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Abstract

Semiconducting nanowires contacted with superconductors are an interesting class of hy-
brid mesoscopic devices, in which charge transport is quantum mechanical due to the confine-
ment potential of the nanowire, as well as the quantummechanical nature of superconductivity.
Especially interesting is the case where transport is phase coherent, resulting in the semicon-
ductor inheriting certain properties of the superconductor (e.g. sustaining a dissipation-less cur-
rent), a phenomenon called proximity superconductivity. Proximity effects allow for rich and
interesting physics to occur at the intersection of superconductivity and mesoscopic transport,
which are the subject of study in this thesis. Furthermore, proximitized nanowire devices with
a strong spin-orbit coupling are promising candidates for the realization of Majorana bound
states — quasiparticle states that are topological in nature and have enjoyed much recent at-
tention due to their applications to topological quantum computing. As well as fundamental
curiosity about proximity phenomena, it is imperative to fully understand them in order to
utilize hybrid nanowire devices as the building blocks of a topological quantum computer.

In this thesis we present experimental studies of three generations of Nb/InAs nanowire/Nb
Josephson junctions in which proximity superconductivity is observed. Cryogenic transport
measurements allow us to identify Andreev reflection as the mechanism behind the proxim-
ity effects — a mechanism wherein an electron incident on the superconductor/semiconductor
interface is retro-reflected as a (conduction band) hole, carrying a charge equal to twice the
electronic charge from the semiconductor into the superconductor, where it is carried as a
Cooper pair. This mechanism is critically dependent on the transparency of the superconduc-
tor/semiconductor interface, whose qualities are successively improved over the three gener-
ations of devices. Further interesting and rich phenomena are also observed in the nanowire
junctions, including Multiple Andreev reflections, Andreev bound states, and the likelihood of
a novel form of Josephson interference called Orbital Josephson interference. We present the-
oretical and numerical studies that model these observed phenomena. Finally, we explore the
relevance of this work to the topological quantum computing community by describing future
challenges and experiments which can reveal the physics of Majorana bound states in similar
systems. We give an in-depth proposal involving a proximitized nanowire and a quantum dot
which can be used to verify the topological nature of the system, as well as read out the parity
state of the Majorana bound states within the system.
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Chapter 1

Introduction

In 1937, Ettore Majorana proposed [1] a real version of Dirac’s equation for the electron. The
hypothetical solutions to this equation bear the nameMajorana fermions (MFs). These particles,
due to the realness of the Majorana equation, are spinless and chargeless. There is an open
question in high-energy physics as to whether free-standing MFs exist and whether (some)
neutrinos have Majorana mass versus Dirac mass, which is beyond the scope of this thesis (see,
e.g., Ref. [2] for a review).

The name ‘Majorana’ is also used to refer to an entirely different class of objects: quasipar-
ticle excitations of certain two (or one) dimensional condensed matter systems at low tempera-
ture. These quasiparticles are also charge- and spinless (a fact first discovered by Fu and Kane [3]
in 2008), and calledMajorana ZeroModes (MZMs) orMajorana Bound States (MBS) [4, 5, 6, 7, 8].
MBS enjoy non-Abelian exchange statistics (Section 1.1), a fact that makes them useful as qubit
candidates in quantum computing (Section 1.3), and has garnered enormous theoretical and
experimental interest in the past decade (Section 1.4). In this thesis we are interested in the
experimental development and study of topological superconductors (Section 1.2) as a plat-
form for hosting MBS, specifically hybrid superconducting-semiconducting nanowire Joseph-
son junctions. We find these devices to be promising, showcasing rich and complex phenomena
involving the interplay of superconductivity, Coulomb interactions, and the Zeeman effect.

Before describing our experiments on these devices, we provide a quick exploration of the
theoretical background to the key concepts related to MBS, starting with non-Abelian exchange
statistics and continuing to topological superconductivity and quantum computing using MBS.
Our aim is to provide a theoretical foundation for the reader interested in this topic, at a level
of detail that addresses or at least alludes to all important concepts while still being relevant to
an experimentalist — a resource we found hard to come by at the time of writing.
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1.1 Exchange Statistics and Non-Abelian Anyons

Because Majorana ZeroModes are two-dimensional objects, in order to describe their relevance
to quantum computing we must first discuss the fundamentals of particle exchange statistics in
two dimensions.

It is a well known fact that, in a universe with three spatial and one temporal dimensions
(3+1d), elementary particles are observed to be bosons if and only if they have integer spin,
or fermions if and only if they have half-integer spin [9]. This observation is theoretically
supported by the spin-statistics theorem [10, 11, 12]. While a detailed discussion of the spin-
statistics theorem is left to textbooks on quantum field theory (QFT), we brieflymention that the
theorem states the following: any reasonable QFT— namely, any QFTwho is Lorentz-invariant,
and describes real excitations (of a quantum field) that have finite mass (i.e., “particles”) —
will necessarily describe particles with either integer or half-integer spin. The former of these
are called bosons, and the wavefunction describing two or more identical bosons retains the
same value when the positions of any two of the identical boson are swapped; and the latter
are called fermions. The value of the wavefunction describing two or more identical fermions
changes sign when any two of the identical fermions are swapped. This behaviour with respect
to swapping the positions of identical particles is called exchange statistics, and is the ultimate
reason behind the different behaviour of the (macroscopic) quantum state of a collection of
bosons (e.g. the coherent state of light in a laser) versus fermions (e.g. the Fermi sea in a metal
or semiconductor) as described in quantum statistical physics.

Exchange statistics is fundamentally different in a universe with two spatial and one tem-
poral dimensions (2+1d) [4]. Specifically, in 2+1d, describing the operation of swapping the
positions of two identical particles (e.g. (r1, r2) at some initial time → (r2, r1) at final time)
is ambiguous without also specifying a chirality (handedness). Figure 1.1 panels (a) and (b)
showcase this point, with the former displaying a representation of the worldlines of two iden-
tical particles swapped counter-clockwise, and the latter clockwise, in 2+1d. The trajectories
do not cross, but rather show one particle going behind the other in the x-y plane in order
to perform the swap; time displayed in the vertical direction. We say that the two swaps are
not topologically equivalent, meaning that there exists no smooth, continuous transformation
that converts one to the other. That is at least, not without committing disallowed actions,
such as (1) “doubling back” at some point in the transformation — which implies moving back
in time and/or the creation/annihilation of a corresponding anti-particle (which does not con-
serve particle number and is not a swap operation); or (2) moving the particles “through” each
other by crossing the trajectories (which may or may not be possible depending on if there is
a hard-core repulsion between the particles, but regardless also does not describe a swap oper-
ation). By contrast, in 3+1d, the third spatial dimension can be used to “disentangle” the two
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trajectories in a smooth manner, and so swaps have no chirality in 3+1d. This fundamental dif-
ference between systems with different dimensions was realized by Leinaas and Myrheim [13]
and Wilczek [14], and allows for different possibilities for quantum mechanical properties to
emerge in 2+1d, as first described in the early 1980s [15].

The mathematical object describing chiral exchange in 2+1d is the braid group [4], origi-
nally so named because it abstractifies the braiding of strands in three dimensions — in our case,
equivalently, the braiding of worldline trajectories in 2+1d. The n-dimensional braid group Brn
describes the braiding of n strands. Figure 1.1 shows several members of the group Br3. Alge-
braically speaking, Brn is described by generators

{
e, σ1, . . . σn−1, σ

−1
1 , . . . , σ−1

n−1

}
, where e is

the identity element (i.e. describes the “no braiding” operation), and σi describes the counter-
clockwise braiding of the i, i+1 strands; the inverse element σ−1

i therefore describes the clock-
wise braiding of the same strands (see fig. 1.1, panels (a), (b), (c)). The multiplication of two
(or more) σs is therefore another element of the group, describing two (or more) successive
braids. The generators obey the following relations: σiσj = σjσi iff |i−j| ≥ 2 (i.e., the group is
generally non-Abelian, see panel (d)), and σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n − 1 (see panel
(e)).

The only algebraic difference between this group and the permutation group (which ab-
stractifies exchange in 3+1d) is σ2

i ̸= e. This has a significant effect. For one, the braid group
is infinite, even for just two particles (e.g. σk

1 ∈ Br2 is a unique element of the group for any
integer k). By contrast, the n-dimensional permutation group Sn has cardinality |Sn| = n!. Fur-
thermore, the braid group allows non-Abelian representations in the Hilbert spaces of particle
wavefunctions. We shall describe what this means now.

Members of the braid group are abstract objects; in order to describe how braiding would
affect physical objects of interest, we need to give a representation of the braid group in the
Hilbert space H in which the wavefunction or state-vector of objects live. Specifically for our
case, a representation of the braid group is a function Φ : Brn × H → H who follows these
requirements: firstly, Φ is linear over H, secondly, Φ(e, ψ) is H’s identity operator I for any
ψ ∈ H, and thirdly, for any two braids b1, b2 in Brn and any ψ ∈ H:

Φ(b1b2, ψ) = Φ(b1,Φ(b2, ψ)). (1.1)

Eq. 1.1 is saying that Φ chains in the same manner that the members of the braid group
multiply, and so carries forward the properties of the braid group. Given the linearity of Φ over
H, it may be intuitively instructive to think of Φ(b) : H → H as being a map which takes the
state-vector ψ to some other value ψ′, and depends (only) on the performed braid b ∈ Brn. The
above equation strictly restricts what those maps may be.
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Figure 1.1: Worldline trajectories of three identical particles, showing the action of swapping
positions in 2+1d, abstractified as members of the braid group Br3. (a)- (b) Swapping the po-
sitions of the first two particles has chirality, with a counter-clockwise swap in panel (a) and
clockwise swap in panel (b), identified as two of the generators of the Br3 group σ1, σ−1

1 . These
two operations are not equivalent to each other, unlike in 3+1d. Another generator σ2 is shown
in panel (c); not shown are the remaining two generators e (identity) and σ−1

2 . Panel (d) demon-
strates that the braid group is generally non-Abelian. In fact, the generators commute only if
they act on non-adjacent strands. (e) An example of the defining relations of the braid group,
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 1.

By contrast, for the case of 3+1d, the Φs are representations of the permutation group, and
as permutations square to identity, eq. 1.1 implies that so do the Φs. Hence, the Φs reduce to
factors of ±1 for bosons/fermions respectively. However, in 2+1d, braids don’t square to iden-
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tity as mentioned above. For the simplest case of n identical particles in positions r1, r2, . . . , rn
described by a single valued wavefunction ψ, doing a counter-clockwise swap of the first two
particles results in

ψ(r2, r1, . . . , rn) = Φ(σ1)ψ(r1, r2, . . . , rn) = exp(iθ)ψ(r1, r2, . . . , rn).

Here, θ (the so-called braiding phase) can take any value, modulo π (see, e.g. Ref. [16] as to
why an arbitrary phase factor θ is the most general form acceptable for Φ). θ = 0, π are special
cases corresponding to bosons and fermions. For other values of θ, the particles in question
are called (Abelian) anyons. As the particles are all identical, we can derive that for any of the
counter-clockwise braid generators σi, Φ(σi) = exp(iθ). Notice that even though the braid
group itself is non-Abelian (e.g. σ1σ2 ̸= σ2σ1), there is no requirement on Φ to be injective
from the braid group; hence the Abelian nature of this representation. For example here we
have Φ(σ1σ2) = Φ(σ2σ1) = exp(2iθ).

Non-Abelian anyons arise when the state-vector is multivalued (e.g., a spinor). For n identi-
cal particles described by an m-valued state-vector Ψ = [ψ1(r1, . . . , rn), . . . , ψm(r1, . . . , rn)]

T ,
the most general form ofΦ(σi) is anm×mmatrix. As matrices are generally not Abelian under
multiplication (AB ̸= BA in general for matrices A,B), it follows that the effect of braiding
two or more of the identical particles can also be non-Abelian. For example, braiding the first
two particles results in

ψ1(r2, r1, . . . , rn)
ψ2(r2, r1, . . . , rn)

.

.

.
ψm(r2, r1, . . . , rn)

 = Φ(σ1)


ψ1(r1, r2, . . . , rn)
ψ2(r1, r2, . . . , rn)

.

.

.
ψm(r1, r2, . . . , rn)

 = ρ(σ1)m×m


ψ1(r1, r2, . . . , rn)
ψ2(r1, r2, . . . , rn)

.

.

.
ψm(r1, r2, . . . , rn)


for some m × m matrix ρ(σ1), and if this matrix does not commute with some other ρ, e.g.
ρ(σ2), then the constituting identical particles are said to be non-Abelian anyons.

Since the action of braiding particles in a closed quantum system is expected to be reversible
(following e.g. σ1σ−1

1 = e), the ρs are unitarymatrices evolving the state-vector of the system in
question in a manner similar to the time evolution operator (see Ref. [4] for a rigorous argument
for unitarity). However, in the case of braiding, the unitary operation effected on the state-
vector depends only on the braid performed — modulo a “dynamical phase” which is expected
to be negligible when the operation is done adiabatically (Refs [17, 18]). Since unique elements
of the braid group refer to unique topologies of knots or braids, these operations are called
topological operations. Section 1.3 describes how these topological operations can be utilized
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for the purposes of quantum computation, and the “topological error protection” afforded by
them.

Also due to the relation between braiding topologies and anyonic exchange statistics, a
quantum field theory whose excitations are anyons is called a topological quantum field theory
(TQFT). TQFTs are necessarily 2+1d, and fall under the broader category of Chern-Simons the-
ories [19]; broadly speaking they describe particles (i.e. anyons) with exotic spin (values other
than integer or half integer) in two spatial dimensions. Since the physical universe is 3+1d,
physical realizations of TQFTs are restricted to descriptions of effective and/or emergent quasi-
particles in 2+1d condensed matter systems. An example of this emergent anyonic behaviour
is the ν = 1/3 Laughlin state in the fractional Quantum Hall Effect [20], which is hypothesized
to be an abelian anyon with charge e/3 and braiding phase θ = π/3.

Whereas the braiding phase θ is sufficient to describe the exchange statistics of an Abelian
anyon, non-Abelian anyons are categorized according to their fusion rules. Fusion rules are
the set of rules that describe the exchange statistics of bound states of (Abelian or non-Abelian)
anyons, and are analogous to spin addition rules in 3+1d, which for example describe how the
bound state of two spin 1/2 elections is a boson with integer spin (either a spin singlet or a
triplet). The bound state of two or more anyons is itself generally an anyon, and so systems
hosting anyons usually host multiple types of anyons.

An important category of non-Abelian anyons are the so called Ising anyons [4, 21], whose
fusion rule can be written symbolically as follows:

1/2× 1/2 = 0+ 1. (1.2)

Here, the 1/2 particle is a non-Abelian particle whose bound state with itself is either the
vacuum particle 0, or a standard fermion 1 (cf. the similarity to the bound state of to spin 1/2
particles, which is either a spin singlet or a triplet). Topological superconductors [22] (including
MZMs and Majorana Bound States), topological insulators [23], and the ν = 5/2 fractional
Quantum Hall Effect state [24, 25, 26] are considered to be examples of Ising anyons. Ising
anyons are the simplest possible non-Abelian particles, and as such do not afford universal
topologically protected operations [27] for the purposes of quantum computing (more on this
in Section 1.3). Another theorized class non-Abelian anyons named Fibonacci anyons [28]
possess complex enough fusion rules which would allow universal quantum computing in a
topologically protected manner, although as of this writing we know of no TQFTs describing a
physical system whose excitation quasiparticles behave as Fibonacci anyons, nor of any other
TQFT whose excitations would allow universal + topologically protected quantum computing.
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1.2 Theory of Majorana Zero Modes in Topological Supercon-
ductors

Our interest in this thesis lies primarily in developing and understanding topological supercon-
ducting materials. In their seminal work, Fu and Kane discovered [3] that the excitations states
inside the vortex core of a so-called p+ip chiral superconductor[29, 30, 31] are non-Ableian
anyons. Later, Kitaev proposed [32] a significantly simpler toy model for a topological super-
conductor, in the form of a one dimensional superconducting chain. Non-Ableian particles
could arise at the ends of this chain following the Ising fusion rules. Furthermore, the particles
are chargeless and at zero energy, and due to their fusion rules can combine to form the vac-
uum particle. Therefore, they can be thought of as their own anti-particle. It is by this analogy
to Majorana’s proposed chargeless elementary particle (who is equal to its own anti-particle),
that these emergent anyons are called Majorana Zero Modes. Alternatively, two MZMs could
combine to form a (non-local) electron, further motivating the notation in eq. 1.2 which denotes
the non-Abelian particles as 1/2 — in a certain way, MZMs behave like “half of an electron.”

Whereas Kitaev’s model is simple and elucidating, it is also unrealistic in that it requires
a spinless p-wave superconductor. While some organic superconductors [33] are considered
intrinsically p-wave, these are exotic (and spinful) materials. In the next section, we focus on
realistic physical implementations of this model using standard s-wave superconductors and
describe how these implementations result in emergent p-wave and non-Abelian behaviour.

In early 2010’s several papers [6, 8, 34, 35, 5, 7] suggested a “recipe” for creating Majorana
Zero Modes (i.e. the quasiparticles hypothesized by Kitaev in his toy model [32]) in a realistic
semiconductor system. The recipe includes the following elements:

• 1-Dimensional (1d) semiconducting nanowire

• Strong Rashba-type spin-orbit coupling (SOI), which occurs in materials such as InAs [36,
37] and InSb [38, 39]

• Magnetic field perpendicular to the spin-orbit coupling

• Proximitized superconductivity in the semiconductor [40]

We show below how this recipe creates a system which hosts Majorana Zero Modes.
The starting point is the single particle Hamiltonian for an electron in the 1d nanowire along

the x direction, with SOI and B-field:

Ĥ(x) = −h̄2 ∂
2
x

2m
− µ(x)− iα∂xσy + gµBBx(x)σx/2, (1.3)
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which can be written in second-quantized form as an integral over a Hamiltonian density ĥ as

Ĥ0 =
∑

σ,σ′∈{↑,↓}

∫ +∞

−∞
dxψ̂†

x,σ⟨σ|ĥ|σ′⟩ψ̂x,σ′ . (1.4)

Here, ↑, ↓ refer to σz eigenstates, ψ̂x,σ =
∑

i⟨x|ψi,σ⟩âi,σ is the quantum field operator which
annihilates an electron with spin σ at position x, and ψ̂†

x,σ is the corresponding creation oper-
ator. The âi(â†i ) are annihilation (creation) operators acting on the electron occupation Fock
space, and ψi are the (single electron) eigenfunctions of Eq. 1.3. We use the hatted symbol ψ̂
so as to not confuse these operators with the wavefunctions ψ. Notice that ψ̂ and ĥ do not
commute, due to the former’s dependence on x via ψi. Let us declutter by defining the notation
ĥσ,σ

′
:= ⟨σ|ĥ|σ′⟩, and

Ĥ0 =
∑

σ,σ′∈{↑,↓}

∫ +∞

−∞
dxψ̂†

x,σĥ
σ,σ′

ψ̂x,σ′ :=

∫ +∞

−∞
dxψ̂†

x,σĥ
σ,σ′

ψ̂x,σ′ , (1.5)

i.e., similarly to Einstein’s notation, summation over cross-diagonal σ indices is implied. If a
realistic device simulation is desired, Eq. 1.5 has to be discretized and diagonalized numerically;
we do that in the next section. It is also instructive to look at the behaviour of an infinite,
uniform nanowire, which can be solved analytically. For that, it is useful to rewrite Eq. 1.5 in
reciprocal space via the Fourier transforms

ψ̂x,σ −→ 1√
2π

∫ +∞

−∞
dkeikxĉk,σ,

ψ̂†
x,σ −→ 1√

2π

∫ +∞

−∞
dk′e−ik′xĉ†k′,σ,

where k is the wave-number (shorthand for kx) and ĉk,σ are momentum-space analogues of the
ψ̂ operators. Eq. 1.5 becomes

Ĥ0 =
1

2π

∫ +∞

−∞
dk
∫ +∞

−∞
dk′ĉ†k,σĥ

σ,σ′
ĉk′,σ′

∫ +∞

−∞
dxei(k−k′)x

=

∫ +∞

−∞
dkĉ†k,σĥ

σ,σ′
ĉk,σ′ . (1.6)

Here, we used the definition of the Dirac delta function to identify the third integral as 2πδ(k−
k′), which in turn reduces the second integral. Now, the first and third terms of ĥ (kinetic en-
ergy term and spin-orbit coupling term) are diagonal in the momentum basis, and so commute
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with the ĉ operators. To further simplify, let us assume the nanowire is uniform, in a uniform
magnetic field, and infinitely long (which justifies integrating from −∞ to ∞), and so µ and
Bx lose their x dependence, and they too commute with the ĉ operators. The Hamiltonian
simplifies to

Ĥ0 =

∫ +∞

−∞
dkĥσ,σ

′

0 (k)ĉ†k,σ ĉk,σ′ , with (1.7)

ĥ0(k) =
h̄2k2

2m
− µ+ αkσy + gµBBxσx/2. (1.8)

We write out all terms of Ĥ0 explicitly for completeness:

Ĥ0 =

∫ +∞

−∞
dk
[
(
h̄2k2

2m
− µ)(ĉ†k,↑ĉk,↑ + ĉ†k,↓ĉk,↓)+

(gµBBx/2 + iαk)(ĉ†k,↑ĉk,↓) + (gµBBx/2− iαk)(ĉ†k,↓ĉk,↑)
]
. (1.9)

The eigenenergies of Ĥ0 describe the basic electronic band structure of the nanowire in the
absence of superconductivity.

We include proximity superconductivity by adding a mean-field BCS pairing potential

Ĥi(x) = ∆(x)ψ̂†
x,↑ψ̂

†
x,↓ + h.c.

Again, let us assume ∆ has no x dependence (i.e., an infinitely long, uniform, proximitezed
nanowire), so it can be easily written in k-space. Using the Fourier transform described above,
we find

Ĥi = ∆ĉ†k,↑ĉ
†
−k,↓ + h.c. (1.10)

The total Hamiltonian is
Ĥ = Ĥ0 + Ĥi, (1.11)

but we find Ĥ as is written here difficult to diagonalize due to the ĉ†ĉ† terms in Ĥi. This
problem is solved by defining a so-called Nambu vector (see texts regrading solutions to su-
perconducting quasiparticle energies for an introduction to Nambu vectors; e.g. [41]) Ψ =

[ĉk,↑, ĉk,↓,−ĉ†−k,↓, ĉ
†
−k,↑]

T in electron-hole space, where the first (last) two elements correspond
to the electron (hole) block. The total Hamiltonian can be rewritten as

Ĥ =
1

2

∫
dkΨ†(k)ĥBdG(k)Ψ(k), (1.12)
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where ĥBdG is Bogoliubov-de Gennes Hamiltonian density:

ĥBdG(k) =

(
ĥ0(k) ∆

∆∗ −σyĥ0(k)σy

)
. (1.13)

Several notes are to be made here: first, the term −σyĥ0(k)σy is recognized as the spin and
time-reversed version of ĥ0, i.e. the “holes” in question here are not valence band holes, but
rather time-reversed electrons in the conduction band. Second, by considering these “holes”
as independent particles we have artificially doubled the dimensions of the problem (i.e., by
adding the electron-hole component of the Nambu vector). This is justified by realizing an
inherent symmetry of the BdG Hamiltonian: particle-hole symmetry. Namely if ĥBdG admits
an eigenenergy E, then it also admits -E as an eigenenergy, thus reducing the effective degrees
of freedom by a factor of two. Mathematically speaking, the operator P = τ y⊗σyK commutes
with the Hamiltonian; where τ are Pauli-matrices operating on the particle-hole subspace, and
K is the complex-conjugation operator. We have{

Ĥ, P
}
=
{
ĥBdG, P

}
= 0. (1.14)

The reader who attempted to derive Eq. 1.9 from Eq. 1.7 by multiplying out the Nambu
vector terms will have noticed that the derivation requires use of identities such as

ĉ†k,↑ = ĉ−k,↓, (1.15)

and similar for ĉ, for ↑, ↓;±k. These relations follow from the particle-hole symmetry of the
problem. For example, Eq. 1.15 is saying that the effect of creating an electron with momentum
k and spin up is the same as removing an electron (creating a hole) with momentum −k and
spin down.

Third, the choice of the Nambu vectorΨ is not unique. The one used here will be recognized
by those familiar with the solution to the original, spinless Bogoliubov-de Gennes equations
via canonical transformation [41]. However, any linearly independent combination of four
ĉ, ĉ† operators from the two different spin channels can be used in principle. Sometimes it is
helpful to use Ψ = [ĉk,↑, ĉk,↓, ĉ

†
−k,↑, ĉ

†
−k,↓]

T. This results in a slightly different form for the BdG
Hamiltonian:

ĥBdG(k) =

(
ĥ0(k) −iσy∆
iσy∆

∗ −ĥ0(k)

)
, (1.16)

which is a helpful form in that it can be written out using tensor products of two sets of Pauli
matrices, σ, τ , pertaining to spin and electron-hole spaces respectively:
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ĥBdG(k) = (h̄2k2/(2m∗)− µ)σ0τz

+ (αk)σyτz

+ (gµBBx/2)σxτz

+∆σyτy. (1.17)

Here, we have dropped the tensor product symbol “⊗” between the σs and τs for brevity
of notation, and assumed a real, constant ∆. The form for P also changes to P = τxK . While
mathematically useful (e.g. for numerical simulations), this picture is not as easy to physically
interpret as the previous one.

Forth, this freedom in the choice ofΨ is sometimes called the “Majorana gauge” choice. Fur-
thermore, notice that the total Hamiltonian is not (global) gauge-invariant due to the presence
of the BCS term (as is well known that BCS violates gauge invariance). This is not in violation
of Elitzur’s theorem [11], which only requires local gauge-invariance for physically meaningful
Hamiltonians. Lack of gauge invariance is ultimately why the Majorana solution to Ĥ cannot
couple to electromagnetic fields and is charge neutral.

Now, finally, we are in a position to diagonalize Ĥ . We do so by first diagonalizing ĥBdG

(which is possible to do analytically for an infinite, uniform nanowire). Assuming we have
eigensolutions ϕ such that ĥBdGϕi = Eiϕi, then

Ĥ =
1

2

∑
i

Eia
†
iai, (1.18)

where
ai =

∫
dkϕ∗

i (k)Ψ(k). (1.19)

We are now equipped to study the infinite, uniform nanowire, for which ĥBdG becomes a
simple 4 × 4 Hamiltonian, dependent on a single parameter k. The results of this calculation
are presented in Section 1.2.2.

1.2.1 Discretization of Nanowire Hamiltonian

Asmentioned above, the simulation of a nanowirewith position-dependent parameters requires
a real-space description such that can be numerically solved. Our starting point is the real-space
version of Eq. 1.17, the BdG Hamiltonian:
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ĥBdG(x) = (−h̄2∂2x/(2m∗)− µ(x))σ0τz

+ (−iα∂x)σyτz
+ (gµBBx(x)/2)σxτz

+∆(x)σyτy, (1.20)

where we have assumed a space-dependent chemical potential, magnetic field, and supercon-
ducting order parameter. ∆ is taken to be real which is possible for when there is no time-
dependence (ac Josephson effect). We then define

Ĥ =
1

2

∫
dxΨ†(x)ĥBdG(x)Ψ(x), (1.21)

where the Nambu vectorΨ(x) is defined similarly to above, but in real space. The Hamiltonian
is then discretized using a standard nearest-neighbour tight-binding chainmodel, by converting
the integral to a sum, and using the standard discretization formulas

∂x → 1

2a
(|i+ 1⟩⟨i| − |i− 1⟩⟨i|) , (1.22)

and
∂2x → 1

a2
(|i⟩⟨i+ 1|+ |i+ 1⟩⟨i| − 2|i⟩⟨i|) , (1.23)

where discretization is occurring on a uniform chain with site indices |i⟩. Real-space position
x is approximated to the closest i× a, where a is the discretization length. The result is

Ĥ =
∑
i

|i⟩⟨i| {(2t− µ)σ0τz + (gµBBx/2)σxτz +∆σyτy}

+
∑
i

(|i⟩⟨i+ 1|+ |i+ 1⟩⟨i|) {(−t)σ0τz + (−iα/2a)σyτy} . (1.24)

Here, the terms on the first line are the so-called on-site terms, and the terms on the second
line are the hopping terms. The parameter t = h̄2/2m∗a2 is the hopping energy. For the tight-
binding approximation to be valid, a necessary condition is that the hopping energy must be
the largest energy in the system by some margin.
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1.2.2 Results

Below we show the results of computing the dispersion relation of an infinite, uniform InAs
nanowire (calculated from Eq. 1.24) and compare with the case of a finite InAs nanowire, as a
function of axial magnetic field. The finite nanowire is in contact with a Nb superconductor
from one end. The Nb contact is assumed to have a BCS superconducting gap of 1.4meV, and a
BCS-like decay [42] ∝

√
1−B2

x/H
2
c of the superconducting gap versus the applied magnetic

field, appropriate for a type II superconductor. We use the value Hc = 3.1 T for the Nb thin
film. The other end of the nanowire is contacted with a normal metal. The local density of states
(LDOS (x) =Σ|ψ(x)|2, summed on all eigensolutions ψ) of the finite nanowire is calculated with
use of the Kwant software package [43]. Kwant is an open source tool written in the Python
programming language that can numerically solve (elastic) scattering and transmission prob-
lems in many different systems and situations. Here we use it to find reflected and transmitted
wavefunctions, given incident wavefunctions on our nanowire (Figure 1.2 panel a) from posi-
tive or negative infinity, at different energies, at temperature T = 0. Standing-wave solutions
(bound states) and local density of states (LDOS) can thence be calculated.

Figure 1.2 panels (d) and (e) pertain to zero magnetic field. We see in (d) that the infinite
nanowire’s dispersion relation shows four bands, corresponding to the two spin-channels and
the electron-hole channel of the Nambu vector, which cross at k = 0. We also see a symmetric
band gap around zero energywithin which no state is possible. The value of the band gap equals
1.4 meV, the superconducting gap of the Nb contact. The same band gap is seen in the LDOS
of the finite nanowire in (e). The ‘skewness’ of the states above the gap in the finite nanowire
relate to the difference in the coupling strength to the two different contacts: a roughly 10 times
stronger coupling to the Nb superconducting contact ensures proximity superconductivity in
the nanowire, the weaker tunnel-like coupling to the normal contact limits the broadening of
the states.

The bandgap is bottlenecked at two points: the interior gap at k = 0, sometimes called the
“topological” gap ∆1, and the exterior gap ∆2 at high k. With the application of a magnetic
field, the four bands of the dispersion relation split, two moving closer together and two further
apart. Panel (b) shows that as the inner two bands move closer together with Bx, the interior
gap shrinks, until it closes at some critical value Bc = 2.42 T. Panels (f, g) show the dispersion
relation and the LDOS of the nanowire at this critical field, respectively. The critical magnetic
field generally follows the formula B2

c = ∆2
sc + µ2 and refers to the point where a topological

phase transition occurs. Theword topological is used here in a different sense than in Section 1.1,
and refers to the nature of the ground state of the system as a component variable (in our case
the axial magnetic field) is being continuously varied. The ground state of the system must
smoothly and continuously vary so long as the gap doesn’t close, but may have a discontinuity
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Figure 1.2: (N.b. two-page figure & caption.) (a) Schematic of a nanowire (black) of length 1
µm which can host MZM. Transparent contact to a superconductor S from the right induces a
proximity superconducting gap of 1.4 meV. Tunnel coupling to normal metal contact N from
the left defines the edge of the topological regime. The nanowire satisfies the recipe for hosting
MZM, namely a strong Rashba spin-orbit coupling along y and a magnetic field Bx along the
axis of the nanowire. A large g factor g = 12.5 relevant to InAs is assumed. Other parameters
in this panel and other panels are also relevant to InAs—except in panel c where InSb is used.
Specifically, m∗ = 0.023 me, α = 0.3 eVÅ. (b) “Topological” gap ∆1 (i.e. gap at k = 0, see
panel d) as well as exterior gap ∆2 and magnetic field-dependent proximity superconducting
gap ∆sc vs axial magnetic field Bx for an InAs proximitized device. Parameters pertaining to
Nb are used, namely ∆sc (0) = 1.4 meV and critical magnetic field Hc = 3.1 T (relevant to
Nb thin films). With ∆1 closing at Bx = 2.42 T the system enters the topological regime.
Maximal topological protection occurs at Bx = 2.79 T when ∆1 = ∆2 for a value of ∼ 490
µeV. (c) Same as panel b, but for InSb parameters, namely m∗ = 0.014me, g = 21, α = 1.0
eVÅ. Transition to the topological regime occurs at Bx = 1.81 T, and topological protection is
maximal at Bx = 2.56 T, with a value of ∼ 770 µeV. (d, f, h) Dispersion relation (i.e. energy vs
wavevector k) for an infinite nanowire (“Bulk Spectrum”) calculated fromdiagonalizing Eq. 1.24.
(d) At Bx = 0, the superconducting gap can be seen separating the positive “electron” solutions
from the negative “hole” solutions. (e, g, i) Local density of states (LDOS), i.e., the sum of
the densities

∑
|ψ(x,E)|2 of the eigensolutions of the discretized Hamiltonian (Eq.1.24), in

arbitrary normalized units (lighter = more density), vs position x and energy E, as a function
of axial magnetic field.
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Figure 1.2: (Cont. from prev. page.) (f) At Bx = Bc = 2.42 T, the gap closes, signifying the
transition to the topological regime. (h) The “deepest” part of the topological regime, with a
topological gap ≃ 470 µ eV. The MZM cannot be seen in the bulk spectrum, as an infinite
nanowire has no edge at which the MZM could localize. (g, i) LDOS calculated using Kwant for
a 1 µm long nanowire with the same parameters as those in panel a. Bulk-Edge correspondence
can be seen by comparing the LDOS graph with the bulk spectrum graph to its left: in panel
e (prev. page), a dark superconducting gap region with no states is seen, which closes as the
topological gap closes at Bx = Bc in panel g. In panel i, an MZM can be seen pinned at zero
energy and localized near the edge of topological region at x = 0.

15



at the topological transition point [44]. This is indeed what happens at Bx = Bc: a pair of
eigensolutions appear (discontinuously), pinned to zero energy (i.e., are chargeless) which are
an instance of Majorana zero modes. The number of MZM is the topological invariant [4, 44],
a quantity that is conserved versus the magnetic field, other than at the topological transition
point, where it is discontinuous and changes by two. MZM, as solutions to the BdG equation,
always come in pairs and are localized near the edges of the proximitized region.

Panels (h, i) show the dispersion relation and the LDOS of the nanowire above the topo-
logical transition point, at Bx = 2.79 T. A zero energy state is seen in the LDOS of the finite
nanowire near the N-contact, the edge of the proximitized region. Another MZM is expected
at the other edge of the proximitized region, at position x = +∞; so it is not shown. The dis-
persion relation of the infinite nanowire, whose “edge of the proximitezed region” is undefined,
does not show any signatures of MZMs.

Focusing again on panel (b) we see that the interior gap openswith increasingmagnetic field
above the topological transition filed Bc. Nothing in particular happens to the exterior gap ∆2

at this critical field value. However, ∆2 depends on SOI coupling strength α and disappears
for α = 0. (The exact dependence is complicated [44], but for low Bx, µ is proportional to√
α.) So, a large SOI coupling is required for the MZM to be well-separated from other states at

Bx > Bc. ∆2 also scales with the BCS gap of the Nb contact. Given that the minimum of∆1,∆2

decides the maximum gap (separation of MZM from other states), the optimal point occurs at
∆1 = ∆2. Using our parameters for InAs, this occurs at Bx = 2.79 T (as plotted in panels (h,
i)), for a maximal gap value of ∼ 490µeV. For InSb (panel c), the gap is maximal at Bx = 2.56
T, with a value of ∼ 770µeV. This separation of the MZM from other states is sometimes called
the topological gap or the topological protection, and is the subject of Section 1.3.

At this point we turn our attention to the simulatedMZMwavefunction. Ref. [45] calculates
the wavefunction as an oscillatory function with an exponential envelope, following a generic
formula

ψ(x) = ψ0eikfxe−x/ξ. (1.25)

We can extract the wavelength λ = h̄/kf for the oscillation and the length-scale for the ex-
ponential envelope ξ from our numerical simulations, and compare with the analytical results
provided in Ref. [45]. In deriving the analytical result the two following limiting cases are
used: The weak SOI regime, in which ∆ is the largest energy scale, and the strong SOI regime,
in whichEso = h̄2k2so/2m

∗; kso = m∗α/h̄2 is the largest energy scale. Here, α is the Rashba SOI
strength parameter. Figure 1.3 shows λ, ξ vs axial magnetic field for the weak SOI regime. We
compare the analytical results of Ref. [45] with the parameters extracted from our numerical
simulation, and observe that meaningful convergence between the two can only be achieved
for extremely large B-fields.

16



Figure 1.3: (a) MZM decay length ξ and (b) MZM oscillation period λ in the weak SOI regime,
vs axial magnetic field Bx. Here we have assumed that the superconducting critical field Hc

is infinite, but otherwise realistic parameters relevant to Nb and InAs are used. The solid lines
are parameters extracted from the numerical LDOS, while the dotted lines are λ, ξ reported in
Ref. [45] following Eq. 1.25. The shaded region depicts 10 times the one-standard-deviation
numerical confidence in the extracted parameters (calculated from the covariance matrix of the
least-squares fit). The discrepancy between the numerical and the theoretical curves (especially
in ξ) shows that with realistic Nb+InAs parameters, we are not in the limiting case regime
where ∆z ≫ ∆sc, so a numerical calculation is required for a correct answer. The first dotted
vertical line at (B = 4 T) is the edge of the topological regime (ξ is divergent as we approach
the transition, and the wavefunction spans the entire nanowire). The second vertical line at
B = 6.5 T signifies kz/kf = 95%, i.e. kz ≫ kso, above which the parameters start converging
to their limit case values, although very slowly. Extremely large magnetic fields (Bx > 104 T)
are required for numerical agreement within 1%.

Similarly, figure 1.4 shows λ, ξ for the strong SOI regime, defined as Eso > ∆sc,∆z =
gµbBx/2; comparing our numerically extracted parameters with the analytically derived ones.
Again, we see that meaningful convergence is only achieved for extremely large values of α.
These results convey the idea that for realistic devices, in order to be able to accurately estimate
the behaviour of theMZM, a numerical simulation using realistic device-specific parameters are
required.
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Figure 1.4: (a) MZM decay length ξ and (b) MZM oscillation period λ in the strong SOI regime,
vs spin-orbit strength. Bx = 8 T and infinite Hc is assumed. Parameters for Nb+InAs are used
(other than α which is swept). Similarly to Fig. 1.3, the shaded region depicts 10 times the
one-standard-deviation numerical confidence in the extracted parameters. As with the weak
SOI regime, the theoretical curves (but this time λ, see Eq. 1.25) do not agree with numerical
values in realistic regimes, and a numerical calculation is required for the correct answer. The
first vertical line at α = 0.98 eVÅ signifies Eso > ∆sc, above which the strong SOI regime can
be used. The parameters start slowly converging to their theoretical values above α = 1.4 eVÅ
(second vertical line), i.e. Eso > ∆z .

1.2.3 Discussion

We have simulated MZM in a semi-infinite nanowire contacted with Nb, using realistic param-
eters relevant to InAs and InSb. We observe that the topological transition is expected to occur
at around 2 T for InAs devices, and 1.5 T for InSb devices. This is a relatively high value of the
axial magnetic field, which will contend with the superconductivity in the Nb or Al contacts.
A next step in simulating the contacts will take into account the effects of field focusing onto
the region of interest of the nanowire, as the superconducting thin film excludes the magnetic
field from its interior. Al, a type I SC may be more effective at excluding the field, and may
show a certain advantage in this regard. However, the lower critical field of the Al thin films
will favour InSb nanowires, due the larger g-value of InSb.

As we see in Fig. 1.2, whenBx > Bc =
√
µ2 +∆2

sc, the gap reopens; however, since the Nb
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thin film’s superconducting gap closes with the axial magnetic field, for larger magnetic fields
it closes again. Therefore, there is a maximal value for the topological gap that can be expected,
around 500 µ eV. For our parameters, this occurs at 2.79 T. Ref. [46] and the references therein
discuss the required extensions to the simple models (such as the one used here) pertinent to
the formation of subgap states (including MBS) in a realistic nanowire device. Myriad effects
relevant to the mechanisms and phenomenology of subgap states are explored, such as mul-
timode effects, the surrounding electrostatic environment, g-factor and SOI renormalization,
field focusing, inhomogeneity of pairing to the external leads, and effects of strong proximity
effect to the metallic superconductor.

As mentioned above, the MZMwavefunctions have a long exponential tail, with a envelope
lengthscale ξ ∼ 500 nm for our parameters. In a finite device, MZMs at the two ends of a
nanowire would hybridize [47, 48] and lift above zero energy (i.e., no longer strictly Majorana-
like), in a manner proportional to the overlap of the wavefunctions. A realistic simulation of the
wavefunction is required to yield its relevant lengthscales, and allow realistic device designs.
Specifically, ξ can be in the range of a few hundred nanometers, providing a challenge and
requiring a long device ∼> 1µm in length in order to avoid this overlap.

1.3 Quantum Computing with Majorana Bound States

The central idea behind quantum computing with Majorana Bound States is the concept of
topological protection from error, which refers to the topological energy gap, i.e., the energy
gap that opens and separates theMZM from other states at magnetic fields above the topological
transition. As mentioned in the previous section, the value of this gap could be a few hundred
µ eV in realistic conditions. If a qubit is so defined that quantum information is encoded in the
shared non-local wavefunction of the two MZM (one at each end of the nanowire), then it shall
be isolated and protected from all other states (and noise) by the value of this gap, possibly
providing long-term coherent storage of information in time. Furthermore, as MZM are Ising
anyons, if the two MZM are braided, then a certain operation (whose detail depends on how
exactly the qubit is defined) occurs in the Hilbert space of the shared MZM wavefunction [27],
in an exact and fault-tolerant manner [4, 49, 50]. Therefore, the MZM can be thought of as a
potential platform for fault-tolerant computing — provided that several obstacles are overcome.
Firstly, care should be taken in describingMZM in nanowire devices as truly isolated from other
states. The nanowire is connected to external leads, whence electrons and Cooper pairs can
tunnel into the device. In other words, these systems are subject to quasiparticle poisoning [51]
from the leads as well as the continuum of states above the gap. The total number of electrons in
a (proximitized) superconductor is not a good quantum number [52], but the even-or-oddness
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of this number (electron parity) is. It is more accurate to say that so long as the parity of
the electrons in the system are conserved, then the system enjoys topological protection from
error, or in other words, the system enjoys “parity protection” [47]. In order to increase the
effectiveness of such protection, designs involvingMajorana islands have been proposed, where
the idea is to use a non-negligible charging energy in order to protect the quantum state of the
“island” from electrons in the external leads [53, 54, 55, 56]. Secondly, while braiding the MZM
will result in some entangling two-qubit gate (again, the details depend on how the qubits are
defined), it is by itself not sufficient for universal quantum computing [4, 50]. Arbitrary single
qubit phase gates must be performed in some topologically non-protected manner in order to
achieve universal quantum computing. Measurement of the quantum state at the end of the
computation also requires breaking topological protection. So long as the information resides
in the shared degenerate ground state of the MZM — or in other words it is truly isolated from
the rest of the universe — then readout is not possible. This topologically protected state needs
to be converted into some other form of accessible quantum information such as charge or flux,
before readout can occur. In Ch. 6, we propose an experiment in which the charge state of a
quantum dot is used to read out the state of an MZM qubit. The paper by Karzig et al. [27] as
well as several others [57, 58, 59, 60, 61, 62, 63] have proposed scalable designs for universal
quantum computing based on MZM, where in single qubit operations can be performed via
controlled overlap of the MZM [63], an external flux [64, 65, 66], or coupling with a spin [67]
or charge qubit [68]. In a similar manner, read out is performed [69] via the charge state of
quantum dots, the current-phase relation of a SQUID, or via a large overlap of the MZM so that
an anyonic fusion operation is performed [70, 63]. We point the reader interested in further
details to Refs. [71, 50].

1.4 Review of Experimental Aspects of Majorana Bound States
in Condensed Matter

Due to the possibility of using MBS as a building block of a qubit, there has been enormous
interest in Majorana physics in condensed matter in the past decade or so. The sheer volume of
literature surrounding the topic means that a comprehensive literature review would take on
the scope of a long review article by itself; we point the interested reader to Refs. [72, 73, 74, 75].
Here we outline the most relevant developments in the field regarding experimental realization
ofMZM in nanowires, aswell as two dimensional heterostructures. Following the breakthrough
realization of Fu and Kane [3] that effective p-wave pairing can be induced in a proximitized
semiconductor via a magnetic field, several “signatures” of the presence of MZM in realistic de-
vices were theorized in “recipe” papers mentioned above. These signatures include a zero bias
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conductance peak (ZPB) when tunneling into theMZM from a normal contact [8, 34, 5, 7], quan-
tized at 2e2/h (as opposed to e2/h for a trivial device); a 4π periodic current phase realization
of a SQUID hosting MZM [6, 35], and the skipping of the odd Shapiro steps in a Josephson junc-
tion hosting MZM when excited with microwave radiation [35]. The latter two are ultimately
related to MZM behaving like “half of an electron”, while the doubling of the expected conduc-
tance peak is due to the double degeneracy of the MZM wavefunction. The first report of an
experimental observation of a ZBP came in 2012 by Mourik [76], followed by several other pa-
pers [77, 78, 79, 80] claiming to have observed ZBP as well as missing Shapiro steps [81]. There
has been significant debate (summarized in Ref. [46]) regarding the interpretation of ZBP as the
signature of MZM. Firstly it was pointed out [82, 83] that the observed peak is not exactly quan-
tized at the expected value (2e2/h). Primary culprits were identified as the background elec-
trostatic landscape of the nanowire, disorder in the nanowire, and perhaps most importantly, a
lack of optimal contact transparency between the nanowire and the superconducting leads, re-
sulting in a “soft” proximity superconductivity. The efforts to alleviate these concerns has lead
to significant development in the material science and technical expertise of fabricating hybrid
junctions in nanowires and heterostructures — including but not limited to epitaxially grownAl
on InAs and InSb nanowires in full-shell [84] and half-shell [74] configurations displaying near-
perfect transparency and a “hard” superconducting gap [85, 86], clean heterostructures and
nanowires that show ballistic transport and little disorder [87], epitaxially contacted junctions
on high mobility InAs and InSb heterostructures [88, 89], and highly transparent contacts made
between semiconductors and ex situ deposited superconducting leads [90]. Since then, obser-
vations on ZBPs quantized to the expected value 2e2/h have been reported [91, 92, 84, 93], with
considerable robustness of the ZBP as compared to the earlier experiments. However, as the
theoretical and numerical understanding of realistic heterojunctions has grown [54], the idea of
using ZBPs as a signature for MZM has been fundamentally challenged [94]; with simulations
revealing myriad phenomena including inhomogeneity of contacts, non-negligible Coulomb
interactions, multi-band effects, and other local effects potentially causing ZBPs in topolog-
ically trivial conditions [46, 95]. Reference has been made to (topologically trivial) Andreev
Bound States (ABS) that mimic MBS behaviour, sometimes called quasi-Majorana or pseudo-
Majorana states [53, 96, 97]. Refs. [98, 99] claims to have observed quantized ZBPs in topo-
logically trivial nanowire junctions, due to correlated subgap states. Concerns regarding the
non-reproducibility of non-zero peak experiments have been raised, [74], and a prominent 2018
paper [100] claiming unequivocal MZM observations was retracted and corrected with broader
interpretations admitting the possibility of topologically trivial ZBPs [101]. Similarly, Ref. [102]
sees the reappearance of the missing Shapiro steps under topologically trivial conditions. Thus,
the robustness of the ZBP and Shapiro step signatures [103] may be insufficient as unequivo-
cal evidence for MZM. The more promising avenue appears to be the signatures that rely on
the non-local nature of the MZM wavefunction. The observed exponential overlap of MZM
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versus junction length [47], as well as proposed and realized [48] experiments based on non-
local and Crossed Andreev Reflection [104], and larger SQUIDs whose current-phase relation
is a function of the coherence of the shared MZM wavefunction over a large distance [48, 105]
are interesting avenues currently under perusal. Ultimately, the only irrefutable signature of
MZM and its topological nature would be an observation of its braiding statistics. Multiple
proposals for realistic and scalable platforms for experiments have been put forth [57, 58], as
well as proposals for using such devices for quantum computing as mentioned in the previous
section. However, as of this writing, we are unaware of any experiments reporting successful
observation of non-trivial braiding statistics; the completion of such an experiment remains
the holy grail of this field. Additionally, while not directly related to the topic of this thesis,
we point to experiments pertaining to MZM conducted in atomic chains [106, 107], monolayer
islands [108, 109, 110], and topological insulators [111, 112].

1.5 Structure of this Thesis

This thesis is structured around three generations of InAs nanowire Josephson Junction de-
vices, fabricated with the aim of studying proximity superconductivity and the possibility of
the realization of MZMs. Ch. 2 details the first generation devices, our first attempt. Analysis
of those devices revealed a novel Orbital Josephson effect, a simplified theory for which is de-
scribed in Ch. 3. The second generation devices, which show signs of Andreev bound states,
are described in Ch. 4. Ch. 5 details our third generation devices, which, while successful in
showing signatures of ABS and proximity superconductivity, reveal the difficulties in realizing
MZM using InAs nanowire devices. This is discussed in Ch. 7, as well as the outlook for fu-
ture devices and experiments. Ch. 6 details a proposal to use devices similar to ours in order
to make a charge-readout of the parity of an MZM pair, a necessary step for the realization of
topological quantum computation.
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Chapter 2

Josephson Interference due to Orbital States
in a Nanowire Proximity Effect Junction

2.1 Introduction

In this chapter we describe the first generation of hybrid nanowire devices studied experimen-
tally [113]. We focus on one Josephson junction made with InAs nanowire and contacted with
Nb. Proximity superconductivity is observed in the form of a supercurrent across the Josephson
junction. The nanowires rest on top of five local bottom gates. The original idea was to use the
bottom gates to tune the nanowire into a quantum dot regime, and study the proximity effect
in the presence of a quantum dot. This proved to be difficult to achieve, as when the device
was tuned into the quantum dot regime it showed very little superconductivity. This may be
due to the quality of Nb/InAs interfaces in this device, which, as described in Chapter 1, is a
crucial quantity describing the proximity superconductivity. We find the contact transparency
t to be dependent on the gate voltages through the density of electrons in the nanowire. For
this device we achieve t = 0.4 to t = 0.65. These values are improved in the later generation
devices (chapters 4 and 5), where the devices can be tuned to the quantum dot regime as well
as the Josephson regime.

One observation made during this experiment was that of the modulation of the critical cur-
rent of the Josephson junction in the presence of an axial magnetic field. This is a phenomenon
that was observed in the other generation devices as well. We develop in this chapter a model
called Orbital Josephson interference that may describe this interesting observation. Under-
standing this phenomenon is particularly important as it occurs in the exact configuration in
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which the device is predicted to go into the topological regime — so any signatures of Majorana
bound states in the critical current need to be deconvolved from the Orbital Josephson effect.

The model presented in this chapter for the Orbital Josephson effect is rather simple and
highly idealized. This is greatly improved in Chapter 3 where a more realistic version of the
model is presented; however, the essence of the model remains the same: imagine the InAs
nanowire as a tube. Due to Fermi level pinning on the surface of InAs nanowires, most of
the transport is, semiclassically speaking, occurring on the surface of this tube. Electrons can
occupy different orbital angular momentum states in the nanowire, and non-zero angular mo-
mentum states can be imagined as spiral (helical) paths on the surface of this tube. These spiral
paths have a component of their momentum perpendicular to the axially applied magnetic field;
this allows for some phase to be picked up by the electrons. The same goes for the conduction
band holes that make the other half of an Andreev pair. Orbital Josephson interference occurs
as an interference effect due to these different spiral paths.

The Josephson supercurrent in a Nb-InAs nanowire-Nb junction was studied experimen-
tally. The nanowire goes superconducting due to the proximity effect, and can sustain a phase
coherent supercurrent. An unexpected modulation of the junction critical current in an ax-
ial magnetic field is observed, which we attribute to a novel form of Josephson interference,
due to the multi-band nature of the nanowire. Andreev pairs occupying states of different or-
bital angular momentum acquire different superconducting phases, producing oscillations of
the critical current versus magnetic flux. We develop a semi-classical multi-band model that
reproduces the experimental data well. While spin-orbit and Zeeman effects are predicted to
produce similar behaviour, the orbital effects are dominant in the device studied here. This
interplay between orbital states and magnetic field should be accounted for in the study of
multi-band nanowire Josephson junctions, in particular, regarding the search for signatures of
topological superconductivity in such devices.

2.2 Motivation

There has been much recent focus on topological superconductors because of the anyonic char-
acter of the states they support [4], and their possible applications to quantum information
processing [4, 25]. A promising avenue for the realization of topological superconductors is
via the superconducting proximity effect. Majorana fermions (MFs) [1] are predicted to be
observed with a combination of conventional s-wave superconductivity, a proximate semicon-
ductor with strong spin-orbit coupling and a suitable Zeeman splitting [6, 8, 34, 35, 5, 7]. Low
bandgap semiconductor (InAs, InSb) nanowires have attracted attention as candidates for the
realization of such hybrid devices. They form transparent, Schottky barrier-free contacts with
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superconductors such as Nb and Al [40], have a strong Rashba spin-orbit coupling, and their
high Landé g-factor allows them to be driven into the topological phase in the presence of a
magnetic field applied perpendicular to the spin-orbit vector. Several proposals for observing
MFs in such devices have been put forward [6, 114, 115, 116, 117, 118, 119, 82], and several
reports of zero-bias anomalies (ZBAs) in differential tunnelling conductance [76, 78, 77] consis-
tent with MFs [120] have been made. However, similar ZBAs may arise from a non-topological
origin such as strong disorder [121, 122, 123, 124], Kondo resonances [125], or smooth confine-
ment potentials in the nanowire [120, 121, 126, 127, 128]. Indeed, there have been observations
of ZBAs from apparently non-Majorana origins [79, 80, 129].

The topological phase is theoretically predicted to arise in multiband nanowires, even in the
presence of moderate disorder [130]. The structure of transverse subbands due to radial confine-
ment in semiconductor nanowires has been the subject of several recent studies [36, 131]. Since
proximity superconductivity is mediated by the Andreev reflection of electron-hole pairs [132],
and the constituent carriers occupy certain transverse subbands in the nanowire, one might
expect an interplay between the proximity effect and the nanowire subband structure. In this
chapter, we ask how this interplay affects the critical current of a semiconductor nanowire
Josephson junction in the presence of a magnetic field. The result is crucial for properly in-
terpreting experiments on nanowire Josephson junctions, particularly with respect to recently
proposed MF detection protocols which rely on the measurement of the critical current rather
than ZBAs [133]. Motivated by experimental observations, we develop a model describing a
novel form of Josephson interference arising in a nanowire junction under an applied axial
magnetic field. The axial field orientation is needed to reach the topological phase in InAs and
InSb junctions. It is shown that the interference model can explain our experimental observa-
tions on a Nb-InAs nanowire-Nb junction.

2.3 Results

2.3.1 Nanowire-based Josephson Junction

A Superconductor/Normal conductor/Superconductor (SNS) Josephson junction was fabri-
cated, wherein an InAs nanowire is used as the N weak link, and is contacted by Nb leads
as shown schematically in Figure 2.1a. Extensive dc electrical measurements of the junction
were made in a dilution refrigerator with a base lattice temperature of 25 mK. A superconduct-
ing proximity effect is observed in the junction in the form of a dissipationless current. When
the current bias exceeds a switching current value Isw, the junction switches to the normal state.
The value for the switching current depends on the voltages applied to the local gates, and can
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be as high as 55 nA. The phase dynamics of the junction are overdamped, so Isw approximates
the thermodynamic critical current Ic (see Section 2.6.1 for further details.) Conductance mod-
ulations at voltages Vn = 2∆Nb/(en), for integer n, signify multiple Andreev reflections and
indicate phase coherence across the junction. Here,∆Nb = 1.2 meV is the superconducting en-
ergy gap in the Nb leads, and e is the electronic charge. An excess current [134] of about 42 nA
indicates a Nb-InAs contact transparency t ∼ 0.65 — see Section 2.6.1. The figure of merit
product IcRN of the junction is∼ 0.4 mV, whereRN is the normal state resistance of the junc-
tion. This is considerably smaller than the ∆Nb/e = 1.2 mV expected for a ballistic junction,
but not by multiple orders of magnitude as in a tunnel junction, putting us in the mesoscopic
scattering regime. The normal section of the junction is semiconducting, and tuning the local
potential with voltages on the bottom gates, especially V3 (see Figure 2.1a) modulates the criti-
cal current. Variations of Ic and the normal state conductance GN = 1/RN with gate voltage
are correlated, as seen previously by others [135]. The junction is long compared to the super-
conducting coherence length in Nb, ξNb ≪ L ∼ 200 nm. We estimate an electronic mean free
path le on the order of 100 nm, resulting in an intermediate regime between ballistic and diffu-
sive transport. The mini-gap in the nanowire is determined [136, 137] by the Thouless energy
ETh = h̄D/L2. Here, D = levF/3 is the electron diffusion constant in the nanowire, and vF is
the Fermi velocity. Using an estimated value for the Fermi energy EF ∼ 150 meV, we obtain
ETh ∼ 0.5∆Nb. As discussed in Section 2.6.1, the superconducting coherence length in InAs,
ξInAs, is limited by dephasing to the inelastic scattering lengthscale, lin. Using values for lin
from magnetotransport studies on similar nanowires [138], we estimate ξInAs ∼ 250− 500 nm.

The junction critical current Ic was measured in perpendicular and axial magnetic fields,
B⊥ and B∥ respectively. Below we discuss the behaviour of Ic in each field direction.

2.3.2 Perpendicular Magnetic Field

The perpendicular fieldB⊥ was applied in the plane of the substrate and at an angle 2◦±3◦ with
respect to ŷ, the perpendicular direction to the nanowire axis. A complete penetration of the
magnetic field into the normal section of the junction is assumed, and the screening of the field
by Josephson supercurrents neglected. Ic is found to have a monotonic, quasi-Gaussian decay
with B⊥ (Figure 2.1b). The field was not increased beyond B⊥ = 0.55 T, where the switching
transition becomes too weak for Ic to be determined.

A similar, monotonic behaviour of Ic in a perpendicular field was observed previously for
InAs and InN nanowire junctions [139, 140]. In the narrow planar junction limit with perfect
interfaces, Ic is expected to exhibit a Gaussian decay [141, 142], Ic(B) = Ic(0)e

−0.238(Φ/Φ0)
2 , due

to depairing. Here, Φ is the magnetic flux through the junction, Φ = B⊥Ld, d the nanowire
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Figure 2.1: (a) Schematic of the nanowire SNS junction. The set of bottom gates, especially V3,
are used to modulate the local potential. Our model treats the nanowire section as a cylindrical
shell conductor of diameter d, contacted by Nb leads. We use d = 63 nm, from a scanning
electronmicrograph of the device studied experimentally. (b) Monotonic, quasi-Guassian decay
of the junction critical current Ic in a perpendicularmagnetic field. The data (solid circles) can be
fit to a Gaussian function (dashed line), exp (−0.499(Φ/Φ0)

2). HereΦ is the flux corresponding
to the perpendicular field and Φ0 is the flux quantum. (c) Oscillatory behaviour of Ic in an axial
magnetic field. (d) The same data as (c), enlarged to show nodes. We explain these oscillations
as Josephson interference due to classical spiral trajectories of Andreev pairs on the cylindrical
shell. Different paths correspond to nanowire subbands of different orbital angular momentum.
Example trajectories corresponding to l = 0, 1 are shown in (a). Representative error bars are
shown for selected data points in (b,c,d) in blue colour.

diameter, and Φ0 the (superconducting) flux quantum, Φ0 = h/(2e). The experimental data,
however, is best fit to a curve Ic(B) = Ic(0)e

−0.499(Φ/Φ0)
2 . This discrepancy between the numer-
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ical factors can be explained in terms of non-ideal interfaces [143], i.e. a contact transparency
less than 1 — see Section 2.6.2.

2.3.3 Axial Magnetic Field

An axial magnetic field is perpendicular to the Rashba spin-orbit direction, and the junction
is predicted to enter the topological phase for a certain range of B∥ values. Here, we study
the dependence of Ic on B∥. The axial field was applied at an angle ∼ 8◦ ± 4◦ with respect
to the nanowire axis. The misalignment in B∥ is shown in Section 2.6.5 to have little effect on
fitting the experimental data to the model, so for simplicity in what follows we assumeB∥ to be
aligned. As with the perpendicular field, a complete penetration of B∥ into the normal section
of the junction is assumed, and the screening of the field by Josephson supercurrents neglected.

Since the Josephson current is aligned with the field direction, naively one would expect no
interference effects, and simply a slow decrease in Ic with magnetic field due to depairing in the
Nb leads. However, an oscillating behaviour in Ic vs. B∥ is observed, as shown in Figure 2.1c.
In terms of the flux through the axial cross-section of the nanowire Φnw = B∥πd

2/4, the os-
cillations do not exhibit Φ0-periodicity. Moreover, the shape and periodicity of the oscillations
can be modified by changing the gate voltages.

What is the underlying physics of the observed oscillations? Recent observations of an os-
cillatory critical current in InSb junctions are consistent with 0-π transitions of the junction
phase in the presence of spin-orbit and Zeeman effects [144]. However, we estimate for the
InAs junction studied here, the magnetic field at which Ic is predicted to have a minimum due
to a 0-π transition is ∼ 7 T, an order of magnitude larger than the values observed ∼ 0.6 T
(see Section 2.6.3). Instead, we explain the effect as a form of Josephson interference that is
analogous to the well-known effect for wide planar junctions in a perpendicular field that pro-
duces a Fraunhofer pattern, but here the azimuthal velocity component of carriers occupying
subbands of finite orbital angular momentum yields a phase of magnetic origin, in addition
to the zero-field superconducting phase difference across the junction. For simplicity we con-
sider conduction on a shell, motivated by the tendency in InAs nanowires to form a surface
accumulation layer of electrons due to the presence of surface states. Furthermore we use clas-
sical paths on the shell to calculate the additional phase for a given angular momentum state.
While this model is semi-classical and based on simplifying assumptions, it illustrates that or-
bital subband effects can dominate the behaviour of Ic in an axial field for multi-band nanowire
SNS junctions. Good agreement is found between the model and experimental results using
a physically reasonable set of fitting parameters.
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2.3.4 Junction Critical Current in a Shell Conduction Model

Intrinsic InAs nanowires typically have surface band bending∼ 100−200 meV [145] due to the
pinning of the Fermi energy above the conduction band at the nanowire surface [146, 147, 148],
and a corresponding surface accumulation of carriers. We model the InAs nanowire junction
as a cylindrical shell 2-dimensional electron gas (2DEG) contacted by Nb leads in the geometry
of Figure 2.1a. The 2DEG is assumed to be at a radius d/2 from the nanowire center. We
consider relaxing this assumption and allowing more realistic transverse wavefunctions later.
For numerical calculations, we choose the gauge A = (d/4)B∥θ̂ for the vector potential (θ̂ is
the azimuthal direction in the yz plane).

The motion of an electron in the 2DEG can be decomposed into an axial degree of freedom
along x̂ and an azimuthal degree of freedom along θ̂. The allowed quantum states are charac-
terized by an angular momentum quantum number l = 0,±1,±2, etc; i.e. we have assumed
cylindrical symmetry. In Chapter 7 we discuss calculations and realistic device simulations in
which this condition is relaxed, yet the picture remains qualitatively unchanged. In the ballistic
limit, classical trajectories of electrons in subband l going from source to drain are spiral paths
on the cylindrical shell with a winding angle θl equal to the azimuthal arc length divided by the
radius. So, θl = (vθ(l)) × (L/vx) × (2/d), where vx, vθ are the axial and azimuthal velocities,
respectively, and vθ is explicitly a function of the quantum number l. Below we also consider
trajectories in the presence of back-scattering. The Andreev process involves an electron and
a retroreflected hole, both located in the conduction band of the normal section of the junc-
tion [149]. Therefore, the hole is considered to be a time and charge-reversed electron, with
the same effective mass m∗, mean free path le and radial position. The relative motion of the
electron and hole can be neglected [150], and the charge transport described in terms of an
‘Andreev pair’ [151] with charge −2e, which follows the same trajectory as the electron. As
long as the center of mass of the Andreev pair follows a spiral trajectory, the interference effect
should appear, even if the holes do not have the same wavefunctions as electrons. Schematic
examples of classical trajectories are shown in Figure 2.1a for l = 0 and l = 1 states.

An Andreev pair traversing the junction acquires a gauge-independent phase ϕ = (2e/h̄)×∫
A · dl, due to the θ̂ component of its momentum perpendicular to the field. This follows

from the Ginzburg-Landau formula for the gauge-invariant phase [152]. The line integral, taken
from one Nb electrode to the other, depends only on the azimuthal angle θ between the start and
finish points, and not on the details of the path. For a spiral trajectorywithwinding angle θl, one
obtains ϕ = Φnw

Φ0
θl. To our knowledge, the current-phase relationship (CPR) of a semiconducting

nanowire SNS junction has not been experimentally determined. Since we have L ≲ ξInAs, a
sinusoidal CPR is assumed. The phase difference γ between the Nb leads is assumed to be
independent of the position along ŷ, since the junction width is similar in order to the Nb
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coherence length, d ∼ ξNb, corresponding to the narrow junction limit for a planar junction.
Similar to the case of a wide planar junction in a perpendicular field [153] where the su-

perconducting phase depends linearly on the position along the junction width, here the phase
due to an axial field is linear in the winding angle θ. Using the sinusoidal CPR, we define an
angular supercurrent density J(θ) = Jc(θ) sin

(
Φnw
Φ0
θ + γ

)
, where Jc(θ) is the critical current

density. The supercurrent is obtained [153] by integrating the supercurrent density over θ:

I(Φnw) =

∫ ∞

−∞
J(θ)dθ, (2.1)

and the critical current is the maximum supercurrent over the junction phase γ:

Ic(Φnw) = max
γ∈[0,2π)

(I) =

∣∣∣∣∫ ∞

−∞
Jc(θ)e

(
iΦnw

Φ0
θ
)
d θ
∣∣∣∣ . (2.2)

Since Ic and Jc are related as a Fourier pair, Jc(θ) can be thought of as a spectral density
that is a function of winding angle.

2.3.5 Spectral Density of Critical Current Oscillations

We model the spectral density Jc(θ) (see Eq. 2.2) as a weighted sum of Gaussian functions in
order to satisfy the following properties: (i)The subband l contributes a peak to Jc at its winding
angle θl, (ii) Jc is proportional to the normal state conductance GN , as required for an SNS
junction, (iii) Jc goes to zero for large |θ|, where the trajectory length is much longer than the
phase coherence length ξInAs. We write

Jc(θ) = Jmax(θ)
∑
l

nl

σ
√
2π

exp
(
−(θ − θl)

2

2σ2

)
, (2.3)

where nl is the number of radial subbands occupied with angular momentum l. Here we
allow nl > 1 in the spirit of later relaxing the assumption of strictly two-dimensional shell con-
duction so that higher radial excitations are possible. Jmax takes into account the suppression of
critical current density for large |θ|, and is calculated from the Usadel equations in Section 2.6.8.
The Gaussian peak width is determined by the parameter σ.

Let us consider first the ballistic limit L ≪ le. One would expect sharp peaks (i.e. σ → 0)
in Jc(θ) at θ = θl for any subband l that is occupied. In this limit, vx approximately equals the
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Figure 2.2: (N.b. two-page figure & caption.) Spectral densities (left) and critical currents (right)
for the examples given in the text, for (a,b) the ballistic regime, and (c,d) the quasiballistic regime
(next page). Although the spectral density is explicitly a function of the winding angle θ, here
it is plotted versus the magnetic frequency Φ0/Φnw, since the inverse quantity Φnw/Φ0 is the
conjugate variable to θ in Eq. 2.2. (a,b) A uniform Jmax(θ) = J0 is used in this example. The
resulting Ic is the absolute value of the sum of cosines in Eq. 2.4b.
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Figure 2.2: (Cont. from prev. page.) (c,d) In the presence of back-scattering, the peaks in Jc move
to higher frequencies (Eq. 2.5) as the carriers spend more time in the junction and accumulate
more phase. Note that the frequency scales in (a) and (c) are not the same. The higher frequency
peaks in Jc are suppressed by Jmax(θ), which falls off with increasing winding angle, or equiv-
alently, frequency. The oscillations in Ic are qualitatively similar to the ballistic case, but have
a shorter period, and attenuate with magnetic flux due to the broadening σ of the Jc peaks. (c,
inset) Jmax, as calculated from the Usadel equations, vs. lθ/le. Here, lθ is the length of a spiral
path with winding angle θ, and an inelastic scattering length lin = 5le is chosen arbitrarily.
The dashed line is an exponential fit to the lθ > lin region. Longer paths contribute less to
Jc because of dephasing, resulting in the suppression of the peak amplitudes with increasing
magnetic frequency seen in panel (c). The following parameters (defined in the text) were used
in these simulations: d = 63 nm, L = 200 nm, le = 80 nm, lin = 400 nm, EF = 150 meV,
nl = 1 for |l| ≤ 3, and nl = 0 otherwise.
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Fermi velocity of the electron, vx ≃ vF =
√

2EF/m∗, and vθ(l) = 2h̄l/(m∗d) ≪ vx. We use
m∗ = 0.023me as the effective mass in InAs. As an illustrative example, let Jmax(θ) = J0 for all
θ, and let nl = 1 for |l| ≤ 3, and zero otherwise. Then, the critical current density is a sum of
Dirac delta functions, and we have

Jc(θ) = J0

3∑
l=−3

δ(θ − θl), (2.4a)

Ic(B∥) = J0

∣∣∣∣∣
3∑

l=−3

exp
(
i
Φnw

Φ0

θl

)∣∣∣∣∣
= J0

∣∣∣∣∣1 + 2
3∑

l=1

cos
((

eLl

m∗vF

)
B∥

)∣∣∣∣∣ . (2.4b)

Even though Φnw ∝ d2, Ic(B) does not depend on d because for a fixed angular momen-
tum, vθ ∝ 1/d so θl ∝ 1/d2 which cancels with the d2 dependence of flux. This shows the
interference effect is not sensitive to the radial position of carriers in the ballistic regime. In
the limit d→ 0, states with finite angular momentum become very high in energy and will not
be populated.

In Figure 2.2a is plotted Jc(θ) and Ic(B∥) for the example above (Eq. 2.4). Note that the θl
which determine the peak positions in Jc(θ) depend on device-specific parameters L, vF , and
d, and can take on any value. Thus, the periodicity seen in Ic versus Φnw generally does not
correspond to an integer multiple of Φ0.

We extend the model for Jc to the quasiballistic regime le ≲ L by invoking the following
assumption: the electron undergoes back-scattering events along x̂ only. This is justified as long
as the scattering does not substantially mix the orbital angular momentum states, such as when
the scattering potential does not explicitly depend on the azimuthal position [154]. Therefore, in
a scattering event vx → −vx, but vθ is unchanged, so on average the particle spends more time
in the junction, accumulating more phase. Noting that in the ballistic limit we have vx ≃ vF ,
the drift velocity along the nanowire axis now becomes vx ≃ vF × le/(le + L). This follows
from the scaling of the conductanceG from the Landauer-Büttiker quantum conductance value
by the factor le/(le + L), as discussed in Refs. [37, 155]. Therefore, for quasiballistic transport
due to back-scattering, the winding angle θl is taken as

θl = (
L+ le
le

)(
L

vF
)(
2

d
)vθ(l). (2.5)

33



V3 le σ n0 n±1 n±2 n±3

(V) (nm)
1.4 83.1 0.9 2.0 2.1 0.7 0.2
0.7 94.9 0.9 2.0 1.3 1.0 0.0
-1.4 168.0 0.8 1.0 1.1 0.3 0.2

Table 2.1: The parameters used in the fits of Figure 2.3; le is the mean free path, nl are the
subband occupation numbers, and σ describes the broadening of the angular spectral density
function. Since the model only constrains the ratios nl/nl+1, the nl here are adjusted to be
consistent with the experimental normal state conductance, GN , at each gate voltage. The
following parameters (defined in the text) are used but not varied between the three data sets:
d = 63 nm, L = 200 nm, EF = 150 meV, lin = 400 nm.

In Figure 2.2bwe plot Jc(θ) in the quasiballistic regime, corresponding to the examplewhere
nl = 1 for |l| ≤ 3 and is zero otherwise. Using le values typical for these nanowires [37], we
obtain (L + le)/le ∼ 3.5, so the peaks in Jc(θ) appear at higher frequencies (inverse magnetic
flux) compared to the ballistic case. The effect of Jmax(θ), calculated from the Usadel equations,
is taken into account. It suppresses the higher frequency peaks of Jc, since these correspond
to longer classical paths of the carriers that will experience greater dephasing. Intuitively, one
expects a broader distribution of Jc(θ) about each θl-centered peak when back-scattering oc-
curs, and this broadening is parametrized by σ. A finite σ suppresses the recurrences in Ic; as
σ is increased, the maxima in Ic drop off with increasing magnetic flux. The experimental data
is fit below using this quasiballistic model. It is shown in Sec. 2.6.6 that the interference effect
is not sensitive to the radial position of the carriers, d/2, up to a rescaling of the broadening
parameter σ, and of the envelope function Jmax.

2.3.6 Fitting to the Data

In Eq. 2.3 we have modelled Jc(θ), the spectral density of Ic. In order to fit the model to the
experimental data, spectral densities are calculated numerically from the Ic(B) data shown in
Figure 2.3, for three values of gate voltage V3. A fast-Fourier transform is taken of a signal
which is identical to Ic(B), except that it changes sign at each node so that each becomes a
zero crossing. Eq. 2.3 is then fitted to this Fourier transform, with results shown in Figure 2.3,
and discussed below.
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Figure 2.3: Theoretical fits to the experimental data for (a, b) V3 = 1.4 V, (c, d) V3 = 0.7 V
and (e, f) V3 = −1.4 V. (a, c, e) The experimental critical current (solid circles) and model fits
(dashed lines) are overlaid. The data is truncated above magnetic fields for which the switching
transition becomes too weak for Ic to be determined. (b, d, f) Spectral densities of the experi-
mental data determined by Fourier transformation of Ic (solid circles), and the best-fit spectral
densities from the model (dashed lines) are shown. To produce the model curves, Eq. 2.3 is fitted
to the low-frequency region < 2 T−1 with the parameters given in Table 2.1. Arrows indicate
the frequencies of the peaks corresponding to each subband of orbital angular momentum h̄|l|,
for |l| = 1, 2, 3 (l = 0 gives a peak at zero frequency). For clarity, we only show every fourth
experimental data point, and representative error bars on selected data points.
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2.4 Discussion

Here we discuss the best-fit parameters we obtained by fitting the model to the experimental
data (Table 2.1). The most important variation between the three data sets is the occupation
number of angular momentum subbands, nl, which is modulated by the applied gate voltage.
As V3 is made more negative, the fits are consistent with fewer subbands being occupied. The
subbands with higher l values depopulate first, in a manner roughly consistent with the ex-
pected shell-filling structure of the nanowire [36, 131, 156]. For a given data set, only the ratios
nl/nl+1 matter when calculating Ic(B)/Ic(0). We have adjusted the nl so that the experimen-
tal normal state conductance GN at each gate voltage is consistent with the estimated number
of occupied subbands. Another notable feature in Table 2.1 is an apparent increase in elastic
mean free path le as the gate voltages are made more negative. In the real nanowire junction,
the radial wavefunction is not confined to a shell but rather is distributed through the nanowire
cross section, with some bias towards the surface due to surface band bending. Higher l states
have a radial expectation value closer to the nanowire surface and are expected to scatter more
frequently due to surface defects, which could explain a shorter mean free path when more
channels contribute to transport. Note that the fitting involves several free parameters, and the
set of best-fit parameters is not generally unique. The model is based on simplifying assump-
tions and considers shell conduction only, and also neglects spin-orbit and Zeeman effects. We
therefore do not expect this model to capture the complete physics of the junction; however,
it appears to explain the dominant mechanism of the critical current oscillations in the InAs
device studied here.

In conclusion, a nanowire SNS junction was investigated that showed an unexpected mod-
ulation of critical current in an axial magnetic field. This result is understood by considering
a novel type of Josephson interference due to orbital states in the multi-band InAs nanowire.
Although we restricted the model to a cylindrical shell, the interference effect does not depend
on the diameter d, up to a rescaling of the spectral density broadening parameter σ. The effect
is therefore expected to be present for more general radial wavefunctions, including when elec-
trons and holes forming Andreev pairs have different radial wavefunctions. For a more realistic
model, it will be necessary to calculate the Josephson interference based on quasiparticle wave-
functions rather than classical trajectories. Despite the simplicity of the semi-classical model
considered here, it is able to reproduce the main features of the experimental data. Therefore,
the interplay of orbital and magnetic effects should be carefully considered for semiconductor
nanowire Josephson junctions, especially when searching for signatures of topological states.
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2.5 Methods

The bottom gate pattern was defined by electron beam lithography (EBL) on an undoped Si
substrate with a 300 nm thermal oxide layer. 7 nm/14 nm layers of Ti/Au were deposited by
electron beam evaporation to realize the gates, followed by atomic layer deposition of a 7 nm
layer of dielectric Al2O3, and plasma-enhanced chemical vapour deposition of a 13 nm layer
of dielectric SiNx. Next, molecular beam epitaxially grown InAs nanowires were mechanically
deposited on the substrate. Details of the nanowire growth can be found in Ref. [157]. Using
scanning electron microscopy, we selected a nanowire positioned on the predefined gate pat-
tern. The pattern for the superconducting contacts was defined by EBL. A 50 nm layer of Nb
was deposited by dc sputtering at room temperature, preceded by Ar ion milling to achieve
transparent InAs/Nb interfaces.

The sample was wirebonded to a chip carrier and thermally anchored to themixing chamber
of a dilution refrigerator with a base lattice temperature of 25 mK. The junction was connected
in a four-probe (current-voltage) setup. A dc current bias was applied using a homemade volt-
age source, by dropping the output voltage across two sets of resistors, anchored at room tem-
perature, and the mixing chamber temperature of the dilution refrigerator, respectively. The
voltage response of the junction was measured using a voltage preamplifier.

2.6 Details of Experiment and Numerical Analysis

2.6.1 Junction Characteristics

Tunability of the Supercurrent with Local Gate Voltages

Figure 2.4 shows the differential resistance dV /dI of the junction vs. the bias current I and the
local gate voltage V3 (see Figure 2.1.) A clear zero-resistance regime can be seen at low bias. A
voltage drop of magnitude ≲ 5 µeV develops across the junction as I approaches the critical
current Ic. This voltage has an exponential dependence on the bias current I , and is consistent
with the occurrence of a combination of thermally activated phase slip events and quantum
phase slip events, similar to the effect observed in Ref. [158].

The voltages on the local gates can be used to tune the critical current of the junction. Of
these, V3 is the most effective. The variations of Ic with V3 are reproducible. A general trend is
observed that Ic is larger for more positive V3. In Section 2.6.1 we show that these variations
are correlated with the variations of the normal state conductance, GN , with V3. We conclude
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that the normal section of the SNS junction is indeed semiconducting, and the gate voltages
tune the local potential in the nanowire, simultaneously tuning Ic and GN .

Figure 2.4: Differential resistance dV /dI in Ohms, vs. bias current I and local gate voltage V3
at T = 25mK. A supercurrent up to∼ 30 nA is observed (Dark blue region). Here, the voltages
on the two gates V3, V4 are being swept together from negative to positive values. The critical
current shows reproducible variations with V3.

Contact Resistances

In order to correctly identify the resistance of the nanowire section of the junction, the resis-
tances of the Nb-InAs contacts need to be subtracted from the total measured resistance. Since
the nanowire is contacted by two Nb leads, a four-point measurement of the contact resistances
was not possible. Using the results in [159], the barrier resistance Rb was estimated to be no
greater than 1 kΩ. In what follows, we consistently use the value Rb = 800 Ω for each contact.
The normal state resistance of the junction RN is related to the measured high bias current re-
sistance value R by the relation R = (1+ 2r)RN , where r = Rb/RN . Typically for this device,
the value for the ratio r is r ∼ 0.15.

38



Correlation of the Critical Current and Normal State Conductance

The resistance R of the junction was measured at a high bias voltage V = 5 mV > 2∆Nb/e,
where∆Nb = 1.2 meV is the superconducting gap in the Nb leads. The normal state resistance
RN of the junction was obtained using the relation R = RN + 2Rb, where Rb = 800 Ω is the
resistance of the Nb-InAs barriers (see Section 2.6.1).

In Figure 2.5 we show the normal state conductanceGN = 1/RN and the critical current Ic
of the junction vs. the local gate voltage V3. The variations ofGN and Ic with V3 are correlated,
suggesting a common physical origin. This has been previously observed for semiconductor
nanowire SNS junctions [135, 160, 140, 139, 161]. For a nanowire junction in the ballistic
regime, Ic and GN are directly proportional [161]. This is not the case for the junction studied
here, and can be attributed to non-ideal Nb-InAs interfaces (i.e., a contact transparency less
than 1), which suppress the mini-gap and therefore the critical current of the junction [143].
The relative fluctuations in Ic are larger than those in GN , as seen in Doh, et al [135]. This can
be attributed to an interplay between the phase coherent Andreev processes and conductance
fluctuations resulting from potential fluctuations in the nanowire.
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Figure 2.5: Junction critical current Ic (blue) and high bias current normal state conductance
GN (green) vs. the local gate voltage V3. The variations of Ic and GN with V3 are correlated,
typical of high-transparency SNS junctions. A direct proportionality relation does not hold,
likely due to the non-ballistic nature of the device.

Multiple Andreev Reflections

Signatures of Multiple Andreev Reflections (MAR) [162] are visible as peaks in the differential
resistance dV /dI of the junction, at bias voltages Vn = 2∆Nb/en for integer n. Here, ∆Nb =
1.2 meV is the superconducting energy gap in the Nb leads. The size of the peak at each Vn
varies with the local gate voltages, but the peaks are visible whenever there is a supercurrent
present at zero bias voltage. The presence of this subharmonic gap structure [134] indicates
phase coherence across the junction.

In Figure 2.6 the junction differential resistance vs. bias voltage is shown for V3 = +2.1 V.
A supercurrent branch is present at zero bias voltage, and signatures of MAR are clearly visible
at higher bias. As the bias voltage is increased, the Andreev process at the Nb-InAs interfaces is
suppressed, increasing the junction resistance. The current-voltage (I-V ) trace corresponding
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to Figure 2.6 can be used to extract the excess current [134] due to the Andreev process, by
making a linear fit to the high bias voltage regime. This yields Iexc = 40.2 nA (Figure 2.7). This
value, and the value for the high-bias conductance of the junction, are used to calculate the
figure of merit product eIexcRN/∆Nb ≃ 0.5. This value is inserted into the OTBK model [134]
for the subharmonic gap structure, in order to get the scattering parameter Z at the Nb-InAs
interfaces. For Z we get a value∼ 0.75, indicating a Nb-InAs contact transparency of t ∼ 0.65.

Notice in Figures 2.6, 2.7 the bias voltage was not increased to V > 2∆Nb/e, or else the
low resistance of the junction would have resulted in a large current, and therefore a high Joule
heating. However, for V > 2∆Nb/e we would expect the excess current to be even higher
than the measured value. Therefore, the reported value t ∼ 0.65 is a lower bound of the actual
contact transparency of the junction. For other values of the gate voltage V3, theMAR signature
at V = 2∆Nb/e can be observed.

Figure 2.6: Junction differential resistance dV /dI vs. bias voltage V . A supercurrent branch
can be seen at zero bias. Signatures of Multiple Andreev Reflections (MAR) are seen higher bias
as peak in dV /dI . This indicates phase coherence across the junction. The arrows indicate the
position and the number of MAR peak. For this value of the gate voltage, V3 = +2.1 V, the
bias voltage was not raised to V > 2∆Nb/e because of the low resistance of the junction. For
other values of V3, the n = 1 MAR signature can be observed.

41



Superconducting Coherence Length

Thermal fluctuations and inelastic scattering result in the dephasing of Andreev pairs, limiting
the superconducting coherence length in the normal section of an SNS junction [163, 143].
For the junction studied here, the superconducting coherence length in the InAs nanowire is
ξInAs = min(lT , lin), where lT =

√
h̄D/(2πkBT ) is a characteristic thermal length,D the diffu-

sion coefficient, kB the Boltzmann constant, T the (electron) temperature, and lin the inelastic
scattering length. Using an estimated T ∼ 100mK, we calculate lT on the order of a micrometer.

The inelastic scattering length in InAs nanowires, similar to the one studied here, was mea-
sured in Ref. [138] to be lin ∼ 250 − 500 nm. This indicates that ξInAs is limited by lin. In our
calculations we consistently use ξInAs = 400 nm, longer than the junction length L ≃ 200 nm.

2.6.2 Junction Critical Current in a Perpendicular Magnetic Field

The Junction critical current exhibits a monotonic, quasi-Gaussian decay as the perpendicular
magnetic field, B⊥, increases (see Figure 2.1). Here we concentrate on the theoretical descrip-
tion of this behaviour.

In Ref. [143], the behaviour of the critical current of a long, diffusive planar SNS junction
in a perpendicular field was studied using the quasiclassical Green’s function method. The roles
of non-ideal N-S interfaces were considered. The perpendicular field results in a pair-breaking
mechanism equivalent to spin-flip scattering, which is responsible for the decay of the critical
current Ic with B⊥. For a narrow junction (with width w smaller than the superconducting
coherence length ξ) with perfect interfaces, the following regimes were found: (i) When the
junction is very long, w ≪ L, the Usadel equation for the Green’s function can be solved
analytically, resulting in a Gaussian decay as a function of the magnetic flux Φ through the
junction: Ic(Φ) = Ic(0)exp(−0.238(Φ/Φ0)

2). Here, Φ0 is the (superconducting) flux quantum.
(ii) If the width is lesser but of the order of the length, numerical methods are required; however,
Ic still decays, and the decay is approximately Gaussian. Aside from the interplay of the orbital
states and the perpendicular field (see Section 2.6.3), the nanowire junction studied here is
analogous to a planar junction with w given by the diameter d = 63 nm. The junction is
narrow, d ≲ ξInAs ∼ 250 − 500 nm. The junction length is given by L = 200 nm. Thus, the
model for a planar junction with w ≲ L applies. Calculations reported in Ref. [164] indicate
that in this limit, a quasi-Gaussian decay of Ic with B⊥ is expected, with a tail at high B⊥
slightly above the Gaussian curve. This may explain why the experimental critical current in
figure 1b develops a tail when B⊥ > 0.3 T.

The experimental Ic is fit to a Gaussian Ic(Φ) = Ic(0)exp(−0.499(Φ/Φ0)
2), which decays
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faster by a factor of 2.1 than theoretically predicted in case (i) above. This can be explained by
taking into account non-ideal Nb-InAs interfaces. As discussed in [143], the behaviour of the
junction is critically dependent on contact resistances. Themain effect of non-ideal interfaces is
to increase the dwell time of the Andreev pair in the semiconducting section of the junction. The
cumulative spin-flip depairing effect causes Ic to decay faster. We use an estimatedRb = 800 Ω
for each contact, as discussed in Section 2.6.1. This implies a resistance ratio of r = Rb/RN =
0.15, which can account for rescaling the decay by a factor of 1.6, see Ref. [143]. An additional
contribution can come from an asymmetry between the contacts, which would further increase
the decay rate.

Figure 2.7: Current-Voltage trace of the junction (blue circles), at the gate voltage V3 = +2.1 V.
A linear fit to the high bias voltage regime (solid red line) is used to extract the excess current
Iexc = 40.2 nA. Using the analysis given in ref. [134], a Nb-InAs contact transparency t ∼ 0.65
is extracted.

2.6.3 Interplay of Orbital States and the Perpendicular Magnetic Field

A natural question to ask is if the interference effect due to the interplay of orbital states and
the external field appears when the magnetic field is applied in a perpendicular rather than an
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axial direction.
Let the nanowire axis be along the x̂ direction (Fig. 2.1). Let a magnetic field B = −B⊥ŷ

be applied. For the vector potential we choose A = (B⊥z/2)x̂. The main effect of this field
is to attenuate the critical current with B⊥ through a depairing mechanism (Section 2.6.2). We
ask here if the phase picked up by spiral paths on the circumference of the nanowire can result
in an oscillatory behaviour on top of this attenuation.

Consider a spiral path with winding angle θ. Let us assume no back-scattering for the
moment (ballistic regime). The phase picked up by this path is ϕ = 2e/h̄

∫
A · dl, where the

line integral is taken along the path. Since the path is a simple spiral, the height z can be
determined as a function of the position x along the junction length as z = r cos (xθ/L). Here,
r = d/2 is the radius of the nanowire and L the length of the junction. So the phase is

ϕ = (eB⊥r/h̄)

∫ L

0

cos (xθ/L)dx = 2π (Φ/Φ0)

(
sin (θ)

θ

)
, (2.6)

where Φ = B⊥dL is the flux through the junction and Φ0 is the (superconducting) flux quan-
tum. Eq. 2.6 indicates a qualitative difference versus the case of an axial magnetic field: as the
perpendicular component of the momentum changes direction with respect to the applied field,
the phase picked up by the spiral path changes sign, so the accumulated phase cancels with it-
self. Specifically, the phase accumulated on parts of the spiral path with z > 0 cancels out with
that of parts with z < 0. Whereas the phase picked up by long spiral paths is suppressed, for
a junction in the ballistic regime, the winding angles of the angular momentum subbands with
l = −3,−2, . . . , 3 are in the range (−π, π), i.e. on the main lobe of the sinc function in Eq. 2.6
(l is the angular momentum quantum number). This means that angular momentum subbands
can pick up an appreciable phase. Therefore, the occurrence of an interference effect may be
possible for a short, ballistic junction.

Now let us consider the quasiballistic regime by introducing back-scattering. Notice that
A · dl changes sign upon each back-scattering event. This has a randomizing effect on the
total phase, as the phase now depends on the details of the scattering events. Since the phase
ϕ picked up between two scattering events is not small (|ϕ| ∼ π/2), after several scattering
events we expect the phase to be completely randomized, and no interference effect to survive.
Similar to previously studied cases of a randomly distributed phase due to diffusive paths [165,
164], the effect of this random phase is estimated to be a suppression of the total supercurrent,
contributing the suppression of Ic with B⊥ on top of the pair-breaking mechanism discussed
in Section 2.6.2.

In summary, for the quasiballistic junction studied experimentally we do not expect an
interference effect due to the interplay of orbital states and a perpendicular field, because of the
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randomizing effect of back-scattering. However, in a ballistic junction short enough that the
self-cancelling of the phase does not dominate, an interference effect may occur.

2.6.4 Spin-Orbit and Zeeman Effects in the Josephson Junction

Yokoyama et al. [144] theoretically studied the interplay of spin-orbit and Zeeman effects in an
InSb nanowire SNS junction. They found that, in the presence of a magnetic field B, the dif-
ferent spin components of Andreev pairs pick up different amounts of superconducting phase,
resulting in the splitting of the Andreev Bound States in the junction. Consequently, as B is
increased from zero, the junction critical current Ic is reduced. At a certain value for B, the
junction abruptly undergoes a so-called 0-π transition, wherein the phase ϕ across the junction
in its ground state shifts from ϕ = 0 to ϕ = π. This results in a cusp (minimum) in the critical
current, and, upon further increasing the field B, Ic increases until it recovers value close to its
original value atB = 0. The cycle repeats upon further increasingB, resulting in an oscillatory
Ic. This effect can dominate the behaviour of Ic for InSb nanowire junctions in the presence
of a magnetic field. We ask if a similar physical picture can be responsible for the observed
oscillations of Ic vs. B∥, in the InAs nanowire junction studied here.

In terms of a magnetic parameter θB = |gµBB|L/(h̄vF ), the cusps of the critical current are
predicted to happen at fields corresponding to θB = (2n + 1)π/2, for integer n. Here, g is the
Landé g-factor, µB the Bohr magneton, L the junction length, and vF the Fermi velocity. For
an InSb nanowire of length 500− 1000 nm, the first cusp (θB = π/2) is estimated in Ref. [144]
to be at B = 0.2 T. However, using the values for our InAs nanowire device, which is shorter
(L ≃ 200 nm), and has a g-factor that is roughly a factor of 5 smaller than that of InSb, we
estimate B ∼ 7T for the position of the first cusp. This is an order of magnitude larger than
the observed value of B ∼ 0.6 T. Furthermore, the regularity of positions, in B, of Ic minima
predicted by the relation θB = (2n+1)π/2 does not hold for the InAs junction. In fact, we find
the positions of the minima can be tuned using the voltages on the local gates, see Figure 2.3.
Also, the observed value of Ic at the first antinode (e.g. at B∥ ≃ 0.8 T in Figure 3a) is roughly
0.15 times the value of Ic at zero field, whereas in [144] this ratio is predicted to be close to 1.

Therefore, it is concluded that the Ic vs. B∥ oscillations observed in the InAs nanowire
junction are not due to the interplay of spin-orbit and Zeeman effects. We neglect these effects
in our analyses for simplicity. Observing 0-π transitions in an InAs nanowire junction may
be difficult, because the high magnetic field required to drive the transition will likely destroy
superconductivity in the leads.
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2.6.5 Magnetic Field Misalignment

Theperpendicular magnetic field,B⊥, was applied in the plane of the device substrate (xy-plane
in Fig. 2.1). The deviation angle of the field from the perpendicular (ŷ) direction is 2◦±3◦. Since
tan(2◦) ≃ 0.03, this misalignment was neglected.

The axial magnetic field, B∥, was applied in the xy-plane, at an angle α = 8◦ ± 4◦ with
respect to the nanowire axis x̂. The axial component of the field is B∥ × cos α. Since cos α >
0.98 ≃ 1, the axial component is very close in magnitude to B∥.

The perpendicular (ŷ) component of B∥ is of magnitude B∥ × sinα. This results in a quasi-
Gaussian decay of the critical current Ic with B∥, due to a pair-breaking mechanism effectively
equivalent to spin-flip scattering (see Section 2.6.2). Let us quantify this quasi-Gaussian decay
by a suppression factor s(B∥) = Ic(B∥)/Ic(B∥ = 0). Given that sinα is in the range 0.07−0.2,
with an average value 0.13, we estimate s is close to 1 (s > 0.75) forB∥ < 1.5 T, covering a large
range of the measured magnetic fields. However, for the highest field measured, B∥ = 2.5 T,
the s can be as severe as 0.3.

A similar field dependence can be defined for the critical current density, by generalizing
Jc(θ) to Jc(B∥, θ) = s(B∥)Jc(θ). The B∥- and θ-dependent parts of Jc are separable, and the
pair breaking effect of B∥ has been neglected (i.e. s(B∥) = 1 for all B∥). Including the field
dependence of Jc will not qualitatively change the interference pattern (see also discussion in
Section 2.6.3). However, Ic and a field-dependent Jc will no longer be simply related as a Fourier
pair. The broadening parameter σ, which influences the attenuation of Ic at high fields (see
Section 2.6.6), is expected to be sensitive to the field dependence of Jc. We leave the treatment
of a model with a field dependant critical current density to future work.

2.6.6 The Effect of Broadening the Peaks in the Spectral Density

In the quasi-ballistic regime, the width of the Gaussian peaks in the modelled critical current
density, Jc(θ), is parametrized by σ (see Eq.2.3). The broadening of the peaks determines the
qualitative behaviour of Ic(B∥). To illustrate this we use the example developed above, where
nl = 1 for l = −3,−2, . . . , 3, and zero otherwise. We show in Figure 2.8 the critical current
density Jc vs. the magnetic frequencyΦ0/Φnw, and the resulting Ic vs.Φnw/Φ0, for two different
values of σ. When the spectral density Jc shows sharp peaks in its distribution vs. winding
angle θ (i.e., when σ ≪ dθl/dl), Ic oscillates. However, when the distribution of Jc is very
broad (σ ≫ dθl/dl), Ic shows a monotonic, quasi-Gaussian decay. The model was fit to the
experimental data using an intermediate regime of broadening.
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Figure 2.8: Spectral densities (left) critical currents (right) in the quasiballistic regime, as a
function of the broadening parameter σ. The spectral density Jc is plotted vs. the magnetic fre-
quency (Φ0/Φnw), see Figure 2.2. The envelope function Jmax(θ) has been taken into account,
assuming lin = 400 nm as the inelastic scattering length (see Section 2.6.8). (a,b) σ = 0.15.
Sharp peaks in Jc compared to the peak spacing, σ ≪ dθl/dl, results in an oscillatory Ic. The
oscillations in (b) attenuate with increasing magnetic flux, due to the finite σ. Panels (a,b) are
reproduced in the bottom row of Figure 2.2. (c,d) σ = 5.0. Broad peaks in Jc compared to the
peak spacing, σ ≫ dθl/dl. The peaks in (c) overlap, creating a bell shaped curve. The attenua-
tion of critical current with increasing magnetic flux is strong enough that no oscillations are
seen in (d), resulting in a monotonic, quasi-Gaussian decay. The following parameters were
used in these examples: d = 63 nm, L = 200 nm, le = 80 nm, EF = 150 meV. nl = 1
for l = −3,−2, . . . , 3, and zero otherwise. The experimental data is best fit to an intermediate
regime, with σ ∼ 0.9.

2.6.7 Varying the Nanowire Diameter

We discuss the effect of changing the nanowire diameter d on the interference effect in the
quasi-ballistic model, where all carriers are on a cylindrical shell at a radius d/2 from the
nanowire center. Consider the critical current of the junction as a function of the axial magnetic
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field, B∥. Eq. 2.2 can be written as

Ic(B∥) =

∣∣∣∣∫ ∞

−∞
Jc(θ)e

(
iΦnw

Φ0
θ
)
d θ
∣∣∣∣ , (2.7)

with Φnw = πd2B∥/4. The critical current density, Jc, is given by Eq. 2.3.

Let us change the diameter from d to a value d′, resulting in Φnw → Φ′
nw = (d

′2

d2
)Φnw, and

Jc(θ) → J ′
c(θ), Ic(B∥) → I ′c(B∥). We calculate J ′

c(θ) below, and show that I ′c(B∥) = Ic(B∥), up
to a rescaling of the broadening parameter σ, and a rescaling of the envelope function Jmax(θ).
We make the substitution of variables θ = (d2/d′2)θ′ in Eq. 2.7 to write

Ic(B∥) → I ′c(B∥) =

∣∣∣∣∣
∫ ∞

−∞
J ′
c(θ)e

(
i
Φ′

nw
Φ0

θ

)
d θ

∣∣∣∣∣
=
d2

d′2

∣∣∣∣∫ ∞

−∞
J ′
c

((
d2

d′2

)
θ′
)

e
(
iΦnw

Φ0
θ′
)
d θ′
∣∣∣∣ . (2.8)

In the above integral, θ, θ′ are dummy variables, and it suffices to have J ′
c (θ) = (d′2/d2)Jc(θ

′)
in order to get I ′c(B∥) = Ic(B∥). Let us use a constant envelope function Jmax(θ) = J0 for
now. Notice that in Eq. 2.5, vθ ∝ 1/d, so the positions of the peaks, θl have an inverse-square
dependence of d, so when d→ d′, θl → θ′l = (d2/d′2)θl. Using Eq. 2.3 we write

J ′
c

((
d2

d′2

)
θ′
)

= J0
∑
l

nl

σ
√
2π

exp
(
−((d2/d′2)θ′ − θ′l)

2

2σ2

)

= J0
∑
l

nl

σ
√
2π

exp
(
−(d2/d′2)

2
(θ′ − θl)

2

2σ2

)
. (2.9)

If we rescale σ as σ → σ′ = (d2/d′2)σ, the factors in the exponent cancel, and we get the result
J ′
c ((d

2/d′2)θ′) = (d′2/d2)Jc(θ
′), or equivalently I ′c(B∥) = Ic(B∥).

Let us consider the case of a generic Jmax(θ). Using similar analysis we see that, if the angle
argument of Jmax is rescaled such that Jmax(θ) → J ′

max(θ) = Jmax((d
′2/d2)θ), then the relation

J ′
c ((d

2/d′2)θ′) = (d′2/d2)Jc(θ
′) holds true (up to rescaling σ). This follows from the dependence

of Jmax on the length of the spiral paths lθ =
√
L2 + (dθ/2)2, as discussed in Section 2.6.8.

When the diameter of the nanowire becomes very large, the spiral paths on its circumference
become very long, and the supercurrent is suppressed due to inelastic scattering.

In summary, we have shown that if the radial position of the carriers is changed, the spectral
density Jc(θ) is unaffected up to a rescaling of the envelope function (Jmax) and the width of
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its peaks (σ). Crucially, the frequencies at which the peaks of Jc appear, i.e. the frequencies of
oscillations of Ic vs. B∥, are unaffected. We suggest that, for general radial wavefunctions of
the carriers, a Josephson interference effect similar to that discussed above, and with the same
periods of oscillations inB∥, should appear. However, a detailed calculation is required to verify
this, using Usadel equations and taking into account the complete Hamiltonian for the system,
including the radial confinement potential.

2.6.8 Maximum Supercurrent Calculated via Usadel Equations

We use the quasi-classical Green’s functions theory [150] to describe the proximity effect su-
perconductivity in the InAs nanowire junction. Further details on this approach can be found
in [166], on which this section is based.

The starting point is a field operator

Ψ =

(
Ψ↑(x, t)

Ψ†
↓(x, t)

)
acting on the electron-hole Nambu space. Ψ↑(x, t) and Ψ†

↑(x, t) are annihilation and creation
operators for a fermionic quasiparticle with spin ↑ at position x and time t.

The basic objects in terms of which the theory is developed are the Retarded, Advanced, and
Keldysh Green’s functions (R̂, Â, and K̂ , respectively) defined in terms of the field operator Ψ.
We consider the nanowire to be in thermal equilibrium, so the function K̂ is redundant and
holds no further information about the system than R̂, Â. Being metallic superconductors, the
Nb leads exhibit electron-hole symmetry. We assume electron-hole symmetry in the normal
section as well, so Â is also redundant. We concentrate on R̂. Using the standard angular
(Θ, ϕ) parametrization on the unit sphere, we write

R̂ = cosΘτz + sinΘ(cosϕτx + sinϕτy) =
(

cosΘ e−iϕsinΘ
eiϕsinΘ −cosΘ

)
,

where τx,y,z are Nambu spinors acting on the electron-hole degree of freedom. Here, Θ =
Θ(x,E) is the complex pairing angle which quantifies the strength of superconducting-like
correlations (off-diagonal elements of R̂) and normal-like correlations (diagonal elements of
R̂). We use the capital symbol Θ instead of the more standard θ to avoid confusion with wind-
ing angles. ϕ = ϕ(x,E) is the real superconducting phase. We have considered only one
spatial dimension x, along the axis of the nanowire. This one dimensional (1D) formulation is
in anticipation of reducing the description of the nanowire to a quasi-1D model, see below.
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Our goal here is to calculate Θ(x,E) and ϕ(x,E) for all positions and energies, for the
geometry of the junction. The equilibrium Usadel equations, governing Θ, ϕ, can be derived
from the equation for R̂. The 1D set of coupled equations reads:

h̄D

2

∂2Θ

∂x2
+

(
iE − h̄

τin
−

(
h̄

τsf
+
h̄D

2

(
∂ϕ

∂x
+

2e

h̄
Ax

)2
)

cosΘ
)

sinΘ+∆(x)cosΘ = 0,

(2.10a)
∂

∂x

((
∂ϕ

∂x
+

2e

h̄
Ax

)
sin2Θ

)
= 0.

(2.10b)

Here, D = levF/3 is the diffusion coefficient of electrons, le is the elastic mean free path
and vF the Fermi velocity. The timescales for inelastic and spin-flip scatterings are denoted by
τin and τsf , respectively. Ax is the axial component of the magnetic vector potential, due to
a perpendicular external magnetic field, B⊥. Spin-flip scattering off of magnetic impurities is
ignored, so the only contribution to the spin-flip rate is the narrow-junction limit depairing term
h̄/τsf = e2d2DB2

⊥/(6h̄), as discussed in [143]. The quasi-1D depairing term is valid because
the width of the junction is on the same order as the superconducting coherence length in Nb,
d = 63 nm ∼ ξNb. The parallel component of the magnetic field does not enter the 1D Usadel
equations. We use ∆ for the superconducting energy gap due to electron-phonon coupling. In
the Nb leads, this equals ∆Nb = 1.2 meV, and in the normal section of the junction we have
∆ = 0.

All physical quantities related to the junction can be derived from Θ and ϕ. In particular,
the supercurrent density in the N (S) section of the junction is

JN(S) = −(σN(S)/e)

∫ ∞

0

dE tanh (E/2kBT ) Im
(
sin2Θ

)(∂ϕ
∂x

+ (2e/h̄)Ax

)
. (2.11)

Here, σN(S) is the normal state conductivity of the normal (superconducting) section of the
junction, kB the Boltzmann constant and T the temperature. By comparisonwith the Ginzburg-
Landau (GL) result J = (−h̄e/m∗)|ψGL|2(∇ϕ + (2e/h̄)A), we identify the modulus squared of
the GL order parameter in the normal section as

|ψGL|2 = (m∗σN/e
2h̄)

∫ ∞

0

dE tanh (E/2kBT ) Im
(
sin2Θ

)
, (2.12)

wherem∗ is the effective mass. The energy dependence of the phase ϕ has been neglected. This
is justified because the Nb reservoirs at the ends of the junction are bulk superconductors, with
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an energy independent phase difference γ determined by the bias current. The N-S interface
are transparent with t ∼ 0.65, so the phase gradient in the normal section of the junction is
also energy independent [167].

In the model for the InAs nanowire junction, orbital effects are the dominant mechanism
for Josephson interference. However, the field operator Ψ contains no information on the or-
bital structure of the nanowire, such as angular momentum subbands — in fact, it acts to cre-
ate/annihilate a fermion of angular momentum zero. This is because the effects of quantum
confinement are neglected in the standard treatment of Green’s functions that leads to Eq. 2.10,
e.g. the treatment given in [166]. It is possible, in principle, to generalize the Green’s functions
method by starting from a Hamiltonian for the junction which contains the quantum confine-
ment potential, then deriving the orbital subband structure of the nanowire, and the effects
of its interplay with superconductivity. However, such treatment is beyond the scope of this
chapter. Instead, we assume a sinusoidal current-phase relationship and model the orbital ef-
fects using a semi-classical approach based on the spiral trajectories of particles. What we wish
to calculate here is the suppression of the supercurrent, for long trajectories, due to inelastic
scattering.

Consider a spiral trajectory on the circumference of the nanowire with winding angle θ.
The length of this trajectory is lθ =

√
L2 + (dθ/2)2, where L = 200 nm is the length of the

junction and d = 63 nm the diameter of the nanowire. We approximate the supercurrent
density of this trajectory by that of a planar junction (Eq. 2.11) of length L′ = lθ. In doing so
we are modelling the nanowire as a set of parallel, narrow (quasi-1D) planar junctions, each
with a length L′ = lθ, corresponding to a winding angle θ. What limits the supercurrent in the
planar junction is the magnitude squared of the GL order parameter at the “bottleneck” in the
normal section midway between the Nb leads. Since |ψGL|2 does not depend on the phase, we
set ϕ equal to zero everywhere, and the Usadel equations (Eq. 2.10) simplify to

h̄D

2

∂2Θ

∂x2
+

(
iE − h̄

τin

)
sinΘ+∆(x)sinΘ = 0. (2.13)

Here we have set the spin-flip scattering rate τsf equal to zero, i.e. no external magnetic field
applied. We discuss this assumption below. Let the N-S boundaries be at x = 0, x = L′. We
have

∆(x) =

{
∆Nb = 1.2 meV x < 0 or x > L′

0 otherwise

The pairing angle in the superconducting Nb leads,ΘS , tends to its BCS value for Nb at positions
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far from the N-S interfaces, ΘS = ΘBCS , for x→ ±∞. Here,

ΘBCS(E) =

{
π/2 + i argtanh(E/∆Nb) if |E| < ∆Nb,

i argtanh(∆Nb/E) if |E| > ∆Nb.

At the N-S interfaces, the pairing angle in the normal section, ΘN , and the superconducting
section, ΘS , are subject to the following continuity condition:

σN
∂ΘN

∂x

∣∣∣∣
x=xi

= σS
∂ΘS

∂x

∣∣∣∣
x=xi

= gb sin (ΘS(xi, E)−ΘN(xi, E)) ,

for xi = 0, L′. This expresses the conservation of spectral current at the boundaries. Here,
gb = Gb/Ab is the conductance of an interface normalized by its area. We can further simplify
the situation by noticing the high conductance at the interfaces, r = Rb/RN = GN/Gb ∼
0.15 ≪ 1, see Section 2.6.1. So, we use the transparent interface limit [168] to write

ΘS(x = xi) = ΘN(x = xi) = ΘBCS, for xi = 0, L′. (2.14)

We solve Eq. 2.13 for the complex quantityΘN numerically, subject to the boundary conditions
in Eq. 2.14. We insert the solutionΘN into Eq. 2.12 to calculate |ψGL|2 at middle of the junction,
i.e. x = L′/2. We do this calculation for different values of the junction length L′. The decay
of the supercurrent with trajectory length lθ is captured by the envelope function

Jmax(θ) =
|ψGL (L

′ = lθ, x = L′/2)|2

|ψGL (L′ = L, x = L′/2)|2
, (2.15)

where L = 200 nm is the length of the shortest path across the junction, with θ = 0, i.e. a
straight trajectory.

In Figure 2.9 we show Jmax vs. L′/le as a function of the inelastic scattering length lin. As
expected, Jmax decays as the length of the trajectory is increased, and the decay is faster for
shorter lin. For L′ much longer than le, and longer than lin, the Jmax curves can be fitted to
exponential curves. The length scale of the exponential decay depends on le as well as lin. For
short lengths, L′ ≲ le, the Jmax curves saturate (not shown). The parameters used for this
calculation are the same as those used in Figure 2.2: d = 63 nm, L = 200 nm, le = 80 nm,
lin = 400 nm, EF = 150 meV, m∗ = 0.023me, and T = 100 mK is taken as the (electron)
temperature.
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Figure 2.9: The envelope function Jmax (Eq. 2.15) vs. the normalized planar junction lengthL′/le,
as a function of the inelastic scattering length lin. Here, le = 80 nm is the elastic scattering
length. The supercurrent density decays as the length of the trajectory is increased, and the
decay is faster for shorter lin. The dashed lines are exponential fits to the region L′/le > 5,
for the cases lin/le = 2.5, 3.75, 5. Each curve is normalized to its value at L′ = 200 nm
(i.e. L′/le = 2.5). For a trajectory with winding angle θ on the circumference of the nanowire,
Jmax(θ) can be calculated by setting L′ = lθ =

√
L2 + (dθ/2)2. The curve corresponding to

lin = 5le is used in the inset of Figure 2.2.

Finally, we comment on setting the spin-flip scattering rate Γsf = h̄/τsf equal to zero in
the above calculation. The axial magnetic field B∥ can create a pair-breaking mechanism (i.e.
an effective spin-flip mechanism similar to that in Section 2.6.2) for Andreev pairs on spiral
paths, because the azimuthal (θ̂) component of their velocity is perpendicular to B∥. However,
this effect is overshadowed by the pair-breaking due to the misalignment of B∥ with respect to
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the nanowire axis, as discussed in Section 2.6.5. This is because the θ̂ component of the pair
velocity is small compared to its total (Fermi) velocity between scattering events: vθ ≲ 0.3vF .
A typical value is vθ ∼ 0.1vF , for a subband with angular momentum quantum number l = 1.
Furthermore, the axial cross section of the nanowire, πd2/4, is a factor of 4 smaller than its
perpendicular cross section, d×L. Estimates give Jmax(Γsf )/Jmax(Γsf = 0) ≳ 0.8 for the largest
magnetic field measured, B∥ = 2.5 T. As in Section 2.6.5, we neglect such field dependence of
Jc.
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Chapter 3

Theory of Orbital Josephson Interference in
a Nanowire Proximity Effect Junction

3.1 Introduction

In Chapter 2 we saw an oscillation of the critical current Ic of our first generation proximitized
Josephson junctions with respect to an axially applied magnetic field B||. We argued that the
observed effect cannot be fully explained by using a combination of spin-orbit and Zeeman
effects in the nanowire, because the positions of the nodes of the oscillation with respect to the
field do not agree with that the spin-orbit + Zeeman theory predicts. Later on, in chapters 4
and 5 we will see that a similar oscillation or modulation of Ic is observed versus B|| for the
second and third generation Josephson junctions, suggesting that the observed phenomenon is
a typical occurrence in nanowire based proximity junctions, and deserves further study.

It is especially interesting to fully understand the behaviour of Ic versus B|| because apply-
ing an axial magnetic field is exactly the condition required to tune the device into a topological
regime that can host Majorana Bound states [76, 44], and that any signatures of the topolog-
ical transition in the critical current [85] need to be distinguishable from the non-topological
physics that cause the oscillations of Ic. Furthermore, and on amore fundamental level, the crit-
ical current of a junction appears to be very sensitively dependent on the potential landscape
inside of the nanowire — this point is further expanded on in Chapter 4. So, understanding
the magnetic field dependence of Ic may provide a sensitive tool to study the electric potential
and the subband structure inside the nanowire, and may provide more information than, e.g.,
normal-state magneto-resistance studies [156, 169] of the nanowire junction.
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In this chapter we provide a rigorous model for Orbital Josephson interference [170], the
phenomenon alluded to in Chapter 2. From first principles we solve the B|| dependence of
the critical current of an idealized Josephson junction while taking into account the subband
structure of the nanowire. Numerical simulations show that a qualitative agreement can be
reached between our experimental data and the predictions of this model, even though the
model describes an idealized junction in the sense that (i) the mean free path is assumed to be
longer than the junction channel length, (ii) the junction is assumed to be exactly cylindrically
symmetric, and (iii) there is no scattering at the superconductor/semiconductor interface due
to Fermi wave-vector mismatch. We argue that spin-orbit and Zeeman effects, while present,
are a smaller effect on the magnetic field dependence of Ic that Orbital Josephson interference.
To our knowledge, this model provides the most likely explanation for the observed behaviour
of Ic versus B||. Future potential expansions of this model are discussed.

A semiconductor nanowire based superconductor-normal-superconductor (SNS) junction
is modeled theoretically. A magnetic field is applied along the nanowire axis, parallel to the
current. The Bogoliubov-de Gennes equations for Andreev bound states are solved while con-
sidering the electronic subbands due to radial confinement in theN -section. The energy-versus-
phase curves of the Andreev bound states shift in phase as the N -section quasiparticles with
orbital angular momentum couple to the axial field. A similar phase shift is observed in the
continuum current of the junction. The quantum mechanical result is shown to reduce to an
intuitive, semi-classical model when the Andreev approximation holds. Numerical calculations
of the critical current versus axial field reveal flux-aperiodic oscillations that we identify as a
novel form of Josephson interference due to this orbital subband effect. This behavior is studied
as a function of junction length and chemical potential. Finally, we discuss extensions to the
model that may be useful for describing realistic devices.

3.2 Motivation

The Josephson effect is characterized by a current-phase relationship (CPR) linkingmacroscopic
current flow to the phase gradient of the superconducting order parameter [171]. The precise
form of the CPR for a superconducting weak link depends on intrinsic factors such as junction
geometry, material properties, coherence lengths, etc., in addition to extrinsic variables like
temperature and magnetic field. In superconductor-normal-superconductor (SNS) junctions
in which theN -section is long enough to suppress direct tunnelling of Cooper pairs, but shorter
than theN -section phase coherence length, a supercurrent may be carried by quasiparticles un-
dergoing Andreev reflection at the S-N interfaces [172, 173, 132, 137]. Planar SNS junctions of
a larger width compared to the S-section superconducting coherence length have been studied
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in great detail [153] (width refers to the dimension perpendicular to the current). These have
revealed, for example, Fraunhofer oscillations of the critical current Ic with respect to an ex-
ternally applied out-of-plane magnetic field [164, 174, 175]. For junction widths comparable to
the S-section coherence length, i.e. the narrow junction limit, this becomes a quasi-Gaussian,
monotonic decay of the critical current [164, 141, 176]. Recently, attention has been given to
nanoscale, quasi one-dimensional (1D) SNS junctions, such as those readily engineered by
contacting semiconductor nanowires with superconducting leads [135, 140, 139, 177, 178]. Gat-
ing the semiconducting N -section allows for modulating the supercurrent by controlling the
chemical potential [135, 177]. The oscillations of the magnetoresistance of a nanowire SNS
junction in the voltage-biased state (i.e. no dc supercurrent) versus an axial magnetic field have
been studied [178]. Efforts to realize Majorana fermion quasiparticles in 1D semiconductors
with strong spin-orbit interaction and proximity coupling to a superconductor [6, 76, 77, 78, 77]
have further raised interest in this type of junction. Theoretical results have indicated that the
behaviour of the critical current in such a junction versus magnetic field and chemical potential
can be used to identify topological phases [133].

Previous theoretical descriptions of quasi-1D SNS junctions [141, 142, 143, 176] have not
fully considered the effects of nanoscale confinement on the CPR, in particular the implications
of orbital angular momentum coupling to an external magnetic flux. Here we provide a quan-
tummechanical description of an idealized junction with a flux applied along the nanowire axis
(parallel to the current). For a planar junction, no significant modification of the CPR with an
axial flux is expected, as azimuthal motion of the carriers is absent. However, for a cylindri-
cal geometry, azimuthal motion leads to a non-trivial effect which we identify as a previously
unstudied form of Josephson interference. This is due to the coupling between Andreev quasi-
particles (bound states and continuum states) with orbital angularmomentum and the axial flux,
which results in phase shifts of the energy-versus-phase for these current carrying states. The
total current summed over all channels (occupied orbitals) can display interference. In contrast
to Fraunhofer interference in wide planar junctions, the flux is aligned with the current and the
oscillations are not periodic in the flux quantum. This effect is only present in nanoscale junc-
tions with lateral dimensions (i.e. diameter) smaller than the London penetration depth. This
is a regime in which the general theorem of Byers and Yang [179] does not apply. It is shown
that the supercurrent from continuum states also contributes to this interference. For certain
junction parameters, the interference effect can dominate the Ic vs. Φ characteristics. Semi-
classically, the effect is intuitively understood by the pickup of a magnetic phase by Andreev
pairs with an azimuthal velocity component as they cross the junction ballistically. The aim
of this paper is to theoretically describe this type of Josephson interference in a fully quantum
mechanical way. In particular, we are interested in understanding the effect in isolation from
the additional complications of real devices, such as non-cylindrical contact geometry, inter-
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facial potential barriers, etc. We consider in the discussion section how to modify the present
model to better describe realistic devices. Here, we consider the case where the diameter is
smaller than the superconducting coherence length in the S-section, so that the phase of the
order parameter is uniform around the S-section circumference in any magnetic field up to the
critical field of the leads, Hc. Spin-orbit and Zeeman effects in the N -section (e.g. relevant to
III-V semiconductor nanowires) are neglected, and we assume no barriers at the S-N interfaces.
Furthermore, we neglect magnetic depairing effects.

3.3 Model

Figure 3.1: (a) Schematic of the nanowire SNS junction of lengthL. It is modelled as a cylinder
with a nanoscale diameter d smaller than both the London penetration length and the S-section
phase coherence length. An axial magnetic field B = B∥x̂ penetrates the cylinder. (b) The
superconducting order parameter has the magnitude ∆0 in the S-section, and is zero in the
normal section, with a jump-like variation at the boundaries.

Consider an SNS junction created by a semiconducting nanowire contacted by supercon-
ducting leads. A cylindrical coordinate system r = (x, ρ, θ) is used, with the nanowire axis
along x̂. The junction is modelled as a cylinder of radius R0. The diameter d = 2R0 of the
cylinder is assumed smaller than the S-section London penetration depth λS , and the S-section
superconducting coherence length ξS . In Figure 3.1a, we divide the cylinder into three regions,
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with region 1 the superconducting section corresponding to the left lead (x < −L/2), region
2 the normal section corresponding to the nanowire (|x| < L/2), and region 3 the S-section
corresponding to the right lead (x > L/2). The leads are connected to bulk superconductors
at temperature T . Figure 3.1b shows the corresponding variation of the superconducting order
parameter inside the nanowire.

We assume uniform electrostatic potentials in each section (i.e. no scattering potential is
included and transport is ballistic), and no potential barrier at the S-N interfaces. The effective
mass of the electron is assumed to have the same value m∗ in both S- and N -sections so that
there is no Fermi wavevector mismatch (FWVM) at the S-N interfaces. This assumption allows
us to use Kulik’s method [180] to calculate the supercurrent of the junction. The advantage
of this method is that it gives an analytical expression for the bound state energies, which
provides us an intuitive way to understand the interference effect and connects our model to
an approximate semiclassical picture. We note that inclusion of FWVM or interfacial barriers
would not alter the basic mechanism of orbital Josephson interference that is demonstrated by
this simpler model, but would require use of a more complicated transmission matrix formalism
to calculate supercurrents. Our expectations for the qualitative effects of barriers are discussed
in Section 3.7.

An axial magnetic field B = B∥x̂ penetrates the cylinder. Any screening of the magnetic
field in the S-sections is neglected, as we have d < λS . In the Coulomb gauge, the vector po-
tential isA = Aθθ̂ = (B∥ρ/2)θ̂. Using the superscript α = 1, 2, 3 to refer to the three sections
of the junction (with the N -section corresponding to α = 2), the single-electron Hamiltonian
(excluding the superconducting pairing potential) in the presence of the magnetic field can be
written as:

H0 = −µ+Hx +Hθ +
∑

α=1,2,3

V α(ρ); (3.1a)

Hx = − h̄2

2m∗
∂2

∂x2
, (3.1b)

Hθ =
1

2m∗ (−ih̄
1

ρ

∂

∂θ
− eAθ)

2

. (3.1c)

Here,Hx describes the kinetic energy ofmotion along the axis of the cylinder,Hθ the kinetic and
magnetic energies of the azimuthal motion around the cylinder, and V α(ρ) the radial confining
potential of the cylinder in section α.

Radial confinement results in charge carriers occupying transverse subbands denoted by a
pair of quantum numbers. We use the pair (n, l) in the N -section, and (p, l′) in the S-sections,
wheren and p are the radial quantumnumbers, and l, l′ the orbital angularmomentum quantum
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numbers. The chemical potential in the cylinder is defined as the energy difference between
the bottom edge of the lowest subband and the Fermi energy, and is denoted by µ (Figure 3.2).
The numerical calculations were performed using the electron effective mass m∗ = 0.023me

corresponding to InAs. Zeeman and spin-orbit effects on the critical current of the junction
(studied in Ref. [144]) are not considered here, in order to focus on the effects of orbital angular
momentum. In Section 3.7, we discuss the conditions under which either the orbital effect or
the Zeeman + spin orbit effects could be more dominant.

In this paper, we do not write out an explicit form for V α(ρ), and do not solve for the radial
wavefunctions corresponding to the subbands (n, l) in any section of the cylinder. Instead, we
use a shell conduction model for the N -section. This is appropriate for certain III-V nanowires
(such as InAs or InN), where the charge carriers are typically confined near the surface due
to a positive surface potential, forming a surface accumulation layer [146, 181]. Assuming a
strong downward surface band bending (∼ 100 − 200 meV) [145], the radial position of the
carriers in all subbands (n, l) is taken to be R ≲ R0. This greatly simplifies the calculation of
the eigenvalues of Hθ (Eq. 3.1c). However, we emphasize that the qualitative results obtained
here should not be limited to this shell conduction model, particularly since we find a weak
dependence of the interference effect on R.

Superconductivity in the leads is described by the order parameter (pairing potential)∆(r),
which in the general case, must be calculated self-consistently. We use a simplified model in
which∆ is constant, so that proximity effects such as the reduction of∆ near theS-N interfaces
due to ‘reverse’ proximity are neglected. For ρ < R0, there is a jump-like variation at the
boundary of each section (Figure 3.1b):

∆(r) =


∆0e

iχL , x < −L/2
0, |x| < L/2

∆0e
iχR . x > L/2

(3.2)

Outside the radius of the cylinder, the order parameter is zero: ∆(r) = 0 when ρ > R0.
Here, ∆0 is the superconducting energy gap value in the leads, and χL(R) is the phase of the
superconducting condensate in the left (right) lead. The order parameter is zero in the N -
section because of the lack of attractive electron-electron interactions (repulsive interactions
are present in general, but neglected here.)

In Eq. 3.2, a spatially uniform ∆ is assumed in the S-sections in all magnetic fields up to
Hc. This is justified if the following two conditions hold: (i) the diameter of the cylinder is
smaller than the superconducting coherence length in the S-section, d < ξS . The change in the
phase of the order parameter around the circumference of the cylinder, δχ, is constrained to
integer multiples of 2π, because∆ has to be single valued (i.e. due to fluxoid quantization [152]).
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When d < ξS , one can assume δχ = 0, since ξS sets the length-scale for the spatial variations
of the order parameter [41], so ∆ must be uniform. The validity of the assumption d < ξS in
experimental devices is discussed in Section 3.7. (ii)The injected current in the SNS junction is
much smaller than the critical current of the superconducting leads. Otherwise, the superfluid
flow in the S-sections cannot be neglected, and a self-consistent determination of∆ is required,
as performed in Ref. [182]. Here, we assume the critical current of the junction is bottle-necked
in theN -section, which is reasonable given that the critical currents of nanowire junctions are
typically small compared to those of the S leads.

Figure 3.2: Subband energies for the electrons in theN -section (i.e. the eigenenergies ofH0 in
Eq. 3.1 at k = 0) versus the normalized magnetic flux Φ = (πB∥R

2)/(h/e). The l = 0 and l =
±1 subbands with n = 0 are shown. The energies are parabolic because of the h̄2

2m∗R2 (l − Φ)2

contribution to the energy byHθ (see Eqs. 3.1c, 3.4a). The upper dashed line is the Fermi energy.
The chemical potential µ is the Fermi energy measured from the bottom of the lowest subband,
ζ0,0 (lower dashed line). We have assumed ζ0,±1 = ζ0,0, so the bottoms of the n = 0 subbands
have the same energy. The effective chemical potential for electrons at flux Φ, µe

n,l(Φ), is the
difference between the subband energy and the Fermi energy at that flux. This is shown for the
subband (n, l) = (0,−1) at Φ = 1. For the hole-like states (not shown), the subband energies
(Eq. 3.4b) are inverted (mirrored) with respect to the E = EF line, and the l quantum number
negated (l → −l). The effective chemical potential for holes is given by µh

n,l(Φ) = µe
n,−l(Φ).
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3.4 Theory

We wish to calculate the current-phase relationship (CPR) of the junction in the presence of
an axial magnetic field. First, the spectrum of discrete levels (Andreev bound states) in the
junction is obtained. Next, the current from the discrete levels, as well the “continuum” levels
with energy |E| > ∆0 is calculated. It is shown that energy eigenstates corresponding to
these energy levels (both the bound states and the continuum states) follow the single-electron
subband structure imposed by the HamiltonianH0 (Eq. 3.1). In particular, we show that the CPR
is modified by the axial magnetic flux in a way that depends on the orbital angular momentum
of the subbands. This leads to a form of Josephson interference when one or more subbands
with orbital angular momentum are occupied.

3.4.1 Bogoliubov-de Gennes Equations

The wavefunctions of the elementary excitations of the SNS junction are identified as the
solutions to the Bogoliubov-de Gennes [41] (BdG) equations:(

H0 ∆(r)
∆∗(r) −H∗

0

)(
u(r)
v(r)

)
= E

(
u(r)
v(r)

)
, (3.3)

whereH0 is given by Eq. 3.1, and u(r) and v(r) are particle- and hole-like wavefunctions. The
asterisk (∗) denotes complex conjugation.

The solution strategy for Eq. 3.3 starts with finding the solutions toH0. Let us first consider
the N -section. Given the simple forms of Hx and Hθ in Eq. 3.1, it is clear that the single-
particle eigenfunctions are plane-waves in the x, θ directions of the form eikxeilθϕn,l(ρ). The
linear momentum along the axis of the cylinder is given by h̄k, and the radial eigenfunction
in the subband (n, l) is given by ϕn,l(ρ). As discussed above, we use a shell conduction model
for theN -section, so ϕn,l is not written out explicitly, but assumed to result in a radial position
R ≲ R0 for the carriers. The most general solutions u(r), v(r) to Eq. 3.3 are expansions over
these single-particle solutions [183, 184]. However, since ∆∗(r) = 0 in the N -section, (k, n, l)
are good quantum numbers and the single particle energies are given by:

H0u(r) =
{
h̄2k2/(2m∗) +

[
h̄2/(2m∗R2)

]
(l2 + Φ2)

−εl + ζn,l − µ}u(r), (3.4a)
−H∗

0v(r) =
{
−h̄2k2/(2m∗)−

[
h̄2/(2m∗R2)

]
(l2 + Φ2)

−εl − ζn,l + µ} v(r). (3.4b)
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Here, Φ = (πB∥R
2)/(h/e) is the normalized magnetic flux enclosed by the charge carriers,

εl =
[
h̄2/(2m∗R2)

]
(2lΦ), and ζn,l is the radial confinement energy associated with ϕn,l(ρ).

The electron subband energies (i.e. the eigenvalues of u at k = 0) are plotted in Figure 3.2,
and are parabolic in shape versus the magnetic flux. For the corresponding eigenvalues for v,
the parabolas are inverted (mirrored with respect to the Fermi energy, EF ). This gives v(r) its
hole-like character: its group velocity vg = 1

h̄
∇kE is opposite to its wave vector k (i.e. it is

retroreflected — see Ref. [40]). Note, however, that for a given k, charge is transported in the
same direction by the two wavefunctions, as the retroreflected hole has opposite charge to the
electron. The eigenvalues associated with u(r), v(r) are not equal in magnitude, as the term
εl has the same sign in both lines of Eq. 3.4. This follows because of the complex conjugation
of the diagonal term on the second row of Eq. 3.3, and is a manifestation of the breaking of
time-reversal symmetry in the presence of a magnetic field: the retroreflected particle sees the
same magnetic field as the incident particle, rather than a time-reversed field Aθ → −Aθ.

3.4.2 Andreev Bound States

Following the original work of Kulik [180] we calculate the spectrum of the bound states of the
nanowire SNS junction, however, here we allow the solutions to carry finite orbital angular
momentum.

Suppose there is a solution Ψ(r) = (u(r), v(r))T to Eq. 3.3, with energy E within the gap,
|E| < ∆0. Since we assume no FWVM or barriers at the S-N interface, the right- and left-
moving solutions Ψ± can be separated [180]. We disallow superpositions of (n, l) subbands
in the N -section. This is justified because: (i) we have assumed the ballistic regime, so no
scattering-induced subband-mixing occurs, and (ii) the pairing potential, Eq. 3.2, is zero in the
N -section, and so it does not mix the (n, l) states (see Ref. [184]).

In the S-sections, Cooper pairing generally mixes subbands with different radial quan-
tum numbers p, but the orbital angular momentum number l remains a good quantum num-
ber [183]. The latter follows from the cylindrical symmetry of Eq. 3.3, which in turn follows
from a cylindrically symmetric H0 and a spatially uniform ∆. For a given quantum num-
ber l and energy E, the most generic single-particle wavefunction in the leads is given by
eilθ
∑

p βp,Ee
ikp,Exϕp,l = eilθYl,E(x, ρ). In each term of the sum, kp,E adjusts itself such that

the energy of that term is E. For |E| < ∆0 considered here, kp,E also has an imaginary com-
ponent, resulting in an exponential decay of the wavefunction inside the S-Section [40]. In
general, there is significant freedom in the choice of the expansion coefficients βp,E which will
allow matching of the radial wavefunctions in the N and S sections.
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The wavefunctions Ψ± can be written as:

Ψ±
n,l,E =



A±eilθe±iken,lxϕn,l(ρ)

(
1

0

)
+

B±eilθe±ikhn,lxϕn,l(ρ)

(
0

1

)
, |x| < L/2

C±eilθψR
l (x, ρ)

(
eiχR

γ±

)
, x > L/2

D±eilθψL
l (x, ρ)

(
γ±

e−iχL

)
. x < −L/2

(3.5)

The wavenumbers ken,l and khn,l represent the momenta of the electron-like and hole-like com-

ponents in the N -section, respectively. γ+ = ∆0

(
E + i

√
∆2

0 − E2
)−1

is the BCS coherence

factor in the leads, and γ− is its complex conjugate. ψL,(R)
l are, in general, superpositions of the

Yl,E functions with different E, due to the inter-subband mixing induced by ∆. Since there is
no FWVM or barrier at the S-N interfaces, Ψ± has to be continuous at |x| = L/2. In order for
this to be possible, we must have ψR

l (L/2, ρ) = ψL
l (−L/2, ρ) = ϕn,l(ρ). A solution can always

be achieved by a correct choice of the expansion coefficients βp,E , so the form given in Eq. 3.5
for Ψ± is valid.

We now concentrate on theN -section, and derive the quantization rules for the energies of
the bound states. Asserting that each term ofΨ± in theN -section has energyE, the wavenum-
bers ken,l, khn,l are obtained as a function of energy:

ken,l(E) =

√
2m∗

h̄

√
µe
n,l + E, (3.6a)

khn,l(E) =

√
2m∗

h̄

√
µh
n,l − E, (3.6b)

where we have defined an effective chemical potential for an electron-like (hole-like) particle in
the subband (n, l) in the N -section µe(h)

n,l := µ− h̄2

2m∗R2 (l ∓ Φ)2 − ζn,l. The minus (plus) sign in
the parentheses refers to the electron-like (hole-like) particle, and ζn,l is the radial confinement
energy due to ϕn,l. The effective chemical potential is the difference between the energy of the
subband (n, l) and the Fermi energy at a given magnetic field (see Figure 3.2), and is a positive
quantity for any subband that is occupied.

The energy quantization rules can be obtained [180] by finding a set of coefficients {A±, . . . ,
D±} that make the solution Ψ± of Eq. 3.5 continuous at |x| = L/2. This is only possible if the
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following relation holds:
γ2ei(k

e
n,l−khn,l)Le∓iχ = 1, (3.7)

where the junction phase χ = χR − χL enters with a minus sign when for Ψ+, and a plus
sign for Ψ−. Note that the superscript s = +,− denotes the right- and left-moving solutions,
respectively. The complex phase of the right-hand side of Eq. 3.7 must equal 2mπ, with m =
0,±1,±2, etc. Since ken,l, khn,l depend explicitly on the bound state energyE (Eq. 3.6), this results
in a quantization rule for E, and yields the bound state spectrum. This procedure is carried out
in Section 3.5 to numerically solve for E as a function of χ.

Quite generally, if Ψs = (u, v)T is an eigensolution of the BdG equation (Eq. 3.3) with
energy E, then Ψs = (−v∗, u∗)T is also an eigensolution[41] with energy −E. If Ψs is a right-
moving solution, then Ψs is left-moving, and vice versa. Let s denote the conjugate of s. The
wavefunctions Ψs and Ψs are degenerate at zero field, for all χ (Figure 3.3a). This degeneracy
is lifted in the presence of the magnetic field, which induces a finite phase shift, as will be
discussed below. The pair of solutions (Ψ+,Ψ+) are phase shifted together in one direction,
while the opposite pair (Ψ−,Ψ−) are phase shifted in the opposite direction (Figure 3.3b).

3.4.3 Andreev Approximation

Deriving an analytical expression for the bound state spectrum by inserting Eq. 3.6 into Eq. 3.7
becomes intractable, because of the complicated dependence of ken,l − khn,l on E. In order to
gain insight into the behaviour of the bound states, we invoke below the well-known Andreev
approximation [172, 173, 185], in which |ken,l − khn,l| is considered a small quantity compared
to |ken,l| and |khn,l|. This approximation is widely used in the literature for a variety of situa-
tions [180, 186, 185, 187], but can be violated in some regimes of our SNS junction. In partic-
ular, when the subband energy is close to the Fermi energy, ken,l and khn,l become small and the
assumption |ken,l − khn,l| ≪ |ken,l|, |khn,l| is not justified. Keeping these restrictions in mind, we
now look at how the CPR of the junction is modified in the presence of the axial magnetic field.

The effective chemical potential for electron-like (hole-like) particles in the subband (n, l) in
theN -section can be written µe(h)

n,l = µ− h̄2

2m∗R2 (l
2+Φ2)±εl−ζn,l, where εl =

[
h̄2/(2m∗R2)

]
×

(2lΦ) enters with a plus sign for electron-like particles. It reflects the coupling of the orbital
motion and the axial field. The Andreev approximation translates to the following condition:
E + εl ≪ µe, µh, i.e. the quasi-particle energy and the coupling to the field are small pertur-
bations on the single-particle energies. Eq. 3.6a, 3.6b can be expanded in a Taylor series in the
powers of (E + εl). We calculate ken,l − khn,l to first order:

ken,l − khn,l ≃
2

h̄

E + εl
vn,l

, (3.8)
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where vn,l =
√

2
(
µ− h̄2

2m∗R2 (l2 + Φ2)− ζn,l

)
/m∗ is the velocity of a particle in the subband

(n, l) traveling along the cylinder axis in the N -section.
By inserting (ken,l−khn,l) into Eq. 3.7 and equating the complex phase of the left hand side of

Eq. 3.7 with 2mπ, wherem = 0, 1, 2, etc., we obtain the following expression for the spectrum
of bound states: (

L

ξ0n,l

)(
E±

n,l,m

∆0

)
− 2arccos

(
E±

n,l,m

∆0

)

∓ χ+

(
L

ξ0n,l

)(
εl
∆0

)
= 2πm, (3.9)

where ξ0n,l = h̄vn,l/(2∆0) is the healing length [186] for the subband (n, l), and the energy of
the bound state depends on three quantum numbers n, l,m, and the junction phase difference
χ. E+(E−) refers to the eigenenergy of the right-moving (left-moving) solution. Note that the
energy corresponding to Ψ+ is −E+, for example.

In a short junction, L ≪ ξ0n,l, Eq. 3.9 allows only one m value per solution, and there are
four bound states (Ψ+,Ψ+,Ψ−,Ψ−) per subband (n, l). At zero field, there are two positive,
and two negative solutions at any given χ (Figure 3.3a). For long junctions there are more than
four bound state energies per subband, with differentm numbers [186, 188, 189, 190, 191].

The bound state spectrum Eq. 3.9 gives, for the case of no magnetic field (εl = 0), a result
similar to the well known Andreev levels of a ballistic SNS junction [180, 186], but with a
different value of the healing length for each subband. An example is shown in Figure 3.3a for
subband (n, l) = (0, 1) in a short junction with L = 25 nm ≪ ξ0n,l ∼ 200 nm. Figure 3.3b
shows the energy-versus-phase curves of the bound levels at a finite flux, Φ = 2.5. The curves
are now phase shifted by an amount δn,l =

(
L
ξ0n,l

)(
εl
∆0

)
, where εl =

[
h̄2/(2m∗R2)

]
(2lΦ). That

is, E±
n,l,m(χ) → E±

n,l,m(χ∓ δn,l).

3.4.4 Reduction to a Semiclassical Model

Thephase shift δn,l can be understood semiclassically as the phase picked up by azimuthal travel
around the circumference of the cylinder in the presence of the magnetic field. In this picture,
for a subband (n, l) with l ̸= 0, the particles (both electron- and hole-like) travel in a spiral
(helical) path as they traverse the junction lengthL. In the shell-conductionmodel the spiral has
radius R. The velocity along the axis is vn,l, while the azimuthal velocity is vθ(l) = h̄l/(m∗R).
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The semiclassical phase δsc is due to the coupling of vθ and the vector potentialA = (B∥ρ/2)θ̂,
and is calculated from the Ginzburg-Landau formula for the phase:

δsc = (2e/h̄)

∫
A · dl = (2e/h̄)

∫
A · vdt, (3.10)

where the differential element dl is along the spiral path, v = vn,lx̂ + vθθ̂ is the velocity, t is
time, and the second integral is taken from t = 0 corresponding to the particle leaving one S-
section, to t = L/vn,l, when it arrives at the otherS-section. The result is δsc = elLB∥/(m

∗vn,l),
which equals δn,l. This shows that when the Andreev approximation holds and there is shell
conduction, the semiclassical result coincides with the quantum mechanical one. Note that in
the expression for δsc there is no explicit dependence on R. The dependence of the phase shift
on R comes only through vn,l, and is a weak dependence within the Andreev approximation.
More generally, we numerically calculate the energy spectra using Eq. 3.6 without the Andreev
approximation and find similar phase shifts that are always proportional to the junction length
L and to the angular momentum quantum number l.

3.4.5 Bound State and Continuum Currents

The current due to the Andreev bound states in the subband (n, l) at temperature T is calcu-
lated [190, 186, 192] from the formula

In,l(χ) =
e

h̄

∑
s,m

f(Es
n,l,m)

dEs
n,l,m(χ)

dχ , (3.11)

where f(Es
n,l,m) = 1/(exp(Es

n,l,m/(kBT )) + 1) is the Fermi-Dirac occupation probability of a
given energy level (kB is the Boltzmann constant). Energies corresponding to both types of
wavefunctions Ψs

n,l and Ψs
n,l must be inserted into Eq. 3.11. The total bound state current is

the sum of supercurrent amplitudes from all occupied subbands [193] (‘open channels’ in the
language of Ref. [194]):

Itotal(χ) =
∑
n,l

In,l(χ). (3.12)

The continuous spectrum of states with energies |E| > ∆0 also contributes to the junction
current. A continuum level can be viewed as a “leaky” solution [186, 188] to the Andreev
bound state problem described above, with a complex-valued eigenenergy E = ER+ iEI , with
|ER| > ∆0. The leaky level follows the same subband structure as the Andreev bound states.
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Figure 3.3: Eigenenergies of the Andreev bound states of a short (L = 25 nm ≪ ξ0n,l ∼
200 nm), cylindrical SNS junction with no barriers at the S-N interfaces, vs. the super-
conducting phase difference χ of the leads. Two values of normalized magnetic flux, Φ =
πR2B∥/(h/e) = 0, 2.5, are shown. We concentrate on one subband (n, l) with n = 0 and
l = 1. (a) Zero magnetic field, Φ = 0. The energies correspond to the four allowed wavefunc-
tions (defined in the main text), and the states are pairwise degenerate for all χ. (b) Φ = 2.5,
where the degeneracies are lifted, and there is a phase shift with opposite directions for each
pair of states. The phase shift is small because of the short length of the junction. The following
parameters were used for both panels: µ = 200 meV, R = 30 nm, T = 100 mK.

The imaginary component of energy results in a finite lifetime for the continuum level, reducing
its contribution to the junction current, but for a long junction L ≳ ξ0n,l, this contribution is
significant, and cannot be ignored [186].

The continuum current due to the subband (n, l), Jn,l(χ), is calculated using the transmis-
sion formalism [186, 191, 195]. We calculate the transmission coefficients for the electrical cur-
rents carried by electron-like and hole-like excitations incident on the S-N interfaces, resulting
in leaky solutions in theN -section. The details of the calculation are given in Appendix 3.6. For
the rest of this section the subscripts n, l are dropped for the sake of simplicity; it is implicitly
assumed that all quantities pertain to the subband (n, l). The result for the continuum current
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is:

J(χ) =
e

h

(∫ −∆0

−∞
+

∫ ∞

∆0

)
|u20 − v20|

(
1

F+(E,−χ)

− 1

F−(E,−χ)
− 1

F+(E,+χ)
+

1

F−(E,+χ)

)
f(E)dE, (3.13)

where E is the real part of the energy of the continuum level and f(E) is the Fermi-Dirac
distribution at temperature T , and u0, v0 are real-valued BCS coherence factors:

u20 =
1

2

(
1 +

√
E2 −∆2

0/E

)
, (3.14a)

v20 =
1

2

(
1−

√
E2 −∆2

0/E

)
. (3.14b)

The functionsF±(E, χ) depend on energy, through the wavenumbers ke and kh (Eq. 3.6) as well
as the coherence factors u0, v0: F±(E, χ) = u40 + v40 − 2u20v

2
0cos

[
(ke(±E)− kh(±E))L+ χ

]
.

Equation 3.13 can be intuitively understood in terms of the leaky solutions to the BdG equation:
the terms containing F+ pertain to the contribution of leaky states of type Ψs

n,l,m, while those
containing F− pertain to Ψs

n,l,m. The junction phase χ enters with a plus (minus) sign for left
(right) moving solutions. At zero magnetic field, F+(E, χ) = F−(E,−χ). This is analogous to
the degeneracy of Ψ+,Ψ− in Figure 3.3a. Therefore, Eq. 3.13 reduces to Eq. 17 in Ref. [186], up
to an application of the Andreev approximation.

In the presence of the magnetic field, the terms (ke − kh)L shift the functions F±(E, χ) in
phase relative to the zero-field case, in the same manner as the phase shifts found previously
for the bound states. Employing the Andreev approximation (Eq. 3.8), we obtain

F±(E, χ) = u40 + v40 − 2u20v
2
0cos

[(
E ± εl
∆0

)(
L

ξ0

)
+ χ

]
, (3.15)

which is shifted in phase with respect to the zero-field case. Explicitly for the subband (n, l)
we have F±

n,l(E, χ) → F±
n,l(E, χ± δn,l), with the phase shift δn,l defined previously.

The total continuum current of the junction is

Jtotal(χ) =
∑
n,l

Jn,l(χ). (3.16)

The critical current Ic of the junction is defined as the maximum of total bound state + contin-
uum currents with respect to χ:

Ic = maxχ∈[0,2π) [Itotal(χ) + Jtotal(χ)] . (3.17)
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3.5 Numerical Results

We numerically solve the continuum and bound state currents of an SNS junction at finite
magnetic fields, using the shell conduction approximation with the shell at a radiusR = 30 nm.
Temperature is set to T = 100 mK in all calculations. From this point on, only (n, l) subbands
with n = 0 are assumed to be occupied in the N -section. The Andreev approximation is not
used in calculating the CPR. The critical current of the junction is calculated from Eq. 3.17, and
its behaviour versus axial magnetic fluxΦ = πR2B∥/(h/e) is studied. Note that our assumption
of no barriers at the S-N interfaces also implies full Andreev reflection.

3.5.1 Single Subband

As an illuminating example we study a 500 nm long junction with a chemical potential of µ =
8.5 meV. This value for µ is chosen because it allows l = −1, 0, 1 subbands to be occupied at
Φ = 0; at Φ = 1 the |l| = 1 subbands depopulate1. In this section we concentrate on the CPR
obtained for one subband, namely l = 1, and discuss how the coupling of the finite angular
momentum with the axial field modifies the subband CPR.

Since the junction length is greater than the healing length of the populated subbands (L =
500 nm ≳ ξ0n,l), the long junction limit applies. Many bound states are present in the junction
(∼ 12). In Figure 3.4a we show the bound state current In,l, continuum current Jn,l, and their
sum, for the subband (n, l) = (0, 1) at zero magnetic field. As expected of a long junction [188,
186], In,l and Jn,l are of the same order of magnitude, and the CPR is triangular in shape. An
additional group of 4 bound states (Ψ+,Ψ−,Ψ+,Ψ−) appear in the junction at χ = 0.05, and
exit at χ = 0.95, giving rise to discontinuities in In,l, Jn,l. However, the total subband current
In,l + Jn,l is always a smooth function of χ. It is maximal near χ = π, (exactly at χ = π at zero
temperature) regardless of the junction length [186]. Note that the continuum current is zero
at χ = π.

In Figure 3.4b we show the subband current In,l + Jn,l as a function of the magnetic flux.
As the flux is increased from zero, two discontinuities develop in the subband current (shown
forΦ = 0.10). The bound state current is modified as the eigenenergies corresponding to states
(Ψ+,Ψ+) are shifted in phase in the opposite direction to those of states (Ψ−,Ψ−), similarly to
Figure 3.3b. An equivalent process happens for the continuum current, as explained in Eq. 3.15.
As a result, the subband current In,l + Jn,l also shows two discontinuities, and is no longer
necessarily maximal near χ = π.

1The effective chemical potentials follow µe
n,l(Φ) = µh

n,−l(Φ), see Figure 3.2. In this example, as Φ approaches
1, µe

0,1, µ
h
0,−1 go to zero, at which point Andreev quasiparticles can no longer be supported by the |l| = 1 subbands.
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Figure 3.4: (a) Bound state current In,l, continuum current Jn,l, and the sum In,l + Jn,l for
the subband (n, l) = (0, 1) vs. the superconducting phase χ at zero magnetic field, Φ = 0.
Since the junction is long, L = 500 nm ≳ ξ0n,l, the CPR is triangular. The kinks in In,l, Jn,l at
χ = 0.05, 0.95 are due to Andreev bound states crossing the gap edge into the continuum levels,
but the total subband current is a smooth function of χ. (b) Total subband current In,l + Jn,l
vs. the superconducting phase as a function of the normalized axial magnetic flux Φ. At zero
flux the maximal value occurs near χ = π. At finite flux, the bound state and continuum
currents are phase shifted. For Φ = 0.1, two discontinuities can be seen in In,l + Jn,l because
of the phase shifts, and the maximal value no longer occurs near χ = π. At Φ = 0.35, the
phase shifts amount to 2π and the zero-field curve is recovered. The maximal current at this
flux is slightly smaller than the zero field case, due to a decrease in the average momentum of
the Andreev quasiparticles with increasing flux. The following parameters were used in both
panels: L = 500 nm, µ = 8.5 meV, R = 30 nm, T = 100 mK.

The amounts of the phase shifts in In,l and Jn,l depend on the quantity (ken,l − khn,l)L. The
wavenumbers ken,l, khn,l are subband parameters defined in Eq. 3.6, and the length L is device
dependent. Therefore, the fluxes at which phase shifts equal integer multiples of 2π need not
occur at integer multiples ofΦ0 = (h/e) orΦ0/2; they can occur at any value ofΦ. An example
is shown in Figure 3.4b for Φ = 0.35, where the phase shifts equal 2π and the CPR recovers its
shape at Φ = 0. Notice, however, that the maximal value of the subband current at Φ = 0.35
is smaller than at Φ = 0. This can be intuitively understood as follows: as the flux increases,
the effective wavenumbers of the electrons and holes change according to Eq. 3.6. It can be
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seen that the average momentum of the electron-hole pair and therefore the healing length
ξ0n,l are always smaller for higher fluxes. Since the magnitude of Josephson current in a long
junction scales approximately linearly [196] with ξ0n,l/L, it is suppressed at higher fluxes. This
suppression is stronger near the depopulation point of a given subband, where the average
momentum decreases significantly.

3.5.2 Interference Due to a Few Subbands
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Figure 3.5: (a) Critical current Ic vs. normalized axial magnetic fluxΦ of a 500 nm junction with
µ = 8.5 meV. The subbands with l = −1, 0, 1 are occupied and contribute to Ic. Oscillation of
Ic with Φ is observed, which is not periodic in Φ: the positions of the peaks get closer together
asΦ is increased. At flux points indicated with vertical dotted lines, individual subband currents
are plotted in panels b-f vs. the superconducting phase χ. (b-f) CPR for l = 0 (solid lines) and
l = ±1 (dash-dotted lines) subbands. The current due to the l = 1 subband is equal to that of
the l = −1 subband for all χ and Φ values. Here, the contribution due to only one of the two
subbands is shown for clarity. The vertical dotted lines indicate the phase χ at which the critical
current occurs. Note the difference in the y-axis scale between panel a and the other panels.
The following parameters were used in all plots: L = 500 nm, µ = 8.5 meV, R = 30 nm, T =
100 mK.
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In order to elucidate the mechanism of the Josephson interference between subbands, we
show in Figure 3.5a the critical current versus axial flux of the junction studied in Section 3.5.1.
The length L = 500 nm is chosen because it allows for a relatively large amount of phase
pickup, since the phase pickup is proportional to the length of the junction ((ken,l − khn,l)L in
Eq. 3.7). Hence, several oscillations of the critical current occur prior to the depopulation of the
|l| = 1 subbands at Φ = 1.

The supercurrent of each subband is shown versus the phase differenceχ in Figure 3.5 panels
b-f, at particular values of the magnetic flux. The l = 1 subband current equals that of l = −1
at all fluxes. At zero flux the current of each subband is maximal near χ = π (exactly χ = π for
zero temperature), as discussed in Section 3.5.1. This can be clearly seen in panel b. The total
current of the junction is the sum of the contributions from the l = −1, 0, 1 subbands, and is
therefore roughly three times the contribution of each. The dotted vertical lines show the phase
at which the critical current occurs.

As the flux is increased, the CRP of the |l| = 1 subbands are modified, similarly to Fig-
ure 3.4a. The critical current of the junction decreases, since the |l| = 0, 1 subbands no longer
interfere constructively (panel c). At Φ = 0.13 the maximal current switches from a phase
χ < π to χ > π, as shown in panel d. This is a feature of the triangular CPR. The critical
current increases until Φ = 0.18 (panel e), at which point the junction current is maximal near
χ = 2π. We call this a peak a secondary peak as it occurs roughly in the middle of the main
period of oscillations (see discussion below on periodicity), when the magnetic phase pickup
of the |l| = 1 subbands equals roughly π. The magnitude of this peak is roughly two thirds
the total current as zero field, as the l = ±1 subbands contribute maximally, and the l = 0
subband current is close to zero. The process reverses itself for Φ > 0.18, until at Φ = 0.35
the phase pickup of the |l| = 1 subbands equals 2π and all subbands interfere constructively
again (panel f). We refer to the peak at Φ = 0.35 a primary peak. Other primary peaks occur
at Φ = 0.66, 0.89. As in Figure 3.4, the contribution of the |l| = 1 subbands decrease as Φ is
increased, because the decrease in the average quasiparticle momentum. This is the mechanism
behind the slow decay of the magnitude of the primary peaks as flux increases.

Aperiodicity – The |l| = 0, 1 subbands interfere constructively when the magnetic phase
pickup of the |l| = 1 subbands equals an integer multiple of 2π. This corresponds to the main
period of the critical current oscillations with Φ, which we estimate below. In other words, we
want to find Φ such that

(ken,l − khn,l)L
∣∣
Φ
− (ken,l − khn,l)L

∣∣
Φ=0

= 2jπ, (3.18)

for integer j. The wavenumbers ken,l, khn,l are defined in Eq. 3.6. For the general case this is
not easy to do analytically, as ken,l, khn,l themselves depend on the flux through the effective
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chemical potentials µe,h
n,l . However, we can get an estimate of the expected period by invoking

the Andreev approximation (Eq. 3.8), and assuming the effective Fermi velocities do not depend
on the flux, so can be evaluated at some fixed Φ, e.g. Φ = 0. These are reasonable assumptions
when the flux is much smaller than the depopulation point of a given subband (e.g., Φ = 1 for
|l| = 1 subbands in the example of Figure 3.5). The result for the position of the first primary
peak Φ1 is:

Φ1 = πvn,lm
∗R2/(h̄lL), (3.19)

where vn,l is defined below Eq. 3.8. For the example of Figure 3.5, this evaluates to Φ1 = 0.36,
deviating from the numerically calculated value by only 3%. However, we see that the numeri-
cal positions of the next primary peaks at 0.66 and 0.89 cannot be accurately approximated as
integer multiples of Φ1: the period becomes shorter as Φ is increased. This is because the field
dependence of vn,l cannot be ignored at higher values of Φ, and the Andreev approximation
breaks down. Intuitively, the effective Fermi velocity is noticeably lower at higher fields, re-
sulting inmore time spent in the junction by the Andreev pair andmore phase pickup, therefore
a smaller period for Ic oscillations. Consequently, even in the simple case of a few subbands,
the oscillations of Ic versus Φ are not strictly periodic.

3.5.3 Interference Due to Many Subbands

A higher chemical potential results in the occupation of a greater number of angular momen-
tum subbands. The rich interplay between the different l-subbands results in a complex pattern
of the oscillation of Ic with Φ. Assume subbands with |l| up to l̃ are occupied. Each |l| sub-
band’s supercurrent oscillates with a flux dependent ‘period’ approximated by Eq. 3.19, which
depends on the subband velocity vn,l, and is therefore generally anharmonic with other sub-
bands. Typically, a peak in Ic as a function of Φ occurs under one of two circumstances: (i)
when some (at least two) of the subbands with different |l| values interfere constructively, or
(ii) when the critical current occurs near χ = 2π, a secondary peak is formed as described
in Figure 3.5. There are C(l̃, 2) choices for pairs of constructively interfering subbands, where
C(n, k) is the combination function (a.k.a. the binomial coefficient function). As each |l| sub-
band’s oscillations can be anharmonic with those of all other subbands, it follows that there are
C(l̃, 2) different flux-dependant ‘periods’ in the Ic oscillations due to condition (i), plus another
l̃ due to condition (ii). The Ic curves can therefore display complex, aperiodic structures.

In Figure 3.6a we plot an example of an Ic versus Φ curve for a junction with the same
parameters as that of Figure 3.5, except the chemical potential is raised from 8.5 meV to 20 meV.
At zero flux, subbands up to |l| = 3 are occupied. The |l| = 3 states depopulate at Φ = 0.2, and
the |l| = 2 states at Φ = 1.2. As an example of configurations that can give rise to a peak in Ic,
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Figure 3.6: (a) Critical current Ic vs. normalized axial magnetic fluxΦ of a 500 nm junction with
µ = 20 meV. The subbands with |l| ≤ 3 are occupied at zero flux. The subbands with |l| = 3, 2
depopulate atΦ = 0.2, 1.2, respectively. An aperiodic oscillation of Ic vs.Φ is observed. At flux
points indicated with vertical dotted lines, individual subband currents are plotted in panels
b-f vs. the superconducting phase χ. (b-f) CPR for individual subbands, displaying different
configurations which can lead to a peak in Ic vs. Φ. The vertical dotted lines indicate the phase
χ at which the critical current occurs. Note the difference in the y-axis scale between panel
a and the other panels. The following parameters were used in all panels: L = 500 nm, µ =
20 meV, R = 30 nm, T = 100 mK.

subband CPRs are shown in Figure 3.6 panels b-f, for 5 peaks indicated in panel a with vertical
dotted lines. The peak at Φ = 0.29 (panel b) satisfies condition (ii), while the other examples
are due to constructive interference of two subbands, i.e. condition (i): subbands with |l| = 0, 1
at Φ = 0.57 (panel c), |l| = 0, 2 at Φ = 0.89 (panel e), and |l| = 1, 2 at Φ = 0.67 and Φ = 1.05
(panels d,f).
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3.5.4 Effect of Junction Length

We now discuss the effect of the junction length L on the pattern of Ic oscillations. The left
column in Figure 3.7 (panels a-d) shows the numerically obtained Ic versus Φ for a junction
with µ = 8.5 meV, as L is varied. All other junction parameters are the same as in Figure 3.5.
The critical current is normalized to its value at zero magnetic flux. Two processes affect the
behaviour of Ic: (i) the depopulation of the |l| = 1 subbands at Φ = 1, shown by vertical dotted
lines in panels a-d, and (ii) the Josephson interference effect described above. The first of these
processes results in step-like discontinuities in Ic at Φ = 1.0, a drop to roughly one-third of
the zero-field Ic value as the l = −1, 1 subbands depopulate. Since the l = 0 subband does
not couple to the axial flux, Ic is almost constant above Φ = 1. The slow decay of the primary
peak heights below Φ = 1, and of Ic above Φ = 1, are both due to the decreasing average
momentum at higher fluxes, as discussed in Section 3.5.1. For a short junction with L = 25 nm
(panel a) and forΦ < 1.0, the phase shifts in the CPR of the |l| = 1 subband are small (the phase
shifts are dependent on (ken,l − khn,l)L), but become more significant close to Φ = 1, where the
axial velocities of the quasiparticles are smaller and the time of flight across the junction longer.
This results in the observed decrease in Ic before the step-like discontinuity. As L is increased
to 50 nm, the value of this phase shift increases and modulation due to interference starts to
emerge. For L = 200 nm (Figure 3.7 panel c), the first primary peak occurs at Φ = 0.79, and
for L = 500 nm (panel d) at Φ = 0.35. The decrease by a factor of 2.26 in the position of the
first primary peak is approximately equal (within 11%) to the reciprocal ratio of lengths L, as
expected from the estimate in Eq. 3.19.

The right column of Figure 3.7 (panels e-h) shows the Ic versus Φ curves for a junction
with µ = 20 meV. The subbands with |l| = 3, 2, 1 depopulate at Φ = 0.2, 1.2, 2.2 respectively
(vertical dotted lines in panels e-h), resulting in step-like discontinuities in Ic at those flux
values. Similarly to above, the behaviour of Ic is dominated by this effect for a 25 nm junction
(panel e), but as L is increased the Josephson interference becomes visible (panels f-h). Note
that between the flux valuesΦ = 1.2 andΦ = 2.2 the Ic curves in the right column of Figure 3.7
are qualitatively similar to their counterparts in the left column, because similarly to the µ =
8.5 meV case, subbands with |l| ≤ 1 are occupied within this flux window. Note that for
µ = 20 meV, Ic(0) is much larger than for the µ = 8.5 meV case; the oscillation amplitude
appears to be smaller in panels (e-h) only because the relative contribution of each subband to
the total current is smaller when there are more subbands occupied.

In summary, for a short junction, the depopulation of subbands is more visible than the
Josephson interference effect. However, as the junction length is increased, the interference
effect becomes apparent. The periods of oscillation decrease slightly as flux is increased. For a
junction with a low chemical potential (only a few transverse subbands occupied, e.g. an SNS
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Figure 3.7: (N.b. two-page figure & caption.) Normalized critical current of the junction versus
the normalized magnetic flux Φ = (πB∥R

2)/(h/e), for µ = 8.5 meV (panels a-d) and several
values of the junction length L. The vertical line at Φ = 1.0 indicates the depopulation of the
|l| = 1 subbands.
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Figure 3.7: (Cont. from prev. page.) (Panels e-h) Same as the previous page, butwithµ = 20 meV.
The vertical lines at Φ = 0.2, 1.2, 2.2 indicate the depopulation of the |l| = 3, 2, 1 subbands,
respectively. The occupation of more subbands results in more complex behaviour vs Φ. The
following parameters were used for all panels: R = 30 nm, T = 100 mK.
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point-contact [197, 198, 182]), the pattern of Ic modulation is simpler and the period longer
than the case of a high chemical potential (many transverse subbands occupied). A long, low-µ
junction is optimal for experimental observation of this Josephson interference effect.

3.6 Transmission Formalism for the Continuum Current

The electrical current transmission amplitudes for the continuum states are obtained by match-
ing the solutions of the BdG equation (Eq. 3.3) in the three regions of the cylinder (x < −L/2,
|x| < L/2, x > L/2) while assuming an incident “source term” on the S-N interface at
x = −L/2 with energy |E| > ∆0. These transmission amplitudes are then used to calculate
the continuum current. This section follows appendices A,B in Ref. [186], but is generalized to
account for finite magnetic field and orbital angular momenta.

Hereafter all quantities are presumed to pertain to one subband, (n, l), unless explicitly
stated otherwise. We drop the subscripts n, l for simplicity. Consider the quasiparticle exci-
tation spectrum of the BdG Hamiltonian. In the left S-section (x < −L/2), the electron-like
solutions with energy E > ∆0 > 0 are given by

Ψe =

(
u(x, ρ, θ)
v(x, ρ, θ)

)
=

(
u0e

iχL

v0

)
ψL,e(x, ρ)eilθ, (3.20)

and the hole-like solutions by

Ψh =

(
u(x, ρ, θ)
v(x, ρ, θ)

)
=

(
v0e

iχL

u0

)
ψL,h(x, ρ)eilθ. (3.21)

Here, u0, v0 are given in Eq. 3.14, andψL,e, ψL,h have the form given above Eq. 3.5, with different
expansion coefficients βp for the electron- and hole-like wavefunctions. We do not reproduce
these coefficients here as they do not enter the calculation. Let the source term Ψe be incident
from the left on the S-N interface at x = −L/2. The wavefunctions generated due to this
source term are grouped into two categories (depending on which S-section they belong to),
with coefficients B,C , following Bagwell’s notation [186]. The first group pertains to the left
S-section. The electron-like source term incident on the S-N interface is(

u0e
iχL

v0

)
ψL,e(x+

L

2
, ρ)eilθ (x < −L

2
). (3.22)

The Andreev reflected hole-like wavefunction is(
B − v0

u0

)(
v0e

iχL

u0

)
ψL,h(x+

L

2
, ρ)eilθ (x < −L

2
). (3.23)
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For the electrons in the normal region, the wavefunction is(
B − v0

u0
+ u0

v0

)( v0e
iχL

0

)
ei(k

e(E))×(x+L
2
) ϕ(ρ)eilθ

(|x| < L
2
),

(3.24)

and for the holes
B

(
0
u0

)
ei(k

h(E))×(x+L
2
)ϕ(ρ)eilθ (|x| < L

2
). (3.25)

Here, ϕ is radial part of the wavefunction in the N -section, defined below Eq. 3.3. The explicit
energy dependence of the wavenumbers ke, kh is given in Eq. 3.6.

The transmitted wavefunction into the right contact is

C

(
u0e

iχR

v0

)
ψL,e(x− L

2
, ρ)eilθ (x >

L

2
). (3.26)

This is supported by electrons in the N -section with the wavefunction

C

(
u0e

iχR

0

)
ei(k

e(E))×(x−L
2
)ϕ(ρ)eilθ (|x| < L

2
), (3.27)

and holes
C

(
0
v0

)
ei(k

h(E))×(x−L
2
)ϕ(ρ)eilθ (|x| < L

2
). (3.28)

The normal reflection processes have not been considered, as no FWVMor barriers are assumed
at the S-N interfaces.

The coefficientsB,C can be found by connecting together Eqs. 3.24, 3.27, and Eqs. 3.25, 3.28
at any point x = awithin theN -section or at the S-N interfaces. We use a = −L/2. The result
is

C =
1− v20

u2
0

eiχe−ike(E)L − v20
u2
0
e−ikh(E)L

, (3.29)

where χ = χR − χL. By definition, C is the transmission amplitude from the left contact
to the right contact due to an electron-like incident source term with energy E > 0. The
corresponding transmission coefficient T e

L→R(E, χ) is

T e
L→R(E, χ) = |C|2 = |u20 − v20|2

F+(E,−χ)
, (3.30)
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with the function F+ given below Eq. 3.14.
The coefficient for transmission from right to left (due to a left-moving source) can be found

by making the transformation χ→ −χ in the above formula. That is,

T e
R→L(E, χ) =

|u20 − v20|2

F+(E, χ)
. (3.31)

Repeating these calculations for an electron-like source term with energyE < −∆0 < 0 shows
that Eqs. 3.30, 3.31 give the correct transmission coefficients for the negative energy case as well.

Similar to the case of the bound states, if (u, v)T is a solution at energy E, then (−v∗, u∗)T
gives a solution at energy−E. Both types of solutions must be taken into account when calcu-
lating the total transmission coefficients. Consider the (left-moving) source term Ψe obtained
by applying the above transformation on Eq. 3.20:

Ψe =

(
−v0

u0e
−iχL

)(
ψL,e(x, ρ)

)∗
e−ilθ. (3.32)

All relevant wavefunctions due to this source term (i.e. the Andreev reflected in the S-section,
electron- and hole-like in theN -section, and transmitted to the other S-section wavefunctions)
can be constructed by applying the transformation (u, v)T → (−v∗, u∗0)T to Eqs. 3.23 – 3.28.
Crucially, the resulting wavefunctions contain the wavenumbers ke(E), kh(E), while having
energy −E. Repeating the above calculation, the transmission coefficient T e

R→L due to the
source term Ψe is found:

T e
R→L(−E, χ) =

|u20 − v20|2

F+(E,−χ)
, (3.33)

or equivalently,

T e
L→R(E, χ) =

|u20 − v20|2

F−(E, χ)
, (3.34)

T e
R→L(E, χ) =

|u20 − v20|2

F−(E,−χ)
, (3.35)

with F−(E, χ) := F+(−E, χ).
The current Je due to electron-like excitation source terms is calculated [186] using the

formula

Je(χ) =
e

h

(∫ −∆0

−∞
+

∫ ∞

∆0

)
1

|u20 − v20|
×
[
T e
L→R(E, χ)− T e

R→L(E, χ) + T e
L→R(E, χ)

−T e
R→L(E, χ)

]
f(E)dE. (3.36)
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Here, f(E) is the Fermi-Dirac distribution at temperature T . It can be seen that Eq. 3.36 is
equal to Eq. 3.13. In deriving Eq. 3.36 we used only the electrical current transmitted due to
electron-like source terms. Repeating the above calculations for hole-like source terms results
in a current Jh which is equal to Je. Naively, one might then think the total continuum current
obtained is too large by a factor of two. However, note that the density of excitations (electron-
plus hole-like) in the S-section is twice as large as the density of states in the N -section. Con-
sequently, the subband’s continuum current is

J(χ) =
1

2

(
Je(χ) + Jh(χ)

)
, (3.37)

and we recover Eq. 3.13. This disparity in the density of states in the S- and N -sections was
noted in Ref. [186], see Eq. B8 in that paper.

Equation 3.36 is used in Section 3.5 to numerically calculate the continuum current J due
to each subband. For a junction much shorter than the subband’s healing length, L ≪ ξ0, the
bound state current I is much larger than J . When L ≳ ξ0, In,l and Jn,l are of the same order
of magnitude, and we obtain a triangular CPR. At finite magnetic fields, phase shifts appear in
both I and J as described in Section 3.5.1, but the CPR retains its triangular shape.

Notice that at zero magnetic field, we have ke(−E) = kh(E), so J simplifies and can be
written as

J(χ) =
2e

h

(∫ −∆0

−∞
+

∫ ∞

∆0

)
1

|u20 − v20|
× [T e

L→R(E, χ)− T e
R→L(E, χ)] f(E)dE. (3.38)

The extra factor of 2 here is usually attributed to the spin degree of freedom of the elec-
trons/holes. By including both types of coefficients T e, T e in Eq. 3.36 we are taking into account
this degree of freedom. This can be further elucidated by noting that in the spinful version of
this problem, the particle-hole symmetry is manifested as two (Nambu-spinor type) solutions
Ψ and (σyτyΨ)∗ with opposite energies, spins, and coherence factors (the Pauli matrices σ, τ
act on the spin and particle-hole manifolds, respectively). That is, (u, v)T and (−v∗, u∗)T gen-
eralize to states of opposite spin, and the spin degree of freedom is correctly accounted for by
considering both types of solutions.

3.7 Discussion

We have described the theory of a previously unstudied form of the Josephson interference
effect that can occur in nanoscale SNS junctions due to the coupling of the orbital angular
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momentum of transverse electronic subbands with an axial magnetic flux. We found in Sec-
tion 3.5.4 the regimes in which this interference effect dominates the Ic vs. Φ characteristics
of the junction. An idealized model of an SNS junction was used, with several simplifying
assumptions, in order to elucidate the mechanism of the effect. We discuss generalizations of
the model below, in particular those modifications that may be necessary to directly model
experimental devices.

FWVM and barriers at the interfaces — No barriers were assumed at the S-N interfaces, and
FWVMwas neglected. The effective mass for electronsm∗ was assumed to be uniform through-
out the junction. These assumptions allowed Kulik’s method of matching the wavefunctions at
the interfaces to be used to calculate the bound state and the continuum currents. We stress
that the basic mechanism of the orbital interference effect, i.e. the modification of theN -section
wavenumbers in the presence of the axial field, is independent of FWVM and interfacial barri-
ers. Therefore, the main features of the Ic oscillations (periodicity, amplitude) should only be
modified by FWVM and barriers as higher order corrections. The exact shape of the junction
CPR and the Ic vs.Φ curves, however, depends on the details of the interfaces. Accurate model-
ing of experiments must take this into account, based on the material and interfacial properties
specific to a particular experimental implementation.

As was discovered in studies of Andreev reflection at Nb-InAs interfaces [189, 193], FWVM
modifies the CPR of Superconductor/Semiconductor/Superconductor junctions. In the general
case, where FWVM and barriers are included at the S-N interfaces, the bound state energies
and the continuum current must be calculated from the transmission matrix formalism [195],
in which the transmission matrix includes a normal (specular) reflection coefficient as well as
an Andreev (retro) reflection coefficient. The values of these coefficients depend on the material
details of the junction. TheCPRs of junctionswith FWVM [195] and barriers [198, 199, 186] have
been previously calculated (numerically) at zero magnetic field. The effect of both mechanisms
is tomake the CPRmore closely resemble a sinusoidal curve. Since theN -sectionwavenumbers
have the same coupling to the axial field shown in Eq. 3.6 regardless of FWVM or barriers, we
expect the phase-shift mechanism leading to interference to remain. However, the shape of the
oscillations in Ic should appear more sinusoidal, following the shape of the CPR.

Normal reflection of the quasiparticle wavefunctions from the S-N barriers will result in a
higher order correction to the periodicity of the interference effect. This is due to an increased
average phase pickup as the quasiparticle spends more time in the junction. On the other hand,
this should also lead to some randomization of the phase. The former would lead to shorter
period oscillations (i.e the effect occurs at lower fields), while the latter will partially smear out
the interference effect, reducing the amplitude of oscillations. Similar effects are expected from
elastic backscattering occurring in the N -section in non-ballistic junctions. These considera-
tions are beyond the scope of this paper, and are left to future work.
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General form of ∆ — A spatially uniform pairing potential was assumed in the S-sections
at all magnetic fields (Eq. 3.2). This was justified by assuming cylindrical S-sections, and re-
stricting the cylinder diameter to be smaller than the superconducting coherence length in the
S-sections. However, experimental fabrication of nanoscale SNS junctions is usually done
by evaporating or sputtering metallic (e.g. Al or Nb) thin film contacts onto a semiconducting
nanowire. In this case, the geometry of the S-section is not cylindrical but Ω shaped. The
lack of cylindrical symmetry necessitates, in principle, a 3-dimensional numerical calculation
of ∆(r) using self-consistent methods. However, as long as the N -section can be assumed to
be cylindrically symmetric, our model should closely approximate the experimental situation.
This is because the interference effect depends mainly on the eigensolutions in the N -section,
particularly the orbital angular momentum states and their coupling to the flux. The details of
the eigensolutions in the S-section do not play a direct role, other than asserting the form of
the wavefunction ansatz (Eq. 3.5) is valid. Similarly, the axial field can induce a non-uniformity
in ∆. If the thickness of the metallic film becomes larger than the S-section coherence length,
fluxoid quantization can result in a θ-dependent phase for∆ in the presence of the field. Insert-
ing a θ-dependent ∆ in the BdG equations (Eq. 3.3) will affect the bound state solutions, likely
requiring a 3-dimensional numerical solution. However, we still expect the interference effect
to depend mainly on the states in the N -section.

General radial wavefunctions — The shell-conduction model was used in order to simplify
computations, and to help gain intuitive insight into the problem; it is not strictly necessary
for the main arguments of the paper. Indeed, we found in Section 3.4.4 that the semiclassical
phase shift δsc is only weakly dependent on the radius R, so the interference effect should be
present for general radial wavefunctions. In future work, the radial wavefunctions in the N -
section, ϕn,l, and the corresponding single particle energies in the presence of the field will be
numerically calculated, yielding the appropriate wavenumbers ken,l, khn,l for electron- and hole-
like solutions. We expect the term (ken,l − khn,l)L appearing in Eqs. 3.7, 3.13 will continue to
result phase shifts similar to those seen in the present model.

Zeeman and Spin-orbit effects — In order to study the orbital Josephson interference effect in
isolation, Zeeman and spin-orbit effects were neglected in our analysis. It is useful to ask under
what circumstances should the orbital effects or the Zeeman + spin-orbit effects dominate? The
critical current of a short, InSb SNS junction, including spin-orbit and Zeeman effects, was
studied in Ref.[144]. The bound state energies were solved, and a phase-shift was observed in
the energy-versus-phase curves due to the Zeeman effect. Similar to the mechanism described
in our analysis, the Zeeman effect modifies the N -section wavenumbers, but based on the spin
state rather than the orbital state. This results in an oscillation of Ic, with the first minimum
occurring at Bmin = h̄vF/(gµBL), where vF is the Fermi velocity, g is the effective Landé g-
factor, and µB is the Bohr magneton. For a 200 nm InSb junction with |g| = 50, this evaluates
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to Bmin = 0.5 T for vF corresponding to µ = 10 meV, but for other materials Bmin is typically
much larger. Considering InAs with a moderately large |g| = 10 gives Bmin = 2.1 T (again for
L = 200 nm and µ = 10 meV). Since we used the effective mass for InAs in our calculations,
we can directly compare with the results of Figure 3.7c for a 200 nm long junction. The orbital
effect should dominate in this case, as the first minimum of Ic is at a flux corresponding to
B∥ ≃ 0.4 T. The consequence of the inclusion of the spin-orbit coupling is a smaller correction:
the so called anomalous Josephson effect, in which the current is no longer an even function of
the superconducting phase: I(χ) ̸= I(−χ).

We conclude that for InSb devices, the Zeeman effect could easily dominate. This is espe-
cially true if either of the following conditions hold: (i) If only l = 0 subbands are occupied (i.e.
small chemical potential), or (ii) in a perpendicular field, where the Zeeman effect is present
but the orbital effect is suppressed. On the other hand, for most low spin-orbit semiconductor
materials, g ∼ 2 and we would expect the orbital subband effect to dominate in an axial field
experiment, unless only l = 0 subbands are occupied.

Magnetic depairing — Field-induced depairing suppresses both superconductivity in the S-
sections and proximity superconductivity in the N -Section [140, 139]. For a type-II supercon-
ductor with a relatively large gap such as Nb, we can assume depairing in theN -section should
dominate. For diffusive junctions in the narrow junction limit, the Usadel equations predict a
monotonic Gaussian decay Ic ∝ exp(−αΦ2/Φ2

0) for a perpendicular magnetic flux Φ through
the N -Section [143], where α ≈ 0.24 is a numerical constant. A similar effect should apply to
the axial field case, except with a slower magnetic field decay due to a smaller cross-sectional
area (smaller flux). This is expected to produce a monotonic decay envelope superimposed on
the critical current oscillations, and should be taken into account when modeling experimental
data.

Summary —The idealized model studied here serves to demonstrate a novel form of Joseph-
son interference due to orbital angular momentum states, with the unusual property of flux-
aperiodic oscillations. Extensions to the model discussed above, most importantly FWVM and
barriers at the S-N interfaces, will be useful for describing experimental implementations.
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Chapter 4

Nb/InAs Nanowire Proximity Junctions
from Josephson toQuantum Dot Regimes

4.1 Introduction

In this chapter we explore the second generation of nanowire Josephson devices which were
fabricated using a much improved recipe compared to the first generation. The details of this
fabrication recipe can be found in Appendix A.This resulted in an improvement in the Nb/InAs
interface transparency t; values as large as 0.7 were observed. The electronic phase coherence
length at low temperatures exceeds the channel length, and almost all devices in this fabrication
batch show signatures of proximity superconductivity in some form; mostly as Andreev Bound
state (ABS) associated with spontaneous quantum dots in the channel of the junction. Roughly
a quarter of the devices are estimated to show a large supercurrent ∼ 100 nA. The field effect
mobility was found to be a good predictor of whether a particular device will show a large
supercurrent: if the elastic scattering length derived from the field effect mobility is at least
∼ 1

3
times as long as the channel length or longer, then electrical measurements reveal the

device to be in the Josephson regime, characterized by a dissipationless current; otherwise,
the device is in the quantum dot regime, characterized by ABS resonances interplaying with a
Coulomb diamond (see Section 4.3.3) structure.

4.1.1 Background

As discussed in Chapter 1, Andreev reflection at an interface between a superconductor and
a normal metal (or semiconductor) leads to a number of surprising transport phenomena, in-
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cluding a subharmonic gap structure due to multiple Andreev reflection (MAR) [134], Andreev
Bound States (ABS) [180, 200], and supercurrent in superconductor-normal-superconductor
(SNS) junctions [132, 135]. At low temperature, the normal section length that can support a su-
percurrent is limited by the phase coherence length of conduction electrons in that section, and
in semiconductors this can far exceed the superconducting coherence length that characterizes
the superconductor. While planar SNS junctions are well studied [153] and have revealed in-
teresting phenomena such as Fraunhofer interference in a magnetic field [164], there are fewer
studies on semiconductor nanowire-based SNS junctions. The latter are especially relevant in
light of recent advances in the search for Majorana fermions, zero-energy quasiparticles at the
boundaries of one-dimensional topological superconductors [32, 63]. There are several reported
observations of signatures of Majorana fermions based on proposals for their detection in semi-
conducting nanowires contacted with superconductors [47, 85, 76, 78, 77]. The semiconductor
must have a large spin-orbit coupling and make high transparency contacts with a supercon-
ductor, properties shared by InAs and InSb nanowires. While Al/InAs junctions are relatively
well studied [201, 47, 202], Nb/InAs is less well characterized, but potentially advantageous due
to a significantly larger superconducting gap ∆ and that Nb is a type II superconductor, with
an upper critical field Hc2 ∼ 2.8 T, allowing superconductivity in the device to be studied up
to that magnetic field. Given that nanowire junctions are typically in the diffusive transport
regime, a key question relevant to Majorana and other research is how (static) disorder in the
nanowire is manifested in quantum transport experiments on SNS devices, and one method by
which disorder (specifically, elastic scattering) can be quantified is via field effect mobility.

4.1.2 Field Effect Mobility and Distict Transport Regimes

Here, we report on proximity effect Josephson junctions made with InAs nanowires contacted
by Nb leads. The junctions have channel lengths L ∼ 200 nm, shorter than the estimated
electronic phase coherence length ξ ∼ 250 − 350 nm at low temperature, but longer than the
estimated elastic scattering length by a factor of 3− 5. Data is presented for 5 different devices
(d1–d5) falling within two distinctive regimes of quantum transport: devices with higher elec-
tron mobilities µ ∼ 18, 000 cm2/(V.s) are characterized by the observation of a dissipationless
current (‘Josephson regime’), whereas devices with lower mobilities µ ≲ 10, 000 cm2/(V.s)
typically show signatures of spontaneous, unintentional quantum dots (‘quantum dot regime’)
and signatures of induced superconductivity in the form of Andreev Bound States (ABS).

In the Josephson regime, the diffusive nature of the nanowire transport is manifested by a
critical current that is modulated as the nanowire chemical potential is varied, closely follow-
ing the normal state conductance fluctuations, but with enhanced sensitivity. Transmission
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coefficients in the OTBK model [134] are found to be in the range ∼ 0.4− 0.7, indicating suffi-
ciently good contact transparencies to observe Andreev physics. The junction phase dynamics
are typically overdamped. The supercurrent versus axial magnetic field data shows modula-
tions (reminiscent of those seen in Chapter 2) to fields > 2 T, and a combination of Orbital
Josephson interference and spin-orbit + Zeeman effects may best describe their behaviour.

In devices withmore disorder in the potential landscape, the quantum dot (QD) regime is ob-
served and reveals resonances associated with ABS up to temperatures∼ 2K. Unlike previously
reported observations [201, 202, 80, 203, 129, 204, 205, 206, 207, 200, 208], the gate dependence
of the ABS resonances does not appear to depend strongly on whether the QD is in an even-
or odd-electron state. In order to explain this, we adapt an Anderson-type mode [209] origi-
nally developed for a phase-biased S-QD-S configuration to our experiment, which behaves as a
current-biased S-N-QD-N-S configuration. The model qualitatively explains how the observed
patterns of ABS resonances depend on a competition between the strength of the coupling to
superconductivity and the dot addition energy Eadd. The presence of ABS associated with ei-
ther spontaneous or engineered QDs could be useful as energy filters in transport spectroscopy
of zero modes.

4.1.3 Structure of this Chapter

In Section 4.2, we discuss fabrication methods and basic device characteristics. Section 4.3
presents the low temperature transport results in the Josephson andQD regimes, and introduces
a model for the ABS associated with QDs. In Section 4.4, we discuss these results in the context
of related observations in the literature, and with regard to the relevance of these types of
devices in exploring Majorana fermion physics. Conclusions are given in Section 4.5.

4.2 Experiment

The devices d1–d5 reported on here are based on a single batch of undoped InAs nanowires
grown in a gas-source molecular beam epitaxy system, starting from a gold nanoparticle. The
diameter of the selected nanowires is in the range 40− 65 nm. Details of the nanowire growth
can be found in Refs. [210, 211]. Devices d3 and d5were on the same chip; otherwise each device
is representative of a distinct fabrication run. Thirty-six devices were measured in total; all of
the devices not reported on explicitly here were measured at a temperature of 1.5 K and showed
characteristics similar to the ones reported. While none of these devices show a supercurrent
at 1.5 K, we estimate from the minimum resistances that ∼ 1/4 of the devices would show a
supercurrent in the range of 10− 100 nA at dilution refrigerator temperatures.
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For devices d1, d3 and d5, an 8 nm thick Al2O3 shell was deposited via atomic layer deposi-
tion onto the nanowires on their growth substrate, covering all facets of the nanowires. Our pre-
vious studies have found [212] that the desirable transport characteristics of these nanowires —
such asmobility, low gate hysteresis, stability at low temperature, etc. — can bemaintainedwith
an optimized process of chemical surface passivation (using octadecanethiol [213, 214, 215])
followed by a conformal Al2O3 shell deposition. These coated nanowires, as well as bare
nanowires, are moved to n++ Si / 300 nm SiO2 device substrates via dry deposition. Before
nanowire deposition, preparatory fabrication steps are performed, such as placing Ti/Au bond-
ing pads and alignment markers. Other steps varied across the devices studied. Device d2 has
a set of five evenly spaced bottom gates in the channel region, covered by a 20 nm SiNx dielec-
tric layer. Device d4 is an entrenched nanowire, where reactive ion etching was used to etch a
∼ 60 nm wide and deep trench in SiO2. A nanowire which (randomly) fell into this trench after
mechanical deposition was identified via SEM (this occurs for roughly 5% of all the deposited
nanowires.) The n++ Si substrate serves as a global backgate for all devices except d2. Super-
conducting contacts are defined using electron beam lithography on a bilayer PMMA resist of
thickness ∼ 500 nm. Following a short 5− 12 s HF etch to remove the Al2O3 shell and/or the
native oxide of InAs, the device substrate is quickly moved to the deposition chamber. In-situ
Ar ion milling (rf reverse sputtering) is performed at Ar pressures listed in table 4.1 using an
rf power 50 W for a duration of ∼ 10 minutes, followed by deposition of Nb or Ti/Nb contacts
via dc magnetron sputtering. Table 4.1 summarizes the contacting recipes for the 5 devices,
as well as other junction properties. After lift-off of the contacts, transport measurements are
carried out at low temperature in one of two cryostats: a dilution refrigerator with a base lattice
temperature TL = 25 mK (for all Josephson and some QD devices), and a pumped 4He system
with base TL = 1.5 K (for QD devices). The electron temperatures are ∼ 100 mK and 1.5 K,
respectively. Electrical measurements are made by applying a dc bias voltage (or current) us-
ing a custom high-resolution source, and the dc voltage and current responses of the device
measured with low-noise preamplifiers.

Table 4.1 reports the field effect mobilities µ obtained from transconductance measurements
at T ≃ 50 K via the analysis given in Ref. [210]. The capacitance between the nanowire and
the global backgate is estimated using a COMSOL model. The model shows the effect of the
metallic leads of the short channel junction is to screen the electric field of the gate, reducing
the effective capacitance by a factor 4− 5 for channel lengths L ∼ 200 nm. Uncertainty in this
screening factor is the main source of uncertainty in the values of µ reported in table 4.1.

The field effect mobility µ can predict whether a particular device will exhibit a large su-
percurrent (i.e. the Josephson regime) at base temperature. Most devices display µ ≤ 104

cm2/(V.s), corresponding to an elastic mean free path le ≲ 40 nm, and show signatures of
unintentional quantum dots forming inside the nanowire channel (i.e. the QD regime). Such
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Nanowire PAr Contact Gate L µ Device
type (Pa) Recipe Layout (nm) m2/(V.s) regime

d1 Al2O3/InAs 0.2 Ti/Nb (2 nm/80 nm) Global BG 170 nm 1.8± 0.3 Josephson
d2 InAs 0.6 Nb (50 nm) 5 local gates 200 nm 1.6± 0.3 Josephson
d3 Al2O3/InAs 0.6 Ti/Nb (2 nm/80 nm) Global BG 170 nm 0.8± 0.2 QD
d4 InAs 1.3 Ti/Nb (2 nm/50 nm) Global BG 200 nm 0.6± 0.2 QD
d5 Al2O3/InAs 0.6 Ti/Nb (2 nm/80 nm) Global BG 170 nm 0.9± 0.2 QD

Table 4.1: Basic device characteristics. PAr is the Ar ion milling pressure prior to contact
deposition. L is the channel length after lift-off of contacts, typically ∼ 30 nm shorter than
the channel length written on PMMA from the lithography stage. The field-effect mobility µ
(measured at∼ 50 K) can serve as a predictor as to whether a junction will be in the Josephson
or the QD regime, with µ ≲ 1.0 m2/(V.s) typical of the QD regime.

devices have not been observed to sustain a supercurrent larger than 2 nA at TL = 25 mK.
However, devices such as d1 and d2 with µ ≳ 1.5 × 104 cm2/(V.s), i.e. le ≳ 60 nm, typically
do not show Coulomb diamonds (see Section 4.3.3) in the low temperature I-V data. Given
channel lengths L = 170 − 200 nm, these devices are in the diffusive regime, but a lack of
Coulomb blockade allows for resistances as low as 3 kΩ at Vg ≃ 10 V. These Josephson regime
junctions carry supercurrents up to ∼ 100 nA at TL = 25 mK. We expect that optimizing the
InAs surface preparation recipe prior to the sputtering of the Nb contacts and improving the
Nb/InAs contact transparency should increase the likelihood for a device to exhibit Josephson
behavior. No signatures of proximity superconductivity were observed in devices fabricated
without Ar ion milling. Lower Ar ion milling pressure (such as for d1) has been found to cor-
relate with reduced Nb/InAs contact resistance; however, one must also consider the natural
variation between different nanowires when interpreting this observation, since a total sample
size of ∼ 10 devices per fabricated chip is relatively small. Even for devices with high Nb/InAs
contact transparency, it is the potential landscape in the nanowire channel that plays a domi-
nant role in determining which regime of quantum transport is observed. The salient features
of these two regimes are presented in the next section.
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Figure 4.1: (N.b. two-page figure & caption.) Josephson regime devices d1 and d2. (a,b) Differen-
tial resistance dV /dI versus bias current I and gate voltage Vg for d1 and d2, respectively. The
supercurrent magnitude is modulated by the gate voltage. (c) Typical I-V traces for d1 (black)
and d2 (blue/dark grey). The residual resistance observed for d2, compared to sharp normal to
dissipationless transitions for d1, suggest that the Nb/InAs interface may be of higher quality
in d1.

92



Figure 4.1: (Cont. from prev. page.) (d) A strong correlation is observed between the critical
current Ic and the normal state resistance GN versus gate voltage Vg (device d1). (e) Multiple
Andreev reflection (MAR) signatures of order n are observed in d1 as peaks in dI/dV , indicated
by arrows. Here, Vg = 0.9 V. The Josephson junction is phase-coherent across the channel.
Similar data is observed for d2 (not shown). For all panels, data is measured at TL = 25 mK,
except GN , which is measured at 8 K.

4.3 Results

4.3.1 Josephson Regime

We first focus on devices d1 and d2 that are representative of the Josephson regime. Figure 4.1a
shows the numerically calculated differential resistance dV /dI of d1 versus gate voltage and
bias current at a base lattice temperature TL = 25 mK and zero magnetic field. As the bias
current I is swept from negative to positive values, the dc voltage response V of the device is
recorded. A dissipationless current (black region) is observed, with a critical current Ic whose
value can be tuned with the back gate voltage Vg, and can assume a value as large as Ic = 97
nA at gate voltage Vg = 10 V. A similar plot is shown in Figure 4.1b for d2, where all five
bottom gates are swept together but Vg refers to the value of the middle gate which was most
effective. A maximum critical current of Ic = 55 nA is observed for d2. Figure 4.1c shows
the I-V traces for both junctions; d1 typically shows a sharp supercurrent transition and a
hysteretic behaviour with respect to sweep direction due to quasiparticle heating [216], as is
typical of nanowire based Josephson junctions. The device d1 was measured at temperatures
in the range TL = 25 mK to TL = 1.2 K, as well as at TL = 8 K, inside the dilution refrigerator.
The hysteretic behaviour is suppressed at higher temperatures; at TL = 1.2 K, the retrapping
current Ir is reduced by about 20% (averaged over Vg) compared to TL = 25 mK, but there is

93



negligible difference between the retrapping and critical switching currents. Hence, the local
Joule heating that reduces Ir compared to Ic, causing hysteresis at TL = 25mK, is overshadowed
by thermal energy at TL = 1.2 K.

The critical temperature of the junction is extrapolated from Ic versus T data to be approx-
imately Tc = 1.6 K. On the other hand, d2 shows residual resistance on the order of 100 Ω near
its switching point, and negligibly small hysteresis. This difference in the I-V behaviour of the
junctions could be due to two effects: higher electron temperature and/or the quality of the
Nb/InAs interfaces. First, while d2 was measured at the lattice temperature TL = 25 mK, we
suspect the effective electron temperature might have been higher than∼ 100mK due to high-
frequency noise on the five local bottom gates. Secondly, the interface quality can be estimated
from the OTBK [134] transmission coefficient t. The high-bias I-V traces for both devices ex-
trapolate to a finite excess current [135, 134] Iexc ∼ 10−100 nA at zero voltage bias, depending
on the gate voltage. This excess current can be used to calculate t. In a non-ballistic junction, t
can be influenced by scattering processes inside the semiconducting channel. Indeed, the cal-
culated t follows the gate voltage dependence Iexc. However, t can serve as a (conservative)
estimate of the sputtered Nb/InAs contact transparency. The obtained value is generally higher
when the device is more conductive. For d1, t is within the range t = 0.56 to t = 0.72 with
an uncertainty ±0.02 at each point within that interval. This is a relatively good value for
Nb/InAs devices [139, 217]. For device d2, lower values are observed, t = 0.41 to t = 0.55 with
uncertainty ±0.02.

The phase dynamics of both junctions are overdamped. With both devices tuned to the
regime of maximal supercurrent, the quality factor Q = RN

√
2eIcC/h̄ is calculated using the

resistively and capacitively shunted junction model [218]. Here RN is normal state resistance
and C the source-drain capacitance. For d1, Q ∼= 0.9. Thus, d1 is close to the transition point
between overdamped and underdamped regimes. For d2, Q ∼= 0.1. This difference is due to a
higher critical current in d1 and a larger source-drain capacitance due to thicker sputtered con-
tacts. It should be possible to engineer similar nanowire junctions to be in the underdamped
regime by making the Nb contacts with larger cross-sectional area. In a SQUID geometry,
this would allow phase dynamics experiments, such as measurement of the current-phase re-
lation [219], to be performed.

Figure 4.1d shows the critical current Ic (black curve) and normal state conductance GN

(red/grey curve) of d1 versus the backgate voltage Vg. The Ic curve is extracted from Figure 4.1a
using a threshold resistance: the current bias point at which the numerical dV /dI first goes
from ≃ 0 (supercurrent branch) to above a threshold resistance ∼ 100 Ω is identified as the
switching point. GN is measured directly using a standard lock-in technique, with a 2 nA
bias current signal at 17 Hz and a temperature TL = 8 K, during the same cooldown. The
two quantities show a strong positive correlation, typical of SNS junctions [220, 139, 177, 135,
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Figure 4.2: (N.b. two-page figure & caption.) Magnetic field dependence of the critical current Ic
for d1 and d2 at TL = 25 mK. (a) Differential resistance dV /dI of d1 versus bias current I and
axial magnetic field B|| at Vg = 7.8 V. Above 0.8 T, Ic does not follow a Gaussian decay and is
weakly modulated with the field, persisting until ∼ 2.8 T. Inset, Upper: Gaussian fit (red/grey)
to extracted Ic vs. B|| data for d1 on linear and logarithmic scales (left, right, respectively).
Depairing mechanisms are accounted for by the Gaussian curve, as discussed in the text. Lower
insets: data for device d2 plotted in a similar format as the upper insets. Above ∼ 0.6 T, d2
shows a stronger oscillation-like modulation with field compared to d1.
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Figure 4.2: (Cont. from prev. page.) (b,c) High field data for d1 (B|| > 1 T) for two values of
Vg show that the Ic variation is not monotonic, and the detailed behaviour depends on gate
voltage.

217]. The rms value of universal conductance fluctuations [160, 135, 221] in GN versus gate
voltage can be calculated by first subtracting a baseline curve from theGN versus Vg data, then
calculating the standard deviation. The baseline is obtained by smoothing the GN data over
intervals δVg ∼ 50 mV. We obtain δGN

= 4.8 × 10−7 S, whereas the fluctuations in Ic display
an rms value 3.8 nA with respect to a similarly obtained baseline. These values are consistent
across gate voltage values for each device. Note that the device is in the overdamped regime,
so values extracted for Ic at any gate voltage is reproducible over repeated measurements to
within ± ∼ 0.5 nA. Comparing the fluctuation ratios of the two quantities shows δGN

/GN =
0.2% ≪ δIc/Ic = 4%, suggesting that the critical current is amore sensitive probe ofmesoscopic
fluctuations in the junction compared to normal state conductance, as first noticed in Ref. [135]
for an InAs nanowire junction. These ratios are generally consistent across multiple devices.
The ‘figure of merit’ product IcRN has a value in the range 0.2−0.4mV. Here,RN is the normal
state resistance of the junction. Figure 4.1e shows differential conductance dI/dV of d1 versus
bias voltage V at Vg = 0.9 V. Signatures of multiple Andreev reflection (MAR) are observed at
voltages Vn = 2∆/(en) as peaks in conductance for integer n, as indicated by arrows. Here, e
is the electronic charge and ∆ = 1.25 meV is the superconducting gap of the Nb contacts. It
is seen that the product eIcRN is factor of 3− 4 smaller than ∆. Whereas in an ideal, ballistic
SNS junction a value Ic = ∆/(eRN) is expected, the observed supercurrent is smaller due to a
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combination of the diffusive nature of the junction, as well as a residual resistance present at
the Nb/InAs interfaces.

4.3.2 Finite Magnetic Field

An axial magnetic fieldB|| is a key ingredient predicted by theory to enable tuning the junction
into the topological regime [47, 85, 76, 63]. Signatures of the topological phase transition have
also been predicted to appear in the critical current [133]. Although we do not see explicit
signatures of topological states here, we focus on the critical current Ic, which shows a non-
monotonic and complex dependence on B||, worthy of further study.

Figure 4.2a shows numerical differential resistance dV /dI of d1 versus B|| at a backgate
voltage Vg = 7.5 V. The current is swept from negative to positive values, so the transition at
I > 0 (I < 0) indicates the critical current Ic (the retrapping current Ir). Three observations
are of note here: (i) In the low-field regime, there is a slight increase of Ic with the magnetic
field up to B|| ≃ 0.14 T. This behaviour occurs for a wide range of gate voltages, and can be
understood as a manifestation of weak localization due to disorder in the diffusive nanowire
channel with le ≃ 60 nm < L = 170 nm. As the magnetic field is increased, back-scattering is
suppressed slightly due to the breaking of time-reversal symmetry. This results in an increase of
the normal state conductanceGN and therefore Ic. However, it is of note that this behaviour is
not directly observed in lock-in measurements ofGN vs.B|| at TL = 8 K.This is likely explained
by temperature: at TL = 25 mK, the phase coherence length ξ of the nanowire channel of the
junction is estimated to be ξ = 250 − 350 nm, based on the suppression field Bs = 0.2 −
0.3 T above which the weak localization behaviour is no longer observed [222]. However,
at TL = 8 K, ξ is bounded by the thermal length LT =

√
h̄D/2πkBT ≃ 100 nm, shorter

than the channel length L = 170 nm. Thus, the junction cannot be expected to be phase-
coherent at 8 K; indeed no signatures of a supercurrent or MAR are observed there. N.b. similar
devices with non-superconducting contacts show significant magneto-resistance effects [156]
especially at high (>∼ 2 T) fields, making it difficult to interpret any “normal conductance” data
acquired at base temperature in a high magnetic field intended to quench superconductivity.
Similarly, the retrapping current Ir does not show an increase with B||, as it is likely bound by
the local Joule heatingmechanism [216]. We conclude that, at TL = 25mK, the supercurrent can
serve as a sensitive probe of the mesoscopic and Fabry-Pérot type resonances of the junction.
(ii) Above B|| ∼ 0.3 T, the magnetic depairing mechanism [143] sets in, and the Ic vs. B||
curve can be fit to a Gaussian, Ic ∝ exp(−0.526Φ2/Φ2

0) (see insets of Figure 4.2). Here, Φ =
πd2B||/4 is the magnetic flux through the axial cross section of the nanowire for diameter d,
and Φ0 = h/(2e) is the superconducting flux quantum. A theoretical calculation [143] of the
depairing of a planar SNS junction in a perpendicular field predicts Ic ∝ exp(−0.238Φ2/Φ2

0).
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The reason behind the discrepancy in the numerical prefactor of the exponent between the
theory and the experiment is not fully understood. A flux focusing effect is not expected to
be at play here, as B|| is applied in the device substrate and parallel to the nanowire axis. In
fact, the effect of the Nb leads will be to produce a magnetic screening effect, similar to the
effect seen in ref. [223]. A full description of the system may require a numerical solution of
3-dimensional Usadel equations [163, 150, 224] for the SNS junction while taking into account
any screening effects due to the superconducting contacts. These considerations are beyond
the scope of this chapter. (iii) Interestingly, in the high-field regime it is observed that the
Gaussian suppression of Ic does not continue beyond B|| ∼ 0.8 T (see Figure 4.2a insets), and
a finite Ic can be resolved up to B|| ∼ 2.8 T. Furthermore, in this high field regime, Ic does not
decay monotonically withB||, but is modulated with a pattern that depends on the gate voltage.
These modulations are not consistent with a Fraunhofer pattern. Figure 4.2 (b, c) shows this
high-field behaviour in device d1 for two values of Vg. A more oscillatory modulation of Ic vs.
B|| is observed in device d2, following an initial Gaussian decay (bottom inset of Figure 4.2a).
The magnitude of Ic modulations in d2 are larger than in d1, with the ratio Ic(B||)/Ic(0) up to
10% at high fields. Qualitatively similar modulation of Ic vs. B|| was theoretically calculated
in Chapter 3 to result from a Josephson interference due to orbital angular momentum states
inside an idealized nanowire channel [170], with oscillation periods and node positions on the
same scale as those in Figure 4.2. Another possible explanation is an effect due to the Zeeman
splitting of the two spin channels in the presence of the axial field and spin-orbit coupling [144].
However, we estimate the first ‘node’ of oscillation within that theory to occur at B|| ≳ 3
T for an InAs nanowire with Landé g-factor close to 10, whereas the first minimum in Ic is
observed at B|| ∼ 0.8 T in the experiment. The modulations could also simply be due to the
evolution of mesoscopic interference (universal conductance fluctuations due to static disorder)
with magnetic field. None of these hypotheses, however, explain the persistence of Ic up to
relatively high magnetic field. For InAs nanowires, it is well known that band bending due to
surface states enhances the conductivity near the surface. It is possible that a significant fraction
of Ic is carried by surface conducting channels that are not necessarily continuous around the
perimeter due to the hexagonal faceted geometry. In this case, the effective flux enclosed by
those channels could be very small, reducing the response to an axial magnetic field.
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Figure 4.3: Differential conductance dI/dV of the devices d3–d5 in the QD regime. (a,b,c) Zero
magnetic field dI/dV data of d3, d4, d5, respectively, versus bias voltage V and gate voltage
Vg. Coulomb diamonds associated with the spontaneous quantum dots are visible, as well as
resonant features identified as Andreev Bound States (ABS) at |V | < ∆/e = 1.4 mV. For
each value of Vg, four ABS are visible. In Coulomb diamonds with electron addition energy
Eadd ≳ 10 meV, the inner two ABS merge to form a zero bias peak (ZBP), whereas the outer
two ABS are pinned at |V | = ∆/e. By contrast, in Coulomb diamonds with Eadd ≲ 10 meV,
four non-degenerate ABS are visible at 0 < |V | < ∆/e. (d) Same as panel c, but at a magnetic
field B = 3 T perpendicular to the device substrate, which suppresses the superconductivity
in the Nb leads. Comparing panels c and d allows distinguishing the ABS from the Coulomb
diamond features, and allows the charge degeneracy points to be identified. For all panels, the
data was acquired TL = 1.5 K.
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4.3.3 Quantum Dot Regime

A majority of these devices show signatures of unintentional quantum dots formed inside the
nanowire channel at low temperatures, due to random, static potential fluctuations. They are
characterized by the observation of Coulomb diamonds in the I − V characteristics at temper-
atures TL ≲ 10 K.

Coulomb diamonds are the essential transport feature of Coulomb quantization in quantum
dots, i.e. the quantization of charge states within the quantum dot due to the Coulomb repul-
sion of confined electrons; please see Ref. [225] for studies of quantum dots in similar devices
but without superconducting contacts, and Refs. [226, 227] for reviews of this rich and broad
topic. A brief summary is as follows: when conductance through a quantum dot is plotted ver-
sus gate voltage and bias voltage in a colour plot, rhombus- or parallelogram-shaped features
(“diamonds”) appear in conductance due to Coulomb quantization (see e.g. Figure 4.3d). The
interior of the diamonds (dark purple regions) indicate when transport is disallowed (“Coulomb
blockade”) and conductance tends to zero. The “arms” of the diamonds indicate where charge
transition first becomes possible. The sizes of the diamonds relate to the charging energy,
therefore the self-capacitance, and therefore the physical size of the quantum dot, allowing us
to derive estimates for the latter; and the slant (slope) of the arms relates to the strength of the
capacitive coupling of the quantum dot to the metallic leads, therefore its approximate location
within the channel; more on this below and in Ch. 5.

In most devices, the diamonds fully close at zero bias voltage, indicating that a single
QD dominates the transport. At TL ≲ 2 K, superconducting correlations also appear in the
nanowire channel due to its proximity to the Nb leads, interplaying with the QD charging en-
ergy and resulting in Andreev Bound States (ABS) associated with the QD. Here we focus on
devices d3, d4, and d5 measured at TL = 1.5 K, representative of the total of ∼ 20 measured
devices.

Figure 4.3a, b, c shows numerical differential conductance dI/dV measured at TL = 1.5 K
for d3, d4, and d5, respectively, versus bias voltage V and the back-gate voltage Vg. The data is
characterized by the appearance of resonances at or below the Nb leads’ superconducting gap
at ∆ ≃ 1.4 meV, superimposed on the Coulomb diamond structure. We shall return to these
resonant features shortly. Figure 4.3d shows the same data as panel c, but at a magnetic field
B = 3 T perpendicular to the device substrate, which suppresses the superconductivity in the
Nb leads. This allows the electron addition energyEadd and the charge degeneracy points of the
Coulomb diamonds to be measured. Lowering the field back down to 0 T, we observe that any
shift of the Coulomb diamond structure versus field is small, corresponding to a change in the
backgate voltage δVg ≲ 10 mV. The QD charging energies (i.e. the smallest observed addition
energies) are typically within the range 5 − 8 meV, from which we estimate a QD radius on
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the order of 12− 20 nm. While based on a simple model of a spherical QD, this is nonetheless
indicative that the QDs are small compared to the channel length L = 170− 200 nm.

At zero magnetic field, peaks appear in conductance at resonant values of the bias volt-
age V , and these resonant values are modulated by changing the backgate voltage Vg. The
dependence of the resonances on Vg strongly correlates with the Coulomb diamond structure,
as previously seen in carbon nanotube [204, 205, 206, 207, 200, 208] and InAs nanowire de-
vices [201, 202, 80, 203, 129]. Unlike previous studies, however, there appears to be little corre-
lation between the shape of the resonances versus Vg and the charge state of the quantum dot;
i.e. the even Coulomb valleys host similar resonances to the odd Coulomb valleys. This is in
contrast with almost all previous observations in the literature, wherein the odd valleys host
Yu-Shiba-Rusinov states that have a strong dependence on the gate voltage, but even valleys
form resonances close to the superconducting gap∆, with little gate dependence (an exception
is part of the data reported in reference [204]). Belowwe use an extended Anderson-type model
to qualitatively explain this behaviour. Another typical observation (see e.g. Figure 4.3a) is for
the resonances to be ‘pinned’ to the bias voltage |V | = ∆, or merge to form a zero-bias peak
(ZBP) at V = 0; however, they can generally appear at any value |V | < ∆. Importantly there
are no features visible at |V | = 2∆, and contrary to observations of QDs formed in carbon nan-
otubes contacted with superconductors [200], there is no transport ‘gap’ in the low bias regime.
These observations suggest that regions of the nanowire channel with finite (ungapped) den-
sity of states are connecting the QD to the Nb leads, i.e. an S-N-QD-N-S transport geometry,
in which the QD is randomly placed inside the nanowire channel, with normal leads (N) con-
necting the QD on one or both sides to the superconducting (S) leads. The N-sections can carry
superconducting correlations to the QD via the Andreev reflection process. The resonant fea-
tures are identified as Andreev Bound States (ABS) associated with the QD, and a model for
the ABS is presented below. Transport across the junction corresponds to energy resolved tun-
nelling of the ABS, with the normal sections of the nanowire corresponding to weakly coupled
probes, and tunnelling occurring across the potential barriers at the edges of QD.

A good model for the ABS observed here must reproduce the following experimental ob-
servations: (i) for each value of Vg there are two pairs of resonances, where each pair consists
of a resonance at ±V . (ii) At the charge degeneracy points, the ABS at positive bias become
degenerate at a bias value 0 < V < ∆, similarly for the two at negative bias, at −∆ < V < 0.
(iii) There is no discernible even-odd effect for the observed ZBP with respect to the electron
number on the QD. This rules out Kondo correlations as a potential mechanism behind the
ZBP: indeed, the Kondo temperature for the QDs is approximated, based on the Anderson
model formula [228], to be TK ≃ 2 K, similar to previous reports on measurements of TK for
InAs nanowire QDs [229]. The experimental data is collected at an electron temperature of 1.5
K ∼ TK , so it is not surprising if signatures of Kondo correlations cannot be observed. Pre-
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liminary data taken at TL = 25 mK does not show signatures of Kondo effects, but further
experiments are required to rule it out completely. (iv) The formation (or lack thereof) of the
ZBP appears to be correlated with the addition energy Eadd of the QD; for large Eadd the ABS
appear to be pinned at |V | = 0,∆ (for gate voltages Vg tuned away from the charge degeneracy
points), whereas for small Eadd the ABS appears at 0 < |V | < ∆ (see Figure 4.3b,c).

4.3.4 Model

A slightly modified version of an Anderson-type model [230, 206] detailed in Ref. [209] is used
to describe the observed ABS. The elements of themodel are two superconducting (S) leads with
energy gap∆, each tunnel coupled to a QD with a coupling strength Γi, where i = L,R denote
the left and right contacts. The superconducting phase difference between S-leads is denoted
by ϕ. The transport geometry within the model is an S-QD-S configuration. As mentioned
earlier, we believe our devices to be in an S-N-QD-N-S configuration; however, neglecting the
N-sections results in a much simplified model which can be used to accurately describe the
experimental data, as described below. The device channel lengths L = 170 − 200 nm are
assumed to be smaller than the phase coherence length of the channel at 1.5K, so the N-sections
can transfer superconducting correlations to the QD through the Andreev reflection process.
Within the context of the model, the presence of these N-sections have no effect on the physics
of the ABS other than a rescaling of the S-QD coupling strengths Γi. In a full treatment of
the problem, S-QD coupling will involve the details of the S-N tunnel coupling, the N-section
transmission/scattering processes, and the N-QD tunnel coupling. Such considerations are left
for futurework, and the entire process is concisely described by the ‘effective’ model parameters
Γi. The cost of this simplification is that Γi cannot be interpreted as tunnelling rates from
which the total current can be derived, but rather as parameters describing the strength of
S-QD correlations.

Lack of an Even-Odd Effect

The Anderson model can describe Yu-Shiba-Rusinov (YSR) states arising in QDs connected to
superconducting leads. The mechanism for YSR states relies on a spin impurity (in this case
a spin-1/2) impurity inside the QD to couple to a spinful quasiparticle in the S lead. As such,
YSR states are only predicted to exist for odd-occupation states of the QD in an S-QD-S system.
For an even occupation of the QD, the ABS are predicted assume a simpler character, pinned to
±∆with little to no gate voltage modulation. Much experimental evidence points to this even-
odd effect in the ABS spectrum of InAs, InSb and carbon nanotube S-QD-S devices. However,
our observations, consistent across∼ 20 devices, are different. We observe YSR-like behaviour
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for both even- and odd-occupation Coulomb valleys of the QD. As mentioned above, only the
addition energy Eadd appears to control the behaviour of the ABS resonances.

The key to explaining this lack of even-odd behaviour is most likely related to the S-N-QD-
N-S geometry of our devices and the nature of the N-sections. Disorder in the electrostatic
potential is present in the whole nanowire, and in the N-sections it produces a ‘spiky’ density
of states (DOS) rather than the smooth DOS of an ideal one-dimensional conductor. This can
also be viewed as weak charge localization, i.e. large quantum dots with small charging energy
compared to∆ andweak tunneling barriers. Since theAndreev reflections between theNb leads
result in wavefunctions spanning the entire channel, any spin impurity within the channel can
couple to the Nb leads to create YSR states [231]. The presence of this non-trivial DOS in the
N-sections affords the freedom to assume a spinful state inside the channel with little energy
cost, regardless of the electron occupation of the primary QD. With this picture in mind, we
apply analytical solutions for YSR states of an Anderson model to describe the ABS resonances
in both the even- and odd-electron Coulomb valleys.

Subgap Energies

The subgap energies E are calculated versus normalized gate voltage x = 1 + 2ε/Eadd. Here,
ε is the chemical potential of the QD level, and x = 1,−1 refer to charge degeneracy points.
The starting point is the analytical result obtained in Eq. 34 of Ref. [209]. For each value of x,
we choose a superconducting phase ϕ0 that will maximize the supercurrent Is(x, ϕ) carried by
the ABS, where Is(x, ϕ) is calculated [186, 232] using the formula

Is(x, ϕ) =
2e

h

∑
n

(
f(En(x, ϕ))×

∂

∂ϕ
En(x, ϕ)

)
. (4.1)

Here, f is the Fermi-Dirac distribution at temperature T = 1.5 K, e is the electronic charge, h
is Planck’s constant, and En is the energy level of the ABS as calculated in Eq. 34 of Ref. [209],
where n enumerates the four allowed solutions. Finding the optimal ϕ0 as a function of x
amounts to modelling the junction as current-biased, instead of phase-biased. This is the ap-
propriate choice for the S-N-QD-N-S geometry of devices studied here, because ϕ is not fixed
by a magnetic flux threading a SQUID loop, but rather, the ABS levels are tunnel-probed by
injecting current through them via the N-leads.

Figure 4.4 (a-c) shows the theoretical energies of the subgap ABS states versus x, and as a
function of theΓ/Eadd, whereΓ =

√
Γ2
L + Γ2

R is the total effective S-QD coupling strength. It is
seen that a ZBP forms due to a merger of two ABS for Γ/Eadd < 0.65, starting at around x = 0.
Figure 4.4d shows an enlarged version of Figure 4.3a, and panel e shows the same data with the
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theoretical ABS curves superimposed. A coupling asymmetry value ΓL/ΓR = 0.57 is found to
produce the best fit to the data. Two characteristic electron addition energies Eadd are seen in
Figure 4.4 (d,e). The diamond with Eadd = 13 meV is best fit to the model with Γ/Eadd = 0.43
(dark blue), whereas the diamond with Eadd = 8 meV is best fit to Γ/Eadd = 0.87 (cyan). Data
from d3 is shown as representative here; however, it is found that for all data sets, once model
parameters ∆ and the ratio ΓL/ΓR are fixed, good agreement with the model can be reached
by finding the optimal value for Γ/Eadd within each Coulomb diamond. We conclude that the
simplified model presented here captures the basic physics of the current-biased ABS.

4.4 Discussion

Josephson regime — The interface transparency t crucially affects the proximity gap induced
inside the semiconductor by the superconducting leads. Several groups have recently focused
on in-situ grown, epitaxial Al contacts on InAs and InSb in order achieve t ∼ 1. However,
it was recently shown [85] that a hard proximity gap can be induced in InSb nanowires us-
ing sputtered NbTiN contacts, with t ∼ 0.98, proving that epitaxial contacts are not a strict
requirement for high-quality interfaces. In order to optimize t in our devices, current work
is under way to improve the nanowire surface preparation process prior to the deposition of
the Ti/Nb contacts, including passivation of the nanowire surface using a sulfur-rich ammo-
nium sulfide solution [233]. We have obtained preliminary results with S-passivated devices
in which a Josephson supercurrent is observed even at TL = 1.5 K. While still in the diffusive
regime, such devices are well suited to the search for signatures of Majorana fermions in the
supercurrent [133].

Decay of Ic versus B|| — The decay of the critical current Ic versus the axial magnetic field
can be fit to a Gaussian curve up toB|| ∼ 0.8 T for both d1 and d2 (Figure 4.2), suggesting that a
magnetic depairing mechanism [143] is at play. However, it is unclear why the depairing occurs
2− 3 times faster versus B|| than predicted [143]. It is also unclear why the mechanism is not
effective at suppressing the supercurrent for B|| ≳ 0.8 T until the upper critical field for the
Nb contacts is reached at Hc2 ≃ 2.8 T. An accurate description of the magnetic field depairing
effect thus remains out of reach, likely requiring numerical solutions to the Usadel equations
for our device geometry. Another possibility is that the initial decay is not dominated by the
depairing effect, but rather a mesoscopic interference effect. For example, orbital Josephson
interference [170] can result in a sharp initial decay of Ic versus B|| if a large number of orbital
angular momentum subbands are occupied.
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Figure 4.4: Modelled ABS energies (normalized to superconducting gap ∆) vs. normalized
gate voltage x, as a function of Γ/Eadd. For a large value of the electron addition energy Eadd

(Γ/Eadd < 0.65) in this example, panel (a), two ABS are pinned at |E| = ∆, and another ABS
pair merge to form a ZBP over a large range of gate voltage x; whereas for a small value of
Eadd (Γ/Eadd > 0.65, panel (c)), four non-generate ABS occur at 0 < |E| < ∆ for all x, and
panel (b) shows the intermediate case. (d) Enlarged region of Figure 4.3a. (e) Same as (d), with
superimposed theoretical ABS resonances. The following parameters are used in generating
the theoretical curves: Γ/Eadd = 0.87 (cyan), Γ/Eadd = 0.43 (dark blue), ∆ = 1.4 meV,
ΓL/ΓR = 0.57, Γ/∆ = 4, T = 1.5 K.
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Screening of magnetic flux by the Nb leads — Since the axial magnetic field B|| is applied in
the plane of the device substrate, the expected effect of the 50−80 nm thick Nb leads is to screen
(rather than focus) the magnetic flux by a small amount at the nanowire channel (see ref. [223]
for a similar effect). We estimate1 that the value of the field at the center of the nanowire channel
is a factor of ≲ 20% smaller than the applied field. Thus, the faster-than-expected decay of Ic
versus B|| is not due to field focusing.

Quantum dot regime —ABS have previously been studied in InAs nanowires contacted with
Al [201, 202, 80, 203] and V [129] and in carbon nanotube devices [204, 205, 206, 207, 200, 208],
as well as a range of other physical systems [235, 236, 237]. To our knowledge, this report is the
first description of ABS in quantum dots in InAs nanowires connected to Nb leads. The larger
transition temperature and superconducting gap of Nb compared to Al allows the experiment
to be performed at 1.5 K, where the Kondo effect is not observed. A good agreement is reached
between the Anderson-type model of ABS and the experimental data. This leads to exciting
possibilities for further research on this system, including doublet-to-singlet transition of the
ground state [129, 80] and search for Majorana fermions in phase-biased ABS [238].

4.5 Conclusions

We have studied quantum transport in diffusive, short-channel InAs nanowire/Nb Josephson
junctions, and identified two distinct transport regimes. Relatively large supercurrents and
Nb/InAs contact transparencies in the Josephson regime are encouraging results, indicating
that junctions based on InAs nanowires with non-epitaxial Nb contacts are good candidates for
exploring proximity effect and Majorana physics at relatively high magnetic fields. The behav-
ior of the critical current versus the axial magnetic field, including modulation and persistence
to high field, is not yet understood. We presented several hypotheses to explain this, but further
study is needed. These effects need to be understood so that they can be distinguished from
signatures of a topological phase transition [47, 85, 76]. In the quantum dot regime, subgap
resonances can be well described as current-biased Andreev Bound States within an Anderson-
type model. To explain the lack of an even-odd effect in the data, we hypothesize that the N-
section provides spinful states that induce YSR-like bound states associated with the quantum
dot. Numerical calculations using the NRG technique could be used to further test this idea. The
reproducibility of our experimental observations across∼ 20 devices compels further research
on InAs nanowire/Nb non-ballistic junctions, especially in light of recent proposals [238, 239]
for detecting signatures of Majorana fermions using phase-biased ABS.

1Based on a magnetic penetration depth ≳ 90 nm for a 50 − 80 nm thick Nb film [234], and assuming an
exponential suppression of the parallel field inside the leads.
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Chapter 5

High-transparency Nb/InAs Nanowire
Josephson Junctions

5.1 Introduction

Motivated by Ref. [90], wherein an X-ray diffraction image of the cross section of a nanowire is
seen to show presence of sulfur as a passivation agent, we set out to make a new generation of
nanowire Josephson junction devices with high contact transparencywith the sputter deposited
Nb contacts. This chapter describes these “third generation” devices.

We succeed in creating high contact transparencies at the InAs and Nb interface, esti-
mated to at least 95%, a considerable improvement. Supercurrents are observed at temperature
T = 1.5 K, which is an achievement compared to the devices described in Ch. 4; signatures
of ABS similar to those seen in Ch. 4 are also observed. A detailed description of the ABS be-
haviour proves to be difficult, and highlights the challenges which need to be overcome for
future devices.

Section 5.2 describes devices fabrication and the technical improvements over devices in
Ch. 4. Section 5.3 details the results of low-temperature transport experiments on devices in
Josephson 5.3.1 and Quantum Dot 5.3.2 regimes.

5.2 Device Description

Our starting point for the third generation devices is the same as that of Ch. 4: a single batch of
undoped InAs nanowires grown in a gas-sourcemolecular beam epitaxy system, with diameters
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in the range 40− 65 nm [210, 211]. Similar to before, an 8 nm thick Al2O3 shell was deposited
via atomic layer deposition onto the nanowires on their growth substrate. Two types of Nb
contacted Josephson junction devices, one short channel (175 nm) and one longer channel (300
nm) are made after the shelled nanowires are moved to n++ Si / 300 nm SiO2 device substrates
via dry deposition. The longer devices have a single top gate in the center of the channel, and
are in a 25 nm trench dry etched into the 300 nm SiO2 thermal oxide of the substrate. The
idea was to form a quantum dot between the contacts snapping the entire channel, and tune
the QD with the top gate as well as the n++ substrate used as a global back gate. The short
devices have no top gate. A similar fabrication recipe as that of Ch. 4 was used, except for
the following two crucial differences: firstly ZEP photoresist was used instead of PMMA for
electron-beam lithography of the Nb contacts, followed by a metal lift-off step. This allowed
the shorter ∼ 170 − 175 nm channels for the shorter devices, due to the higher resolution
achievable with ZEP. Secondly, significant surface preparations are made on the nanowire in
order to improve the contact transparency, as we shall describe below.

We suspect that with the devices reported in Ch. 4, the surface tension of HF with the SiO2
termination layer of the substrate and/or the Al2O3 coating on the nanowire resulted in HF
being “pulled” along the nanowire axis and/or trench and etching the Al2O3 inside the nanowire
junction channel, in the area proximate to the PMMA window opened for Nb deposition. This
is depicted schematically in figure 1. With the third generation devices, a thin (2 nm) layer of
HMDS, a hydrophobic substance, is deposited before spin-coating with ZEP. This is expected
to disrupt the mechanism described above, and result in the balling of HF droplet as the HF dip
is made.

Furthermore, before the deposition of Nb contacts, a 5s HF dip is made to remove the Al2O3

shell, followed by a passivation step in a light-activated sulfur rich solution [233]. (See Ap-
pendix A for details.) The chip is then rapidly moved to the sputtering deposition chamber
with exposure to air limited to about 30 seconds before a vacuum is pulled on the deposition
chamber load-lock. The chip is put back into very-high-vacuum conditions within three min-
utes. Prior to Nb deposition, a finely calibrated Ar ion milling process (dc reverse sputtering)
designed to gently remove 2 nm of InAs is carried out. The details of this ion-milling step are
reported in Appendix A. This step is finely calibrated via performing AFM on a 2 dimensional
InAs substrate to remove 2 nm of the surface / oxide layer, and is a crucial difference between
the third and second generated devices.

After lift-off of Nb contacts, DC transport measurements are carried out at pumped He tem-
perature T = 1.5 K and dilution refrigerator temperatures 10−25mK, revealing supercurrents
as well as quantum dot behaviour.

108



Figure 5.1: Schematic comparison of 2nd generation nanowire devices discussed in Chapter 4
(panel a) vs 3rd generation nanowire devices discussed in this chapter (panel b). (a) An InAs
nanowire is contacted by Ti/Nb source/drain contacts after a 5 s HF dip to remove the Al2O3

shell. It is suspected the HF removes the Al2O3 shell inside the junction channel. A non-
entrenched device is shown here; some devices are entrenched. See Chapter 4 for details. (b) A
∼ 2 nm HMDS layer is deposited prior to lithography for the Ti/Nb (2 nm/80 nm) source/drain
contacts. The 5 s HF dip to remove the Al2O3 shell is quickly succeeded by a 90 s immersion in
a Sulfur passivation solution, and rapid transfer to the metal deposition chamber. The presence
of the HMDS layer prevents the etching of the Al2O3 shell inside the channel junction. An
entrenched device with a ∼ 50 nm wide top gate is shown here (as used in Section 5.3.2).
Short-channel devices described in Section 5.3.1 are non-entrenched, lack the top gate, and
have channel length L ≲ 175 nm. To simplify the drawing, we have not shown the Ti/Nb
contact thickness nor the top gate thickness.

5.3 Results

5.3.1 Short Devices

The recipe described above was successful for the short channel devices, and out of a batch of
14, 13 show a supercurrent at 1.5 K. Figure 5.2 shows the typical behaviour of the devices in the
Josephson regime, as differential resistance versus the global back gate voltage. Supercurrents
as large as 25 nA are routinely observed in these devices at 1.5 K. Pinching off the devices using
the global back-gate was not possible with voltages down to∼ −20 V, at which point dielectric
breakdown resulted. Therefore, transconductance measurement of the mobility is directly pos-
sible, unlike the devices in Ch. 2, 4. However, the pre pinch-off slope of the transconductance
curves suggests a mobility greater than 20’000 cm2/V.s for several devices, an ∼ 50% improve-
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ment over the previous generation devices. This is likely due to the HMDS step, which prevents
the Al2O3 shell from being etched near the Nb contact, and creating scattering sites there. By
applying a perpendicular or axial magnetic field, the supercurrent is suppressed at around 0.6 T
(Fig.5.3). Signatures of the Orbital Josephson effect are small to non-existent, likely due to the
higher temperature + shorter channel of these devices. However, clear signature of multiple
Andreev reflections, which are suppressed with the magnetic field are observed in all devices
showing a supercurrent (not shown). The Nb/InAs contact transparency is estimated, using a
method similar to that described in Ch. 4, to be at or above 95%, which is also a considerable
improvement over the previous devices at ∼ 75%. We attribute this to the effectiveness of the
HMDS treatment + sulfur passivation + Ar Ion milling steps performed on these devices.

Figure 5.2: Differential resistance dV /dI of d2 vs backgate voltage, showing typical behaviour
of the short-channel junctions in the Josephson regime. The dark blue region signifies a super-
current observed at T = 1.5K , although the transitions are rounded due to the high tempera-
ture. Critical currents as large as Ic = 25 nA are observed in multiple devices.
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Figure 5.3: Differential resistance dV /dI of d2 vs an axial (a) and a perpendicular (out of plane)
(b) magnetic fields. No oscillations of Ic vs B|| is observed, as the supercurrent is suppressed at
B ∼ 0.6T before oscillations could be observed. This is suspected to be due to the temperature
T = 1.5K .

5.3.2 Long Devices

The expectation from the longer∼ 300 nm channel devices was that they would form quantum
dots in the center of the channel, similar to the case of Ch. 4. Therefore, a 50 nm gate was put
on top as a plunger gate to control the chemical potential of the QD (recall from Ch. 4 that the
radius of the QD was estimated to be close to 50 nm. 5.1.) However, this assumption generally
did not come true. The local top gate and back gatewere generally incapable of tuning the device
into the quantum dot regime, except for two devices out of 10. At 1.5 K, average conductance
was high (R ≲ 2kΩ), but we don’t see a supercurrent for any these devices at that temperature.

The general lack of QD behaviour in these devices further suggests that in the Ch. 4 devices,
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the QDwas formed as a result of the etching of the Al2O3 shell of the nanowire via HF, at which
point the chemical potential inside the nanowire is expected to show a step-like behaviour.
While successful at eliminating that unwanted effect, the HMDS + Sulfur passivation + Ar ion
milling treatment received by these nanowires has increased conduction so much that effective
gating of the nanowire junction has become difficult. This helps us identify the requirement
for a potential device used for the observation of MZM: gatability as well as high conductance,
which are competing effects. We further discuss this matter in Ch. 7.

One quantum dot device was identified, and measured at dilution refrigerator temperature
25 mK. Figure 5.4 (differential conductance vs the back gate voltage) shows the strong presence
of Andreev Bound States (ABS) in the QD device, as rounded subgap states within the Coulomb
diamonds, with the superconducting energy gap identified as 1.4 meV, appropriate for the Nb
contacts. The ABS are not easy to understand as they don’t follow a typical even-odd behaviour
predicted by Ref. [209] and other Anderson-model based theories, including the current-biased
YSR model presented in Chapter 4. Comparing the data to that shown in Ref. [205] suggests a
strong asymmetry in the coupling strength Γ of the ABS towards one contact, again, in contrast
with the date shown n in Chapter 4. However, the lack of significant slanting in the Coulomb
blockade lines (which are proportional to capacitance) suggests that the electronic coupling
strength is more or less symmetric, and the asymmetry is related to some aspect of the phase
coherence of tunneling to one contact versus the other. This identifies an important “tuning
parameter” in the study of YSR states: as well as the ratio of Γ/U , the asymmetry ration Γ1/Γ2

must also be taken into account.
Figure 5.5 shows the ABS states vs an axial magnetic field. We see a Zeeman-like splitting of

the ABS, suggesting the states are spinful. Interestingly, this splitting persists across different
Coulomb diamonds, further evidencing the lack of an even-odd effect in this device. At higher
fields, around 1.8–2 T a zero-bias feature is created, which persists till around 3 T. This feature
is well-resolved and shows an unambiguous pinning of the ABS at zero energy at the charge
transition point. As of this writing we know of no simple explanation for this particular pin-
ning behaviour of the ABS. While we refrain from presenting any detailed hypothesis, we note
the following: firstly, that the behaviour appears to be more complex than a singlet-doublet
transition of the ABS ground-state [209] in a current-biased configuration (unlike that seen in
Ch. 4), and secondly, using the estimates in Ch. 1 as a guide, this is the field-range in which
one spin channel would be expected to be pushed out of the energy window. The zero-energy
pinning of this feature may be related to the YSR equivalent of a topological transition: i.e., as
the system transitions from a dual-channel spin up or- down problem, to a single spin channel
problem.
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Figure 5.4: Differential conductance, dI/dV , of d1, one of only two devices that should Coulomb
quantization, at T = 25 mK. From the charging energy Ec ≃ 8 meV, a dot radius of ∼ 55 nm
is estimated. Strong resonances observed at ±∆ = 1.4 meV, with weaker resonances inside
the gap. As the resonant energies are modulated near the charge quantization lines, some form
of localized Andreev Bound States (ABS) are suspected to be forming on the quantum dot.
However, a straight-forward explanation using a Yu-Shiba-Rusinov (YSR) remains elusive.
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Figure 5.5: Differential resistance of d1 in the quantum dot regime for two values of axial mag-
netic field. The separation of the resonant states w/r/t magnetic field points at a spinful YSR
state; however, no even-odd effect is observed (i.e., states on both sides of the charge transi-
tion move as function of the magnetic field), pointing at a complex and not fully-understood
phenomenon behind the ABS resonance. The zero-crossing feature forming in panel (b), high-
lighted with red ovals, forms at around 1.6 T (shown here at 1.8 T) and persists up to B ≃ 3 T,
close to the critical magnetic field of Nb thin films.
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The complexity of the YSR / ABS behaviour in this device presents evidence of rich phe-
nomenology that must be fully understood in candidate MZM devices. In these, our third gen-
eration devices, we were successful at significantly improving contact transports between InAs
and Nb, and in developing the technical skill to do so we developed valuable expertise in the
design of future devices. However, these device also reveal that as well as transparency, the
gatability and symmetry of these devices are critical parameters for designing an ideal candidate
device for the study of MZM. We expand on this point in Ch. 7.
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Chapter 6

Readout of Majorana parity states using a
quantum dot

6.1 Introduction

In the previous chapters we discussed three generations of nanowire-based proximity Joseph-
son junctions, and described how the critical current Ic of the junction and the Andreev Bound
states (ABS) can be used as tools look for signatures of Majorana Bound states (MBS) in the
system, should the system go through a transition to the topological phase.

A salient question is, assuming that a topological phase can be reliably created in nanowire
junctions or networks of nanowire junctions, what are the interesting experiments that can be
carried out to pave the way towards the realization of a topological quantum computer? The
“holy grail” experiment proving the topological nature of the system is the braiding (physically
exchanging the positions of) two MBS. Because of the topological nature (i.e. the non-Abelian
exchange statistics) of MBS, the joint quantum state shared by the MBS goes through a parity
transformation after braiding. In this chapter we build towards the realization of a braiding
experiment.

Here we propose an experiment that will allow the non-local nature of the MBS in the
nanowire to be verified, and the joint parity of the MBS to be read out [68]. The system involves
a quantum dot tunnel coupled to one MBS at the end of a topological wire. This is a natural
extension of a nanowire junction hosting a pair of MBS.

We theoretically examine a scheme for projectively reading out the parity state of a pair
of Majorana bound states (MBS) using a tunnel coupled quantum dot. The dot is coupled to
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one end of the topological wire but isolated from any reservoir, and is capacitively coupled to a
charge sensor for measurement. The combined parity of the MBS-dot system is conserved and
charge transfer between the MBS and dot only occurs through resonant tunnelling. Resonance
is controlled by the dot potential through a local gate and by the MBS energy splitting due to
the overlap of the MBS pair wavefunctions. The latter splitting can be tuned from zero (topo-
logically protected regime) to a finite value by gate-driven shortening of the topological wire.
Simulations show that the oscillatory nature of the MBS splitting is not a fundamental obsta-
cle to readout, but requires precise gate control of the MBS spatial position and dot potential.
With experimentally realistic parameters, we find that high-fidelity parity readout is achiev-
able given nanometer-scale spatial control of the MBS, and that there is a tradeoff between the
precision requirements of temporal and spatial control. Use of the scheme to measure the MBS
splitting versus separation would present a clear signature of topological order, and could be
used to test the robustness of this order to spatial motion, a key requirement in certain schemes
for scalable topological qubits. We show how the scheme can be extended to distinguish valid
parity measurements from invalid ones due to gate calibration errors.

6.2 Motivation

The elementary quasi-particle excitations of one-dimensional topological superconductors are
calledMajorana Bound States (MBS), and are equal to their own anti-particles. Thiswas first dis-
covered by Kitaev [32], and has spurred enormous interest [240, 83, 241, 121, 242, 243, 244, 245,
50] from the condensed matter community in the fundamental properties of this novel phase
of matter, as well as its potential applications in topological quantum computation (TQC) [4,
246, 31]. One recipe for MBS involves a semiconducting nanowire with a strong spin-orbit
coupling, with induced superconductivity due to proximity with an s-wave superconductor.
With the application of an external magnetic field of appropriate direction and magnitude, a
pair of MBS appear at the ends of the nanowire as edge modes [6, 35, 116, 7]. As the MBS are
zero energy modes, the ground-state is 2-fold degenerate. Several reports have been made on
experimental evidence [76, 78, 81, 77, 79, 247] for the existence of this type of MBS, although a
complete picture of the physics of systems hosting MBS, including conclusive evidence of the
topological nature of the observed ground states, remains out of reach as of yet.

For the purposes of TQC, the degenerateMBS edgemodes can be labelled |0⟩, |1⟩ in the com-
putational basis, according to the parity of the many-body ground state, with |0⟩ (|1⟩) referring
to an even (odd) number of electrons. A so-called topological gap protects these states from
the environment, providing an intrinsic, hardware-level protection against decoherence [63].
A logical Majorana qubit is defined as the joint state of two MBS pairs within a particular parity
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manifold [25]. We shall focus on a single MBS pair here, as readout of a logical qubit can be
constructed from pair readouts. A bit-flip operation |0⟩ ↔ |1⟩ can be performed by utilizing the
unusual MBS property of non-Abelian anyonic statistics. This involves braiding (physically ex-
changing the positions of) the two particles. The details of braiding operations were explored
in ref. [63], where it was also shown that these operations, as implemented in a network of
quantum wires, benefit from topological error protection. However, in order to obtain a uni-
versal set of operations, one needs to supplement braiding with a set of quantum gates that
are not topologically protected [25, 248, 21]. Several proposals exist for achieving universality,
such as bringing the MBS close together to break topological protection and applying phase
gates [63, 25], or coupling MBS with conventional qubits [117, 249, 250].

Additional challenges facing the realization of TQC are state initialization and readout of
the MBS parity states. Following the methodology of the ν = 5/2 fractional quantum Hall
system[30, 24], a creation/annihilation approach was suggested by Alicea et al. [63], wherein a
pair of MBS are created from the vacuum of the underlying quantum field, braided to perform
computation, and then fused (annihilated) to create either vacuum or a finite energy quasiparti-
cle (i.e. a Dirac fermion), depending on the parity state of the MBS. The extra quasiparticle can
be detected by some form of charge measurement. There are also recent proposals for read-
out based on monitoring the current-phase relation of a Josephson junction hosting an MBS
pair [6, 118], coupling MBS to flux [117] or transmon [251, 252, 50] qubits, and coupling to
charge or spin states of quantum dots [249, 253, 250]. All of these methods rely on some form
of parity-to-charge conversion, and also necessarily take the MBS out of the topologically pro-
tected regime by breaking the degeneracy of the parity states. This can be achieved by reducing
the spatial separation of the two MBS so their wavefunctions overlap [63], or by using long-
range Coulomb control interactions [251, 252] on a superconducting island hosting the MBS.
Charge state coherence during the parity-to-charge conversion operation is generally required.

In this chapter, we propose and theoretically model a readout scheme that is relevant to
the setup of MBS tunnel coupled to a quantum dot (QD). Previous theoretical work has demon-
strated the power and versatility of the MBS-QD system for detecting the presence [119] and
lifetime [254] of topological order, gate-drivenmanipulation of topological qubits [249, 250, 253]
and coherent transfer to dot spin and dot charge states. In a realization based on a top-gated
two-dimensional electron gas (2DEG), for example, the MBS-QD setup is natural and could lead
to a scalable architecture for topological qubits. While parity measurement was mentioned in
the MBS-QD context [249], to our knowledge, no detailed study has been conducted to validate
the experimental feasibility of such a readout scheme. Our setup involves an MBS pair, a QD
isolated from any reservoir, and a charge sensor to measure the QD charge state. As there are
no reservoirs present, the joint parity state of the QD + MBS system is conserved. By reducing
the spatial separation of the two MBS (e.g. with a set of keyboard gates), the overlap of the MBS
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wavefunctions grow, resulting in an energy splitting between the |0⟩ and |1⟩ states. This split-
ting is oscillatory and has an exponential envelope versus the MBS separation [32, 82]. The QD
level is tuned so that a charge transition is on resonance with a target MBS energy splitting,
allowing MBS → QD charge transport to occur for one parity state but not the other. Simi-
lar to other schemes, we assume a coherent charge transfer process. Finally, the charge state
of the QD is projectively measured with a charge sensor such as a single electron transistor
(SET) [255].

Numerical simulations with realistic system parameters show that this setup can be used to
map out the energy splitting between the |0⟩ and |1⟩ states versus the spatial separation of the
MBS pair (or as a function of chemical potential or external magnetic field). Such a signature
has been cited as “smoking gun” evidence for topological order, and could also open avenues for
studying the robustness of the topological state to domain wall motion. The charge transfer in
our scheme can be performed on a fast timescale of < 10 nanoseconds with a high theoretical
fidelity of > 99%. These attributes can be further improved, but at a cost in the precision of
voltage and timing controls. The isolation of the QD from reservoirs leads to a resonance in
the tunneling probability versus gate voltage that is typically very sharp, and controlled only
by the tunneling rate. While this requires some fine tuning of control parameters, it is very
effective at decoupling the MBS and QD when readout is not being performed.

This chapter is organized as follows: In Section 6.3, a model for the MBS pair coupled on one
end to a QD is presented. In Section 6.4, we show how this setup can be used to experimentally
determine the energy splitting between the MBS parity states as a function of their spatial
separation. The MBS parity measurement is numerically studied and discussed in Section 6.5,
and concluding remarks are presented in Section 6.8.

6.3 Model

Figure 6.1a schematically illustrates the proposed setup for the initialization/readout scheme of
the MBS parity state. A semiconducting nanowire with a strong Rashba-type spin-orbit cou-
pling [39, 38] is contacted by a bulk s-wave superconductor, resulting in proximity induced
superconductivity in the nanowire. The application of an axial magnetic field B⃗ = Bx̂ of ap-
propriate magnitude results in a phase transition to the topological regime [6], with a pair of
MBS emerging at the edges of the topological region. Using an array of keyboard gates located
near one end of the nanowire, the chemical potential in the nanowire can be manipulated to
move the edge of the topological region [5, 63], thus tuning the separation between the two
MBS from an initial value Li to a final value Lf . The MBS at the other end of the nanowire is
tunnel coupled to an isolated quantum dot (QD) defined inside the nanowire. The energy level
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of the QD is controlled by the plunger gate voltage Vg, and the strength of the tunnel coupling
by Vt. In particular, Vg can be tuned such that the energy required to change the electron num-
ber on the dot matches the energy splitting of the MBS, i.e. the resonant tunneling condition. A
nearby charge sensor, e.g. a single-electron transistor (SET) or quantum point contact, couples
capacitively to the QD. A measurement of the sensor current results in a projective measure-
ment of the QD charge state on a measurement timescale tm, typically microseconds [256, 257],
but as short as ∼ 400 ns [258]. Readout of the QD charge state is the last stage of the MBS
parity readout procedure, and tm is assumed to be much longer than the timescale for QD ↔
MBS resonant tunneling, so the back-action from the charge sensor on the tunneling process is
assumed to be negligible.

The two MBS are described by normalized second-quantized operators γ, which follow the
Majorana fermion rules γi = γ†i and γ2i = 1 for i = 1, 2. From these, we define a non-local
Dirac fermion, with annihilation/creation operators f = (γ1 + iγ2)/2, f † = (γ1 − iγ2)/2. The
MBS parity state is encoded as a single fermionic mode |m⟩, wherem ∈ {0, 1} is the occupation
number of the non-local Dirac fermion.

A charge state with N electrons on the QD, |N⟩, is associated with electrostatic energy
EN . For even N , electrons are paired and form the spin singlet state |S⟩; for odd N the excess
electron gives an overall spin-up |↑⟩ or spin-down |↓⟩ state. A Zeeman splitting is induced for
odd N by the applied magnetic field B⃗. Figure 6.1b shows the QD energy level diagram.

Without loss of generality, let the QD ground state consist of an even number of electrons
n. The minimal model of the system consists of three fermionic modes: one each for spin-up
and spin-down excitation on the QD and one for the MBS parity state. The charge on the QD is
restricted to n, n+ 1, or n+ 2 electrons, which is made possible with a suitable choice for the
gate voltage Vg. The n↔ n+1 charge transition of the dot is later brought into resonance with
the MBS, and used for parity readout. Charge transitions to the n − 1, n + 2 states, however,
are not resonant because of energy separations on the order of the Coulomb charging energy,
a few meV. This justifies excluding the n− 1 state from the model. The n+2 state corresponds
to both spin modes on the QD being occupied and is therefore included in the model, but its
occupation probability remains negligibly small. This minimal model describes the systemwith
an eight-dimensional Hilbert space, which is sufficient to capture the relevant dynamics while
also being small enough for efficient numerical simulation.

The basis states are represented by |N, σ,m⟩ where, N ∈ {n, n+ 1, n+ 2}, σ ∈ {S, ↑, ↓},
m ∈ {0, 1}. However, it must be kept in mind that only the spin singlet is allowed for N =
n, n+ 2, while for n+ 1 the singlet is disallowed.

The Hamiltonian is composed of four terms: H = Hq+Hs+Hm+Ht, where the first three
terms are diagonal and represent the dot charge, dot spin, and MBS energies, andHt represents
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the tunnel coupling between the QD and MBS, which can depend on the spins of both systems.
The dot charge term is

Hq|N⟩ = EN |N⟩,

where the constant interaction [259] energy EN = −eVgN + U
2
N(N − 1) is used. Vg is the

voltage on the plunger gate and U is the Coulomb charging energy. The remaining terms are:

Hs =
δ

2
(|↑⟩ ⟨↑| − |↓⟩ ⟨↓|),

Hm =
ϵ

2
(f †f − 1

2
),

Ht = [λ↑(d↑ − d†↑) + λ↓(d↓ + d†↓)](f
† + f),

where δ = gµBB is the Zeeman energy of the dot spin, ϵ is the MBS energy splitting (which
depends on the MBS separation L), dσ(d†σ) annihilates (creates) an electron with spin σ on the
dot, λσ is the strength of the spin-dependent dot-MBS tunnel coupling, and f, f † describe the
non-local fermion defined previously. A matrix representation of the dσ, f operators is given
in Section 6.3.1.

The spin polarization direction of the MBS depends on the relative strengths of the spin-
orbit field of the nanowire and the Zeeman energy due to the external magnetic field [7, 260].
If dominated by the Zeeman energy due to the axial magnetic field, the MBS spin will be po-
larized along the ±x̂ (axial) direction. By contrast, for the spin-orbit dominated case, it will
be polarized along the ±ŷ direction (in-plane, perpendicular to the nanowire axis). The MBS
readout procedure is equally applicable to both cases, as explained below.

The QD-MBS tunnelling constant λσ depends on the spins of both systems. An MBS spin
along the±x̂ direction is only coupled to one spin state on the dot. Specifically, λ↓ = λ, λ↑ = 0
for the −x̂ direction, and λ↑ = λ, λ↓ = 0 for the +x̂ direction. In contrast, an MBS spin along
±ŷ direction will couple to the two ±x̂ spins on the QD equally [250], e.g. λ↑ = λ/

√
2 and

λ↓ = −iλ/
√
2 for the −ŷ direction. For a generic MBS spin polarization (used below), λσ

will be in between these two limiting cases. Spin rotations induced by the nanowire spin-orbit
interaction during the tunneling process are neglected: their effect is to give the tunneling spin
a component along±ẑ, which can be captured by assuming an arbitrary MBS spin polarization.

The MBS splitting ϵ is proportional to the overlap of the MBS wavefunctions [32, 82], which
are localized at the edges of the topological region. The wavefunctions decay exponentially
inside the topological region, with a characteristic length ξ on the order of the phase coherence
length inside the nanowire. ForL≫ ξ, the parity states are sufficiently degenerate for topolog-
ical protection of the system. As L is shortened, the splitting oscillates within an exponentially
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increasing envelope, as described in ref. [82]. This is illustrated qualitatively in Figure 6.1c. In
the regime L ≳ ξ, ref. [82] gives the splitting as a function of L as:

ϵ(L) ≈ h̄2k̃F
e−2L/ξ

m∗ξ
cos k̃FL, (6.1)

where k̃F is the effective Fermi wavevector of the MBS wavefunctions inside the nanowire, and
m∗ is the effective electron mass. We show in the next section how a series of experiments
can be used to map out ϵ(L). Precise knowledge of this function is required for the MBS parity
readout scheme described in Section 6.5.

6.3.1 Matrix Representations

Recall that the system state is represented by |N, σ,m⟩where,N ∈ {n, n+1, n+2}, σ ∈ {S, ↑
, ↓},m ∈ {0, 1}. It must be kept inmind that some combinations of (N, σ,m) do not correspond
to physically allowed states. It is therefore convenient to represent the state of the QD in terms
of its fermionic modes as a Fock state: |s↑, s↓⟩, where s↑, s↓ ∈ {0, 1}. Connecting the two
representations, we observe that |n, S⟩ = |0, 0⟩, |n + 1, ↑⟩ = |1, 0⟩, |n + 1, ↓⟩ = |0, 1⟩, and
|n + 2, S⟩ = |1, 1⟩. The total Fock state, including the mode corresponding to the MBS parity
state, is given by including a third fermionic mode labelled bym. The matrix representation of
operators on the combined MBS-dot system are then constructed via the standard formalism of
second quantization.

In general, for n fermionic modes, the creation and annihilation operators of the nth mode,
a†n and an, obey the anti-commutation relation {an, a†n} = I. For a single mode, we choose:

a =

(
0 0
1 0

)
, a† =

(
0 1
0 0

)
, (6.2)

and represent the associated Fock states as

|0⟩ =
(
0
1

)
, |1⟩ =

(
1
0

)
. (6.3)

The creation and annihilation operators for different modes anti-commute: {an, a†m} =
{an, am} = {a†n, a†m} = 0, for n ̸= m. For our model consisting of three fermionic modes, the
single mode operators are extended in the usual way to the full eight-dimensional Hilbert space
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in keeping with these relations:

d↑ = a⊗ σz ⊗ σz, (6.4)
d↓ = I⊗ a⊗ σz, (6.5)
f = I⊗ I⊗ a, (6.6)

where σz is the Pauli z-matrix, and similarly for the creation operators. The Fock states on the
full Hilbert space are likewise constructed as tensor products of |0⟩ and |1⟩.

We shiftHq by−EnI so that its ground state has zero energy. Thus, lettingE ′
n = 0, E ′

n+1 =
−eVg+UN , andE ′

n+2 = −2eVg+U(2N +1), we have the following expressions for the terms
in the Hamiltonian:

Hq = diag(E ′
n+2, E

′
n+2, E

′
n+1, E

′
n+1,

E ′
n+1, E

′
n+1, E

′
n, E

′
n), (6.7)

Hs = diag(0, 0, δ/2, δ/2,
− δ/2,−δ/2, 0, 0), (6.8)

Hm = diag(ϵ/2,−ϵ/2, ϵ/2,−ϵ/2,
ϵ/2,−ϵ/2, ϵ/2,−ϵ/2), (6.9)

Ht = λ/
√
2



0 0 0 −i 0 −1 0 0
0 0 i 0 1 0 0 0
0 −i 0 0 0 0 0 1
i 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −i
−1 0 0 0 0 0 i 0
0 0 0 −1 0 −i 0 0
0 0 1 0 i 0 0 0


. (6.10)

Here, Ht has been written for MBS polarization along the −ŷ direction, i.e. for tunneling
constants λ↑ = λ/

√
2, λ↓ = −iλ/

√
2. Using these matrix representations of the states and
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operators, the time dependent Schrödinger equation was solved numerically using the QuTiP
module for Python 2.7 [261].

As described in the main text, the resonant tunnelling process used here only involves the
spin-down state of the QD, and transitions to the spin-up state do not occur through our choice
of the dot gate voltage Vg.

6.4 MBS Energy Splitting

In Section 6.4.1, we describe how to measure the MBS splitting ϵ at fixed L using resonant tun-
neling with the QD. In Section 6.4.2, L is varied to show how the function ϵ(L) is mapped out.
Parameters relevant to InSb nanowires are used throughout this chapter, as listed in table 6.1.
The results of this chapter do not depend strongly on the values of these parameters; rather
they are chosen for their experimental relevance. We assume the quantum dot charging en-
ergy is U = 5 meV, and an effective superconducting gap of ∆ = 0.5 meV opens in the regions
of the nanowire proximate to the superconductor. This value of ∆ is chosen conservatively to
pertain to experiments involving Nb, which has a superconducting gap of 1.4 meV. No sub-gap
states (other than the two-fold degenerate MBS) are assumed to exist at energies below ∆. An
external axial magnetic field B⃗ = Bx̂ of magnitudeB = 0.75 T induces topological order in the
superconducting section of the nanowire, where a chemical potential µ = 2 meV is assumed.
The spin-orbit energy in InSb nanowires is expected [39] to be in the range 0.25 − 1 meV,
smaller than the Zeeman splitting δ = 2.0 meV at B = 0.75 T. A temperature T = 50 mK is
used. Thus, the thermal energy kBT is much smaller than the superconducting gap, kBT ≪ ∆,
and also the topological gap kBT ≪ |δ −

√
µ2 +∆2|. Under these conditions, the low energy

states of the topological superconductor (i.e. the MBS) are well separated from all higher en-
ergy states, including the bulk superconducting states. The MBS are therefore isolated from the
superconducting ‘lead’. As the quantum dot in our scheme is also isolated from metallic leads,
we assume that temperature plays no role in the tunneling, which occurs between two isolated
two-level systems.

6.4.1 Fixed MBS Separation

We fix the MBS pair separation so that the energy splitting ϵ at a value ϵ∗ smaller than the
(proximity) superconducting gap ∆, hence the MBS do not couple to the continuum of quasi-
particle states. The |1⟩, |0⟩ MBS parity states are then at energies +ϵ∗/2,−ϵ∗/2 respectively.
The gate voltage Vg is tuned so that the number of electrons on the QD is n, as measured by the
charge sensor.
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T B m∗ g kBT ϵ∗ ∆ δ µ U
(mK) (T) (me) (µeV) (meV)
50 0.75 0.014 50 4.3 20− 50 0.5 2.0 2.0 5.0

Table 6.1: Fixed parameters used throughout this chapter, chosen based on their relevance to ex-
periments on proximitized InSb nanowires. T is the temperature (kB is Boltzmann’s constant),
B the external axial magnetic field, m∗ the effective electron mass (in units of free electron
massme), and g the Landé factor on the QD. Columns 5–10 show energies in ascending order:
the thermal energy kBT is the lowest, followed by maximum MBS splitting ϵ∗, proximity su-
perconducting gap ∆, Zeeman splitting δ, chemical potential inside the InSb nanowire µ, and
QD charging energy U . The MBS parity readout procedure does not depend critically on these
values, and is feasible over a large range of energy scales as long as the conditions kBT ≪ ∆
and kBT ≪ |δ −

√
µ2 +∆2| hold.

Consider an initial MBS parity state |1⟩, so the initial state of the system is |ψi⟩ = |n, S, 1⟩.
The process |n, S, 1⟩ ↔ |n + 1, σ, 0⟩ is resonant when ϵ∗ equals the energy cost ∆En,σ of the
|n, S⟩ → |n+ 1, σ⟩ transition of the dot, with σ =↑ or ↓. From the constant interaction model,
we have ∆En,σ = −eVg + nU ± δ/2, where the Zeeman energy δ = gµBB enters with a plus
(minus) sign for σ =↑ (↓). Determining ϵ∗ is based on finding the resonant gate voltage V ∗. The
value for the resonant gate voltage depends on the initial MBS parity state: had we started with
the other parity state |0⟩, both processes |n, S, 0⟩ ↔ |n + 1, σ, 1⟩ and |n, S, 0⟩ ↔ |n − 1, σ, 1⟩
would have been off-resonance at the V ∗ mentioned above. The first of the two processes is
resonant at Vg = V ∗ + 2ϵ∗/e and the latter at Vg = V ∗ + δ/e− U/e. This allows the MBS-dot
setup to distinguish between the two MBS parity states.

Note that, due to Zeeman splitting of the spin levels of the QD, there are generally two
possible values for V ∗, labelled V ∗

σ for σ =↑, ↓. Without loss of generality, we focus on the
lower resonance voltage V ∗

↓ from this point onwards. Hence, we use the shorthand notation
λ to refer to λ↓, the tunnel coupling strength to the spin down state of the QD. For a generic
MBS spin polarization direction, a second resonance voltage V ∗

↑ is present at V ∗
↑ = V ∗

↓ + δ/e,
but not used. The procedure can be readily extended to the special case of spin polarization
along the ±x̂ axis, where only one resonant voltage is present: V ∗

↓ for the −x̂ and V ∗
↑ for the

+x̂ directions, respectively. We now turn our attention to finding ϵ∗.
A procedure for determining ϵ∗ is depicted in Figure 6.2, and is comprised of three steps:

(i) The system starts in the state |ψi⟩ with Vg tuned to an initial value V0, and Vt at a large
negative value so that tunneling between the MBS and QD is suppressed. At t = 0, the tunnel
coupling is turned on to a value λ = h × 100 MHz by tuning Vt. Then, at t = 2 ns, Vg is
rapidly ramped up to a trial value V trial, such that λ2 ≪ h̄e|d(Vg)/dt| at all times t, i.e. the state
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λ/h d(eVg)/dt d(ϵ)/dt (∆−ϵ)2

h̄d(eVg)/dt
(∆−ϵ)2

h̄d(ϵ)/dt
λ2

h̄d(eVg)/dt(MHz) (meV/ns) (meV/ns)
Calibration 100 0.2 — 1.5× 103 — 1.3× 10−3

Readout — 1 100 1.3 0.8 2.3× 102 3.8× 102 2.0× 10−4

Readout — 2 1000 1.3 0.8 2.3× 102 3.8× 102 2.0× 10−2

Table 6.2: Tunneling rate λ/h, maximum sweep rates of gate voltage energy d(eVg)/dt andMBS
splitting energy d(ϵ)/dt, and adiabaticity condition estimates, for three procedures discussed in
the main text. “Calibration” refers to procedure for finding ϵ∗(L) in Section 6.4.1; “Readout —
1” refers to the MBS parity readout procedure discussed in detail in Section 6.5, and “Readout —
2” to the procedure at the end of Section 6.5 with λ/h = 1 GHz. The probabilities of transitions
between energy levels due to Vg, ϵ sweeps are calculated accurately in the numerical TDSE
simulations. The Landau-Zener formula exp(−2πΓ) is used here to illustrate rough (order-of-
magnitude) estimates of the adiabaticity conditions. The dimensionless quantity Γ compares
the level repulsion of the anti-crossing energy levels with the rate of sweep of the energy level.
It is explicitly given in the column headers pertaining to transitions to higher energy states due
to Vg sweep (Column 4), ϵ sweep (Column 5), and resonant dot-MBS state transfer (Column 6).
A large number indicates a low probability of transition across the energy gap, whereas a small
number indicates a high transition probability. Columns 4, 5: The probability of excitation of
the MBS to a state within the continuum of states above and below ±|∆| is expected to be
negligibly small, i.e. the sweeps rates given for Vg and ϵ are well within the adiabatic regime.
This is confirmed in our numerical TDSE simulations. Column 6: The sweep rate of Vg is fast
compared to the tunnel repulsion λ of the anti-crossing resonant states |n, S, 1⟩, |n + 1, ↓, 0⟩,
allowing an equal superposition to formwith high probability. Thus, Rabi oscillations can occur
as described in Section 6.4.1.

evolution is fast and non-adiabatic. This point is further discussed below. (ii) Vg is held constant
for the duration T trial, then (iii) rapidly ramped down to its initial value. The tunnel coupling
is then turned off at t = 7 ns. Figure 6.2a shows Vg versus time, with (V trial, T trial) = (V ∗, T ∗),
the values which produce resonant MBS-dot charge transfer for the chosen system parameters.
The corresponding probability for charge transfer is shown in Figure 6.2b.

Rapid sweep of Vg and Rabi oscillations — Let us explore the resonant state transfer pro-
cess (Figure 6.2a) in more detail. Starting at V0, Vg is swept to V ∗

↓ . At this gate voltage,
the states |n, S, 1⟩ and |n + 1, ↓, 0⟩ anti-cross due to the tunnel coupling λ. Note that Vg
is swept rapidly compared to the level repulsion λ, i.e. λ2 ≪ h̄e|d(Vg)/dt|; however, it is
swept adiabatically slowly with respect to the continuum of states above the proximity gap:
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|∆− ϵ|2 ≫ h̄e|d(Vg)/dt|. Therefore, the probability of exciting to higher energy states is neg-
ligibly small. This is shown quantitatively in table 6.2.

At the anti-crossing point, the eigenstates of the system are |±⟩ = (
√
2)

−1
(|n, S, 1⟩ ±

|n + 1, ↓, 0⟩). However, since Vg was swept rapidly, the system stays in its initial state |ψi⟩ =
|n, S, 1⟩ = (

√
2)

−1
(|+⟩ + |−⟩). A Rabi oscillation occurs in the {|+⟩, |−⟩} subspace, and after

time T ∗ the state of the system is (
√
2)

−1
(|+⟩−|−⟩) = |n+1, ↓, 0⟩, up to an unimportant global

phase. The system stays in this state after a rapid sweep of Vg away from the anti-crossing point.
Figure 6.2b shows the simulated outcome of this process, obtained by numerically solving the
time-dependent Schrödinger equation (TDSE) to find |ψ(t)⟩, the system state at time t. The
quantity of interest is the probability of finding the dot in the n + 1 charge state (with either
spin), Πn+1(t) =

∑
σ=↑,↓ |⟨n+1, σ, 0|ψ(t)⟩|2. It can be seen that Πn+1 goes from zero to> 99%.

By comparison, panels c,d of Figure 6.2 pertain to the case of off-resonance charge transfer.
For the same value of the initial gate voltage V0 as in panel a, panel c shows Vg versus time
when V trial = V ∗

↓ + 2 µV and T = T ∗ − 1 ns (curve ‘a’), T trial = T ∗ and V trial = V ∗
↓ − 1 µV

(curve ‘b’), V trial = V ∗
↓ and T trial = T ∗ + 1 ns (curve ‘c’). The corresponding Πn+1 values are

shown in Figure 6.2d, and indicate significant decreases compared to Figure 6.2b. The results
indicate that the precision required for external control of voltage and time should be at the
100 nV and 100 ps levels, respectively, for a transfer probability close to 1. Both requirements
can be satisfied with current technologies.

A small ripple oscillation can be seen in figures 6.2b and 6.2d. This is due to a finite off-
resonant dot-MBS coupling when the initial voltage V0 is not very far from the resonant voltage
V ∗
↓ . In figures 6.2b and 6.2d, the V ∗

↓ − V0 is only 20 µV. In Section 6.5, we use a much larger
value ∼ 1.3 mV for this difference and find that the ripple is no longer observed.

Measurement of ϵ∗ — To determine V ∗
↓ and T ∗, one would repeat the sequence (i-iii) many

times for each set of trial input parameters, each time measuring the charge state of the dot
using the SET after step (iii). The frequency of the |n+1⟩ outcomes yields an estimate of Πn+1.
The parameter space (V, T ) is then surveyed to find the resonant tunneling time T ∗ = h/λ and
resonant gate voltage V ∗

↓ . The MBS splitting is given by

ϵ∗ = −eV ∗
↓ + nU − δ/2.

Mixture of parity states — The calibration procedure as described here assumes the ability
to reliably prepare the MBS in a particular parity state. Suppose, instead, that one can only
prepare the MBS in a statistical mixture ρ = p|0⟩⟨0| + (1 − p)|1⟩⟨1|. Then, due to the sharp
dependence of transition probability on Vg, the procedure is still effective at measuring ϵ∗. We
note that if V ∗

↓ is the resonant gate voltage for the |1⟩ → |0⟩ parity transition process, then the
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|0⟩ → |1⟩ process will be resonant at Vg = V ∗
↓ + 2ϵ∗/e. Thus, one would observe two peaks in

Πn+1(t) of height p and 1− p, separated by 2ϵ∗ along the Vg-axis. Peaks corresponding to the
spin-up state of the QD will generally be visible as well (for MBS spin polarization not along
x̂), at V ∗

↑ = V ∗
↓ + δ/e.

6.4.2 Energy Splitting versus MBS Separation

The procedure outlined in the previous section may be repeated for a variety of L values using
the keyboard gates, thereby allowing the experimenter to map out the oscillatory function ϵ(L).
In Section 6.6.1, we estimate a typical spatial period of the oscillations of ϵ to be ∼ 30 nm.
Therefore, reliably varying ϵwith a precision∼ 100 neV requires tuning L (e.g. using keyboard
gates) with a precision at the ∼ 1 nm level.

Empirical measurement of the function ϵ(L) is itself desirable, as it is a direct test of the
validity of Eq. 6.1. Indeed, in ref. [47], ϵ is measured for several devices of different lengths,
where an exponential envelope in ϵ(L) is observed. Performing a similar experiment in a single
device with varying L would provide stronger evidence for the non-local nature of the MBS
wavefunctions and the presence of topological order. The search over the (V, T ) parameter
space at each L point can be speeded up by noting that T ∗ depends only on the tunnel coupling
strength λ (Section 6.6.1), which can be assumed constant, reducing the optimization to a one
dimensional search for V ∗

↓ once T ∗ is known.
Along with the dependence of ϵ on MBS separation, the dependence of ϵ on other physical

parameters such as the strength of the Zeeman field and the chemical potential may be mapped
out. Although only the L-dependence is required for our proposed read out scheme, the model
for the MBS system described in ref. [82] may be empirically tested with respect to several
independent variables. Below, we describe how knowledge of the function ϵ(L) may be used
for readout of the MBS parity state.

6.5 Parity Readout

Initial state — The keyboard gates separate the two MBS by Li = 5µm where the two parity
states are degenerate to within 0.5 µeV ≪ kBT ≃ 4.3 µeV, given the parameters we have
chosen. From data collected by the calibration procedure in Section 6.4.2, a target readout length
Lf for the topological wire is chosen. At Lf , the MBS splitting ϵ(Lf ) is such that ϵ(Lf ) > ϵ(L)
for all L > Lf , so Lf corresponds to a local peak of the function ϵ(L). For the numerical
calculation of the TDSE, we choose Lf = 0.775µm, resulting in ϵ(Lf ) = 49µeV. The optimal
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gate voltage V ∗
↓ at Lf for resonance with the spin-down dot state is assumed to be known,

based on the calibration procedure above. Since Lf corresponds to a peak in ϵ(L), resonance
with the dot does not occur for L > Lf . The dot is initially in the |n, S⟩ state, where we have
arbitrarily chosen n = 20. The gate voltage Vg is initially held at a value V0 = (1/e)U(n−1/2),
halfway between the (n + 1) ↔ n and n ↔ (n − 1) charge degeneracy points of the QD, so
V ∗
↓ −V0 = (1/e)(U/2−δ/2−ϵ) ≃ 1.3mV. To restrict the dot to the {|n⟩, |n+1⟩} charge states,

it is necessary that Vg is kept within the range (n−1)U+ϵ+δ/2 < eVg ≤ eV ∗
↓ = nU−ϵ−δ/2

at all times.
MBS Parity readout procedure — With the system in its initial configuration, there are three

stages of the read out, labelled (i), (ii), and (iii) in Fig. 6.3. In Fig. 6.3a, the MBS separation L,
and the energy splitting ϵ(L) are shown as a function of time. Fig. 6.3b shows the gate voltage
Vg, and the simulated probability Πn+1(t) =

∑
σ=↑,↓ |⟨n+1, σ, 0|ψ(t)⟩|2, with the MBS initially

in the |1⟩ parity state. Considering each stage in turn:
Stage (i): The keyboard gates move the left MBS towards the tunnel coupled end so that the

MBS separation is reduced from Li = 5µm to Lf = 0.775µm. This is performed uniformly
over a duration of 10 ns in our calculation. Table 6.2 shows that the adiabaticity condition
|∆ − ϵ|2 ≫ h̄|dϵ/dt| is satisfied at all times, so the probability of coupling to the continuum
of quasi-particle states above and below ∆ is negligible. Note that this step could be carried
out as much as ∼ 100 times more slowly without affecting the results. The process of moving
the left MBS can possibly incur dephasing errors within the |0⟩, |1⟩ parity basis. However, this
does not adversely affect the readout procedure in any regard, as the readout is performed in
the same parity basis. The parity eigenstates are preserved under this transformation, as their
levels cross but do not couple. At the end of this stage, Vg controlling the dot potential is rapidly
switched from V0 to V ∗

↓ . As discussed in table 6.2, this transition is rapid with respect to λ (so
Rabi oscillation occur as explained in Section 6.4.1), but adiabatic with respect to |∆ − ϵ|, so
there is negligible chance of excitation to higher energy states. In our calculation the voltage
ramping time is 1 ns.

Stage (ii): The control parameters are held fixed for the optimal tunneling time T ∗, which
is 2.5 ns in the case simulated here. With the MBS initially in the |1⟩ state, the |n, S, 1⟩ ↔
|n+1, ↓, 0⟩ transition is on resonance, and an electron will tunnel from the topological wire to
the dot with transition probability very close to one (Fig. 6.3b).

If, however, the MBS was initially in the |0⟩ state, changing the parity state will cost (rather
than supply) an energy ϵ(Lf ). The corresponding process, |n, S, 0⟩ ↔ |n+ 1, ↓, 1⟩, is off reso-
nance — its resonant gate voltage is Vg = V ∗

↓ +2ϵ/e. For the |0⟩ parity state then, the procedure
illustrated in Fig. 6.3 would result in an electron transfer probability very close to zero.

Stage (iii): The reverse of stage (i), the gate voltage is rapidly ramped back to V0 and the
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keyboard gates are used to move the left MBS back to its initial position. Note that, whereas
sweeping Vg away from the resonance point is necessary in order to prevent the electron from
tunneling back to theMBS, moving the leftMBSwith the keyboard gates is not always required.
It is included here to allow the system to recover its initial configuration, in case the cycle is
repeated. At this point, a charge measurement of the dot is performed via the charge sensor,
e.g. SET. A measurement outcome of n+ 1 indicates with high probability that the initial MBS
state was |1⟩while a measurement of n indicates with high probability that the initial MBS state
was |0⟩. Hence, the dot charge measurement amounts to a projective measurement in the MBS
parity basis.

6.6 Splitting of MBS Parity States

For our numerical analysis, a theoretical expression for the MBS splitting ϵ as a function of the
nanowire length L is taken from ref. [82]:

ϵ(L) ≈ h̄2k̃F
e−2L/ξ

m∗ξ
cos
(
k̃FL

)
. (6.11)

For InSb, we have g ≈ 50, (Landé g-factor), m∗ = 0.014me (effective electron mass) and a
spin-orbit length LSO = 200 nm. Additionally, the Zeeman field for inducing the topological
regime is B = 0.75 T with a superconducting gap of ∆ = 0.5 meV and a chemical potential of
µ = 2 meV. With these parameters, we have an effective coherence length ξ = 1.71µm and an
effective Fermi wavevector k̃F = 4.05× 107 m−1. The energy splitting according to Eq. 6.11 is
shown in Figure 6.4.

We observe that the spatial period of the oscillations is roughly 30 nm and that for a final
nanowire length of Lf = 0.775 µ m, the splitting reaches a local maximum of about 50 µ eV.

6.6.1 Period of Resonant Tunnelling Oscillations

As part of the calibration procedure described above, we state that the optimal resonant tun-
nelling time T ∗ depends only on the tunnel coupling strength λ. To prove this, we observe that
in the range of Vg considered, the MBS-dot system is effectively restricted to the 2D subspace of
the full Hilbert space spanned by {|n, S, 1⟩, |n+1, ↓, 0⟩}. This effective Hamiltonian restricted
to this subspace (and, as above, shifted so Hq|n⟩ = 0) is:

131



Heff =

(
ϵ/2 −iλ/

√
2

iλ/
√
2 −eVg + UN − δ

2
− ϵ

2

)
. (6.12)

The eigenvalues of this matrix are:

E± =
E0

2
± 1

2

√
(E0 − ϵ)2 + 2λ2 ; (6.13)

where E0 = −eVg + UN − δ

2
. (6.14)

The angular frequency for relative phase rotations of the stationary states is therefore

ω =
E+ − E−

h̄
=

√
(E0 − ϵ)2 + 2λ2

h̄
, (6.15)

which, on resonance between the dot and MBS, reduces to ω =
√
2λ/h̄. With respect to this

subspace, switching Vg between its initial and final values is a diabatic process: as Vg is swept
from V0 to V ∗, the system remains in |n, S, 1⟩. On resonance, ω is the frequency of Rabi oscil-
lations between |n, S, 1⟩ and |n+1, ↓, 0⟩. The optimal transition time, T ∗ = 1

4πω
, depends only

on λ.
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Figure 6.1: (a) Schematic of the proposed device. A bulk s-wave superconductor is in close
proximity to a semiconducting nanowire, inducing superconductivity in the nanowire. With
the application of an axial (along x̂) magnetic field, a pair of MBS appear at the ends of the
topological region. An array of keyboard gates can be used to move MBS 1, tuning the MBS
spatial separation from Li to Lf . MBS 2 is tunnel coupled to an isolated quantum dot (QD),
with a tunneling strength λ controlled by the gate voltage Vt. The chemical potential of the QD
can be tuned using the plunger gate voltage Vg. A charge sensor reads out the charge state of
the QD, shown here as a SET with current ISET . (b) Schematic of the energy levels of the QD.
U is the charging energy, and the charge state is indicated on the left by number of electrons on
the QD. Integer N is arbitrarily chosen to be even. Spin states are indicated on the right, with
spin singlets (doublets) occurring for even (odd) charge states. A Zeeman splitting δ is induced
between the spin-1/2 states by the external magnetic field. (c)The qualitative behaviour of MBS
energy splitting ϵ versus the separation L is oscillatory with an exponential envelope.
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Figure 6.2: Procedure for determining ϵ for a fixedL: gate voltage Vg, and calculated probability
of having n + 1 electrons on the quantum dot, Πn+1, versus time. Panels (a, b) show the case
in which the MBS and dot are brought into perfect resonance for the optimal charge transfer
time. (a) Vg is raised from the initial value V0 to the resonance value V ∗

↓ = 20µV, and held
there for the optimal duration T ∗ = 2.5 ns, before being returned to V0. The sequence is
broken into three steps (i-iii). (b) The corresponding probabilityΠn+1 goes from zero to> 99%.
Panels (c, d) show three cases involving miscalibration of V ∗

↓ and T ∗. (c) Voltage sequences
with V trial = V ∗

↓ +2µV and T = T ∗−1 ns (curve ‘a’), T trial = T ∗ and V trial = V ∗
↓ −1µV (curve

‘b’), V trial = V ∗
↓ and T trial = T ∗ + 1 ns (curve ‘c’). (d) Probabilities Πn+1 corresponding to the

sequences in panel (c). In all panels, the vertical dashed lines show the optimal duration T ∗ for
resonant charge transfer. The following parameters are used: λ/h = 100 MHz, L = 1.12µm,
µ = 2 meV, B = 0.75 T. These correspond to ϵ∗ = 20µeV.
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Figure 6.3: Readout procedure (stages i-iii) of the MBS parity state as described in the text.
The MBS is initially in the |1⟩ parity state. (a) The MBS separation L (blue/dark grey) and
the corresponding MBS splitting ϵ(L) (black) as predicted from Eq. 6.1. (b) The gate voltage
Vg (blue/dark grey) and the calculated probability of adding a charge to the dot, Πn+1, versus
time (black). The resonant gate voltage V ∗

↓ is known, obtained using the calibration procedure
given in Section 6.4.1. As Vg is tuned to V ∗

↓ , the probability of finding n + 1 electrons on the
dot rises from zero to a value greater than 0.9999. Conversely, if MBS initial state is |0⟩, the
maximum Πn+1 obtained is 0.004 (not shown). A charge readout of the dot then constitutes a
readout of the MBS parity state. A tunneling strength λ/h = 100MHz is used in the numerical
calculations.
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Figure 6.4: Energy splitting of the MBS parity states as a function of the topological wire length
L for the parameters given in section B. The parity readout simulated in section IV of the main
text used the value indicated by a circle, with Lf = 0.775µm, corresponding to a splitting
ϵ = 49µeV.

136



6.7 Discussion

Fidelity of readout — Using the parameters given previously and with ϵ(Lf ) = 49 µeV, the
numerically obtained probability of finding n+1 electrons on the dot after stage (iii) is greater
than 0.9996 with the MBS initially in |1⟩. The probability of finding n electrons is greater
than 0.9999 with the MBS initially in |0⟩. The readout scheme therefore allows the two MBS
states to be distinguished with a visibility up to 0.9996, defined simply as the smaller of the
two probabilities above. The term ‘readout fidelity’ is used interchangeably with this measure
of visibility. The residual error is dominated by the finite voltage ramping time: a faster ramp
would increase the visibility. However, so far we haven’t considered limitations on control
precision (discussed below), which in practice lead to lower fidelities.

Diabatic errors and readout timescale — The motion of the topological domain wall and its
interaction with the disorder potential in a finite-sized system can potentially cause diabatic
transitions to high-energy states that will spoil the parity readout. Throughout this chapter
we have assumed that diabatic errors do not occur. The dynamics of MBS in the presence of a
moving domain wall and disorder potential have been theoretically studied [262, 263, 264, 265],
indicating that diabatic errors can be avoided as long as the velocity v of the moving domain
wall is below some critical value vc. Ref. [262] calculates the condition for adiabatic and phase-
coherent manipulation of anMBS qubit (i.e., a stronger criterion than strictly required for parity
readout) as v ≪ vc = 2Emin/(h̄kF ) ≃ 2α∆/(h̄δ), where kF is the Fermi wave-vector and Emin
is the value of the system gap at k = kF (i.e., the minimal eigenenergy of the appropriate
Bogoliubov-de Gennes Hamiltonian), α the Rashba spin-orbit strength,∆ the superconducting
gap, and δ the Zeeman energy. Using the parameters in Table 6.1, we calculate vc = 0.2 −
1.0 × 106 m.s−1. In comparison, the motion of the domain wall in the parity readout process
(fig. 6.3a) occurs at a velocity v = 4.2× 102 m.s−1, so the above condition is satisfied. Based on
this, we conclude that the 25 ns sequence shown in fig. 6.3 for the parity-dependent MBS→QD
tunneling incurs no diabatic errors. On the other hand, single-charge readout of the QD state
requires integration times in the range of 0.4 µs [258] to 10 µs [257] or longer and bottlenecks
the timescale of the parity readout process.

In the above analysis we have ignored the interaction of the domain wall motion with the
disorder potential, which may itself cause diabatic transitions to high-energy states [265]. Such
undesirable effects need to bemitigated by using a slower motion of the leftMBS. Asmentioned
above, this can be done up to∼ 100 times slower without seriously affecting our numerical re-
sults. In doing so onemust also keep inmind the upper limit for the timescale of MBSmanipula-
tion due to quasiparticle poisoning [266, 267] (i.e. the lifetime of the parity states). A tight upper
bound ≲ 100 ns would pose very serious challenges for MBS parity readout. However, experi-
mental evidence on this front is encouraging, asmeasurements have indicated (non-topological)
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bound-state parity lifetimes exceeding 10 ms in proximitized Al-InAs nanowire devices [268],
and ∼ 1 minute in NiTiN Cooper-pair boxes [269].

Bias in parity readout due to miscalibration — Throughout the readout operation (stages i-
iii), it was assumed that the calibration of ϵ(L) performed in Section 6.4.2 is valid. Drift or
noise in the applied voltage or pulse timing will cause miscalibration errors and bias the charge
measurement outcome in favour of n over n + 1 (see Figure 6.2), i.e. a bias towards detecting
|0⟩ over |1⟩ for the MBS parity. However, a straightforward modification of our scheme allows
for distinguishing a calibration error from a genuine |0⟩ outcome. This is done by appending a
second readout operation involving the n− 1 charge state of the QD.

Starting with Vg at V0 = (1/e)U(n− 1/2), i.e. halfway between the (n+ 1) ↔ n and n↔
(n − 1) charge degeneracy points of the QD, two parity-to-charge conversions are attempted:
First, |n, S, 1⟩ → |n+ 1, ↓, 0⟩, by using the resonance at gate voltage V ∗

↓ = V0 + (1/e)(U/2−
δ/2− ϵ) as described previously. Subsequently, the |n, S, 0⟩ → |n− 1, ↓, 1⟩ transition is made
resonant at Vg = V0 + (1/e)(−U/2 + δ/2 + ϵ). Then, the charge sensor is used to perform
a charge readout of the QD. The following outcomes can be distinguished: n + 1 electrons
indicates with high probability that the initial MBS state was |1⟩, while n− 1 indicates |0⟩. The
outcome n indicates that neither transition took place (i.e. a calibration error), thus providing
an in situ test for the validity of the readout procedure.

Sensitivity to precision of control — For the system parameters chosen in our simulations,
the MBS separation L must be controlled within approximately 1 nm in order to maintain an
accuracy > 99% in distinguishing the parity outcomes. The tolerance can be improved by
about a factor of three by choosing parameters at the edge of the topological phase region,
which corresponds to a period for the MBS energy oscillations about three times longer —
however such a case may be less experimentally feasible. Alternatively, the effect of tunnel
broadening may be exploited to reduce the sharpness of the resonance condition and increase
robustness. For example, we solved the TDSE again with a tunnel coupling strength of 1 GHz,
corresponding to “Readout — 2” in Table 6.2. This shows that the stronger tunnel coupling
allows a tolerance of ±4 nm in precision of the MBS location while still maintaining a readout
fidelity of∼ 97%, at the cost of reducing T ∗ by a factor of 10. However, a 4 nm error in the case
of the 100 MHz tunnel coupling yields a dramatically lower visibility of ∼ 3%. Hence, there is
a tradeoff between the required precision of spatial control of the MBS separation versus the
timing precision of gate voltage control.
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6.8 Conclusions

We examined theoretically a protocol to read out the parity of an MBS pair in a topological
superconductor using an isolated quantum dot. The MBS pair is brought from a well-separated
(topologically protected) state to a spatially overlapping (unprotected) state in which there is a
finite energy splitting; one MBS is then resonantly tunnel coupled with the quantum dot. The
MBS parity state is projectively measured by a charge measurement of the quantum dot, and we
showed that this can be accomplished, in principle, with high fidelity. It is straightforward to
extend this to the readout of a logical qubit based on two MBS pairs. This protocol fits naturally
into the MBS-dot system, which could be a powerful and versatile setting for achieving scalable
control of topological qubits.

As an intermediate step, we discussed a calibration procedure for mapping out the MBS
energy splitting versus separation, ϵ(L). A similar experiment is performed in ref. [47] where
an exponential envelope is observed, strongly indicating the presence of topological order. Our
setup allows for this experiment to be performed in a parity-protected manner, so that one can
test the robustness of theMBS parity state against gate-drivenmotion of the topological domain
wall. As with any projective measurement, the readout protocol can also be used to prepare
the MBS into a desired parity eigenstate. The key for both readout and state preparation is that
parity eigenstates should be preserved under adiabatic motion of the topological wire.
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Chapter 7

Conclusions and Outlook

Our experiments on proximity superconductivity nanowire junction devices have revealed a
rich and complex phenomenology of interplaying effects. Exploring and understanding these
phenomena are interesting avenues of physics unto themselves, as well as being necessary for
any future devices aimed at displaying unambiguous signatures of MZM. Specifically, mastery
of the interplay of proximity superconductivity with the Zeeman and SOI effects, which results
in effective p-wave pairing [44]; the presence of a non-zero charging energy in spinful Yu-Shiba-
Rusinov states; the non-homogeneity of contact couplings in complex YSR behaviour, which
doesn’t necessarily follow the even-odd effect predicted by simple theoretical models; and the
electrostatic landscape of the nanowire are crucial for future MZM research. Specifically, the
potential landscape of the device will result in complex subgap state behaviour, as predicted by
multiple theory papers, to the extent that a quantized zero-bias conduction peak may no longer
be considered an unequivocal signature of the MZM.

In this thesis we explored the experimental signatures of proximity superconductivity in
Chapter 2, reporting on the hitherto little-known effect of orbital Josephson effect, which
arises from the interplay of proximity superconductivity and the electrostatic landscape of the
nanowire. In Chapter 4, further interplay of these effects with Coulomb blockade is explored
in devices with charging energies ∼ 10 − −20 meV, resulting in current-biased YSR states. In
Chapter 5, technical improvements including better mobility and contact transparency were
achieved, with supercurrent observed at T = 1.5 K. Signatures of complex and robust YSR
states were observed up to high magnetic fields ∼ 3 T. A straightforward description of the
YSR states using simple theoretical models was not possible, likely due to the effects of asym-
metric superconductive coupling to one of the leads.

While there are ongoing efforts to improve and realize nanowire-based MZM devices, our
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future efforts will likely focus on 2 dimensional heterostructures as the platform forMZM [270].
An InAs or InSb 2 dimensional electron gas (2DEG) created in an epitaxially grown heterostruc-
ture benefit from higher mobility, better gatability due to larger gate areas, and larger contact
areas ideally resulting in less “contact-inhomogeneity” effect. Furthermore, the possibility of
epitaxially grown Al in transparent contact with the 2DEG exists [88, 89], and the quality of an
ex-situ deposited dielectric may be greatly improved over the nanowire case due to the flatness
and cleanness of the surface unto which it is deposited. Unlike nanowires which need to be
mechanically deposited in another substrate with a thermally grown oxide, no such “external”
factors affect the quality of the electrostatic landscape in 2DEG devices. These advantages come
at the trade-off cost of a more complex device fabrication process, with more possibility of error
or non-reproducibility in the fabrication stage. Valuable lessons in improving ex-situ deposited
contact transparency with the semiconductor carry over from the nanowire case.

A ZBPmeasurement requires the local tuning of the device so that it is highly conducting in
the topological region, but tunnel-coupled to some normal contact for tunneling spectroscopy
measurement. This provides a significant challenge in gating — as observed in Chapter 5, highly
conductive nanowires are difficult to gate using small local top gates and ∼ 50 nm dielectric
separation + a global back gate with a ∼ 200 nm dielectric separation. This is further compli-
cated in nanowire devices in Refs. [92, 84, 93] with epitaxially contacted superconductors: the
presence of the superconductor shields the nanowire from Coulomb effect of the gate. There-
fore, some groups have developed an epitaxial contact with covers only 2 or 3 facets of the
nanowire [271] — a highly advanced technique which, nevertheless, could negate one of the
advantages of epitaxial contacts: uniformity. In such devices, it can be expected that the prox-
imity effect is stronger near the contacted facets of the nanowire compared to the others, similar
to the case of ex-situ deposited contacts.

Assuming gating challenges can be effectively overcome in devices based on InAs or InSb
2DEG, we propose the following platform be developed in order to perform several interesting
experiments. Assume a double quantum dot device created on the 2DEG, e.g. via top-deposited
finger gates [272, 273]. The flexibility in the fabrication of the device allows the quantum dots
to be created in an elongated geometry, with the distance between the reservoir leads ∼ 1µm,
but the “width” smaller by a factor of 10 or so, resulting in a nanowire-like geometry. The
leads can be epitaxial or ex-situ deposited superconductors. Quantum point contacts tune the
coupling strengths of the reservoirs to the quantum dots, while plunger gates tune the chemical
potential on the quantum dots, and separation gates can tune the double dot system from the
regime of a single large dot to that of two separated dots. The effective size of the quantum dots
can therefore also be tunable to some extent. A further iteration could be a 3-contact device,
with one of the quantum dots contacted to a normal reservoir, and the other one a proximity
superconducting quantum dot.
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This is a platform on which the complex phenomenology seen in our nanowire devices can
be extensively tested and explored. With the system tuned to a large quantum dot regime, An-
dreev bound states are expected to be observed in a current-biasedmode. By tuning the effective
size of the quantum dot (therefore the charging energy U ) as well as coupling strengths Γ, the
device can be tuned from a strong coupling regime showing a supercurrent to a YSR regime.
This can be compared to the ABS states in the double quantum dot regime. If the principle of
spin-blockade is used to load a known spin state into one quantum dot, the spinful nature of the
YSR states can be explored, and compared with the case of a double-occupation dot expected
to show a spin singlet. If the effective size of one dot can be made very large so as to resemble
a nanowire, it can be expected to show MZM in an axial magnetic field. The second dot and/or
the third normal contact can then be used for tunneling spectroscopy. In such a system, the
readout scheme detailed in Chapter 6 can also be implemented. If MBS/coherent ABS are ob-
served over a large distance in a large quantum dot resembling a nanowire, a Crossed Andreev
reflection experiment can be performed. Finally, if the ABS is created in a large strongly cou-
pled quantum dot in which more than one orbital level is occupied, the Orbital Josephson effect
can also be measured.

In Chapter 3 we provided a simple and idealized theory of the Orbital Josephson effect.
With the help of our colleagues at the University of Mumbai, this model has been expanded,
and the supercurrent of a much more realistic nanowire is calculated using the non-equilibrium
Green’s functions formalism [169, 274, 275]. Ref. [274] elevates the shortcomings of the shell
model used in Chapter 3, and considers a full (non-shell) IsAs nanowire, contacted with Nb,
including a fermi wave-vector mismatch at the interfaces, normal reflections at the interfaces,
and not relying on an Andreev approximation (∆ ≪ µ). It shows robust Orbital Josephson
effect for realistic InAs parameters, and confirms the general findings of Chapter 3. While the
exact frequencies of the supercurrent oscillations aren’t correctly predicted by the model in
Chapter 3, they give the correct order of magnitude, within a factor of ∼ 2. Qualitatively, the
predicted results are quite similar.

Ref, [275] focuses on the effects of disorder and dephasing, and quantifies the robustness of
the device to these effects. The Orbital Josephson effect appears to be robust, with coherence
lengths needing to be made smaller than the channel length before it is badly affected — at
which point the proximity superconductivity appears to be generally suppressed. The effect
appears generally robust against elastic scattering in the nanowire channel as well.

Therefore, Orbital Josephson effect is an important aspect of the complex and rich physics
occurring in devices designed to explore MBS. It, as well as other phenomenology mentioned
above, need to be further explored before such devices and their physics can be fully understood.
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Appendix A

Device Fabrication

The devices discussed in this thesis were fabricated at the Mike and Ophelia LazaridisQuantum
NanoFab facility at the University of Waterloo. I am very grateful to the staff at the NanoFab
facility who over the course of many years taughtme the ins and outs of working in a cleanroom
in a manner that resulted in reproducible and useful devices.

Device fabrication is an art and a craft more than a science, and one that can only be per-
fected with practice. However, a necessary component is a deep and complete understanding
of the physics and chemistry of the steps involved in the fabrication of the device. Detailed and
strict attention to every aspect of the process is an absolute must; for reproducibility of the re-
sults, the recipe needs to be followed exactly, down to such details as using the same glassware
and pouring liquids to the same level each and every time.

Below I provide recipes for the fabrication of the second and third generation of proximitized
nanowire Josephson devices. First comes an outline, and then details and notes about the crucial
steps of the fabrication. I’m grateful to my fellow PhD student Greg Holloway who helped
develop many of the steps involved in this recipe. Appendix A in Ref. [225] provides a thorough
breakdown of and more information about the fabrication steps not discussed in detail here,
including preparatory steps performed on the nanowires.

Outline of recipe for Nanowire-based Josephson junctions

1. Preparation

• Prepare desired nanowires (w/ or w/o Al2O3 shells)
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• Cleave 4” Si wafer with 300 nm thermal oxide into 1cm x 1cm chips.

2. Bonding pads

• Photolithography (bi-layer) nanowire wirebonding pads
• E-beam evaporation: Metal deposition (Ti/Au 30/50 nm)
• Liftoff metal in heated Remover PG solution

3. Fine Alignment Marks

• EBL (PMMA A4 950K) for alignment marks
• E-beam evaporation: Metal deposition of alignment marks Ti/Au 30/50 nm
• Liftoff metal in heated Remover PG solution

4. Optional: for devices with trenches

• EBL (PMMA A3 950K) for trenches
• Etch 60 nm oxide in dry etcher
• Etch in HF to remove 3 nm
• Liftoff resist in heated PG

5. Nanowire deposition and location

• Deposit nanowires onto chip/into trenches
• Use SEM to locate nanowires

6. Optional: for devices with top-gates

• (Use nanowires with Al2O3 shells, and in trenches to ensure continuity of top-gate.)
• EBL (PMMA A3 950K) top gates
• E-beam evaporation: Metal deposition Ti/Au 10/30 nm
• Liftoff metal in heated PG

7. Source/Drain contacts

• 3rd generation only: Apply HMDS layer
• EBL (ZEP 520A) for source/drain contacts
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• HF etch nanowire shell material and/or native oxide
• 3rd generation only: Surface passivation in a sulfur-rich solution
• Quickly move to AJA sputtering system
• In-situ ion milling + sputtering of source/drain contacts (Ti/Nb 2/80 nm)
• Liftoff metal in heated Remover PG solution

Deposition of Source/Drain contacts

This is the last and the most crucial step of the device fabrication. Achieving high superconduc-
tor/semiconductor interface transparency t critically depends on this step. Application of an
HMDS layer helps with devices that have an Al2 O3 shell, as the subsequent HF etch can remove
the alumina shell inside the junction channel. The HMDS layer helps with the adhesion of the
ZEP resist to the surface and ensures that the alumina shell is only removed in the source/drain
contact region. The sulfur passivation step was found to make a noticeable difference in im-
proving the Nb/InAs interface quality, and the 3rd generation devices have a greatly increased
contact transparency t compared to the 2nd generation devices.

It is important that after the HF etch which removes the native oxide and sulfur passivation,
the chips bemoved to a loadlock quickly so that the vacuum can be pulled, preventing the native
InAs oxide to regrow. With practice I could have the loadlock on the AJA sputterer pumped to
very high vacuumwithin three minutes of taking the chip out the sulfur solution. This required
walking at a very brisk pace from one chamber of the cleanroom to the other where the AJA
was located (running is not allowed in the cleanroom).

After the chip was inserted in the chamber of the sputter system the following recipe was
used for Ti/Nb deposition:

• (Chips mounted at the center of the chuck. Using a 60 rpm rotation of the chuck. All the
steps are performed at room temperature.)

• Reverse RF-sputtering (ion milling) in an Ar environment, 50 W power, 1.5 mTorr Ar
pressure, for 6.5 minutes.

• Deposit 2 nm Ti with DC sputtering. Ar environment, 200W power, 3 mTorr Ar pressure,
17 seconds.

• Deposit 80 nm Nb with DC sputtering. Ar environment, 200 W power, 3 mTorr Ar pres-
sure, 641 seconds.
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The Ar ion milling pressure and time used was calibrated to remove ∼ 2.5 nm of material
(native oxide) from a planar InAs substrate, as measured with atomic force microscopy (AFM).
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Appendix B

Code Used in this Thesis

Almost every stage of the work that went into this thesis involved some form of data analysis or
modeling. We posit that NumPy [276], the numerical analysis library for the Python program-
ming language is generally the best tool available for Scientific Computing. This assessment is
based on several points: Firstly, that Python is a sophisticated, general purpose programming
language, and students can learn good coding practices and high level coding concepts by using
it over, e.g., Matlab. Secondly, prototype code can be developed and debugged fast and rela-
tively painlessly — especially when using Jupyter Notebook, which provides a web-server in
which code can be executed in cells, similar to how the Mathematica interface works. Thirdly,
and even though this never really was a bottleneck for the code written for this thesis, well
written Python code can be very fast, especially if tools like Just-in-Time compilation are used.
If one can develop code 1’000 times faster than C code which executes in a time that differs from
the C code by a factor∼ 1, and that code is a lot more human-readable and less prone to design
errors, I think that is a very good compromise. I would therefore recommend to all scientists
to consider using Anaconda form Continuum Analytics which provides an easily deployable,
well-contained Python environment with its own package management tools for all of their
scientific computing needs. Lastly, but not least, the Python / NumPy / Matplotlib stack is free
and open-source software, the use of which is one of the principals of Open Science, a practice
in science behind which I stand.

Below is provided a short description of the code used in this thesis. The source for this code
can be found at https://github.com/kayghar/ under a GNU LGPLv3 license. If there are
any shortcomings in the quality of the code, I preemptively apologize; however, I must argue
that to a certain degree such is the nature of academic code where the standard for success is
such that the code needs to run correctly only once (e.g. to produce a figure), and in a trusted
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environment. If there are any questions or comments please do not hesitate to contact me via
github.

Data Analysis and Plotter Tool

https://github.com/kayghar/plottertool/

A simple tool to format csv data outputted by the data acquisition program Spanish Acqui-
sition into a database, and to perform analyses such as differentiation and smoothing, and to
the plot the experimental data. Used in chapters 2, 3, 4, and 5.

Orbital Josephson Interference Model

https://github.com/kayghar/orbitalinterference/

The code used in Chapter 3 to simulate the critical current of a nanowire Josephson junc-
tion in the presence of an external axial magnetic field. It can be used to observe the orbital
Josephson interference effect and its dependence on the subband structure of the nanowire.

Model for Current-biased Andreev Bound-state Energies

https://github.com/kayghar/currentABS/

Used in Chapter 4 to calculate the energy levels of current biased Andreev Bound states
(ABS) and fit to the experimental data. Based on the theoretical work presented in ref. [209],
which calculates phase-biased ABS energy levels.

Fermionic Space

https://github.com/kayghar/FermionicSpace/

A tool to provide a matrix representation of the Hilbert space of fermions, in a manner that
respects their anti-symmetric exchange statistics. Also provides matrix representations for the
second-quantized fermionic operators. Useful for simulations of fermionic Hamiltonians.
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Majorana Parity Readout

https://github.com/kayghar/parityReadout/

The code used in Chapter 6 to simulate the calibration and parity-readout procedure of
MBS using a tunnel coupled quantum dot. Numerically integrates Time-dependent Schrödinger
equations. Depends on FermionicSpace.
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