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ABSTRACT

The optimal speed of a machine in an assembly line is determined using a Markov decision

process type model. We develop the rate matrix that represents the inter-event time of

a machine, either repair time or time to breakdown, as a function of speed. We consider

the rate of time to breakdown with a variety of functions of speed. We find limiting

probabilities and express profit in terms of these probabilities. We then find the optimal

speed to maximize profit. Further, we assume an underlying function of speed and simulate

data using R. From the simulated data, we estimate parameters of the speed function, and

finally estimate the optimal speed.
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Chapter 1

Introduction

According to various historical accounts, the industrial revolution began in the late

1700’s. In 1913, Henry Ford introduced the assembly line to build automobiles. Assembly

lines are an important area of study. An assembly line consists of a sequence of machines or

people who complete a restricted task on an item before an item moves to the next stage.

Assembly lines are important since they create efficiencies and save time and effort. Major

goals are to maximize profit/revenue and to minimize waste or time. A machine working

alone, or within an assembly line, can break down. Such equipment failure can result

in lost revenue and repair costs, and even health and safety risks. Bialy and Ruzbarsky

(2018) address the issue of cause and effect of breakdown. There are a variety of reasons

for breakdown of a machine, including the speed of the machine, the lack of maintenance,

improper use, and age.

In this paper, we consider the speed of a machine in an assembly line. The speed of

the machine can be adjusted but the higher the speed, the more likely the machine is

to breakdown. When the machine is broken, the manufacturer loses productivity due to

downtime. So, there is no reward. When the machine is working, there is productivity and

rewards. A slower speed means lower productivity and lower profit. This paper discusses

finding the optimal speed of the machine in an assembly line to maximize the profit.

We build a continuous time Markov model. A rate matrix is introduced as a function

1



1.1 Research Objective 2

of speed to maximize the profit. There are number of options to build the rate matrix as a

function of speed. First we discuss the expression for the speed function. The options for

the rate function include linear, square root of linear, square root of quadratic, quadratic,

cubic and square root of cubic. These six cases are considered and we graph profit vs speed

(θ). The linear, square root of linear and square root of quadratic cases are not reasonable

models because the functions are increasing and hence there is no finite speed which gives

the maximum profit. Although these models are possible, the maximum profit would occur

when we run the machine as fast as possible. We thus consider quadratic and cubic rate

functions since they result in the profit function having maximum at some finite value of

speed. The rate matrix is initially 2 × 2 (two states 0 and 1, 0 represents the working

state and 1 represents the broken state). Later we consider a 3 × 3 matrix (making two

sub states of the broken state 1 1 and broken state 1 2 from the original broken state 1).

Similarly, we can extend this up to a n × n matrix. By considering larger sizes of a rate

matrix, the repair time can be approximated by a deterministic distribution, rather than

the implied exponential distribution when using a 2 × 2 matrix. The expected repair time

approaches a constant and the variance of the repair time approaches zero.

We perform a simulation assuming an underlying quadratic function of speed for the

breakdown rate. We use regression in order to try to identify the breakdown rate as a

function of speed. Finally, we discuss some issues for further study.

1.1 Research Objective

The main objective of this paper is find the optimal speed of a machine in an assembly

line by using a continuous time Markov process and a rate matrix (which models inter-

event times, either repair time or time to break down). We simulate data using R software.

We use Maximum Likelihood Estimators (MLE) and regression polynomials to estimate

parameters. As a byproduct of this study, optimal speed will reduce the high amount of

energy consumed by the machine and will increase the motor life of the machine.
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1.2 Uses of the study

This work can be used for a manufacturing company which has automatic filling, cap-

ping or labelling machines which are used in the food and beverage industry, pharma-

ceutical industry, chemical industry, e-liquid industry, and many more to maximize their

rewards/profit.

This work is related to the issue of ‘speed vs accuracy.’ Thus there would be applications

to many types of tasks: writing a report, taking an exam, creating a computer program,

cooking a meal, building a house, etc.



Chapter 2

Literature review

Durrett (1999) has good insight of the limiting behaviour and stationary distribution of

continuous time Markov chains. Albert (1962) discussed the problem of estimating Q (rate

matrix) when it is not known. In particular, he derives a maximum likelihood estimate

for Q and its large sample properties were investigated. Q (also called the infinitesimal

generator for the process) is a square matrix, whose values are fixed.

Ke et al. (2016) considers an M/M/r machine repair problem with warm standbys,

switching failures, reboot delays, and a repair pressure coefficient. A birth-and-death

process was used to establish the steady-state equations. A matrix-analytic method was

then adopted to obtain the steady-state analytical solutions that are used to calculate

various systems performance measures, such as the expected number of failed machines, the

expected number of idle servers, machine availability, and operative utilization. A function

of expected profit per unit time was derived. Probabilistic Global Search Lausanne (PGSL)

method was employed to determine the optimal values that maximize this function.

Bhuniya et al. (2019) find that in long-run production systems, unusual energy con-

sumption and machine failures occur frequently. The unit production cost is dependent

on the production rate of the machine and its failure rate. The aim of this study was to

obtain the optimum profit with a reduced failure rate, under the optimum advertising costs

and the optimum sale price. The total profit of the model becomes a complex, non-linear

4
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function, with respect to the decision variables. For this reason, the model is solved nu-

merically by an iterative method. However, the global optimality is proved numerically, by

using a Hessian matrix. The numerical results obtained show that for smart production,

the maximum profit always occurs at the optimum values of the decision variables. Using

stochastic optimal control and Markov processes, Tan (2019) concludes that the production

rate can be controlled optimally to benefit from producing in advance when the production

cost is low while meeting the supply and demand in the best way.

Bartkowiak and Pawlewski (2016) demonstrate the use of a Discrete Event Simulation

tool to reduce the negative impact of machine failures on the performance of a filling

line. The subject of the study is a filling and packaging production line which consists of

seven machines connected by conveyors. Machine failures are registered by a maintenance

Data Acquisition system. Those data are used to derive statistical distributions for Time

To Repair and Time Between Failures. The model is built using ”FlexSim” simulation

software and different allocation scenarios are considered. The introduction of buffers

results in an increase in mean line through output by 15%. The initial results indicate that

the proposed approach may lead to the reduction of negative effects of machine failures.

Widyadana and Wee (2011) discuss deteriorating items production inventory models

with random machine breakdown and stochastic repair time. The model assumes the

machine repair time is independent of the machine breakdown rate. This study showed

that management should give more attention to the production rate. There are some

causes for machine breakdown while working- mainly caused by humans, the machine itself,

management method and materials. Among those potential causes Bia ly and Ružbarskỳ

(2018) concluded that material affected the proper operation of the machine. Zhang and

Li (2015) designed an intelligent control system (programmable logic controller(PLC)) for

machine speed in an automated production line of beer. As a result of their work, they

proved that they could improve the efficiency of the production line.

Widyadana and Wee (2011), using sensitivity analysis and an exponential distribu-

tion, developed deteriorating items production inventory models with random machine
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breakdown and stochastic repair time. (The model assumes the machine repair time is

independent of the machine breakdown rate.) A Markov decision process is used to iden-

tify the energy control action and estimate the potential capacity of demand reduction

(Sun and Li (2014)). Eboli and Cozman (2008) proposed a methodology for automotive

manufacturing line scheduling using Markov decision processes. Ao et al. (2019) scheduled

a dynamic maintenance plan based on Markov decision process. In a smart robot produc-

tion line, robot enabled teaching problem was formulated into an Markov decision process

(Cheng and Chen (2013)).

We generally assume exponentially distributed Xi (inter event times) with failure rate

αi. Results of a similar type also happen when component lifetimes follow the Erlang

distribution (a special case of the Gamma distribution with integer shape parameter),

since an Erlang r.v. can be expressed as a sum of i.i.d. exponential r.v.(Akkouchi (2008)).

When we are dealing with multiple models or shapes we have to choose the best

model or shape for the related study among all other competing models. Archontoulis

and Miguez (2015) showed how to find the best model using Akaike information criterion

(AIC), Bayesian information criterion (BIC). Aho et al. (2014) also discussed the AIC and

related tools and BIC and related tools, which are appropriate to the statistical model

selection.

Miyanaji et al. (2018) discussed the effect of printing speed on quality and integrity of

the printed components. It was shown that increasing printing speed reduces the accuracy

of the fabricated parts regardless of their orientation in the powder bed due to the enhanced

inertia forces.



Chapter 3

Modelling rate function

3.1 Introduction of rate matrix

A manufacturing process in which an arrangement of machines works to configure the

finished product is called as an assembly line. Generally, a production line is a semi-

automated system in which products go through a production process. Various sections

of the line station have human workers who oversee production. An assembly line can be

either working ‘on’ or broken ‘off’. If broken ‘off’, it earns no rewards/profits. If working

‘on’ it earns rewards/profits proportional to the speed of the machine until the machine

reaches its optimum speed.

Profit ∝ Speed

The production line breaks down at a rate that is an increasing function of speed. The

broken system is repaired at a rate is which is not a function of speed. This means that

repair time is independent of θ (speed).

Assumptions:

� Time spent in any state (working → broken and broken → working) is exponentially

distributed.

� Profit is proportional to the speed of the machine while working.

7



3.1 Introduction of rate matrix 8

Definition 3.1. A transition rate matrix (also known as an intensity matrix or infinites-

imal generator matrix) is a square array of numbers describing the instantaneous rate at

which a continuous time Markov chain transitions between states. In a transition rate ma-

trix Q, element qij (for i ̸= j) denotes the rate departing from state i and arriving in state

j. Diagonal elements qii are defined such that,

qii = −
∑
j ̸=i

qij

and therefore the rows of the matrix sum to zero.

Our time-dependent Markov chain rate matrix Q is a function of speed. Here S(θ) is

the rate function from working state to the broken state. Where, θ is the speed. This 2×2

matrix is the original matrix with two states ‘0’ and ‘1’. ‘0’ represents the working machine

and ‘1’ represents the broken machine. Without loss of generality we set the repair rate to

be 1.

States =


0, if working

1, if broken

Q =


0 1

0 −S(θ) S(θ)

1 1 −1

 (3.1)

Definition 3.2. The row vector π⃗ is called a stationary distribution of the continuous time

Markov chain if π⃗ has entries (πj : j ∈ S(state space)) such that:

a. πj ≥ 0, and
∑

j πi = 1

b. 0 = π ×Q, where Q is the rate matrix of the chain. Thus, 0 =
∑

i πi × qij , ∀j.

Solve, π⃗ ×Q = 0. for limiting probabilities

π⃗ = (π0, π1)



3.2 Types of rate function in terms of speed. 9

π0 + π1 = 1

Profit = M = prop. time working × income per unit × speed of the machine

= π0 × k × θ

Theorem 3.1. For the rate matrix Q =

−S(θ) S(θ)

1 −1

, the limiting probability π0 of

being in the working state is π0 =
1

1 + S(θ)
.

Proof. We solve (0, 0) = (π0, π1)Q subject to π0 + π1 = 1. The result follows.

Corollary 1. The profit for speed θ is
kθ

1 + S(θ)
.

3.2 Types of rate function in terms of speed.

Rate function S(θ) can be linear, root of linear, quadratic, root of quadratic, cubic,

root of cubic . . . etc. as a function of θ. In this paper we indicate how to determine a

reasonable rate function. R software is used to get graphs (Profit(M) vs Speed (θ)). We

use the derivative of the profit in order to find the optimal speed to maximize the profit.

Six cases are considered in total.

3.2.1 Case I: Linear rate function

In this case, the rate function is linear i.e S(θ) = a + bθ

π⃗ ×Q = 0 =⇒ (π0, π1) ×

−(a + bθ) (a + bθ)

1 −1

 = 0

=⇒


−(a + bθ) × π0 = π1

π0 + π1 = 1
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=⇒ π0 =
1

a + bθ + 1

Hence,

M = π0 × k × θ

=
1

a + bθ + 1
× k × θ

Then, take the derivative of M with respect to θ, we get

∂M

∂θ
=

(a + 1) × k

(a + bθ + 1)2

∂M

∂θ
= 0

In this case optimal speed cannot be found as graphs 3.1 and 3.2 do not have maximum

turning point. So, this speed function will no longer be considered, as the graph indicates

the optimal speed is as fast as possible.

0 2 4 6 8 10

0
.2

0
.6

Speed

P
ro

fi
t

Figure 3.1: Linear rate function with a = 0, b = 3
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Figure 3.2: Linear rate function with a = 2, b = 3

3.2.2 Case II: Root of linear rate function

When the rate function of the speed =
√

(a + bθ)

π⃗ ×Q = 0

(π0, π1) ×

−
√

(a + bθ)
√

(a + bθ)

1 −1

 = 0

M = Profit =
θ√

a + bθ + 1

∂M

∂θ
=

bθ + 2(a + 1)

2(a + bθ + 1)3/2

∂M

∂θ
= 0

θ̂ =
−2(a + 1)

b
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Though we get the value for the optimal speed, solution is not a positive value since ‘a’

and ‘b’ are positive values. Graphs 3.3 and 3.4 are not having turning points. So, in this

case the optimal speed is as large as possible.

0 200 400 600 800 1000

0
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5

Speed

P
ro

fi
t

Figure 3.3: Root of linear rate function with a = 0, b = 3
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Figure 3.4: Root of linear rate function a = 2, b = 3

Henceforth we take k = 1 in our expression for profit.

3.2.3 Case III: Quadratic rate function

When rate function S(θ) = a + bθ + cθ2

π⃗ ×Q = 0

(π0, π1) ×

−(a + bθ + cθ2) (a + bθ + cθ2)

1 −1

 = 0

M = Profit =
θ

a + bθ + cθ2 + 1

∂M

∂θ
=

a− cθ2

(a + bθ + cθ2 + 1)2

∂M

∂θ
= 0
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0 = a + 1 − cθ2

θ̂ =

√
a + 1

c

There is a finite value for the optimal speed in this case and graphs also have turning

points. This model is possible.
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Figure 3.5: Quadratic rate function with a = 0, b = 3, c = 5
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Figure 3.6: Quadratic rate function with a = 2, b = 3, c = 5

It is reasonable to assume that when the speed θ = 0, the breakdown rate S(θ) = 0.

This implies that a = 0.

3.2.4 Case IV: Root of quadratic rate function

When rate function S(θ) =
√
a + bθ + cθ2

π⃗ ×Q = 0

(π0, π1) ×

−
√

(a + bθ + cθ2)
√

(a + bθ + cθ2)

1 −1

 = 0

M = Profit =
θ√

a + bθ + cθ2 + 1
∂M

∂θ
=

bθ + 2a + 2

2(a + bθ + cθ2 + 1)3/2
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∂M

∂θ
= 0

0 = bθ + 2a + 2

θ̂ =
−2(a + 1)

b

In this case, the solution for the optimal speed is a negative value for a > −1 and b > 0.

The result in this case similar to the linear case.
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Figure 3.7: Root of quadratic rate function with a = 0, b = 3, c = 5
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Figure 3.8: Root of quadratic rate function with a = 2, b = 3, c = 5

3.2.5 Case V: Cubic rate function

When rate function S(θ) = a + bθ + cθ2 + dθ3

π⃗ ×Q = 0

(π0, π1) ×

−(a + bθ + cθ2 + dθ3) a + bθ + cθ2 + dθ3

1 −1

 = 0

M = Profit =
θ

a + bθ + cθ2 + dθ3 + 1

∂M

∂θ
=

−2dθ3 − cθ2 + a + 1

(a + bθ + cθ2 + dθ3 + 1)2

∂M

∂θ
= 0

0 = −2dθ3 − cθ2 + a + 1
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In this case we have a cubic equation to solve to get the optimal value. Since S(0) = 0, we

get a = 0 when c > 0, d > 0 we can find a solution for the optimal speed.
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Figure 3.9: Cubic rate function with a = 0, b = 3, c = 5, d = 7

3.2.6 Case VI: Root of cubic rate function

When rate function S(θ) =
√
a + bθ + cθ2 + dθ3

π⃗ ×Q = 0

(π0, π1) ×

−
√
a + bθ + cθ2 + dθ3

√
a + bθ + cθ2 + dθ3

1 −1

 = 0
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M = Profit =
θ√

a + bθ + cθ2 + dθ3 + 1

∂M

∂θ
=

−dθ3 + bθ + 2a + 2

(a + bθ + cθ2 + dθ3 + 1)3/2

∂M

∂θ
= 0

−dθ3 + bθ + 2a + 2 = 0

Solving this cubic for θ will give us the optimal speed to maximize the profit. As before

S(0) = 0 implies that a = 0
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0
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0
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Figure 3.10: Root of cubic rate function with a = 0, b = 3, c = 5, d = 7

3.3 Summary of the types of rate function

According to our analysis in the linear case θ should be as large as possible. The same

as true in the square root of linear case and in the square root of the quadratic case. In
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the quadratic case and cubic case and square root of cubic case we can solve for a finite

optimal speed θ.

Table 3.1: Summary of the selected rate functions.

Types of rate function θ̂ Shape of the graph Conclusion

a + bθ not exist
increasing

no turning point
θ̂ not exist.

√
(a + bθ) −2(a+1)

b

increasing

no turning point
θ̂ is not positive.

a + bθ + cθ2
√

a+1
c has a turning point

Both θ̂ and the shape of the graph

fullfill the requirements and

have to consider this model.
√
a + bθ + cθ2 −2(a+1)

b no turning point θ̂ is not positive.

a + bθ + cθ2 + dθ3 solution exist has a turning point Consider this model
√
a + bθ + cθ2 + dθ3 solution exist has a turning point Consider this model.



Chapter 4

Repair rate with phases

4.1 Expected repair time of a machine

4.1.1 Original rate matrix

As a specific example, consider a rate matrix

Q =


0 1

0 −0.1 0.1

1 1 −1

 (4.1)

with states 0 and 1, where 0 = working state and 1 = broken state. This assumes that

the time to leave a state is exponentially distributed. This is reasonable for the time to

breakdown, but not necessarily for repair which could be closer to a deterministic value.

Recall that an exponential random variable with pdf f(x) = λe−λx, (x > 0), has mean 1
λ

and variance 1
λ2 .

The expected time change states is reciprocal of the rate. The expected time in state

0 is 1
0.1 = 10, with variance 1

0.12
= 100. The expected time in state 1 is 1 with variance 1.

We use 0.1 as the rate to change from the working state to the broken state. It is

reasonable to that the rate from working to broken state should be less than rate from the

broken to working state.

21
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We simulate data to give the times to change states using R. Here we use 5 change

times for each states because we use too many time points the graphs become cluttered.

a1=rexp(5,0.1)

a2=rexp(5,1)

A=matrix(c(a1,a2),5,2)

‘a1′ generates 5 times to change from state 0 to state 1 and 5 times to change from state

1 to state 0. Values for the matrix A as below.(these values change over the simulation)

[,a1] [,a2]

[1,] 17.765007 0.24840448

[2,] 1.988278 0.87098097

[3,] 10.232093 1.17863528

[4,] 1.378704 0.06740564

[5,] 37.432592 0.82259876

To get the time values to alternate between state 0 and state 1 we using the following R

code. b represents the inter-event time of a machine (it can be either repair time or time

to breakdown.)

b=c(t(A))

17.76500743 0.24840448 1.98827828 0.87098097 10.23209251 1.17863528 1.37870380

0.06740564 37.43259178 0.82259876

d represents the cumulative sum of the vector b and d holds times for events starting at

time 0 with a working machine. The values for d appear below. The vector f indicates

the state at the corresponding time.

d= cumsum(b),d=c(0,d)

0.00000 17.76501 18.01341 20.00169 20.87267 31.10476 32.28340 33.66210 33.72951

71.16210 71.98470
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Figure 4.1: The time values to alternate between state 0 and state 1

f=c(rep(c(0,1),5),0)

0 1 0 1 0 1 0 1 0 1 0

plot(d,f,"s", xlab="time", ylab="state")

In our diagram we see that the system spends most of the time in state 0 ( working) and

only spends a small amount of time in state 1 (broken).

B indicates state and time of entry to that state

B=matrix(c(f,d),11,2)

[,1] [,2]

[1,] 0 0.00000

[2,] 1 17.76501

[3,] 0 18.01341

[4,] 1 20.00169

[5,] 0 20.87267

[6,] 1 31.10476
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[7,] 0 32.28340

[8,] 1 33.66210

[9,] 0 33.72951

[10,] 1 71.16210

[11,] 0 71.98470

4.1.2 Rate matrix with two broken levels

To get make the service time become closer to a deterministic distribution we divide

the broken state into two or more levels. (e.g. broken level A, broken level B, Broken level

C, . . . ).This changes the distribution of the amount of time that we are in the broken state,

which becomes the sum of exponential (Erlang/Gamma distribution) Akkouchi (2008).

One method to make the time to repair (time in state 1) closer to a deterministic

random variable is to use phases/stages. So we initially replace state 1 by two stages, say

1 1 (broken state 1) and 1 2 (broken state 2). We double the rates so the expected time

in each stage is half of the previous value but the total expected time is still the same.

Consecutive states would be 0 → 1 1 → 1 2 → 0 → 1 1 . . .

The amount of time to move to the next state is the reciprocal of the rate. Our new

matrix becomes

Q =



0 1 1 1 2

0 −0.1 0.1 0

1 1 0 −2 2

1 2 2 0 −2

 (4.2)

The expected time in state 0 is 1
0.1 . The expected time in state 1 1 is 1

2 and the expected

time in state 1 2 is 1
2 . So total expected time in states {(1 1), (1 2)} is 1

2 + 1
2 = 1, just

as in the original 2 × 2 matrix. But the variance of the total time in the broken state is

1
4 + 1

4 = 1
2 , half of the previous variance.

In here we add one more column than original 2× 2 matrix to make two broken states.
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R codes and results for the two broken levels/states as below.

a1=rexp(5,0.1)

a2=rexp(5,2)

a3=rexp(5,2)

A=matrix(c(a1,a2,a3),5,3)

A =

[,a1] [,a2] [,a3]

[1,] 13.3714614 0.149629528 0.2225692

[2,] 21.3659530 0.121731688 0.2694744

[3,] 5.7229672 0.057782232 0.1090097

[4,] 0.6516988 0.002657414 0.4162677

[5,] 4.5065944 0.351905711 0.2354946

b=c(t(A))

b=

13.371461350 0.149629528 0.222569184 21.365953031 0.121731688 0.269474377

5.722967191 0.057782232 0.109009721 0.651698830 0.002657414 0.416267699

4.506594366 0.351905711 0.235494593

d= cumsum(b)

d=

0.00000 13.37146 13.52109 13.74366 35.10961 35.23134 35.50082 41.22379 41.28157

41.39058 42.04228 42.04493 42.46120 46.96780 47.31970 47.55520

f=c(rep(c(0,1,1),5),0)

f=

0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0
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plot(d,f,"s", xlab="time", ylab="state")
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Figure 4.2: The time values to alternate between state 0 and state 1 when repair with two
phases

This graph shows only one broken state because using R codes (f) we combined both

broken levels together to show the total time in the broken state. We see that the system

spends most of the time in state 0 (working) and only spends a small amount of time in

state 1 (broken).

B=matrix(c(f,d),16,2)

B=

[,1] [,2]

[1,] 0 0.00000

[2,] 1 13.37146

[3,] 1 13.52109

[4,] 0 13.74366

[5,] 1 35.10961



4.1 Expected repair time of a machine 27

[6,] 1 35.23134

[7,] 0 35.50082

[8,] 1 41.22379

[9,] 1 41.28157

[10,] 0 41.39058

[11,] 1 42.04228

[12,] 1 42.04493

[13,] 0 42.46120

[14,] 1 46.96780

[15,] 1 47.31970

[16,] 0 47.55520

When it appears with two sub broken states as its, R codes, results and graph as below

for the 3 × 3 matrix.

a1=rexp(5,0.1)

a2=rexp(5,2)

a3=rexp(5,2)

A=matrix(c(a1,a2,a3),5,3)

A =

[,a1] [,a2] [,a3]

[1,] 1.646683 0.27813493 0.07861844

[2,] 17.184832 0.06623823 0.15299476

[3,] 33.896511 0.43493146 0.04326425

[4,] 6.441274 0.61006985 0.16346007

[5,] 33.052043 0.03905789 1.79278296

b=c(t(A))

b =1.64668340 0.27813493 0.07861844 17.18483196 0.06623823 0.15299476 33.89651105
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0.43493146 0.04326425 6.44127383 0.61006985 0.16346007 33.05204317 0.03905789

1.79278296

d= cumsum(b)

d = 0.000000 1.646683 1.924818 2.003437 19.188269 19.254507 19.407502 53.304013

53.738944 53.782208 60.223482 60.833552 60.997012 94.049055 94.088113 95.880896

f=c(rep(c(0,1,2),5),0)

f = 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0

plot(d,f,"s", xlab="time", ylab="state")
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Figure 4.3: The time values to alternate between state 0 and state 1

This graph shows two phases of the broken state where, we separate both broken levels

show the amount of time spend in each level. We see that the system spends most of the

time in state 0 (working) and only spends a small amount of time in state 1 (broken) and

in state 2 (broken).
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B=matrix(c(f,d),16,2)

B =

[,1] [,2]

[1,] 0 0.000000

[2,] 1 1.646683

[3,] 2 1.924818

[4,] 0 2.003437

[5,] 1 19.188269

[6,] 2 19.254507

[7,] 0 19.407502

[8,] 1 53.304013

[9,] 2 53.738944

[10,] 0 53.782208

[11,] 1 60.223482

[12,] 2 60.833552

[13,] 0 60.997012

[14,] 1 94.049055

[15,] 2 94.088113

[16,] 0 95.880896
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4.1.3 Rate matrix with three broken levels

We can continue in this manner. If we divide the repair state into 3 parts, our new

rate matrix becomes

Q =



0 1 1 1 2 1 3

0 −0.1 0.1 0 0

1 1 0 −3 3 0

1 2 0 0 −3 3

1 3 3 0 0 −3


(4.3)

The working state expected time remains as 1
0.1 . The expected time in state 1 1 (broken

state 1) is 1
3 , the expected time in state 1 2 (broken state 2) is 1

3 and the expected time

in state 1 3 (broken state 3) is 1
3 So total expected time in states {(1 1), (1 2), (1 3)} is

1
3 + 1

3 + 1
3 = 1, just as the original value from 2 × 2 matrix. The expected repair time

remains at 1 but the variance of the repair time now becomes 1
9 + 1

9 + 1
9 = 1

3 .

Here we added two more columns from the original 2× 2 matrix to make three broken

phases. R codes and results for the three broken phases appear below.

a1=rexp(5,0.1)

a2=rexp(5,3)

a3=rexp(5,3)

a4=rexp(5,3)

A=matrix(c(a1,a2,a3,a4),5,4)

A=

[,a1] [,a2] [,a3] [,a4]

[1,] 22.320021 0.02203436 0.72015855 0.3100682

[2,] 22.055960 0.76357801 1.64618390 0.2676209

[3,] 8.405908 0.39304455 0.51688823 0.1494886

[4,] 3.081749 0.29536128 0.05784368 0.2329312

[5,] 22.999995 0.46057149 0.48288709 0.3654538
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b=c(t(A))

b=

22.32002139 0.02203436 0.72015855 0.31006825 22.05595967 0.76357801 1.64618390

0.26762090 8.40590784 0.39304455 0.51688823 0.14948858 3.08174868 0.29536128

0.05784368 0.23293124 22.99999529 0.46057149 0.48288709 0.36545375

d= cumsum(b); d=c(0,d)

d=

0.00000 22.32002 22.34206 23.06221 23.37228 45.42824 46.19182 47.83800 48.10563

56.51153 56.90458 57.42147 57.57095 60.65270 60.94806 61.00591 61.23884 84.23883

84.69941 85.18229 85.54775

f=c(rep(c(0,1,1,1),5),0)

f=

0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

plot(d,f,"s", xlab="time", ylab="state")



4.1 Expected repair time of a machine 32

0 20 40 60 80

0
.0

0
.4

0
.8

time

s
ta

te

Figure 4.4: The time values to alternate between state 0 and state 1 when three broken
phases are combined

This graph shows only one broken state because using R codes we combined three broken

levels together to get an idea about the total broken state time. We see that the system

spends most of the time in state 0 (working) and only spends a small amount of time in

state 1 (broken).

When there are three broken phases the rate matrix Q becomes 4 × 4. We implement

this situation in R code.

a1=rexp(5,0.1)

a2=rexp(5,3)

a3=rexp(5,3)

a4=rexp(5,3)

A=matrix(c(a1,a2,a3,a4),5,4)

A=

[,a1] [,a2] [,a3] [,a4]

[1,] 2.362575 0.1669241 0.40560412 0.4862640
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[2,] 14.217069 0.3873124 0.29534303 0.7850578

[3,] 6.983876 0.2190763 0.09293939 0.3692399

[4,] 23.638095 1.1927417 0.06024340 0.1429057

[5,] 7.031749 0.2439102 0.28933906 2.0446407

b=c(t(A))

b=

2.36257550 0.16692414 0.40560412 0.48626402 14.21706930 0.38731238 0.29534303

0.78505782 6.98387582 0.21907633 0.09293939 0.36923991 23.63809487 1.19274172

0.06024340 0.14290567 7.03174853 0.24391024 0.28933906 2.04464073

d= cumsum(b); d=c(0,d)

d=

0.000000 2.362575 2.529500 2.935104 3.421368 17.638437 18.025749 18.321092

19.106150 26.090026 26.309102 26.402042 26.771282 50.409377 51.602118 51.662362

51.805267 58.837016 59.080926 59.370265 61.414906

f=c(rep(c(0,1,2,3),5),0)

f=

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0

plot(d,f,"s", xlab="time", ylab="state")
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Figure 4.5: The time values to alternate between state 0 and state 1 when repair with
three phases

This graph shows three broken phases to indicate the amount of time spent in each of the

phases and in the working state 0. We see that the system spends most of the time in

state 0 (working) and only spends a small amount of time in state 1 (broken), in state 2

(broken) and in state 3 (broken).

4.2 Summary of the rate matrices with broken phases

We limit the number of times generated because if we generate too many values the

graphs get overly cluttered. We see that as we add more phases to the repair state the

variance of the total repair time gets smaller and tends to zero. This means that we

approximate a deterministic distribution for the repair time. But the expected repair time

is kept constant. Thus our result for the optimal speed (which is based on the expected

repair time) is valid not just for the initial 2 × 2 matrix but would be valid for a much

larger set of distributions for the repair time.

In our graphs showing the two states (0 and 1), we note that the system only earns
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rewards when the system is in the state 0.

In summary, in the beginning the repair time is considered as exponentially distributed.

But eventually we see that the repair time can be considered as a deterministic value by

allowing broken phases.

Table 4.1: Summarize the repair time results by increasing broken phases.

Type of matrix Expected repair time (Units) Variance of repair time

2 × 2 1 1

3 × 3 1
2 + 1

2 = 1 1
22

+ 1
22

= 1
2

4 × 4 1
3 + 1

3 + 1
3 = 1 1

32
+ 1

32
+ 1

32
= 1

3

5 × 5 1
4 + 1

4 + 1
4 + 1

4 = 1 1
42

+ 1
42

+ 1
42

+ 1
42

= 1
4

6 × 6 1
5 + 1

5 + 1
5 + 1

5 + 1
5 = 1 1

52
+ 1

52
+ 1

52
+ 1

52
+ 1

52
= 1

5

...

(n + 1) × (n + 1) 1
n + 1

n + . . . + 1
n = 1 1

n2 + 1
n2 + . . . + 1

n2 = 1
n = limn→∞

1
n = 0



Chapter 5

Simulation and parameters

estimation

In this chapter, we generate typical data that would be available to the statistical an-

alyst. We illustrate with a model having the breakdown rate S(θ) as a quadratic function

of speed (θ). S(θ) = 1.3θ + 4θ2

Note: There is no intercept term, which is consistent with the fact that if the speed is

zero, then the breakdown rate would also be zero.

We work with four values of θ, namely θ = 1, 1.3, 1.6, 1.9. Then S(θ) = 5.30, 8.45, 12.32, 16.91

represent the four rates. We want the repair rate to be faster so we take the repair rate to

be 20 for all four cases.

The following R code will generate data.

th=c(1,1.3,1.6,1.9)

#th (theta) gives 4 speeds that we choose to examine

fth=1.3*th+4*th^2

#fth=f(theta) is a quadratic function of theta that we use for simulation

n=100;m=n/2

36
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#n is the number of data points that we generate for each speed, which

#we break into two parts of size m=n/2 each

b1=rexp(n,fth[1])

#b1 generates n values of exponential time-to-breakdown at speed theta[1]

b2=rexp(n,fth[2])

#b2 generates n values of exponential time-to-breakdown at speed theta[2]

b3=rexp(n,fth[3])

b4=rexp(n,fth[4])

b=c(b1,b2,b3,b4)

#b is a vector of size 4*n of simulated breakdown times

r=rexp(4*n,20)

#r simulates 4*n repair times at rate 20

#We next want to alternate between breakdown and repair times.

#We do this using a matrix manipulation.

M=matrix(c(b,r),4*n,2)

c=c(0,c(t(M)))

#c will consist of 8*n inter-event times, alternating between

#time-to-breakdown and repair time.

d=cumsum(c(0,c[1:(8*n)]))

#d will give the actual times of 8*n events plus start at time 0 when

# system is working. d has dimension 8*n+1

e=rep(c(0,1),4*n); e=c(e,0)

#e gives state of system at 8*n times where 0=working; 1=broken

#e has dimension 8*n+1

The first line of code generates n random values in vector b (breakdown times) from an

exponential random variable with 4 rates corresponding to 4 speeds 1, 1.3, 1.6, 1.9. These

are the times till breakdown. The next line generates 4n random values in vector r (repair

times) with rate 20. These are the repair times. We want to intersperse these two vectors
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with 4n times each and the 8n interspersed inter-event times are placed in vector c. The

vector d gives the actual event times when the system switches states (working (0) and

broken (1)). The vector e gives the state of the system for the corresponding time in vector

d.

The actual data that we would likely have from a manufacturer would be the state of

the system and the time when that state was entered, i.e. We would have vectors d and e.

From these, we would have to recover the inter-event times and partition them into times

to breakdown times and repair times. So we would try to recover vectors b and r.

f=c(); for(i in 1:(8*n)){f[i]=d[i+1]-d[i]}

M1=matrix(f[1:(8*n)],2,4*n)

g=M1[1,]; h=M1[2,]

#Note that h=b and g=r except g has an initial value 0

From vector f giving actual event times, we look at pairwise differences to get inter-

event times in vector d. We partition vector d into two parts to get time-to-breakdown in

vector h and times to repair in vector g.

Let us assume a time-to-breakdown rate α = S(θ) Our data consist of the times-to-

breakdown x1, . . . , xn

Theorem 5.1. The MLE estimator for α for an exponential random variable X with pdf

fX(x) = αe−αx, x ≥ 0, satisfies α̂ =
1

x̄
for fixed θ.

Proof.

L(α) =

n∏
i=1

αe−αxi = αne−α
∑

xi so

lnL = n lnα− α
∑

xi.

d lnL

dα
=

n

α
−
∑

xi = set = 0

Hence α̂ =
1

x̄
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In our example we are using 4 different values of θ which are known to the statistical

analyst. We have n realizations for each. We divide these into groups of m = n
2 each to

give more data points for attempted polynomial regression.

y11=1/mean(b1[1:m]); y12=1/mean(b1[(m+1):n])

#y11 and y12 give two estimates of the breakdown rate for speed 1

y21=1/mean(b2[1:m]); y22=1/mean(b2[(m+1):n])

#y21 and y22 give two estimates of the rate for speed 1.3

y31=1/mean(b3[1:m]); y32=1/mean(b3[(m+1):n])

#y31 and y32 give two estimates of the rate for speed 1.6

y41=1/mean(b4[1:m]); y42=1/mean(b4[(m+1):n])

#y41 and y42 give two estimates of the rate for speed 1.9

y=c(y11,y12,y21,y22,y31,y32,y41,y42)

x=c(1,1,1.3,1.3,1.6,1.6,1.9,1.9)

plot(x,y)
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Figure 5.1: Breakdown rate vs Speed

Next we will look at fitting a polynomial to these data, to see how close we can come to

recovering the parameter values chosen for the simulation. We are looking for low values
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of AIC and BIC.

Note: The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)

provide measures of model performance that account for model complexity. AIC and BIC

combine a term reflecting how well the model fits the data with a term that penalizes the

model in proportion to its number of parameters.

x1=x; x2=x^2; x3=x^3; x4=x^4

A1=lm(y~0+x1)

# This forces regression through the origin.

AIC(A1)

BIC(A1)

A2=lm(y~0+x1+x2)

AIC(A2)

BIC(A2)

A3=lm(y~0+x1+x2+x3)

AIC(A3)

BIC(A3)

A4=lm(y~0+x1+x2+x3+x4)

AIC(A4)

Typical output follows.

> AIC(A1)

[1] 37.40917

> BIC(A1)

[1] 37.56805

> A2=lm(y~0+x1+x2)

> AIC(A2)

[1] 16.13386

> BIC(A2)
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[1] 16.37218

> A3=lm(y~0+x1+x2+x3)

> AIC(A3)

[1] 17.42223

> BIC(A3)

[1] 17.73999

> A4=lm(y~0+x1+x2+x3+x4)

> AIC(A4)

[1] 18.6481

We want a low value of AIC and BIC so it seems that the quadratic model is best. This

matches the fact that we originally chose the quadratic model.

> summary(A2)

Call:

lm(formula = y ~ 0 + x1 + x2)

Residuals:

Min 1Q Median 3Q Max

-0.4961 -0.3142 -0.1411 0.1570 1.0108

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x1 1.0429 0.6618 1.576 0.166

x2 4.1506 0.4069 10.202 5.17e-05 ***

---

Residual standard error: 0.5264 on 6 degrees of freedom

Multiple R-squared: 0.9985, Adjusted R-squared: 0.9979

F-statistic: 1935 on 2 and 6 DF, p-value: 3.712e-09
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We note that the coefficients of x (1.043) and x2 (4.151) which correspond to θ and θ2

are close the the actual values of 1.3 and 4 which we used to generate our data. However the

coefficient of x is not significant. However, if we continue with our example, our estimate

for S(θ) is 1.043θ + 4.151θ2

According to the earlier analysis , the estimated optimal speed for the quadratic model

is
√

1
c =

√
1

4.151 ≈ 0.5, to maximize the profit.



Chapter 6

Conclusions and further research

In this paper the optimal speed of a machine in an assembly line has been found. Using

continuous time Markov chain we developed the rate matrix with the function of speed.

That rate matrix represents the inter-event time of a machine, either repair time or time

to breakdown.

In order to apply our methodology we assume and underlying function of speed and

we simulated data for that speed. To find the best model for the rate function we used

polynomial regression AIC and BIC and we found that the quadratic model is the ap-

propriate model for our rate function. Then we determined parameters for the quadratic

function using MLE and according to the our analysis , the estimated optimal speed for

the quadratic model is
√

1
c =

√
1

4.151 ≈ 0.5, to maximize the profit.

Most calculations and simulations were done using readily available R software. Hence

our approach can be easily implemented in real-world manufacturing companies to find the

optimal speed of their machines using their own data to maximize the companies’ profit.

In this study we used only working and broken states to built the model. As for further

studies this model can be extended to more than one broken phases as we showed in figures

4.3 and 4.5. We can also extend our model by including other variables besides speed in

the rate function. For example, we could include age or temperature in the model. We

could also include a learning component in the model.
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Bia ly, W. and J. Ružbarskỳ (2018). Breakdown cause and effect analysis. case study.

Management systems in production engineering .

44



BIBLIOGRAPHY 45

Cheng, H. and H. Chen (2013). Autonomous robot teaching using a smart robot in pro-

duction line. In 2013 IEEE International Conference on Robotics and Biomimetics

(ROBIO), pp. 1772–1777. IEEE.

Durrett, R. (1999). Essentials of stochastic processes, Volume 1. Springer.

Eboli, M. G. and F. G. Cozman (2008). Modeling automotive assembly lines with gener-

alized stochastic petri nets and markov decision processes with imprecise probabilities.

Technical report, SAE Technical Paper.

Ke, J.-C., T.-H. Liu, and D.-Y. Yang (2016). Machine repairing systems with standby

switching failure. Computers & Industrial Engineering 99, 223–228.

Miyanaji, H., N. Momenzadeh, and L. Yang (2018). Effect of printing speed on quality of

printed parts in binder jetting process. Additive Manufacturing 20, 1–10.

Sun, Z. and L. Li (2014). Potential capability estimation for real time electricity demand

response of sustainable manufacturing systems using markov decision process. Journal

of Cleaner Production 65, 184–193.

Tan, B. (2019). Production control with price, cost, and demand uncertainty. OR Spec-

trum 41 (4), 1057–1085.

Widyadana, G. A. and H. M. Wee (2011). Optimal deteriorating items production in-

ventory models with random machine breakdown and stochastic repair time. Applied

Mathematical Modelling 35 (7), 3495–3508.

Zhang, D. and S. Li (2015). Design and realization of liquid filling machine intelligent con-

trol system. In 2015 IEEE International Conference on Mechatronics and Automation

(ICMA), pp. 1283–1288. IEEE.



VITA AUCTORIS

NAME: Chandi Rupasinghe

PLACE OF BIRTH: Sri Lanka

EDUCATION: Rajarata University of Sri Lanka, B.Sc. (4-year)degree in Industrial

Mathematics (first class), 2014-2018

University of Windsor, M.Sc., Windsor, ON, 2021-2022

46


	Optimal speed of a machine in an assembly line using the continuous time Markov chain rate matrix
	Recommended Citation

	Declaration of Originality
	Abstract
	Acknowledgments
	List of Figures
	Introduction
	 Research Objective 
	 Uses of the study 

	Literature review
	Modelling rate function 
	Introduction of rate matrix
	Types of rate function in terms of speed.
	Case I: Linear rate function
	Case II: Root of linear rate function
	Case III: Quadratic rate function
	Case IV: Root of quadratic rate function
	Case V: Cubic rate function
	Case VI: Root of cubic rate function

	Summary of the types of rate function

	Repair rate with phases
	Expected repair time of a machine
	Original rate matrix
	Rate matrix with two broken levels
	Rate matrix with three broken levels

	Summary of the rate matrices with broken phases

	Simulation and parameters estimation 
	Conclusions and further research
	Bibliography
	Vita Auctoris

