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ABSTRACT: In order to further enhance the utilization rate of renewable energy and achieve the 

goal of carbon emission reduction, this paper establishes a stable and clean energy supply mode of 

charging system and constructs a three-stage optimization and benefit distribution model. Firstly, 

the charging system structure is built with employing photovoltaic generator and carbon capture 

thermal power generator. Secondly, the charging load uncertainty is modelled by using Markov 

Chain where the differences of speeds of vehicles are considered. Thirdly, a deterministic charging 

optimization model is constructed in the first stage, with the objectives of economy, environment, 

energy utilization and load fluctuation; and then, in the second stage, the uncertainty of photovoltaic 

power generation is considered to formulate two types of information gap decision theory-based 

models. Finally, a double factor-involved benefit allocation model for the proposed charging system 

is constructed in the third stage, based on the Shapley method. The case study shows that: (1) the 

forecast error of charging load is smaller by considering quantity transfer and speed differences; (2) 

carbon capture and storage system reduces CO2 emission by 85.08% and system’s cost by 2.60%; 

(3) Tripartite cooperation maximizes the system’s benefits, and IGDT provides multiple strategies 

for dealing with PV uncertainty; (5) benefit allocation considering economy and environment is 

more rational and highlights the contribution of carbon capture system. 

KEYWORDS: Electric vehicles; carbon capture; uncertainties; Markov chain; information gap 

decision theory; multi-factor Shapley 
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1 Introduction 

1.1 Motivation 

With the increasing proportion of renewable energy generation, the uncertainty 

has a certain impact on the safety and stability of the power grid, which makes large-

scale grid connection of renewables a difficult problem [1]. Volatility and randomness 

of renewable energies can be solved through the auxiliary service of traditional 

generators [2]. The capacity of thermal power in China still accounts for a large 

proportion in the short term, so it is necessary to make full use of thermal power for 

auxiliary services [3]. However, traditional thermal power has a large amount of carbon 

dioxide emissions, which has a negative impact on the environment. With the proposal 

of China's carbon reduction goal, the electric power industry is a key target of carbon 

emission reduction. Carbon capture technology is an effective means to alleviate the 

contradiction between fossil fuel utilization and carbon emission reduction [4]. 

Therefore, it is of importance to construct a stable and clean system by applying the 

carbon capture technology to thermal power generators in the system. 

On the other hand, insufficient consumption of renewable energies leads to a large 

number of resources waste. Electric vehicle (EV) charging excels at enhancing 

renewable energy consumption, but large-scale EV charging may cause peak 

superposition, and thus jeopardize the operation of grid [5]. Therefore, it is urgent to 

conduct a study on motivating users to ordered charge according to the output of 

renewable energy, so as to achieve peak shaving and increase renewable energy 

consumption.  

Above all, this paper aims to construct an optimization model for charging system 

operation considering carbon capture and source-load uncertainties. Moreover, a fair 

benefit allocation strategy is proposed to incentivize multiple entities for participation. 

1.2 Literature review 

For uncertainty modelling of charging load, according to the travel characteristics 

of EVs, the position transfer state at the next time point is only affected by the position 

state at the current time point and has nothing to do with the past, which is in line with 

the Markov attribute [6]. Therefore, Markov Chain can be used to predict the transfers 

of EVs in time and space. The works of [7-12] have already verified the positive effects 

of Markov Chain on addressing uncertainty of charging load. Therein, Yan et al. [11] 

also simulated and forecast charging load by using Markov chain, and traffic jam and 

weather were taken into consideration; In the work of Han et al. [12], the numbers of 

chargeable EVs in different types of areas were taken as a factor to describe the behavior 

characteristics of EVs. These studies characterize the individual differences of EVs 

from the perspectives of location transfer, travel time, dwelling time, and driving 

mileage, but they all ignore an important factor, that is, the driving speed. Energy 
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consumption of EVs is different at different driving speeds, so it also needs to be 

considered in the process.  

After addressing the load uncertainty, research on the operation optimization of 

charging system is carried out. The works of [12-17] has contributed a lot of research 

achievements on this topic. Among them, Han et al. [12] carried out an ordered charge 

control to reduce peak-valley difference and renewables consumption. Borray et al. [13] 

optimized charging load with solar photovoltaic (PV) as power supplier, considering 

low-voltage network’s constraints, and the aim was to increase the consumption of PVs. 

Climent et al. [14] proposed an energy management strategy for a plug-in parallel 

hybrid EV with the goal of minimizing the fuel consumption while fulfilling the 

constraint on the terminal battery SOC. However, these literatures did not consider 

an important premise, i.e., the stability of the system. Neither the impact of the 

renewable energy’s uncertainty on the system was considered, nor the energy 

supply structure of "renewable energy + traditional auxiliary generators" was 

established.  

Regarding research on the uncertainty of renewable energy, most of the works used 

probabilistic decision-making methods [18-20] and fuzzy decision-making methods [21, 

22]. The probability decision-making method needs numerous data to fit the accurate 

probability distribution, which has certain requirements for the fitting accuracy. Fuzzy 

decision-making methods have large subjectivity, and it is not easy to balance the 

subjective and objective weights. Different from the above methods, information gap 

decision theory (IGDT) presupposes the acceptable deviation range of decision makers, 

maximizes the adverse disturbance under this premise, and obtains the acceptable 

deviation results, as the work of Wei et al. demonstrated [23]. The method can not only 

get the robust optimal solution, but also get the optimal profit at the preset opportunity 

income level [23]. Currently, this theory was applied in numerous papers for modeling 

the uncertainty of renewable energies, where its effectiveness was verified, including 

the works of [24], [25], and [26]; however, the positive effect of IGDT on charging 

systems in identifying uncertainty risk has not been studied in these papers.  

The system’s stability is not only reflected in the process of wind and solar 

uncertainty modeling, but also reflected in the construction of charging systems 

with traditional stable power generators involved. Such systems usually use 

traditional thermal power units for peak shaving or standby [3], which will produce a 

large number of carbon dioxide emissions. Carbon capture and storage (CCS) 

technology is an effective way to realize low carbonation in power industry. By 

equipping thermal power units with carbon capture system, the carbon emission 

intensity can be significantly reduced and the flexibility of units can be improved [27]. 

Zhang et al. [28] constructed an integrated energy system where CCS system and 

power-to-gas were employed, and the superiority of CCS technology in environmental 

and economic benefits was proved. Taljegard et al. [29] applied a cost-minimization 

investment model and an electricity dispatch model of the Scandinavian and German 

electricity systems, assuming both optimized charging and a vehicle-to-grid charging 

strategy. Cao et al. [30] built a novel integrated electricity-gas system with power-to-

gas, carbon capture thermal power (CCTP) and EVs, to minimize operating costs, 
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reduce CO2 emissions, and improve utilization efficiency of wind power. As auxiliary 

generators, CCTP may earn less than renewable energies. Since visible benefits are an 

incentive for such entity to participate in joint operation, it is necessary to study 

scientific and reasonable distribution strategies. 

The Shapley method can solve the problem that many entities have conflicts in the 

process of cooperation due to the distribution of interests, and one of the advantages is 

to distribute the benefits according to the marginal contribution rate of members to the 

alliance [31]. Wang et al. [32] applied game theory to the multi-agent capacity 

optimization model with basic Shapley method involved; Fang et al. [33] improved the 

conventional Shapley method according to the players’ characteristics; Tan et al. [34] 

combined Shapley method with nucleolar method to deal with the distribution between 

power suppliers and users in a virtual power plant; Yang et al. [35] improved basic 

Shapley method by introducing risk factor to propose an income distribution strategy 

for park integrated energy systems. Yang et al. [36] introduced cost factor and 

contribution factor to their former improved Shapley method. Researchers have 

already demonstrated the effectiveness of the Shapley-based benefit allocation, but 

they barely considered the environmentally relevant factor to improve the basic 

method, since carbon emission reduction is a trend to pursue. 

1.3 Research gap 

In light of the literature review, some points did not be considered which are shown 

below:  

(1) Few studies mention the factor of driving speed when considering the 

individual differences of charging users in the process of quantity transfer modeling 

based on Markov Chain; 

(2) In the research on charging strategy, there is a lack of consideration of system 

stability. The stability and flexibility of the charging system constructed by the existing 

literature are weak: On the one hand, there is no stable generator as auxiliary support 

(let alone the cleanliness of the auxiliary unit); On the other hand, the impact of 

uncertainties of renewables was not studied in such charging system.  

(3) Scientific and reasonable benefit allocation in a stable and clean charging 

system was not studied. Most papers either only consider the economic benefit 

distribution, or involve many factors and propose a novel distributed method but 

without mentioning environmental factor, which is unfavorable to the CCTP generators.  

1.4 Contributions 

The possible contributions are illustrated from three perspectives, which are 

shown below:  

➢ In terms of load side:  

On the basis of the consideration of quantity transfer, the uncertainty of 

charging load is also modeled with considering the differences of driving 
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speed. The numbers of charging users in work area and home area are 

obtained through Markov Chain based on the data of NHTS 2017; At the same 

time, the factor of speed differences is introduced, and the daily mileage curve 

is re-fitted based on the data of EV users (the fitting results are better than the 

work of Han et al. [12]). The charging load curve established by the proposed 

method is better than the result generated by Monte Carlo and that of Han et 

al. 

➢ In terms of source side:  

In order to reduce the interference of PV’s fluctuation and randomness, 

the IGDT is used to deal with the uncertainty of PV. In the IGDT-based 

optimization model, decision makers are divided into pessimists and optimists. 

Based on the deterministic model, the maximum PV deviation and the 

minimum PV deviation are respectively taken as the objectives, the ranges of 

acceptable benefit variation are added as new constraints, and thus the risk 

aversion strategy and opportunity pursuit strategy are proposed. The proposed  

model provides a new idea for the research direction of uncertainty in the 

operation optimization of charging systems. 

➢ In terms of the whole system:  

A stable and clean EV charging system is constructed, an optimization 

model for the system is established, and a double-factor Shapley method 

is proposed for the system. In this paper, an energy supply structure of 

"PV+CCTP" is proposed, and a multi-objective optimization model including 

the aims of economic benefits, emission reduction, renewable energy 

utilization and load fluctuation is established. A benefit allocation strategy is 

proposed considering economy and environment, so as to make the income of 

each participant more reasonable and incentivize the participants, which 

provides a reference for the new power system with carbon capture thermal 

power employed to enhance the operation vitality. 

1.5 Organization of this paper 

The rest of this paper is organized as follows and shown in Fig. 1. Section 2 

introduces the structure of charging system in this paper, and then models the 

uncertainty of charging load based on Markov chain. In Section 3, a charging 

optimization model without considering PV uncertainty is constructed, and the 

proposed model in this section is considered as the first-stage model. Section 4 builds 

an IGDT-based model, and this section is the second stage of optimization. Section 5, 

i.e., the third stage, introduces a cooperative game, and allocates the optimized benefits 

among the participants based on the Shapley-value method. An example analysis is 

conducted in Section 6, and conclusions are drawn in Section 7.  
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Fig. 1 Organization of this paper 

2 Charging system structure and load uncertainty modelling 

2.1 Charging system structure 

The charging system mentioned in this paper mainly includes three participants: 

PV, CCTP, and EV users (shown in Fig. 2). The charging load of EVs is first satisfied 

by the PV in the system. When the charging demand exceeds the output of PV, the 

CCTP is employed as a supplement. 
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Fig. 2 System structure 

2.2 Construction of quantity forecasting model for EVs 

2.2.1 Modelling of Markov Chain [6] 

In a process, the state of each time point is random, and the future state is not 

limited by the past state, but only related to the current state. The current state of an EV 

is set as tS , the next state is +1tS , and then the conditional probability of Markov Chain 

is formulated as follows: 

1 1 1 2 3 1( ) ( | , , ,..., ) ( | )t t t t t t ijP S S P S S S S S P S j S i p+ + += = = = =→           (1) 

where ijp  is the transfer probability of an EV from time t to t+1; herein, i is the position 

state at time t, and j is the position state at time t+1. According to the data of the national 

household travel survey (NHTS), electric vehicle destinations can be divided into home 

(H), work (W) and other (O) areas. The position transfer frequency matrix , 1t tM +   is 

given by 

1

, , ,

, 1
, , ,

, , ,

/t t h o w

h h h h o h w

t t
o o h o o o w

w w h w o w w

N N s s s

s n n n
M

s n n n

s n n n

+

+

 
 
 =
 
 
  

                                   (2) 

Where tN  and 1tN +  are the states of time t and time t+1, hs , ws , and os  are the states of 

EVs who arrive at H, W, and O areas respectively, and ,a bn  is the number of EVs who 

transfer from area a to area b. 
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Then, transition probability can be calculated according to the following 

equation (Taking ,h wp  as an example). 

,

,

, , ,

=
h w

h w

h h h w h o

n
p

n n n+ +
                                              (3) 

where ,h wp  is the probability of EVs transferring from H to W. In the same way, we 

can obtain the transfer probability matrix , 1t tP +  as follows.  

, , ,

, 1 , , ,

, , ,

h h h o h w

t t o h o o o w

w h w o w w

p p p

P p p p

p p p

+

 
 

=  
 
 

                                         (4) 

After K transitions, the state probability distribution can be obtained according to the 

following equation. 

0 , 1( ) k

t tP k P P +=                                                (5) 

where 0P  is the original number of EVs. 

2.2.2 Forecasting process 

The quantities of EVs in different areas are predicted according to the following 

steps [12]: 

Step 1: filter and process the travelling data of EVs; 

Step 2: set that the target time range is one day, and the day is divided into 24 

measuring points (t=1, 2, 3, …,24), and determine the original numbers of EVs;  

Step 3: calculate the transfer frequency matrix; 

Step 4: calculate the transfer probability matrix; 

Step 5: verify whether the collected data has Markov properties by calculating 

the boundary probability jP   (given by eq. (6)) and then using chi-square statistic 

(given by eq. (7)). 

1

1 1

I

ij
i

j J I

ij
j i

n

P

n

=

= =


=

 
                                                               (6) 

2

1 1

=2 log
J I

ij

ij
j i j

P
n

P


= =

                                                            (7) 

Step 6: predict the quantities of EVs.  
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2.3 Charging load model construction 

(1) daily mileage fitting 

According to the experience, the mileage of each travel meets the lognormal 

distribution, which is given by 

2

2

(ln )

2
1

2

x

d e
x





 

−
−

=                                                           (8) 

where   and   are the expected value and standard deviation. 

(2) SOC 

SOC is the ratio of electricity quantity to rated power, which is given by 

= i
i

bat

E
SOC

E
                                                                (9) 

where iE  could be remaining capacity and power consumption, denoted as remE  and 

charE , and the SOCs corresponding to remaining, and chargeable amounts, are denoted 

as remSOC  and charSOC .  

(3) The relationship between vehicle speed and unit power consumption 

According to the work of [37], the unit energy consumption model of EVs is 

related to speeds, which is given by 

1.531
0.21 0.001e v

v
= − +                                                       (10) 

where v  is the speed. 

(4) energy consumption function 

pc

d e
E




=                                                            (11) 

where pcE
 is the power consumption of an EV, d  is the mileage, e  is the unit power 

consumption, and   is the consumption efficiency. 

(5) Charging duration 

(0.95 )char rem
L

e e

E E SOC
T

p p

 −
= =                                            (12) 

where LT  is the charging duration, ep  is the charging power, and E  is the rated capacity. 

(6) Charging load decomposition 

The total charging demand of an EV is decomposed within its charging duration, 

which is given by 

, ,
1

N

EV t i t
i

P P
=

=                                                          (13) 
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where ,EV tP  is the charging power of the charging system at time t, ,i tP  is the charging 

power of EV i at time t, and N  is the number of EVs. 

3 First stage - charging optimization model without 

considering the uncertainty of PV 

3.1 Output models of generators 

(1) CCTP 

Through capturing and storing carbon dioxide emitted by traditional thermal 

power, carbon dioxide emissions are reduced. Structure and operation introductions of 

CCS are detailed in the work of [38]. In the operating process of a CCS system, the 

total energy consumption mainly comes from the operating energy consumption of each 

link [39]. The relationship between unit output and operating energy consumption is 

shown below: 

net out ec

t t tP P P= −                                                           (14) 

= +ec f v

t tP P P                                                             (15) 

where net

tP , out

tP , and ec

tP  are respectively the net power generation, equivalent power 

output, and energy consumption for carbon capture, fP   and v

tP   are the fixed energy 

consumption and operating energy consumption (i.e., energy consumption for carbon 

capturing). v

tP  is calculated by 

2=v c CO

t tP m E                                                          (16) 

where cm  is the operation energy consumption for capturing a unit of CO2, 2CO

tE  is the 

amount of CO2 being captured at time t.  

Emitted CO2 from thermal power generation 
G

tE  minus the CO2 collected by CCS 

R

tE  equals net carbon emissions of CCTP 
net

tE , which is given by  

= −net G R

t t tE E E                                                     (17) 

where G

tE  consists of the carbon emission intensity of thermal power ge   and power 

generation of CCTP out

tP , and R

tE  is made up of CO2 capture rate ye  and the collected 
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CO2 (the capture rate usually is between 80%-95%). The equations are shown below. 

2

 =


=

G g out

t t

R y CO

t t

E e P

E e E
                                               (18) 

(2) PV 

The PV output model generally coincides with the    distribution, which is 

detailed in the work of Tan et al. [20]. 

3.2 Objective functions 

In addition to smoothing the charging load curve, this paper also intends to conduct 

an optimization from the 3E aspects, i.e., economy, environment, and energy usage. 

Economic benefits include users’ cost userC , PV’s cost pvC , and CCTP’s cost (the details 

of each entity’s cost are mentioned in section 5); Environmental benefits include CO2 

emission of CCTP tuq ; Energy use benefits include energy abandonment of PV pve .  

(1) Minimizing the total cost of the system 

  1 min pv tu userf C C C= + +（ ）                                     (19) 

(2) Minimizing the total emissions of the system 

2 min= tuf q                                                (20) 

(3) Minimizing the total energy abandonment 

3 min pvf e=                                                      (21) 

(4) Minimizing the load fluctuation 

2

4
1

1
=min( ( - ) )

T

t
t

f P P
T =

                                                (22) 

where P  is the daily average load, and 
1

1 T

t
t

P P
T =

=  . 

(5) Multi-objective transferring to a single objective 

The multiple objectives are integrated into a single objective function by weighing 

each objective, which is given by 

' ' ' '

1 1 2 2 3 3 4 4 =  +  +  + w f w f w f w f                                     (24) 

where   is the transferred function, and , 1,2,3,4=iw i  is the weight of the i-th function. 

In this paper, the weight of each objective is set to be 0.25.  
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3.3 Basic constraints 

(1) Power balance 

  
NG NPV

,g ,pv

1 1

i m

i m

g g D
= =

+ =                                        (25) 

where 
,gig  is the active power of CCTP i , 

,pvmg  is the active power of PV m, and D  is 

the charging demand.  

(2) Distribution transformer capacity constraints 

,t PV t MTFP P P−                                                        (26) 

MTF MTFP C  =                                                       (27) 

where tP   is the charging load, ,PV tP   is the dispatchable output of PV, MTFP   is the 

maximum bearing capacity of distribution transformer, MTFC  is the rated capacity of 

transformer,   is the power factor,   is the efficiency. 

(2) Output constraints 

The output of the generators shall not exceed the rated range. For PV: 

min max

,pv ,pv ,pvm m mg g g                                                  (28) 

where max

,pvmg  and min

,pvmg  are the maximum and minimum dispatchable outputs of PV m, 

respectively. For CCTP: 

min max

,g ,g ,gi i ig g g                                                (29) 

where max

,gig   and min

,gig   are the dispatchable output bounds of CCTP i  , respectively. In 

addition, the carbon capture capacity should also be within the rated range, i.e.,  

min max

,g ,g ,gi i ie e e                                                 (30) 

where 
,gie  , max

,gie  , and min

,gie   are the amount of captured CO2, maximum and minimum 

rated powers. 

       (3) Safe storage constraint 

The battery has bounds for safe storage to avoid damages from over charging or 

low power, which is given by 

ra n raE E E    
                                               (31) 

where nE  is the amount of stored electricity, raE  is the rated power,   and   are the 

safe storage bounds. 

       (4) Charging power constraint 

The charging power of EVs cannot exceeds the rated bounds, i.e., 

,min ,maxt t tP P P                                                    (32) 
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where ,maxtP  and ,mintP  are the maximum and minimum charging powers. 

        (5) Charging duration constraint 

The charging hours should be within the expected time so as to ensure the regular 

car usage, i.e., 

char expT T                                                             (33) 

where charT   is the actual charging hours, and expT  is the end time of charging users 

expect. 

3.4 Solving algorithm 

The proposed optimization model is solved by using the chaotic particle swarm 

optimization algorithm (CPSO). The basic particle swarm optimization (PSO) has a 

fast convergence speed, but it is easy to fall into the local optimum; therefore, the 

ergodicity of chaos idea is introduced into the PSO to solve the problem. In the process 

of particle iterative optimization, chaotic mapping is used to enrich the diversity of the 

particle population and improve the global search ability of particles, thus forming a 

CPSO. In the CPSO, the particle search is ergodic and does not experience all the states 

in the space repeatedly, so as to overcome the weakness of particles falling into the 

local extremum [40]. The algorithm principle is introduced in [41], and the solving 

steps are represented in Fig. 3 [42]. 
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Fig. 3 Solving steps 

3.5 Orderly charging process 

Users access the charging system and input relevant information, including start 

time, departure time, expected SOC and so on. After receiving the information, the 

system starts to calculate the optimal charging period and feedback the calculation 

results to the user. Users choose whether to accept the results: wait for the charging 

if they accept, or re-input the relevant information or directly start the disordered 

charging if they do not accept. Users with orderly charging will get compensation 

after charging, and users with disordered charging will end directly. Optimization 

flow is shown in Fig. 4. 
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User accessing

Input information
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Return the results to 
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End
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Yes No

No

Yes

 

Fig. 4 Charging optimization process 

4 Second stage - charging optimization model considering the 

uncertainty of PV 

4.1 Idea of IGDT 

The basic idea of IGDT is to reduce the risk caused by uncertainty through a two-

stage optimization model. In the first stage, the optimal results expected by the decision-

maker is calculated by using the predicted value of uncertain variables. In the second 

stage, the deviation between the actual value and the predicted value is considered. 

Decision makers will reserve a certain room for fluctuation, within which the uncertain 

variables can fluctuate randomly and the decision makers will not suffer economic 

losses, or even make profits. The IGDT model includes three parts which are basic 

model, uncertain model, and minimum requirement model [43]. The process of IGDT 
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modelling is detailed in Fig. 5: 

Step 1: assuming that all input data are 

determined and known, the basic model is 

constructed and solved;

Section 4.2

Step 3: taking the output deviation as an 

objective, adding the minimum expectation 

constraint to the basic model, and constructing 

risk aversion model and chance seeking model, 

respectively;

Section 4.4

Step 4: establishing the worst case and the 

maximum return case, and simplifying the 

models according to the specific conditions of 

the constructed system.

Section 4.5

Step 2: determining the uncertain variable (i.e., 

PV output in this paper), and modelling its 

fluctuation range;

Section 4.3

 
Fig. 5 Steps of IGDT modelling 

4.2 Basic model 

Basic model refers to the initial optimization model under the assumption that the 

variables are known and determined (i.e. predicted values), which can be expressed as 

( )min ,

. . ( , ) 0

( , ) 0

F u d

s t H u d

G u d




=
 

                                                                     (34) 

where ( , )F u d   is the objective function, ( , )H u d   and ( , )G u d   are equality and 

inequality constraints respectively, u  is the uncertain variable, and d  is the decision 

variable. The basic model was already detailed in section 3.  

4.3 Uncertain variable 

u has randomness and volatility, so the predicted value cannot be directly used to 

represent the actual situation. Its fluctuation can be expressed as: 
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( , )

( , ) { : }

u U u

u u
U u u

u



 

 

 −

= 


                                                 (35) 

where u   is the predicted value of u  ,    is the fluctuation range, 0   , and ( , )U u  

represents that the deviation between u and u  is not more than u .  

4.4 Minimum requirement model 

When facing uncertainty risks, decision makers may hold different attitudes. One 

is pessimists who expect to obtain stable returns and fear the loss of benefits caused by 

risks, and thereby lower expectations to bear risks. The other is optimists who believe 

that uncertainty may bring greater gains and are willing to take risks to obtain 

unexpected benefits. 

For the former one, robust function is used to resist uncertainty as shown in eq. 

(36), while for the latter, chance function is applied as presented in eq. (37). 

1

1 0

max

. . max ( , ) (1+ )

( , )

( , ) 0

( , ) 0













  


=
 

u

s t F u d F

u U u

H u d

G u d

                                           (36) 

2

2 0

min

. . min ( , ) (1 )

( , )

( , ) 0

( , ) 0










 −


  


=
 

u

s t F u d F

u U u

H u d

G u d

                                           (37) 

where 
0F  is the optimal value of deterministic model, and , 1,2 =k k  is the deviation 

between actual and predicted values ( 1=k  is for robust function, while 2=k  is for 

chance function). The robust 1  can guarantee all objective values of the ( , )F u d  are 

not more than 
1 0(1+ ) F . The opportunity 2  can guarantee at least one value of ( , )F u d  

does not exceed 
2 0(1 )− F . 
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4.5 PV uncertainty modelling based on IGDT 

4.5.1 Description of PV uncertainty 

The PV output are the uncertain variable in this paper, and the fluctuation is 

formulated as follows: 

( , ) { : (1 ) (1 ) }pv pv pv pv pv pv pv pvU u u u u u  = −   +              (38) 

where pv  is the deviation of PV output, pvu  is the prediction of PV output, and pvu  

are the actual output of PV. 

4.5.2 Model transformation based on extreme cases 

In risk aversion strategy, when the actual output of PV is higher than the predicted, 

there will be a high penalty cost for energy abandonment. The more the waste energy, 

the higher the system cost. Therefore, for this strategy, the cost will be the maximum 

1 0(1+ ) F   when the PV output reaches the ceiling bound (1 )pv pv pvu u= +  . Here, the 

robust model is transformed to  

1 1 0

, ,

1

max

. .  (25) (33)

(1+ )

(1 )

0 1







 




−

 
 = +

   ，

pv

pv t pv pv t

pv

s t

z F

u u

                                                   (39) 

where 1z  is the objective result considering the uncertain variable. On the contrary,  for 

the opportunity seeking strategy, the model is transformed into 

2 2 0

, ,

2

min

. .  (25) (33)

(1- )

(1 )

0 1







 




−

 
 = −

   ，

pv

pv t pv pv t

pv

s t

z F

u u

                                                (40) 

where 2z  is the objective result considering the uncertain variable. 
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5 Third stage - Shapley-based benefit allocation for the 

charging system 

5.1 Introduction of Shapley method 

The Shapley method is selected to distribute the benefits of PV, CCTP, and users, 

so as to ensure the reasonable benefits of the participants. This method can reflect the 

overall contribution of the alliance participants and the importance of the participants 

in the alliance, and avoid the unfairness caused by the average distribution [44]. The 

model is given by 

( ( )
( ( ) ( \ ))

!
i

S N

S n S
v S v S i i N

n




−) − 
= −                              (41) 

where 
i  is the allocated benefit of participant i, N  is the participant set, \S i  is the set 

of remaining entities except participant i.  

5.2 Cooperative premise and mode analysis 

The establishment of the alliance needs to meet the following assumptions: 

(1) The cost saving of the alliance is more than the sum of individuals’ when they 

are running independently, and then the cooperative alliance can be established; 

(2) Considering cleaner production, PV is preferred to power supply; 

(3) Considering the uncertainty of PV, thermal power is required to provide a 

backup. 

Therefore, cooperative mode includes： 

(1) Independent operation: users charge disorderly, PV provides its own power 

generation and purchases electricity from public grid to meet the demands; 

(2) PV-CCTP: PV has priority to supply power, and the CCTP meets the 

remaining demands; 

(3) PV-users: users charge in order, and PV gives compensation to the users for 

participation; 

(4) PV-CCTP-users: users orderly charge, PV supplies power first, and CCTP 

meets the remaining demands as a backup. 

5.3 Cost calculation model in different cooperation alliances 

5.3.1 Independent operation case 

(1) PV 
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In this case, the total cost of PV contains power generation cost pv

pgc  , power 

purchase cost pv

epc , energy abandonment penalty pv

finec , and CO2 emission cost pv

emissionc , i.e., 

+pv pv pv pv

pv pg ep fine emissionc c c c c= + +                                              (42) 

(2) CCTP 

In this case, CCTP is not included, so the cost of it is 0tuc = . 

(3) Users 

Users charge disorderly, so the cost of users only includes charging cost. 

5.3.2 PV-CCTP cooperation case 

(1) PV 

In this case, the unmet load is satisfied by the CCTP, so the PV no longer pay the 

power purchase cost, i.e.,  

+pv pv pv

pv pg fine emissionc c c c= +                                                      (43) 

(2) CCTP 

CCTP is considered in this case, so the cost of it is given by 

tu tu tu tu

tu pg cs ce cec c c c r= + + -                                                  (44) 

where tu

pgc  , tu

csc  , tu

cec  , and tu

cer   are the costs for fuel, carbon storage, and emissions, and 

income from carbon trades. 

    (3) Users 

The cost of users only includes charging cost. 

5.3.3 PV-users cooperation case 

(1) PV 

In this case, PV needs to pay compensation pv

proc   to users to encourage them to 

actively participate in optimization, and still, power purchase cost exists, i.e.,  

pv pv pv pv pv

pv pg pro ep fine emissionc c c c c c= + + + +                                        (45) 

(2) CCTP 

The total cost of CCTP is 0. 

(3) Users 

Users participating in optimization gain a profit user

proI , so the cost is given by 

user user

user cha proc c I= −                                                       (46) 
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5.3.4 PV-CCTP-users cooperation case 

(1) PV 

In this case, power purchase is not needed, but compensation for users is generated, 

i.e., 

pv pv pv pv

pv pg pro emission finec c c c c= + + +                                            (47) 

(2) CCTP 

The cost is similar to the model in subsection 5.3.2 

(3) Users 

The cost is similar to the model in subsection 5.3.3. 

6 Example analysis 

6.1 Addressing load uncertainty 

6.1.1 Markov Chain based quantity prediction of EVs  

Travel data of cars in the NHTS 2017 database were selected [45], and the model 

of BYD e6 was selected as shown in Table 1 [12]. The SOC between [10%,85%] of 

EVs in the three areas were selected to calculate the transfer probability matrix. 

Assuming that the original numbers in H, W, and O were 
0 [800,200,300]N = . The 

calculation process is shown in eq. (48), and the number curves of H and W are depicted 

in Fig. 6. With 5% confidence, the value of chi-square was located between 

2 [9.68,847.15]  , meeting the requirement of exceeding 9.49. 

Table 1 Basic parameters 

Parameter Explanation Value 

batE  Rated capacity 82 kWh 

  Driving efficiency 95% 

e  Power consumption of EVs travelling per unit 20.5 kWh/100km 

charP  Charging power 10 kW 

 

0 1 23

\ 1
0.3 0.3 0.4 0.4375 0.1042 0.4583

0.4375 0.125 0.4375
0.85 0.05 0.1 ... 0.8965 0.0575 0.0460

0.8947 0.1053 0
0.9109 0.0099 0.0792 0.9104 0.0022 0.0874

0.8785 0.0055 0.1160

t t h w o

h

w

o

P P P

+ 
    
    
    
        

 

    (48) 
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Fig. 6 Numbers of EVs in H and W 

6.1.2 Mileage fitting result  

     The fitting result is shown in Fig. 7, and the parameters of the fitting distribution 

function were 1.2051, 1.2766 = = . The Root Mean Squared Error was 6.729 and R-

square was 0.9878, which are better than the result of [12]. 

 

Fig. 7 Mileage fitting results 

6.1.3 Charging load result 

Different from the work of [12], we also fitted the speed distribution. Based on 

NHTS2017 database, the travel data of EVs within the safe stored range [10%, 85%] 

set in this paper were selected, and the fitting results were 3.2651, 0.9792 = = . Then, 

the data of mileages and speeds are generated. Finally, the charging load curves are 

depicted in Fig. 8.  
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Fig. 8 Charging loads in home and work areas 

According to Fig. 6, the load in H was mostly distributed at night and in early 

morning. From 6:00 on, the charging load gradually decreased due to users going to 

work. After reaching the low point at 11:00, it gradually increased. The change trend in 

W was just the opposite: the load increased gradually after 6:00, reached the peak at 

9:00, and the charging peak period is from 5:00 to 11:00, which is just the commuting 

time of users; the load decreased gradually after 13:00, and the load was the lowest at 

night. The results show that the peak and valley of charging load in H and W were 

staggered, which is in line with the actual situation.  

6.2 Orderly charging optimization analysis 

6.2.1 Basic data 

PV output is detailed in the work of [3], and the charging loads in H and W are 

shown in subsection 6.1. The power generation cost per unit of PV is set to be 600 

￥/MWh[3]. According to the works of [4, 46, 47], for CCTP, the operation energy 

consumption for addressing a unit of CO2 is set to be 0.23 MW·h/tCO2, CO2 emission 

quota for a unit of power generation is set to be 0.76 t/(MW·h), the fixed power 

consumption is 3MW, CO2 capturing rate is 0.9, carbon storage cost is 31.8 ￥/t, carbon 

trading price is set to be 126.5 ￥/tCO2, CO2 emission intensity per unit of power 

generation is 0.96t/MWh, fuel cost coefficients a, b and c are set to be 0.133, 126.5, 

and 2188, and energy curtailment penalty is set to be 200 ￥/MWh. Users participating 

in optimization can get a price discount of 20%, and power purchase cost of PV is set 

to be 1.2 times of the cost of the traditional thermal power.  

The time division was obtained as shown in Table 2, along with the corresponding 

price. 

Table 2 Time division and TOU price 

Period Duration for Duration for Price 
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division work place home area (￥/MWh) 

Peak 5：00-11：00 
0:00-5:00 

22:00-24:00 
1753.7 

Flat 11：00-17：00 

5:00-9:00 

and 15:00-

22:00 

1442.4 

Valley 
0：00-5：00, 

17：00-24：00 
9:00-15:00 1140.8 

6.2.2 Verifying the superiority of the proposed charging system 

We set up two cases (as shown in Table 3) to verify the superiority of the proposed 

system. Therein, in Case 1-1 PV cooperates with traditional thermal power while both 

PV and CCTP supply power to users in Case 1-2.  

Table 3 Case setup 

Case Alliance 
Ordered 

charge 

PV 

uncertainty  

Case 1-1 PV and traditional thermal power × × 

Case 1-2 PV and CCTP × × 

We used the charging load in W area to verify the superiority. Figure 9 shows the 

differences of the total cost of the system, and Table 4 shows some indicators that had 

a change.  

 

Fig. 9 Cost comparison between two cases at each time point  

Table 4 Result-changed indicators 

Case Fuel cost 

of thermal 

power(￥) 

Carbon 

storage 

cost 

(￥) 

Carbon 

trading 

income 

(￥) 

Gross 

power 

generation 

cost (￥) 

CO2 

emission 

(t) 

Case 

1-1  

63747.00 - - 130912.14 84.432 

Case 

1-2  

67535.98 2416.44 7387.45 127504.98 8.443 

According to Fig. 7, the total cost in Case 1-2 basically was lower than that in Case 

1-1. According to Table 4, although traditional thermal power did not have carbon 

storage cost, it did not gain carbon trading income, either; and CO2 emissions were 
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higher than CCTP. The process of CCS made the CCTP cost more fuel and generate 

carbon storage cost, but the carbon trading income made up for it and the emission cost 

was reduced, and thus the total cost in Case 1-2 was lower than that in Case 1-1 by 

￥3407.16. Therefore, the superiority of the proposed system was verified. 

6.2.3 Verifying the effectiveness of the optimization model 

We set up 6 cases (as shown in Table 5) to discuss the charging optimization results. 

Alliance forms of Cases 2-1 to 2-4 has discussed in subsection 5.2, we will not go into 

details here. Based on Case 2-4, uncertainty of PV is considered in cases 2-5 and 2-6 

where case 2-5 is set up for risk averter and case 2-6 is for opportunity seeker. The 

acceptable cost change is set to be 10%. 

Table 5 Case setup 

Case Alliance PV CCTP 
Ordered 

charge 

Uncertainty of PV 

Risk 

aversion 

Opportunity 

pursuit 

Case 2-1 No cooperation √ × × × × 

Case 2-2 PV-CCTP √ √ × × × 

Case 2-3 PV-users √ × √ × × 

Case 2-4 PV-CCTP-users √ √ √ × × 

Case 2-5 PV-CCTP-users √ √ √ √ × 

Case 2-6 PV-CCTP-users √ √ √ × √ 

The results are analyzed as follows. 

(1) Comparison in terms of load curve change 

In Case 2-3, users participate in the optimization. Figure 10 compares the charging 

load curves before and after the optimization and the matching degrees with PV output. 

Table 7 presents some calculation results. 

  

Fig. 10 Optimization results 

In the working area, the charging peak of users here was mainly in the morning 
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working hours, and users usually started charging after arriving, so the charging peak 

was 5:00-11:00; while the peak of PV was after 10:00. Obviously, the load and power 

generation did not match: the average source-load deviation was 4.98 MW, and the 

maximum deviation was 18.43MW (which occurred at 8:00). Most users could transfer 

the charging time to the peak period of PV output, because of their staying in the 

working area during this period, so as to reduce energy abandonment and output of 

thermal power. After the orderly charging optimization, the average deviation of source 

and load decreased by 52.72%, the maximum deviation decreased by 54.39%, and the 

load fluctuation decreased by 49.82%.  

In the home area, the peak charging time was at night, and yet it was the valley 

time of PV power generation. Since most users charge for the next day's commuting, 

relatively few users could participate in the optimization, so even through the 

optimization, there was still energy abandonment during the generation peak of PV. 

After optimizing, the average deviation decreased by 9.72%, the maximum deviation 

decreased by 11.23%, and the load fluctuation decreased by 63.40%. 

(2) Comparison in terms of energy usage 

Outputs in different cases are presented in Figs. 11 and 12. PV curtailment is 

shown in Table 6. 

 

Fig. 11 Outputs of working area 
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Fig. 12 Outputs of home area 

Table 6 PV curtailment (Unit: MW) 

Work 

Case 2-1 Case 2-2 Case 2-3 Case 2-4 Case 2-5 Case 2-6 
31.48 31.48 0 0 34.11 0 

Home 

Case 2-1 Case 2-2 Case 2-3 Case 2-4 Case 2-5 Case 2-6 
34.12 34.12 20.98 20.98 71.98 0 

Comparing different areas, we can see that the matching degree of working area 

was higher than that of home area, and the users had stronger willingness to cooperate, 

so the PV utilization performance of the working area in each case was better. Moreover, 

it can be noted that the more factors we considered, the greater the gap in the 

performance of PV utilization between the two areas. With the employment of CCTP, 

the participation of users for ordered charge, and the consideration of negative effect of 

PV’s uncertainty, the differences of energy curtailment between the two areas were 2.64 

MW, 20.98 MW, and 37.87 MW, respectively.  

Comparing different cases, we can see that in the deterministic optimization model, 

PV curtailment was greatly reduced when users charged in peak time of PV output. 

Compared with the cases where users did not participate in the optimization, ordered 

charge in working area made the PV generation completely consumed, and the 

abandoned energy was reduced by 38.51%. Due to the deviation of PV output in the 

IGDT-based model, there were two possible changes of the abandoned energy. In the 

risk aversion strategy, the increase of PV output led to more risks, so the abandoned 

energy was increased by 2.63 MW (work) and 37.86 MW (home) compared with the 

user non-cooperation cases, and it was also increased by 34.11MW (work) and 51MW 

(home) compared with the user cooperation cases. In the opportunity seeking strategy, 

PV generation is less than the predicted, so the two areas can consume all the energy. 

(3) Comparison in terms of CO2 emission 

Table 7 CO2 emission (Unit: ton) 
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Work 

Case 2-1 Case 2-2 Case 2-3 Case 2-4 Case 2-5 Case 2-6 
84.432 8.443 54.211 5.421 5.016 11.096 

Home 

Case 2-1 Case 2-2 Case 2-3 Case 2-4 Case 2-5 Case 2-6 
227.309 22.731 214.697 21.464 20.036 27.562 

In terms of environmental benefits, we can see from Table 7 that the CCS can 

greatly reduce CO2 emissions. In comparison of Cases 2-1 and 2-2, the CO2 emissions 

in the CCTP involved case greatly reduced by 90.00% (work) and 35.79% (home). In 

Case 2-5, the increase of PV output made less power of CCTP (decreased by 7.47% 

(work) and 6.65% (home)), but it made the energy abandonment issue more serious. In 

Case 2-6, the reduction of PV output required the system to have more needs of thermal 

power output, so the CO2 emission was increased by 104.69% (work) and 28.41% 

(home), compared with Case 2-4. 

(4) Comparison in terms of economic benefits 

Table 8 Cost comparison  

Area Case Cost of PV 

(¥) 

Fuel cost 

of 

thermal 

power (¥) 

CO2 

storage 

cost (¥) 

Carbon 

trading 

income 

(¥) 

Cost of 

CCTP (¥) 

Charging 

cost of 

users (¥) 

Total cost 

of the 

system (¥) 

Work Case 2-1  144106.56 63747.00 - - - 241815.16 385921.73 

Case 2-2  64940 67535.98 2416.44 7387.45 62564.98 241815.16 369320.14 

Case 2-3  143159.73 59685.96 - - - 164744.63 307904.35 

Case 2-4  69822.14 62440.10 1551.52 4743.25 59248.37 164744.63 293815.14 

Case 2-5 99638.75 61766.69 1435.57 4388.77 58813.49 164744.63 323196.87 

Case 2-6 34352.05 71869.88 3175.77 9708.83 65336.82 164744.63 264433.50 

Home Case 2-1  172190.04 82944.50 - - - 460798.82 632988.86 

Case 2-2  65468 91624.81 6505.58 19888.57 78241.81 460798.82 604508.63 

Case 2-3  167078.32 81206.72 - - - 338017.47 505095.79 

Case 2-4  67503.71 89421.75 6142.97 18780.03 76784.69 338021.09 482309.49 

Case 2-5 117276.71 87037.95 5734.35 17530.81 75241.48 338021.09 530539.28 

Case 2-6 12650.82 99597.33 7888.33 24115.87 83369.79 338021.09 434041.69 

In the case of non-cooperation, in addition to the power generation cost, PV also 

needed to pay high power purchase cost to meet the demand of charging load, which 

burdened PV and also increased the total cost of the system. 

In the PV-CCTP cooperation case, PV no longer paid for the power purchase, and 

CCTP met the residual charging demand instead. Therefore, PV cost less. Although 

addressing CO2 required energy consumption and carbon storage cost, CO2 emission 

cost decreased and carbon trading income deducted some cost, and thereby the total 

cost of the system was lower than that of Case 2-1 by 4.30% (work) and 4.50% (home). 

In the PV-users cooperation case, users were encouraged to charge in PV 

generation peak hours by giving them some compensations. Although the compensation 

increased the cost of PV, the punishment for abandoning energy and the power purchase 

cost were reduced. It turned out that the total cost of the system was reduced by 16.63% 

(work) and 16.45% (home), compared with Case 2-2. 

In the PV-CCTP-users cooperation case, CCTP replaced public grid for power 

supplement, and its total cost was much smaller than the power purchase cost, so the 

total cost of the system was further reduced, which was lower than that of Case 2-3 by 
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4.58% (work) and 4.51% (home). 

 

Fig. 13 Changes of PV output 

Changes of PV output in the two strategies are shown in Fig. 13. In risk aversion 

strategy, when the increases of PV output were in the ranges of [0,39.944%] (work) and 

[0,67.419%] (home), the deviations of cost fluctuating within [0, ¥29381.21] (work) 

and [0, ¥48229.79] (home) were acceptable for pessimistic decision makers, which 

reflected the robustness of IGDT model. In opportunity seeking strategy, when the PV 

reductions fluctuated within the ranges of [0,60.468%] (work) and [0,86.400%] (home), 

optimistic decision makers can reduced the cost by [0, ¥29381.21] (work) and [0, 

¥96497.59] (home), which reflected the opportunism of IGDT model. 

(5) Sensitivity analysis based on different acceptable level of cost fluctuation 

Change trajectories of uncertainty coefficient and acceptable cost are shown in Fig. 

14. 

12

  
Fig. 14 Change trajectories of uncertainty coefficient and acceptable cost 

As shown in Fig. 14, when acceptable cost increased, 1  (the robust alpha) and 2

(the opportunity alpha) showed an increase and a decrease, respectively.  

For 1 , the larger the value, the more pessimistic the decision-maker's view on 

photovoltaic fluctuation, the more afraid of the energy abandonment penalty brought 

by the more power generation of PV than predicted, and the higher the robustness of 

the system. A smaller value of 
2  means that the decision-maker's optimism about the 
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additional benefits generated by PV output fluctuations was reduced and the cost was 

also increased. 

6.3 Benefit allocation results 

6.3.1 Economic benefit allocation 

Based on the optimal deterministic case, risk aversion and opportunity pursuit 

cases, cost-saving benefits are distributed, respectively. the cost savings are shown in 

Table 9 (the cost savings of alliances and non-cooperation which are not mentioned in 

the table are 0), and allocation results are shown in Table 10. 

Table 9 Cost savings (¥) 

Area Uncertainty 

of PV 

PV-

CCTP 

PV-users PV-

CCTP-

users 

Work Deterministic 16601.59 78017.37 92106.59 

Risk 

aversion 
15894.98 76269.05 90582.53 

Opportunity 

seeking 
18825.61 66032.39 84871.73 

Home Deterministic 28480.23 127893.1 150679.4 

Risk 

aversion 
27389.47 128386.2 149979.7 

Opportunity 

seeking 
32519.05 122841 150698.8 

Table 10 Allocation results 

Area Entity Case 2-4 

based (¥) 

Case 2-5 

based (¥) 

Case 2-6 

based (¥) 

Work PV 46472.02 45554.85 42433.58 

CCTP 7463.34 7420.33 9417.38 

users 38171.23 37607.36 33020.77 

Home PV 76288.67 75955.86 76126.28 

CCTP 12342.14 11762.76 14705.80 

users 62048.56 62261.13 59866.76 

According to Table 10, as the main power supplier, PV could obtain the largest 

share of system benefits, accounting for 50% of the total cost savings. The user's 

adjustment of charging plan could not only reduce the PV energy abandonment, but 

also reduce the cost of CCTP, so it ranked second in terms of contribution, and obtained 

about 40% cost saving shares. Although the CCTP could significantly reduce CO2 

emissions, its power generation cost was still higher than the unit cost of PV. Compared 

with the other two main bodies, its contribution was relatively small, obtaining about 

10% of the total cost savings. 
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6.3.2 Comprehensive benefit allocation 

Benefit allocation from economic perspective does not consider the environmental 

contribution of CCTP since it is an important means for reducing CO2 emissions. 

Therefore, we reallocated the benefits both economically and environmentally, and the 

results were normalized and are shown in Table 11. 

Table 11 Low-carbon and economic-based benefit allocation results  

Area Entity Case 2-4 

based  

Case 2-5 

based  

Case 2-6 

based  

Proportion 

of average 

benefit 

Work PV 0.243 0.244 0.250 52.35% 

CCTP 0.098 0.100 0.153 24.93% 

users 0.104 0.119 0.097 22.71% 

Home PV 0.248 0.248 0.249 50.63% 

CCTP 0.137 0.134 0.149 28.51% 

users 0.104 0.105 0.098 20.86% 

According to Table 11, PV had obvious advantages in economic and 

environmental benefits, so it still obtains the largest benefit distribution proportion, 

which is basically consistent with the original distribution result. In terms of reducing 

CO2 emissions, the capacity of CCTP was much greater than the contribution made by 

users to the system. In addition, limited by the source-load matching degree and 

responsiveness to the optimization, users will no longer contribute to the system after 

the PV output was completely consumed. Therefore, the benefits of CCTP was 

significantly increased while the user’s was reduced. The final allocation results are 

more reasonable.  

Above all, for the proposed charging system, the decision maker should focus on 

the consumption of PV. On the one hand, a more positively incentive scheme should be 

considered to encourage more users to charge during the peak period of PV output and 

smooth the charging load curve. On the other hand, the CCTP should be employed to 

reduce CO2 emissions and to develop interaction with the carbon trading market, so as 

to maximize the benefits and achieve a win-win situation in the power generation and 

consumption sides. 

7 Conclusions 

In this paper, a three-stage model is proposed to optimize the EV charge and 

distribute the benefits. In the first stage, Markov chain and Monte Carlo are used to 

obtain the charging loads of work area and home area, and the deterministic charging 

optimization model is established with the objectives of economic, environmental-

friendly, and energy utilization-based benefits and load fluctuation. In the second stage, 

uncertainty of PV is introduced, and the IGDT based optimization model is constructed 

by maximizing / minimizing photovoltaic deviations, and two strategies, i.e., risk 

aversion and opportunity pursuit are proposed. In the third stage, based on Shapley 

method, benefits are allocated for the optimal cases, i.e., the deterministic one, risk 
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aversion and opportunity pursuit. The results show that: 

(1) The proposed method for addressing charging load uncertainty with the 

consideration of quantity transfer and vehicle speed differences can effectively depict 

the charging load curve. 

(2) Employing carbon capture and storage system can effectively reduce the CO2 

emissions of the system, and make up for the cost through obtaining carbon trading 

income; such joint system reduces the emission by 85.08% and the cost by 2.60%. 

(3) PV-CCTP-users cooperative alliance makes 3E benefits maximum, and also 

makes load curve smoother; the cost is decreased by at least 4.51%, emissions are 

reduced by at least 4.59%, PV consumption is increased by 38.51%, and the load 

fluctuation is reduced by at least 49.82%. 

(4) When the exact probability distribution cannot be obtained, the IGDT model 

can effectively address the uncertainty of photovoltaics to obtain the robust solution 

and the opportunistic solution. No matter how the uncertain variables change, the risk 

aversion strategy can ensure that the final optimization result is within the expected 

range; The opportunity pursuit strategy provides the lowest income threshold reference 

for decision makers who dare to take risks. Both of the strategies can quantitatively 

describe the relationship between the variation range of uncertainty and the minimum 

acceptable goal, and thus provide differentiated solutions for decision makers with 

different preferences. 

(5) Economically, the benefit allocation ratio of PV-CCTP-users is about 5:1:4, 

which reflects the economy of photovoltaic power generation and order charge, but it 

ignores the environmental contribution of CCTP; After considering the emission 

reduction factor, the result is about 5:3:2, which indicates the significant contribution 

of carbon capture thermal power to emission reduction. Thus, the multi-dimensional 

benefit allocation is more reasonable. 
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