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Abstract— This paper provides a prototype of an Electric 
Vehicles Load Profile Generator based on the probability density 
function of several parameters such as arrival time, total 
connection time, energy demand, and the information about the 
vehicle’s battery size of charge and the power level of the charger. 
This tool of simulation, realised with Python, allows the generation 
of random EV load profiles and, in the next step, simulates the 
integration of these patterns in a defined grid through open-source 
and commercial software’s. The Quasi-dynamic simulation 
approach is used since load profiles are time depending. The 
electric vehicles load profile generator is tested by simulating 
scenarios of different load profiles at points of common coupling 
with proposed simplification to allows maximising the precision of 
the results and at the same time to minimise the needed simulation 
time. 

Keywords—distribution system impacts, electric vehicles, power 
distribution, power system modelling, quasi-dynamic time-series 
analysis 

I. INTRODUCTION

The actual climate conditions, which result in many 
phenomena such as global warming, require effective and 
sometimes significant actions to limit these negatives 
outcomes [1]. According to the Swiss Federal Office for 
Environment [2], the main action is the reduction of greenhouse 
gas emissions, particularly in the sectors with the highest 
reduction potential, such as transports, electrical 
production/consumption, and heating systems. Developing and 
improving new or existing eco-friendly technologies, such as 
power generators based on renewable energies (RES) and 
Electric Vehicles (EVs), is constantly growing. Countries are 
showing great interest and effort in regards to this problem, by 
applying support and investment subsidies for the construction 
of new power generators based on RES as well as by promoting 
electromobility [3], or by planning a phase-out of the sales of 
Internal Combustion Engine (ICE) cars within the next twenty 
years [4]. In Switzerland, the Swiss Federal Government (SFG) 
is active at various stages to improve the framework conditions 
for alternative propulsion systems by applying legal measures 
such as the introduction in 2012 of the Swiss CO2 law [5], and 
to develop pilot projects in cooperation with municipalities [2].  

Moreover, the market for electromobility has been pushed 
forward by developing more efficient batteries and engines. 
These enhancements allow achieving performances comparable 

to an ICE car, notably in terms of distance range. Therefore, this 
increase in the attractiveness of electromobility and the policy 
strategies adopted to reduce gas emission could lead to an 
important growth of EVs in the following years. 

The growth of the share of EVs and the integration of 
alternative power generators are a part of the solution against 
global warming [6]. However, their improvement is not without 
consequences. With the increase of EVs, electric energy demand 
will also increase, leading to a possible increase in daily energy 
consumption. Moreover, an increase in power peak can appear. 
These incrementations can harm the functionality of power 
systems by affecting the quality and safety of the grid. Thus, also 
considering the integration of decentralised power generators, 
the low-voltage distribution grids (LVDG) will be pushed to 
their limits [7],[8],[9]. Nowadays, electrical grid engineers are 
faced with this problem and are trying to figure out solutions for 
the future [10],[11]. The possible impacts on LVDG must be 
modelled using simulation software in a simplified and 
transparent manner, considering limited information from the 
investigated grid: topology of the grid, customers and their 
profile type, available and perspective PV and EV charging pole 
connections. Existing approaches and open-source tools 
available in the literature: emobpy [12], VencoPy [13] and 
RAMP-mobility [14], provides comprehensive sources of 
country-wise information and requires specific information, 
which is not always available on a local level. Therefore, the 
main goal of this paper is to present a prototype of an Electric 
Vehicles Load Profile Generator (EVLPG) based on the 
probability density function (PDFs) of several parameters 
derived from previous tools or regional real charging events, 
such as arrival time during weekdays and weekends, connection 
time during weekdays and weekends and energy demand with 
information about battery size of the vehicle in charge and the 
power level of the charger for further integration of generated 
patterns in a defined LVDG by means of the open-source and 
commercial software’s. 

The work structure is the following. The second chapter 
presents the EVLPG structure and considerations to achieve 
realistic results. The third chapter highlights EV load profile 
calculations with the proposed algorithm. The fourth chapter 
highlights the modelling of charging fleets (CF). The fifth 
chapter focuses on the results of the EV load profiles generator 
and the results of the simulations of the impact of EV in a 
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complex grid. The final chapter includes an interpretation of the 
results and a discussion about the possible future impact.  

II. ELECTRIC VEHICLE LOAD PROFILES GENERATOR

This section provides basic knowledge regarding the 
EVLPG and includes the approach used to calculate load 
profiles and the simplifications adopted to maximise the 
precision of results by minimising the time of the simulation. 
The EVLPG is a Python-based tool and allows defining – based 
on several input parameters – quasi-realistic EV load profiles of 
charge over one day. 

A. Statistical Approach
In a real case, the charge of an electric vehicle depends on

several parameters. Thus, it is not possible to define exactly what 
would be the load profile, therefore, it is necessary to pass 
through a statistical approach to define these load profiles. The 
EVLPG module is based on a probabilistic selection of 
variables. Load profiles of charging stations are calculated based 
on random variables such as the connection time of the car to the 
charging station, the starting time of charge, the energy demand 
which can be interpreted as the state of charge (SoC) of the 
battery, and the model of the car that defines the maximal 
capacity of the battery and the maximal power of charge. Arrival 
time, connection time, and energy demand PDFs were derived 
from 10.000 real charging events provided by the company 
ELaadNL [15],[16] from the Netherlands and are divided into 
three categories: 

• Private customer (charging at home)

• Public customer (public place such as parking)

• Work customer (charging at the workplace)

Univariate distributions of charging events does not
resemble common probability distributions. Data has two peaks 
(bimodal distribution) or many peaks (multimodal distribution). 
It is possible to distinguish – as shown in Fig. 1 – a PDF during 
the weekdays (from Monday to Friday) where the arrival time 
for public (orange line) and workplace (yellow line) charging 
points is concentrated in the morning, while for private charging 
(blue line) is condensed mostly in the evening. While during the 
weekend, the arrival time is distributed over all day for all three 
categories of charging infrastructures. Fig. 2 and Fig. 3 depict 
EV’s energy demand and connection time distributions. Used 
PDFs have similarities with the statistical mobility data of 
Switzerland [17], and were used in this work without 
adjustments. 

According to power levels in Europe, they are defined by the 
standard IEC 61851 [18] and [19], only the level 2 mode has 
been considered, with a maximal power of 22kW. Four power 
levels based on possible limitations of current are used and 
presented in TABLE I. , where the current limitation of 16 Amps 
is for households and workplaces, while in a public place, the 
maximal current could achieve 32 Amps. 

TABLE I.  CONSIDERED VALUES OF POSSIBLE POWER OF CHARGE  
Current [A] 10 13 16 32 
Power of charge [kW] 7 9 11 22 

These power values can be easily changed according to the 
user’s requirements and can easily delete, modify, or add new 
power values in the software by changing variables. 

Different models of cars are provided to the EVLPG, and in 
this work, the list of cars refers to the top-selling models in 
Switzerland [20]. Some of them are listed in TABLE II. with the 
parameters defined for each car. 

TABLE II. EV MODELS IN CH WITH THEIR MAIN CHARACTERISTICS. 
VALUES ACCORDING TO THE ELECTRIC VEHICLE DATABASE [21]. 

Model 
Battery 
capacity 
[kWh] 

Power of 
charge [kW] 

(Level 2) 

Probability 
[%] 

Tesla Model S 100 ≤22 20 
Tesla Model 3 75 ≤22 7 
Renault ZOE 52 ≤22 10 

VW e-Up 36 ≤7.2 3 
Nissan Leaf 62 ≤7 10 

BMW i3 38 ≤11 8 

Fig. 1. Distribution of arrival time over one day. During weekdays on the top 
and during weekends on the bottom. 



 

 

 
Fig. 2. Distribution of energy demand. 

 
Fig. 3. Distribution of connection time. 

The battery capacity allows defining the car’s state of charge 
before starting to charge, while the power of charge acts as a 
limitation in case the power of charge chosen by the EVLPG is 
higher than the maximal value. All these steps are fundamental 
for the algorithm that calculates the load profile. 

Results regarding the impact on the LVDG are extracted by 
applying the method of Monte Carlo [22], [23] Simulation, 
which is a powerful approach for statistical calculation. EVLPG 
approach is based on a multitude of simulations that allow 
exploring the behaviour of the system and converge to a realistic 
result. Monte Carlo Simulation is composed of four steps: 

• PDFs definition: all distributions explained above are 
integrated into the EVLPG. 

• Creation of scenarios based on PDFs: for each charging 
station, a scenario is defined, and this scenario is characterised 
by the arrival time, connection time, charging power level, the 
model of the car, and the energy demand. 

• Calculation of intermediate and output values: by applying the 
algorithm of calculation and based on the scenario, the load 
profiles is calculated and used to perform quasi-dynamic 
simulations to study the impact on the grid. 

• Aggregation and definition. 

Fig. 4 shows an example of three possible scenarios defined 
by the EVLPG. Load profiles are then calculated starting from 
this information. 

 
Fig. 4. Example of three scenarios created by the EVLPG. 

Fig. 5 shows a flowchart of the Monte Carlo Simulation 
approach applied to the EVLPG. 

 

 
Fig. 5.  Flowchart of Monte Carlo Simulation applied to the EVLPG. 

III. EV LOAD PROFILE CALCULATION 
EV charge trend corresponds to a typical Lithium-ion 

battery’s behaviour (Li-ion). This battery’s technology is mostly 
used in the domain of EVs because of its property to achieve 
high energy density. This characteristic of a battery plays an 

important role since the space available for the battery pack is 
limited, and the purpose is to maximise the distance range. A 
typical charge of a Li-ion battery is composed of three 
steps [24]: 



 

 

1. Pre-charge: the current has a low value so that the cell 
voltage achieves a minimum value of the charge. This 
phenomenon appears if the state of charge of the battery is 
lower than 10%. 

2. Constant Current charge (CC mode): this step represents the 
constant part of the charge at nominal power. The battery 
starts charging at a nominal current until the moment in 
which the state of charge achieves approximately 50-70%. 

3. Constant Voltage charge (CV mode): the cell voltage 
achieves its nominal value, and the value of current 
decreases exponentially until the moment in which the 
battery is fully charged. 

A. EV Charging Profile behaviour 
Different algorithms, with the aim of calculating a profile of 

charge similar to the one of a Li-ion battery, have been 
developed and tested: 

• Real measure-based behaviour fits the reality (Fig. 6) since 
knowing the full charge behaviour of a car is sufficient to 
adjust this behaviour based on the power chosen and apply it 
at a given time of day, and the new behaviour is ready for the 
simulation. The disadvantage of this approach is that to 
simulate different cars, it is necessary to know for each car its 
charge behaviour, which is not always available. 

  
Fig. 6. EVs charging profiles in minutes, using a real measure base approach. 
Blue line: BMW i3, Orange line: Tesla model S, Green line: second BMW i3 

• Exponential Ideal Power behaviour consists two-part: 
Constant current (approximately 70% of total charge) and 
exponential behaviour charge (30% of total charge), as shown 
in Fig. 7. Suppose the percentage of energy demand is higher 
than 30%. In that case, there will be a percentage of charge 
equal to the difference between the total percentage of energy 
needed and 30%, which follows the constant current behaviour 
(P(t) = P0). 

 
Fig. 7. Example of an Exponential Ideal power behaviour 

The last 30% of charge, the pattern of the power can be 
estimated as: 

 𝑃(𝑡) = 𝑃0 ∙ 𝑒
−
𝑡
𝜏 (1) 

where: τ is the constant of time and is considered τ=20[min] 
based on the whole charge behaviour of a car; P0 is charging 
power at CC mode. 

The energy of a complete charge is estimated according to 
the following equation: 

 

𝐸 = ∫ 𝑃0𝑑𝑡

𝑡𝐶𝐶

0

+ ∫ 𝑃0 ∙ 𝑒
−
(𝑡−𝑡𝑐𝑐)

𝜏 𝑑𝑡

𝑡𝐶𝑉

𝑡𝐶𝐶

 
(2) 

where: tCC is CC mode time, tCV is the difference from the end 
of charge time (SoC=100%) and tCC 

Transforming (2), with respect to the total charge time tCV 
becomes: 

 𝑡𝐶𝑉 = 𝑡𝐶𝐶 − ln⁡(1 −
1

𝜏
∙ (

𝐸

𝑃0
− 𝑡𝐶𝐶)) ∙ 𝜏 (3) 

Since the energy E, the level of power P0 and the time 
constant are known, tCV can be calculated. In the case where the 
percentage of energy needed is less than 30%, the time of charge 
can be calculated by subtracting the tCC time to the total time tCV. 

• Linear Ideal Power behaviour considers a linear behaviour in 
CV charging mode. It appears quite different from the curves 
presented before, but it still fits reasonably well the reality by 
comparing it to the real charge patterns.  

The first example shows how the load profile is calculated 
considering an energy demand higher than 30% of the battery 
capacity. This means that the charge will be composed of both 
modes of charge, as illustrated in Fig. 8. In this example, the 
energy demand corresponds to 80% of the battery capacity. 

 
Fig. 8. The behaviour of EV charge profile is estimated for energy demand 
higher than 30%. 

The second example represents the case of an energy 
demand lower than 30% of the battery capacity. In this case, the 
charge will exclusively include the CV mode. Fig. 9 shows the 
case where the energy demand corresponds to 20% of the battery 
capacity. 



 

 

 
Fig. 9. The behaviour of EV charge profile is estimated for energy demand 

lower than 20%. 

After comparisons and tests, it has been chosen to pursue the 
EVLPG by considering the simplified algorithm for a linear 
power behaviour since it fits reality and is the easiest method to 
implement. Comparison with real data [25] shows an error of 
4% in a complete charge and 30% in the case of a partial 
charge.  

B. Load profile algorithm 
The algorithm used to define possible load profiles is 

generally composed of four steps, as described in Fig. 10. 

 
Fig. 10. Flowchart of the EV load profiles calculation algorithm. 

• In step one, several fundamental parameters are defined and 
used as input values for the calculations.  

• The times needed to charge the battery, considering a SoC 
equal to 0%, are calculated in step two. The time of charge in 
CC mode (tcc), the time of charge in CV mode (tcv), and the 
total time ttot  are obtained in the following way: 

Since the amount of energy covered by the CC mode is 
known and it is equal to 70% of the battery capacity (ETot), the 
time in CC mode (tcc) is calculated: 

 tcc =
ETot · 0.7

P0
 (4) 

While, for the case of tcv, this last part of the charge is 
considered as a triangle, where the area corresponds to the last 
30% of battery capacity. Based on the equation of the area of a 
triangle, it is possible to extract the value of tcv: 

 tcv =
ETot · 0.3 ∙ 2

P0
 (5) 

 

Total time of charge becomes: 

 ttot = tcc + tcv (6) 

• In step three, load profiles are calculated based on the input 
parameters.  

• Step four forms the vector of the load profiles over one day 
and summarises them in the matrix (Fig. 11), which contains 
the values of each time step and is saved as a text file. 

 
Fig. 11. Part of the matrix created by the module, which contains the 
information regarding each load profile. 

Fig. 12 shows the graphical results of the algorithm’s 
application. In this case, five load profiles have been calculated. 
One can notice the influence of the initial conditions of charge 
(arrival time, energy demand, etc.) on the calculation of load 
profiles. Load profiles represented by the orange and purple 
lines clearly show a charge defined exclusively by the CV mode, 
while the first part of the charge characterises the red shape in 
CC mode and the second one in CV mode. However, some of 
the load profiles are stopped before achieving a full charge. This 
phenomenon occurs when the connection time to a charging 
station defined by the module is shorter than the required time 
to charge the battery completely. 

 
Fig. 12. Generation of five load profiles over one day. 

IV. MODELLING OF CHARGING FLEETS IN POWER 
ANALYSIS TOOLS 

Points of common coupling (PCC) are connected exclusively 
to two load elements in the PowerFactory (PF) environment 
(Fig. 13). One load element represents the fixed load (house, 
block of flats, etc.), and it is characterised by standard load 
profiles (SLP). While the second load element represents the 
charging fleet (CF). The term “charging fleet” is introduced. A 
charging fleet could be composed of one or more charging 
stations according to the number of customers of the fixed load. 
For instance, if the fixed load represents a block of ten flats, the 
number of charging stations could also be ten (one charging 



 

 

station per flat). Therefore, the load profile assigned to the 
charging fleet should be the sum of load profiles of all charging 
stations connected to the PCC.  

 
Fig. 13. Representation of a PCC with a load and a charging fleet. 

In a real grid, there a different kind of loads and each 
topology is represented by only one load. It means that a house 
is one load as well as a building that contains several apartments 
is another load. In the EVLPG, the information concerning the 
number of customers of each load is considered. It allows 
simulating different scenarios, e.g., in a house with one family, 
there is one charger, and in a building with five apartments, there 
is a charger for each apartment. 

Once selected the CF for the simulation, the EVLPG read the 
value of the number of customers of each CF and chooses a 
random number from one to the number of customers. TABLE 
III. below shows the specifications of a scenario. 

TABLE III.  DEMONSTRATION OF A SCENARIO THAT CONSIDERS A 
RANDOM NUMBER OF CUSTOMERS ON THE SAME LOAD 

Name of 
charger 

Type of load No. of 
customers 

chosen by the 
EVLPG 

Maximal No. 
of customers 

MixPP6 Block of flats 30 33 
MixWPub6 Gas station 2 10 
MixPP7 Block of flats 15 25 
Work3 Block of flats 1 6 
MixPP8 Block of flats 11 33 

 
Fig. 14. Load profiles of possible scenarios over one day by considering a 
random number of customers per load. 

Fig. 14 illustrates how EV load profiles look like during one 
day for different load types. It is possible to observe that the 
MixPP6 load profile has the highest impact. It also has a higher 
number of customers, while, Work3 has practically no effect on 

the grid compared to the other profiles since there is only one 
customer. 

V. APPLICATION OF EVLPG ON A COMPLEX GRID 
The following section presents the results and comparisons 

of the quasi-dynamic time-series analysis based on a complex 
grid [8]. The goal is to simulate the integration of EVs in an 
LVDG for one year and repeat simulations thousands of times 
with the scope to converge to a realistic result regarding the 
possible impact.  

A. Simplifications 
Different simulation methods have been implemented and 

compared to each other to achieve the best configuration, which 
allows maximising the precision of the results and minimising 
the time needed to simulate. 

• The initial method (Complex Grid Year Daily based (CGYD)) 
was based on a time frame of one day, and the simulation was 
repeated 365 times to simulate every day for one year. It means 
that the load profiles were calculated over one day and quasi-
dynamic simulations were performed considering a timeframe 
of one day.  

• The second method (Complex Grid Year based (CGY)) was 
based on a time frame of one year. Therefore, load profiles were 
calculated over one year instead of one day. Afterwards, quasi-
dynamic simulation over one year was performed.  

• A third method (Complex Grid (CG)) analogous to the initial 
one was implemented. This third method is based on a time 
frame of one day, but the simulation is repeated 24 days and not 
365 like the first case. The choice of 24 days is made by 
considering two days per month which is a good compromise 
that allows reducing the number of repetitions, which at the same 
time, keeps the seasonality of SLPs over one year. Another 
important parameter is that by considering two days per month, 
it is still possible to simulate a weekday as well as a weekend 
day. 

B. Results 
For each method, four cases have been performed and each 

case is characterised by a different CF distribution. In their turn, 
each case has been simulated (or repeated) five times. The 
results presented are an average of all results obtained by using 
the relative method.  TABLE IV. presents results in terms of the 
time of simulation according to the method and for different 
percentages of integration. Meanwhile, Fig. 15 and Fig. 16 show 
through boxplots the distribution of line-loading according to the 
method of simulation and the percentage of integration, which 
are 30% and 70%, respectively. 

TABLE IV.  SUMMARY OF TIME OF SIMULATION ACCORDING TO THE 
METHOD OF SIMULATION AND THE PERCENTAGE OF INTEGRATION. 

 Percentage of integration 
Method 30 [%] 50 [%] 70 [%] 

C.G.Y.D. 21.4 min 30 min 37.6 min 
C.G.Y. 18.6 min 29.2 min 45.8 min 
C.G.. 6.8 min 9.15 min 26.7 min 

 



 

 

 

 
Fig. 15. Line-Loading comparison between methods for 30% integration. 

 

 
Fig. 16. Line-Loading comparison between methods for 70% integration. 

According to these results, the CG method has been chosen 
since it provides results in the same range as the other methods, 
requiring a lower simulation time. For these comparisons, it 
should be considered that the conditions of simulations (input 
parameters, load profiles, etc.) were not the same. Only the 
percentages of integration were the same. Therefore, some 
differences between the methods may be accepted. 

VI. CONCLUSION  
The work demonstrates EV Load Profile Generator, which is 

based on the probability distributions of real data such as the 
arrival time, total connection time, energy demand, the battery 
size of charge and the power level of the charger. The 
generator’s algorithm is based on a typical Lithium battery 
charging profile, thus considering two parts of the charge. The 
first part of the charge is in constant current (CC) mode until 
70% of the total charge, while the second part – from 70% to 
100% of charge – is in constant voltage (CV) mode. However, 
the CV behaviour has been considered linear for practical 
reasons. Even considering the assumption of linear behaviour in 

CV mode, results show that the performance of EVLPG is high 
by providing almost realistic results. A comparison with real 
data measurements from the field shows an error 4% in the case 
of a complete charge and 30% in a partial charge. The EVLPG 
prototype’s functionality was linked with the PF environment, 
transferring the load profiles in a CSV file and executing Quasi-
dynamic power flows. The EVLPG has been tested in a practical 
case. The generator’s results have been implemented in an 
extensive model in PF to simulate the integration of EVs. The 
results obtained show that in the high EV share scenario, the grid 
starts to be pushed to its operating limits by reaching a maximal 
line-loading. The main effect that leads to a large overload on 
the grid is the possibility of considering a high number of EVs 
on the same charging fleet. It must be said that these results are 
based on statistics and mimic the real impact close to reality. The 
results obtained reveal a possible tendency and allow to define 
already a range of limits of integration, but still not precise 
enough. In fact, the range is between 30% and 40%, where EV 
integration violates lines capacity and under voltage limits. 



 

 

EVLPG in the current version allows specify the topology of 
the charger (private, public or workplace) and introduces the 
distinction between weekdays and weekends. EVLPG balanced 
profiles can be linked with open-source and commercial 
simulation environments for further EV impact investigation to 
LVDG and the Power System domain.  
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