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Abstract

Tensor data is widely used in modern data science. The interest lies in identifying
and characterizing the relationship between tensor datasets and external covariates.
These datasets, though, are often incomplete. An efficient nonconvex alternating
updating algorithm proposed by J. Zhou et al. in the paper "Partially Observed
Dynamic Tensor Response Regression" provides a novel approach. The algorithm
handles the problem of unobserved entries by solving an optimization problem of a
loss function under the low-rankness, sparsity, and fusion constraints. This analysis
aims to understand in detail the proposed algorithms and their theoretical proofs
with, potentially, dropping some of the assumptions implied to the model. Also, the
efficiency and accuracy of the algorithms on a simulated data and Parkinson’s disease
real-life dataset will be illustrated.
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1 Introduction

Tensor data has several potential applications. Compared to the classical regres-
sion, tensors show the spacial structure and any correlation among individual voxels.
Moreover, with high-dimensional data, converting tensor into vectors/matrices to ap-
ply the classic regression models would result in very large parameters. Thus, the
interest in regression involving tensors is growing. Tensors are perhaps most advanta-
geous in medical analysis. For example, it has been applied to datasets in biomedical
informatics, including MRI scans in studies of Alzheimer’s disease (AD) in Thung
et al, 2016 [6] and Attention deficit hyperactivity disorder (ADHD) in Zhou et al,
2013 [2]|. Tensor data can also be seen in business applications Bruce et al, 2017 [9].
The interest of those studies lie in finding the relationship between given tensor data
and external covariates. These datasets, though, are often incomplete in real appli-
cations. To solve this issue, some have simply filled out the missing data by using
the mean of the data they have or have simply used a smaller sample size. These
approaches are limited regarding biomedical data. Thus, it is important to consider
other alternatives for dealing with incomplete data.

There are studies that address this problem by completing the tensor data Jain et
al, 2014 [10], Xia at el, 2019 [11]. To complete the tensor, some tensor low-rankness
and sparsity structures are employed, and unsupervised learning methods are used.
Zhou et al, 2021 [1], deal with those models without trying to complete the data but
aiming to estimate the relationship between incomplete multidimensional arrays and
covariates. This approach is unique and worth research. To handle the unobserved
entries, Zhou et al, 2021 [1] consider an optimization problem of a loss function under
the low-rankness, sparsity, and fusion constraints.

This approach may have numerous benefits within the context of analyzing biomed-
ical or business data. To enhance the analysis, it is vital to understand, in detail, the
algorithms proposed by Zhou et al, 2021 [1] and their theoretical proofs. The non-
convexity of the problem causes the theoretical explanation to be highly nontrivial.
To apply those algorithms for a more general model, some of the assumptions about
the data could be dropped. Through theoretical analysis, one assumption was weak-
ened. Also, it is necessary to apply those algorithms for a simulation and a real-life
dataset. Two data patterns were considered for the simulations. Both illustrated the
efficiency and accuracy of the algorithms. Simulations and theoretical proofs show
that the estimation error decreases when the observation probability increases. The
method is also used to analyze a speech dataset of Parkinson’s patients Tsanas et al,
2009 [8]. Several patterns were found by this analysis, which were found consistent
existing research on speech analysis for Parkinson’s diagnosis.

Overall, the theoretical explanation of proposed in Zhou et al, 2021 [1] algorithms
are evaluated, and the results for simulations and a real-life dataset for voice analysis
of Parkinson’s disease patients are presented.



2 Definitions and notations

In this chapter, we introduce main notations and definitions that are used regularly
through the paper. Tensors are multidimensional arrays. For example, matrices are 2-
dimensional tensors and MRI images are 3-dimensional tensors. For a m-dimensional
tensor A € RO<>dm: A, s its (iy,...i,)th entry and A1 igatyeim =
(Az'l,...ij_l,,l,,ijﬂ,...,im,-..,Az‘l,..‘z‘j_l,,d]-,z‘]-+1,...,z'm)T € R%. Let unfold,,(A) denote the
mode-m unfolding of A. Tensor unfolding is also called tensor matricization. For
example, the mode-3 unfolding of a third-order tensor A € R%*42%4s js ynfolds(A) =
[Air, s Agd e Adyays] € RAGEXd et [d] = {1,...,d}. For a € RY,
j-mode tensor product is defined as A x; a € Rx-xdj—ixdjpaxxdm guch that
(A X )iy sy iy 1 e xim = Z?il Ai....imai,. For B € R7*4  j-mode matrix prod-
uct of a tensor A € R“>**dm g defined as A x; B € R&X > xdj1x/xdjgaxxdm
such that for all i; € [dl],...ij_l € [dj_l],ij € [J],ij+1 € [dj+1],...im S [dm],

d.
(A x; B);,.. = Zj Qiy,..inbiy k- For a; € R%, j € [m], the multilinear
k=1

combination of the tensor entries is defined as A X a; Xa -+ X Gm
= Zile[dﬂ . ~Zim€[dm] A1y -« Qi Ay i The tensor spectral norm is defined
as [|All = supj,,|j=..—fay =14 X1 @1 X2+ Xy ap|. The tensor Frobenius norm is

Al = /%0, AE i

Let o and ® denote outer product and Kronecker product, respectfully. For tensors
Ay, .. Ay, recall that | Aj o Ago -0 A% = || A% A2]l% - . . || Anl/%. For a vector
a € R? let ||a|| and ||allo denote its Euclidean norm and Iy norm, respectfully. For
vectors a, b, recall the triangle inequality |la+b|| < ||a||+|b]| and ||la—b]|| > |||a||—b]||.
For a matrix A, if Av = A\v, where v is a vector and A is a scalar. Then v is an eigen-
vector of A and A is an eigenvalue corresponding to that eigenvector. Singular value
of A is defined as the square root of the non-negative eigenvalue of the matrix A*A,
where A* denotes the conjugate transpose of A. Since A € RY, A* = AT,

For a matrix A € R%*4 let ||A|| denote its spectral norm as

A = v e (A7 A) = Gra(A),

where op.x(A) is the largest singular value of matrix A. For A, B - matrices, re-
call that ||[AB| < ||A|||B||. Let ¢ = exp(z?) — 1. Then, for a random variable

X, let ||X||4, denote its Orlicz norm, defined as inf {u >0:E [% <%>] < 1} =

(=08 [ oxp (85)] <2}

Aj—1505,8541,--Im




3 Statistical model

In this section, we introduce the tensor regression model that is a foundation for
the algorithms of our interest and their analysis. Also, we present the assumptions
on the coefficient tensor and establish an optimization problem.

At each time point ¢ an mth-order tensor Y; of dimension dy X - -+ X d,,,,t € [T] is
collected. Suppose there are n subjects in the study. For each subject i, this tensor
sequence can be represented as a dynamic (m + 1)th-order tensor Y; of dimension
dy X - xd,, xT.

A dynamic tensor Y; and a g-dimensional vector of covariates x; are collected,
where

Y; € R xdm>T and o, € R, € [n].

The response tensor Y; can be partially observed, with a missing pattern varying
from subject to subject. We consider the following tensor regression model:

Yi=B" Xp2 2 + & (1)

B* € RIX-xdmxTxq _ (4 2)th-order coefficient tensor,
& € R ->xdmxT _ (1 4 1)th-order error tensor independent of x;. Without loss of
generality, we assume that the response tensor is centered. Therefore, the intercept
from the model can be dropped.
The main object of interest in the analysis is to estimate the coefficient tensor B*.
Assumptions on B*:

1. B* admits a rank-r CP decomposition structure.

B" = Z W10+ 0 By myo » Where (2)

ke(r]
wy, >0 and f ; € S%,8% = {a € R*| ||a|| = 1}.

2. B is sparse, thus the decomposed components J; ;’s are sparse too.

By; € S(dj,s;) for all j € [m + 1],k € [r], where

d
S(d, s) = {ﬁGR 1D Laro) SS} ={BeR|[Bllo < s}

=1

This assumption enables to concentrate on the tensor regions that are the most
dependent on the covariates.

3. Decomposed components 5;:3& have fusion structure,
B € F(dj, f;) for all j € [m + 1],k € [r], where

d

F(d7 f) = {ﬁ eR | Zmﬁl—ﬁl—l#o) < f} = {ﬂ cR | ||DBHO <f- 1} , where

=2



D € RU=Dxd with D;; =—-1,D;;11 =1 for i € [d— 1] and other entries = 0.

This assumption encourages temporal smoothness and helps pool information
from tensors observed at adjacent time points.

A major challenge in this model is that some entries of the tensor Y are unob-
served. Let Q; C [dq] X [dg] X -+ X [d41] denote the set of indexes for the observed
entries in Y;, 1 € [n]. Also, a projection tensor Ilg(+) is defined as:

)/;1’2'27.“7im+1 lf(ih ig, Ce ,im+1) c Q,

0 otherwise.

Lo (Y)]i iz, imys = {
Note that for tensors Aj, ... A,
Mo Ay o Ay 0--- 0 A = [Ta(A) 1 FI A7 A7
= |AF o (A2) 17 - - - [AnllE = A Al - e (A I
Also, for tensors A;, Ay, we get
(o (A1), Ho(Az)) = (Ha(A1), As).

Then, we consider the following constrained optimization problem:

n

1

min — Il | Y; — wi(BE  x; o---0Bum 3

wkﬂk,jke[r]JE[m-i-ﬂ’rL; i ];H (B m271) B Brme1 (3)

T F

with limitations HﬁkJ‘HQ = 1,] c [m + 2], HBkJHO S Tsj, HDﬁk,]
jem+1],ke|r.

0= Tt



4 Estimation methods and algorithms

In this chapter, we present algorithms for estimating a solution to the optimization
problem (3) and initializing the variables to achieve more precise results.

4.1 Estimation algorithm

In this section, we introduce an algorithm to solve the optimization problem (3).
We go step by step to understand in detail and derive the formulas used in the
algorithm.

The optimization problem (3) is a non-convex optimization with multiple con-
straints. The loss function is non-trivial since a projection tensor was added to deal
with unobserved entries. Problem (3) either does not have a closed-form solution
or it is too complex for calculations. Therefore, estimation algorithms should be
considered to find a solution of (3).

Zhou et al, 2021 [1| proposed an alternating block updating algorithm to solve
this optimization problem.

Algorithm 1 Alternating block updating algorithm

Input: the data {(z;,Y;,€;),i =1,...,n}, the rank r, the sparsity parameter Ts;, and the fusion
parameter 7y, j € [m + 1].

Initialization: set wy = 1, and randomly generate unit norm vectors S 1, ..., Bk,m+2 from a
standard normal distribution, k € [r].
Repeat

for k =1 tor do
for j=1tom—+1do

Step 1: obtain the unconstrained estimator B (t+l) , given,
~(t A(t+1 A(t+1 At At At .
,g), ,(“ ),..., ,(” )1,@23.“,...,6,(‘,7)7,%1,6,(%2,&27by solving (4).

Normalize B (Hl) .

Step 2: obtaln the constrained estimator B,(fjl), by applying the Truncatefuse operator to

A(t4+1)
k.j
Normalize B(Hl .
end for
Step 3: obtain w( 1 ), given ﬁ(tﬂ 7--~75kt;1+)1a Bk ‘m42 using (8)
Step 4: obtain 527:11_&2, given w,(fﬂ), ,(;fl), cee ,(:;1_21 using (9)

end for
Until the stopping criteria is met.

OUtput: (Uf)ka 5]@,17 cee 7ﬂk,m+2» ke [T’}

Step 1: solving an unconstrained weighted tensor completion problem

1 o A A A
Hﬁlin EZ{ zk} HHQ ( Zt]:—l) —wkﬁgfl) ooﬁ]gfj—_li Oﬁk,j Oﬁlﬁ’lz‘-{-l o...Oﬁ]E;t2n+1>
J .

where 042(2 = ﬁ,gfzz LoT; and th,j Y is a residual form defined as



A (t+1 t+1) (t+1) (t+1) (t)
(t+1) _ <Y k/zk RN 6 e k' mtl k;/zk wkl : k/ﬁk/ o ﬁk’7m+1
t+1 < >

R =
i,k t

ol

()
for i € [n], k € [r].

The optimization problem (4) has a closed-form solution.To simplify the calculations,
the solution is presented for m = 2. For m > 3 calculations are similar. In particular,
Br.s is estimated as follows:

The optimization problem becomes:

1l (t)} H ( (t+1) o Alt+l (t+1) 2
min — Ip, ( R; o ) H
nin 2;{ B o B3V e s ) |

2
HHQi (Rg]:rl) " t+1 ﬁ (t+1) Oﬁk,s) HF

-5

l17l27l

2
(t+1) A(t+1) A(t+1)
5i,ll7l2,l (Rz kJli,lo,l kﬁk 1,01 6k 2,05 5 )

where 0;,1,; is an indicator function on (2;, which means that ¢;;,;,; = 1 if
(I1,15,1) € Q; and 9,4, 1,, = 0 otherwise.
The function can be minimized by every entry of [y 3:

n
()2 (t+1) 5(t+1) A(t+1) .
Z(ai,k) Z iy 1ol RZ Ky la,l k1l 5k 212 Bk 3,1 _> min
i=1 Il
(t+1) o
Let o; = (v m) (L, L) = 4, 5k31 Ty 01y 15 1 R e 100 = i
(t+1) 5(t+1)

and d;y, 1,, lwkﬁk 1, 6k,2,l2 = b; ;.

Hence, by applylng Proposition A.1, we get:

(t (t+1 A(t+1) A(t41)
( i,)) IZZ 52l1,lz,lekzl),12,1/81(c,111)5k212
1,02
(®)y2 At g At g (©)
(a zk) > 5i,l1,lz,lwk(5k,1,l1) (5k212)

1 l1,l2

Brai = -

1 m:

o
I

Similarly, we get a closed form solutions for Bk,&l and Bk,l,l

(t+1)  A@+1) A(E+1)
( ) Z5zll,l3,lekzl,13,z k,l,llﬁk313

'MS

~ =1 l1,l3

Prai = G (t) A(t+1) (t+1)\o
;(%,QQ lZIJ 5i,ll,lg,l@k(ﬁk 1 11) (5k 3 13)
1= 1,3



(t)\2 t+1) (t+1) A(t+1)
( i,k) lzl 5i7l2,l37 7, k lg,l3,l/8k,2,l2 516 3 l3
PALE]

t A t 1 t+1
(@2 32 65 ot (B )2 (5;:2@)

1 ly,l2

Bkll—

7 m:

-.
Il

As seen from the formulas above, 3’s need to be updated in an element-wise
fashion as an indicator d;;, ;,, is present in both nominator and denominator. Since
it could change across different entries of s, it can not be canceled.

Step 2: applying operators to the unconstrained estimators to incorpo-
rate the sparsity and fusion constraints

As in Zhou et al, 2021 [1], we define Truncate operator as follows

a; if j € supp(a,Ts)

[ Truncate(a, 75)]; = {

0 otherwise,

where supp(a, 75) refers to the indexes of 7, entries with the largest absolute values
in a. The truncation operator ensures that the total number of nonzero entries in a
is bounded by 7.

We also consider Fuse operator which is defined as

[Fuse(a, Tf)]; Z Lico, 7 |C| Zal,
leC;

where {C;};Z, are the fusion groups. To calculate the fusion groups:

1. Calculate Truncate(Da, 7y —1). The resulting vector has at most 7, — 1 nonzero
entries.

2. The elements a; and a;4; are put into the same group if [ Truncate(Da, 7p—1)]; =
0.

3. Elements of each group are averaged.

Combining Truncate and Fuse operators, we obtain Truncasefuse operator, de-
fined as
Truncatefuse(a, s, 7¢) = Truncate[Fuse(a,T¢), T4 .

For example, consider a = (0.2,0.1,0.5,0.6,0.7)", 7, = 3 and 7, = 2.
1. Da = (—0.1,0.4,0.1,0.1)".
2. Truncate(Da,7; — 1) = Truncate((—0.1,0.4,0.1,0.1)",1) = (0,0.4,0.1,0.1)7.

3. The previous step shows that ay,as belong to one group, and as, a4, as belong
to the other.



4. Fuse (a,7;) = (0.15,0.15,0.6,0.6,0.6)".

5. Truncatefuse(a, 75, 74) = Truncate [Fuse(a,2), 3] = Truncate [(0,0,0.6,0.6,0.6)"].

Step 3: update w,(:ﬂ)
Since 6 (t+1) yeees 5,::;11 are already estimated, the optimization problem becomes:
1< 2 1 A(pal 2
min - > {0452} HHQ < RV —wi B o 'Oﬁz(ch)l) o
i=1
where
(t+1) () g(t+1) (t+1) o) t+1) (t+1)
<Y D Wy QP © 0 O Ppmi — > wk’ N N T k’,m+1>
R(t+1) k'<k k' >k
i,k Oé(t)
ik

Note that th,j Y does not depend on wy. By the definition of the Frobenius norm,

we have
(t+1) A(t+1) (t+1
HHQi (Ri,k — WkPy km+1> H

2

o 2 : (t+1) A(t+1) (t+1)
’6i’l17-"7lm+1 (RZ k1, lmta - wkﬁk 1 l1 5143 m+1 A1

Iy lmt1

Then, the function we minimize in wy becomes:

1 Zn Dk Z 5 R+ (t+1) (t+1) 2
ﬁ ai,k Bl lmt 4k, b1 - wkﬁk 1 ll 5/€ m+1 dmt1
i=1 Iy olmtt
— _ () _ _ (t+1)
Let x = W, O; = { j (ll, ce ,lm+1), Q5 = 5”1 m+1Rzkl1 At and bi,j

Oidy ol Hﬁlffflll ﬁkt;i” o Therefore, by applying Proposition A.1, the closed
form solution is:

n 2
(t) (t+1) 5(t+1) (t+1)
> {ai,k > Oifr m+1R’L Ele,.. 7m+15k 1 5k m+1 A

w(t+1) =1 Iy lmt1

k - n 2 2
t (t+1) t+1)
Z {O‘z(li} > ( i1, m+16k 1 11 Bl& m+1 zm+1>
i=1 lyeslmt1
Then,
UG 1, (t+1 (t+1) (t+1)
> & i (R ) xa 5 T Xmel Bk m+1

0D = =L

W (t+1) o (t+1)
> {ald} e (58 ka)H
Step 4: update 6t+1

k,m+2



Since 6 (t+1) - ,8 t+1)1 and UAJ](CH_l) are already estimated, the optimization problem

k.m+
becomes:
R(t—H) 2
ik (t+1)
min — E {5km+2mz = A}, ,
Bre,mt2 T Bk miati P
where
(t+1) _ S (t4+1) (t+1) (t+1)
Ri,k’ =Y, — E Wy ﬂk,erQxi w1 ©OcO k’m+1ad
k' k. k' €[r]
(1) _ A (041) j+1) (t+1)
Ay = Wy k.1 5k m+1

By the definition of the Frobenius norm, we have
2

R(H‘l) R(t+1)
ik t+1 L1 e lm t+1
HQz T . - A]E; ) - Z (5iall7~n7lm+1 T - A+1 - A’(C,ll,.)..,lm_‘_l
Bk,m+2x7f

T
Fooleslmg Bim2i
Therefore, the function that needs to be minimized in Sy, +2 becomes

2
(t+1) (t+1) T
E § ( R S <Ri,k,l1,...,lm+1 - Ak,ll,...,zm+15k,m+2$i .

=1 1q,.. ,lm+1

2

Using Proposition A.1, a closed form solution is:

-1,
,:;22—{ ZHH R ?} S (1o, (RE™). Mo, (AL ) . (9

With a good initialization, which can be achieved through the algorithm below, the
iterative estimator from the considered algorithm is within the statistical precision
of the true parameter. Results from the theorems in the later chapters provide a
theoretical condition to end the iterative process: the computation error is dominated
by statistical error. In practice, the iteration ends when two consecutive iterations
are close.

4.2 Initialization algorithms

The success of the alternating block updating algorithm depends on a good initial-
ization of the main variables. In the section, we consider two initialization algorithms
for the cases of r = 1 and r > 1. Since the optimization problem (3) is non-convex,
the initialization might not have a closed-form solution. Therefore, initialization algo-
rithms that solve this issue are considered. Zhou et al, 2021 [1]| provide an algorithm
for initialization called a spectral initialization. In order to simplify the presentation,
the notion is used for the case of m = 2. Nevertheless, it can be extended to cases

where m > 2. Let .
7———5 IIo (Y;
n : Qz( )



Ay = unfolds(p~'T) € R#*N%, Ay = unfold, (p~'T) € RN =%

Bl = Hoﬁ'—diag(AlA,{) € Rd3><d37 B2 - Hoﬁ'—diag(AQAg) € Rledlv

where Il,g.giag keeps only the off-diagonal entries of the matrix.
Let U;A Ul be the rank-r decomposition of Bj, and let UsAyUJ be the rank-r
decomposition of Bs.

Algorithm 2 Spectral initialization algorithm for r» = 1

Input: the number of restarts L, the estimates Uy, Us,and the sparsity parameter 7,5 € [3]
for{=1to L do

Generate g} ~ Normal(0, I,), and compute §} = U U{ g1, M! = p~1T x3 gl.

Set v} and vl are the first left and right singular vector of M} corresponding to the largest
absolute value |\!|.
end for
for!=1to L do

Generate gh ~ Normal(0, I, ), and compute g4 = UsUd g, MY = p™1T x3 gh.

Set v} and v42 are the first left and right singular vector of M} correspondlng to the largest
absolute value |\5].
end for
Choose (v1,vs) from {(v1,va)} | with the largest |A]].
Choose (v3,v4) from {(v3,vs)}, with the largest |AL].
Compute ﬁ(o) = Norm(Truncate(v;,7s,)) for j = 1,2,3, where (01,02,03) is obtained from
(v1,v2), (vs, v4) and Norm is the normalization operator.
A(o

and 51 4 usmg (9)

(©
Output: w1),511a 127 13,514

Compute w

Given Bﬂ , Ag, Bfo?z, we have the following optimization problem,

. . . 2
min Y; — i (BT, 0, 30 4 (0)>H
w10, Bl =170 Z H ( k(51,4 )51,1 51,2 ﬁ1,3 7
The solutions are obtained as:
1 & 2 o
A0 _ ) L H (A(O) A(0) A<0)> T -1
ﬁ1,4 n ; Q 5171 © 51,2 © 5173 LiT; n
x> (To, (¥i), T, (B 0 5% 0 32)) i,
=1
> B wille, (Y;) x4 B s 5§02) X3 550?2
Agﬂ) =1 (9)
no. N N A 2
> {ATiai} ||ma, (819 4% 0 52) |
=1
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Zhou et al, 2021 [1] also propose the initialization algorithm for a more general
case where r > 1:

Algorithm 3 Spectral initialization algorithm for r» > 1

Input: the number of restarts L, the estimates Uy, Us, the tolerance parameter €, and the
sparsity parameter 7, ,j € [3]
Obtain {(vi,v2)}-, and {(vs,v4)}, using Algorithm 2.
Obtain the triplet S = {(@1, 02, 93) }; from (v1,v2)E |, (v3,v4)E
for!=1to Ldo

Find (Br.1, Br.2, Br,3) = argmax g, 5, 5.))eslp™ T X1 01 X2 Uy X3 U3

Remove all the triplets in (@, 5a, 73))~, with max{|(Br.1,7})], [(Br.2, 0], |(Br.3, 05)|} > 1 —e€em
end for

Set Wy = 1, and randomly generate unit-norm vectors BAkA,k € [r] from a standard normal
distribution.
Repeat

Update Bk7173k’2,3k,3 using (6), and set BAM = Norm(Truncate(ﬁAk’j,Tsj)) for j=1,2,3.

Update wy, using (7).

Update B 4 using (8).

Until the stopping criteria is met.

Denote the final update of Wy, Bx.1, Bk,2, Bk.,3, Br,a as w,ﬁo), ,(:2, ,(;?2), ,(g?%, 5,2(2, k € [r], respectively.

~(0) A0) A(0) A(0) A(0
Output: w,i), ,ii, ,E%, ;(C; ,(C,i,k:e[r].
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5 Theoretical results

In this chapter, we discuss assumptions that are implemented for a theoretical
analysis of Algorithms 1 and 2. We present two theorems that show that estimation
from Algorithm 1 gives precise results with a high probability. Also, we present a
theorem to theoretically prove that Algorithms 2 provides a good initialization.

5.1 Assumptions

In this section, we introduce assumptions on the statistical model (1). Precise
results of Algorithms 1 and 2 cannot be achieved using any initial parameters or under
any true model. Therefore, several limitations and assumptions are implemented. We
discuss those assumptions and point at the ones that could be weakened. At first,
the general assumptions are discussed.

Assumption 1.

(a) The predictor z; satisfies:

1« .
||i]] < ¢ and - Z |z:ix] ||2 < co,i € [n]

i=1

1/co < Amin < Amax < €0, Where Apin, Amax are the minimum and maximum
T

n
. . . 1 .
eigenvalues of the sample covariance matrix ¥ = - ) x;x; , respectively, and

i=1
Co, C1, Co are some positive constants.

(b) The true coefficient tensor B* satisfies the CP decomposition with sparsity and
fusion constraints. The decomposition is unique up to a permutation.

(¢) The decomposed component 3 ; is a p-mass unit vector:

max|B ] < /v < 1.
€d,;

(d) The entries in the error tensor &; are independent and identically distributed
sub-Gaussian with a variance o2

(e) The entries of the response tensor Y; are observed independently with an equal
probability p € (0, 1].

Remarks:

1. In Zhou et al, 2021 [1], the assumption in (b) is added with ||B*|| < czwi .
where w} = maxg{w;}, wk,, = ming{w;}. Also, w} . = O(wr,,). However,

this assumption is not used in the proofs.

*
min

12



2. In real applications, assumption (e) might not be satisfied due to the nature of
the unobserved entries. This assumption is required for the theoretical analysis,
even though the algorithm does not require it.

Then, we introduce regularity conditions for r = 1.
Assumption 2.
Let d = max{dy, - dpm1}

(a) The observation probability p satisfies:

caflog(d)}*pi®
p= T

where ¢4 is some positive constant.
(b) The sparsity and fusion parameters satisfy:
Ts; 2 85, Ts; = Jjand 75 > f;

Also, for the minimal gap A* = min Bt s — Bl
* * 7]7 7]7
1<3§dj7ﬁlyjys7£ﬂ1)j,s,17]6[3}

A G197 slog(d)’

*
wj np

where (' is the positive constant defined in Theorem 5.1.

2}3

(c) For the initialization error ¢ = max{|@\” — w;|/w?, manHBf?} - B

< mi { A3 1}

e<min { —————, = ¢,
24/10coN2 . 6

where ¢ is the same constant as in Assumption 1.

(d) The sample size n satisfies:

_ {05023210g(d) ceoslog(+/s3/p) }
n > min )

*2 ) *
wy p wyp

where c; and cg are some positive constants.

Remarks:

1. The condition (a) places a lower bound on the observation probability to ensure
a recovery of the tensor coefficient.

2. The condition (b) for the sparsity parameter ensures that the truly nonzero
elements would not shrunk to zero.

13



3.

The assumption (c¢) requires the initial values to be reasonable close to the
true parameters, which can be achieved with the considered above initialization
algorithm. The condition on the minimal gap ensure that the fused estimator
wouldn’t incorrectly merge two distinct groups.

For the most part, those assumption have a theoretical explanation. Indeed,
they are used in the proof of the Theorem 5.1.

Finally, we introduce regularity conditions for r > 1.
Assumption 3.

(a)

The observation probability p satisfies:

» > C7 {10g<d) }4/1137’11):;1280(
nstbwrz ’

where c; is some positive constant.
The sparsity and fusion parameters satisfy:
To; 2 83;Ts; = Jy and 7y > f;

Also, for the minimal gap A* = _ min . |517j75 - 61,j,s—1|‘
1<5§dj761"7’37&617]'73_17]6[3}

ar s Gio [slostd)

wy np

where (] is the positive constant.

For the initialization error € = max{|w§0) — wi|/wy, ma,xj||B§(’)} — B5 12}

3 *2 3 *3
€ < min )‘minwmin /\minwmin 1
9 3 ’
24\/ 1062)\2 w*2 T 402Amaxw;{r§axr2 6

max max

where ¢y, ¢5 is the same constants as in Assumption 1.

The incoherence parameter § = jer[ga}é k,‘mm By ;)| satisfies:
/\3 w*3

£< min ““min
- 402

R
Amaxw;;?axr

The sample size n satisfies:

, {05023210g(d) cgoslog(d)log(+/s/p) }
n > min ’

*2 ) *
WinP WhinP
where ¢5 and cg are some positive constants.
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Remarks:

1. The conditions are similar to corresponding conditions of Assumption 2 with
an added affect of general rank 7.

2. The condition (d) ensures control of correlations between the decomposed com-
ponents across different ranks.

5.2 Main theorems

In this section, we introduce two theorems that show that estimation from Algo-
rithm 1 gives precise results with a high probability. Moreover, we calculate the error
of the estimator. Good performance from Algorithms 2 and 3 are crucial for a precise
initialization for Algorithm 1 due to Assumption 2(c). Therefore, we present a theo-
rem to theoretically prove that Algorithm 2 provides precise initialization with a high
probability, and calculate its error. Zhou et al, 2021 [1| derive the non asymptotic
error bound of the algorithms.

Theorem 5.1. Suppose that assumptions 1 and 2 hold. Then, for rank r = 1, the
estimator from the #** iteration of Algorithm 1 satisfies with high probability:

. 1 Cio [slog(d)

~(t * * t * 1
max{|dy” — wi|/wi, max; |61 = 67 ;ll2} < NS e T T
computational error N ,

Vv
statistical error

where k = 6v/10c2A2,, /X3, + 1/2 < 1 is a positive coefficient, € is defined in As-

sumption 2(c), ¢z, ¢ are defined in Assumption 1, C; = (6v/1 C’)\max—i—C’Q miny/Q)/ Ain
and C', Cy are some positive constants.

The proof of this result is given in Appendix B.1.

Theorem 5.2. Suppose that assumptions 1 and 3 hold. Then, for a general rank r,
the estimator from the t'" iteration of Algorithm 1 satisfies with high probability:

A t ~
max{max[a} — wil/wj, max| 5] G5y < Ke

computational error

1 Ciwl .o |slog(d)
+ 7 *2 )
1—-k Wiin np

~—
statistical error

7. 6v10c2 A2, w*2 2o Amax w3 r2 2o Amax W
where k£ = )\632 mafg max" ¢ | 1 2 i *’3““ €+ -1 2 il *"‘a" f + < 1 is a positive coef-
min mln mln mln mll] ml!]

ficient, co and ¢ are defined in Assumption 1, Cy = (6v/1 C)\max +12C5\ miny/q)/ A2
and C', Cy are some positive constants.
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The proof of this result is given in Appendix B.2.

Remark:

k is greater than k, which indicates that the algorithm for the general case has a
slower convergence rate. Moreover, k increases with an increasing rank r. This can
be expected since as the tensor estimation problem becomes more challenging, the
algorithm will show a slower convergence rate.

Theorem 5.3. Suppose that Assumptions 1 and 2 (a, b, d) hold. Also, suppose that
L > Cf for some large C1, | Y- n~' B x;| > Cy for some positive constant C3.
=1

Then, the initial estimator produced by Algorithm 2 satisfies that

. X log(d) o |slog(d)
() . xp /% 0) _ g% —0 g g
masc{ " — il /s, ma| 3 — 57, 12} p{\/ B[ EE

The proof of this result is given in Appendix B.3.
Remarks:

1. The result of the theorem shows that the initialization error decreases when n
increases. Thus, the constant initialization error bound in Assumption 2(c) is
guaranteed to hold as n increases.

2. The estimation error is slower than the statistical error rate in Theorem 5.1
when o/w} < ¢/s'5. This suggests that after obtaining the initial estimator
using the spectral initialization algorithm, the alternating block algorithm 1
could further improve the error rate of the estimator.
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6 Simulation studies and real dataset application

In this chapter, we aim to analyze the accuracy of the algorithms. Our goal is to
investigate their performance using simulations and to analyze Parkinson’s patience
speech dataset.

6.1 Simulation

In this section, we perform some simulations to analyze the accuracy of the algo-
rithm. Our goal is to investigate the performance of considered algorithms. Moreover,
we want to explore the change in the error for different sample sizes, observation prob-
ability and fusion constraint.

To evaluate the performance of the estimator of the coefficient tensor B*, we use
the mean squared error (MSE) that is defined as:

2 N
_ 2
F:| - E , E |:<Bi1,i2,i3,i4,i5 - Bi1712,i3,i4,i5) ]

MSE = E [HB’—B

11,12,23,24,15

—E [tr(vec(B* — B)(vec(B* — B))T)} .

For each considered set of model parameters m = 30 simulations are performed.
The empirical mean squared error that is reported in the table is an average Error =

S~ || 8- B
M, where Bj is an estimate of the coefficient tensor in I simulation for set
parameters. The standard error is also reported for the simulations.

The computational time of the algorithm is linear with the sample size and tensor
dimension.

Two patterns of an observed data are considered: random missing and block

missing.

6.1.1 Random missing

In this subsection, the missing data points are random, and don’t follow a certain
pattern. A fourth-order tensor response Y; € R#*xdxdsxT ig generated as follows.

At the first step, the coefficient tensor is generated: B* € R41xd2xdsxTxq a5 B* —
2

> wiBiioBia0Biz0 B0 Brs, Where dy = dy = d3 = 32,T = 5,q = 5 and the true
k=1
rank r = 2. Entries of f ;,j € [4],k € [2] are iid standard normal.

Then Truncatefuse operator is applied on 3y ;, j € [3], & € [2] with the true sparsity
and fusion parameters (so x d;, fo x d;),j € [3], k € [2], where s = 0.7, and fo = 0.7
or fo = 0.3. Then, Fuse operator is applied to fi4,k € [2] with the true fusion
parameter fo x T. B} 5,k € [2] is set as a vector of all ones: ;5 = (1,..., 1)T. Then,
each vector is normalized.

After those steps 55 1, 55 2, Bi 3 Bras Bisy K € [2] meet the assumptions of the model.
The weight is set as wj = 20,k € [2].
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Then the g-dimensional predictor vector x; is generated such that its entries are iid
normal with mean 2 and standard deviation 3. The error tensor £ whose entries are
iid standard normal is generated as well.

Next, the response tensor Y; is computed following the model in (1).

Eight sets for simulations are performed, based on the probability of observed
data: p = 0.3, p = 0.7, fusion constant: fy = 0.3, fo = 0.7, and sample size n = 80,
n = 150.

Table 1: Simulation for random missing with p = 0.3

n Error SE n Error SE
80 0.0149 0.0017 80 0.0228 0.0022
150 0.0069 0.0003 150 0.0112 0.0005

Table 2: Simulation for random missing with p = 0.5

(a) fo=0.3 (b) fo=10.7
n Error SE n Error SE
80 0.0062 0.0009 80 0.0088 0.0012
150 0.0028 0.0001 150 0.0071 0.0003

As seen by the results, the error decreases when the observation probability (p)
and sample size increase. This is consistent with the theoretical results. Addition-
ally, incorporating the fusion structure improves the estimation accuracy, however,
estimation error increases when the fusion constant increases.

6.1.2 Block missing

In this subsection, we consider the scenario where the unobserved data is located
in blocks. In real life applications, this is a common situation. For example, a missing
MRI scan would be a missing block for a subject at a certain time.

Two probability variables are introduced: p,, - probability that each subject has
missing values and p; - proportion of missing blocks for the subject by the time
variable. For example, if there are 100 subjects and T' = 5,p,, = 0.8, p, = 0.4, then
it means that 0.8 x 100 = 80 subjects have partially observed tensor, and for each of
those 80 subjects, observations are missing 2 out of 5 times.

The simulation process stays the same as in the previous case with random missing.

Table 3: Simulation for block missing with p, = 0.8, p; = 0.4

(a) fo=0.3 (b) fo=0.7
n Error SE n Error SE
80 0.0067 0.0012 80 0.0166 0.0022
150 0.0044 0.0004 150 0.0121 0.0007
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Table 4: Simulation for block missing with p, = 0.8, p; = 0.6

(a) fo=0.3 (b) fo=0.7
n Error SE n Error SE
80 0.0151 0.0029 80 0.0243 0.0033
150 0.0085 0.0013 150 0.0180 0.0019

As with random missing, the error decreases when the observation probability (p)
and sample size increase.

6.2 Analysis of a real dataset

In this section, we apply considered algorithms to a real-life dataset. The algo-
rithm is illustrated by applying it to a voice analysis dataset of Parkinson’s disease
patients. Parkinson’s disease is a progressive disorder that affects the nervous sys-
tem and the parts of the body controlled by the nerves, which causes unintended
or uncontrollable movements, such as shaking, stiffness, and difficulty with balance
and coordination. There are currently no blood or laboratory tests to diagnose most
cases of Parkinson’s. Therefore, it is important to detect patterns that can help an
early diagnosis of Parkinson’s. One of the considered symptoms of the disease is that
patient’s speech becomes soft or slurred.

The analyzed data is taken from the study on telemonitoring of Parkinson’s disease
progression by non-invasive speech tests Tsanas et al, 2009 [8]. It is of interest to see
how different speech attributes relate to the disease’s progression. To measure the
Parkinson’s progression, Unified Parkinson’s disease rating scale (UPDRS) is used.

The speech data was collected over 6 months from n = 42 participants . Each
months, there were several tests taken. For every voice recording, there are a num-
ber of attributes that were measured. Based on previous research and simplicity of
interpretation, those three attributes are chosen: Jitter.PPQ5, Shimmer.APQ5 and
PPE.

Jitter and shimmer are acoustic char-

Jitter acteristics of voice signals, and they are

ﬂ * \ ﬂ‘ ﬁ N‘ caused by irregular vocal fold vibration.

\ “ | ‘\ They are perceived as roughness, breath-

i iness, or hoarseness in a speaker’s voice.

PPQ5 is the five-point Period Perturba-

tion Quotient, the average absolute dif-

|+  ference between a period and the aver-

age of it and its four closest neighbors,
divided by the average period. Let

e,‘ ‘w
‘1\ "\
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APQ5 is the five-point Amplitude of Perturbation Quotient, the average absolute
difference between the amplitude of a period and the mean amplitudes of it and its
four closest neighbors, divided by the average amplitude. Moreover, PPE - Pitch
Period Entropy is a nonlinear measure of fundamental frequency variation.

Each group of speech tests after preprocessing and mapping is summarized in the
form of 35 x 34 x 25 tensor. For each participant, there are 6 tensors for every month.
For each subject, we stack those tensors collected over time as a fourth-order tensor,
which is to serve as the response tensor Y; with dimensions 35 x 34 x 25 x 6. 20% of
the data is missing in blocks: for example, if a subject wouldn’t record their test in
a month.

Figure 1: For each subject and for each month of the study, we have a group of voice
recordings. Each voice recording is the point in a 3D space with coordinates as its
corresponding attributes. As picture shows, this process would create sparse tensors.

0.001  0.002 (o3 0.004

B

[~ 0.25
[ 0.2

PPE [ 015

pefier: APQS 0.015

0.01

0.005

Jitter:PPQ5

The predictor x; consists of a continuous variable Unified Parkinson’s disease
rating scale, age and sex. The goal is to identify the values or a pattern of Jitter. PPQ5,
Shimmer.APQ5 and PPE that relates to progression of Parkinson’s.
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Figure 2: The estimated regression coefficient tensor after applying proposed algo-
rithms. The points show non-zero entries of the tensor.
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Shimmer: APQ5

Jitter:PPQ5

As a result, the estimation of the regression coefficient tensor was obtained. It is
seen that the estimate identifies that the relationships between Jitter.PPQ5 and UP-
DRS, as well as, Shimmer.APQ5 and UPDRS are mostly significant for lower values of
Jitter.PPQ5 and Shimmer.APQ5. In regards of PPE, it is a highly significant variable
for predicting the progression of Parkinson’s disease. PPE indicates impaired pitch
control that could be interpreted as deteriorating muscle coordination. Those find-

ings are consistent with existing research on speech analysis for Parkinson’s diagnosis
Little et al, 2011 [12], Tsanas et al, 2009 [8].
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7 Conclusion

In this major paper, we study with more details the alternating updating algo-
rithm proposed by Zhou et al, 2021 [1|. This proposed method is unique in terms of
estimation algorithm, theoretical properties, and regularity conditions. Zhou et al,
2021 [1] developed an efficient algorithm that deals with a challenge of unobserved
tensor data. Without completing the data, the algorithms estimates solution of a non-
convex optimization problem. The non-convexity causes the theoretical explanation
to be highly nontrivial.

After careful consideration of the proofs, this analysis shows that one of the as-
sumptions could be dropped. Specifically, we weaken assumption on the bound of
tensor coefficient’s norm. Thus, those findings show that the algorithm could be ap-
plied for a more general model. Moreover, we calculated the estimation error and
proved that the considered algorithm gives a precise estimator with a high proba-
bility. Also, we analyzed an initialization algorithms which is crucial to the good
performance of the estimation algorithm. The efficiency and accuracy of the algo-
rithm were illustrated using simulations. Two data patterns - block and random
missing were considered, and both showed that the estimation error decreases when
the observation probability and sample size increase. Theoretical analysis proves the
same result. The computational time of the algorithm is linear with the sample size
and tensor dimension. The method was also applied to a speech data of Parkinson’s
patients. As a results, an important pattern of changes in the speech attributed were
discovered. Pitch Period Entropy showed strong significance for Parkinson’s diagno-
sis. This finding is consistent with the results in Little et al, 2011 [12], where the
analysis proved that PPE has the best classification performance out of all consid-
ered variables. Our findings are also consistent with the results given in Tsanas et
al, 2009 [8]. More precisely, our analysis highlights a significance for Shimmer, Jitter
and PPE.
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Appendix A Some useful preliminary results

This Appendix contains propositions and their proofs, as well as theorems and
lemmas, that are used to prove Theorems 5.1 - 5.3.

Theorem A.1 (Bernstein’s inequality). Let X, X5, ..., X}, be independent zero-
mean random variables. Suppose that |X;| < M almost surely for all i € [n]. Then,
for all positive t:

142
St

E[X? + s Mt
1

IP’(ZXizt) <exp | ——
i=1

The proof of this theorem is given in Bennett, 1962 [20].

Theorem A.2 (Vector Bernstein’s inequality). Let Xi,... X, be independent
vector-valued random variables with common dimension d and assume that

E(X;) =0,[|X]]2 < i, E [|X;]]°] <0°

|

The proof of this theorem is given in Kohler and Lucchi, 2017 [21].

Then

n

1
PP

=1

Theorem A.3 (Matrix Bernstein’s inequality). Let Xi,... X, be independent
dy X dy random matrices and assume that E(X;) =0, || X;|| < B. Define W = >"" | X,
and

8 = max{H]EWWTH ,

EW'W||}.
Then

meuzosah+@wm(;igga).

The proof of this theorem is given in Tropp, 2015 [22].

Theorem A.4 (Wedin’s theorem). (Theorem 4.4 from Stewart and Sun, 1990 [19)])
Let A, F € R™*" with m > n. Suppose that A has singular value decomposition.

ur S0
Ui | A[Vi Vo] =0 X
ur 0 0

Let A = A+E, with analogous singular value decomposition (ﬁl, Us, Us, Vi, Va, 31, flg).

Let 6 > 0, § = min {min|21[z’,i} - EQ[j,jH,minEl[z',i]}. If 0 > 4| E||2, then the dis-
1,J i

tance between U and U is bounded by O(||E||5/4).
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Lemma A.1. (Lemma 5 from Xia et al, 2020 [13].)

Let X1,...,X,, € R™*™ be random matrices with zero mean. Suppose that
max ||| X; |||, < U@ < oo for some o > 1. Let

1<i<n
6? := max { S EXXT| LD EXTX,
=1 =1

Then there exist a universal constant C' > 1 such that for all £ > 0, the following
bound holds with probability at least 1 — e™¢,

)

5\/25 + log(my + my)
n

)

X1 +--4+ X,
n

< C’max{

U(a) (10g \/ﬁgj(a)> t+ 1Og(nﬁbl + m2) }

n

Lemma A.2. (Theorem 1 from Ryota and Taiji, 2014 [14].)

Let X € R™>**"K ig a K-way tensor. The spectral norm of X is defined as

follows:
NXI[||= sup X(ui,ug,...,ug),ur € Spp—1,k=1,.... K

where X (ug,...,u) = >,
in R™. Then,

- XiliorigUliy - - - UK, and Sy, 1 is the unit sphere

PlXIZ0< 3 (Xm0 > )

u1€Cq,..., ug€CK

Lemma A.3. (Lemma 4 from Zhang, 2019 [15].)

For a scalar a* and any sequence (aq,as, ..., as),
s s 2
Z(ai —a*)?*> 8 (Sl Zai — a*) :
i=1 i=1
where the equality holds if and only if a; = as = -+ = ag.

Lemma A.4. (Lemma D.6 from Cai et al, 2021 [18].)

Let U and V be two d x r matrices, each with orthogonal columns. Suppose that
|UUT — VVT| <. Then, for any unit vector u, € R? lying in spanlU,we have

1Py (uo)|| = V1 = 6% and [Py (uo)|| <0,

where Py (ug) = VV7Tuy.
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Proposition A.1. Let f(z) =) ;> (a;; — bm-:c)2 ,x € R, for given «; > 0,
i J

a;,; € Rybj; e Rforalli=1,...,n, j=1,...,m. Then, f(z) reaches its minimum

at

Z a; Z ambm
? J
L
min Z az Z bi]
? J

Proof. We have
Z Q; Z (a;; — b;x)* = Z o Z al; + Z Q; Z (—2a; ;b; ;x) + Z o Z b7 ja”.
i j i j i j i j
Since x does not depend on i, j, we have
Z ; Z (a;j — bi,jx)2 = Z o Z aij — 2 Z o Z a; jbi; + 22 Z o Z bij.
i j i j i j i j
Let D = Z o Zbij >0, F = Zai Z a; jb;; and C = Z&i Zaij. Then, we have
i J i J ¢ J

f(z) = Da* —22F + C,x € R for given D > 0.
Hence, we solve a quadratic minimization problem with positive leading coefficient.

Then, we have
a; a; bz 1
2F 2 ; o

LTmin — == —
2D Z o Z b%j
i J

m
Proposition A.2. Let x,y be two ¢g-column unit vectors. Then
lz — ylI?
=1-—.
(z,y) 5
Proof. We have
Recall that ||z||> = (z,x) for any vector x, then
Hy,2) =2l —yl* - (y,2).
Hence, we have
lz — yll?
=1-—.
(z,y) 5
m
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Proposition A.3. Let A; and Ay be two positive defined matrices, such that
1—||A; — As|||A5 Y| > 0. Then

[ '
| A1 — As ||| A3l

AT <
AT < —

Proof. Since A; and A, are positive definite matrices, A;, Ay are invertible, and
A7t AS1 are positive definite. Using matrix norm properties, we have

1A = Ao [ AT AL = [I(Ar = A2) AT AL Y| = AT = Ay
Recall that ||A7! — Ay > [|ATY| — [|AS Y|, Therefore,
1A = Aol AT AL = AT = 145

Then,
IATH] = [ Ar = Ao [[[JATHIIAZ ] < 1A

Recall that 1 — ||4; — As]|[|A5]| > 0. Then

AT = 1Ay = Aof[IAC A _ bl
A= &AL S T A - Al
JAT (L =[] A = Al A1) < 1A '
L—[|A = A A 7 1= (1A = Aol A5l
Therefore,
- 1A
At < ——
1 —[[Ar = Aof|[| A5 7]

O

Proposition A.4. Let X be a sub-Gaussian random variable with variance 0. Then,
for any positive integer k > 1,

E(|X|F) < (202)"/2kT (k/2).

Proof. . .
E(|X|*) = /IP’(|X\’“ > t)dt = /P(|X\ > t'/%) at.
0 0

2

Since X be a sub-Gaussian random variable with variance o, we have that

P(|X| > t) < 2exp (%) Therefore, we get

_t2/k:
E(|XF) < /2exp( 52 ) dt.

0
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Let u = % Then, t = (202u)k/2 and

[eo]

- —tQ/k ® k

/Qexp( 52 ) dt = /2€_u(202)k/2§€—uuk/2—1 du — (202)k/2k/6—uuk/2—1 du
g

0 0

0

= (20%)*2kT(k/2).

Therefore, we have that
E(IX]") < (20%)*°kT(k/2).

O

Corollary A.1. Let § be a random indicator variable, such that 6 = 1 with proba-
bility p and 6 = 0 with probability 1 — p. Let £ be a sub-Gaussian random variable
with variance 2. Then,

E(6€?) < 40%\/p.
Proof. By Hélder’s inequality, we have
E(6€%) < VES2VEEL

By Proposition A.4, we have that for any positive integer k& > 1, E(|E|¥) < (202)%/2kT(k/2).
Then, we get
E(£%) < (20%)%41(2) = 160*.

Moreover, it is clear that E§? = 1%p + 0(1 — p) = p. Therefore,

E(6€2) < \/plo>.

Proposition A.5. Suppose that the conditions of Theorem 5.1 hold and let

wT Z o?iylazl/n . R
L= = {4810, B1) (B Bua) = 1} B

n
(DY (5%2,1/”
i=1

Then || ;]| < Zmaxe?,

i

Proof. By norm properties, we have

n
wi Y- Giaogy/n
L] = |—=

n
(DY d?,l/”
i=1

<BT,1731,1><B>{,2731,2> -1 ||5i3”
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Further, by combining the fact that ||z| — |y|| < |z — y| and Assumption 2(c), we
have

N . 1
||| — Jwi]| < |y —wi| < ew] < éwf

Then

1
“wl (A1)

— 5w <[] = ] = || >

2
Applying the Cauchy—Schwarz inequality, we get

n oA *
Z Q105
n

=1

n.o a2 n *2

n
E : E — =, - E T;T; E T;T;
n n n _ 51,4 g 51,4 514 ﬁ14

=1 i=1

" x;xl " x;xl
— aT Z (Ao A*TZ 1V Dy )
51,4 - n 51,4 51,4 — n 51,4

Note that if X is a symmetric matrix and v is a unit vector, then v/ Xv < Apax,
n T

where .y is a maximum eigenvalue of X. Further, recall that % is a symmetric
i=1

matrix. Hence, using Assumption 1, we have

"L &l
1,141
E n < V )\max V )\max - )\max'

i=1

Likewise, we have that

~

ZQ _/Blélz:xZ 514>)\m1n>0

=1

Therefore,

Z &i71a;1/n A\
=L < Amé". (A.2)

Z d/zz,l/n

Then, we apply Proposition A.2:

1= 0852, Buad B ] = [1 = 42 = s = BEalP)2 W - B

T P DY
::kWu—5mw+§wm—ﬁmw—1Wm—5mWWm—

—_

< 1811 = Bil* + ||51,2—5f,2||2-

[\]
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Since by Assumption 2(c), we have ||, — Bi1ll < e, we get that 1511 — Bral? < €
and |15 — Bial* < €. Hence, we have
1- <5i1731,1><5f,2731,2> <€

(A.3)
Hence, by combining (A.1), (A.2), (A.3) and the fact that ||3] ;]| = 1, we get

2\ max
Il < ===¢

min

Proposition A.6. Suppose that the conditions of Theorem 5.1 hold and let

0
n 2
> G /n
e ) . . .
Ji == Qi1 (BT 15 B11)(B1 2, Br2) B Brate — Qi1 Bl BT o,
> ai,l/n
=1
Then,
)\2
J < { = 1}6%62.
A2
min
Proof.

n
Z:l di710¢;1/n
Jl = !

n @i,l <Bi17 31,1> (6?,27 31,2>Bl,1,1131,2,12 - Oézl/Bil,ll/BiQ,lQ
Zl 0%‘,1/”
1=

n
> Giiai,/n
=1

2
n OA(i,l(ﬁih Bl,l)(ﬂi% Bl,Q)Bl,l,hBl,?,lz
>4 /n
i=1
n
> Gy /n
_gi=l ’
S o
2 ai,l/n
1=

A 5 A\ A A 2 Ax2 2
ai,laﬁ(ﬁih51,1><5i2751,2>/3171,l151,2,l25i1,11Bf,z,lg +af15f,1,z1 f,2,12-

Since 3’s are unit vectors, |f ;| < 1. Then, by Cauchy-Schwarz inequality |(3; ;, B
< HBIJHHBLIH < 1 and <5i1751,1>2 < |<5i1,ﬁ1,1>|- Therefore, by combining with
proven in Zhou et al, 2021 [1], we have

2

J1 < <5T,1,Bl,1>2<5f,2731,2>2

=1

n
Z CAYi’lOéfil/n

n
~ *
O‘i,l%,l/n
~92 =1

~ * *2

n Qi1 | + 057,
2

>4 /n

i=1

n
Z:l CA%‘Q,l/”
1=
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This gives

n 2
. . Z dmoz;k 1/n 2
Ji < <5i1,51,1>2<ﬁf2751,2>2 [ = Qin—aj;tagyp + 04;21
. X , bl
231 aiy/n =0 >0
1=
n A
Z Ozmoz;*’l/n ) )
_217171— {di,l - O‘;l + O‘Zl} O‘Z1 + 04:,21<1 - <Bi17 pi, >2<5i27 51,2>2)‘
2 aiy/n >0
1=

Since (B; 1, B1,1)? < 1 and (B;,, B12)% < 1, we have

2

+ a;k,21(1 - <Bik,17 Bl,1>2<6i27 BI,Q>2)'

n
A *
> O‘i,lo%',l/n
i=1 A * * *
e {Oéz‘,l -+ 0%‘,1} — Q5

n

> 5‘?,1/”
i=1

Then, by (A.3) and the fact that ;3 < ¢} from Assumption 1, we have

n
Z Qi1 /1 Z Qia(afy — din)/ny?
J, < [Z—ln— {O?m azl} + Ozzll_l - + cie?.
> 051‘2,1/” >4z /n
i=1 i=1
Therefore,
n R . 2 n R n R R
> Gia(ogy — dun)/n > Gnaly/n )] d(ag; — Gia)/n
J < |2 m a;‘k,21+2(di,1_04;‘k,1)a;1Z_ln o m
2310%2,1/” 2“?,1/” Z:lai,l/n
1= 1= 1=

n 2
Z dz‘7104;1/n
= {qi1— oz,il}Q + cié?.

n
2 dz?,l/n
1=

Using Assumption 1, i.e. ||z < e1, || — Bi1ll < € and (A.2), we get:

A2 A2 A2 A2
Ji1 < )\r;axcfez +2 )\r;ax et + )\r;axcfg +cje? = {4)\‘;3" + 1} ciet.
min min min min
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Proposition A.7. Suppose that the conditions of Theorem 5.1 hold and let

n
> Qiiafy/n
A i=1 ~ 5 5 A A
Z 51,1,1151212 T231 'L21{Zn—aiJ(BilvBl,l)(ﬁinB1,2>B1,1,l161,2,12
2@121/71
i=1

zll l2

2
_O‘Zﬁﬁ,zlﬁiz,b} .

Then,

)\max ILL3 )\?nax 2 2
JQS np 5{4)\1111 +1 Ci€ .

Proof. Note that
*2 A2
Z 61717l151212 1,3,1 zlJla

Z 11,l2

where J; is defined in Proposition A.6. Since 57, <7 L for all [y € [di], By 4, < -\%
for all Iy € [dy], we have

z 1 ,u
I W
Hence, by applying Proposition A.6, we get

Amax 10 [ A2
J < “—_{4w+1}c§e2.

np s5 | A2,
O
Proposition A.8. Suppose that the conditions of Theorem 5.1 hold and let
w* > Qigaf,/n A A
I, = 1A' { B~ AW—<5T,1751,1><5T,2;51,2> B 35
wq
Z %, 1/n
where A and B are diagonal matrices with diagonal entry,
Ay = Z &1/ Gt anaBra 1y Bras
11,2
By = Z Qipa;,/n Z Oi 1 12,081,101 B1,202 81 1.0, 81 2.1, - (A4)

l1,l2

Then, with probability at least 1 — e1/d, we have ||I1;]| < e
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Proof. We have

£ (1 111 > Qi /n
_ W i=1 x N x N *
I = —q-Ap —{B—-A—F—(B1,011) (B2 Br2) ¢ Bis
w; P p

n
Z d?@/n

We first find an upper bound of each diagonal entry of the matrix p~'A. Assume that

for all i € [n],l; € [d1],1s € [da],l € [d3], ;1,1 1s independent with &; 1,B1 1l1,51212
Let Zip, 1, = p ' 162, Y SitnniB2s llﬂl 21, Then p~' A has the form of
l1,l2

1 ~
2 2
]—9 E 0‘11/” E :52 11,12,161,1,1151,2,12 = § Zily ly-
1= l1,l2 i,l1,l2
Note that,

E((sill,lm): Ixp+0x (1_ )ZP,
E(Z; gy 1,0, 161,1,1151,2,l2 = 11/”251 15151252

l1,l2
Hence, since |&; ;1| = ]Bf4xl| < ¢ and max]ﬂk
have:

).])

< p/+/s from Assumption 1, we

A4 5 1 1 2/~L4 aut
Zity iy — E(Zigy 151G P11, Br2,) | < ‘(]—951,11,12,1 - 1) Slag s ps?
Then,
A . 2 A .
Z E ([ ille E<Zi,l1,l2|é\é’i,1/81,1,l1ﬁ1,2,l2>i| ai,151,1,1151,2,12>
1,01,l2
Y E (Zzlhlz|@i,1ﬁ1,1,l161,2,12> —E? (Zi,h,lz’@i,lﬁl,l,llﬁl 2 12)
i,l1,l2
1 1 .4 24 24 1 1 4 54 54
- (_ - 1) Z E%J@,l,zlﬁm,lz <= Z ﬁo‘i,lﬂl,l,hﬁl,zzz’
p 1,01,l2 p i,01,l2
and then
~ A A 2 ~ A A C%)\max,u4
Z E [Zi,l1,l2 - E<Zz’,l1,12|ai,1/61,1,l161,2,12):| i1 Pran P, | < Topst
i,l1,02

Note that in Assumption 1(e), we assume that the entries of the response tensor are

observed independently. Thus, for all i € [n], d;, 4, are independent with each other

Let X; = > (Zig _E(Zi,ll,lg’di,lél,l,hél,llz))' Then,
l1,l2

(=)= (03

34

é‘i,lﬁl,l,ll 61,2,12)

(*)



Hence, following the proof of Zhou et al, 2021 [1], we apply the Bernstein’s inequality
given in Theorem A.1 to (*) with t =~ and M = 1“ . We have

—2/2 pns?
P( 7) S2eXp{Amﬁ’y/iﬂ C%/f*}’

where 7 is a fixed positive constant:

1 Amin A2 A3
v = = min { 5 ¢ min min } . (A.5)

Y Zin— Y B(ZinnlirSran Pras)| =

i,ll,lg i7l17l2

2 2 48\/_)\ma)(7 48\/_62)\11'18,)(
.2
Since v < mm, we have v < 3A\ax. Note that Apac + % > %7 Also, )\mjr% > _T?”.
Then,
—72/2 pns2 - —3y " pns?
N +7/3 Gt T 4 Bt
By Assumption 2(d), we have that n > %ﬁopg@. Therefore,
1
—2/2 pns® =3y s’cso?s*log(d)
X 5 > X R
)\max + 7/3 Cp 4 Clp~wy
Let ¢ = % be some negative constant, since ¢5 > 0 and v > 0 by the
definition. Then ) )
—y</2
"/ w P dlog(d).

Amax +7/3 iyt

Hence, we have

_22 2 2
1—2exp{ "/ w P17 }<1—26xp(c’log(d))<1——

Amax +7/3  Aut do

Then, with probability at least 1—2/d'°, where d = max{d;, d»}, the inequality below
holds:

Z Zi,ll,ZQ - Z ]E(Zi,ll,lz|&i,161,1,l161,2,l2) S 8

’i7l1,l2 i7117l2

2 H2 —142
En 0%12 5111,127151,1,1151,2,12 E noa >

l1,l2

-1 —1a 2 2 22 122
= —v<p E n E 0; 11,12,151,1,11ﬁ1,2,l2 E :n i1
=1

ly,l2

2 n. A2

1 — ;4 Qi1
SO D) DUINNE SIS Y
pz’:l "

l1,l2 i=1
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Therefore,

(A.6)

Next, we find an upper bound:

Z (34,'7104’{71/71 A R
5 B - AH,,L—</BT717 /81,1></8I727 /81,2> ﬁig
Z:l di,l/n

Denote

n

> Giaay/n

— . . R . A
Zi,ll,lz,l = {Z—a?,1<ﬁila 51,1><Bik,27 51,2>B12,1,11ﬁi2,12

n
> 6‘?,1/”
i=1

A 5 A 1 -1
—Oéz',laék,lﬁiul51‘,2,1251,1,1151,2,12}57:,11,12,110 n= By 3,61,

where ¢; is the ds-column vector whose ['! entry is 1, others are 0 and ds is the
dimension of f 3.

By definitions of Z;;, ;,;, A and B, we get that

n
1 > Giiai/n
e . .
SO B AT (311, B (Bl Bra) ¢ Bra = Y Zidvtat-
b > d?,l/” i1l
i=1
Note that
n ~
> ai,la%k,l/n
A A A .:1 A 3 3 3 A
E(Zi gy 05| 1 B11,0 B1,2,0) = {1—04?,1<5f,1, Bra) (BT 2: B12) 55 1.1, Brau,

n
> 5%‘,1/”
i=1

A~ A A —1
_aiylazlﬁil,ll51:2,l26171711ﬁ172712}n B 3,61

Then, using the fact that ||6;, ,,,p7" — 1|| < 1, we have

.5 5 15 5 .
|\ Zit s — E(Zigy 1o Gin Bra gy Br2us) || < — By B1.24.07 5,001 X
np "

n
> GQiiai/n
=1

n &i:1<6;<,17 Bl,1><6i27 Bl,2>51,1,1131,2,l2 - azlﬁil,llﬁizlg
2:1 O‘i,l/”
1=
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By Assumption 1, we have that B171711B1,2712Bi371di71 < cyp?/s'®. This gives

| Zity 1o — E(Zz‘,ll,zz|di,131,1,1151,2,z2)||

o S ausay/n

1 N N « «

= np31 5 o Oéi,l(@ip 51,1)(5?,27 51,2>51,1,1151,2,12 - Oéf,lﬁil,llﬁigh
Z é‘i,l/n

npst->

Therefore, by applying Proposition A.6, we have:

3 2
4 N C1€ | A
| Zityio — B(Zi gy 1511 P10 Br2) || < np 515 {4):;&»( + 1} 3.

min

Also, we have

S 2 S
L,=) E ([Zi,h,lQ —E(Zipy 1. (341',151,1,1151,2,12)} 041',151,1,1151,2,12>
i,01,l2
n
> Ginagy/n
g A R A
= - Z 61,1,l151 2,lo 1 3l i 1{ln—ai,lwik,p51,1><5i2751,2>6171,115172,l2
lll,lz Z (34?71/71

2
Oé;k,l/Bil,ll/BiZ,lg} .

By Proposition A.7, we get

)‘max ,u3 )‘IQnax
JQS npﬁ{él)g +1 016

min

Recall that by Assumption 1 (e) for all ¢ € [n], i1, 1, are independent with each
other. Let X; =n > Ziy 10 —E(Zigy 10.0]0, 151,1,1151212) Then,

l1,l2,l
IP( 275):1@ IP><<ZXz 21&)
=1

()

n

>

=1

é‘i,lﬁl,l,ll 61,2,12)

J/
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Hence, following the proof of Zhou et al, 2021 [1], we apply the vector Bernstein’s
inequality given in Theorem A.2 to (*) with € = e, 02 = M;’% {4?‘%‘%"‘ + 1} e

p
We have:
P ( > 76)

Z Zilylal — Z E(Zi 1y 1501018110, Br2,)
!

i7l17127l

i7l17l27

1 72
4 8 A max 3 {4?‘%—2‘: + 1} c2/(pnstH)
Note that >’ E(ZZ-,ZIJZ,Z|di7131717115’172712) = 0. By Assumption 2(a):

i,l1,l2,0

p > ca{log(d) } 3 /{ns'®} > cullog(d)/{ns'®y?} for some positive constant c. Then,
the following holds with probability at least 1 — e /d',

Z Zily o)l

,01,l2,1

1 Z di’l()é;il/n . .

;. B— AT (B8, B {Blas Bia) ¢ Bis < e (A7)
; 0712,1/”

The bound for 11, is simplified to:
1 Y7 : . .

|{‘A} -4 B - Aﬁ—w&aﬁl,ﬁwiz,ﬁl,ﬁ ﬁfg

b P > 5‘?,1/"

i=1

Then, by combining (A.1), (A.6) and (A.7), we conclude that with probability at
least 1 — et /d'°,

< exp

< 7e.

n

w* > GQiiai/n

111 < |+
wq

2ve
Zi di,l/n -

A 2T A .
Since ), dil/n —y = 6?,4 2 Tt Bra—"7 > Amin — 77 and Apin —y > 0 by Assumption

1] <

n

2(c), with probability at least 1 — i /d', we have

2ve
11| < ——

min — 7Y

Note that by (A.5) 1/(Amin —7) < 2/Amin- Then, with probability at least 1 — et /d™,

we get
4rve
I < =

min
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Proposition A.9. Suppose that the conditions of Theorem 5.1 hold and let

n *

a,L ~ % ~
111, = Z STHo, (Eir) ¥1 {B11 — Bi1} %2 Bia.

T
i=1 p

Then, with probability at least 1 — 3d~1°,

~ log(d ~ olog(d ~ log(d
| [113]] < Cho slog( )6+010'Og( >10g (\/E)e—i—Cga slog( )62
np npy/s P np

- o8l 3
L6, 7hoed) ( 8_)

np p

Proof. From Assumption 2(c) and Cauchy-Schwartz inequality, we have

n * n *
! 5 5 . Qg .
IT115] < ; on o, (Eir) X2 Bra|| 1811 — B4l < ; on o, (Eir) X2 B1o|| €
n * A
It suffices to bound || (;21 o, (Eir) X2 Bra||. Let Pg;, = Bt 2615 - the projection
i=1

onto the column space of 3, and PBJI* L - orthogonal compliment of Pg: . We write

& a;l A & O‘;'k,l 1 A
> o, (Eir) %2 Bral| = || —=Ho,(Er) %2 {Ps;, + P Y2
i=1 pn i=1 pn ’ ’
& j,l & O‘z1 A
< Z on o, (Eir) X2 Pg: P12 + Z on o, (Eir) X2 Pg??/@m : (A8)
i=1 =1

Note that || Ps; , 512l = [|87,8i51.2]l and |8;%512| < 1. Hence,

n * n *
Qg 5 @i 3
S g (6 o P | = |3 P I (Eur) o 55755 ‘
- pn ’ - pn
=1 =1
n O{* n Oé*
. ) ‘1
= Wik,gﬁlg\ Z “Tlo, (Eir) X2 51‘3 < Z Tlo, (Eir) X2 51‘72
- pn ; pn
=1 =1
n *
. oy
Therefore, it is suffices to bound 21 m’: o, (Eir) X2 B1o||-
1=
We write
- Oé)ik,l * 1 * *
Z " o, (Eir) X2 B1 5 = o Z 05103501 € k1 51 2,1€5.1
=1 p 1€[n],jE€F1,kEF>,EF3
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where Fy = supp(f ;) Usupp(Bfl), Fy = supp(f7 5) Usupp(BiQ), supp(v) refers to the
set of indices in v that are nonzero and e;; € R*% is a matrix with all zero entries
except the (7,1)-th entry to 1. Let F' = F} U F5.

Observe that since [|oj3]| < ¢f,[|Bi2]l = 1, and by Corollary A.1 E(; ;4187 5,) <
4,/po?, we have

> E(0; i85 1)1 Brsneiae, || < 4v/pnciso? and

i€[n],jEF ,kEF>,IEF;

2 *2 Q%2 T 2,2
§ ]E(5i,j,k,l5¢,j,k,z)%,151,2,k€j,16j,l < 4y/pnciso”.

i€[n],jE€F1,kEF>,IEF3

Also, since 7, is a y-mass vector:

1
e 10i5,k0E k1 BT 2 k€5t e < NEijmtll 185 o nejull < v

where || - ||y, is an Orlicz norm defined in chapter 2.

By Lemma A1 with X; = “llg (Eir) x2 ff, , U = 9% and 6 = "2 the

following bound holds with probability at least 1 — d~1°

< Chmax {a Sh;g;d), 071;%%) log <\/g> } (A.9)

for some large enough constant C.
Next, we bound the second term in (A.8). By Cauchy-Schwartz inequality, we have

n

o
> g, (Eir) X2 B,
-1 P

; o (Eir) X2 Pg: Bre ; on Eir) H )7 B2
< En: Q;IHQZ-(&‘F) (Br3) " (Brs—Bra2)|| < a:’lﬂﬂi(gz’F) - B”H'
~ pn —— pn
Recall that ||(8;5)"|| =1 and ‘ Bty — Bia|| < e Then
a4 a4
’ H . S’L X P * < . H 51 .
ZZ1 on Q( F) 2173 51,2 > ZZ1 on Q( F) €
We write
= a4 = af
Z =Ilo, (&ir)|| = sup (Eir) X1 U1 Xgug X3 us|,
i=1 pn ulesl,UQESQ,U3653 i=1 pn
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where S; = {u € R% : ||lu|]| = 1, |Jullo < s;}, for i = 1,2, 3 is the unit sphere in R%.
The idea is to use a covering number algorithm. For each given subset U; C [d;], we
define the set Sy, = {v € R% : |lv|| = 1,supp(v) C U;}. Let Cy,Cy, C3 be é-covers of
Sty Suys Sus. Next we use Lemma A.2 with € = log(3/2)/3. We get that

n n *

ar o
71 T ,1 — _ _ s
P( E ZnHQZ(ng) Zt) < E P( E ;ZHQz(SZF) X1 UL X9 Uy X3 U3 Zt/2>
=1 p u;€C; =1 p
For each fixed uq, uo, 13, we write:
§n:a31n5 iy X Ty X5 Tl = — 3 5 8 1Eo il TopT
o QZ( iF) X1 Uy X2 U2 X3 Uz = _n Q; 104,5,k,1Ci,5,k,1 U1, U2 KU T,
i=1 i€n],jEFL,kEFL,IEF;

where F; = supp(i;). Since [|oj3]| < ¢f,, and by Corollary A.1 we have that
E(0i ki€ 5a) < 4y/Po”. Then, we get

2 ¥2-2 -2 -2 2. 2
E B0,k 1E5 ) 03 107 ;U U5, < 4y/PCino
i€[n],jEF1,kEFY,IEF3

and
;105 5k aEi g g U2 kU3 |y < 1l|Ejirille, < 10,

Let £ = Cymax {”—n;, Z—;log (1 /%) } By Lemma A.1, we have that

IP( zf) <e

Then, by properties of é-covers with € = log(3/2)/3, we have

( ) Z 6 Ss1+s2+s3
P >t et < {—} oot
a1 €C1,u2€C2,u3€C3 log(3/2)

Taking a union bound over (ii) (?) (d3) < d*1F52t838 choices of Uy o Uy o Us, we get

2 53
]:P)(

Let t = slog(d). Then, the following bound holds with probability at least 1 —2d 1%,

n *

a.
7,1 _ _ _
E o, (Eir) X1 Uy X2 Ug X3 Us
— pn
1=

n *

IN

n *

Q;

i=1 p

> t> < 9ett(s1+s2+s3)log(d)

n * _ B 1
S Y1y ()| < 7 = Comax { TVSI08W) oslogld) (,/w) (A.10)
— pn NG np p
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Combining (A.8), (A.9), (A.10), we can construct an upper bound for I11;s.

following bound holds with probability at least 1 — 3d~*°,

. [slog(d) - olog(d
V[Tl < Croy | 208D, & 7108 >10g( f)e
np npy/s p

~ ~ 3
+Cso slog(d) CQ—USIOg(d) log (1 /S_> .
np np p

Proposition A.10. Suppose that the conditions of Theorem 5.1 hold and let

n

Iy, = Z p;zl o, (Eir) x1 ﬁl,l X2 51,2-

i=1

Then, with probability at least 1 — d~*°

~ 1 1 1
[[1114]] < Cymax {0 ° og(d)’ 7log(d) log (—) } ’

np nps /P

for some large enough constant Cj.

Proof. We write

n

i=1 i€[n],jEF) ,kEF2,IEF;

where ¢; is a ds-column vector with all zero entries except the [

The

a; 1
> pz?’z Mo, (i) x1 Bry X2 o= — 2. ;104,11 €3 et B1 1,151 2,160

entry equal to 1.

Let F' = Fy U Fy. Observe that, since [|a;7|| < ¢f,]|f12]] = 1, and by Corollary A.1

we have that B(0;;x,:E7; 1) < 4\/_02 Then, we have

Z E(éi,j,kl ) 51 1 ]/81 2 kelelT < 4\/1_70%77025

1€[n],jEF ,kEF>,IEF3

and
2 2
E E(6i k1€ gkl) e 135121461 el|| < 4y/pcinc’s.
i€[n],j€F1,kEF2,IEF3

3 * *
Also, since 87, and 37, are y-mass vectors,

2
Lo
||||af,15i,j,k,lgz’,j,k,lﬁ1 1,]612k6l||||w2 < ”g,yle%HO‘z 1511 Biz,kel” < s
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.
Qi

Set Xz = D
with probability at least 1 — d~1°,

I111.4]| < Cymax {a slog(d) glog(d), . (L) } ,

VP

np nps

for some large enough constant C.

Proposition A.11. Suppose that the conditions of Theorem 5.1 hold and let

- OAéi’l - Oé;< ~ ~
111, = Z p—nlﬂﬁl(&F) X1 Bi1 Xg B
i—1

Then, with probability at least 1 — 2d~1°,

~ 1 ~ ol 1
||I]Ill|| S 030' ME + Cng(d)log (—) €
np nps VP

+Gho slog(d) 246, oslog(d) log ( /313233> 2
np np p

Proof.
i &; 1 — of
1, 47 A N
|11 = Z—”H9i<5iF) X1 B11 X2 B2
i=1 pn
.
/BT T — *T:L“ R .
= Z MHQZ-(&F) X1 B11 Xa Bz -
i=1 pn

Then, by Cauchy-Schwartz inequality, we get

| 1114:] < 51,4 — B4

n 1 . .
Z —Tlg,(Eir) X1 Pra X2 Brox]
‘—

1=

We write
n

1 . R

Z — g, (&ir) x1 Bia X2 51,23:?
i—1 Pl

n 1 R A
— Z ]%Hﬂi(gw) X1 {Pgil + Pjil}ﬁu X9 {PBI,Q + Pﬁéz}ﬁmx?

i=1

n 1 R A . )
- Z —Ilo,(Eir) X1 Py, 11 X2 Pp; ,fr27; + D,

n
i=1 p

43

o, (Eir) X1 B4 X2 Big, UY = '31;7—8“2 and 92 = 245 By Lemma A.1,

(A.11)



with
n
Z Eir ><1P6* Bllxng* /31255

n n
1 A n 1 N N
+ Z p_nHQi(giF> leﬁjilﬁl,l ><2P5;’251,213¢T+Z p_nHQi (ng) lefglilﬁm X2P/8Ji261,2x?-

Since ||ﬁf 51 1]| <1, it is sufficient to find an upper bound of

n

1 * *
> —To,(Eir) X1 Bf1 %2 By o1y
im P
Observe that since [Jaj3]| < ¢}, [|f12]] = 1, and by Corollary A.1 we have that

E(0i ki€ x1) < 4y/Po”. Then, we get

*2 T T 2 T T
> (0 j 1) BiniBraners miel | < 4ypo® || Y e e

i€n),jEF1,kEFL,IEF; i€[n],l€F;3

Then

T 2 9
Z E(6; Jklg,j kl)ﬁl,l,l 1,2,£€1T; i ez < 4,/pcino”,

iE[n},jEFl,kEFg,lEFg,

2 T 2 T 2 2
E E(0ijk1€ij k) 1,1,3512k37z€z er; || < po’s E 27 || < 4y/peino’s,

i€[n],jEF1,kEF>,IEF3 i€[n]

Also, since i, and 7, are y-mass vectors:

ciplo
-

65500 Br 1 i Bt o er] Me <

By Lemma A.1, in the same way as in Proposition A.10, with probability at least

1= d0,
< lo slog(d) Ulog(d)log <i)
- np ' nps N

for some large enough constant Cj. Next we prove the upper bound of D in (A.11).
We have

n

1 * *
Z p_nHm (&ir) X1 Bi X2 51,25’7?

i=1

n

1
Zﬁ()

i=1

<

(B7%)" Brzll.

n

1 . .
E — I, (&‘F) X1 Pﬁf 151,1 X9 PE%Q/BLQ‘f;T
i—1 P ’ ’
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Recall that H(ﬁfé)TﬂAlgH < €. Since «;, is a scalar and |a;j,| < ¢1, an upper bound

> onllo, (Eir)
i=1
least 1 —2/d"

for is similar to the bound from (A.10). Then, with probability at

. log(d
5 slog(d)

c+ G, oslog(d) log ( /515253) .
np np p

The other terms in the D are bounded similarly. Therefore, with probability at least
1 — d ' we have

R ~ 1 ~ 1
1D < Coo M6+02M10g( /w) .
np np p

Hence, we conclude that with probability at least 1 — 2/d'%, we have

V1T < Coory [ 289, i oloeld), (i) ¢
np nps /P
G slog(d)

~ oslog(d
+Choy | 22 4 02—03 o8( )log ( 818283> 2.
np np b

Proposition A.12. Suppose that the conditions of Theorem 5.1 hold and let

n

1 a; R .
111, = w—A ! {Z JHQZ-(&F) X1 B11 X2 51,2} -
1 i=1

Then, with probability at least 1 — d~1°, we have

2C 1
111, < *CO’ slog(d)

+ 67,
wl )\min np 7

for some large enough C' > 0.

Proof.
SR T | | G . .
11| < |— -A Z Ho, (Eir) X1 f1a X2 Pra|| -
wi p — P
In (A.6) we proved that
I 1
A < —
P i,




Since from (A.1) w; > =L, we have that

2 "G .
|11 < TS W— ‘ Z ’1HQi(<€z‘F> X1 Bi1 X2 P (A.12)
Next, we need to bound the term ||>° 6;’11 g, (Eir) X1 BLI X Bl’g . We write
i=1
n Oél . .
Z on 1HQ (Eir) X1 P11 X2 B
i=1

— Qi1 — ajy 5 - "ol A .
= Z o =g, (Eir) X1 P11 X2 Pra + Z p;z o, (Eir) X1 P11 X2 Pra. (A.13)
i=1

Similarly, we can write

— o A .
Z 7 (E&ir) X1 Py X2 Pra
- "
Pl 3 * 3 — ajy . R
— Z p771 Mo, (Eir) X1 {B11— Bi1} X2 P2+ Z p?LL Mo, (Eir) X1 811 X2 P12 (A.14)
i=1 —
Also,
— o . .
Z 7 1(5'LF) X1 51,1 X2 51,2
- "

- 2 (B gy N O -
= ; o o, (Eir) X1 B71 X2 {12 — Bia} + ; on Mo, (Eir) X1 811 X2 B (A.15)

Hence, combining equalities A.13 - A.15, we have

n
Q; 1 ~ ~

Z . Mo, (Eir) X1 B X2 P12

-1 P
= 1= Cv’kl u O./*l

i, , ~ ~ ) R .
= " i o, (Eir) X1 P11 Xa P12+ Z pZn o, (Eir) x1 {B11 — ﬁi‘l} X5 B2

=1 i=1

Vo Vv
11111 11112

& 04;.’:1 * 2 * - a;‘i * *
+ E o o, (Eir) X1 B11 X2 {B12 — Bia} + E pnl o, (Eir) X1 811 X2 B1, -
: —

VvV vV
11113 11114

From Proposition A.11, with probability at least 1—2d~10, || I11]| < Cs04/ Sl%éd)e—i-

C Ulz;g?id log <\[) €—|—C /slog 2 + C aslog 10g< /515553> 62.
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From Proposition A.9, with probability at least 1 — 3d~10, |[I11]| < Cyoy/ Slog(d)e +

~ OTIL(;g\;gl lOg (\/7>€+C /slog slog(d) 2+O crslog(d 10g< /3) 2.

Also, from Proposition A.10, Wlth probablhty at least 1 —d =19, for some large enough

~ ~ slog(d) olog(d
constant C3, we have || 1114| < Cgmax{a ‘;gzg ) Zis alog(d) og (%)}

Next, we consider I113. Note that Z 1HQ (&ir) x1 B7, is different from

; pzr,: g, (Eir) Xzﬁm only by vectors *. Since Bi“,l and Bi‘z have the same properties,
the bound for I11;3 can be derived in the similar way as in (A.9). Hence, we have
that

n

S B, (6) x5
o Q \CiF 1M11

i=1

slog(d)6 L olog(d) log (\/E) .
np npy/s p

(A.16)
Therefore, using Propositions A.11, A.13, A.14 and (A.16), with probability at least
1 —d™ 1% we can bound ||I11,] as

L < 2{2C, + C’g}ae( slog(d)  log(d), < \/g) L [stos(d)

[ZRREE] S e<Cio

Wi { Amin — 7} np  npys np

- :

+log(d) log (L) F— 4Cy0¢€ slog(d) N slog(d) log s?

nps VP Wi {Amin — 7} np np p
2Cs0 slog(d)

TR Ee— (A17)
From (A.5), we have 7 < A\uin/2 and 1/{Amin — 7} < 2/Amin- By Assumption 2(d),
we have
4{2C 4 Cs}oe | slog(d)
AminW] np

<7,

for some positive constant 7' that will be determined later. Similarly, we have the
following bounds:

4{2C, + C;;:,}UEmaX{lOg(d) log (\/E) ,Mlog (i) } <A,
)\minwl np\/g p nps \/ﬁ

- ;
8C*’206 max{ slog(d), slog(d) log ( /s_) } < e
wl)\min np np p

Using the bound above, (A.17) and (A.5), with probability at least 1 —d~'°, we have

2Co | slog(d)

111L)|| <
ln) <

+ 67,
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for some large enough C' > 0.
m

PropOSItlon A.13. Suppose that the condltlons of Theorem 5.1 hold. Let A; =
Z Mg, (Br1 0 Pro o Brs)||%axT and Ay = Z Lz;al. Then, A; and A, are positive

deﬁnlte matrix.

Proof. Let u € RY, u # 0. Consider

u Ayu=u Z [T, ( 51 1051 2051 3)||F$ $ U= Z [T, ( 51 1051 20/31 3)||F(U %)(%TU)

=1 =1

—Z”HQ (BrioBrao Bua)li(zluw) (2] w) ZHHQ (Bra 0 Brao Pra)lFla ul’.

i=1 =1
If u Aju = 0, we have that

n
Z Mo, (81,1 © Brz o Big)||Fleiul> =0
=1

Note that by the model (1) and Assumptions on B* Bl 1#0 Bl 9 7é 0 and Bl 3 # 0.
Moreover there is exists at least one i, such that ||HQ (ﬁl 10 51 50 61 3)||r # 0. Thus,

ZHHQ (Biio Biao fia)l} > 0. Let K = ZHHQ (BraoBizoBia)lF > 0 and

P(A) =3 Hnﬂz(ﬁl’loﬁ’”ﬁl’swﬂ where A is a Borel set of R. We have
icA

n A A 5 2 n
Z | g, (B11 O}ﬂ{m o Bis)llE }%Tu‘? _ Z ‘xiTufP (U = |2fu|] =E[U?],
i=1 =1

where U is a random variable taking the values |z u|, |23u|, ..., |2Lu| with

P [U ’x u} Mo, (’Blloﬁwoﬁw)”F, i =1,2,...,n. Then, v’ Aju = 0 if and only

if E[U?] = 0. This holds if and only it U 2 0 almost surely with respect to the
probability measure P. Then, ‘xz u| = 0 for all ¢ € [n]. Therefore, we have

n

n
1

=1 =1

By assumption 1(a), we get

n
1
T T T T
Amint” U < u E ;xle U < Apaxl U.
i=1

Since Apin > 0, we have
wfu=0.
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Therefore v = 0 and then u” Au > 0 for any u € R?, u # 0, this proves that A, is a
positive definite matrix.
Next, consider

n

T T T T T
Ao = E . _E = N(xTu) =
u Ayu=1u i U (u” ;) (x; u)

i=1 i=1 i=1 =1

If uT Ayu = 0, we have that

By assumption 1(a), we get
1
Aminttl u < ul Z; EmeZTu < Amaxl? 0.
P

Since A\pin > 0, we have
uwFu=0.

Therefore v = 0 and then u? Asu > 0 for any u € R?, u # 0, this proves that A, is a
positive definite matrix. 0

Proposition A.14. Suppose that the conditions of Theorem 5.1 hold and let

-1
1 NNTE:

L= |4 = 7 || e, (An)|| @i

= I i

Then, with probability at least 1 — 2¢/d'’, we have I < —5—.

minWyp
Proof. At first, we show that

n

1 1 - - - A A .
n {Z (]_)HHQi(ﬂl,l o P20 51,3)”% —IB110Bi20 51,3”%) } sz;[

i=1

<7

)

where 7 is the same constant as defined as (A.5). Assume that for all i € [n],
J € [di],k € [da],l € [ds], 0; jk, is independent with Sy 1 ;, B12k, B1,3;. Further, let

1(1 S - e
2= 2 {2, (B 0 ra o Bra)lf = Vs o Buall | aia!

Since HBl]H =1,j € [3] and HBl,l © Bl,Z o 313% = HBll“%”BlZH%HBlSH% =1,
we have

1 (1 A A .
Z; = - {EHHS]i(ﬂl,l o120 Bi3)|E — 1} vz}
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Then, since HHQi(Bl,l ° 31,2 °© Bls)H% < land [|lz;|| < c1, we have

|1 Zi]| < - ;||HQZ~<61,1 o 61,2 o 513)”% —

1|1
| ety <@t <4
p p

1‘1‘6_3

In addition, we have

Y E(Z}1Bras Bras Brs)
i=1

n

- Z %E ({%”HQ(BU © 81,2 © BlS)H% } Wl 1,51 2, B 3) vl vl

i=1
=1 ],k:l

2
- 1 3 A LA T, T
= Z n2 Z Oi jyk 151 1,]51 2, kﬂ1 3 811, B2, Brs | wiw; wi;

Since E(d; k) = p, this gives

Z ]E(Zz?ml,h 51,2, Bl 3)

T T
ZZ Bn,;ﬁm;ﬁwﬂx TiT;

i=1 =1 ],kl
and then, using the facts that |3 < Lzl < e, iz |lzs2T||s < co, we get
IR T, T cicopt’
ZE (Z31B11, Bra, Bia)|| < — Zk:lﬁl,luﬁ12k6131 - ;xzxz Ti%; || S npsis’
N -

Note that in Assumption 1 (e) we assume that the entries of the response tensor are
observed independently. Let X; = I%HHQZ. (Bi10 P20 frs)||%xial — xixl. Then,

(| =)- (54

*)
Hence, following the proof of Zhou et al, 2021 [1], we apply the matrix Bernstein’s

>
i=1

>
i=1

/81,17 61,27 ﬁ1,3>
>y

inequality given in Theorem A.3 to (*) with % = = gaew’ p_ Cl dt=vand d; = d, =

D5l B )
q. We have '
1

. N N 1
» Z o, (81,10 Bz 0 Pr3) H%szzT - Z ﬁxl
i

—~2/9
21—2qexp{2 v/ }

cieopd [{npst®} + tv/{3p}

20



By Assumption 2(a), p > cyu{log(d)}/(ns'?) > cu{log(d)}/(ns'*4?) for some con-
stant ¢. Then, with probability at least 1 — 2¢/d'°, we have

<. (A.18)

1 5 A7 1
oD Moy (B Bz o Bralipesel = 37 e
A

Let A, = Z |IILq, (51 10 512 o B 3)|3zixl and A, Z Ly.xl. By the Proposition

A.13, Ay and Ao are positive definite matrix. Hence, A1 and A, are invertible.
To apply Proposition A.3, we first check that 1 — ||A; — Ay||[|A51]| > 0.

n —1
B Y
1= |4 — Aol A7 =1~ {UnZw} =lea

Recall that by (A.5), we have v < Apin/2. Then

1 1
1= [[A = Al 47" > 1= 5 = 5 > 0.

{1/n§xixf}_l

T3 LOC N
np Ti — w? n -1
— vl 1/n Y] zat
i=1

and then using (A.18), (A.5) and the fact that |w; — wi| < w}/2, we have

4 < 8
minfwia{1 - ’Y/)\min} o )\mianQ ‘

Using Proposition A.3, we get

Y

Izﬁ)\

Proposition A.15. Suppose that the conditions of Theorem 5.1 hold and let

1 ¢ i i
o> (o, (A7 = Ay), o, (Ar) ) i 57|

1=

IIQ -

Then, with probability at least 1 — /4"
IT, < {6cy + v wiZe.
Proof. Let Zi, 1,0 = nlpfsi,ll,lz,l(AT - Al)i,ll,lg,l(Al)i,ll,lg,lxi$?/8i4- Then
_Z<HQ (A7 A)HQ(A1)>1'@ TBr. = Z Zily ol
il 12l

o1



Assume that for all i € [n],l; € [dy], 15 € [do], 1 € [ds], 61,1, is independent with A;.
Note that, since E(d;;,1,1) = p, we get

1 A N
1Zi11 100 — B(Zity 1ot A = 1 Zi3 000 — E(AT — A1)it 100 (A1) iy toa i) Br 4l

1 N N
<|6i 1100 — P Hn_p(AT = At 100 (A1) i B4

Then,

1Z:,

(A.19)

l1,l2,l l2,l

" 1 . A
= E(Zu il A < - |47 = A,

(At

By Assumption 1, we have ||z;z78;,|| < . Also, since || < 3w} and B’s are -
mass vectors, we have (A1) 1,0 < %wi‘;ﬁ/sl"r’. Furthermore, by triangle inequality,

we have

(AT - Al)z‘,h,lz,l < |wmi1,zlﬂi2,z25i3,l - wlﬁil,llﬁizbﬁiaﬂ

T Bt 00, Br s — W1 P10 B, Bt s |  [01B10,0 55 20,85 510 — WP 1,200 5 5]

P s a4 6uwie
|01 81,10 812,05 87.50 — 151,10, P12, Pr,30] < . L. (A.20)
Therefore,
Jwi*pocte

1 Zi 01100 — E(Zigy o0 A1) < nsts

Also, from (A.19), (A.20) and Assumption 1(a), we have
> Bl Zisi i — E(Zininal ADIPIAY) = D E(1 Zisy o

i,01,l2,1 i,l1,l2,0

1 N N
——(AT — A)i ot (A1) iy togiz] By all?)

Jw;? u A
<_Z —Bramir] aiw] By g 1 {61016?} :

and then
812 cowitpPe?

> B Zisy 10 — E(Zigynal AP AL) <

i,01,l2,1

pnsls

Note that in Assumption 1(e) we assume that the entries of the response tensor are
observed independently. Thus, for all i € [n], d;, 1, are independent with each other.

Let Xz = Z Zi,ll,lg,l — % <A>{ — Al, A1> l‘ﬂ?lTﬁikA Then
l1,l2,1

IP( iXZ- §t>:E P(( iXi gt) A1>
=1 =1
*)
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Following the proof of Zhou et al, 2021 [1], we apply the vector Bernstein’s inequality

. . . 81c2cow s e?
given in Theorem A.2 to (*) with 0 = =25 ¢ = qwj?c. Hence, we have
n
P 7 1 A* 147 /i T nx < %2
ihdad — 1 — A1, A ) Tixy 51,4 > ywy €
il1,l2,0 i=1
1 72
>1-— -
- 1 exp 4 SXSIC%CQ/H
T pnsie

By Assumption 2(a) p > cu®{log(d)}/(ns'*y?) for some constant c. Therefore, with
probability at least 1 — /4",

A

A s iz

1

1 * A * * 1 * A
Il < - Z<A1_A1,A1>$ix¢Tﬁ1,4+’7w12€ < o Z HA1 — 4

Note that || A, ||z = || < 3w!/2. We next bound ||A? — A, ||z. By triangle inequality,
we have ) A ) )
A} = Ail[r = leﬁm o120 P13 — wfﬁil ° 5;2 o 5?3
S ”wlféhl © 3172 © 3173 - wi‘@,l o 31,2 o Bl,3HF

-~

1121

+ ||wfﬁl,1 oBip0 iz —wiBoBia0 51,3HF

NS ~~ >
1129

+ ||wml,1 ofi20B13—wifi10Piz0 51,3HF

NS >y
I;;s

+ meu of120B13—wifi10P120 /81,3||F .

-

1124

|r

Note that 1Ty = [y — wi| < wie, I1y < wi]|fiy — Biall £ wie, 1153 < wie and

1154 < wje. Therefore, we have ||A} — A1||F < 4wje. By Assumption 1, we have

n
L3 il < ca. Hence,
=1

3
I, < 4w{e§w{02 + ywiZe = {6cy + y}wie.

Proposition A.16. Suppose that the conditions of Theorem 5.1 hold and let

3 (M (8, T, (A1)

111, =

%

23



Then, with probability at least 1 — 2¢/d'%

111, <

3Cy0wt | gslog(d)
2 np

Proof. Note that, since Ilg, is an indicator tensor, <HQZ, (&), HQZ<A1)> = <HQZ. (&), A1>.
We have

n

1 R A R
wln_p Z(HQ (&),B110Big0 Prs)z

=1

11T, = (A.21)

LS Mg (&), A,

np

)

The ;" entry of the vector nip ;<HQ (&),1Iq, (A1), for each j € [g] can be written

as

— Z(Hﬂi(&), Ay = - (Mo, (&), Av)iz/cr.

Our goal is to find the upper bound of

n

1 A - "
— Z<H91 (&), Bii o Pra o Biz)Ti

np i=1

Since |x;;/c1| < 1, it is sufficient to bound

n

%Z( ( )51105120513

i=1

Cl ZHQ

(A.22)

By following the similar method as the upper bound of < ’ Z a; I, (&r)|| in
(A.10), we obtain for each j € [¢], with probability at least 1 — 2d 10s , that
€1 — ~ slog(d)
— ) g, (&) < C : A.23
Do (6)| < Oy [1E (A23)

for Cy > 0. Therefore, by combining (A.21), (A.22), (A.23), along with the fact that
|| < 3w}, we conclude that with probability at least 1 — 2¢/d'%®

111, <

3Cy0wt | qgslog(d)
2 np

Proposition A.17. Suppose that the conditions of Theorem 5.2 hold and let

Ih=————>  —di {a;ik,wz.lw‘;f,l, BBz Pr2) B
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_&i,k’w;;/; <BZ',17 5k1> <ﬂZ’,2a Bk,2>62/,3 } :

Then,
CArWhax {8 + 88 + 5%}

Aminw;;in

1] <

PrOOf' NOte tha’t <BZ/,1’B]€,1><BZ/727B/€,2> - <B]>;/71 - le,l + BZ/’17B]¢71></3;/72 - 52/72 +
B};/’Q,BA;C,Q). Also, from Assumptions 3(c, d) and triangle inequality ‘(5;‘,71,@,1}
(B B = B+ 20| < (B B | + (B B = 80| < €+

Hence, we have

Z {@Zk'waJ(ﬁZ/,p Bk,1><BZ’,27 5k,2>5]}k/,3 - Oéf,kfw;:m(ﬁ;',u 5k,1><5;:',2a Bk,2>5l:’,3} H

K £k

<

Z a:,k'w;;',l@z',p Bk,1><51:',27 Bk,2>{BZ',3 - BZ',:&}

K £k

+ Z a:,k’wlt’,1<Blt’,1v Br1) (51:’,2 - BZ’Q’ 5k72>ﬁz',3

K £k

+ Z a;“,k/w;ﬁf,ﬂﬁéag, Bre2)(Brr1 — BZ’,D Br1) Brr 5

Kk

Z a:,k/wit',1<ﬁiz',2 - 57&,% 6k72><ﬁ;§/,1 - 62/,1: 61@,1)51:',3

k' #k

_|_

< crrwi A6+ €}Pe + 2crwi, € + ede + arwl, € < deyrw, € + deyrw?, Ee

Besides,

Z {a:,k’wI:’J(BI:’,l? Bk,l> <Bl><:k’,27 Bk,2>BZ’,3 - di,k”wk’,l <B;’,17 Bk,1> <BI:’727 Bk’72>5)]:’73} H
k! £k
< o pwps — Gyt |€2 < |Gty — Wi O + Wi O — 0w |r€”
< (hw [[ip — | + [of pl[don —wip]) €

*
deyrews . &

< (W + et 768 <

Then, together with the triangle inequality, we get

2c? Seyrew? €
—— deyrwh € + doyrwl, Lo + ——mee

max 2
min ““min

4] <

95



Then,
ArWha{8€" + 88 + 5%}

11 <

)\minw:;lin
0
Proposition A.18. Suppose that the conditions of Theorem 5.2 hold and let
. > diparty/n
. k! 1 =1 * A D% A D%
IV, = § W ——A" Fy — A—n <5k!,1>5k,1><5k',275k,2> 51«,3
o O > a2 /n
i=1
n
0 > Qg /n B _
E 4—1 i=1 o A o A o
- E 1I)_A Gk/ - An—<ﬁk’,17ﬁk,1><ﬁk’,27 5k2> Bk’,Sv
e O > 62/
i=1
where A, Fj, and Gy are diagonal matrices with diagonal entry,
Ay = E azk/n § 0; l1,lz,l5k 1115k212
l1,l2
1
§ : ~ * 2 : ) ) D% D%
Fk/ll = ﬁ&iykai,k/ 5i,l1,l2,l/6k,1,l1/Bk,Z,lz/Bk’,l,ll/Bk‘/,Q,lz

i=1 Iyl
n 1 _ _

~ ~ A A D% o

ETED :g@i,kai,k' Y it tsaBrain B2 B 1 1, B o (A.24)

i=1 Il

Then, with probability at least 1 —2/d'0, ||[IV | < /\4LF,

Proof. Denote

0B 1y Bra)(Biv s Br2) B 1.0 B2,

Zik o) = ——

— Qi kO 4 B 1.0 B 2,5 B, 1.0 B2, }5i,l1,l2,l62/737l€l;

lth

where e; is the column vector whose ["* entry is 1 and others are 0. Then, we have

n
w* > @i,ka;k'/”
. s . .
- Z Fio — A=——— (B 1, Br1) (Bir 20 Br2) ¢ Biors = Z Zi ko -
P S ai/n ikl
i=1

o6



Then, following the similar steps from Proposition A.8, we have

25 1 | A _ 1

1 Zi 12120 — BAZi o 1y 1.1 By Broin i) || < ¥_n Bre1n Bre,2,15 B 3,10 k| I s
min
where
n 2
> di,k’a;’k,k’/n
Jig = izln—@i,k@;}k/,p Bk,l)(/g;/,mBk,2>Bk,1,l1/ék,2,l2 — & 1 B 1 B 2.0
Z: @i,k/n
B (A.25)

Applying Proposition A.6 and following steps in (A.7), we get

s A . 2wt ud A2
| Zi g 1020 — B Zi 11,00.0 1 Bre, 1,00 Bre 2,02 Qi i) | < %—_016\/{4)\;’“’( +1;c.

min

In addition, we have
> Bl Ziwtrans = B(Ziw 1y 101810 Br2as i) 171 By B 2. e) =
i,k 12,
_ 1 1 4wr*n2ax H2 H2 %2 A J
=y-— Z mﬁk,l,h@k,zzg K ,31% kY 1k,
p ivk/7l13l27l max

where J; i, is given in (A.25). Then

Z E(”Z'L’,k’,ll,lg,l - E<Zi,k’,l1,lg,l|Bk,1,l1Bk,2,12&i,k)HQ‘Bk,l,llBk,Zlgdi,k)

ivk,7l17l27l
£2 *2 3 2
< 4wmax Zku ﬂ J wmax/\maxru’ 4)\max + 1
= w2 n2 30018 < wi2_pnsts A2,
max i Kyl 1 <P min

Recall that in Assumption 1(e) we assume that the entries of the response tensor are
observed independently. Thus, for all ¢ € [n], d;,, 1, are independent with each other.

Let X; = Z (Zi,k’,ll,lg,l - E(sz zl,zz,l|5k,1,zlﬁkzzzoézk)) Then

k/7l1 7l2 7l

P ( ZXi < 75) =K |P (( ZXi < 75) Bk,l,th,Z,lzdi,k)
=1 i=1
RS

Then, following the proof of Zhou et al, 2021 [1|, we apply the vector Bernstein’s

inequality given in Theorem A.2 to (*) with p = m;;‘ -’Lcle\/ {41‘25““‘ + 1} c? and

min
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0.2

w2 Amasit® [ (A2 5 A AN
el {4xf + 1} cie®. Notethat Y E(Zi k1,001 Bk1.0 Or,2,0. 0 k) = 0.

W2 pnsl s
e i i,k l1,l2,1

Therefore,

|

By Assumption 3(a), p > cyrpdw2 log(d)/(ns' w2 ) > crpdw2 log(d)/(ns' w2 +?)

max min max

for some positive constant c¢. Then, with probability at least 1 — e'/4/d",

n72

A2
ArwE2 Amaxpd {4%% +1 }cf
min

w;?axpnsl's

E AN

ivkl7l17l27l

Sfye) > 1 — max

n
] w* ;dhka;k,/n S i
— Z w—k Fy — A8 1, Br1) (B 2, Br2) ¢ Biv || < ve.
P o > a2, /n
i=1

Similarly, with probability at least 1 — e'/*/d'°, we have,

n
> @i,k@;,k/” _

1 wk/ i— 2 ~ s ~ s
- Z D Gk’ - A1n—<ﬁk/,1u 5k,1><5k/,275k,2> ﬁk/,3 < 7e.
P > d2,/n
i=1
Note that
-1 % Z di7ka:k//n
1 1 wy, i=1 ’ 3 P oD
1 IV4]] < Z;A 5 Z ™~ Fyr — An—(ﬁk/,l,ﬁk,ﬁwk/,z, Br.2) Bl 3
Ktk P ; a7y /n
4 n R R
. > Gl /n B B 1
1 Wy i=1 ’ S ~ S ~ S 1
+||— Z 7 Gy — An—wk/,pBk,1><ﬁk/,2aﬁk,2> 5;«73 <||-A 2ve.
T > a3 /n P
\ i=1

As we have shown in (A.6), if p > csutlog(d)/{ns*} > cu*log(d)/{ns*y?} for some
positive constant ¢, then, with probability at least 1—2/d'°, each entry of the diagonal

matrix A has the lower bound [1/pAy| > >~ a7 /n — v > Amin — 7.
i=1
Therefore, IV can be bounded as

VAl <

o8



Proposition A.19. Suppose that Assumptions 2(d) holds and let g be a d-column
random vector, such that

Then, with probability at least 1 — O(d~ 12) gl < /logd.

Proof. By Markov’s inequality, for a monotonically increasing nonnegative function

h, we have
Eh ([lgl)
P (Ilgll > \/logd) <  (vlogd)

Let h(z) = e 0 < ¢y < % Then, h(x) is a monotonically increasing nonnegative
function for x > 0. Therefore,

Eecolsl®  Eecolsl®  My(co)
P (llgll > viogd) < = = = = =ML

where M g2(t) is a moment generating function of a random variable ||g||*. Note that,

since g ~ N(0, 1), ||g]|* follows chi-square distribution with d degrees of freedom.
Hence, Mjg2(co) = and

d
(1—2¢p)2

P (|lgll > v/logd) < d(1 = 26) 3" = d-0e 3 os1-2)

Then, we have

@P (gl > v/iogd) < e Fosti—20)

Recall that by Assumption 2(d), log(d) < ;12—1;2;. Let C5 = exp (fﬁg@) Thus,
d < Cs. Consider f(z) = a'? @ezlell=20) 1 < 7 < (5,0 < ¢y < 1. Then,
fl(x) = éxn ¢ log(1=2c0) (mlog(1—200)+200—24) Note that, for 1 < z <
Cs5,0 <c¢o < 3, —satl ez “log(1-2c0) (). Also, we have

0<1-2¢)<1=log(l—2cy) < 0= zlog(l—2¢y) < 0= zlog(1l—2c)+2co—24 < 0.

Therefore, for 1 < # < C5,0 < ¢g < %, f'(z) > 0. Thus, f(x) is a monotonically

increasing function on 1 < x < Cs, which gives f(z) < f(C5) on 1 < 2 < C5. Hence,

we get
e
d"P (IIgll > \/@) < O5 o0 5 los(1-2c0),

Therefore,
P (|lgll > vlogd) < O(d™"2),

and with probability at least 1 — O(d™'?), ||g|| < /logd.

Lemma A.5. (Lemma 8 from Zhou et al, 2021 [1].)
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Suppose Assumption 2(b): 7, > s;,7,, = [} and 7, > f; - holds. Then,

I

185 = Ball < [|Bus/1Busll = i

The equality holds if and only if 3{3 = 513/]\513H
Lemma A.6. (Lemma 12 from Yuan and Zhang, 2013 [16].)

Consider a sparse vector x with supp(z) = F, and F, = dy. Let F,, = supp(y, s).
If ||z = [lyl| = 1, then

| Truncate(y, F,) x| > |y x| — @min [1 — (y'x)?, (1 + @) {1- (yT:r;)z}] :

Lemma A.7. (Lemma S.6.2 from Sun et al, 2017 [17].)

For any tensor 7 € R%*%Xds and an index set F' = FyoFyo Fy with F; C {1,...,},

Tr = Z w; Truncate(a;, Fy) o Truncate(b;, F») o Truncate(c;, F3).
i€[R]

Lemma A.8. (Lemma D.5 from Cai et al, 2021 [18].)

Ul >

Consider some quantities £ > 1,A > 0 and 0 < § < % There exists some universal
constant C' > 0 such that if

L > Cr? (ke + 5)eXp(A2)10g(%)a

then with probability at least 1 — d, there exists some 1 < jp < L such that X ;, >
kmax | Xy jo| + A.
<wt<r

Lemma A.9. (Lemma D.4 from Cai et al, 2021 [18].)

Suppose that p > d~2log®d and that plog®d < d. Then for any fixed vector w € R?,
with probability 1 — O(d~'?), one has

urlogd
dp

_ . olog®?d
I(p™T = T%) x5 w|| < [lwllo —

)\;knax + Hw”oo

The result also holds if we replace x3 with x; or xs.

Lemma A.10. (Corollary D.3 from Cai et al, 2021 [18].)
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With probability 1 — O(d~'°), one has

VI alog’d /X dog™
an
d3/2p d\/p

o (E)|| < a(log7/2d + \/dplog5/2d).

Lemma A.11. (Based on Lemma 5.7 from Cai et al, 2021 [18].)

lp~ Ta(T%) = 7| <

Suppose that the conditions of Theorem 5.3 hold. Then, with probability at least
1 — O(d™1?), we have

1
Ul — iU < £ € —.
H 1Y 1Y1 H = < \/@
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Appendix B Proof of the main results

B.1 Proof of Theorem 5.1

The proof is for the case of m = 2 to simplify the calculations. However, it shows
the ideas and methods used for the proof which could be extended to the case where
m > 2.

The true model for rank » = 1 reduces to

T .
Y; = w>1k< i4)ﬁi1 OBT,Q OﬁiS + Sivl = 17 RN L

The plan for the proof is to bound estimators from each step of the algorithm.
Then, to combine them to bound the estimator from the i-th iteration.

Error bound of the estimator from Step 1

In the first step we obtain the unconstrained estimator 51,3, as an example. We
can use 3171 or 61,2 too.

The closed form solution of the optimization problem (5) for 3,3 was derived in
Section 4.1:

n A ~ A
2 (OAéi,l)Q Z 5i,l1,lg,lRi,l,ll,lg,lﬂl,l,h61,2,!2
i=1

l1,l2

Bi31 =

Y

(di,l)Q Z 5i,l1,lg,lw1 (Bl,l,ll )2(31,2,12>2

1 l1,l2

M:ﬁ

-
Il

where R; = Y;/&;1 and G;, = BlTAxi.

For the above solution 5171 and BLQ are j,-mass unit vectors, since we assume that
31,1 and BLQ were estimated in a previous loop.

Denote Fy = supp(8; ;)Usupp(5] 1), F> = supp (B 5)Usupp (B 5), F3 = supp(f; 3)U
supp(Bi“jg), where supp(v) refers to the set of indices in v that are nonzero.
Let F = F} U Fy U F3. Then, we consider the following estimator, that is equivalent
to the estimator above.

n A ~ A
Z %&?71 Z 5i,l1,l2,l(RiF),l,lhlz,l/Bl,l,ll/61,2,l2

l1,l2

ﬁl 3 l - n ~
Z% 121 Z 0; ll,lg,l’wl(ﬁl,l,zl) (51,2,&)2

l1,l2

where R;r denotes the restricted version of the tensor R; on the three modes
indexed by Fy, F5, and Fj.

We note that due to the sparsity restriction and the scaling-invariant truncation
operation, replacing ﬁlgl by 61 3 does not affect the iteration of 6131 Sun et al,
2017 [17]. Therefore, we assume that 51,3 has been replaced by 5173. Since Y; =
O‘f@wfﬁil o ﬂfz o Bik?, + &, we have
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n A A
Wi 2105 Y Oity 0B B2 B0, B 2.0, Bt s,

l1,l2

n A N
D022 D Bty a1 (Br,)?(Br,2,,)?

i=1 I1,la

L1 D 0ity g0 a(Eir)in 12,0811, P12,

ly,l2

142, 306 111 (Br10)2 (B )2

1 I1,lo

<.
Il
—_

+

7

It can be written in a vector form as:

n
wi Y Gy /n

i=1 (Bi 1. 31’1><ﬁi27 Bl,Q)BiB

B3 = -
(DY dzz,l/n

=1

n
w* > Qiga, /n A A

+ AT B = AS T ——— (81, BB, Bra) ¢ B
! 231 6‘?,1/"
=

1@ . .
AT {; ;HQZ-(&F) X1 Br1 Xo 5172},

w1
where A and B are diagonal matrices with diagonal entry, defined in (A.4)

h2 A2
Ay = Z a; 1/” Z 0; ll,lz,lﬁm,zl 51,2,12

l1,l2

By = Z Q10 /1 Z 01 12051100 B2 B 1.0, Bt 2ts-

l1,l2

To prove that this vector form is equal to (B.1), let us consider an element from

the vector 5173.
The third term is straightforward to the second term of (B.1) using the definition

> a 10 /n
of mode-n multiplication. Further, let C' = =n—1<51 15 51 157 2, e 2). We have,
x a7

l

(w10513+ Y g-1 (B - AC’}BN,) :<Zi A—lBﬁig)
l

n
wy Z Qi /n Z 0; ll,lz,lﬁ1,1,1151,2,lzﬁ1 1 P12, 51 5.
=1

n
Z %547;,1 Z 5i,ll,lz,lw1 (51,1,11) (51,2,12)

=1 l1,l2
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n
wy 3 b1, /n
i=1 *

We want to bound the distance between 51,3 and _ 13-
wy Yy, d?’l/n ’
=1

We have .
i wi Y Gigog/n
Prs— —— Bty =T + I, + 11, (B.2)
(DY @12,1/”
i=1
where .
wi Z ézz,lozm/n ) )
n=—""4 {810 BBl Bra) — 1} By
(DY é‘?,l/”
i=1
w* > Qigafy/n ) )
I, = w_lA_l B — Al_ln—<5i1>ﬁ1,1><5i2>ﬁl,2> Bis
! ; OA‘?,l/”
1 <& dun . .
I, = —A Z o, (Eir) X1 Bia X2 Br2 ¢ -
w1 —1 n

By Proposition A.5, we get that ||I;]| < Z=2x¢?. By Proposition A.8, with proba-
bility at least 1—e1 /d*°, we have ||[I1,]| < -8< By Proposition A.12, with probability

at least 1 — d=10, ||I1],|| < 262, /slo8) | g7

wf)\min np

Hence, combining the bounds from Propositions A.5, A.8 and A.12, with proba-
bility at least 1 — 1/d?, we have,

2Co  [slog(d)

U)T )\min np

4
e+ —L +6M}e+

61,3 - -

_ . (B.3)
i=1

n
* ~ *
wy Y ai,lai,l/n 2\
=1 5* { max
1,3[| =
)\min /\min

Finally, we bound the distance between the normalized 3173 and the true parameter
B 3. Since ||} 5|l = 1, we have:

n n
wy Y Qiiog/n = wy Y Qo /n
= = s Bl = .
B3l — n = {|b137= - m 1815l
81,3l WS @2, /n
=1

i=1

Recall that |||z|| — [|y|l| < ||z — y||. Therefore, this gives

n n
~ wy Z é‘z‘,laz1/n ~ wy Z 071',10421/71
1813l — Zfln <||Bi3 — Zfln Biall - (B.4)
DY d?,l/” (DY (341271/71
i=1 i=1
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Note that

=1 61,3 P =1
— ‘ = — B3 fis— — 13
Wi Y a2, /n | 8ol Wy Yy &7y /n
= i=1
n R n R n R
wi Y &iaag/n E wy Y Qi /n wi Y &iaag/n
= 1,3 1= = =
< - ln = - : n ﬁig_ﬁl,S—i_ - ln 6:,3
iy az/m 1Bl ey a2, n dn Y 62, /n
=1 =1 =1
n . n R
wy Y Qi /n E wy Y Giagy/ 1
B i=1 1,3 > > i=1
- n = — B3 B3 n = -1
Wy .216‘2'2,1/“ 1813 Wy Zldil/n |81l
1= 1=
n A
wy Y Qipafy/n
P =1
= |83l — f o
(DY O‘?,l/n
=1
Therefore,
n R n R
wy Y daal /nl | wy Y Qi /n
i=1 B3 ] 3 i=1
n = - 51,3 < ”ﬁL?)H - n
Wy Y a2 /n 181, Wy Y67 /n
=1 =1
n A
i wi Y Giaogy/n
+1|B1,3 — ig

By combining with (B.4), we get

n n
wi Y Gy /n 3 wy Y- Qe /n
= 1,3 > =
— 2 gl < 2By — — Bisll- (B.5)
i=1 i=1

Recall that @; — w] < fwj. Then, 2 < 2. Using (A.2), we have

w

=%

n
~ ~ 9
(DY 0%',1/” 3\
=1 < max
< o 2)\rnin '

wi Y Qe /n
=1
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Therefore,

= wy Y Qo /n
51,3 * 3 max =1 *
—— — fy5|| < 3 Bra — m B3|
[N i i 3 a2/
i=1

and then, from (B.3), we conclude that with probability at least 1 — 1/d°,

Brs 6>\max Amax 2y , 6 A C'O slog(d)
= — 3 . B.6
|| Hﬁl,iﬁ” /81 S\ )\mln )\min * )\min * 7 €t *)\I2n1n np ( )

Error bound of the estimator from Step 2

After obtaining the normalized vector 3, 3/||513]| from Step 1, we apply the Trun-
catefuse operator to 61 3/]151 3|l to obtain the sparse and fused operator.

First, we apply the fusion operator to f1.s/||F1.s]|. We have

B, = arg min Hﬁ — Bus/|Busll H such that | Dl < 7,

where 7y, is the fusion parameter used in Algorithm 1, and f5 is the true fusion
parameter.

Then, by Lemma A.5, we have that, ||,5’{3 — — Bi“BH. In other

words, if the true parameter has a fusion structure, then adding the fusion step is
guaranteed to reduce the estimation error.
Next, we apply the Truncate operator to ,6{3 By Lemma A.6, we have

RGNS

where the right-hand-side is an increasing function in terms of |§{€6f3|
Let Bl 3 = Truncate (B{3, ’7'53> / H Truncate (3{3, 7'33>
Note that H Truncate (51 35 7'53> H < 1 due to the facts that |3/ 3ll = 1 and Truncate

of T
Truncate (51,3’ 7'53> Bf:)

E

operator sets some entries in ﬁl 3 to 0. Therefore,

_ . R T 2
||51,3 - 5f3|| < \/5\/1 - (553513)2 < \/5\/1 - {Truncate (5{,37 T83> 5?3}

sl D) Gy

<\/E‘

and then

1813 = Bisll < V10|55 —

51,3/"51,3" - ﬁik,fﬂ

‘ . (B.7)
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Combining (B.6) and (B.7), with probability at least 1 — 1/d°, we have,

_ 6V 10 max [Amax 27 , 6v10AmaxCo [ slog(d)
— Bl < 3 . (B8
o gigll < S { Qe g 2V gyl oy S anC [SOBOD) g

Finally, we need to prove that, if the true parameter 5] ; is a y-mass vector, then

after each iteration the estimator 31,3 is also a ¢u-mass vector. By (B.1), each entry
of 1,3 can be simplified as,

n
D
ﬁ1,3,l = ZZln
wl Zl dil/n
i=

OAéi’lOé,zl/n

N A wT _
(B11, Bra) (BT o, Br2)Bis, + w_lAu lezﬁf,s,z

n
G100, /n
.
N —</61,1a B1,1> <B1,21 61,2>ﬁ1,3,l

n
b > 5%'2,1/”
i=1

n

w1 n

=1

1 1. A 5
—|-w1 Alll ﬁ&i’l Z 61‘,[1712,1(giF>l1,l2,lﬁ1,1,l1 61,2,l27
i=1 l1,l2
and then
- ’w*B ‘ ‘Z?zl %d’i,l Ell l2 (5i711712’l(giF)ll’l2’151’1’l1ﬁ1’2712
Bradl < T - 7
T | Auls |1 Au
n

% > Qo+ L

= /,[, 1 -1 al,l 2 2

<2 — 4+ ||—A Z o, (Eir) X1 Big X2 Pr2

1 i @21 -7 \/E
n =1 1,
Then, together with (A.2) and Proposition A.12, we get

R Amax + 7 4 200 slog(d) /
<2—— 6
|61,3,l‘ — >\min —y \/E + /LUTAmin np " e

for some large enough C' > 0. Note that ~" is arbitrary small. Also, by Assumption
3

: A3 . .
2(c), € < min {W, %}, € is arbitrary small. Therefore, we can assume that
2 max

- Aax + 20 log(d
|ﬁ131\§2—7£+ o Sog()’
w )\min - \/g wI)\min np

for some large enough C' > 0. By (A.5), 7 < Amin/2, then we have

Amax + 77 1 < 6 Amax

glmax T 1 7

)\min - \/g - )\min\/g,
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and by Assumption 2(d) with C? = X2, ¢, we have np > C?02s%log(d)/{w*?\2,.},

then

2Co slog(d) < 2 (B.9)
wTAmin \/_

Therefore, there is some global constant (does not depend on iterations) ¢ > 0, such

that

; z
< L,
max {\5k,3,l|} e

Given that the true parameter [} 5 is a p-mass vector, the update from each iteration
is a cu-mass vector.

Error bound of the estimator from Step 4

Now we can derive the error bound for the estimator ﬁ14 That is, we aim to
bound Hﬁl 4 — B14l|, given the other estimators iy, 51 1 51 2, ﬁl 3.

Denote A; = wlﬁl 10 51 20 51 3, and A7 = wif] 0 B7,0 0] 3.

For the case of r = 1, the true model is Y; = ﬁl 4:L'ZA’{ + &;. Then, from (8), the

closed form solution of 5174 becomes

We can write ||[TIg, (A;)

Pra— 516,4 =

o, (47), o, (A1) ) wia? 81,

—
S|
1 3
—
=2
0N
-
[\
8
S
<7
——
|
X
——
—_
R
S

i=1 =1

Therefore,

B4 — B4l = H {%i HHQi(z‘Ah) ix@x?}_ X
X{; Zn:<HQ (A7 — —A 1), o, (A1)>:cl T614+ Z<HQ &), HQZ<AI)>$1}

=1
-1
2 T
‘ X;Z; X
F
g

| Y

and then

. 1 <& .
1814 = Biall < {n_p Z HHQZ-(Al)
i=1

.

P
I
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n

p 2= (1 (45 = A0 T (A1) il 5,

”p

_|_

nipz <HQ (&), g, (A1)>

i

-~

- >
IIo I11o

Combining the bounds of Iy, I15, [115 from Propositions A.14 - A.16, with prob-
ability at least 1 — 1/d°, we obtain that,

8
s = Biall < 5o

1’[111’1

{6cy + 7}w

3C’gawi‘ gslog(d)
2 np '

Note that, from (A.5) 7 < ¢5. Then, by letting k» = 2°2 and defining Ci =120,

since Cy is any constant, we conclude that, with probability at least 1 — 1 /d°

Cio [gslog(d)

g 1 <p
1814 — Biall < 2€+)\minwf o

(B.10)

Next, we combine the steps to prove Theorem 5.1.

We iteratively apply the error bound from each step, and obtain the final error
bound in Theorem 5.1.

Given the initial estimators Bg) and w§°> with an initialization error e, the error
bound in (B.8) implies that, with probability at least 1 — 1/d°,

~(1 . 6v/10AmaxCo | slog(d)
1815 = Bisll < bue + === —
where
6V 10 A max [ Amax 2y , 6v10A2, € 12vV10Amaxy = 18V10Apay
ky = + +3v p = 5 5 + )
)\min )\min )\min )\mm )\mm )\min
defining + as
1 A A2
= Gmin g R i B.11
! 2 { 72 >\max 144 )\maxCZ } ( )
Then, we have that M < 1. By (A.5) we have v < %/\ﬁ—‘f\, which gives
12\(“‘““‘7 < 3 < 1. Also, using Assumption 2(c), we have 6\ﬁ’\m‘“‘ <13

min

Therefore, k1 < 1. Similarly, the error bound holds for HBM — ﬁLlH, Hﬁ’g — B1 5l and
~ (1) * *
@ = wi /.
By (B.10), with probability at least 1 — 2/d”, we have that

Wi, np Amin W} np

min

3 6 )\maxé log(d é* 1 d
181,40 = Brall < ko (/f1€+ VIO 7, [sloel )> + 50 [gslog(d)
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and then

. . 6710 AmaxCo [ slog(d Cyo slog(d
1814 — BT all < kokie+ ko SV 8ld) + = " gslos( )
WAL np AminW] np

The contraction coeflicient is

10X 12v10Amaxy | 18V10Amaxy’
k:k1k2:{6\/—mw€+ Vi0hnay  18v10 7}62

>\2 >\2 >\rnin )\min '

min min

We have that W < 1. By (A5), we have H@\M < %. Also, using

min min
: 6v/10c2\2
Assumption 2(c), we have \ﬁCQ N gmat < 1

Therefore, k < 1. =

We have now obtained the error bound from the first iteration. After repeatedly
plugging the estimation error bound from iteration (¢ — 1) into the error bound from
iteration ¢, with probability at least 1 — (¢ + 1)/d°, we have that

~(t A(t
max{|&{” — wi|/w;, max;|| 3 — 57 ||}

< et 11—k 6\/_)\maxC’a slog — k! qslog
- 1—-k Adin 1-k )\mmwl

1 Cyo |[slog(d)
1—Fk wy np

Then,

max{ [\ — wi| fw, max; || 8] = 572} < Ke+

Y

where C; = (6\/_02)\12naX + Oy mm\/_)//\mm
This completes the proof of Theorem 5.1. U

B.2 Proof of Theorem 5.2

We follow the similar stpes as for the proof of Theorem 5.1. Thus, the first step
is to bound the error for the unconstrained estimator from Step 1 of Algorithm 1.
The model for a general rank r is of the form:

Y= ZB xwkﬂmoﬁkzoﬁm—l—&,z_l

ke(r]

Error bound of the estimator from Step 1
In (6) we showed that the closed form solution of the optimization problem (4)
for 3, 3 is:

70



n A~ A A~
> w2 37 Oty gt Bt 12,0 B Br 2y

~ =1 l1,l2

B3l == - - :
D0 H(@ik)? 3 Oty 1o a k(B )? (Brzn)?
i=1 I o

where Rz = (Yi - Z @Dk'@i,kﬁm o Bk’,2 o 51«,3) /di,k and @i,k = 5;{,4567;-
Kk
Denote F = supp(f; ;) Usupp(5; 1), F2 = supp(B; o)Usupp(5; »), F3 = supp(5; 3)U
supp(f 3), where supp(v) refers to the set of indices in v that are nonzero. Let

F = Fy U F, U F3. Then, we consider the following estimator, that is equivalent to
the estimator above.

3=
joN

Tk 2 Ot ot (Rip )iy 0,0 Bkt 0y Bk 2.0,

l1,l2

=1
— - - .
> %dfk > 0idy 1o Wi (Br1,10 )2 (Br2,)?

i=1 I1,lo

For the vector B4, denote 3y ; = Truncate(B; ;, F), for k=1,...,r and j = 1,2,3.

By definition of F}, we have B;;] = B ; and Bk,j = Bk,j, for j =1,2,3. By Lemma A.7
and substituting the expression of R; into Bkyg’l, the vector Bkg, can be expanded as

n
i Wy, >~ QiR /1
Brz = ——

n
Wy Y 5%21@/”
i=1

<BZ,17 Bk,1> <51:,2> Bka)ﬁz,:‘a

k#k Li=1

n —_ A — A —
5 {z aa} Wi (B 12 B ) (Bl s Boa) B
+

n
Wy ‘3‘12k/n
i=1

5 {2 aa} 5B B} o o) B

k#k Li=1

n
Wy )2 7/
i=1

n
w* Z OAZ%kOéZk/TL R R
+w_kA_1 B — Al_ln—%’;p 51«,1)(5;2,2, ﬁk2> BZS
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UJZ —1 iizlééi’kazk//n % A % D %
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Wy Z dikdgk/n Py A = 5 A
— Z o AN G — Al_ln—2<52/,1, Br1) (Brr 25 Br,2) ¢ Br 3
k' #k > Q. /n
i=1

1 "L & R R
A AL {Z nkHQ (51F> X1 ﬁkJ X9 5]{72}, (B.12)

_l’_
w
k i=1

where A, B, F}, and G are diagonal matrices with diagonal entry,

N2
All = Z Oél k/n Z 5@ l1,l2715k 1,01 5k727l2

l1,l2

Bll = Z a5 kOé,L k/n Z (57, l1712,l/8]€,1,l1/8]€ 2 lzﬁzl,llﬂz,zlz

l1,l2

Fpy = E azkaz W E 5111,l2,15k,1,l15k2125kr 1;15k 2o
l1,l2

n

1 ~ ~ = =

A A * *
Gk’ll Q; kOG k! 5i,l1,lz,lﬁk,l,llﬁk,llgﬁk’ 1,1 ﬁk’ 215"
n s 4,01 345b2

i=1 11,2

Then, the difference between ﬂk 3 and

Br,3 — i:1n 5273 =hLh+L+I3+ 1+ I5, (B.13)
Wy Y @?,k/”
i=1
where .
wy Z Qi kO /10 ) )
Il = Ziln {<ﬁ;,17ﬁk,1><ﬁz,27ﬂk,2> - 1} 62,3
Wy, Y dzzk/n

i=1

1

I = ———— Z ~Gik ) { o wwi 1 (B s Bea) (B s B2 B s
wkZoz o/ =1 k' #k

— i1 (B s B ) (B &,z)ﬁigs}

Z alkaz k/n

w 'L * 2 * A *
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g Z @?k/”
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> @i,ka;k’/n

wy — _ . _ R B
Vyi=>Y" w—k/A ' B = A (B Bi1) (B2 Bi2) ¢ B
7 o S a2, /n
i=1
n ~ ~
. > Qg /n ) _
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1 "L &
Vi=—A" {Z Z’kHQi(&'F) X1 Br1 X2 5k,2} -
W i1 n

Comparing (B.13) with (B.2) in the rank-1 case, we see that, when r = 1, the sum
includes the terms I;,I11; and V;. When the rank » > 1, the sum includes two
additional terms I7; and [V, which appear due to the interplay among different
ranks. By Proposition A.5, we have

2 A max
[4]] < €.

min

By Proposition A.8, with probability at least 1 — 4/d'°, we have

L] <

€,
min

where 7y is a positive constant equal to
1 Amin A2 A3 w2 }
— _min , C , min , min min . B'14
773 { 2 1920/ 10N e 967/ 1000 e 2, 1 (B.14)
Furthermore, by Proposition A.12, with probability at least 1 — 10/d'°, we have,

il < 2Co slog(d)
Hh= Aminw* np

min

+ 67'e.

The value of 4/ will be determined later. Next, by Proposition A.17, we have
cirwy ., {8€* + 8e + 5¢%¢}

Aminw;ﬁn

1] <

Proposition A.18 gives that with probability at least 1 — 2/d'°,

drye
Vi)l <

min

Hence, we can bound the term in (B.13). We have
i wi Z o?z-,koz;k/n
Brs — —% Bra|| < WOl [Tl + [T+ [TV A+ (VA
Wy CA%z,k/”
i=1
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< 2 Amax E cArwr,, {8€* + 8&e + 5526} e+ 67 + 2Co slog(d)'

o >\min An'unu}mm )\mm Wi s Amin np

min

As shown in the rank-1 case in (B.5), the error of normalized S 3 can be bounded as

n
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Recall from (A.1) that |y — wj| < 2w}. Then, 2 <
k

le

. Using (A.2), we have

n
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A Y

o 2)\min .

n
wi Y di,ko‘;k/"
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Therefore, we have

Br,s

6Afnax o 33 Amaxrwi, {86® + 8&e + 5E%e} 24)xmax7
=2 €+ 2w + 2.

min min mln min

— Bra|| <

+18’y’)\maxe N GC’AmZXU slog(d)‘
Amin wE .\ np

min”‘'min

Error bound of the estimator from Step 2
In this step we derive the error bound for the unconstrained estimator from Step
2 for the general case. Similarly, to the case for r = 1, from (B.7) we have

Br.,3
|1 Br3l

6\/_ AmaxCo [ slog(d)

2 )
Inll’l )\mln np
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By (B.14) v < ﬁ then 24‘ﬁ’\m‘”‘7 < 5. Setting constant 7' < —Amin

P 144v/10Amax ’
18vT0Amax?y < 6\/ /\
)\min

we have

. By Assumption 3(c), we have that € < "““ , then 2¥—rmaxt <

mln

. Also, by Assumption 3(c), % < 1. By Assumptlon 3(d), we have that
C%;;axr’l’:}maxg < =

min min
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Therefore, k; < 1. Finally, we prove that the estimator Bk,3 has the p-mass property
under the assumption that the true parameter j; ; is a y-mass vector.

Using (B.12), each entry of vector Bk,g can be simplified as
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and then,
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Therefore, by using Proposition A.12 and (A.2), we have
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for some large enough C' > 0. Then, by (B.14) v < Amin/2, we get
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for some large enough C' > 0. Note that ' is arbitrary small. Also, by Assumption
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for some large enough C' > 0. Similarly to the proof for » = 1 in (B.9), under
Assumption 3(e), we have

Co slog(d) < 2
wfnin{ min — 7V} \/_
and by (B.14) v < Amin/2, we have
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Therefore, for some constant ¢, we have that
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Error bound of the estimator from Step 4
In the third step, we bound |84 — fB; 4l for each k given all other parameters

Wy, /Bk,lv Bk’g, Bk,?) and Wy, BAM, Bk’,m Bk/’g for k' # k. The closed form solution of the
estimator will be
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Plugging Y; into (B.15), fi4 can be written as
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and then
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Therefore, using triangle inequality, we have
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Note that since Ilg, is an indicator tensor, <HQ(81)7A]€> = <HQ (&), g, (Ak)>
Then, by applying Propositions A.14 - A.16, we obtain that
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Then, using the fact that v < cp by (B.14),
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where ky = 56c0w2 1/ Apinw3 .

Next, we combine the steps to prove Theorem 5.2.
Finally, we provide the error rate after t iterations, by iteratively applying the
error bound from each step. We have shown that, with probability at least 1 —1/d°,
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Combining with the error bound (B.16), we get that with probability at least 1 —2/d”
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This gives
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The contraction coeflicient is
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By Assumptions 3(c) and 3(d), we have
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Also, by (B.14), we have v < A2, w2 /{9610 \paxcow?2 7} and
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Therefore, the contraction coefficient £ < 1.
The error bound after ¢ iterations is, with probability at least 1 — (¢ + 1)/d°
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Therefore,
. Cy ow? slog(d)
(¢ . . 2 max g
masc{mg i} — il maxl| B = Bl < e+ g [0

where € = 6v/10Amax /Ay, O = 12C5/G/ Amin and Cy = C4 + Cly.
This completes the proof of Theorem 5.2.
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B.3 Proof of Theorem 5.3

The proof is mostly based on results and steps from Cai et al, 2021 [18]. We divide
the proof into three steps.

Step 1:

In step 1, we show that there exists at least one trial 1 < r < L such that 57, is the

top singular vector of the population version of 7 x3 g7. Let T* = w} Z 151 4T 0
=1

ﬁfz © 5f,3 and 7 = Z % 1 4$z<ﬁf3a a7)-
Then

T X3 g1 = wy Z 51 4Ti 51,37 g?>ﬁ>1k1 ° 5?2 = 'Y*Tﬁil © BTQ = W*Tﬁi‘,ﬁﬁ- (B.17)

Therefore, v*7 is the singular vector of 7* x5 g7 when rank r = 1.
Next, we need to prove that there exists some 7 such that v*7 is sufficiently separated
from 0. Since g] = U,U{ g7, we have

Z 614 z U1U1Tﬁ13791>

where Uy is defined as the rank-1 eigen-decomposition of By, and By = I diag (A1 AT).
Since ¢] is a standard Gaussian vector,

E(’Y*T|thla see 7L7 TL = Z 514 2 UlUTﬁl 3 ( )> = 0

(91192, &)

Var(v' 7|01, &1 - oo, O, En) (Z 5141;1) |0, U

Then

Var(y""[Q, &1, -0, Dy En) (Z 514377,) HUI 1

Without loss of generality, let v*! > 4*2 > ... > v*f, By Lemma A.8 and r = 1, for
any fixed small constant ¢ > 0, with probability at least 1 — d, we have

YR w zi| 007 B4l (B.18)

which holds due to the condition that L > C] for some constant C]. Let A} =
unfolds(7*), then

A} = unfolds(w] Z — By 4%5;,1 o Bis0 Bi3)-
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Then
_wlz 614 i3 3 511®512) € Risxdidz.

Let U be the basis of the column space of A;AiT. Intuitively, the space spanned by
U, is close to the space spanned by the true tensor factor Then, by applying Lemma

Adwithd = ||U, = Us||, V=U,U = U, up = Z 31237 5 the bound in (B.18)

can be simplified as,

7 2 wiv/1 = |[U = U2, (B.19)
From the proof of Theorem 1 in Cai et al, 2021 [18] we have,

[ATATT — ALAT|

* X T Tk |
1y = UF | < V2| UT = UF U < SAE

(B.20)

where o(A7) is the singular Value of Aj. Since rank r = 1, A] is a rank-1 matrix.

Then, we have o(A}) = wj Z 151 4Zi- Also, using the results from Cai et al, 2021
[18], we have

NG NG
{HATTHQ,OO +oVd

IATAT" — AL AT S {

143|200 + oV/d AT o + o—f}

VP
|A*T ,00 + 0-\/5 7 * *
ATl =T o)L + i (B.21)

where [|Al|2,00 = MaX;cpm||Ai.||2 for any matrix A € R™*™ and d= max{ds, d;dy} .

+ HATTHz,oo} log(d)

513lw12 514 Li 511@’512)

145 ]l2.00 = max

2

1
< ; * * \T < * 7 B22
}?ﬁﬁwlzﬂ wy Z 51 4Li H(ﬁm ® 51,2) H2 > QW NZh ( )
using Assumption 1: max|3] ;| < \[, wi Z 180w < cowi, ||(B1, ® Biz)THz <1.

In addition, we have

||ATT”2,00_ wlz 514 i :,:;” |51111ﬁ1212|

2
llE[dl] lze[d
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Then,

*T * * * * %
AT [[2,00 < Clwllle[ﬁﬁi[dﬂ‘51,1,1151,2,12’ < Clwlﬁ- (B.23)
Recall that A7 is a rank-1 matrix, then, we have
* * * . 1 * * * * *
[ATll2 = |43l = |w} Z ﬁﬂlzl’i ||513|| H(ﬁm ® 51,2)TH < quwy. (B.24)
i=1
Combining (B.21) - (B.24) and simplifying the formula, we have

*2 3 5 2dlood 2.2 oo(d dlog(d *2 2

s'5p p s p p S

Therefore, for any arbitrary small constant 6 > 0, with probability greater than
1—9,
7> wt (B.25)

We have shown that there exists some 7 € [L], such that v*7 2 w}. This means that
31 3 exhibits the largest correlation with the projected g;, which further implies that
P11 is the largest left singular vector of 7 x3 g7.
Step 2:
In Step 2, we prove that the top singular vector vf is close to 37 ;. We obtain the
bound for v; as an example, while the bound for v, and v3 can be derived similarly.
Recall that v] is the top left singular vector of M™, where
1 - L, ., 1 x ~ L x ~
M =-Txg ==-T"xg +AT-T"}xg =-7 T/31,151,2+_{T_T b x a1,
p p p p T p
where the second inequality is due to the definition of 4*7 in (B.17).
Using Theorem A.4 (Wedin’s theorem), we get

(M7 — M) B 4|2
,V*T _ ||MT _ M*TH

lof = Biall < (B.26)

Next, we bound ||(M™ — M*7)B} ||z and |[M™ — M*7|| .
First, recall that g7 = U;U{ g7. Define §;™ = U;U;Tg;™, and decompose,

M7 =M ={p ' T=T"}xs51 ={p"'T =T} x3.97 +{p"'T = T"} x5 {37 —gi"} -

V1 V2

Note that V; is a zero mean random matrix in R% x4

1
o *T —1 T * Q% * * -1
‘/1751712 - E Egl,l;;[{p 5i711,l2,l3 - 1}61,4$iw161,1,l151,2,l251,3,l3 +p €i7117l2,l3]‘
I3€[ds)i€[n]
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By Lemma A.9, with probability 1 — O(d~1%), we have

1977 || wolog?”(d ) 1977 || sow? 11/ log(d) ||g 7|20/ slog(d)
pn \/pns \/pn

Further, with probability at least 1 — O(d=°), ||gi"llee = U UL 91|00

S U l2.00v/10g(d) S p1y/log(d) /s, and ||gi7[l2 < [|Uf]lry/log(d) < v/log(d). Then,

by applying Assumption 2(d), we get

Vil

Wil < polog’(d) N wip*log(d) | 9v/slog(d) < wiplog(d) | ov/slog(d) (B.27)
pny/s \/pns? N/ \/pns? Vpn

Next, we turn to V5, and have that
IVall < H{p™' T = T} <3 {g7 =i H < o' T = T*Ilg7 — 917 |-

By applying Proposition A.19 and Lemma A.11, we have that with probability at
least 1 — O(d™1?),

157 — g7 ll2 S 1(OU) = 7O )g7|| S 10Uy = U U ||/ log(d) << 1.

Moreover,
— * wi * * * 1
Ip T-T | < L Z HQ 51 4%51,1 ofy0 51,3) -T on Z Ig, (&)
(B.28)
By Lemma A.10, with probability at least 1 — O(d~1°), we have
1 log™?(d dlog®(d
— Y g, (€ <_Z\|HQ < olos(d) |, Jdloe’d) g o)
pn 4 pn p p

By the same Lemma A.10, with probability at least 1 — O(d~'?), we have

< wiptlog’(d) wip*log™?(d)

B.30
ST s, s (B:30)

2 1o (B0 810 Bio) = T

Combining (B.28) - (B.30), we have

3log®(d) N wiplog®?(d) N olog™?(d) Y dlog®(d)
s!5p N p p

Combining the bounds of V; and V5, we obtain that

_ . wi
Vall S Mlp™' T =T S —

M7 = M| < [Vl + [[Val] < wy.
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Second, to bound [|(M7™—M*7)3{  ||2, we have, by the definition of the operator norm,

17 = M) Byl < ™ T = T} > By xs g1l < ™' T =77} > B 9T

By Lemma A.9, we have

185 1 locolog®?(d) (155 1|ccwipen/log(d) |57 1l20+/slog(d)
- + .
pn \/pns N/ZD

Then, by Assumptions 1(c) and 2(d), we have

{p— T=T"} <1814l S

log®°(d) | wiplog(d log(d
T = T} o B < 208 () | winloald) , o/sloa(d)
| /s N N

< wiptlog(d)  oy/slog(d)
+ .
\/pns? Vpn
We have proved in (B.25) that v*7 > w}. Besides, we have [|[M™ — M*7|| < w}.
Therefore, the difference in (B.26) becomes,

/log /slog
vl — 51 S w pnsg (B.31)

Next, we show that v] is cu-mass vector, where c is a general constant.

slog cu e
lné[a;lx‘vlll|<maxyﬁll1‘+ d 2\/ ' “ 1= +\/§’

where the first inequality holds by (B.31). The second inequality holds due to as-
sumption on the sample size.

Step 3:

In Step 3, we prove that Bﬂ is close to true factor.

We have shown in (B.10) that, if p > p?log(d)/{ns'°}, with a high probability,

Cyo  [gslog(d)

i
1= Biall < ket 520 128

Y

where k is some constant, and e is the estimator error of v; in (B.31). Therefore, the

final error is
. . log(d) = o [slog(d)
max{max; |3 - 81,2} < MQ\/;JF wik\ np

That completes the proof of Theorem 5.3.
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