. 

The “Review_Text” column was dropped to be processed in another step. 

Because we also wanted to retain the date as a usable feature in case it would be viable, 

we converted the date-time format into epoch time, which is just a numerical value. From 

there, all the numerical data was aggregated by total number of occurrences per column 

and grouped by the epoch date in order from earliest to latest week, and lastly, 

normalized. This DF was saved for use in testing ML models. 
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Fig 4. Prepared DF of dataset 

Before the data was normalized, however, we found a total of 20,293 text reviews 

starting from July 3, 2011 and ending on November 4, 2021 for the 21 games. This gives 

us roughly a time frame of 11 years of our Steam game review data. Presented below are 

some more aggregation metrics that give a broader conception of the prepared dataset: 
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Fig 5. Aggregated metrics in details about the 21 games 

 

The previously dropped “Review_Text” column was then used for text cleaning 

and formatting in this step. All duplicate rows and n/a rows were dropped, as well as 

rows with text that was in another language or text containing special characters. The 

review text was saved as a JSON file for further processing. 

 

Fig 6. List of text reviews 

4.3 FEATURE GENERATION 

The previous JSON file containing the text reviews was loaded into a new Jupyter 

Lab Notebook for advanced text cleaning and feature engineering. Lemmatization and 
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tokenization steps were applied to the full corpus and parsed through using the spaCy 

library along with Part of speech tagging to include nouns, adjectives, verbs, and adverbs. 

In addition, text was also converted into all lower-case letters and digits and punctuation 

were removed. Using Genism’s TF-IDF model, frequently used words were removed 

from the corpus that were not descriptive of the game itself to account for overfitting the 

data, followed by building our own Bag of Words (BoW) model to process the rest of the 

text. The removal of stopwords was taken into consideration, but deemed unnecessary 

due to previous text cleaning procedures which included some sort of removal of 

commonly used non-descriptive words.   

 Topic modeling was used to group the most frequently used words from all game 

reviews in each epoch week. This was accomplished through utilizing the LDA model, 

also from the Genism library, to the processed text list. After experimenting with 

different sets of parameters, we settled upon 3 number of topics, chunksize to be 100, and 

passes to be 10. From there, we limited the number of words per game to be the 4 most 

frequently occurring words, for a total of 88 total keywords as features, after duplicate 

keywords were removed. The list of keywords was further vectorized and stored into a 

NumPy array in preparation for testing supervised ML models. We were careful to 

calculate the correct number of rows to match the rows of the DF from our data 

preparation step. From our current dataset, we ended up with 541 rows, 88 columns for 

the keyword features, and 5 columns for the numerical DF features. 

Besides the feature words list that we generated from all 21 games, we also 

wanted to see how each game individually differed from each other by seeing what types 

of words they would produce for various topics and check for distinct nuances. The same 
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parameters were used to run the LDA model for each game separately, and visualized 

with pyLDAvis and WordClouds. Below is a set of WordClouds of 3 topics from the 

game Moleksyntez: 

 

Fig 7. WordClouds of Moleksyntez game 

 

We also experimented with using bigrams and trigrams per the game for comparison 

purposes. Below is a set of WordClouds of 3 topics from the game Mechanica 

characterizing some bigrams: 
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Fig 8. WordClouds of Mechanica game 

 

While the outcome was interesting, we continued with unigrams for more coherence and 

less complexity. 

4.4 MODELS 

In a new Jupyter Lab Notebook, we set the keywords as the titles of each column 

of the NumPy array, and then merged the array with the numerical features from the first 

DF. The combined table of final features came out to be 541 rows by 93 columns, as 

shown below: 

 

Fig 9. Combined final features 

From there, we categorized the input features into 3 different groups for modeling: 

1. Combined features = 92 features 

2. Keyword-only features = 88 features 
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3. Non-keyword features = 4 features 

Even though “Date_Epoch_Week” was initially included, after some testing we decided 

to omit “Date_Epoch_Week” as a feature for this study. 

 We decided upon the following 5 supervised learning algorithms to compare the 

accuracies of the recommendation predictions: 

1. Multilinear Regression, which can be compacted to this equation [23]: 

 Y = XB + U, where X is a matrix filled with independent variables, Y is a  

 matrix with the dependent variable(s), and U is a matrix of errors 

2. LASSO Regression, which wants to minimize the sum of squares with the 

 constraint of Σ |Bj≤ s [24]: 

 

 

Fig 10. LASSO regression minimization equation 
 

3. Ridge Regression, which can be compacted into this base equation: 

Y = XB + e, where X is a matrix filled with independent variables,  

 Y is a matrix with the dependent variable(s), and e is the residual error 

4. Support Vector Regression, which can be defined with the parameters of  

C > 0 and ε > 0, with the base form of [25]:  
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Fig 11. SVR base equation 

 

5. MLP Regression, which uses a multi-layer perceptron that contains a set of 

nodes on the left as the input features, followed by one or more hidden layers in 

order that will output values to optimize errors [26]. 

  

Fig 12. Example of hidden layer [26] 

 

The accuracies will be based on three different types of error rate metrics: 

1. RMSE - root mean squared error 
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2. MAE - mean absolute error 

3. MAPE - mean absolute percentage error 

4.4.1 MULTILINEAR REGRESSION 

As with any regression model, it can be assumed that there is a relationship 

between some dependent and independent variable, and the primary purpose should be to 

minimize some type of error measurement. Linear Regression (LR) is a commonly used 

regression model to show a relationship between two variables, where the more data, the 

better and more accurate the results. Then, a line of best fit with the least variance, which 

is a line that results in the minimum sum of squared residuals, is created to visualize the 

approximation of values. In our case, because we have more than just one variable, we 

required a more complex version of LR, notably Multilinear Regression (MLR) which 

makes use of multiple dependent variables.  

4.4.2 LASSO REGRESSION 

The next method we chose was LASSO regression, which is an extension of LR. 

LASSO regression is beneficial to use when overfitting occurs, which can be mitigated 

through regularization. In regularization, the smaller the coefficient, the better for 

minimizing the loss function. In the case of LASSO regression, the coefficients can 

ultimately be decreased to zero for improving the performance and reducing variance of 

the model.  

4.4.3 RIDGE REGRESSION 

Another extension of LR is Ridge Regression (RR), which is useful for smaller 

sample sizes. This was a good fit for our dataset, as our dataset of user reviews were 
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combined for all games instead of separately manipulated, resulting in a more compact 

dataset. RR also puts to use shrinking the coefficient values for regularization purposes to 

circumvent overfitting; however, it defers from LASSO regression in that the coefficients 

will only ever get close to zero at some point, but not necessarily reach zero explicitly.  

4.4.4 SUPPORT VECTOR REGRESSION  

While the previous types of regression algorithms are all about reducing error 

rates, support vector regression allows us to actually customize the error range that would 

be acceptable for our data and then fit the most optimal line within that range [27].  

4.4.5 MULTI-LAYER PERCEPTRON REGRESSION 

A more complex regression algorithm is the Multi-layer Perceptron Regression 

(MLPR) model which utilizes artificial neural networks. What separates MLPR from a 

normal regression model such as LR or MLR, is the addition of any number of hidden 

layers between the input and output layer [28]. We tried different amounts of hidden 

layers from 10 to 100 in increments of 10. 
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CHAPTER 5. EXPERIMENTS AND RESULTS 

5.1 SETUP AND PROCEDURES 

 In the same Jupyter Notebook in which we loaded the DF, we also tested the 

different models there. A Jupyter Notebook is an interactive development environment 

that can be accessed via any web browser and allows for modularity of running code.  

5.1.1 ENVIRONMENT, LIBRARIES, AND DEPENDENCIES 

The libraries and versions used throughout the whole experiment include:  

1. Python 3.9.12 

2. Pandas 1.4.2 – data analysis tool with simple to use data structures 

3. NumPy 1.22.3 – processing of arrays for objects, numbers, etc. 

4. Gensim 4.2.0 – LDA and TF-IDF tools 

5. Wordcloud 1.8.1 – wordcloud generation 

6. Scikit-learn (sklearn) 0.24.2 – machine learning library using Python 

a) MinMaxScaler 

b) mean_squared_error 

c) mean_absolute_error 

d) mean_absolute_percentage 

e) LinearRegression 

f) Lasso 

g) Ridge 

h) SVR 

i) MLPRegressor 
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5.1.2 HARDWARE SPECIFICATIONS 

 The four most important factors that may influence the performance of the 

models include the processor (CPU), video card (GPU), memory (RAM), and storage 

(Drives). These are the hardware specifications of the machine that I used, but much of 

the code can still be run with some lower specifications without any negative 

implications: 

1. CPU: Processor 11th Gen Intel(R) Core(TM) i7-11700K @ 

3.60GHz, 3600 Mhz, 8 Core(s), 16 Logical Processor(s) 

2. GPU: NVIDIA GeForce RTX 3080 

3. RAM: 16.0 GB 

4. Storage: 1 TB 

 

5.2 TRAINING PARAMETERS 

 

The Scikit-learn library allows us to tune some hyperparameters per regression 

model, although some parameters may vary. Overall, the weights or coefficients are 

usually the changeable values in each model. The most critical hyperparameter that can 

be tuned for LASSO regression on sklearn is the alpha value, or the coefficient that 

controls regularization. In our experiment, we tried alpha values of 0.3, 0.2, and 0.1. RR 

in sklearn also uses an alpha value. We tried the same alpha values of 0.3, 0.2, and 0.1. 

For SVR, we chose ‘rbf’ as the kernel, tested the C values (regularization parameter) 

from 0 to 10, and chose different epsilon values from 0.0001 to 0.1 in increments of base 

10. For MLPR, we tried different amounts of hidden layers from 10 to 100 in increments 

of 10.     
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5.3 RESULTS AND ANALYSIS 

Table 1.  Error Comparisons of Recommendation Prediction Based on Different 

Feature Groups  

Method Combined Features Keywords Only Non-Keywords 

 RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

MLR 
0.0334 0.0179 3.3087 

3.1213e

-16 

2.3504e

-16 

5.6705e

-14 
0.0326 0.0149 1.9385 

LASSO 
0.0765 0.0364 7.2924 0.0765 0.0364 7.2924 0.0765 0.0364 7.2924 

RIDGE 
0.0334 0.0179 3.3087 

4.1584e

-16 

2.8446e

-16 

9.8450e

-14 
0.0326 0.0149 1.9385 

SVR 
0.0381 0.0206 3.8895 0.0065 0.0039 1.1203 0.0577 0.0151 0.5431 

MLPR 
0.0545 0.0260 5.9208 0.0585 0.0399 9.6416 0.0455 0.0140 0.8115 

 

The table above shows the comparisons between the 3 different error rates 

measurements of the 5 regression models depending on the feature groups. Based on the 

above results, we can break down the comparisons for each group in more detail. In 

general, however, the smaller the error values are, the more accurate the predictions will 

be. Out of all the hyperparameters we tested, the predicted results are the most accurate 

based on optimal hyperparameter combinations. 
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From the results, we find that the Keywords only feature produced the smallest 

rates of errors across all 3 error metrics, with MAE being the lowest at 2.3504e-16 from 

MLR. This outcome could be attributed to MLR being the simplest regression model 

without added complexities. It seems that as complexity increases, the performance of the 

model decreases, especially with MLPR. This may be due to MLPR, being a neural 

network design, is not a linear regression model and perhaps contains too many 

unnecessary features that induces more error. RR using the Keywords only feature 

seemed to be the next best predictor, while LASSO regression demonstrated to be the 

worst on the average across all errors.  This may be explained because of our small 

dataset size, which RR excels at. Predominately, the regression models we applied were 

able to correctly predict recommendations of Steam game reviews to a great degree, 

which could indicate a positive sentiment for recommended reviews, and negative 

sentiment for non-recommended reviews. 
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CHAPTER 6. CONCLUSION AND FUTURE WORK 

Although we were able to predict the recommendations of Steam Programming 

game reviews to a high degree of accuracy, the feasibility of using Steam games in higher 

education can endlessly discussed. Nonetheless, there are many ways of incorporating 

gamification into learning without an added cost to the academic institution. Some 

developers of the Programming games on Steam are willing to provide digital copies of 

their games for free for educational purposes if the school requests them. One such 

developer is Zachtronics, who created the game Shenzhen IO, which is one of the 

Programming games from our dataset. It would be interesting to see future research on 

measuring how effective Steam Programming games for learning topics in Computer 

Science can be, based on highly recommended games.  

 Another interesting factor future studies can delve into is to use sentiment analysis 

together with the features we have provided and discussed to compare the results of both 

methods. In doing so, the differences or similarities in sentiment prediction may be 

analyzed, for if a text review is predicted to be recommended, then the sentiment should 

also be positive. One other facet we could explore is using the game images as input 

features instead of only text or numerical data, and mix in image classification methods. 

On a more general level, we could also compare game review text recommendations from 

different type of platforms, not just limited to the Steam platform. 

 Some limitations of our study included the scope of our research as well as time 

and resources. The Steam game reviews data we gathered were only from a certain period 

of time, and there will always be an influx of new games uploaded to the Steam store 

with new reviews added weekly or even daily. It would be interesting to be able to map 
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those changes in real time, along with further analysis and predictions of Steam game 

recommendations with the ebb and flow of time. Another limitation includes the size of 

our dataset. We could always increase the dataset in the future to include more than just 

Programming games on Steam and even apply more complex deep learning algorithms 

on them. 

 If we wanted to increase accuracy and reduce the error rate even more in future 

experiments, we could fine-tune the regression models through using other methods such 

as sklearn’s GridSearchCV module, which would find the most optimal coefficients and 

values to use for the hyperparameters automatically. This could potentially save time as 

well. All in all, this is only an initial stride in gathering sentiment through successful 

Steam game recommendation predictions, and there are plenty of questions still to be 

considered and answered. 
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