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Abstract 

Face recognition in the visible light (VIS) spectrum has been widely utilized in many 
practical applications. With the development of the deep learning method, the recognition 
accuracy and speed have already reached an excellent level, where face recognition can 
be applied in various circumstances. However, in some extreme situations, there are still 
problems that face recognition cannot guarantee performance. One of the most signifcant 
cases is under poor illumination. Lacking light sources, images cannot show the true 
identities of detected people. To address such a problem, the near infrared (NIR) spectrum 
ofers an alternative solution to face recognition in which face images can be captured 
clearly. Studies have been made in recent years, and current near infrared and visible light 
(NIR-VIS) face recognition methods have achieved great performance. 

In this thesis, I review current NIR-VIS face recognition methods and public NIR-VIS 
face datasets. I frst list public NIR-VIS face datasets that are used in most research. For 
each dataset, I represent their characteristics, including the number of subjects, collection 
environment, resolution of images, and whether paired or not. Also, I conclude evaluation 
protocols for each dataset, helping with further analyzing of performances. Then, I classify 
current NIR-VIS face recognition methods into three categories, image synthesis-based 
methods, subspace learning-based methods, and invariant feature-based methods. The 
contribution of each method is concisely explained. Additionally, I make comparisons 
between current NIR-VIS face recognition methods and propose my own opinion on the 
advantages and disadvantages of these methods. 

To improve the shortcomings of current methods, this thesis proposes a new model, 
Cyclic Style Generative Adversarial Network (CS-GAN), which is a combination of im-
age synthesis-based method and subspace learning-based method. The proposed CS-GAN 
improves the visualization results of image synthesis between the NIR domain and VIS 
domain as well as recognition accuracy. The CS-GAN is based on the Style-GAN 3 net-
work which was proposed in 2021. In the proposed model, there are two generators from 
pre-trained Style-GAN 3 which generate images in the NIR domain and VIS domain, re-
spectively. The generators consist of a mapping network and synthesis network, where the 
mapping network disentangles the latent code for reducing correlation between features, 
and the synthesis network synthesizes face images through progressive growing training. 
The generators have diferent fnal layers, a to-RGB layer for the VIS domain and a to-
grayscale layer for the NIR domain. Generators are embedded in a cyclic structure, in 
which latent codes are sent into the synthesis network in the other generator for recreated 
images, and recreated images are compared with real images which in the same domain to 
ensure domain consistency. Besides, I apply the proposed cyclic subspace learning. The 
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cyclic subspace learning is composed of two parts. The frst part introduces the proposed 
latent loss which is to have better controls over the learning of latent subspace. The latent 
codes infuence both details and locations of features through continuously inputting into 
the synthesis network. The control over latent subspace can strengthen the feature con-
sistency between synthesized images. And the second part improves the style-transferring 
process by controlling high-level features with perceptual loss in each domain. In the per-
ceptual loss, there is a pre-trained VGG-16 network to extract high-level features which 
can be regarded as the style of the images. Therefore, style loss can control the style of 
images in both domains as well as ensure style consistency between synthesized images 
and real images. The visualization results show that the proposed CS-GAN model can 
synthesize better VIS images that are detailed, corrected colorized, and with clear edges. 
More importantly, the experimental results show that the Rank-1 accuracy on CASISA 
NIR-VIS 2.0 database reaches 99.60% which improves state-of-the-art methods by 0.2%. 
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Chapter 1 

Introduction 

1.1 Background 

1.1.1 Computer Vision 

Computer vision (CV) is a scientifc feld in which researchers develop various methods to 
help machines, especially computers, to fully understand digital images and videos. Con-
cretely, the objective of CV is to infer something about the world through images and 
videos[60]. The wide-spread use and application of photodetectors and the Internet over 
recent decades was accompanied by the development of numerous types of devices (e.g., 
mobile phones, Bayonet cameras, surveillance cameras) that are capable of capturing im-
ages and videos, most of which were uploaded to the Internet. Computers are no longer 
constrained in location and can connect to other devices across the world. However, com-
puters cannot correctly extract all useful information from images and videos. Diferent 
from the human vision system, computers lack the capability to process images abstractly 
and are adversely impacted by many aspects of objects(e.g. orientation, occlusion, light-
ing). Despite recent research advancements, the performance of CV is still far from human 
vision. Thus, signifcant room for research and development in CV remains. 

1.1.2 Face Recognition 

Face recognition is a sub-task in CV which aims to detect face and determine the identity of 
faces in images and videos. The process involves matching the face in question with those 
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Figure 1.1: Examples of NIR and VIS images. 

available in dataset galleries. Face recognition has been used to date in the civilian and 
law enforcement sectors(e.g. ID verifcation and criminal tracking). Principle Component 
Analysis (PCA) was integrated into face recognition research in the 1990s[21]. More re-
cent advances in And in 2010s, face recognition techniques made during the 2010s focused 
on the application of deep learning approaches, primarily based on Convolutional Neural 
Networks (CNN)[39]; these approaches enabled more rapid and accurate execution of face 
recognition tasks asks in research settings.However, the related research predominantly 
uses idealized datasets comprised of clear, unobscured faces in high resolution; in contrast, 
face recognition techniques used in real-world applications must be capable of resolving 
numerous factors which can detract from image quality and/or clarity, such as illumina-
tion, pose variation and occlusion. Future research is needed to advance face recognition 
techniques for real applications. 

1.1.3 NIR-VIS Face Recognition 

To address the limitations associated with current approaches, the Near infrared (NIR) 
spectrum ofers an alternative solution to face recognition on top of the conventional Visible 
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Figure 1.2: The electromagnetic spectrum, showing the details of infrared range. 

(VIS) spectrum. Heterogeneous Face Recognition (HFR)) techniques attempt to match 
probe face images in one modality to gallery face images in another modality. Near infrared 
and visible light (NIR-VIS) Face recognition is one such example of a HFR technique, which 
identifes face images by matching NIR probe face images to VIS gallery face images. 
Fig.1.1 shows a series of NIR images and the corresponding VIS images. 

Property of NIR-VIS Face Recognition 

Fig.1.2 shows the spectrum with increasing wavelength and increasing frequency. The wave-
length of NIR images is between 0.76µm and 1.5µm and VIS images is between 0.38µm and 
0.75µm. This diference provides NIR-VIS face recognition with several advantages; frst 
and foremost, NIR-VIS face recognition is a more robust method for face recognition under 
unconstrained illumination, and is particularly robust relative to other contemporary ap-
proaches under poor illumination conditions. Captured under low-light environment, NIR 
images can still preserve the main features of targeting objects. The modality gap between 
NIR images and VIS images increases with the increasing wavelength diference. Secondly, 
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Figure 1.3: Example of NIR imaging system. It consists of NIR camera, VIS camera and 
18 NIR LEDs. 

NIR imaging is a lower-cost solution relative to imagers in other wavelength ranges, such 
as mid-wave infrared(3 − 5µm) and long-wave infrared(8 − 15µm). Although NIR im-
agers(e.g. short-wave infrared, 1.4 − 3µm) are more expansive than VIS imagers, they are 
still much more economical relative to mid-wave infrared and long-wave infrared imagers. 
Thirdly, NIR is invisible to human being eyes, as a result, NIR refection imaging, even 
under strong illumination from NIR Light emitting diode (LED) illuminators, which is safe 
to naked human eyes. With such superiority, NIR-VIS face recognition could be used in 
many face identifcation and authorization circumstances, such as night-time surveillance 
and E-passports. 

Device for NIR-VIS Face Recognition 

In NIR-VIS face recognition, the critical part is a special-designed NIR imaging system. 
Fig.1.3 shows one example of special-designed NIR imaging systems. In the system, there is 
a NIR camera. Currently, cameras for NIR imaging are Indium Gallium Arsenide (InGaAs) 
cameras, which consist of hybrid components (InGaAs plus CMOS). InGaAs cameras are 
used for applications that require high sensitivity over the 0.9 − 1.7µm wavelength range, 
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Figure 1.4: Diagram showing the diferent layers of a typical InGaAs sensor. 

referred to as Shortwave infrared (SWIR). A InGaAs focal plane array in sensors is made of 
a two-dimensional photodiode array. This array consists of an Indium phosphide (InP) sub-
strate, an InGaAs absorption layer, and an ultrathin InP cap that has been indium bump 
bonded to a Readout integrated circuit (ROIC), which are shown in Fig.1.4. The InGaAs 
two-dimensional array detects SWIR incident light, by collecting the photon-generated 
charge. The ROIC clocks and converts the collected charge into voltage, transferring the 
signal to of-chip electronics where it is used to create an image. These NIR cameras have 
the advantages of ease of use, compact camera dimensions, cost-efcient manufacturing, 
and no requirement for cooling systems. 

Also, for taking NIR face images, there are active NIR illuminators, LEDs mounted 
around the cameras, which illuminate the face from near front direction and then capture 
front-lighted NIR face images. The process is like using a camera fash for VIS imagers, 
instead, these illuminators work in the invisible NIR spectrum. The general setting of NIR 
imaging system is important for capturing images with suitable pixel intensities. Firstly, 
the active NIR light should provide strong frontal lighting to override environmental light. 
Secondly, the camera exposure should be set to a low level in order to produce clear frontal-
lighted face images in such a dark environment. Thirdly, there should be a long-pass optical 
flter that cuts of visible light of wavelength shorter than 750nm. For outdoor scenes, 
the hardware should be further optimized to reduce the negative infuence of sunlight. 
The sunlight contains a much stronger NIR component. Thus, in order to maintain the 
illumination from active NIR illuminators, the systems require strong active NIR pulse 
illuminators and NIR cameras that synchronize together. 
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1.1.4 Current methods of NIR-VIS Face Recognition 

As one of the earliest HFR, NIR-VIS face recognition was originally developed in 2007[74]. 
Successful application of this technique requires minimization of the sensing gap between 
the NIR images and VIS images of targeting faces and preservation of identifable infor-
mation for comparison. Based on improvements in Pattern Recognition and CV feld, 
various methodologies have been proposed for use in NIR-VIS face recognition feld; these 
methodologies can be broadly categorized into one of three types: 1) image synthesis-based 
methods, which synthesize face images from one modality into the other and then conduct 
face matching. The related literature primarily involves the synthesis of VIS images from 
NIR images, thereby enabling the application of a high-accuracy face recognition system 
to the synthesized VIS image; 2) subspace learning-based methods, which project both 
NIR and VIS facial images into a common space so as to minimize the modality gap; 3) 
invariant feature-based methods, which extract modality-invariant face features from both 
NIR and VIS images for NIR-VIS face recognition. With recent progress in deep learning, 
these methods can all deliver excellent performance. The general fowcharts of three kinds 
of methods are shown in Fig.1.5. 

1.2 Current Limitation 

Though current researches can achieve state-of-the-art performance, challenges remain in 
NIR-VIS face recognition. 

1.2.1 Dataset 

One of the most intractable problems is that current NIR-VIS face datasets are not as 
available nor readily abundant as traditional VIS datasets. Through years of development, 
VIS face can be easily gathered through multiple resources, and researchers can build up 
large-size VIS face datasets. For example, in the CelebFaces Attributes Dataset (CelebA), 
Liu et al. [48] collected face images of 10,177 celebrities. Images of celebrities are now 
everywhere on the Internet which makes it easy to collect various images with the same 
identity. What is more, these images are captured in various scenes, which brings multi-
appearance of the same person with high resolution. However, for NIR face dataset, it is 
not easy to get NIR face images as the demand of special NIR imaging system to capture. 
All existing NIR-VIS face datasets are collected manually, and thus it is too difcult to 
build up a dataset with the same size as VIS face datasets. Also, equipment for NIR 
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Figure 1.5: The general fowchart of (a) image synthesis-based methods, (b) subspace 
learning-based methods and (c) invariant feature-based methods. 

7 



imaging is much more expensive than VIS imagers. Researchers will have to spend extra 
money for NIR imaging system, which includes a light source and NIR imagers. For the 
existing NIR-VIS face dataset, the unpaired property is another obstacle. Captured with 
diferent imagers, NIR images and VIS images are necessarily unpaired. In some research, 
face matching between paired datasets can bring lots of benefts to network learning. But 
now, researchers have to fnd a way to deal with challenges like a transaction. And also, 
current NIR-VIS face datasets are all close-set. The close-set means that query images 
defnitely have their gallery images in the dataset. However, such close-set properties 
violate the practical scenes of the face recognition task. In practical applications, it is 
not guaranteed that every detected person has their corresponding record in the system. 
Therefore, an open-set NIR-VIS face dataset is demanded. In sum, traditional VIS face 
datasets consist of thousands of images with various appearances which makes the matching 
progress more challenging. In contrast, NIR-VIS face recognition datasets typically only 
comprise the order of hundreds of identities, which can introduce challenges of over-ftting. 
Current state-of-the-art methods have already reached an extremely high accuracy, but for 
practical usage, there is a need for a larger and more robust NIR-VIS face dataset. 

1.2.2 Sensing Gap 

In addition, sensing gap between NIR modality and VIS modality, as well as pose variation, 
bluriness and occlusion, can negatively impact or even inhibit recognition. The goal of 
NIR-VIS face recognition is to recognize the face identities without the infuence from the 
sensing gap. Those mentioned three types of methods, image synthesis-based methods, 
subspace learning-based methods and invariant feature-based methods are designed from 
diferent starting points, but all with difculties: 1) image synthesis-based methods try to 
eliminate sensing gap by synthesizing VIS images based on NIR images. In VIS images, face 
images have diferent appearance with NIR images, i.e. deepen wrinkles and colorization. 
The generative networks form image synthesis-based methods learn to synthesize these 
extra details. However, the synthesis process cannot get the same results as VIS imaging 
where contour blurring, distortion and wrong colorization may occur. Such failed synthesis 
will infuence the matching between synthesis images and real VIS images; 2) subspace 
learning-based methods deal with sensing gap by mapping both images into one common 
subspace for matching. The common subspace shall have the property that images of 
same identity are closer to each other than images of other identities. Ideally, subspace 
learning-based methods have the least requirement of computing resources than other 
methods. Nonetheless, it is troublesome to fnd such a common subspace. Up to now, 
researchers make lots of eforts in this way, but their common subspace is abstract and hard 
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to analysis, which have not reached the expected consequent; 3) invariant feature-based 
methods solve the sensing gap problem by decoupling domain-variant and domain-invariant 
features. NIR images and VIS images can be regarded as the combination of these two kinds 
of features. It is essential to decouple with feature extractors. As entangling as high-level 
features, current methods are not able to separate them perfectly. In which case, domain-
invariant features will be infuenced by domain-variant feature, which further infuence 
the recognition. On the method level, sensing gap still remains the biggest challenge in 
NIR-VIS face recognition. 

These challenges necessitate further research to determine optimal methods for NIR-
VIS face recognition. 

1.3 Signifcance and Contribution 

1.3.1 Basic Network 

Current image thesis-based methods are modifcations of Generative Adversarial Networks 
(GAN). GANs are frstly introduced in 2014[17]. The main structure of GAN includes 
two networks, a Generator (G) and a Discriminator (D). Two networks (generator and 
discriminator) are trained at the same time and compete in a minimax algorithm. This 
adversarial method avoids some difculties in the practical application of some traditional 
generative models and cleverly approximates some unsolvable loss functions through ad-
versarial learning. Numerous GANs are proposed in recent years with a diferent practical 
purpose, e.g. Cycle-GANs[78] are designed for unpaired image-to-image translation. Typ-
ically, the structured processing of a typical GAN generator is that coarse, low-resolution 
features are hierarchically refned through upsampling layers, locally blended through con-
volutions, and non-linearly introduced to introduce new details. Such architecture may 
essentially restore the surface features of the image, but it does not naturally synthesize a 
more realistic image, that is, the rough features ensure the presence of image details, but 
do not control their precise position, details are fxed in image coordinates. Style-GAN 
3[33] was proposed by NVIDIA in 2021, which is the 3rd generation of Style-GAN[34][35]. 
Diferently, Style-GAN 3 interprets all signals in the network as continuous and makes 
slight adjustments to the architecture to ensure that unwanted information does not leak 
into the layered synthesis process. At the same time, its internal representation is signif-
icantly improved, in which absolute translation and rotation can be achieved even at the 
sub-pixel scale. These advantages of Style-GAN 3 are extremely suitable for NIR-VIS face 
recognition task. 
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1.3.2 Proposed Method 

In this thesis, I propose a brand-new network, call Cyclic Style Generative Adversarial 
Network (CS-GAN). The network introduces Style-GAN architecture into NIR-VIS face 
recognition feld for the frst time. The CS-GAN is composed of two pre-trained Style-
GANs, one for VIS image synthesis and another for NIR image translation. Both GANs 
are composed of a mapping network, a synthesis network, and a discriminator network. 
The mapping network takes latent vector z as input which is sent into a mapping network 
with 2 fully-connected layers. Through the mapping network, a new latent code w is 
generated in the latent space W . The latent code w is not used as the feature map of the 
generated image, but to control the feature map of the following synthesis network, thereby 
indirectly controlling the features of the output image. Because of generating images in 
diferent domains, the two synthesis networks have diferent structures. The synthesis 
network for VIS image synthesis has the FTheier transform layer, 14 synthesis layers, and 
an extra to-RGB layer, which is as same as the original Style-GAN; the synthesis network 
for NIR image synthesis has only the Fourier transform layer and 14 synthesis layers. 
The discriminator networks in both GANs have the same structure, which is applied from 
Style-GAN 2. The discriminator network frst converts the image into a feature matrix 
with a mapping network, then reduces the feature dimension through the down-sampling 
of n blocks, fnds the standard deviation in a mini-batch, and fnally passes a custom 
convolution and a self-defned fully connected layer to output the fnal image classifcation 
result. The result of the discriminator is measured by logistic loss. Because of the unpaired 
property of NIR-VIS face datasets, I adapt the same general structure of Cycle-GAN, using 
the cycle loss to constrain the process of synthesis. More specifcally, I use the same latent 
code w to synthesize images in both domains and calculated the cycle loss between images 
in the same domain. Image synthesis between diferent domains has the same purpose as 
style transferring. Based on such property, I proposed the cyclic subspace learning method. 
I control the learning of the network in two-stage, latent subspace, and fnal synthesized 
style. For the frst stage, I use the proposed latent loss to control the learning of latent 
subspace W which has further control over features of synthesized images. In the second 
stage, I apply a pre-trained VGG-16 [46] networks to calculate the style loss which consists 
of two perceptual loss[29], to have further control of style (domain property). The model is 
trained and tested on CASIA NIR-VIS 2.0 database[42] with 99.60% accuracy and 98.22% 
TAR@FAR = 0.1%, which is better than state-of-the-art methods. 
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1.4 Objectives 

The objectives of this thesis are as follows: 

• To evaluate properties of current NIR-VIS face datasets and fnd out their advantages 
and disadvantages. 

• To evaluate state-of-the-art NIR-VIS face recognition methods and analysis their 
contribution. 

• To apply Style-GAN network to NIR-VIS face recognition task for the frst time and 
combine it with Cycle-GAN structure, in which I take NIR-VIS recognition task as 
style transferring and image translation task. 

• To propose cyclic subspace learning for having better control over latent subspace 
and style transferring simultaneously. 

• To improve the accuracy of NIR-VIS face recognition on the CASIA NIR-VIS 2.0 
database. 

1.5 Thesis Overview 

The structure of the thesis is shown as follows: 

Chapter 1 introduces the research background and the practical target of the selected 
topic, demonstrating the property and advantages of NIR-VIS face recognition. Secondly, it 
discusses the currently existing problem in NIR-VIS face recognition feld and the potential 
improvements. Thirdly, the objective of the thesis is illustrated. 

Chapter 2 reviews the current research status of NIR-VIS face recognition feld. First 
and foremost, it introduces current public NIR-VIS face datasets with their characteristics 
and protocols. Besides, it discusses state-of-the-art relevant research from three categories, 
image synthesis-based methods, subspace learning-based methods, and invariant feature-
based methods, and the potential improvements. 

Chapter 3 introduces the proposed Cyclic-Style Generative Adversarial Networks. Based 
on the foundation of Style-GAN 3 networks, I introduce a cyclic derivative network struc-
ture, which is fne-tuned for cross-domain synthesis. Also, it proposes cyclic subspace 
learning in which the learning of features is controlled by the proposed latent loss function, 
and the learning of image style is controlled by the style loss function. 
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Chapter 4 represents the experimental settings and results of the proposed method. 
By testing on the mainstream dataset, the proposed method achieves the state-of-the-art 
result. Additionally, it displays the visualization of results for understanding the improve-
ment in image level. 

Chapter 5 summarizes the overall work and provides an overview of future direction 
based on existing progress. 
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Chapter 2 

Literature Review 

2.1 NIR-VIS face Dataset 

Datasets are vital for helping computers to learn CV tasks, and a critical gap in the ad-
vancement of NIR-VIS face recognition techniques is the development of robust datasets. 
Capturing face images in NIR is much more challenging than in VIS; for instance, tradi-
tional VIS face images can be collected on the Internet. However, NIR images are much 
more uncommon on these publicly available platforms. As such, the cost associated with 
developing a dataset comprised of NIR face images would be prohibitively expensive when 
considering the high costs of NIR photography equipment and special capturing conditions 
(i.e., low light). The largest NIR-VIS face dataset that is presently available is the CASIS 
NIR-VIS 2.0 Face Database, however, this dataset is still far smaller than typical VIS face 
datasets, such as CASIA-WebFace Dataset[76] or Labeled Faces in the Wild[26]. This sec-
tion will introduce four popular datasets used in NIR-VIS face recognition research. Table 
2.1 summarizes currently available NIR-VIS face datasets with their properties, such as 
the number of subjects, capture environment, resolution of images, and whether or not the 
datasets contain paired images. 

Dataset # of subjects Environment Resolution Paired 
The CASIA NIR-VIS 2.0 Face Database 725 Indoor 640 × 480 No 

Oulu-CASIA NIR&VIS Facial Expression Database 80 Indoor 320 × 240 No 
The BUAA-VisNir Face Database 150 Indoor 640 × 480 Yes 

Heterogeneous Face Recognition across Pose and Resolution 200 Indoor - No 

Table 2.1: Summary of the available datasets for NIR-VIS face recognition. 
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2.1.1 The CASIA NIR-VIS 2.0 Face Database 

The CASIA NIR-VIS 2.0 Face Database is the largest NIR-VIS face dataset presently 
available and contains 17,580 images of 725 subjects (each of which has a diferent number 
of corresponding images). VIS and NIR face images of each subject range in quantity from 
1 to 22 and 5 to 50, respectively. Each image has a raw resolution of 640 × 480 pixels 
and is cropped to 128 × 128 pixels by eye coordinates. The dataset features two protocols, 
algorithm development, and performance reporting. In the algorithm development, the 
dataset is divided into a training set and a testing set; the testing set consists of VIS gallery 
images and NIR probe images. In algorithm development, parameters can be tuned and 
fxed via training and testing. In the performance reporting, the dataset is divided into 
ten sub-experiments, in which the Rank-1 recognition rate and verifcation rate can be 
calculated. 

2.1.2 Oulu-CASIA NIR & VIS Facial Expression Database 

The Oulu-CASIA NIR & VIS Facial Expression Database[68] was not exclusively designed 
for NIR-VIS face recognition task, and instead was developed for research of facial expres-
sion recognition. This dataset consists of 80 subjects with 2,880 video sequences in the 
resolution of 320 × 240 pixels. Image frames can be extracted from the video sequences for 
use in the NIR-VIS face recognition research. The dataset includes facial images spanning 
several races and traits of human beings. One challenge with this dataset is that video 
sequences were mainly collected under three diferent conditions, including normal light, 
weak light, and nearly dark; thus, the number of NIR images in nearly dark is quite limited. 
In addition, because the dataset was not intended specifcally for NIR-VIS face recognition 
tasks, an external protocol must be used for performance evaluation. 

2.1.3 The BUAA-VisNir Face Database 

The BUAA-VisNir Face Database[25] was developed in 2012 and includes 150 subjects with 
40 images per subject. For each subject, there are 9 NIR-VIS image pairs at a resolution of 
640 × 480 pixels. Paired images were captured simultaneously using a multi-spectral imag-
ing device. Among these subjects, 50 subjects are used for training and 100 subjects are 
intended for testing. Similarly to the Oulu-CASIA NIR&VIS Facial Expression Database, 
the BUAA-VisNir Face Database was not intended specifcally for NIR-VIS face recogni-
tion, and as a result, faces in images are not aligned to coordinates in this dataset, which 
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are presented in diferent views. Therefore, pre-processing is needed to facilitate NIR-VIR 
face recognition. The BUAA-VisNir Face Database does not provide performance evalu-
ation protocols, thereby necessitating the development of external protocols to measure 
results. 

2.1.4 Heterogeneous face recognition across Pose and Resolution 

The Heterogeneous face recognition across Pose and Resolution (HPR) dataset[56] is based 
on the purpose that poses variation and imaging distance will afect the recognition perfor-
mance. For NIR images, pose variation will cause blurring or noise, and distance variations 
will afect the resolution of the face image; this dataset addresses the challenges associated 
with pose variation and distance variation. The dataset includes 200 subjects, 50 of which 
are used for training and 150 for testing. The dataset includes human facial images with 
diferent indoor scenes as backgrounds. There are no aligned human faces in the dataset. 
The dataset contains three protocols to address the efect of the resolution, pose varia-
tion, and distance variation, respectively. For evaluation, the Rank-1 recognition rate is 
calculated. 

2.2 Methods 

In addition to datasets, the methodology used for NIR-VIS face recognition is also critically 
important. Current methods are mostly based on previous research on traditional VIS face 
recognition, in some cases, combine with other means to adapt to the particularities of NIR-
VIS face recognition. For instance, protocols are typically utilized to alleviate domain gaps, 
low resolution, and over-ftting. Through years of research, there are now diverse methods 
that can be roughly classifed into three categories according to their motivation, (A) Image 
Synthesis-based methods; (B) Subspace Learning-based methods; (C) Invariant Feature-
based methods. This section will review each of these three state-of-the-art methodologies. 

2.2.1 Image Synthesis Based Methods 

Image synthesis-based methods compose VIS face images from NIR face images, and per-
form recognition tasks between generated VIS face images and gallery VIS face images; this 
process thus changes NIR-VIS face recognition to Visible light to visible light (VIS-VIS) 
face recognition. Currently, VIS-VIS face recognition research developed robust systems 
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with extraordinary performance. There are two main ways with which to generate VIS 
images from NIR images; the traditional way involves mapping of NIR image patches with 
their corresponding VIS image patches, then combining these target VIS image patches 
for a full-scale VIS face. Researchers tend to utilize encoder-decoder networks to synthe-
size VIS images, such that NIR images are encoded to features, and the synthesized VIS 
images are outputted with transformed features. Image synthesis-based methods provide 
the means to artifcially generate new images from existing datasets. The synthetic images 
can be diferent from their source while crossing diferent modalities. Because the NIR and 
VIS images are collected in diferent spectra, the images develop discrepancies in contours, 
textures, and color. Therefore, the core of NIR-VIS face recognition is to solve the ran-
domness of modality variation between the NIR and VIS felds. Based on current results, 
image synthesis-based methods can efectively and directly transform NIR images into VIS 
images. Image generated through image synthesis-based methods can be used in alterna-
tive ways. For example, synthetic images can be created and used as training data, thereby 
addressing some existing limitations mentioned in Section II. This subsection will focus on 
advanced image synthesis-based methods and summarizes their main contributions. 

Traditional Method 

Traditional methods in NIR-VIS image synthesis use the implicit local linear mapping 
between the NIR and VIS spectra. The overall network structure consists of two parts. 
In the frst part, researchers apply diferent extractors to extract features – primarily, 
structural information – from both spectral mains. In the second part, the researcher then 
attempts to conduct reliable linear mapping between features, using constraints such as 
the relative position of facial features. Once trained, networks synthesize VIS images by 
mapping NIR images to their corresponding VIS images. 

One representative work is [7], in which the authors used manifold learning to accom-
plish the mapping function. Specifcally, they divided images into patches, extracted patch 
features through Linear Binary Pattern (LBP)[57], and learned the corresponding rela-
tionship among VIS patches and NIR patches through K Nearest Neighbors (kNN)[63]. 
While learning with KNN, the authors used a constant constraint between the distance 
of pairs to ensure that the distance between patches would not change signifcantly after 
mapping to preserve local geometry. Through the learning of these patches, the authors 
obtained a NIR manifold and a VIS manifold which was approximately isometric, and VIS 
images could be combined like the pieces of a puzzle by fnding counterparts in the NIR 
manifold and the VIS manifold. In this work, manifold learning alleviated the problem of 
non-linearity between the NIR and VIS images. The simultaneous learning of two difer-
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ent manifolds reduced image dimensions and provided a mechanism through which linear 
mapping between two diferent spectra could be accomplished. The authors of [31] used 
a similar idea of turning non-linearity into linear mapping but with dictionary learning. 
They built up a joint framework to learn dictionaries in both domains while constraining 
sparse representation of pair-wise images. The sparse representation of K-Singular Value 
Decomposition (k-SVD)[1] helped their algorithm learn dictionaries which needed only 
very sparse information when expressing and accurately reconstructing original images af-
ter mapping.To accurately reconstruct VIS images from NIR images, sparse matrix X was 
shared between dictionaries, as � � � � 2 

YV DVarg min − X 
DN ,DV ,X YN DN (2.1)F 

subject to ∀i, ∥xi∥0 < K, 

where Y s are data, Ds are the dictionaries and K is the optimal sparsity level determined 
by Peak signal-to-noise ratio (PSNR). The authors then generated VIS images yV following 
linear mapping, 

x = arg min ∥yN − DN x∥2 
F , 

x (2.2) 
subject to ∀i, ∥xi∥0 < K 

yV = DV x. (2.3) 

The NIR-VIS CASIA database used in [31] was not strictly pair-wise, which was consistent 
with assumptions made by the authors. Thus, distortion appeared in their visual results. 

CNN-based Method 

Generative networks evolved into the CNNs, the functionality of which surpassed tra-
ditional methods. Due to the small number of training samples, image synthesis-based 
methods that utilize CNNs were pre-trained on VIS dataset to extract features in the NIR 
domain and then synthesize VIS images through extracted features. In [40], the authors 
improved a classical pre-trained CNN, adding a cross-spectral hallucination part. Their 
basic architecture was a CNN which was pre-trained on a VIS dataset. To achieve the 
full potential of the network, the authors developed a cross-spectral hallucination CNN to 
transform NIR images into VIS images. The hallucination network was composed of three 
hourglass structured sub-networks working for Brightness, blue minus luma and red minus 
luma (YCbCr) color space. The hourglass structure mimicked the encoder-decoder scheme, 
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Figure 2.1: General structure of Generative Adversarial Networks. 

where in middle layers had a narrower depth than the frst and last layers. According to 
their designation, the luminance Y channel had the largest sub-network, because luminance 
diference was the major problem in the case of NIR-VIS face recognition. Through this 
hallucination network, mined NIR patch inputs were transformed into the corresponding 
VIS spectrum. In addition to image generation, the original NIR images were blended in 
their generated VIS images, on the luminance Y channel, as a safeguard mechanism to pre-
serve information. Although improvements were made, the approach used by the author 
in [40] had a drawback. For instance, generation in each channel will cause misalignment 
and blend with original NIR images. 

GAN-based Method 

More recently, adversarial learning is a heated topic in the feld of machine learning, es-
pecially since Goodfellow et al. proposed GANs in 2014. As a generative network, GAN 
can synthesize images in an adversarial way to yield state-of-the-art results. GANs are 
composed of two diferent networks – generator network and discriminator network. The 
goal of the generator is to generate passable results with which to fool the discriminator 
without being caught. In contrast, the goal of the discriminator is to discriminate whether 
the results from the generator are fake. The overall structure of GANs is shown in Fig.2.1. 
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And the loss function of GANs is called adversarial loss (Ladv), 

Ladv =Ex∼pdata(x)[log D(x)] (2.4)
+ Ez∼pz x[log(1 − D(G(z)))], 

where D represents discriminator network, G represents generator network and z is the 
random input vector. 

Song et al. frst applied GAN in their work[66] and made adjustments for better 
performance when applied to NIR-VIS face recognition. In addition to generating the global 
features of faces, the authors added an extra GAN to serve as a local path for periocular 
regions, which are indispensable in face recognition. Using this approach, the generated 
VIS face images were vivid enough for VIS face recognition with images in the gallery. 
With pristine VIS images and generated VIS images in discriminative feature learning 
space, the authors used Adversarial Loss (Ladv in Equation 2.4 a Class-wise Variance 
Discrepancy (LCV D in Equation 2.5 ) and Cross-Entropy Loss (Lcls in Equation 2.6) for 
identity recognition to guide the network to learn domain-invariant face representation. 
Loss functions were organized as follows, 

CX 
LCV D = E(∥σ(Fc

V ) − σ(Fc
N )∥), (2.5) 

c=1 

σ(F ) = E((F − E(F ))2), (2.6) X1 
Lcls = L(WFi, yi), (2.7)

|N | + |V | 
i∈{N,V } 

in which σ(∗) is the variance function; Fc
V and Fc

N are cth class’s features; W is the Soft-
max normalization; L is the cross-entropy loss. GAN is a network structure with a very 
high upper limit. To fully explore it, researchers make an extra analysis of the property 
of the target feld. He et al.[19] concentrated on the diference between pose and texture 
diference. Based on these diferences, they established an adversarial learning framework, 
consisting of a pose correction network, texture-inpainting network, and fusion-warping 
network. For a given input image, the pose correction network estimated normalized shape 
information whereas the texture-inpainting network produced pose-invariant facial texture 
representation. The pose correction network worked with an estimation of a dense UV 
correspondence feld (two-dimensional texture coordinates that correspond with the vertex 
information for geometry). The UV feld was a combination of UV facial texture space and 
RGB image space, where UV facial texture space was a contiguous Two dimensional (2D) 
atlas that contained a manifold of Three dimensional (3D) face. The UV feld is mostly 
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used for 3D analysis. The application of the UV feld in NIR-VIS face recognition can 
be benefcial. On the one hand, this approach allows the preservation of complete shape 
information as the UV feld specifes the pixel-wise relationship between facial texture and 
2D map. On the other hand, representations in the UV feld are fattened surfaces of 3D 
faces, which approaches 3D-aware. To train the pose correction network, the authors frst 
obtained mean ground truth UV feld UV of faces by 3D Morphable Model (3DMM)[58] 
and extracted estimated 3D shape information. Next, the authors used a cylindrical un-
wrapping method to map shape information to the UV space[5]. Then, while training the 
generative network, pose correction network Gp was guided within the mean ground truth 
UV , as UV loss (Luv) is defned below. 

Luv = ∥Gp(X) − UV ∥1. (2.8) 

NIR images capture less texture information than VIS images. To alleviate this limitation, 
the texture inpainting network Gt improved performance by encoding face texture into 
identity representations and decoding into the VIS domain. Further, to synthesize images 
that are more realistic and to eliminate intra-class variation, the authors adjusted the loss 
function of Gp discriminator LDt from the original adversarial loss, as follows, 

[− log(1 − Dt(Gt(X))) − log(Dt(X))]. (2.9)LDt = EX∼pdata 

In this formulation, Dt integrated both the synthesized image and the pristine images as 
input. Therefore, Gt should have better performance to deceive Dt. In circumstances in 
which Gp and Gt worked simultaneously, the authors proposed a fusion-warping network to 
combine the output of two generative networks. The fusion-warping network was comprised 
of several convolution layers which were fed with the output of Gp, the output of Dt, and the 
output of the second last layer of Gt (i.e., the facial texture feature map). To supervise the 
fusion warping net, authors employed a multi-scale discriminator Dr which could achieve 
high-resolution face completion. More specifcally, Haar wavelet decomposition was applied 
to input data. To supervise the fusion-warping network, the authors employed a multi-scale 
discriminator Dr which could achieve high-resolution face completion. More specifcally, 
Haar wavelet decomposition was applied to input data. The discriminator supervised Haar 
wavelets[53] in two diferent frequencies, including low frequency (Drl) and high frequency 
(Drh). Thus, the generators can create globally and locally consistent results. The loss of 
the fusion-warping network was 

LGF = E[− log(Drl(ϕrl(F (X)))) − λ log(Drh(ϕrh(F (X))))], (2.10) 

where F (x) is the warped fusion from Gt and Gp; ϕ() is the decomposed wavelet coefcients. 
In their experiment, λ was set to 10, for emphasizing high-frequency information. The fnal 
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output of their framework was matched with ground truth VIS images with perceptual loss 
and pixel-wise L1 loss. In [13], the authors attempted to address misalignment in the NIR-
VIS feld via the development of a novel framework called Pose Aligned Cross-spectral 
Hallucination (PACH). PACH used two-stage procedure, Unsupervised Face Alignment 
(UFA) and Texture Prior Synthesis (TPS). UFA aligned facial shape of NIR images to 
corresponding VIS images in an unsupervised manner. The network of UFA consisted 
of shape encoder Encs, identity encoder Enci, AdaIN residual blocks AdaRes[27], and 
decoder Dec. Encs was the extractor for facial information which used the UV map (MN ) 
of NIR images as input. And Enci extracted identity information that was irrelevant to 
facial information. The AdaIN residual blocks worked as 

z − u(z)
AdaIN(z, γ, β) = γ( ) + β, (2.11)

σ(z) 

where γ and β are identity information extracted by Enci; z is the means of the facial 
information, and u(z) and σ(z) were the channel-wise mean and standard deviation of 
the facial information. Through AdaRes, identity information and facial information were 
disentangled and decoded into image space. In general, UFA worked as a generator that 
aligned the facial shape of NIR images to the corresponding VIS images by changing the 
UV map. The authors adopted pixel-wise L1 loss to constrain the output with input 
and applied another Identity Preserving loss (Lip) to ensure that identity information was 
preserved: 

′ 
′Lip = EI ,IN [∥Dip(IN ) − Dip(IN )∥2], (2.12)
N 

wherein Dip is pre-trained LightCNN to extract identity features from IN and IN 
′ . Like 

other GANs, there was an adversarial loss to improve the visual quality of IN 
′ . UFA aligned 

images in UV map of NIR domain, then TPS replaced UV map with VIS domain with 
a texture prior T which provided specifc guidance related to texture information. In the 
TPS stage, texture prior T was concatenated with the aligned NIR images and was fed 
into a generator to synthesize VIS images. Through this process, the pixel-wise translation 
was supervised by pixel loss. The authors used a Total Variation Regularization to reduce 
artifacts: 

C W,H X X 
′′ ′′ Ltv = |G(IN , T )w+1,h,c − G(IN , T )w,h,c|

c=1 (2.13)
w,h=1 

′′ ′′ + |G(IN , T )w,h+1,c − G(IN , T )w,h,c|, 

where W and H are size of images. Besides these two loss functions, there were still adver-
sarial loss and cross-entropy loss. Hu et al.[23] focused their eforts on misaligned images. 
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In this case, the authors created VIS neutral faces, containing almost no face variations, 
and built up their Dual Face Alignment Learning based on these images. The VIS neutral 
faces were face images that had residual-unrelated discriminative VIS face features. To 
generate and make full use of VIS neutral faces, their approach was composed of three 
parts, including Feature-level Face Alignment (FFA), Image-level Face Alignment (IFA), 
and Cross-domain compact Representation (CdR). The baseline of their network was a 
pre-trained Teacher-Encoder CNNs (TeEn-CNNs) and a Student-Encoder CNNs (StEn-
CNNs) with a decoder that learned knowledge from TeEn-CNNs and gradually gained the 
ability to extract neutral features from non-neutral images in both domains. FFA was 
presented for guiding the learning of VIS neutral facial representations. This FFA could 
efciently help TeEn-CNNs guide StEn-CNNs to learn how to encode domain-invariant 
and residual-independent representations, thus reducing the intra-class variations. Once 
StEn-CNNs learned encoding neutral features correctly, there should be another image-
level alignment between reconstructed face images and VIS neutral images with which IFA 
worked. IFA introduced intensity constraints in both NIR and VIS reconstructed images 
to enforce content consistency. These intensity constraints could maintain low-frequency 
information but can result in over-smoothing. To preserve more detailed information, there 
were other constraints in IFA, called texture consistency constraints, which converted im-
ages into gray-scale and used a Prewitt flter as a prominent part extractor. The fnal 
CdR part focused on identity information in images, in which image perspective, intra-
and inter-modality negative pairs, inter-modality positive pairs, and inter-semantic rela-
tionships were considered. The negative pairs should be stretched to increase semantic 
variation, through cosine similarity, and the positive pairs should be compressed for a 
compact representation. In addition, the inter-semantic relationship was constrained to be 
consistent. These GAN based methods make full use of the functionality of GANs in adver-
sarial learning and compete to produce more realistic images. In GANs, the discriminator 
uses real VIS images to determine whether the generated images are real or not; therefore, 
the pair-wise problem remains. Researchers gradually developed methods with GANs and 
their variations in NIR-VIS face recognition feld. Some studies generated pair-wise images 
for further matching, and others generated VIS images and then exploited a well-developed 
VIS face recognition system. Cycle-GAN was proposed by Zhu et al. in 2017 and is capa-
ble of image-to-image translation in the absence of paired-wise images. This approach is 
suitable for NIR-VIS face recognition, and is optimized by two loss functions, adversarial 
loss (Ladv in Equation 2.4) and cycle-consistency loss (Lcyc) which is defned below: 

Lcyc(G, F ) = Ex (2.14)pdata(x)[∥F (G(x)) − x∥1] + Ey pdata(y)[∥G(F (y)) − y∥1], 

, where G and F were two generators. The general structure is shown in Fig.2.2. 
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Figure 2.2: General structure of Cycle-GANs. The A and B represent samples in two 
domains, respectively. The GeneratorAtoB converts images from domain A to domain B, 
while GeneratorBtoA vice versa. 
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Modifed Cycle-GANs are now becoming mainstream research focus in Image Synthesis-
based methods. Among the literature, recent eforts focused on both applying Cycle-GAN 
to image recognition tasks and furthering the development and robustness of frameworks to 
maximize the potential of this approach. In [72], the authors built up a robust system for 
NIR-VIS face recognition, from face detection and alignment, to NIR-VIS image translation 
than to the fnal translated VIS face image recognition. In the frst stage, the detection 
and alignment were done by Multi-Task Cascaded Convolutional Network (MTCNN). The 
MTCNN consisted of three networks, Proposed network (P-Net), Refning network (R-
Net), and Output network (O-Net). The P-Net generated a list of candidate windows, 
whereas R-Net rejected the wrong candidates and O-Net outputted fve facial landmarks. 
In the second stage, aligned NIR face images were translated to VIS images with the same 
identity using the Cycle-GAN framework. In addition to the loss function in the Cycle-
GAN framework, the authors added a similarity preservation function, constrastive loss 
(Lcon), to constrain the learning of the mapping function, 

Lcon(l, i1, i2) = (1 − l){max(0,m − d)}2 + ld2 , (2.15) 

where is are input vectors selected unsupervised; d is the cosine distance; and l is the 
binary label calculated from input images( i.e. l equaled one if they were positive pairs, 
otherwise l equaled zero. With further study, Dou et al.[11] denoted NIR-VIS translation 
task as an asymmetric translation task where translation between domains was uneven 
complexity. Based on this denotation, the authors designed Asymmetric Cycle-GAN to deal 
with this asymmetric translation. Unlike the original Cycle-GAN, two generators G1 and 
G2 in Asymmetric Cycle-GAN were diferent, a simple U-Net for VIS-to-NIR translation 
(complex to simple) and a complex U-Net for NIR-to-VIS translation (simple to complex). 
VIS-to-NIR translation was a dimension-reduced image translation process and NIR-to-
VIS translation was dimension-ascending image translation respectively. Given that the 
numbers of down-sampling operations in U-Net were modifable, G1 had 5 down-sampling 
convolution layers for NIR-to-VIS translation and G2 had only 3 layers whereas 3 down-
sampling convolution layers were able to extract most shallow information. In addition to 
the use of diferent generative networks, the authors added another pre-trained U-net as 
an edge detection network Ed which extracted edge for an additional edge loss. This edge 
loss (LEdge) was used for retaining necessary edge details in generated VIS images. Wang 
et al.[70] also adopted Cycle-GAN and added an extra pixel consistency loss between the 
generated images and the pristine images to constrain generated images. Pixel consistency 
loss (Lpc) was formed as, 

Lpc(G, F ) = EiV P (iV )[∥G(iV ) − iN ∥1] + EiN P (iN )[∥F (iN ) − iV ∥1]. (2.16) 
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Apart from improving image translation, in [3], the authors used a two-step framework 
that combined image translation and feature learning. The image translation part used 
Cycle-GAN as their baseline. To resolve structural variations between the two domains, a 
Siamese network was added to preserve the contents of images. In the training stage, the 
Siamese network was inputted with generated images and their positive and negative pairs, 
and calculated contrastive loss was. Generated images were more realistic when the loss 
between them and their corresponding positive pairs was smaller, and between negative 
pairs, larger. Therefore, the loss function of the frst part was that the original loss function 
of Cycle-GAN was integrated with contrastive loss as 

Lcon(x1, x2.x3) = Ln (x1, x2) + Lp (x1, x3), (2.17)con con 

Ln (x1, x2) = max(0,m − ∥x1 − x2∥2), (2.18)con 2 

Lp (x1, x3) = ∥x1 − x3∥22. (2.19)con 

where x2 and x3 were positive sample and negative sample respectively, and x1 is the query 
sample. For the feature learning part, the authors adopted pre-trained ResNet-101[43] as 
their backbone network. Besides the original network, an additional angle margin loss 
Langle was added, 

N s(cos(θyi +m))X 
Langle = − 

1 
log 

e P n , (2.20)
s(cos(θyi +m)) + es cos θjN e 

i=1 j=1,j ̸=yi 

where θyi is the ground truth angle; m is the angular margin penalty; and s is the feature 
scale. These researchers demonstrated that Cycle-GAN is an efective framework for the 
NIR-VIS facial recognition. 

Performance Evaluation 

Table2.2.1 summarizes state-of-the-art image synthesis-based methods. Current methods 
can be used to obtain excellent performance on publicly available datasets. Although 
these datasets are relatively small, high rank-1 accuracy shows the high-standard ability 
of these approaches in facial recognition. However, their verifcation rates at 0.1% False 
Accept Rate (FAR) are not as good as their recognition rates, thereby indicating that these 
approaches can lead to incorrect facial recognition [70]. 

The central idea of the traditional way is to develop a highly accurate linear map-
ping between the NIR and VIS domain. For both domains, though diferent in manifold 
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Methods Dataset Rank-1 0.1%FAR Characteristic 
[7] - 97.3% - Manifold learning; local geometry preservation. 
[31] CASIA 78.46% 85.8% Dictionary learning; not strictly paired. 
[40] CASIA NIR-VIS 2.0 96.41% - YCbCr color space; misalignment in appearance. 
[66] CASIA NIR-VIS 2.0 98.15% 97.18% Extra local periocular regions. 

BUAA-Visnir 95.2% 88% 
Oulu-CASIA 95.5% 60.7% 

[19] CASIA NIR-VIS 2.0 99.5% 97.5% 3D-aware of face; emphasizing high-frequency information. 
BUAA-Visnir 99.7% 97.8% 
Oulu-CASIA 99.9% 90.7% 

[13] CASIA NIR-VIS 2.0 98.9% 98.3% Align facial shape between NIR and VIS; Pixel-wise translation. 
BUAA-Visnir 98.6% 93.5% 
Oulu-CASIA 100% 88.2% 

[23] CASIA NIR-VIS 2.0 98.9% 93.8% VIS neutral faces with no face variations; pre-trained generators guidance. 
BUAA-Visnir 100% 94.0%; 
Oulu-CASIA 100% 93.8% 

[72] ONVF 99.8% - Face detection and Alignment. 
[11] - - - Asymmetric translation; edge correction. 
[70] WHU VIS-NIR 99.3% 64.0% Pixel-wise translation. 

Oulu-CASIA 96.5% 61.3% 
[3] CASIA NIR-VIS 2.0 99.40% 98.74% Siamese structure for more contents of image; positive- and negative-pair learning. 

Table 2.2: Performance of Image Synthesis Based Methods. [7] used their dataset which 
was not named, thus there is no name on it. [11] is an image-image translation task, which 
has no recognition evaluation. 

and dictionary, they all tried to deal with the non-linear mapping between NIR and VIS 
images. However, a comparison with recent works illustrates that the images generated 
using the traditional approach is relatively low quality and are often afected by distortion. 
Such a result is reasonable given that similarity between local patches cannot guarantee 
the similarity between global faces. CNN-based methods can be regarded as a transition 
approach, in that they ofer better performance than traditional approaches, but there 
is no extra supervision of image synthesis procedures, and their network structures are 
auto-encoders composed of CNN. GAN-based methods further improved image synthesis 
by adding discriminator networks to ensure that synthesized images are similar to real im-
ages. GAN-based methods are capable of yielding impressive results, however, the related 
literature is dominated by studies that assume that images in the VIS and NIR domains are 
paired. This assumption violates the unpaired nature of most publicly available datasets. 
GAN-based methods are anticipated to yield strong performance in applications that uti-
lize reliable paired datasets. More generally, the fnal process of recognition associated 
with image synthesis-based methods may be characterized by some amount of redundancy 
because features will be extracted from synthesized images and real images. This re-
dundancy increases the complexity and time-intensive nature of these methods. Despite 
these limitations, image synthesis-based methods are worthwhile approaches for contin-
ued development improvements to the robustness of generative networks will further drive 
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performance improvements. 

2.2.2 Subspace Learning Based Methods 

Subspace learning aims to map from a high-dimensional space to a low-dimensional sub-
space while preserving as much useful information as possible. It is critical to map simply 
and efciently to minimize calculations and improve the learning of valuable features. Sev-
eral algorithms have been developed and well-used, such as Linear Discriminant Analysis 
(LDA)[16], PCA and Canonical-Correlation Analysis (CCA)[38]. Subspace learning-based 
methods were the mainstream approach for use in NIR-VIS face recognition before the 
revolution of CNNs. Because NIR and VIS face images lie in diferent modalities, simple 
projections between two spaces result in low-quality images that are afected by distor-
tion, representing a key heterogeneous face recognition problem. To map between the 
two spaces, researchers derived novel solutions involving the projection of images into a 
low-dimensional common subspace, where matching between NIR images and VIS images 
can be done more straightforwardly. This section will provide an introduction to recent 
subspace learning-based methods in NIR-VIS face recognition. 

Traditional Method 

Among subspace learning-based methods, there are ways of projecting into a common 
subspace through dimension reduction, in which data reduction and interpretation are 
done simultaneously. Traditionally, researchers preferentially extracted features frst and 
utilized subspace learning methods to project features in diferent domains into one com-
mon subspace. Thereafter, the recognition problem would typically be solved as a general 
eigenvalue problem. 

SinterV = λSintraV. (2.21) 

CCA which explored the relationships between two vectors from the same identity provides 
one mechanism through which to solve this challenge. In [74], Yi et al. reformulated the 
comparison problem between NIR images and VIS images as correlational regression and 
therefore applied LDA for reduction, and CCA for interpretation. The authors made use of 
LDA to transform NIR images and VIS images into feature spaces of lower dimension, which 
were based on intra-class and extra-class scatter matrices of images in each spectrum. Then 
in the second step, CCA was used to fnd two linear projection matrices by maximizing 
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the correlation, 

E[xyT ]
ρ(wX , wY ) = p

E[∥x∥2]E[∥y∥2] 
T 

(2.22) 
wX CXY wY 

= p ,
T TwX CXX wX wY CY Y wY 

where wX and wY are two linear projection matrices; x and y are NIR and VIS images in 
CCA subspace; CX Y , CX X and CY Y are correlation matrices.Finally, the matching score 
was computed as the correlation between NIR and VIS images in the CCA subspace. An-
other alternative for the pre-processing image was identifed using a Diference-of-Gaussian 
(DoG) flter[69]. In [44], the authors used a Lambertian model and adopted DoG fltering 
to normalize the appearance of input face images from both NIR and VIS spectra; this ap-
proach projected images from both spectra into a common space. The DoG flter reduced 
illumination variation in the low-frequency domain, and image noise and aliasing in the 
high-frequency domain, which is computed as, 

D (x, y|σ0, σ1) = (G (x, y, σ0) − G (x, y, σ1)) ∗ I (x, y) , (2.23) 

1 −(x2+y2)/2σ2 
G (x, y, σ) = √ e . (2.24) 

2πσ2 

To treat all appearance normalization in the same space, the authors decided to apply 
Multi-Block Local Binary Pattern (MB-LBP) operator[77], computing average values of 
block sub-regions, to encode local image structures called Local Structure of Normalized 
Appearance (LSNA), while using a histogram of MB-LBP to represent fnal feature set. 
MB-LBP generated an over-complete representation, so the Gentle AdaBoost algorithm[15] 
was required to remove redundancy and to build efective classifers. At the fnal stage, 
R-LDA was proposed to construct a universal subspace for identifying diferent individuals. 
PCA is also a classic and efective method. Klare et al.[37] adopted PCA and built up an 
ensemble classifer for NIR and VIS images on a random subspace. Their random subspace 
method used NIR and VIS features extracted through a Histogram of Oriented Gradients 
(HOG)[49] and uniform LBP[14]. For each iteration, they randomly sampled α feature 
vectors and computed the mean class vector for each subject using both NIR and VIS 
images. The intra-class and inter-class scatter matrices were then constructed. Through 
these scatter, the matrix of eigenvectors V (k) was computed as Equation (19). Then, 
the fnal discriminative projection matrix was generated with a PCA projection matrix. 
Through PCA, mapping was improved with the projection matrix while concentrating on 
the identity information. In [75], Yi et al. used Restricted Boltzmnn Machine (RBM)[54], 
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a generative stochastic neural network, to learn nonlinear relationships between VIS and 
NIR images in the space of Gabor wavelet. Gabor wavelet extracted local features from 
all face points by aligning a face with facial points, then used RBM and PCA to transform 
heterogeneous data into a common subspace from their extracted features. Their proposed 
RBM was multi-modal, with an energy function defned by 

T TE(v̂1, v̂2, h; Θ) = 
1
(v̂1 − a)T (v̂1 − a) + r 

1
(v̂2 − b)T (v̂2 − b) − c T h − v̂1 W1h − v̂2 W2h,

2 2 
(2.25) 

where v̂1 and v̂2 are face images in diferent domains; W1 and W2 are weight matrix for 
domains; a and b are biases of visible and hidden units; and h is the stochastic hidden units. 
According to this energy function, the model learned the shared representations. The 
dimensions of these representations were reduced by PCA and projected into a common 
subspace where similarity was matched by Cosine distance. Dimension reduction is a 
straightforward way with which to fnd a common subspace for the projection. However, 
extracted features are relatively more relevant, and cannot be strictly constrained. These 
features may lack some identity information for matching. 

Current publicly available datasets include probe images which are found in the gallery 
sets, and are referred to as “closed-set datasets”. Analyses by some researchers focused on 
closed-set datasets. Zhu et al. used an assumption that, for each probe image, there existed 
gallery images with unknown labels, and built up their Transductive Heterogeneous Face 
Matching(THFM) through two studies. In the frst study[80], the authors found a com-
mon feature space wherein they could minimize intra-class variation and Maximum Mean 
Discrepancy (MMD)[6] while maximizing inter-class variation. The MMD was formulated 
as X X1 1Gallery P robe MMD(XG, XP ) = ∥ f(xp,i ) − f(xp,j )∥, (2.26)

NG NPp,i p,j 

where f is the linear function of mapping. Due to such a proposal, their fnal objective 
function could be represented as a general eigenvalue problem, 

Sinterw = λ(Sintra + M + ηI)w, (2.27) 

where M = XLXT , X = [XG, XP ], η is a constant for Tikhonov regularization and 
L = [Lij ] with Lij = 1 if both x from gallery, Lij = 1 if both x from probe or

N2 N2 
G P 

Lij = −
NG 

1 
NP 

otherwise.The solution w was the identity vector for the probe set. In the 
second study by Zhu et al.[79], the authors added their THFM to alleviate the domain 
variance in their transductive subspace. The frst part of their method used an approach 
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that was the same as their previous work and focused on minimizing intra-class variance, 
maximizing inter-class variance, and adding MMD penalization. In the second part, the 
unifed kernel learning was adopted in THFM learned a low dimensional feature space. 
According to the empirical kernel map K, their object function could be formulated as, 

KS̃ 
interKω = λ(K(S̃ 

intra + βM + γL)K + αI)ω, (2.28) 

where K can be decomposed K = (KK(−1/2))(K(−1/2)K). In [41], the authors introduced 
the Multi-view Smooth Discriminant Analysis (MSDA), fnding projection matrices to a 
common space that could be seen as a linear transformation. In the feature extraction 
stage, the authors combined features extracted from multiple methods, HOG, Long-Term 
Potentiation (LTP)[51] and Scale-Invariant Feature Transform (SIFT))[24]. In the next 
stage, MSDA sent combined features through Laplacian smoothing[30], specifcally, the 
Discretized Laplacian smoothing method which smoothed the basis vectors of face data 
from diferent views. After calculating intra-class and between-class scatter matrices, us-
ing the same approach was done for most subspace learning-based methods, the objective 
function of MSDA could be reformulated as generalized eigenvalue decomposition. Bhat-
tacharya et al.[4] adopted a hash-encoding-based descriptor, Linear Cross-modal Hash 
Encoding (LCHMHE), to deal with the domain gap. The frst part is Logarithmic Pixel 
Diference Vector (LPDV), in which they compared the central pixel to neighboring pixels 
without thresholding. LPDV eliminated the luminance part but left the refected diference, 
as follows, 

Ĩ  
i(x, y) − Ĩ  

c(x, y) ≈ log2[Gi(x, y) − log2[Gc(x, y)]], (2.29) 

where i and c represent neighboring and central pixels. After the window slid through the 
image, there was a Logarithmic pixel diference matrix (LPDM) for each image in both 
domains. The authors also applied an Intra-similarity Preservation method to preserve 
the neighboring relationship after mapping into a common subspace; using this method, 
they used k-means clustering to generate 256 centroids for approximating 256 most rep-
resentative data points in the LPDV, in which they used k-means clustering method to 
generate 256 centroids for approximating 256 most representative data points in LPDV. 
Then, in the third stage, Inter-similarity Preservation, the authors projected LPDM into 
a common Hamming space where similar identities should display the same binary codes. 
The transformation was formulated as, 

∥Z(1)W (1) − Z(2)W (2)∥2min F 
W (1),W (2) 

(2.30) 
W (1) W (2)subject toW (1)

T 
= I,W (2)

T 
= I, 

where Zs are LPDM and W s are transformation matrix, hash functions. The such formu-
lation was essentially an eigenvalue problem. Then, the mapped matrix Y was calculated 
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through 
Y (i) = tr(Z(i)W (i)). (2.31) 
(i)Through Y and the mean vector u , Y was encoded into binary codes as ( 
(i) (i) (i)
b = 1 ify ≥ ujl jl l (2.32)(i) (i) (i)
b = 0 ify ≤ u .jl jl l 

In this way, all images could be projected into a common space in the form of an 8-bit 
string. Ultimately, the authors performed the matching function using chi-sq distance and 
achieved excellent results. The success of this study demonstrated that the transduction 
assumption is tenable in the close-set datasets. Despite the practicality of this approach, 
the transduction assumption may cause negative efects; namely, for a public system, there 
will always be individuals whose identities are unknown. These methods could match the 
incorrect identities of these individuals 

CNN-based Method 

Subspace learning-based methods are becoming less popular than they once were, but 
recent initiatives improve these methods by combining them with CNNs. CNNs work as 
powerful feature extractors, thus allowing the extracted features to be projected into a 
common subspace at a low cost. CNNs are typically used in research environments to 
facilitate the extraction of high-level or low-level features and to project these features 
into a common subspace. Saxena et al.[65] used metric learning to align domains, such 
that they employed a CNN model to separate projection matrices to project NIR and 
VIS images into a common subspace. Their work was founded on the assumption that 
domain variance could be treated as one of the nuisance factors in heterogeneous face 
recognition. Thus, they utilized Logistic Discriminant based Metric Learning (LDML) to 
learn Mahalanobis matrices from pairwise supervision. Their pre-trained CNN was fne-
tuned on inter-intra domain pairs to enable learning of the shared projection matrices. In 
instances in which case matrices were obtained, images in both domains were projected 
into a common subspace where the domain diference was reduced as much as possible. In 
[20], the authors explored a low-dimensional subspace while using Wasserstein distance to 
measure the distance between NIR and VIS distributions. To remove spectrum information, 
they developed three orthogonal mapping matrices, � � � � 

fshared WXifi = = (i ∈ {N, V })
funique PiXi (2.33) 

P T W = 0(i ∈ {N, V })i 
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, where WXi is the unique feature that contained mostly spectrum information and PiXi 

is the shared identity feature. Assuming that NIR and VIS images followed Gaussian 
distribution in the mapped space, Wasserstein distance[2] measured distance between NIR 
and VIS distribution: 

W2(X.Y )2 = 
1
[∥mN − mV ∥22 + ∥σN − σV ∥22], (2.34)
2 vuut 

n 

n 
i=0 

X1 2 − m2 
N ,σN = (2.35)xi 

vuut 
nX 

n 
i=0 

where X and Y follow Gaussian distribution; mN and mV are means of X and Y .The 
Siamese structure is an advanced methodology to map the input to the new space, forming 
a representation of the input in the new space, during feature extraction through CNNs. 
In [62][61], Reale et al. trained Googlenet[67] on VIS dataset and optimized the trained 
network to extract coupled features from VIS and NIR images. Training on a large VIS 
dataset could help CNN extract facial features while dealing with both VIS and NIR images 
in the latter stage. For heterogeneous face recognition, the network was adjusted to ft 
data from diferent domains. Firstly, the authors reduced the number of parameters in the 
network to alleviate issues related to over-ftting while training NIR images. They removed 
a fully- connected soft-max classifer(FC layer). Secondly, they coupled two networks by 
creating a Siamese network, shown in Fig.2.3. The coupled networks were trained on 
a NIR-VIS dataset simultaneously, but without sharing weights. The authors used two 
contrastive losses as their loss function: 

1 
2 − m2 

V ,σN (2.36)= yi 

�
� 

∥x − y∥1 iflx = lyLl1(x, y) = 
max(0, (p − ∥x − y∥1)) otherwise, 

(2.37)
∥x − y∥2 iflx2 = lyLl2(x, y) = 

max(0, (p − ∥x − y∥22)) otherwise. 

where x and y are diferent feature vectors.CNNs in Siamese structures can be diferent; 
in structures where two networks are not sharing parameters, the structure is called semi-
Siamese. Du et al.[12] utilized a Semi-Siamese Training network (SST) for NIR-VIS face 
recognition and included an additional constraint that face images were synthesized with 
masks on their faces. They adopted PR-Net to accomplish the mask synthesis approach. 
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Figure 2.3: Siamese network structure of [61]: VisNet and NIRNet shared parameters 
which initialized from the pre-trained network. 

They frst segmented facial masks from mask VIS images and the UV texture map TM . 
Second, they combined the mask template, TM , into the UV texture map, TI , of the non-

ˆmasked face image, TI , in which corresponding regions of the face masks were removed. 
Finally, face images were recovered with TMI and UV position map PI that were extracted 
from the original non-masked face image. Once the authors obtained masked face images, 
they trained their semi-siamese network with the input of positive pairs of heterogeneous 
faces, masked NIR faces and the original VIS faces. This semi-siamese network consisted of 
two sub-network, a probe network, and a gallery network, which was both pre-trained on 
VIS dataset. Probe-net ϕp embedded features of probe images and Gallery-net ϕg updated 
their proposed prototype queues. There were two prototype queues, including one for NIR 
faces and VIS faces. NIR prototype queue was used for computing training loss with probe 
network’s output features of NIR images, whereas VIS prototype queue computed training 
loss of VIS features from a gallery network. The training loss was a reformulated softmax 
loss, 

sϕp(IN )ϕg (IV )e 
L(IN , IV ) = − log P , (2.38)

nsϕp(IN )ϕg (IV ) + sϕp(IN )fj
V 

e ej=1 
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Figure 2.4: Trivet network structure of [47]: three inputs were sent into the same feature 
space; through learning, positive samples were closer to each other and negative sample 
got further. 

where fV
j is the jth feature of VIS prototype queue. While minimizing the loss, face 

N 

representation was able to be spread in feature space where the same identity from both 
domains could be closer. In [47], the authors not only utilized pre-trained CNNs but also 
took coupled three networks into a trivet architecture to map three inputs into a single 
feature space for better learning; this network structure is shown in Fig.2.4. Their idea 
was based on the triplet loss, 

X 
[∥f(x ai ) − f(xp

i )∥22 − ∥f(x ai 
n
i )∥22 + α]+, (2.39)Ltrip = ) − f(x 

i 

where xa p nis the anchor; x is the positive example; and x is the negative example. The 
loss function prompted the network to focus on individual distinction where domain-variant 
features were eliminated as much as possible. Their triplet loss was along with an example 
selection strategy called Hard NIR-VIS Triplets Selection. For a NIR image (anchor), hard 
positive samples were VIS images with the same identity but a lower score; hard negative 
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Methods Dataset Rank-1 0.1%FAR Characteristic 
[74] - - 93.1% LDA reduction; CCA subspace; linear correlation maximization. 
[44] - - 67.5% Reduction of illumination variation; MB-LBP subspace. 
[37] - - 93.45% PCA subspace. 
[75] CASIA NIR-VIS 2.0 86.18% 81.29% Subspace of Gabor wavelet 
[80] HFB 90.0% - Transductive subspace; MMD penalization. 
[79] HFB 99.28% 98.42% Transductive subspace; kernel learning. 
[41] HFB 77.5% - MSDA subspace. 
[4] CASIA NIR-VIS 2.0 98.5% 99.7% Refected diference; Hamming subspace. 
[65] CASIA NIR-VIS 85.9% - Metric learning. 
[20] CASIA NIR-VIS 2.0 98.7% 98.4% Subspace of Wasserstein distance. 

Oulu-CASIA 98.0% 54.6% 
BUAA-Visnir 97.4% 91.9% 

[62] CASIA NIR-VIS 2.0 87.1% 74.5% Siamese structure. 
[61] CASIA NIR-VIS 2.0 92.6% - Siamese structure. 
[12] CASIA NIR-VIS 2.0 98.6% 98.58% Semi-Siamese structure; 3D aware. 

Oulu-CASIA 91.3% 83.0% 
BUAA-Visnir 98.4% 70.6% 

[47] CASIA NIR-VIS 2.0 95.74% 91.03% Triplet structure. 

Table 2.3: Performance of Subspace Learning Based Methods. [74], [44], [37] used their 
dataset which was not public, thus there is no name on it. [80][79], [41] used the HFB 
dataset which is one of the former versions of the CASIA NIR-VIS 2.0 dataset with much 
fewer images. 

samples were VIS images with diferent identities but higher scores. Such a strategy was 
insurance for networks that paid more attention to hard-distinguished features. Further, 
the authors abandoned the commonly-used sigmoid or ReLU activation function and in-
stead, chose Max-Feature-Map (MFM)[73], an ordinal activation function, which extracted 
the maximum of candidate nodes in two corresponding feature maps. The advantage of 
such replacement included: 1) MFM lightened the whole network but also selected com-
pact and remarkable features; 2)MFM could reduce the number of parameters which was 
useful in small-scaled NIR-VIS training datasets; 3) MFM improved the running speed of 
the network. CNN-based methods are a combination of subspace learning-based methods 
and invariant featured-based methods and were demonstrated to provide state-of-the-art 
results. CNNs can extract semantic information from images, which work as invariant 
feature-based methods and, when used in conjunction with other modifcations like MFM 
and MMD to further discriminate the feature subspaces, performance can be improved. 
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Performance Evaluation 

Table2.2.2 provides a performance summary of the previously mentioned subspace learning-
based methods. CASIA NIR-VIS 2.0 is the current largest dataset. Methods used over 
previous decades, such as that employed in[75], have recognition rates higher than 80%, 
which represent the best results in that period. And subspace learning-based methods 
now can perform extremely impressive results. The best results come from methods that 
combine invariant feature-based methods and subspace learning-based methods. However, 
these results cannot reach the same level as state-of-the-art image synthesis-based methods, 
both in terms of recognition rate and verifcation rate. 

Subspace learning-based methods have provided reasonable performance before the 
2010s. Using subspace learning methods, matching and mapping between identities can 
be performed at a much more reasonable cost relative to other methods. However, the 
extracted features are generally low-level and contain mostly structural information. In 
NIR-VIS face recognition, faces in diferent domains are characterized by exhibiting difer-
ent contours and textures; structure information is thus not defnitive, therefore indicating 
the key limitation which prevents the more robust performance of these methods. After ap-
plying CNN, subspace learning-based methods are combinations of subspace learning and 
invariant feature extraction, such that the CNNs extract semantic information from im-
ages while subspace learning-based methods learn the relationships among these high-level 
features. Up to now, these new methods yield state-of-the-art performance. 

2.2.3 Invariant Feature-Based Methods 

Some studies used an assumption that NIR and VIS images should have shared common 
features which can be regarded as identity information. Based on this assumption, dif-
ferent types of methods were proposed for extracting these shared features, referred to as 
modality-invariant features. Therefore, invariant feature-based methods are used to allevi-
ate the sensing gap problem in NIR-VIS face recognition by extracting modality-invariant 
features for direct matching. Users must be cautious in the use of these approaches to 
mitigate the loss of too much information. 

Traditional Method 

early application of invariant feature-based methods to NIR-VIS face recognition, invari-
ant feature-based methods could rarely compete with subspace learning-based methods, 
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because of a lack of powerful extractors. Some methods have structures that are quite 
similar to subspace learning-based methods but without a common subspace. In [10], the 
authors proposed that HOG was an ideal way to match VIS and NIR face images; HOG 
measured the edge orientation information of images and, in the context of NIR-VIS face 
recognition, the edge orientation changed to a very minor extent between NIR and VIS 
images. In their approach, the authors fxed m × m key points on an image by specifying 
step-size to cell-size ratio along both height and width, then extracted the magnitude and 
gradient from these key points. For every key point, extracted HOG was stacked and the 
fnal feature descriptor of the image was generated at a size of m × m × d. Through this 
fxed key points-based approach, the facial shape as an invariant feature was extracted and 
subjected to PCA for dimension reduction, because the dimension m × m × d could be 
extremely large. Finally, matching between probe images and gallery images was done by 
using cosine distance. Without a common subspace, the extracted features were mostly 
structural features which still vary considerably in diferent spectra. Therefore, such meth-
ods can yield the best results. 

CNN-based Method 

These approaches were demonstrated to function as ideal feature extractors and can ex-
tract very high-level semantic features, yielding phenomenal results for facial recognition. 
Modifcations to CNNs have delivered an impressive performance on VIS face recognition 
and enabled fne-tuning in NIR-VIS face recognition. Salim et al.[64] modifed ResNet for 
feature extraction, frst by using HOG for preprocessing images. The authors then mod-
ifed ResNet-34, such that in each convolution layer, the dimensions halved and yielded 
fnal average pooling with dimensions of the fully connected layer of 128 rather than 1000. 
Such modifcations were suitable for NIR-VIS dataset while making the whole network less 
complicated and less prone to over-ftting. Because of the 128-dimensional features, the 
authors chose to use Support Vector Machine[8] with Radial Basis Function as a kernel. 
The authors used the revised method to apply NIR-VIS face recognition in practical case 
studies. Even in NIR images capturing, illumination can afect output; thus, the authors 
divided images in both domains into three sets based on strong illumination, weak illu-
mination, and dark illumination. NIR images in the testing stage were barely afected by 
illumination, but the illumination nation of VIS images in the training stage could dra-
matically infuence performance; the lighting condition of VIS images was improved under 
strong illumination rather than weak or dark. Miyamoto et al.[55] represented their Joint 
Feature Distribution Alignment Learning (JFDAL), consisting of Cross-domain feature dis-
tribution alignment Learning (CFDAL) and Source-domain feature distribution alignment 
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learning (SFDAL). CFDAL was used to reduce the distance between feature distributions 
in diferent domains. In CFDAL, the authors utilized LResNet50E[9] as their baseline and 
fne-tuned on the NIR-VIS dataset. There were two loss functions in CFDAL, including 
a softmax loss (which was used as a face classifcation loss function) and their proposed 
Ldom which measured distance between distributions, as below X1 

Ldom = ∥µN
i − µV

i ∥, (2.40)
M 

i X1 
µ id = 

|Bd| 
F (Id

i , Θ), (2.41) 
Ii 
d∈Bd 

where Bd is the NIR or VIS domain subset. And SFDAL was proposed for keeping VIS 
distributions from their original points. They used pre-trained LResNet50E with fxed 
parameters. This pre-trained network worked as guidance of the training model, therefore 
the distribution of VIS features would not be changed too much during training. To 
reduce domain variance and retain VIS feature distribution simultaneously, the authors 
jointly applied CFDAL and SFDAL by keeping the total loss function of their network. In 
[22], the authors proposed their Orthogonal Modality Disentanglement and Representation 
Alignment (OMDRA) network. In this work, they used their proposed Modality-Invariant 
(MI) loss to control both intra-class cross-domain constraint and inter-class cross-domain 
constraint, which formed as 

X X1 
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c 
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where m is the mean vector in each domain; ζ represents variance of each class in each 
domain; and c is the number of classes. MI loss helped the network learn domain-
independent and identity-discriminative representations. The authors presented their Or-
thogonal modality disentanglement (OMD) to separate modality-invariant features in their 
network. The high-level hybrid facial feature layer consisted of two parts, the identity-
related layer, and the modality-related layer. These two layers decomposed features 

38 



through two orthogonal matrices and extracted identity features yI and modality features 
yM . The overall loss function in OMD could be expressed as: 

{XN,V } n 
M M Vp∥2 N ∥2lOMD(y ; Θ,W M ) =

1 Xp 

I(lM = p)∥y − m 2 + 
1
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M i j i j

+ µ ∥ ∥2 + µij ∥ ∥2 
ij F F∥W M ∥∥W M ∥ ∥W I ∥∥W M ∥i j i ji=1 j=i+1 i=1 j=1 

(2.43) 

where µ is Lagrange multiplier; W is the mapping matrix.; and m is the mean vector. They 
applied their Deep Representation Alignment (DRA) to eliminate residual variation among 
images, which was high-level representation alignment, reduced within-class variation, and 
increase between-class variation. These CNN-based means yielded signifcant improvement 
to NIR-VIS face recognition, such that diferent loss functions could be used to improve 
network performance for NIR-VIS face recognition In addition, pre-training and fne-tuning 
were demonstrated to mitigate the problem of over-ftting from small NIR-VIS face datasets 
while learning comprehensive information. 

Besides fne-tuning pre-trained networks and the formulation of diferent loss functions, 
other post-processing methods can be applied to improve matching accuracy. Peng et al.[59] 
adopted the Re-ranking methodology[45] in their NIR-VIS face recognition network, which 
further improved matching accuracy. The feature extraction part of the network comprised 
two relatively simple patch-level CNNs, including one for NIR images and the other for 
VIS images. The authors’ main contribution derived from their local linear re-ranking 
algorithm, which consisted of a KNN selection, locally linear Jaccard distance[71], and top 
neighbors enhancement. The re-ranking was added behind the initial face recognition such 
that the re-ranking was only performed over a small proportion of fulsome galleries. The 
authors frst selected K Nearest Neighbors based on the assumption that probe images 
had more neighbors in the ranking list with true targets than false ones. Once nearest 
neighbors were determined, the authors measured neighborhood similarity through locally 
linear Jaccard distance: PM min(wn,.m, wv,m)

dj (yn, xv) = 1 − m=1 , (2.44)
max(wn,.m, wv,m) PK 

m=1 R(k, m) wn,k = PK PK , (2.45) 
R(i, j)i=1 j=1 
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where R is the Euclidean distance matrix between yn and its KNN, and wn,k is the di-
mensional weight vector. The Jaccard distance was used to identify the top T neighbors, 
which were subjected to an enhancement strategy by adding weight to yield generalized 
averages of these new neighbors. The weight would penalize all false positive samples in T 
new neighbors. In [56], the authors not only applied re-ranking but also utilized dictionary 
learning in their work, where they extracted invariant features from images through two 
orthogonal dictionaries and tested them with their proposed re-ranking approach. In their 
network, they extracted domain invariant features by learning domain-specifc orthogonal 
dictionaries separately. The optimization function of their dictionaries was 

min ∥X − [Ax, Dx]Λ∥22 + α∥Λ∥20
Dx,Λ (2.46) 

s.t.Dx
T Dx = Im, A

T
x Dx = 0. 

¯ ¯Dictionary Dx has two sub-dictionary Dx and Ax, Dx = [Ax, Dx], where Dx is the learned 
atoms from input with size m and Ax controls the number of atoms. And Λ in this function 
represented the sparse vector. Because of training separately, the authors adopted cluster 
CCA to learn a common space and Bipartite Graph Matching to learn the correspondence 
of atoms between dictionaries. The objective function of bipartite graph matching was 
calculated as X 

H(ϕ) = C(dy
i , dx

ϕ(i)), (2.47) 
i 

where ϕ is to permute atoms for one-to-one correspondence.Two permuted dictionaries, 
Dx

c and Dy
c were generated by applying permutations to dictionaries; these dictionaries had 

one-to-one correspondence between columns. To further reduce domain shift, the authors 
formulated another mapping function on Dx

c 

T̂  = arg min ∥Dx
c T − Dy

c ∥22 , (2.48) 
T 

ˆ ˆwhere T is the mapping function. Finally, the optimum value T was derived as T = 
DcT Dc DcT Dc , and the dictionary in x-domain was aligned to Dc,a = Dc .The two aligned x y x x x y 

dictionaries could be used to create rank lists for face recognition. The authors proposed 
a re-ranking algorithm while dealing with rank lists from their dictionary algorithm and 
CBFD[50] which was another face recognition network. They frst divided the gallery data 
into two rank lists into three sets – strongly similar, strongly neutral, and strongly dissimilar 
- based on the appearance of the gallery. If the gallery was in the top k elements of both 
rank lists, it was denoted as strongly similar, and if it was in the last k of both rank lists, it 
was denoted as strongly dissimilar. The remaining intersection elements would be divided 
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Methods Dataset Rank-1 0.1%FAR Characteristic 
[10] CASIA NIR-VIS 2.0 73.3% - Dimension reduction. 
[64] Oulu-CASIA 95.56% - Dimension reduction of average pooling. 
[55] Oulu-CASIA - 98.94% Joint learning. 
[22] CASIA NIR-VIS 2.0 99.4% 97.8% Orthogonal disentanglement; high-level representation alignment. 

Oulu-CASIA 98.5% 81.7% 
BUAA-Visnir 99.6% 99.3% 

[59] CASIA NIR-VIS 2.0 98.7% 96.5% Re-ranking methodology; top neighbors enhancement. 
Oulu-CASIA 98.9% 61.7% 

[56] CASIA NIR-VIS 2.0 68.3% - Re-ranking methodology; dictionary learning. 
[65] CASIA NIR-VIS 85.9% - Metric learning. 
[20] CASIA NIR-VIS 2.0 98.7% 98.4% Subspace of Wasserstein distance. 

Oulu-CASIA 98.0% 54.6% 
BUAA-Visnir 97.4% 91.9% 

[62] CASIA NIR-VIS 2.0 87.1% 74.5% Siamese structure. 
[61] CASIA NIR-VIS 2.0 92.6% - Siamese structure. 
[12] CASIA NIR-VIS 2.0 98.6% 98.58% Semi-Siamese structure; 3D aware. 

Oulu-CASIA 91.3% 83.0% 
BUAA-Visnir 98.4% 70.6% 

[47] CASIA NIR-VIS 2.0 95.74% 91.03% Triplet structure. 

Table 2.4: Performance of Invariant Feature-Based Methods. In this table, [65],[20], [61], 
[12] and [47] were methods that combine invariant feature-based methods and subspace 
learning-based methods. 

into a strongly neutral set. After the gallery data were classifed, the authors refned rank 
lists from CBFD by backward re-query with galleries in the strongly similar set, whereas 
galleries in the strongly dissimilar and strongly neutral sets worked as penalization to push 
these elements away. In the fnal step, the refned rank list from CBFD was combined with 
rank lists from the proposed dictionary algorithm to determine the fnal distance score. 
These re-ranking-based methods improved the verifcation rates of their algorithms and 
showed that NIR-VIS face recognition has great potential when used in conjunction with 
other state-of-the-art methodologies. 

Performance Evaluation 

Comparison with state-of-the-art performances in image synthesis-based methods, such as 
those used in[59], [65],[20],[62], [61] and [12], achieved similar rank-1 recognition rates and 
even higher verifcation rates. Further, these methods are also capable of running faster 
than image synthesis-based methods. In future studies, more state-of-the-art networks 
and methods can be applied in invariant feature-based methods to build more robust and 
accurate systems. 
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The performance of invariant feature-based methods improved greatly when used in 
conjunction with CNNs, and the resulting networks were capable of extracting more se-
mantic features with key identity information. In comparison with state-of-the-art image 
synthesis-based methods, these invariant feature-based methods are more efcient. An-
other beneft of invariant feature-based methods is that they accommodate the integration 
of other post-processing methods, such as re-ranking, providing a more robust system 
overall. 

2.2.4 Summary 

Currently, state-of-the-art methods have already achieved high accuracy, where the highest 
is 99.40%. Such accuracy reaches the same level as traditional face recognition systems. 
However, with such small-size datasets, these performances cannot ensure practical results. 
To be a matter of fact, there are still shortcomings in current methods. 

Most image synthesis-based methods paid lots of attention to facial features, like 
edges[11], identity[13]. They proposed diferent network architectures and diferent loss 
functions, for getting better results. However, rare researchers tried to optimize the col-
orization part of synthesis images, not even mention optimizing both colorization and facial 
appearance. One of the most signifcant diferences between NIR and VIS images is their 
diferent color spectrum. Generators can learn how to color the NIR images, but it is 
not sufcient. While generating face images, networks should learn to synthesize face im-
ages with true identities and correct color. What is more, in [40], the authors considered 
the unique imaging NIR system. They blend their synthesized images with original VIS 
images. Nonetheless, such a blend caused the misalignment in facial appearance, which 
resulted from the un-paired NIR and VIS images. It is important to take restoring NIR 
imaging scenes into consideration. In NIR images, LEDs put light on faces, therefore faces 
in NIR domain are brighter than normal VIS images. 

For current subspace learning-based methods and invariant feature-based methods, 
their solutions were that reduce the domain variance in some domain-invariant subspaces. 
Subspace learning-based methods map both images into a common subspace which min-
imizes the domain invariance, while invariance feature-based methods extract domain-
invariant features which can be regarded as a domain-invariant subspace. State-of-the-art 
methods are the combination of both two methods, in which CNNs try to extract do-
main invariant features and have subspace learning approaches in the domain-invariant 
subspace[65][20] [61][12][47]. Such methods can work well as long as the extractors ex-
tract domain invariant features strictly. However, in images, domain features and domain-
invariant features are entangled with each other. For example, in [22], the authors used 
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orthogonal dictionaries to disentangle the coupled features and achieved great results. But 
domain features are not strictly orthogonal (i.e., some wrinkles are coupled with NIR do-
main). Hence, it is essential to have a better subspace where features can be disentangled 
well. 
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Chapter 3 

Methodology and Results 

In recent years, various generative models have been proposed, which can now generate 
realistic images. Based on diferent practical scenes, generative models developed diferent 
categories, i.e., style transferring [78], [28]. Researchers paid much attention to the struc-
ture of these generative models to improve their performance. Especially, the Cycle-GAN 
model and the Style-GAN series models have been designed and optimized in diferent 
ways but both work well. 

As mentioned, the current NIR-VIS face dataset inevitably has the unpaired property 
because of diferent domains and imaging devices. Thanks to the Cycle-GAN, it is easy 
to solve such unpaired image-to-image translation problems. In the model, I adapt the 
general structure of the Cycle-GAN. Specifcally, there are two GANs in the model, one for 
generating images in NIR modality (GN ) and another for generating images in VIS modality 
(GV ). Unfortunately, the original Cycle-GAN model does not have the ideal performance 
for generating detailed face images. It is because the Cycle-GAN is not specially designed 
for face images and thus loses some detailed information about faces during the feature 
learning process. Therefore, I replace the generator network and discriminator network 
with Style-GAN 3 but keep the general cyclic structure of Cycle-GAN. The Style-GAN 
series models show state-of-the-art results in image synthesis tasks. As the 3rd generation, 
Style-GAN 3 has the alias-free-translation property which is also suitable for NIR-VIS face 
dataset. Additionally, I develop a style loss which consists of two perceptual losses to 
improve the style transferring part and a net loss (latent loss) to ensure the identity of 
generated images in both domains. In the following two subsections, I frst introduced the 
proposed network architecture, and the second subsection is about the loss function which 
includes the new proposed latent loss. 
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Figure 3.1: Overall network architecture of proposed CS-GAN. 

3.1 Network Structure 

The overall fowchart of the network is shown in Fig. 3.1. The detailed structure of the 
generator network is represented in Fig.3.2 and Fig.3.3. In the Cycle-GAN, the generator 
network consists of an encoder, translate module, and decoder, which is a traditional 
generator structure. However, in the network, I replaced the Cycle-GAN generator with 
a mapping network and synthesis network from Style-GAN. In Fig.3.1, the network GN 

synthesis face images in NIR feld and compares with NIR query images, while networking 
GV working in VIS feld. 

Shown in Fig.3.1, the proposed network consists of two generators (GN ) and (GV ), each 
of which has a diferent synthesis task. GN has learned to synthesizes images in NIR domain 
and GN in VIS domain. Both generators consist of two parts, a mapping network, and 
a synthesis network. Generators frst synthesize images in each domain, which results in 
Syn NIR and Syn V IS. Then, to further strengthen the consistency between synthesized 
images, I design the cyclic structure following Cycle GAN, in which latent code w is sent 
into the synthesis network of the other generator to synthesize the re-created images(i.e., 
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Figure 3.2: An illustration of GeneratorV IS . It shows the detailed weight size in each layer. 
The latent code w controls every layer in the synthesis layer. 
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Figure 3.3: An illustration of GeneratorNIR. It shows the detailed weight size in each 
layer. The latent code w controls every layer in the synthesis layer 
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latent code w from GN will be sent into synthesis network in GV for Rec V IS). In this 
way, I can make sure that correct features are embedded in latent code w. 

As illustrated in Fig.3.3 and Fig.3.2, the two generators have mostly the same ar-
chitectures with a diference in the fnal layers. The input of generators is diferent from 
traditional GANs. In Cycle-GAN, the generator encodes images into feature vectors. Then, 
through the translate module, extracted features are translated from NIR to VIS domain. 
The synthesized VIS images are decoded from these translated feature vectors. In the 
network, I do not simply apply NIR images as input. Instead, the input of the network is 
random latent vectors z with uniform or Gaussian distribution. It is as same as Style-GAN. 
Because of the uniform or Gaussian distribution of latent codes z, the coupling between 
latent codes z is relatively large. For example, while generating face images, hair length, 
and masculinity, according to the distribution of latent codes z, then there will be a close 
relationship between these two characteristics. If the hair is short, the masculinity will 
decrease or increase, but in reality, both short-haired men and long-haired men can have a 
strong masculinity. Also, latent codes z have a limited capacity to control visual features, 
because latent codes z must follow the probability density of the training data. Therefore, 
there is a mapping network from Style-GAN which consists of two fully-connected layers. 
The mapping network provides a learning channel for feature decoupling of latent code 
z. Through this mapping network, latent codes z are mapped into a latent subspace W 
as latent code w. Because of reducing the correlation between features, latent codes w 
do not have to follow the distribution of the training data and features can be changed 
separately. In the synthesis network, the latent codes w are frstly afned into Fourier 
features, which are possible to sample mapping in infnite space. Using Fourier trans-
form in low-dimensional space can make the model better understand the information in 
high-dimensional space. Thus, such Fourier transform will result in better performance 
in translation between images. In NIR-VIS face datasets, face images are unaligned at 
diferent angles. I can regard such an un-alignment as a translation between images. And 
Fourier transform can resolve this problem. The Fourier features are then sent into 14 
synthesis layers. For each layer, input is convoluted through a convolution layer and blend 
with its afned latent code w. The afne process of latent code w is called Weight De-
modulation [35], in which the low-level style feature and the high-level content feature can 
be signifcantly decoupled. The combination of 14 synthesis layers follows the idea of pro-
gressive growing training [32]. Progressive growing training means that the network frst 
trains a small-resolution image, and then gradually transitions to higher-resolution images 
after training step by step. 

I applied this Style-GAN 3 as the baseline network. But in the network GN , I remove 
the to-RGB layers and replace them with a to-grayscale layer, thus the fnal output of GN 
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remains in grayscale. The Style-GAN 3 network was trained on Unaligned Flickr-Faces-HQ 
Dataset (FFHQ-U) [34], an unaligned face dataset, in their work. This pre-trained network 
can precisely synthesize face features in VIS domain. To further improve the performance 
in NIR domain, I apply the pre-trained Style-GAN 3 network and fne-tuned it on the 
CASIA NIR-VIS 2.0 dataset. 

3.2 Cyclic Subspace Learning 

The goal of the proposed method is to synthesize realistic VIS images with the same 
identity as NIR images. Specifcally, it can be regarded as two parts, one for style and 
one for identity. The style means the overall visual domain of synthesis images, which 
in this case is the VIS domain. Identity is the most essential part of face images, which 
contain visual details of faces. Feature reconstruction at high layers (high-dimension) 
tends to preserve image content and structure, while feature reconstruction at low layers 
(low dimension) preserves color, texture, detail shape, etc. Thus, in the proposed model, 
I build up my own cyclic subspace learning method for supervising feature learning in 
multiple dimensions. As mentioned, the latent subspace W controls the style and content 
of synthesized images. Therefore, in each cycle, the latent codes w from both mapping 
networks are sent into the other synthesis network for recreated images, i.e. latent code w 
from GN ’s mapping network will be the input of both generators for synthesis image and 
recreated image. In each cycle, Through this process, by constraining recreated images and 
real images, the synthesis image in the other feld will have the same identity features. To 
have better control over style, I adapt the same way as [29]. In their original paper, they 
demonstrated that the summation of output diference of multiple relu layers could retain 
some common semantic information representing the whole image, and this commonality 
happens to be the artistic style of the image. I follow their idea that for the synthesis 
image and real image, a pre-trained VGG-16 network extracts semantic features from both 
images and calculate the perceptual loss for style control in each domain. By doing so, the 
artistic style in each domain can be well-constrained. 

3.3 Loss Function 

The loss function of the proposed model consists of four diferent types of loss functions, 
logistic loss, cycle-consistency loss, perceptual loss, and the proposed latent loss. 
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3.3.1 Logistic Loss 

The logistic losses for the generators (GN and GV ) and discriminators (DN and DV ) are 
formulated as follows: 

Llogistic = EiN ∼P (iN )(log(exp(DN (GN )) + 1) 

+ log(exp(−DN (iN )) + 1)) 
(3.1)

+ EiV ∼P (iV )(log(exp(DV (GV )) + 1) 

+ log(exp(−DN (iV )) + 1)), 

in which iN and iV are query and gallery images from NIR domain IN and VIS domain 
IN , respectively. In this process, generators (GN and GV ) try to minimize the objective, 
and discriminators (DN and DV ) try to maximize it. 

3.3.2 Cycle-Consistency Loss 

The cycle-consistency loss is formulated as follows: 

Lcyc = EiN ∼P (iN )(∥GN (w2) − iN ∥) 
(3.2)

+ EiV ∼P (iV )(∥GV (w1) − iV ∥) 

where w1 and w2 are latent codes w from generators (GN and GV ) respectively. The 
objective is to make sure that generated images and real images are as same as possible. 

3.3.3 Style Loss 

Following [29], I apply perceptual loss in the model to have further control of generated 
styles. In the perceptual loss, there is a comparison between the feature obtained by 
convolution of the real image (pre-trained vgg-16) and the feature obtained by convolution 
of the synthesized image, making the high-level information close. The style loss is consisted 
of perceptual loss in each domain and is formulated as follows: 

Lstyle = EiN ∼P (iN )(Lperceptual(GN , iN )) 
(3.3)

+ EiV ∼P (iV )(Lperceptual(GV , iV )), 

Lperceptual(I1, I2) = MSErelu1 1 (i1, i2) + MSErelu1 2 (i1, i2) (3.4)
+ MSErelu3 2 (i1, i2) + MSErelu4 2 (i1, i2), 
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MSE(X, Y ) = (x − y)2 , (3.5) 

where MSE means mean squared error; relu1 1, relu1 2, relu3 2 and relu4 2 represent output 
features of each ReLU layers in the pre-trained VGG-16, respectively. 

3.3.4 Latent Loss 

As shown in Fig.1, I apply a latent loss in the latent subspace W to have further control 
of the synthesis process. The latent loss is formulated as follows: 

w1 w2
Llatent = Ew(∥ − ∥ ∥1), (3.6)

∥w1∥2 ∥w2∥2 

where ∥ · ∥2s the L2 norm. In the latent loss, the L2 normalization of latent codes w 
ensures that such a learning process in the subspace will not violate the alias-free property 
of generators. 

3.3.5 Total Loss 

Therefore, the full objective is formulated as follows: 

L = λ1 ∗ Lcyc + λ2 ∗ Llatent + Lstyle + Llogistic, (3.7) 

where the parameter λ1 and λ2 controls the relative importance of diferent term. 

3.4 Experiment and Analysis 

3.4.1 Dataset 

For pre-trained Style-GAN 3, I used FFHQ-U (unaligned FFHQ), a high-quality human 
face dataset for GAN research. I crop the size of images to 256x256 resolution. There are 
about 70k PNG images with variations in terms of age, ethnicity, and image background. 
For NIR-VIS face recognition research, I train the proposed model on CASIA NIR-VIS 
2.0 Database, the largest public NIR-VIS face dataset. CASIA NIR-VIS 2.0 Database 
was collected in four sessions from 2007 to 2010. There are 725 subjects (each of which 
has a diferent number of corresponding images) in this dataset with wide variations of 
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lighting, expression, pose, and distance, which contains the most practical scenes. For 
each subject, there are 1-22 VIS and 5-50 NIR images, a total of 17,580 images. The 
dataset features two protocols, algorithm development, and performance reporting. In 
the algorithm development, the dataset is divided into a training set and a testing set; the 
testing set consists of VIS gallery images and NIR probe images. In algorithm development, 
parameters can be tuned and fxed via training and testing. In the performance reporting, 
the dataset is divided into ten sub-experiments, in which TAR@FAR=0.1%, and Rank-1 
identifcation rate can be calculated. 

3.4.2 Experiment Settings 

I choose the Style-GAN 3 generator as the baseline generator, which is pre-trained on 
FFHQ-U (unaligned FFHQ). The generator GV has the same architecture as Style-GAN 
3, and the output dimension of the generator is [3, 256, 256]. As for the generator GN , 
the fnal to-RGB layer is changed into a to-grayscale layer, which results in gray-scale 
synthesized images with output dimension [1, 256, 256]. During training, I use Adam [36] 
as the optimizer with a learning rate of 0.00025. The discriminators in both GANs have 
the same architecture, which is an encoder with a residual net structure. To prepare face 
image samples, I crop the images in both VIS and NIR domain to 256x256 resolution with 
shape predictor 68 face landmarks[52]. The hyper-parameterλ1 and λ2 in Eq. 3.7 are set to 
10 and 5 during the training phase. For the face recognition part in VIS domain, I adopt 
a pre-trained VGG-16 for face recognition. 

3.4.3 Results and Analysis 

Visualization 

Compared with state-of-the-art methods, the proposed model has achieved better results, 
where the synthesized images are more realistic and detailed in facial expressions. The 
results and comparison with related methods are shown in Fig.3.4. For other generators 
in Cycle-GAN architecture, there is morphing in images, especially around edges. In the 
proposed models, such a problem has been well alleviated, where the face will not easily 
blend with the background. Additionally, the facial features of the model are very close 
to reality. In related works, the diference between synthesized images and real images 
is implicit, in which synthesized images have blurred facial appearances like wrinkles, 
lighting, etc. The cause of the previous phenomenon lies in the existence of the proposed 
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Figure 3.4: Visualization results of diferent methods. From left to right, the frst low is 
query images in the NIR domain, and the last row is the gallery images in the VIS domain. 
The second row is the results in which VIS images are synthesized from NIR images. From 
the third to sixth rows, there are results from state-of-the-art methods. There are results 
from Cycle-GAN[78], Pixel2Pixel[28], ADFL[66] and CSH[40] 

53 



cyclic subspace learning. Through cyclic subspace learning, features in latent space can 
get their cross-domain connections through learning from both synthesized images in the 
NIR domain and VIS domain. What is more, the color of synthesized images remains 
a huge challenge. Color is the best problem in NIR-VIS image translation feld. With 
simply colorizing images, the color will mostly be close to the situation in dusk hours, 
dark and leaning towards orange. The color of images is gradually improved through the 
development of research methods, but still not realistic enough. What is more, according 
to the method of capturing NIR images, there are LEDs in front of faces, which result in 
brightness on faces. The results show such property exactly, in which facial appearance 
is a little brighter than a normal case but shows correct skin color and detailed textures. 
Such close-to-reality color proves the successful control over style transferring. 

Accuracy Rate and Verifcation Rate 

Table 3.4.3 lists recognition results on the CASIA NIR-VIS 2.0 Database, which shows the 
Rank-1 accuracy and verifcation rate of 0.1% FAR. I compare the NIR-VIS face recognition 
results with state-of-the-art image synthesis-based methods and other deep learning-based 
methods which have great performance in traditional VIS face recognition tasks. In the top 
part, there are 6 image synthesis-based methods. Current image synthesis-based methods 
have already achieved great results. Among compared methods, CSH method[40] shows the 
lowest performance in the Rank-1 accuracy and ADFL method with the lowest TAR@FAR 
= 0.1%, whereas NVVT[3] has the highest accuracy and CFC has the highest verifcation 
rate. The proposed method shows the highest performance compared with the state-of-
the-art method. Compared with NVVT, the Rank-1 accuracy is 0.20% higher. As for 
CFC[19], the verifcation rate is only 0.59% lower. What is more, the comparison between 
the proposed method and traditional deep learning methods shows a great improvement in 
both the accuracy rate and verifcation rate. Such a result indicates that coupling features 
are well disentangled during the synthesis process. 

Ablation Study 

To further analyze the efect of my proposed structure, I analyze the infuence of each 
component on the network by superimposing each objective function (i.e., Cyclic struc-
ture (Lcycle), Lstyle, and Llatent) into the model. According to the results, the following 
conclusions can be drawn. 

Firstly, the baseline network (Style-GAN 3) has rather a great accuracy, which demon-
strates that the baseline network can generate rather good NIR images. However, the 
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Methods Rank-1 0.1%FAR 
CSH[40] 96.41% -
ADFL[66] 98.15% 97.18% 
CFC[19] 99.21% 98.81% 
PACH[13] 98.90% 98.30% 
IFA[23] 98.90% 98.70% 
NVVT[3] 99.40% 98.74% 
VGG-16[46] 55.30% 37.70% 
VGG-19[46] 58.50% 41.35% 
ResNet-50[18] 64.10% 55.60% 
ResNet-101[18] 65.80% 62.10% 
CS-GAN(this work) 99.60% 98.22% 

Table 3.1: The comparison of Rank-1 accuracy (%) and verifcation rate (%) on the CASIA 
NIR-VIS 2.0 database. 

Method Rank-1 0.1%FAR 
Baseline (Style-GAN 3) 88.33% 78.20% 
Baseline+Cyclic structure (Lcycle) 90.30% 89.44% 
Baseline+Cyclic structure (Lcycle)+Lstyle 97.88% 96.93% 
Baseline+Cyclic structure (Lcycle)+Lstyle+Llatent 99.60% 98.22% 

Table 3.2: Ablation study on the CASIA NIR-VIS 2.0 database. 
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verifcation rate is not ideal at only 78.20%. Such a shortcoming suggests that the baseline 
network is still not suitable for NIR-VIS translation task. The situation is well improved 
through embedding the baseline network into a cyclic structure and fne-tuning it on the 
CASIA NIR-VIS 2.0 database. The verifcation rate is signifcantly improved while slightly 
improving the accuracy. This phenomenon indicates that the cyclic structure can help the 
baseline network reduce the sensing gap between NIR and VIS images. 

Secondly, the performance is further improved while adding Lstyle. The style loss con-
sists of two perceptual loss, which guides the network to learn abstract style feature sep-
arately. The style loss in the proposed network indeed improves the accuracy rate and 
verifcation rate to 97.88% and 96.93% which are close to the state-of-the-art methods. 

Finally, adding the Llatent helps the model surpass all other methods on the accuracy 
rate, reaching 99.60%. Such improvement indicates that the proposed latent loss has great 
potential for learning identity features even underlying in diferent domains. Latent loss 
can enhance identity-discriminative representations by mining between-class information, 
between-domain information as well as inter-semantic relationship. 

Therefore, each component in the CS-GAN can improve the performance of NIR-VIS 
face recognition task. And jointly applying them can efectively eliminate the modality-
related and identity-related discrepancies. 
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Chapter 4 

Conclusion and Future Work 

4.1 Conclusion 

With years of development, NIR-VIS face recognition feld has already developed methods 
with great performance, especially image synthesis-based methods. However, these NIR-
VIS face recognition methods have not yet been widely applied in practical scenes. Current 
image synthesis-based images can perform well on the accuracy of current public NIR-VIS 
face datasets. Regarding the size of datasets, such accuracy cannot guarantee practical 
performance. Besides, through visualization results, synthesized images still have severe 
problems which will afect the recognition results, and the problems and reasons can be 
attributed to the following points: (1) Distortion of synthesized images. NIR images and 
VIS images are taken from diferent angles, which makes the images un-paired. Traditional 
image translation methods cannot deal with such misalignment well, which results in the 
distortion of synthesized images. Specifcally, the edges of synthesized faces are a blur and 
easily blended with the background environment; (2) Colorization of synthesized images. 
One of the most conspicuous characteristics of NIR images is that they are all in grayscale. 
Hence, to synthesize realistic face images, it is important to colorize images. Current 
methods have poor performance in the colorization part. Additionally, NIR images are 
collected under illumination from NIR LEDs. Most researchers have not considered such 
property; (3) Details of Synthesized images. Facial appearance consists of numerous facial 
details. However, in NIR images, some of these details will lose. Current synthesized 
images tend to lose these details, which results in a fat facial appearance. To address 
the above problems, this thesis proposes novel methods to improve the performance of the 
image synthesis-based method in NIR-VIS face recognition feld. 
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To begin with, I review current state-of-the-art methods in NIR-VIS face recognition 
feld. I frstly make a detailed analysis of current public NIR-VIS face datasets. Then, 
I evaluate three diferent types of methods in this feld, image synthesis-based methods, 
subspace learning-based methods, and invariant feature-based methods, with their novelty 
and performance. Also, I include the perspective of these methods. 

In addition, I propose the CS-GAN. I frst adapt the general structure from Cycle-GAN 
which uses a cyclic architecture to maintain the consistency between synthesized images 
and ground truth images in the same domain. In the general cyclic architecture, there 
are two diferent generators, GN , and GV , for NIR domain and VIS domain, respectively. 
Secondly, in consideration of details, the generator from Style-GAN 3 is utilized as the 
generator. The Style-GAN 3 is one of the best generative networks in style transferring 
tasks. The generators are pre-trained on the unaligned VIS face datasets. Then, I fne-tune 
them in diferent domains. Noticeably, the structure of GN is modifed, replacing the last 
to-RGB layer with the to-grayscale layer, to ft the characteristic of NIR images. Last but 
not least, I propose latent subspace learning, in which the style and features of synthesized 
images are further controlled. The generators used the latent space W to control the details 
of synthesized images. Therefore, I apply further control over the latent space. For the 
same identity, they shall have a similar latent code w. Besides, perceptual loss is adopted 
for style consistency between synthesized images and real images. 

Finally, there are the experiment settings and results. The model has been trained 
on CASIA NIR-VIS 2.0 dataset. I also compare the results with state-of-the-art image 
synthesis-based methods and methods in related tasks. In the visualization part, I compare 
the VIS synthesized images with other image synthesis-based methods and image-to-image 
translation tasks, in which the model has great improvement over the above-mentioned 
aspects. For accuracy, I list several other image synthesis-based methods and deep learn-
ing methods. The Rank-1 accuracy has achieved 99.60% which is the highest among all 
NIR-VIS face recognition methods. The verifcation rate is also impressive with 98.22% 
TAR@0.1%FAR. 

4.2 Future Work 

While the proposed method proves to solve some existing problems of the NIR-VIS face 
recognition feld and improves the accuracy and visualization results, it still has some 
limitations which can be improved. The following points illustrate my future research: 

• Construct a sufcient public dataset. The NIR-VIS face recognition task is data-
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driven, and existing methods have already achieved excellent results. But public 
NIR-VIS face datasets all have the problem that the size is too small, especially 
compared to VIS face datasets. Current accuracy cannot show the value of the 
practical application. Additionally, current datasets lack diversity. The appearance 
of people is monotonous, in which scenes are not enough and the color of skins is 
mostly yellow. Therefore, if I could construct large and more diverse datasets, the 
model can be more suitable for practical applications. 

• Pre-train the baseline Style-GAN 3 network on a larger VIS dataset. The visualiza-
tion of the model shows great improvement, though there are still faws in synthesized 
images. The iris areas are not close to reality. As shown in the visualization, some of 
the iris areas are blue, which does not match with ground truth VIS images. Besides, 
the background information is a lack in the visualization. Training the baseline net-
work on a larger VIS dataset can help the model to have a better understanding of 
the iris area, and more importantly, can further depict facial details in synthesized 
images. 

• Build up an end-to-end face recognition system. In the methods, the image synthesis 
part and recognition part is separated, which will low down the speed and cost of extra 
computing resource. In deep learning, when using multi-steps and multi-models to 
solve a complex task, an obvious disadvantage is that the training objectives of each 
module are inconsistent. The objective function of a certain module may deviate from 
the macro-objective of the system. In this way, it is difcult for the trained system to 
reach the optimal level. performance; another problem is the accumulation of errors, 
the deviation produced by the previous module may afect the latter module. Thus, 
it is important to build up an end-to-end NIR-VIS face recognition system. 
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