
Improving Data Locality in
Applications through Execution

Delegation

by

Bryant J Curto

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2023

© Bryant J Curto 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

With the slowing or even death of Moore’s Law, computer system architectures are
trending toward more CPU cores. This trend has driven systems researchers to explore
novel ways of utilizing this computational power for improved efficiency and performance.
One such approach is to use this power to help alleviate the memory wall problem through
execution delegation. The memory wall problem describes the issue whereby system per-
formance hits a wall that is dictated by the latency of accessing main memory. Using
execution delegation, the execution of the application on one core is delegated to another
core. The desired result is that the cores of the system are specialized to access mostly
disjoint sets of data. In this way, data locality and, therefore, performance are improved.

The aim of this work is to develop tools and methods for predicting situations in which
execution delegation via user thread migration is useful for improving an application’s data
locality. To this end, a microbenchmarking tool named Accesstest is used to perform a
systematic study of execution delegation via user thread migration. Further, an approach,
which makes use of a working set characterization tool named Accessprof, is developed
to predict the qualitative impact of delegating an execution sequence. This prediction
approach is verified and used to improve the Apache HTTP server’s performance by as
much as 11%.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible.

I would like to express sincere thanks to my supervisor, Dr. Martin Karsten. His
guidance throughout my master’s program has been invaluable. He enabled and encouraged
me to work harder and smarter in search for hidden truths. My time in his lab has been
a great learning experience.

I would like to thank my current and former labmates, Teodor (Alex) Ionita, Peter Cai,
and Gan Wang. Thank you for your support, shared expertise, and the memorable days
we spent together in Waterloo.

I would like to thank Dr. Peter Buhr and the entire C∀ team for their insight, support,
and kindness.

Finally, I would like to thank my wife, family, and friends for celebrating with me
during my successes and supporting me during my failures.

iv

Dedication

This thesis is dedicated to the scientists in my life – my wife, Soo Jung Oh, and mother,
Lynne Ierardi-Curto – for their love, support, and begrudging willingness to participate in
discussions about CPU caches.

v

Table of Contents

List of Figures ix

1 Introduction 1

2 Related Work 4

2.1 Execution Delegation . 4

2.2 Improved Data Locality by Design . 6

3 Background 8

3.1 Caches . 8

3.1.1 Overview . 8

3.1.2 Memory Hierarchy . 9

3.1.3 Cache Access . 12

3.1.4 Cache Coherence . 13

3.2 Concurrency . 16

3.2.1 Overview . 16

3.2.2 Threads . 16

3.3 Execution Delegation . 20

3.3.1 Execution Reorganization . 20

3.3.2 Execution Delegation Approaches 21

vi

4 Session-Loop Pattern 23

4.1 Overview . 23

5 Microbenchmark 27

5.1 Overview . 27

5.2 Design and Implementation . 27

5.2.1 Path Construction . 27

5.2.2 Session Creation . 31

5.2.3 Execution . 31

5.3 Evaluation . 33

5.3.1 Configuration . 33

5.3.2 Results . 34

6 Prediction 42

6.1 Overview . 42

6.2 Approach . 42

6.3 Design & Implementation . 44

6.3.1 Memory Access Sampling . 44

6.3.2 Working Set Characterization . 48

6.3.3 Characterization Accuracy . 49

6.4 Evaluation . 49

6.4.1 Configuration . 49

6.4.2 Prediction . 50

6.5 Validation . 53

7 Conclusion 56

References 58

APPENDICES 63

vii

A Quantitative Performance Prediction of Execution Delegation 64

B Accesstest Usage 66

C Accessprof Usage 68

viii

List of Figures

3.1 Common memory hierarchy. 10

3.2 State diagram of the MESI protocol. 15

3.3 Visualization of the relationship between user threads, kernel threads, and
CPU cores. 17

3.4 Visualization of different threading models. 19

3.5 Instructions without and with execution batching. 20

3.6 Instructions without and with execution delegation. 21

4.1 Visualization of a session loop. 24

4.2 Visualization of a session loop split into two phases. 25

5.1 Example of a circular pointer chasing path. 28

5.2 Example of a buffer containing a pointer chasing path. 29

5.3 Simplified code for traversing pointer chasing path. 32

5.4 Performance of Accesstest for working set sizes around that of L1d cache
and for varying update ratios. 35

5.5 Performance of Accesstest for working set sizes around that of L2 cache and
for varying update ratios. 39

5.6 Performance of Accesstest for working set sizes around that of L3 cache and
for varying update ratios. 41

6.1 Visualization of data line characterizations. 45

6.2 Example phase that is not studied in this work. 48

ix

6.3 Working set characterization of Apache’s session loop split into phases based
on each of the specified system calls. 51

6.4 Performance of Apache when system call is delegated. 53

x

Chapter 1

Introduction

Modern day computer architectures are vastly different from those of five decades ago (or
even one decade ago). Generation after generation, computer architectures have grown
smaller, cheaper, and more powerful. For example, since 1978, processor performance
has grown a tremendous 50,000-fold [22]. Processors can be found in most daily items
ranging from cars to greeting cards. This growth has enabled developers to be less stingy
with hardware resources, with which many have traded performance for productivity. As
of September 2022, productivity-oriented programming languages like Python and Java
outrank more performance-oriented languages like C and C++ in terms of programmer
interest [7].

Much of the growth of processor performance came from an increase in processor tran-
sistor counts. Moore’s Law, stated by Gordon Moore in 1965, predicts that the number
of transistors per chip would double roughly every two years and cost less [32]. Moore’s
Law has remained relevant largely because of Dennard scaling [15], observed by Dennard
et al. in 1974, which states that, as transistors are reduced in size, their power density
stays constant. This means that more, smaller transistors fitting into the same area use
the same amount of power. However, this rapid growth of processor performance appears
to be slowing down or to have recently come to an end.

As of today, transistor counts are off from that predicted by Moore’s Law by a factor of
ten [22]. This is due, in part, to a breakdown in Dennard scaling because of the challenges
encountered when attempting to shrink current transistor sizes any farther [15]. This
has led experts to argue as to whether or not Moore’s Law and Dennard scaling are
dead. Nevertheless, in an attempt to achieve higher performance, focus has shifted to
architectures with multiple energy-efficient CPU cores rather than one power-hungry CPU

1

core. While many systems contain a single processor package of CPU cores, systems with
two or more processor packages (each containing multiple CPU cores) are also common.
In all such scenarios, in order to utilize these cores, developers must divide their programs
into parts such that the parts can be executed by a system’s cores in parallel.

One approach of utilizing this computational power is to use it to alleviate the memory
wall problem [31], a growing pain that arose during the period of rapid growth. This
growing pain causes memory access latency to bottleneck computation speed. It is caused
by the growing disparity between CPU speeds and main memory speeds. Each CPU core
has a cache, in which it stores recently accessed data. Accessing data stored within the
cache is much faster than accessing data stored in main memory.

However, caches are beneficial only when they contain the data being retrieved. Typ-
ically, there are two situations when data is not in the cache: the cache is too small or
multiple cores are operating on the same data. Through specializing CPU cores to perform
certain tasks, both of these issues can be alleviated. One approach for performing this spe-
cialization is called spatial execution reorganization or, more simply, execution delegation.
Numerous studies have been published presenting approaches and systems with which per-
formance is improved through execution delegation. However, there are only a few, rigid
situations in which execution delegation is applied and studied, namely the execution of
critical sections and system calls.

The aim of this work is to develop tools and methods for determining when execution
delegation is beneficial to application performance. To this end, a subclass of applications
fitting the thread-per-session paradigm are studied. A microbenchmarking tool named
Accesstest is developed to study the impact on performance of execution delegation via user
thread migration. A characterization tool named Accessprof and prediction approach is
developed that can be used to qualitatively indicate whether or not an execution sequence is
amenable to execution delegation via thread migration. This prediction approach is applied
to and verified using several system calls performed by an Apache [3] HTTP webserver
instance1.

The remainder of this thesis is organized as follows. Chapter 2 reviews previous re-
search that is related to this work. Chapter 3 describes background information necessary
for understanding this research. Chapter 4 outlines the session-loop pattern: the charac-
teristics of the class of applications that benefit from the results of this research. Chap-
ter 5 overviews the design and implementation of the Accesstest microbenchmarking tool
along with experimental results. Chapter 6 outlines the steps in the execution delegation

1Source code and results data can be found at https://gitlab.uwaterloo.ca/bcurto/accesstest.

2

https://gitlab.uwaterloo.ca/bcurto/accesstest

prediction approach including the Accessprof characterization tool. Finally, the thesis is
concluded in Chapter 7.

3

Chapter 2

Related Work

2.1 Execution Delegation

Execution delegation is a useful software solution for situations where the cost of moving
data to the computation is higher than moving the computation to the data. The function-
ality needed to perform execution delegation has existed in a range of software systems for
many years: actors and SmallTalk [20], active messages [44], autonomous objects [14], and
messengers [19]. Thread migration is one approach for performing execution delegation.
Kogge et al. [28] recently present evidence demonstrating the strength of thread migration
for improving data locality of memory bound applications where computation is dominated
by memory access and movement.

Reif et al. [38] introduce migration-based synchronization. Thread migration is used
to synchronize access to shared resources within a critical section and achieve improved
data locality, and can be used as a replacement for locks. Each shared resource in the
system has a corresponding synchronization core, which is uniquely permitted to access
the shared resource. For a thread to acquire exclusive access of a shared resource, it
migrates to the resource’s corresponding synchronization core. For the thread to release
exclusive access of the shared resource, it migrates back to its original core. Preemption
and implicit migration (e.g., load balancing) are not provided on synchronization cores. A
thread starts or stops executing on a synchronisation core only if it explicitly requests. In
this way, execution of the critical section is delegated to the synchronization core. Data
locality is improved since shared resources remain within the synchronization core’s local
cache. Additionally, by preventing thread preemption on the synchronization core, mutual
exclusion is guaranteed since a core can execute only one thread at a time.

4

Dysart et al. [18] introduce Emu, a system architecture that uses kernel thread migra-
tion, facilitated by hardware, to improve the data locality of data-intensive applications
exhibiting weak-locality, or locality within a large memory region. Within their system,
the global address space is partitioned across nodelets, or disjoint sets of cores. When
a thread attempts to access memory that is not local to the nodelet on which it is cur-
rently scheduled, it is automatically migrated by hardware to the nodelet to which the
memory is local. In effect, threads migrate to the data they are accessing rather than
having that data brought to them. For the applications previously described, data locality
and therefore performance is improved. Kogge [29] and Springer et al. [42] further discuss
applications that benefit from such an architecture.

While there are examples of thread migration being used to perform execution dele-
gation, use of an alternate approach (typically some form of message passing or remote
procedure call) is more common. Soares et al. [41] propose an operating system mechanism
named FlexSC. This mechanism provides exception-less system calls for system intensive
workloads (and especially highly threaded server applications). Using FlexSC, the exe-
cution of a batch of system calls is delegated to a predetermined set of cores. When a
FlexSC-Thread, which is a user thread provided by FlexSC’s M:N user threading library,
wants to perform a system call, it writes the system call number and associated arguments
to a syscall page. The thread then continues executing or blocks until it has received a
result. Once a threshold of system calls have been recorded, all system calls are executed
by a syscall thread sequentially on one of a predetermined set of cores. The result of each
system call is written back to the syscall page, which is later consumed by the requesting
FlexSC-Thread. Through batching and delegating the execution of system calls to spe-
cialized cores, data locality is improved, cache pollution is reduced, and the number of
user-kernel boundary crossings is reduced.

io uring [12] is a Linux kernel system call interface for performing asynchronous IO
operations introduced in Linux kernel version 5.1. io uring is designed with the aim of being
easy to use, extendable, feature rich, efficient, and scalable. It has two single producer,
single consumer queues: a submission queue and a completion queue. The application
enqueues IO requests on the submission queue to be completed by the kernel. At a later
point in time, the application dequeues the result of each request off of the completion
queue. io uring can be used to achieve similar benefits (i.e., reduced user-kernel boundary
crossings and improved data locality) as FlexSC. Using io uring, an application can reduce
the number of user-kernel boundary crossings by batching IO requests. It can also be
configured so that the kernel polls for IO requests, thereby eliminating nearly all user-
kernel boundary crossings. Further, the execution of IO operations is delegated possibly
to specialized cores.

5

Similar to the previously described migration-based synchronization are the works of
Lozi et al. [30], Roghanchi et al. [39], and Srinivasan [43]. In these works, the execution of
critical sections is delegated to a single specialized core. This is implemented using remote
procedure call for the first and message passing for the others. Lozi et al. additionally
design a dynamic profiling tool to determine which critical sections would benefit most
from delegation. The percentage of execution time spent in critical sections for each lock is
computed. The authors show that, if the percentage of execution time of a critical section
for a given lock is over 20%, then their locking technique performs better than a POSIX
lock. Further, if it is over 70%, then their locking technique outperforms all other lock
algorithms known at the time of publication.

Hendler et al. [21] propose flat combining, a technique for synchronizing accesses to a
shared data structure by multiple threads through cooperation. Flat combining is pur-
ported to have better data locality and to be simpler than fine-grained locking and lock-
free mechanisms. In essence, when multiple threads attempt to concurrently operate on a
shared data structure, they delegate the execution of their operations to one of the mod-
ifying threads. In turn, this thread executes each delegated operation and reports each
result back to the requesting thread. The delegatee thread is not typically predetermined
and can change as time passes such that a thread executes a batch of operations before
another takes over the responsibility.

The work presented in this thesis differs from previous work in one key way. Previous
work proposes methods or infrastructures by which predetermined operations of an ap-
plication can be delegated. Some also describe approaches for determining which, if any,
of these predetermined operations would benefit from delegation. The work in this thesis
develops an approach for predicting which execution sequences (i.e., sequences of instruc-
tions that are not necessarily contained within a single operation) of an application would,
if delegated, result in improved application performance. This is accomplished through a
detailed analysis and characterization of the memory locations accessed by the application.

2.2 Improved Data Locality by Design

To improve data locality, execution delegation is unobtrusive when compared to designing
systems from the ground up with locality in mind. Nevertheless, if machines continue to
trend toward higher CPU core counts, systems, data structures, and algorithms must be
designed with data locality in mind.

The following are prominent examples of such whole-system, data-locality-minded re-
designs of the operating system. Baumann et al. [13] develop a novel OS structure, called

6

the multikernel model. A multikernel named Barrelfish is also implemented. In the multik-
ernel model, the machine is treated as a distributed system of CPU cores that communicate
over a network explicitly through message passing (and through shared memory as an opti-
mization). Note that, while the OS is designed to not use shared memory, applications are
not prevented from sharing memory among cores. Replication is used to handle OS state
that is traditionally accessed and modified by all cores of the system. Cores access and
update this shared state as if it were a local replica. Consistency is maintained through
message passing. The multikernel model enables improved data locality in several ways.
The OS traditionally makes use of high performance data structures requiring a minimal
amount of data movement per access. However, the number of cores in a typical machine
and the number of such data structures accessed while performing any given operation
are large enough that message passing is found to be more efficient. Further, by treating
the machine as a network, well-known networking optimizations (such as pipelining and
message batching) are applied to improve data locality. Current trends indicate that core
counts will continue to increase. As a result, so too will the benefits of the above design
choices.

Peter et al. [35] design and build a new OS, named Arrakis, in which the traditional
roles of the OS have been split into the control plane and data plane. In the control plane,
the kernel provides network and disk protection without intervening in every IO operation.
Meanwhile, through the data plane, applications directly access IO devices that (partially
or fully) support virtualization. Each application receives its own network stack and the
cores that are executing an application also process the application’s packets. As a result,
amongst other benefits from this split, data locality is greatly improved in the network
stack through reduced lock contention and cache effects.

There has also been much research into several classes of data structures and algorithms
designed with the cache in mind [9]. One class, referred to as cache-aware, consists of a set
of algorithms and data structures that take the characteristics of the cache (e.g., capacity,
cache line size, associativity, and number of levels) as arguments. Using this information,
the algorithm or data structure better utilizes the cache in order to reduce the number of
cache misses. Another class, referred to as cache-oblivious, similarly attempts to reduce
the number of cache misses. However, these data structures and algorithms require no
knowledge of the cache’s characteristics. An approach for implementing cache-oblivious
algorithms is through recursive divide-and-conquer such that the problem is repeatedly
subdivided into smaller and smaller subproblems. Through subdivision, each subproblem
becomes small enough to take advantage of the cache independent of its characteristics.

7

Chapter 3

Background

3.1 Caches

3.1.1 Overview

In general, a cache is used to store data for the purpose of reducing the cost (e.g., time,
energy) needed to retrieve this data at a later point in time. Modern day CPUs typically
have multiple caches: hardware components physically residing on the processor die used
to temporarily store data residing in main memory for the purpose of reducing the latency
of future accesses. CPU caches (hereafter referred to as simply caches) are typically several
orders of magnitude smaller than main memory. However, their reduced capacity is the key
feature that enables them to reduce data access latency. As a result of their size, caches can
reside physically closer to the CPU cores requesting and using the data. Further, they can
be made from more premium technologies, which has a higher cost per byte, as compared
to main memory.

Caches take advantage of the fact that programs obey the principle of locality [17]. This
principle asserts three things. First, over any interval of time, the distribution of memory
accesses of a program is nonuniform. Second, the frequency with which a program accesses
a memory location changes slowly. Third, memory locations accessed in the immediate
past are highly likely to be correlated with memory locations that will be accessed in the
immediate future. There are two main types of locality: temporal and spatial. Temporal
locality refers to the tendency of a program to reuse data within a small window of time.
Spatial locality refers to the tendency of a program to use data that is stored close to
previously used data in the address space. Caches take advantage of temporal locality by

8

storing recently accessed data. They take advantage of spatial locality by prefetching and
storing data located near previously accessed data in the memory space.

Caches are pivotal to mitigating the effects of the memory wall problem, which was
first described in 1994 [31]. The memory wall problem describes the issue whereby system
performance hits a wall that is dictated by the latency of accessing main memory. One can
think about the memory wall problem through the lens of Amdahl’s law [11]. Fundamen-
tally, it is caused by the disparity in improvements to CPU speeds compared to the speed
of accessing main memory.

Below is the equation for the average time to access memory:

tavg = p× tc + (1− p)× tm

where tc and tm are the cache and main memory access times respectively. p is the prob-
ability of a cache hit, which is when requested data is retrieved from the cache instead
of main memory. As the time to access the cache (tc) approaches 0, the average time to
perform a memory access (tavg) is dominated by the time it takes to access main memory
(tm). With no clear solution to aligning the speeds of the CPU and of accessing main
memory, much work has been put into decreasing the probability of a cache miss (1− p).
A memory access results in a cache miss if the requested data cannot be found in the cache.

Besides caches, other strategies are employed to mitigate the memory wall problem
including out-of-order execution and speculative execution [22]. These strategies typically
entail attempting to perform useful work while waiting for data to be retrieved from mem-
ory.

3.1.2 Memory Hierarchy

Figure 3.1 shows the structure of a common memory hierarchy, which is broken down into
four main parts: the CPU registers, cache hierarchy, main memory, and stable storage.
The first three levels of the memory hierarchy (i.e., the CPU registers, cache hierarchy,
and main memory) are typically volatile, meaning that they retain information only while
powered on. This is in contrast to the fourth level (i.e., non-volatile storage), which retains
information even when powered off.

Registers are located at the top of the memory hierarchy and are the fastest memory
structures in the hierarchy. Each CPU core has its own set of registers and the registers are
directly connected to its core. However, this proximity comes at the cost of size: registers
are small and few in number. Unlike all other parts of the memory hierarchy, registers

9

Processor Die

Core 0 Core 1

Computation Computation

Registers Registers

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

Main Memory

Non-Volatile Storage

Figure 3.1: Common memory hierarchy.

10

are CPU private. This means that the contents of a set of registers can only be modified
by its corresponding CPU core. In most instruction set architectures, registers are split
into two groups: special purpose and general purpose registers. Special purpose registers
store register specific values (e.g., a pointer to the instruction currently being executed).
General purpose registers are used for temporarily storing values during computation: the
inputs and outputs of machine code instructions. During execution, a general purpose
register is reused once the value it stores is no longer needed. However, if such a register is
needed but none are available, a register’s contents is temporarily stored in the executing
process’ memory space (hereafter referred to as simply memory) to be retrieved when
needed. Modifying a value stored in memory often requires reading the value into a register,
modifying the value in the register, and writing the value back to memory. Intel64 and
AMD64 architectures have 16 general purpose registers each 64 bits in size [25, 10].

The cache hierarchy comes after the registers in the memory hierarchy. It typically
contains three separate levels and is designed to mask the memory wall problem. Each
level is referred to as the LN cache where N = 1, 2, 3, The value of N indicates
the level’s distance from computation (i.e., CPU core). Unlike registers, caches are CPU
public. Even though a cache may have only one corresponding CPU core, its contents
can be modified indirectly by other CPU cores through the cache coherence protocol. For
modern processors, the cache hierarchy is located on the CPU die. In general, the farther
from computation, the larger the capacity but the higher the access latency. The L1 cache
is the cache level located closest to computation. It has the lowest access latency and has
the smallest capacity. There is typically one L1 cache per CPU core. Further, it is typically
a split cache. This means that the cache is divided into an L1d cache and an L1i cache,
which store exclusively data and instructions respectively. Splitting the L1 cache has been
found to increase parallelism, simplify caching logic, and reduce access latency [40]. Each
subsequent level (i.e., L2 and L3) has a progressively larger distance from computation,
larger capacity, and higher access latency. The L2 and L3 caches are typically unified
caches. This means that they contain data and instructions intermixed. While each core
typically gets its own L2 cache, the L3 cache is typically shared amongst all cores of a
CPU. All levels of the cache are commonly composed of SRAM.

Data stored in one level of the cache may or may not also be in the lower levels of the
cache. This is referred to as the cache inclusion policy. If the data in a higher level of the
cache is also required to be present in a lower level, then the lower level is inclusive of the
higher level. If the data in the higher level must not be present in the lower level then the
lower level is exclusive of the higher level. Otherwise, the relationship among the levels
is called non-inclusive non-exclusive. In the Intel Sandy Bridge microarchitecture, the L3
cache is inclusive of the L1 and L2 caches. Further, the L2 cache is non-inclusive of the L1

11

cache (suggesting that it is non-inclusive non-exclusive) [24].

Main memory follows the cache in the memory hierarchy. It is typically composed of
dynamic random-access memory (DRAM), a high density and low cost memory technology.
Finally, stable storage resides at the bottom of the hierarchy and may be one of many
memory technologies: e.g., hard disk drive (HDD) or solid-state drive (SSD).

Moving down the hierarchy, distance from computation and storage capacity increase.
As a result, so too does access latency. This is because more time is needed for signals to
propagate a farther distance. Further, a larger size typically means more complexity, which
also means more time. Smaller memory structures benefit more from being placed closer to
computation. As a result, larger memory structures are pushed farther from computation.

3.1.3 Cache Access

A cache line is the smallest unit of data that can be stored within a level of the cache. A
cache line is typically 64 bytes in size and is uniform across all levels of the cache. As a
result, even if only one bit of data is desired to be stored in the cache, a cache line sized
region must be stowed instead. The data stored in a cache line corresponds to a cache
line sized region of memory whose base address is a multiple of the cache line size. In this
work, cache line refers to the storage location in the cache and data line refers to the data
that can be stored in a cache line. At any given time, a cache line will store at most one
of any of a multitude of data lines.

A cache hit occurs when a memory location is accessed and its value is found in the
cache. A cache miss occurs when a memory location is accessed and its value is not
found in the cache. There are four main types of cache misses in modern multiprocessors:
compulsory, capacity, conflict, and coherence. A compulsory cache miss occurs when a
program performs a memory access to data that it has never previously accessed. These
cache misses are unavoidable unless the data is prefetched. A capacity miss occurs when
a program accesses data that was previously in the cache but is replaced with other data
because of the cache’s limited capacity. A conflict miss occurs when a program accesses
data that was previously in the cache but is replaced with other data even though not all
cache lines are utilized at the time of replacement. (Fundamentally, this is caused by the
restrictions on which data lines can be stored in which cache lines.) Lastly, a coherence miss
occurs when a program accesses data that was previously in the cache but is invalidated
in order to maintain a coherent view of memory by the CPU cores.

12

3.1.4 Cache Coherence

Many modern (multicore and multiprocessor) computer systems support shared memory.
This means that all CPU cores of the system can read and write to any memory location
in the shared memory space. This complicates the usage of caches, which store a mapping
from data address to the value currently stored at that address. This mapping needs to
be made coherent across the caches of possibly several CPU sockets, where each cache
is hierarchical in nature. With possibly multiple copies of each address/value mapping
stored across several caches, an update to any mapping must be communicated to all
caches storing a copy. Otherwise, the view of a core may be incoherent, or out-of-date
with respect to the rest of the shared memory system. Any mechanism for keeping the
caches coherent needs to make sure that each core sees the writes of all other cores. Further,
for each memory location, there must be total ordering of all reads and writes made of
all cores. Most importantly, this all must be done quickly. A cache coherency protocol is
used to ensure that each core has a coherent view of the shared memory system. To ensure
timeliness, this protocol is implemented in the hardware.

There are two main approaches to maintain coherence: snooping and directory-based.
Within each cache is a coherency controller that keeps the cache coherent. In a snooping
cache coherence protocol, each cache’s coherency controller snoops the memory bus in
order to inspect transactions (reads and writes). When the coherency controller observes
a transaction on a memory location that its cache contains, then the controller modifies its
cache’s contents to ensure coherence. When a core performs a transaction on a cache line,
the coherency controllers of all caches learn of this modification and update their cache
accordingly.

In a directory-based cache coherence protocol, a directory exists that contains infor-
mation on which caches contain which cache lines. When a cache line is newly placed in
a cache, its coherence controller updates the directory to indicate that the cache contains
the cache line. When a cache line in a cache is modified, the coherence controller queries
the directory to determine which other caches contain the cache line. The controller then
notifies the others of the modification so that they can maintain coherence. Transactions
are ordered at the directory, meaning that each operation on the directory happens se-
quentially. When a coherence controller learns of a modification to a cache line that its
cache contains, a common action is to simply invalidate the modified cache line. When
the cache line is next accessed, a cache miss occurs and the cache line must be retrieved
from another memory structure (e.g., a structure lower in the memory hierarchy or pos-
sibly another cache). This is the general behavior of write-invalidate protocols. However,
snoopy coherence protocols in particular can instead use a write-update protocol. When a

13

coherence controller learns of a modification, it updates the cache line stored in its cache
with the updated value that it learned from snooping on the bus.

While cache coherence is typically very fast as it is implemented in hardware, it can
introduce non-trivial overheads in certain situations. To study one of these situations that
is relevant to this thesis, the MESI protocol is examined in further detail. It is a snoopy and
write-invalidate cache coherence protocol and is widely used in one form or another. Both
Intel Core i7 and AMD Opteron processor families use extended versions of the MESI
protocol [22]. The observations drawn from this examination of the MESI protocol are
applicable to most snooping and directory-based cache coherence protocols.

The MESI protocol gets its name from the four states that a cache line can be in:
modified, exclusive, shared, and invalid. A cache line in the modified state is dirty, meaning
that it differs from the value in main memory as a result of a modification. The modified
cache line needs to be written back to main memory. At that point, the cache line is no
longer in the modified state. A cache line in the exclusive state is both clean (i.e., matches
main memory) and is present in exclusively the current cache. A cache line in the shared
state is both clean and present in the current cache and possibly other caches. A cache
line in the invalid state can no longer be used and is no longer considered in the cache.

Figure 3.2 presents the state diagram of a cache line following the MESI protocol. In
the diagram, each of the four states of a cache line in some cache are depicted as circles.
The arrows represent the possible state transitions of the cache line. Transitions are labeled
with the corresponding input/output. The solid lines are the transitions caused by a core,
to which the cache is local, reading from (PrRd) or writing to (PrWr) the cache line. The
dashed lines are the transitions caused by coherence messages, produced because another
core read (BusRd) or wrote (BusRdX) to the cache line, that the coherence controller
snooped on the bus. The output of these state transitions is a flush operation, meaning
that the cache line is written back to main memory.

Using the MESI protocol, successive writes to the same cache line can have a large
overhead. A cache line under high contention that is updated by multiple cores in parallel
may have one core write to the cache line immediately after another core has written to
it. In this scenario, each time a core writes to the cache line, it is not in the core’s local
cache because it was invalidated by another core’s write. Further, each write results in the
cache line getting invalidated in all other core local caches. Each write involves multiple
steps including flushing the cache line to main memory, invaliding the cache line in all
other caches, and retrieving the cache line from either main memory or another cache.
This pattern is particularly time consuming on modern multiprocessor systems, where
communicating caches may not be on the same processor die. As a result, there has been

14

MESI

PrWr/BusRdX

PrRd/BusRd(S̄)

PrRd/BusRd(S)
PrRd/-

PrWr/BusRdX

PrRd/-

PrWr/-

PrRd/-
PrWr/-

BusRdX/Flush

BusRd/FlushBusRdX/Flush

BusRd/FlushBusRdX/Flush
BusRd/Flush

Figure 3.2: State diagram of the MESI protocol.

15

much research on detecting and avoiding such patterns.

3.2 Concurrency

3.2.1 Overview

In a typical computer system, the operating system (OS) acts as a middleman between
the user and the hardware. It is responsible for managing the hardware resources of a
computer and serving client requests in the form of running requested programs. An OS
typically must balance several often conflicting objectives including fairness and security
while keeping efficiency high.

One of the most important of these hardware resources is the CPU cores. Without a
core, a program never ”runs” as the CPU core executes the instructions of the program.
The OS manages access to the cores of a system through kernel threads. In general, a
thread is an execution context. It is all of the information needed by a core to pause and
resume execution of a sequence of instructions. In practice, this minimally consists of CPU
register values and a stack. More specifically, a kernel thread is a thread that is managed
in kernel space by the OS. Each program has at least one kernel thread.

Most modern OSes manage access to the cores by scheduling (with input from the
user) when, where (i.e., which core), and how long each thread executes. The OS assigns
each thread a slice of time during which it executes on a given core. Once its time slice
has passed, the thread is preempted (interrupted) and supplanted with another thread,
which executes for its time slice. This is called preemptive scheduling. Through kernel
thread scheduling, the OS allows for the appearance of multiple processes running at once,
which is called multiprocessing. Further, the OS chooses a thread scheduling algorithm
that satisfies its objectives (e.g., fairness). For example, Linux’s default thread scheduler
is called the Completely Fair Scheduler [1]. It is designed to model an ideal, precise multi-
tasking CPU no matter the underlying hardware. Put another way, threads are scheduled
such that it appears that all threads are running in parallel and are receiving an equal
proportion of CPU resources.

3.2.2 Threads

Besides the kernel thread, another type of thread is the user thread. A user thread is
similar to a kernel thread. However, instead of being managed in kernel space by the OS,

16

Operating
System

thread scheduler

Process

thread scheduler

user thread

kernel thread

CPU core

Figure 3.3: Visualization of the relationship between user threads, kernel threads, and
CPU cores.

17

it is managed in user space by a user threading runtime. Figure 3.3 shows the relationship
between each of these types of threads and the CPU cores. User threads can be thought
of as executing on kernel threads in the same way that kernel threads execute on CPU
cores. By using a user threading runtime, an application has more control over how its
threads get scheduled. As a result, it can select a scheduling algorithm that better matches
its objectives and, therefore, achieves better performance. In applications that use a user
threading runtime, it is common for the number of kernel threads spawned by a process
to be roughly equal to the number of cores assigned to execute the process. Further, it is
common for the number of user threads to be several orders of magnitude greater than the
number of kernel threads.

A common characteristic of user thread scheduling algorithms is that they are (mostly)
cooperative. This means that executing threads periodically, voluntarily yield access to
CPU resources to allow other threads to execute. This is in contrast to preemptive schedul-
ing, which not only ensures fairness amongst threads but also allows the OS to rapidly han-
dle events requiring immediate attention. Cooperative thread scheduling is used, in part,
to give the application developer more control over thread scheduling as they will know how
to ensure fairness amongst the threads of their application. Additionally, context-switching
and synchronization overheads introduced by preemptive scheduling can be avoided. Many
applications do not need to handle events with as much immediacy as the OS and, there-
fore, don’t require the ability to preempt executing tasks. However, cooperative scheduling
can (intentionally or unintentionally) permit unfairness between threads. In extreme cases
of unfairness, this can lead to deadlock.

The threading model defines the relationship between user threads, kernel threads, and
cores. Knowing the threading model of a user threading runtime is important as it puts
restrictions on where user threads can execute. The relationship can be denoted by X:Y

where X denotes the number of user threads and Y denotes the number of kernel threads.
Figure 3.4 shows a visual representation of several different threading models. A threading
model of 1:1 describes the scenario where one user thread maps to one kernel thread. More
generally, a threading model of N:N describes the scenario where each of N user threads
uniquely maps to one of N kernel threads. In both scenarios, user threads and kernel
threads are indistinguishable. Meanwhile, M:1 describes the scenario where M user threads
all map to one kernel thread. This threading model does not permit parallelism and, as a
result, is infrequently or no longer employed. For example, the Java Runtime on Solaris
version 2.6 used a M:1 threading model [2]. Lastly, M:N describes the scenario where each
of M user threads maps to all of N kernel threads. Put another way, any user thread can
execute on any kernel thread. Unsurprisingly, the scalability of this threading model has
made it the most frequently implemented by user threading runtimes: Go [6], Libfibre [26],

18

Operating
System

thread scheduler

Processes
1:1 3:3 8:1

thread scheduler

8:3

thread scheduler

user thread

kernel thread

CPU core

Figure 3.4: Visualization of different threading models.

19

tim
e

Core 0:

a = a + x0;

b = b + y0;

a = a + x1;

b = b + y1;

a = a + x2;

b = b + y2;

(a) Without execution batching.

Core 0:

a = a + x0;

a = a + x1;

a = a + x2;

b = b + y0;

b = b + y1;

b = b + y2;

(b) With execution batching.

Figure 3.5: Instructions without and with execution batching.

C∀ [4], µC++ [16], Shenango [34], and Arachne [37].

3.3 Execution Delegation

3.3.1 Execution Reorganization

Execution reorganization is the general technique of restructuring the execution of a pro-
gram in order to improve data locality. Put another way, execution reorganization aims
to move computation to where the data resides instead of moving the data to the com-
putation. Within a single computer system, improved data locality stems from reduced
data movement both among levels of the memory hierarchy and across memory hierarchies.
Data often moves among the different levels of the memory hierarchy when the duration
between accesses to the data by the core is large. Between accesses, the core accesses other
data and this data is also stored in the core’s cache. The longer the duration between
accesses, the higher the likelihood that data is removed from the cache in order to make
room for new data. Data often moves across memory hierarchies when multiple cores of the
system access and modify the same data. If multiple cores store some data in their local
caches and at least one core modifies the data, then the data is invalidated from the cache
of all non-modifying cores. Each of these cores must then retrieve the data again. In order
to reduce these two types of data movement, execution reorganization can be performed
in two corresponding ways: temporally and spatially.

20

Core 0:

a = a + x0;

b = b + y0;

a = a + x1;

b = b + y1;

Core 1:

a = a + x2;

b = b + y2;

a = a + x3;

b = b + y3;

(a) Without execution delegation.

Core 0:

a = a + x0;

a = a + x1;

a = a + x2;

a = a + x3;

Core 1:

b = b + y0;

b = b + y1;

b = b + y2;

b = b + y3;

(b) With execution delegation.

Figure 3.6: Instructions without and with execution delegation.

Temporal execution reorganization, referred to as execution batching or simply batch-
ing, aims to decrease the amount of data movement among different levels of the memory
hierarchy. This is done by modifying the schedule of when a core executes operations in
order to group operations that have similar working sets. In this context, the working set is
the set of locations in memory accessed during the execution of an operation. As a result,
the average duration between accesses to the same data is shortened. For example, Fig-
ure 3.5 depicts a sequence of instructions executed by a core without (3.5a) and with (3.5b)
batching applied. In the figure, all operations on variable a are batched together such that
they are executed one after the other. The same happens to operations on variable b.

Spatial execution reorganization, hereafter referred to as execution delegation or simply
delegation, aims to decrease the amount of data movement between the local caches of
different cores. This is done by having the cores delegate the execution accessing the data
to a subset of the cores. As a result, data moves only between the local caches of the
subset of cores where execution is delegated. If execution is delegated to only one core,
then no data movement occurs. For example, Figure 3.6 depicts a sequence of instructions
executed by two cores without (3.6a) and with (3.6b) delegation applied. When delegation
is applied, Core 0 delegates its operations on variable b to Core 1. Similarly, Core 1
delegates its operations on variable a to Core 0. In this work, delegation is the only form
of execution reorganization under examination. A study of batching is left to future work.

3.3.2 Execution Delegation Approaches

Delegation is ubiquitous throughout computer system design. This is possibly because,
once a task has been decomposed into distinct parts (as programmers often do), it is
beneficial to delegate one or more of those parts. Depending on the situation, delegation

21

can be used to improve security, maintainability, scalability, and performance.

The remote procedure call (RPC) is a prominent example of delegating execution be-
tween separate processes. An RPC is used when one program wants to request the services
of another process by having it execute a certain procedure with specified arguments. Both
processes are typically located on separate computer systems. Once an RPC is performed,
the caller can block or can continue executing in parallel with the procedure until the re-
sult of the procedure is required. RPC is a request-response protocol implemented through
message passing. One process (the client) sends a message containing the procedure to be
executed and its arguments to another process (the server). Once finished executing the
procedure, the server packs the result into a new message and sends it back to the client.

Within a single process, thread migration can be used to facilitate delegation across
cores of a single computer system. Thread migration is the process of pausing the execution
of a thread on one core and resuming execution on another core. Thread migration is a
common occurrence on most computer systems. The operating system’s thread scheduler
attempts to balance work across the cores of a system to achieve its objectives (e.g.,
maximum resource utilization). If a thread could request of the thread scheduler as to
when and where it would like to be migrated, then thread migration could be used to
implement execution delegation. To perform execution delegation, the thread would only
need to make a scheduling request before and after the execution to be delegated. User
threading runtimes are a straightforward choice for performing execution delegation using
thread migration. Since both the user threads and user threading runtime belong to the
same process space, user threads can easily and safely make such requests of the user thread
scheduler.

22

Chapter 4

Session-Loop Pattern

4.1 Overview

In order to study the effect on performance of execution delegation, it is important to
understand how delegation affects cache usage behavior. To this end, the session-loop
pattern is proposed. Through this pattern, the class of applications fitting this pattern can
be studied.

The session-loop pattern is defined as follows. Each session repeatedly performs the
same sequence of actions. Put another way, each session can be thought of as an indepen-
dent execution of a loop of actions. This loop is referred to as the session loop. Depending
on the context, session loop is used in this work to refer to either a sequence of actions or
the corresponding sequence of instructions performing the actions. Figure 4.1 visualizes an
example session loop with two sessions repeatedly performing corresponding sequences of
actions. Further, typically, an application fitting the session-loop pattern is highly concur-
rent such that the number of concurrent sessions vastly outnumbers the number of parallel
resources (i.e., CPU cores).

The session-loop pattern can be observed in applications fitting the thread-per-session
paradigm. In such applications, each session is represented by a software thread with
its own execution stack. For many applications that could adopt the thread-per-session
paradigm, event-driven programming is typically used instead. Following this pattern, the
application must explicitly manage the set of sessions by reacting to external events such
as I/O events reported by the OS. However, Karsten et al. [26] demonstrate that it is pos-
sible for the thread-per-session paradigm to have equal or superior functionality, efficiency,

23

action

session

Figure 4.1: Visualization of a session loop.

24

action

session

phase0

phase1

Figure 4.2: Visualization of a session loop split into two phases.

performance, and scalability compared to event-driven programming. In particular, they
found this to be true when sessions are represented using user threads.

Various network-based server applications satisfy these requirements. For example,
databases and webservers handle stateful sessions that number several orders of magni-
tude greater than the number of cores. Each session consist of repeated request/reply
interactions.

The session loop can be broken down into one or more phases, where a phase is a
contiguous slice of the session loop. Put another way, if the session loop is a circle, a
phase is a sector of that circle. Figure 4.2 represents Figure 4.1 after being split into two
phases. Like before, depending on the context, phase is used in this work to refer to either
a subsequence of actions or the corresponding subsequence of instructions performing the
actions.

For example, consider a webserver. A client connects to the webserver in order to

25

operate on the data managed by it. From the perspective of the webserver, a session can
consist of all requests received from, processed, and responses sent to a given connected
client. Figure 4.2 may represent the execution of the webserver having established two
sessions. The session loop of the webserver is composed of receiving a request, processing
the request, and sending a reply. In Figure 4.2, phase 0 may represent the sector of the
session loop related to receiving a request. Phase 1 would then represent remainder of the
session loop (i.e., processing the request and sending a reply).

26

Chapter 5

Microbenchmark

5.1 Overview

This work investigates execution delegation via user thread migration in the context of an
application fitting the session-loop pattern. To do this, a microbenchmarking tool named
Accesstest is used. The impact on the performance of Accesstest from delegating a phase
of the session loop is studied.

5.2 Design and Implementation

Accesstest is implemented in approximately 4,000 lines of C++ code. The code makes
heavy use of object oriented design and templates. This allows for highly extensible and
flexible code. Experiments run using Accesstest are also highly configurable, as it ac-
cepts a wide range of command line options. Accesstest is composed of three stages: path
construction, session creation, and execution. At the completion of all three stages, per-
formance statistics are reported. Further documentation can be found in Appendix B and
in the code repository.

5.2.1 Path Construction

At the core of Accesstest is a circular pointer chasing path. Pointer chasing is the process
of performing a sequence of memory accesses that follow an irregular access pattern. A

27

Figure 5.1: Example of a circular pointer chasing path.

pointer chasing path is therefore a set of memory locations such that each memory location
holds a pointer to the next memory location in the path. It is circular in the sense that,
once all elements in the path have been traversed, the traversal starts again at the first
memory location. Figure 5.1 depicts an example circular pointer chasing path and the
order in which elements are accessed as the path is traversed.

A traversal of the pointer chasing path models the memory accesses made while ex-
ecuting the session loop. In this way, Accesstest simulates the memory accesses to an
application’s working set performed by sessions executing a session loop in parallel. Ac-
cesstest additionally simulates reads and writes to these memory locations. Such pointer
chasing is employed by Pingali et al. [36] to study the effects of temporal reorganization on
program components to improve the data locality of memory intensive applications. Fur-
ther, it is employed by Srinivasan [43] in microbenchmarks to study the effects of delegating
the execution of critical sections via asynchronous message passing.

The pointer chasing path is implemented as a path of elements stored within a buffer as
depicted in Figure 5.2. The buffer is divided into data lines (columns labeled 0 through 5
in Figure 5.2) which are subdivided into elements (cells labeled 0 through 20 in Figure 5.2).
The location in the buffer at which each element is stored is significant because each ele-
ment represents a memory access to the data line containing the element. The number of
elements in a data line corresponds to the number of times that the data line is accessed
during each traversal of the pointer chasing path. The buffer and, in particular, the data
lines constituting it represent the working set of the application. An element compactly
holds both an offset to the next element in the pointer chasing path and auxiliary infor-
mation. The offset is represented as the index from the base of the buffer. The auxiliary
information consists of two boolean values: whether the next element in the path represents
a write operation and whether the end of a phase has been reached. Since information is
compactly stored with each element, as the path is traversed, extraneous and unexpected

28

data line0 data line1 data line2 data line3 data line4 data line5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

next idx = 16
is write = F
is phase end = F

next idx = 12
is write = F
is phase end = F

next idx = 4
is write = T
is phase end = F

next idx = 5
is write = F
is phase end = F

next idx = 20
is write = F
is phase end = F

next idx = 0
is write = T
is phase end = T

next idx = 2
is write = F
is phase end = T

next idx = 8
is write = F
is phase end = F

next idx = 1
is write = F
is phase end = F

next idx = 3
is write = F
is phase end = F

Figure 5.2: Example of a buffer containing a pointer chasing path.

memory accesses are prevented.

The number of elements in the pointer chasing path is restricted by the size of the buffer,
which is specified by the user. When the buffer is allocated, it is done so with consideration
of the cache. Put another way, the buffer is allocated such that the mapping between data
lines of the buffer and cache lines is uniform. This means that the results reported by
Accesstest are not influenced by conflict misses stemming from poor cache placement [27].
To this end, the buffer is allocated from contiguously physically addressed memory. Once
allocated, the buffer is divided into two subbuffers along a boundary between two data
lines. Each subbuffer holds the data lines accessed during one of the two phases of the
session loop.

To install a pointer chasing path in each subbuffer, elements of the path are pseudo-
randomly distributed amongst data lines of the subbuffer such that element counts ap-
proximate a real access pattern using a Zipf distribution with shape parameter 1. All data
lines are accessed at least once per iteration of the pointer chasing path. Approximation
is needed since each element in the path can only point to one next element. Further, the
number of accesses made to a data line is bounded by the number of elements that can fit
in a data line. For example, for data lines of size 64 bytes, only 16 Elements can fit in each
data line since Elements are 4 bytes in size.

29

The two resulting pointer chasing paths represent the two phases of the session loop.
As such, the last element of each of these paths is marked to indicate that the end of the
corresponding phase has been reached. Using this mark, a session traversing the pointer
chasing path knows when a phase has ended and can act accordingly. For example, recall
that, in order to implement execution delegation using a user threading runtime, user
threads migrate back and forth across the cores of a system. Using this mark, a user
thread knows when to migrate (either back or forth) to perform execution delegation.
Finally, the ends of the paths are concatenated to form a circular pointer chasing path.

For example, in Figure 5.2, the first phase consists of the path of elements at indices 2,
4, 20, 3, and 5. The second phase consists of the path of elements at indices 0, 16, 1, 12,
and 8. Recall that each element represents a memory access to the data line containing
the element. Therefore, the first phase consists of accesses to data lines with indices 0, 1,
5, 0, and 1. The second phase consists of accesses to data lines with indices 0, 4, 0, 3, and
2.

All elements in the pointer chasing path are pseudorandomly assigned to be either
memory reads or memory writes. The preceding element in the path is marked to indicate
this information. Using this mark, a session traversing the pointer chasing path knows if the
next element in the path represents a read or write memory access. With this information, a
session can simulate the corresponding memory access. In this way, Accesstest incorporates
the effects of cache coherence in its results. How a session makes use of this information is
described in detail later in this section. The percentage of elements assigned to be writes
is specified by the user on the command line and is called the update ratio.

After the pointer chasing path is constructed, at least one of the CPU core’s cache
hierarchies contains pointer chasing path entries. To prevent these cached entries from
influencing the results of Accesstest, the cache hierarchy of all cores is wiped immediately
before the execution stage using the following technique. The cache hierarchy is assumed
to have a least recently used replacement scheme. The cache wiping algorithm is imple-
mented by allocating and accessing every byte of a contiguously physically addressed region
of memory that is unrelated to the pointer chasing path. Using a sufficiently large con-
tiguously physically addressed region of memory, all cache lines (including cached pointer
chasing path data) are evicted no matter what the cache’s associativity. In all experiments,
a 1 GB hugepage is allocated since the cache hierarchy has a capacity of less than 1 GB in
size.

30

5.2.2 Session Creation

Accesstest makes use of Libfibre [26], a M:N user threading runtime without preemption,
for creating user threads to represent the sessions. Accesstest executes the two phases
of the session loop either synchronously or by delegating the execution of a phase. If
synchronously, the Libfibre runtime is initialized so that user threads execute any phase of
the session loop on any kernel thread.

However, if delegation is performed, then only certain phases of the session loop are
executed on each kernel thread. In this way, kernel threads, and therefore cores, are
specialized to execute certain phases. To achieve this, kernel threads in the Libfibre runtime
are grouped into scheduling domains corresponding to the phases of the session loop.
Within a domain, work stealing is permitted. Across domains, work stealing is permitted
if enabled by the user through the command line. Additionally, if delegation is performed,
each session is informed of the delegated kernel thread before the execution stage begins.

5.2.3 Execution

In order to traverse the pointer chasing path during the execution stage, each session
executes a function similar to the loop function presented in Figure 5.3. For completeness,
a simplified definition of the data structure representing an element is also presented.
Sessions execute the session loop by traversing the pointer chasing path and simulating
the memory operations (i.e., read or write) specified in the elements. The assembly code
generated by the compiler is also manually inspected to ensure that each step in traversing
the pointer chasing path requires touching only one memory location: the location storing
the next element in the path.

An element assigned to represent a memory read operation simulates the operation in
the obvious way: the element is read from memory and traversal of the pointer chasing path
continues. However, it is not as simple for an element assigned to represent a memory write
operation since each element must be read to determine the next element in the pointer
chasing path. A read operation with the side effects of a write operation (i.e., cache line
invalidation in all other core’s private cache) is ideal. In cache coherency protocols, such
an operation exists and is called read for ownership. However, on all systems tested, no
corresponding assembly instruction exists. As a consequence, memory write operations are
simulated using a read of the corresponding element followed by a dummy write to that
element (see the dummyWrite function in Figure 5.3). The results presented at the end of
this section show that dummy writes affect performance and, therefore, are not elided by
the hardware.

31

struct Element {

volatile unsigned int value;

/* ... define constants ... */

inline size_t getIndex () {

return (value & INDEX_BITMAP) >> INDEX_BITSHIFT;

}

inline size_t isWrite () {

return (value & WRITE_BITMAP);

}

inline bool isPhaseEnd () {

return (value & PHASE_END_BITMASK);

}

inline bool isFinished () {

return (FINISHED_SENTINEL == value);

}

inline Element dummyWrite () {

Element tmp = *this;

*this = tmp;

return tmp;

}

};

void loop(Element* buffer , size_t index , bool isWrite) {

Element* elementPtr = &buffer[index];

Element element = (isWrite ? elementPtr ->dummyWrite () :

*elementPtr);

while (true) {

if (element.isFinished ()) break;

index = element.getIndex ();

isWrite = element.isWrite ();

if (element.isPhaseEnd ()) {

/* ... possibly yield or migrate ... */

}

elementPtr = &buffer[index];

element = (isWrite ? elementPtr ->dummyWrite () :

*elementPtr);

}

}

Figure 5.3: Simplified code for traversing pointer chasing path.

32

If Accesstest is configured so that each session synchronously executes the phases of the
session loop, then each user thread yields execution after each iteration of the session loop.
This is done because Libfibre is cooperative. This means that yielding is required to ensure
that each user thread gets a chance to execute. Yielding at the end of an iteration of the
session loop is also done to better mimic applications satisfying the session-loop pattern.
For example, a webserver halts a session while waiting for each new request.

Otherwise, if Accesstest is configured so that sessions delegate execution of a phase,
then each user thread migrates back and forth between two cores before and after the
execution of the phase. To perform migration using Libfibre, each user thread explicitly
indicates (i.e., in code) to the runtime to where it should be migrated. The last element
of each phase in the pointer chasing path is marked. User threads learn of the end of
each phase through this marker. Yielding is a consequence of migration so, unlike the
synchronous execution of the phases, explicit yielding is not needed.

After a user specified testing duration has passed, all sessions are notified as quickly as
possible that the test is complete. The sessions are notified by overwriting elements in the
pointer chasing path with a sentinel value. Once encountered, a session immediately breaks
out of the session loop and exits. Signaling the sessions in this way requires a constant
amount of work per session and requires the sessions to perform no additional memory
access to check for microbenchmark completion.

5.3 Evaluation

The performance of the Accesstest microbenchmark is evaluated when the execution of a
phase of the session loop is delegated. The working set size and the update ratio of that
working set size is varied to understand how performance changes across different levels of
the cache hierarchy and with different cache coherence overheads.

5.3.1 Configuration

The machine on which the microbenchmark is run contains an Intel Xeon Processor D-
1540. Each of its eight cores has a private L1d cache of size 32 KiB and private L2 cache
of size 256 KiB. Additionally, each core has access to a shared L3 cache of size 12 MiB.
Hyperthreading and CPU frequency scaling are disabled.

In each run of the microbenchmark, 100 sessions are spawned that concurrently execute
a session loop split into two phases. During each phase, each session accesses a set of global

33

data lines where the set is disjoint from the set of data lines accessed in the other phase.
The number of data lines accessed in each phase is equal and the working set size is the
total number of data lines accessed during the session loop. Put another way, half of the
working set is accessed by all sessions in one phase and the other half is accessed by all
sessions in the other phase.

Libfibre, the user threading library, is configured to spawn two kernel threads on which
user threads execute. In effect, two cores of the system are used. Thread pinning is
employed to prevent kernel thread migration.

The performance of Accesstest is measured using throughput, which is defined as the
number of memory accesses performed per second. An access can be performed by any
session in any phase of the session loop. In the following plots, each point represents the
average performance of Accesstest across 20 runs where each run executes for a 10 second
interval. Across all points, the maximum coefficient of variation is less than 0.09.

The throughput is shown for Accesstest run in synchronous and delegated mode. Syn-
chronous mode refers to Accesstest configured so that each user thread executes the session
loop on a single core. While in synchronous mode, each of the two cores is specialized to
execute one half of all user threads. Delegated mode refers to Accesstest configured so that
each user thread executes the first phase of the session loop on one core and the second
phase on the other core. While in delegated mode, each of the two cores are specialized to
execute a single phase of the session loop.

5.3.2 Results

L1d Cache

Figure 5.4 shows the performance of Accesstest for working set sizes at and around the
size of the L1d cache. When the update ratio is 0% and the working set size is smaller
than that of the L1d cache, all memory accesses hit in the L1d cache since the working
set can fit in the cache. Further, there is no cache coherence overheads from accessing
the pointer chasing path as no cache lines are modified. Delegated mode’s performance
is far below that of synchronous mode–lower by as much as 41%. Additionally, for each
configuration, performance appears to increase as the working set size increases within this
range of working set sizes.

The difference in performance of these two configurations can likely be attributed to the
difference in time performing user thread scheduling (i.e., yielding and migration). During
synchronous mode, user threads yield execution to another user thread at the end of each

34

0 20 40 60 80
0

1

2

3

L1d Cache Size 2 × L1d Cache Size

working set size (KiB)

th
ro
u
g
h
p
u
t
(1
0
8
a
cc
es
se
s/
se
c)

synchronous-0%

synchronous-.1%

synchronous-1%

synchronous-10%

synchronous-100%

delegated-0%

delegated-.1%

delegated-1%

delegated-10%

delegated-100%

Figure 5.4: Performance of Accesstest for working set sizes around that of L1d cache and
for varying update ratios.

35

iteration of the session loop. Meanwhile, during delegated mode, user threads migrate
between the cores at the midpoint and end of each iteration of the loop. When compared
with synchronous mode, which yields once per iteration of the session loop, delegated
mode’s poor performance can likely be attributed to the larger time spent migrating twice
per iteration. Additionally, migration introduces some degree of cache pollution and cache
coherence overhead. The cache of the migrated core is unlikely to contain all the data that
a thread accesses. While the cache may contain the memory locations accessed through
traversing the pointer chasing path, it is unlikely to contain values stored on the thread’s
stack. These values are likely to have been modified and stored in the previous core’s
cache.

Still, when the update ratio is 0% and the working set size is smaller than that of
the L1d cache, the increase in performance as the working set size increases for both
configurations can also be attributed to user thread scheduling. As the working set size
increases, the time needed to traverse one iteration of the pointer chasing path increases
and hence, thread scheduling occurs less frequently. The result is that, as the working set
size increases, each session (and Accesstest as a whole) spends more time traversing the
pointer chasing path than thread scheduling on average. Further, the side effects of thread
scheduling that hurt performance (i.e., cache pollution and cache coherence overheads)
are experienced less frequently because the experiment is timed. Throughput is therefore
higher.

When the update ratio is 0% and the working set size is larger than that of the L1d
cache but smaller than twice that size, roles are reversed: delegated mode outperforms
synchronous mode by as much as 33%. In synchronous mode, accesses frequently (if not
always) miss the core’s L1d cache but hit at the L2 cache. This is caused by the fact that
the working set size is larger than the L1d cache. Additionally, each data line is likely to
have been evicted from the L1d cache between two successive accesses since data line access
counts follow a Zipf distribution with shape parameter 1. As a result of this distribution,
most data lines are accessed only once per iteration of the pointer chasing path.

Meanwhile, during delegated mode, thread migration results in each core’s L1d cache
containing one disjoint half of the working set. As a result, delegated mode does not
experience L1d cache misses until the working set size is roughly twice the size of the L1d
cache. As the working set size approaches twice that of the L1d cache, the performance of
delegated mode approaches that of synchronous mode.

It is noteworthy that performance begins to drop at smaller working set sizes than
expected: the size of the L1d cache for synchronous mode and twice the size of the L1d
cache for delegated mode. This can likely be attributed to cache pollution introduced

36

by user thread scheduling. For example, each thread scheduling event requires memory
locations, which are not associated with the pointer chasing path, to be accessed. These
locations are, in turn, stored in the L1d cache and possibly evict a portion of the working
set. In effect, performance drops earlier than expected because the actual working set
includes both the pointer chasing path and the data accessed for user thread scheduling.
This effect impacts all levels of the cache hierarchy but is not necessarily the only cause
for premature performance drop.

As the update ratio increases from 0% to 0.1% and then to 1%, 10%, and finally
100%, the performance of synchronous mode falls dramatically while that of delegated
mode remains relatively constant. The drop in performance of synchronous mode can be
explained by cache coherence overheads. During synchronous mode, each thread performs
the same set of memory accesses on the same set of memory locations. Additionally,
threads execute in parallel on the two cores. As a result, when one core modifies a cache
line, it must first acquire exclusive access over that cache line. This involves invalidating
all copies of that cache line in any other core’s private cache. As a result, when the other
core accesses the same cache line at some later point in time, it must reacquire the updated
cache line. A pointer chasing path is traversed one memory location at a time since each
memory location stores a pointer to the next memory location in the path. As a result,
a cache line must be reacquired because it is invalidated and hence, progress in traversing
the pointer chasing path is stalled. The more updates that are performed, the more this
stalling occurs and throughput drops.

Meanwhile, as the update ratio increases, the performance of delegated mode remains
relatively constant. This is because each of the two cores is specialized to execute one of
the two phases of the session loop, and each phase accesses a disjoint set of data lines.
Since the set of data lines accessed by each core is disjoint, updating a cache line does not
result in a cache line invalidation. Therefore, no cache line must be reacquired because
it is invalidated, which means that no stalling occurs while traversing the pointer chasing
path. When the update ratio is 100%, the performance of delegated mode is higher than
that of synchronous mode by as much as 237%.

When the working set size is around twice the size of the L1d cache, there is a noticeable
difference in the performance of delegated mode as the update ratio increases. This drop
in performance can likely be attributed to the increased cost of simulating write operations
(a load followed by a store) as compared to read operations (just a load).

For the L1d cache and all cache levels, the impact of the prefetcher is expected to be
minimal as accesses made to locations in the buffer are pseudorandom. This is enforced
by the approach used to distribute elements of the looping pointer chasing path amongst

37

the data lines of the buffer storing the path.

L2 Cache

Figure 5.5 shows the performance of Accesstest for working set sizes at and around the
size of the L2 cache. Note that, in this figure, results are shown for working set sizes just
larger than the largest shown in Figure 5.4. When the update ratio is 0% and the working
set size is smaller than that of the L2 cache, all memory accesses hit in the L2 cache.
Additionally, there are no cache coherence overheads from accessing the pointer chasing
path as no cache lines are modified.

Unlike the results observed in Figure 5.4, synchronous mode and delegated mode have
comparable performance. For both modes, working set sizes are large and times spent
traversing an iteration of the session loop are long. As a result, the difference in time
spent performing thread scheduling per iteration of the session loop (a yield at the end of
an iteration in synchronous mode and a migration at the midpoint and end in delegated
mode) is negligible. Hence, performance remains constant (instead of increases) as the
working set size increases. This is dissimilar to the results in Figure 5.4 where performance
increases as the working set size increases.

When the update ratio is 0% and the working set size is larger than the L2 cache,
delegated mode outperforms synchronous mode by as much as 154%. The reason for this
behavior is identical to that discussed for Figure 5.4 when the working set size is larger
than that of the L1d cache. In synchronous mode, accesses frequently if not always miss the
core’s L2 cache but hit at the L3 cache. Meanwhile, in delegated mode, thread migration
results in each core’s private L2 cache containing one disjoint half of the working set.
Therefore, delegated mode does not experience L2 cache misses until the working set size
is roughly twice the size of the L2 cache.

As the update ratio increases from 0% to 100%, the performance of synchronous mode
falls dramatically while that of delegated mode remains relatively the same. When the
update ratio is 100%, the performance of delegated mode is higher than that of synchronous
mode by as much as 384%. The same general behavior is observed for working set sizes
around that of the L1d cache and has the same cause: cache coherence overheads.

There are several unexpected behaviors not previously exhibited that occur around
cache line boundaries. For example, the performance of synchronous mode with update
ratio 1% increases as working set sizes approach that of the L2 cache, the performance
of synchronous mode with update ratio 10% and 100% decrease and then increase for
working sets just larger than that of the L2 cache, and the performance of delegated mode

38

0 100 200 300 400 500 600
0

0.5

1

1.5

2

L2 Cache Size 2 × L2 Cache Size

working set size (KiB)

th
ro
u
g
h
p
u
t
(1
0
8
a
cc
es
se
s/
se
c)

synchronous-0%

synchronous-.1%

synchronous-1%

synchronous-10%

synchronous-100%

delegated-0%

delegated-.1%

delegated-1%

delegated-10%

delegated-100%

Figure 5.5: Performance of Accesstest for working set sizes around that of L2 cache and
for varying update ratios.

39

with update ratio 10% and 100% increase for working set sizes just larger than twice the
size of the L2 cache. A cursory analysis suggests that they are caused by unexpected
cooperation/competition for shared cache resources. A thorough analysis is required to
identify the cause behind each of these behaviors with certainty and is left to future work.

L3 Cache

Figure 5.6 shows the performance of Accesstest for working set sizes at and around the size
of the L3 cache. Note that, in this figure, results are shown for working set sizes just larger
than the largest shown in Figure 5.5. It is interesting to note that both configurations have
roughly the same performance no matter the update ratio.

When the update ratio is 0% and the working set size is smaller than that of the L3
cache, all memory accesses hit in the L3 cache and there is no cache coherence overheads
from accessing the pointer chasing path as no cache lines are modified. This behavior is
observed and discussed with respect to the L2 cache. However, when the update ratio is
0%, observed performance for working set sizes larger than the L3 cache differs greatly
from that for working set sizes just larger than the L2 cache: the performance of both
modes is the same. In synchronous mode, the working set is too large to fit into the L3
cache. Accesses to the working set typically miss the L3 cache because most data lines are
evicted from L3 to make space for a more recently accessed data line. In delegated mode,
thread migration results in each core accessing one disjoint half of the working set and each
half is smaller than that of the L3 cache. However, the L3 cache is shared between the
cores. As a result, delegated mode experiences the same L3 cache misses as synchronous
mode and, therefore, has the same behavior and performance.

As the update ratio increases, the performances of corresponding synchronous modes
and delegated modes are roughly the same. Moreover, all executions have roughly the same
performance. This can be understood by realizing that each data line is accessed rather
infrequently (only once for most data lines as access counts follow a Zipf distribution with
shape parameter 1) during each iteration of the session loop. As a result, for a given data
line, a core is likely to access the entire working set before accessing that data line again.
Therefore, it is likely to have been evicted to the level of the memory hierarchy that is
large enough to contain the entire working set: either L3 or main memory depending on the
working set size. Put another way, modifying a cache line and subsequently invalidating
copies in all other cores’ caches stabilizes performance at a low level of performance (i.e.,
roughly four times slower than the other experiments as all data is drawn from main
memory). It is likely that the cache line would have been evicted to make room for more
recently accessed data before being accessed again.

40

0 5 10 15 20 25 30
0

2

4

6

8

L3 Cache Size

working set size (MiB)

th
ro
u
g
h
p
u
t
(1
0
7
a
cc
es
se
s/
se
c)

synchronous-0%

synchronous-.1%

synchronous-1%

synchronous-10%

synchronous-100%

delegated-0%

delegated-.1%

delegated-1%

delegated-10%

delegated-100%

Figure 5.6: Performance of Accesstest for working set sizes around that of L3 cache and
for varying update ratios.

41

Chapter 6

Prediction

6.1 Overview

This work develops an approach for predicting whether or not an application fitting the
session-loop pattern would benefit from delegating the execution of a given phase of its
session loop. At the core of this approach is the reframing of execution delegation as
memory access delegation. Put another way, the impact of delegation on an application
can be understood by studying accessed memory locations. This approach is applied to
a real world application to form qualitative predictions, which are verified using actual
performance results.

6.2 Approach

As stated previously, execution delegation works in situations where the cost of moving
computation is cheaper than the cost of moving data. By assuming that user thread mi-
gration is used to perform delegation, these cost can be studied in detail. In particular, the
aim is to determine if a phase is amenable to delegated execution via user thread migration.
Given that an unmodified application pays some cost in performing data movement, this
is equivalent to determining if the reimbursement from eliminating data movement is more
than the cost of computation movement.

There are two data movement costs targeted by this work: cache coherence overheads
and capacity misses. Cache coherence overheads stem from a set of multiple cores re-
peatedly reading and updating the same set of cache lines. By delegating the execution

42

that performs these accesses to a subset of cores, which share a higher level of the cache
hierarchy, cache coherence overheads are reduced. If delegating to multiple cores, cache
coherence overheads are reduced through a reduction in propagation delay. If one core
is used, they are eliminated entirely since only one core will have the data in its cache.
Capacity misses are caused by the working set being too large to be contain within the
cache or one of its levels. By delegating execution, the data accessed by that execution is
effectively removed from the working set of the cores from whom execution is delegated.
Inversely, the data not accessed by that execution is effectively removed from the work-
ing set of the cores to whom execution is delegated. As is shown using the Accesstest
microbenchmark in Section 5.3.2, splitting the application’s working set in this way can
better utilize the cores’ private caches by reducing each core’s working set.

Alternatively, a major cost of moving computation is the loss in data locality from
forcing a thread to migrate between two cores with private caches. The data stored in
the private cache of one core is abandoned when the thread migrates to the other core.
Subsequent accesses to this data on the other core are likely to miss the cache and must
be retrieved again.

A working set can be thought of as being composed of some number of unique data
lines. As stated previously, a data line refers to the data that can be stored in a cache line
such that one cache line can store any one of a multitude of data lines. For each phase, its
working set is characterized along three dimensions: the degree to which the working set
is accessed exclusively within the phase, the degree to which it is accessed by all sessions,
and the rate at which different groups of data lines get modified.

In order to characterize a working set, each of its data lines is characterized as being
either phase-local or phase-global and either session-local or session-global. Figure 6.1
depicts these characterizations visually. If a data line is accessed exclusively within a
single phase of the session loop, the data line is called phase-local. Otherwise, the data
line is accessed in multiple phases and is called phase-global. Returning to the webserver
example, one phase of the session loop consists of receiving a request and another phase
consists of processing the request and sending a reply. The data lines holding the request
are likely phase-global, while the data lines containing the response are likely phase-local.
Similarly, if a data line is accessed by a single session, the data line is called session-local.
Otherwise, the data line is assumed to be accessed by all sessions and is called session-
global. For example, in the webserver, the data lines holding the data structure representing
a connection are likely session-local. Meanwhile, the data lines storing a database are likely
session-global. The degree of a working set is then measured as the percentage of its data
lines with respect to the number of all data lines accessed by the application.

43

Given the session loop split into two phases and a phase to delegate, a prediction is
formulated using the following features. To estimate the reimbursement from delegation,
phase-local/session-global and phase-local statistics are vital. The degree of the work-
ing set of the delegated phase that is phase-local/session-global and its update ratio is
directly related to the reimbursement from reduced cache coherence overheads. The de-
gree of the working set of the delegated phase that is phase-local is directly related to
the reimbursement from reduced cache capacity misses. To estimate the costs of delega-
tion, phase-global/session-local statistics are vital. The degree of the working set that is
phase-global/session-local is directly related to the cost from the loss in data locality from
migration.

There are other costs to moving computation that are not accounted for with the pro-
posed prediction approach. The work required to migrate threads and the cache pollution
caused by migration are two examples that can be observed in the Accesstest microbench-
mark results in Section 5.3.2. In the following experiments, these are assumed to be small
and constant. Another cost is the loss in temporal locality from suspending a thread’s exe-
cution for some extended duration of time. In applications to which the proposed prediction
approach is applied, this cost is assumed to be negligible. Nevertheless, this assumption is
verified while validating predictions produced by this approach in Section 6.5.

6.3 Design & Implementation

Prediction takes place in two stages: memory access sampling and working set character-
ization. From a sampling of memory accesses of the application, and given the session
loop split into phases, a characterization of the phases is produced using a tool named
Accessprof. From this characterization, a qualitative prediction can be made as to delega-
tion’s impact on performance. Further documentation can be found in Appendix C and in
the code repository.

6.3.1 Memory Access Sampling

Before working sets of the application can be characterized, information about the data
lines constituting those working sets must be collected. To collect this information, the
Linux dynamic profiling tool Perf [5] is used. Perf is a powerful performance analysis
tool for collecting information about both software and hardware events of an executing
program or an entire system. In particular, it can be used to sample the memory accesses

44

memory access session phase0 phase1 data line

(a) phase-local/session-local (b) phase-local/session-global

(c) phase-global/session-local (d) phase-global/session-global

Figure 6.1: Visualization of data line characterizations.

45

performed by an executing program and record contextual information about each sampled
memory access.

The key reason why Perf is used in this work is because it is able to profile memory
accesses performed when executing both user code and kernel code. Many applications
fitting the session-loop pattern make heavy use of kernel services like IO. As a result,
including accesses performed while executing kernel code in working set characterization is
of vital importance for accurately predicting the qualitative impact of delegation. This is
why Perf is used over other dynamic profiling tools such as Valgrind [33] or static analysis
tools.

In order to characterize working sets from memory accesses, several pieces of contextual
information about each access is required: the type of memory access performed (load or
store), the memory location accessed, the session performing the access, and the phase
in which the access is performed. On systems with a modern Intel processor and recent
Linux kernel version, Perf is able to collect all of this information. (Perf may still be able
to collect this information on systems with processors from other vendors. However, only
Intel processors are used in this work.) Further information, including the specific Perf
command line flags used, can be found in the code repository.

The memory access type is straightforward to collect. When Perf is invoked, the
user must specify the event to be sampled. Events mem uops retired.all loads and
mem uops retired.all stores are specified for sampling load and store micro-ops respec-
tively.

The accessed memory address is captured and stored through the use of Processor
Event-Based Sampling (PEBS), which is available on many modern Intel processors. Using
PEBS, the address of the memory location access can be collected. While Perf allows for
the collection of either the physical or virtual address of the memory location accessed,
physical addresses are used for characterization in this study. This is done because a
physical address uniquely identifies a data line. Meanwhile, a data line can have multiple
virtual addresses. Further, a virtual address can refer to different data lines over the course
of a program’s execution. A data line can be assigned multiple virtual addresses (or even
a virtual address that previously referred to a different data line) through repeated calls to
the mmap and munmap system calls. This is an important problem because Apache, which
is studied later in this thesis, makes heavy use of the mmap and munmap system calls. The
above points make virtual addresses difficult to use with Accessprof as the tool assumes
that each address uniquely identifies a data line.

The session performing the memory access can be inferred by identifying the user
thread performing the access. It is assumed that each session uniquely corresponds to a

46

user thread. Further, the address range of each user thread’s stack is never reused, in
whole or part, as the stack of another user thread for the lifetime of the process being
profiled. (The latter requirement is not natively satisfied by the user thread runtime. For
all experiments presented, it is enforced.) When Perf samples a memory access, the session
performing the access is identified by recording the user stack pointer at the time that
the access occurs. By comparing the stack pointer with the address ranges of each user
thread’s stack, the session is identified. (The address ranges of the user thread stacks are
recorded during session initialization.)

It is important to note that this association can be made when kernel code is executed
even though the kernel has no knowledge of user threads. When a memory access is sampled
while user code is being executed, the user stack pointer is retrieved from the stack pointer
register. However, when kernel code is being executed, the executing kernel thread has
a stack that is distinct from the running process and is protected in kernel space. As a
result, the stack pointer register contains a stack pointer associated with this kernel space
stack. However, part of the switch from executing user to kernel code involves storing the
state of the registers at the time of the switch in the kernel stack. The user stack pointer
can therefore be retrieved from the kernel stack. Using the appropriate command line flag,
Perf collects this information.

Identifying the phase in which a memory access is performed is challenging. Perf can
associate each sampled memory access with an instruction. However, a phase can be any
sequence of sequentially executed instructions. As a result, two restrictions are placed
on the phases that are examined. First, a phase is not examined if there exists another
phase whose corresponding instruction sequence contains that of the prior. Second, the
corresponding instruction sequence of at least one phase must be a function. This is referred
to as the function phase. The other phase is typically referred to as the implicit phase as
it consists of the part of the session loop that is not in the function phase. Weakening of
these restrictions is left to future work.

Figure 6.2 shows an example session loop split into two phases. Phase 1 consists
of a call to function foo. Phase 2 consists of a call to doStuff1, then foo again, and
finally doStuff2. The second restriction is satisfied since phase 1 consists of a function:
foo. Phase 1 is therefore the function phase. However, this split of the session loop
into phases fails to satisfy the first restriction. The first restriction states that a phase
cannot be examined if there exists another phase whose instruction sequence contains that
of the prior. However, in this example, phase 2 contains the instruction sequence (foo)
constituting phase 1. With these restrictions on the phases that can be studied, associating
each sampled memory access with a phase entails checking whether or not the call chain
at the time of the access contains the function constituting the function phase. Using the

47

while (true) {

foo (); // phase 1

doStuff1 (); // \

foo (); // > phase 2

doStuff2 (); // /

}

Figure 6.2: Example phase that is not studied in this work.

appropriate command line flag, Perf collects this information.

6.3.2 Working Set Characterization

The sampled memory accesses of the application are fed into Accessprof. Given the function
name with which the session loop is split into two phases, a working set characterization
is produced for each of these phases. The characterization indicates the degree to which
each working set is accessed exclusively within its phase, the degree to which it is accessed
by all sessions, and the rate at which different groups of data lines get modified. This
characterization is used to predict the qualitative impact of delegating the execution of a
phase.

Working set characterization entails collecting a list of data lines accessed during the
execution of the program. These data lines are classified as being either phase-local or
phase-global and either session-local or session global using the sampled memory accesses.

A data line is phase-local if all of its associated sampled memory accesses originate
exclusively from one phase of the session loop. Otherwise, the memory accesses originate
from both phases and the data line is classified as phase-global. A data line is classified
as session-local if its associated sampled memory accesses originate from only one session.
Otherwise, the memory accesses originate from at least two sessions and all sessions are
assumed to have accessed it. The data line is then classified as session-global.

Then, the degree to which a phase’s working set is accessed, for example, exclusively
within the phase and by a single session (i.e., phase-local/session-local) is computed as the
number of all data lines accessed by the session that satisfying such requirements over the
number of data lines accessed by the application. The update ratio of each group of data
lines is computed using the associated sampled memory accesses. The update ratio is the
percentage of operations that are store operations.

48

6.3.3 Characterization Accuracy

It is important to mention that this work does not present an approach for computing the
margin of error with a given confidence level of the working set characterizations. In order
to compute the margin of error of a characterization, the sample proportion of each category
of a categorical distribution (i.e., phase-local/session-local, phase-local/session-global, etc.)
must be computed. However, these proportions are determined through indirectly sampling
from a different categorical distribution (i.e., memory accesses categorized by requesting
session, current phase, and data line accessed). To further complicate things, Perf uses
systematic sampling (sampling at a regular interval) to record events instead of simple
random sampling. As a result, determining the accuracy of working set characterizations
is left to future work.

6.4 Evaluation

The previously described approach for predicting whether or not an application would
benefit from delegating the execution of a given phase of its session loop is evaluated on a
real-world application. After splitting the session loop of the application into phases, Perf
and Accessprof are used to characterize the working sets of the phases. This characteriza-
tion is used to predict the qualitative impact of delegating the execution of a phase. This
prediction is then verified with actual performance results. Several divisions of the session
loop into phases are evaluated.

The application studied is Apache [3], which is a popular open-source HTTP web
server. A survey found that Apache is used by 31.3% of all the websites whose web server
is known at the time of writing [8]. Apache can be configured to employ the thread-per-
session paradigm using kernel threads. However, to produce the results in this thesis,
Apache is modified to instead use user threads and is made to fit the session-loop pattern.
Each client starts a session with the Apache server by opening a connection. Over this
connection, the client initiates any number of HTTP request/response interactions. The
session loop therefore consists of receiving an HTTP request, processing the request, and
sending an HTTP reply.

6.4.1 Configuration

Two machines are used to perform the following experiments: the server machine and
client machine. They are connected via a dedicated 40 Gbps link. Each contains an Intel

49

Xeon Processor D-1540. The machines run Linux kernel version 5.11.0-34.

CPU frequency scaling is disabled on both machines. On only the server machine,
hyperthreading and Linux’s irqbalance daemon (enabled by default in most Linux distri-
butions) are disabled. The latter is done as the irqbalance daemon has been found to
affect the performance of networked applications running on multiple cores [23]. Each NIC
queue is manually bound to a single CPU core (a job typically done dynamically by the
irqbalance daemon) and each core is bound to an equal number of NIC queues.

To produce the following results, 100 clients repeatedly send requests for the same web
page to an Apache server instance. The clients generate requests using 16 threads on the
client machine. The Apache server instance services requests using four kernel threads
pinned to four cores on the server machine.

6.4.2 Prediction

Figure 6.3 shows the working set characterization of Apache’s session loop split into phases
based on one of several functions. For each function, the session loop is split into the
function phase with the remainder of the session loop constituting the implicit phase. While
the prediction approach can be applied for any function, only system calls are studied in
this work. This is done because previous work suggests that large performance gains can
be attained through their delegation [41]. While Apache services requests, memory access
samples are collected via Perf at a rate of one sample every 1,750 events for 15 seconds after
a five second warm-up period. On average, approximately 9,000,000 samples are collected
per run. Working set characterizations are generated for ten runs from which averages and
95% confidence intervals are computed.

Over all runs, the average total number of unique data lines accessed by Apache (and
sampled by Perf) is 97,313.3 data lines with a 95% confidence interval of 881.06. The
figure shows how much of each function’s working set is phase-local/session-local, phase-
local/session-global, phase-global/session-local, and phase-global/session-global as a per-
centage of Apache’s working set. The figure further presents, for each classification group,
the update ratio, which is the percentage of accesses to the corresponding data lines that
were store operations. Aggregated phase-local and phase-global statistics are also shown.

From Figure 6.3, the open system call appears to be a good candidate for delegation.
The phase-local/session-global working set percentage and update ratio are relatively high
(with averages of 4.02% and 35.53% respectively). Additionally, the phase-global/session-
local working set percentage and update ratio are relatively low (with averages of 0.61%
and 0.39% respectively). When taken in aggregate, these results strongly suggest that

50

function classification % of app working set update ratio

open

phase-local
session-local 3.20% ± 0.52% 63.59% ± 4.59%
session-global 4.02% ± 0.25% 35.53% ± 1.47%

both 7.21% ± 0.61% 47.63% ± 1.93%

phase-global
session-local 0.61% ± 0.03% 0.39% ± 0.12%
session-global 10.00% ± 0.42% 19.88% ± 0.31%

both 10.61% ± 0.43% 18.77% ± 0.30%

read

phase-local
session-local 4.56% ± 0.13% 23.06% ± 1.13%
session-global 1.63% ± 0.08% 17.74% ± 1.59%

both 6.19% ± 0.20% 21.66% ± 1.16%

phase-global
session-local 2.46% ± 0.04% 18.47% ± 0.70%
session-global 6.43% ± 0.38% 23.47% ± 0.86%

both 8.90% ± 0.36% 22.08% ± 0.71%

write

phase-local
session-local 1.49% ± 0.06% 34.44% ± 1.58%
session-global 0.44% ± 0.03% 38.05% ± 1.33%

both 1.93% ± 0.07% 35.24% ± 1.10%

phase-global
session-local 2.34% ± 0.04% 8.89% ± 0.40%
session-global 7.37% ± 0.20% 19.79% ± 0.45%

both 9.71% ± 0.19% 17.16% ± 0.41%

mmap

phase-local
session-local 0.55% ± 0.07% 43.30% ± 6.58%
session-global 0.23% ± 0.02% 12.28% ± 3.55%

both 0.77% ± 0.07% 33.88% ± 4.33%

phase-global
session-local 0.01% ± 0.00% 37.74% ± 12.84%
session-global 4.95% ± 0.14% 13.63% ± 0.75%

both 4.96% ± 0.13% 13.69% ± 0.72%

Figure 6.3: Working set characterization of Apache’s session loop split into phases based
on each of the specified system calls.

51

delegating the open system call could improve Apache’s performance through a reduction
in cache coherence overheads and possibly an overall reduction in cache coherence misses.

By delegating, the phase-local/session-global portion of the working set is accessed and
modified exclusively by the cores to which execution is delegated instead of all cores. If
these cores share a cache that is higher in the memory hierarchy than that of all cores,
cache coherence overheads can be reduced through a reduction in propagation delay. If
all cores delegate to only one core, then cache coherence misses are eliminated entirely for
this data. Further, delegation produces only a small increase in cache coherence overheads
through coherence misses as a result of phase-global/session-local data. By delegating,
phase-global/session-local data is accessed by at least two cores (i.e., a core delegating
execution and a core executing delegations) per session. Without delegation, only at least
one core access this data.

Additionally, since the phase-local working set percentage is relatively large, it is pos-
sible that delegation could also improve performance through reduced capacity misses
experienced by all cores. This is possible because, by delegating, cores executing the im-
plicit phase no longer access–and therefore cache–the phase-local portion of the working
set of open.

From these results, it is not clear if the read system call is a good candidate for
delegation. This is because the phase-global/session-local working set percentage is larger
than that of the phase-local/session-global portion of the working set. Further, their update
ratios are approximately the same. This suggests that the reduction in cache coherence
overheads from delegating is counteracted by the resulting increase. However, the relatively
large phase-local working set percentage suggests a potential reduction in capacity misses
as a result of delegation.

It is similarly unclear whether the write system call is a good candidate for delegation.
The phase-global/session-local working set percentage is far larger than that of the phase-
local/session-global portion of the working set. However, the phase-local/session-global
update ratio is far larger than that of the phase-global/session-local portion of the working
set. From these results, delegating writemay introduce as much cache coherence overheads
as it eliminates. Additionally, its phase-local working set percentage is relatively low,
suggesting that a reduction in cache capacity misses should not be expected.

The mmap system call appears to be the least likely candidate for delegation. Its phase-
local working set percentage is extremely low (with an average of 0.77%). As a result,
a very limited improvement to cache coherence overheads or reduction to cache capacity
misses should be expected. Further, its phase-global/session-local working set percentage
is small enough to be negligible.

52

read writeopen mmap
0

10

20

30

40

normal

delegated function

th
ro
u
gh

p
u
t
(1
,0
00

re
q
s/
se
c)

yield delegate

Figure 6.4: Performance of Apache when system call is delegated.

6.5 Validation

In order to validate the previous predictions, the studied functions are delegated and
Apache’s throughput is measured. The same configuration of Apache server and clients is
used as in the previous section. However, one of Apache’s four kernel threads (implying
one of its four cores) is assigned to execute the delegated function. Further, Apache is
modified to delegate the execution of the function being studied. From 40 runs of each
configuration, the maximum coefficient of variation is less than 0.025. During each run, a
five second warm-up interval is used during which no measurements are collected. After
this interval, measurements are collected for 20 seconds. In Figure 6.4, the bars labeled
delegate show Apache’s throughput when the corresponding function is delegated. The
horizontal line labeled normal indicates throughput when no delegation is performed.

When delegation is performed, the executing user thread is paused, migrated to an-
other core, and resumed on this core at some later point. When the operation has finished
executing, the same process happens in reverse. As a result, pausing and resuming exe-
cution of a user thread at some later point is likely to have some negative impact on a
core’s temporal locality. Further, this pause changes the flow of execution of the system
as a whole. To better understand the performance impact of delegation, the impact of
this pausing is isolated. Figure 6.4 also contains bars labeled yield. These bars show the

53

throughput of Apache when user threads yield execution (but do not migrate) before and
after the corresponding function is executed.

As predicted from working set characterization, delegating the open system call yields a
reasonable improvement in performance with an average increase of 10.48%. Additionally,
the decrease in throughput caused by yielding execution before and after open is not
statistically significant. Nevertheless, for all functions, any loss in performance caused by
yielding can likely be attributed to a loss of temporal locality.

From the working set characterization, it was unclear how delegating the read sys-
tem call would affect Apache’s throughput. These validation results are in line with this
prediction. Even though throughput increased by 5.66% on average, that increase can be
attributed to the yielding of execution performed before and after delegation. The actual
impact on performance of delegating read is statistically insignificant.

Yielding (but not migrating) before and after the read system call provides a surpris-
ingly large improvement to Apache’s throughput. Further investigation reveals that, after
Apache sends a response back to a client, it soon after attempts a non-blocking read from
the socket to see if another request has been sent from the client. If the client has sent
another request, then the Apache server immediately handles it. However, if the client
has not sent another request, then Apache has the thread blocked until there is data to
be read from the socket (via poll). Since the clients are running in a closed loop (i.e.,
a client sends a request only after receiving a response for its previous request), Apache
never finds a new request immediately after sending a response and the non-blocking read

always returns nothing. Calling a non-blocking read that consistently fails every iteration
of the session loop not only wastes cycles of the core but also pollutes the cache. By yield-
ing before the read, the client has more time to receive the response and generate a new
request. This increases the likelihood that the non-blocking read succeeds. Eliminating
this failed non-blocking read from the session loop through yielding causes the observed
improvement in performance. Yielding both before and after the read system call provides
the same benefits as yielding exclusively before read.

Yielding before and after the write system call also provides a surprisingly large im-
provement to Apache’s throughput (with an average increase of 6.30%). Further investi-
gation reveals that the yield after the write has the same effect as the yield before the
read system call. Yielding both before and after the write system call provides the same
benefits as yielding exclusively after write.

Even while accounting for the increase in throughput from yielding after write, del-
egation of this operation results in a surprising increase in throughput (with an average
increase of 14.70%). This was not predicted through working set characterization. Look-

54

ing more closely at the process of working set characterization helps to explain this result.
When sampling memory accesses, several values are collected: physical address accessed,
access type (read or write), stack pointer, and call chain. If any of these values are unspec-
ified, the sample gets dropped. The predominant cause of samples getting dropped is an
unspecified physical address accessed. Up to Linux kernel version 5.19, the physical address
of memory allocated in the kernel via a call to vmalloc cannot be collected by Perf. On
average, approximately 300,000 memory access samples are dropped per run because of this
reason. Considering that the working set characterization for write is generated using ap-
proximately 400,000 samples on average, this suggests that the characterization for write
is inaccurate. Nevertheless, from these validation results, the characterization for write
can be expected to look like that of open: possibly a higher phase-local/session-global
working set percentage and update ratio and a higher phase-local working set percentage.
Enabling Perf to collect the physical address of memory allocated in the kernel via a call
to vmalloc is left to future work as a result of time restrictions.

Lastly, delegating the mmap system call results in a negligible change in throughput as
was predicted by the working set characterization. Further, the negative impact to tem-
poral locality caused by yielding execution before and after mmap eliminates any potential
performance improvement produced from delegation.

55

Chapter 7

Conclusion

This thesis presents a systematic study of execution delegation via user thread migra-
tion in applications fitting the session-loop pattern. The goal of this work is to develop
tools and methods for predicting situations in which execution delegation via thread mi-
gration is beneficial to reduce or eliminate cache coherence overheads and cache capacity
misses. Through these reductions, application performance can be improved. To this end,
a microbenchmarking tool named Accesstest, a profiling tool named Accessprof, and a
qualitative prediction approach have been developed.

Using Accesstest, execution delegation via user thread migration is studied where mem-
ory accesses are made to a variable sized working set and with a variable ratio of load and
store operations. For all but the smallest working set sizes (smaller than the L1d cache),
execution delegation resulted in either no change or an increase in performance of the mi-
crobenchmarking tool. Through reducing capacity misses, performance is increased by as
much as 154%. Through reducing coherence misses, performance is increased by as much
as 203%. Through reducing both, performance is increased by as much as 384%.

Using Linux’s Perf and Accessprof, characterizations of the working sets of the phases of
an application’s session loop are produced. Through a detailed analysis of these character-
izations, a qualitative prediction can be produced that indicates whether or not execution
delegation would positively affect the application’s performance. These characterization
tools and the prediction approach are applied to the Apache HTTP server for four system
calls. Of the four system calls, the prediction method accurately predicts execution del-
egation’s impact on Apache’s performance for three of the system calls. For the fourth,
performance is not accurately predicted because of a limitation in Perf’s profiling capabil-
ities. Through delegation via user thread migration, Apache’s performance is improved by

56

as much as 11% on average.

Beyond resolving this limitation, future work includes studying a wider range of func-
tions (i.e., application functions, not just system calls). Further, larger systems with cores
located on separate processor dies or even cores connected by a network must also be
studied. This setting is vital as core counts continue to scale and systems become more
distributed. Additionally, future work includes the study of another type of execution re-
organization: temporal execution reorganization. This thesis studies specializing the cores
of the system to execute certain regions of code in an ad hoc manner. A core is then left
to idly wait or steal work during periods when it has been assigned no new work. Through
execution batching, temporal locality and utilization of each core can be improved through
intelligently scheduling when to perform assigned work and when to steal.

57

References

[1] Linux Scheduler - CFS Scheduler. https://www.kernel.org/doc/html/latest/

scheduler/sched-design-CFS.html. Accessed: 2022-08-26.

[2] JDK 1.1 for Solaris Developer’s Guide - Chapter 2 multithreading. https:

//docs.oracle.com/cd/E19455-01/806-3461/6jck06gqe/index.html, 2010. Ac-
cessed: 2022-08-26.

[3] Apache HTTP Server Project. https://httpd.apache.org/, 2022. Accessed: 2022-
08-28.

[4] C∀ (Cforall) User Manual, Aug 2022.

[5] perf: Linux profiling with performance counters. https://perf.wiki.kernel.org/

index.php/Main_Page, Jul 2022. Accessed: 2022-08-26.

[6] runtime - Documentation. https://pkg.go.dev/runtime, Aug 2022. Accessed: 2022-
08-26.

[7] TIOBE Index for September 2022. https://www.tiobe.com/tiobe-index/, Sept
2022. Accessed: 2022-09-05.

[8] Usage statistics of Apache. https://w3techs.com/technologies/details/

ws-apache, Aug 2022. Accessed: 2022-08-28.

[9] Inas Abuqaddom, Sami Serhan, and Basel A. Mahafzah. Cache complexity of cache-
oblivious approaches: A review and extension. volume 13, 2022. Copyright - ©
2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the
“License”). Notwithstanding the ProQuest Terms and Conditions, you may use this
content in accordance with the terms of the License; Last updated - 2022-07-01.

58

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqe/index.html
https://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqe/index.html
https://httpd.apache.org/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://pkg.go.dev/runtime
https://www.tiobe.com/tiobe-index/
https://w3techs.com/technologies/details/ws-apache
https://w3techs.com/technologies/details/ws-apache

[10] AMD. AMD64 Architecture Programmer’s Manual - Volume 2: System Programming,
Nov 2021.

[11] Gene M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Com-
puter Conference, AFIPS ’67 (Spring), page 483–485, New York, NY, USA, 1967.
Association for Computing Machinery.

[12] Jens Axboe. Efficient IO with io uring. https://kernel.dk/io_uring.pdf, Oct
2019. Accessed: 2022-08-26.

[13] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: A new os architecture for scalable multicore systems. In Proceedings
of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09,
page 29–44, New York, NY, USA, 2009. Association for Computing Machinery.

[14] Lubomir F Bic. Distributed computing using autonomous objects. In Proceedings of
the Fifth IEEE Computer Society Workshop on Future Trends of Distributed Comput-
ing Systems, pages 160–168. IEEE, 1995.

[15] Mark Bohr. A 30 year retrospective on dennard’s mosfet scaling paper. IEEE Solid-
State Circuits Society Newsletter, 12(1):11–13, 2007.

[16] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke.
µC++: Concurrency in the object-oriented language C++. Software: Practice and
Experience, 22(2):137–172, 1992.

[17] Peter J. Denning and Stuart C. Schwartz. Properties of the working-set model. Com-
mun. ACM, 15(3):191–198, Mar 1972.

[18] Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, Richard Lethin, Janice
McMahon, Chandra Pawar, Martin Perrigo, Sarah Rucker, John Ruttenberg, Max
Ruttenberg, and Steve Stein. Highly scalable near memory processing with migrating
threads on the emu system architecture. In 2016 6th Workshop on Irregular Applica-
tions: Architecture and Algorithms (IA3), pages 2–9, 2016.

[19] Moritz Gmelin, Jochen Kreuzinger, Matthias Pfeffer, and Theo Ungerer. Agent-based
distributed computing with jmessengers. In International Workshop on Innovative
Internet Community Systems, pages 134–145. Springer, 2001.

59

https://kernel.dk/io_uring.pdf

[20] Adele Goldberg. SMALLTALK-80: The Interactive Programming Environment.
Addison-Wesley Longman Publishing Co., Inc., USA, 1984.

[21] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the Twenty-Second Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, page
355–364, New York, NY, USA, 2010. Association for Computing Machinery.

[22] John L. Hennessy and David A. Patterson. Computer Architecture: A quantitative
approach. Morgan Kaufmann Publishers, an imprint of Elsevier, 6 edition, 2019.

[23] Hoang, Huy. Building a framework for high-performance in-memory message-oriented
middleware. Master’s thesis, University of Waterloo, 2019.

[24] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, Feb 2022.

[25] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 1:
Basic Architecture, Apr 2022.

[26] Martin Karsten and Saman Barghi. User-level threading: Have your cake and eat it
too. Proceedings of the ACM on Measurement and Analysis of Computing Systems,
4(1):1–30, 2020.

[27] R. E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM Trans. Comput. Syst., 10(4):338–359, nov 1992.

[28] Peter M. Kogge and Brian A. Page. Locality: The 3rd wall and the need for innovation
in parallel architectures. In Architecture of Computing Systems: 34th International
Conference, ARCS 2021, Virtual Event, June 7–8, 2021, Proceedings, page 3–18,
Berlin, Heidelberg, 2021. Springer-Verlag.

[29] P.M. Kogge. Of piglets and threadlets: Architectures for self-contained, mobile, mem-
ory programming. In Innovative Architecture for Future Generation High-Performance
Processors and Systems (IWIA’04), pages 130–138, 2004.

[30] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia Lawall, and Gilles Muller. Re-
mote core locking: Migrating {Critical-Section} execution to improve the perfor-
mance of multithreaded applications. In 2012 USENIX Annual Technical Conference
(USENIX ATC 12), pages 65–76, 2012.

60

[31] Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st Conference
on Computing Frontiers, CF ’04, page 162, New York, NY, USA, 2004. Association
for Computing Machinery.

[32] Gordon E. Moore. Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State
Circuits Society Newsletter, 11(3):33–35, 2006.

[33] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, Jun 2007.

[34] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads. In 16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 361–378, 2019.

[35] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The operating system is
the control plane. ACM Trans. Comput. Syst., 33(4), Nov 2015.

[36] Venkata K. Pingali, Sally A. McKee, Wilson C. Hsieh, and John B. Carter. Re-
structuring computations for temporal data cache locality. Int. J. Parallel Program.,
31(4):305–338, 2003.

[37] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. Arachne:
Core-Aware Thread Management. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 145–160, 2018.

[38] Stefan Reif, Phillip Raffeck, Peter Ulbrich, and Wolfgang Schröder-Preikschat. Work
in progress: Control-flow migration for data-locality optimisation in multi-core real-
time systems. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages 371–374,
2020.

[39] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu. Ffwd: Delegation is (much)
faster than you think. In Proceedings of the 26th Symposium on Operating Systems
Principles, pages 342–358, 2017.

[40] Alan Jay Smith. Cache memories. ACM Comput. Surv., 14(3):473–530, Sep 1982.

[41] Livio Soares and Michael Stumm. FlexSC: Flexible System Call Scheduling with
Exception-Less System Calls. In 9th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 10), 2010.

61

[42] Paul L. Springer, Thomas Schibler, Géraud Krawezik, Jack Lightholder, and Peter M.
Kogge. Machine learning algorithm performance on the lucata computer. In 2020
IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7, 2020.

[43] Srinivasan, Priyaa Varshinee. Improving data locality in applications using message
passing. Master’s thesis, University of Waterloo, 2014.

[44] Thorsten Von Eicken, David E Culler, Seth Copen Goldstein, and Klaus Erik Schauser.
Active messages: a mechanism for integrated communication and computation. ACM
SIGARCH Computer Architecture News, 20(2):256–266, 1992.

62

APPENDICES

63

Appendix A

Quantitative Performance Prediction
of Execution Delegation

This thesis presents an approach for predicting the qualitative (i.e., good or bad) impact
of execution delegation on an application’s performance. A logical next step would be to
examine whether this approach can be used for predicting the quantitative impact (i.e.,
percentage speedup or slowdown) of execution delegation on an application’s performance.
In parallel with the experiments presented in this thesis, experiments were run in an
attempt to answer this exact question.

The Accesstest microbenchmark can actually do more than that presented in this thesis.
Given a characterization produced by Accessprof of an application whose session loop
has been split into phases, Accesstest can take the characterization as input in order to
simulate the application. (Specifying the flag --log-phase-chars to Accessprof results
in a string containing the characterization being printed, which is directly consumable by
Accesstest.) Additionally, Accessprof produces and Accesstest consumes a value called
the access percentage for each group of data lines. This value indicates the percentage of
accesses that are performed during the session loop to each group of data lines.

For example, Apache’s performance with and without delegation of several operations
is measured. Then, Accesstest’s performance with and without delegation and using the
characterizations produced by Accessprof is measured. However, Accesstest’s performance
results could not be used to predict the performance results of Apache. There are several
possible reasons for this result that require further study.

A likely culprit is the limited number of memory access patterns that Accesstest can
simulate. First, Accesstest assumes by default that data lines are accessed according to a

64

Zipf distribution. Second, assuming that cache lines are 64 bytes in size, each data line
can only be accessed at most 16 times during a single iteration of the session loop. This
restriction is enforced by the fact that each element of the pointer chasing path requires
4 bytes of space. (These four bytes store indicator bits, the next index of the element in
the path, and other information.) Additionally, each element of the pointer chasing path
can represent at most one memory access in the session loop. As a result, Accesstest is
unable to represent memory access patterns where data lines are accessed tens, hundreds,
or thousands of times per iteration of the session loop. For example, consider modeling
two data lines accessed at a ratio of 17 to 1. Since a data line can only store up to
sixteen elements, a data line can only be accessed up to sixteen times per iteration of the
session loop. As a result, Accesstest can’t model this access pattern or more extreme access
patterns (e.g., 100 to 1). In reality, some session loops may have a data line that is accessed
tens or hundreds of times per iteration. For example, consider how many times a thread
might access a given location in its stack. Since the performance impact of execution
delegation is so strongly influenced by cache usage behavior and memory access pattern
dictates cache usage behavior, Accesstest’s prediction power is low when used in such a
way.

Another possible cause is the use of dynamically allocated memory. This work implicitly
assumes that a session accesses roughly the same set of memory locations during each
iteration of the session loop. Dynamic memory allocated each iteration of the session loop
breaks this assumption. It is possible that, during each iteration, a session dynamically
allocates memory whose corresponding data lines were never previously accessed. As a
result, the working set appears larger to Accessprof than it actually is. Moreover, one
session reusing memory that was previously dynamically allocated by another session can
give Accessprof the false impression that there are more phase-global data lines than there
actually are. This lowers the accuracy of Accessprof’s characterization.

65

Appendix B

Accesstest Usage

Usage: ./accesstest [test_option...] phase_local_chars...

[phase_global_chars...] session_type ...

test_option: one of the following

-s --sessions=UINT Number of sessions to traverse the pointer

chasing path. (default=1)

-d --duration=UINT Duration to run in seconds (default=1)

-r --seed=UINT Value used to seed random number generators

(default=5489).

--sess-distr={UINT|u} Distribute session starting positions across

phases. Specify phase index to have all

sessions start on that phase or "u" to have

them spread evenly across phases (default=0).

--signal Start test only after SIGUSR1 is received.

(disabled by default).

--log-sessions=FILEPATH Filepath to which session information gets

saved. This information is consumed by

profiler (disabled by default).

-v --verbose Increase logging verbosity.

-h --help Print help message and exit.

phase_local_chars: UINT[,FLOAT[,FLOAT]]/UINT[,FLOAT[,FLOAT]]

Specifies the local characteristics of the corresponding phase of execution.

Consists of two parts separated by a slash (/). The first part consists of:

- the number of session local data locations;

- optionally, the update ratio of accesses made to the data locations

(default=0.0); and

66

- optionally, a positive scalar indicating the relative number of accesses

made to these data locations (default=max accesses).

The second part consists of the same fields but in reference to session

global data locations.

Note: the number of phase_local_chars specified indicates the number of

phases.

phase_global_chars: UINT/UINT:UINT[,FLOAT,FLOAT[,FLOAT,FLOAT]]/

UINT[,FLOAT,FLOAT[,FLOAT,FLOAT]]/...

Specifies the global characteristics of some set of phases of execution

(>= 2). Consists of three parts with the first two separated by a slash (/)

and the latter two a colon (:). The first two parts are the number of

session local and session global data locations shared by the set of phases.

The third part is a list of two or more tuples (separated by a slash (/)) of:

- phase index;

- optionally, update ratios of accesses made by this phase to the session

local and session global data locations respectively (default=0.0); and

- optionally, positive scalars indicating the relative number of accesses

made by this phase to the session local and session global data

locations respectively (default=max accesses).

session_type: one of the following

thread Represent each session with a Pthread.

fibre Represent each session with a Fibre.

67

Appendix C

Accessprof Usage

Usage: ./accessprof DATA_OPTIONS... [OPTIONS ...]

DATA_OPTIONS:

-m --samples PATH Specify path to samples.data file.

-s --sessions PATH Specify path to sessions.data file.

OPTIONS:

-c --cacheline UINT Specify system’s cacheline size. (default=64)

-p --samples-per-dataloc UINT Minimum samples a data location needs to avoid

being filtered out (default=1).

--log-phase-chars Log phase characteristics to pass to accesstest.

--extended Log extended statistics.

--filter REGEX Filter samples whose call chain contains

function name matching (C++) regex

(default=none).

-v --verbose Increase logging verbosity.

-h --help Print help message and exit.

68

	List of Figures
	Introduction
	Related Work
	Execution Delegation
	Improved Data Locality by Design

	Background
	Caches
	Overview
	Memory Hierarchy
	Cache Access
	Cache Coherence

	Concurrency
	Overview
	Threads

	Execution Delegation
	Execution Reorganization
	Execution Delegation Approaches

	Session-Loop Pattern
	Overview

	Microbenchmark
	Overview
	Design and Implementation
	Path Construction
	Session Creation
	Execution

	Evaluation
	Configuration
	Results

	Prediction
	Overview
	Approach
	Design & Implementation
	Memory Access Sampling
	Working Set Characterization
	Characterization Accuracy

	Evaluation
	Configuration
	Prediction

	Validation

	Conclusion
	References
	APPENDICES
	Quantitative Performance Prediction of Execution Delegation
	Accesstest Usage
	Accessprof Usage

