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Abstract

In main-memory database systems, memory can consume a substantial amount of
power, comparable to that of the processors. However, existing memory power-saving
mechanisms are much less effective than processor power management. Unless the system
is almost idle, memory power consumption will be high.

The reason for poor memory power proportionality is that the bulk of memory power
consumption is attributable to background power, which is determined by memory power
state residency. The memory workload in existing systems is evenly distributed over the
memory modules and also in time, which precludes the occurrence of long idle intervals.
As a result, deep low-power states, which could significantly reduce background power
consumption, are rarely entered.

In this work, we aim to reduce the memory power consumption of main-memory data-
base systems. We start by investigating and explaining the patterns of memory power
consumption, under various workloads. We then propose two techniques, implemented at
the database system level, that skew memory traffic, creating long periods of idleness in a
subset of memory modules. This allows those modules to enter low-power states, reducing
overall memory power consumption. We prototyped these techniques in DimmStore, an
experimental database system.

The first technique is rate-aware data placement, which places data on memory modules
according to its access frequency. The background power in the unused or least-used
modules is reduced, without affecting background power in the most-used modules. Rate-
aware placement saves power and has little performance impact. Under a TPC-C workload,
rate-aware placement resulted in memory power savings up to 44%, with a maximum
throughput reduction of 10%.

The second technique is memory access gating, which targets background power in less-
frequently accessed memory modules by inserting periodic idle intervals. Memory gating
reduces power consumption of memory modules for which rate-aware placement alone does
not create sufficient idleness to reduce power consumption. With gating, memory accesses
to these modules become concentrated outside of the idle intervals, creating the opportunity
for low-power state use. However, because it delays memory accesses, memory gating
impacts performance. Higher memory power savings and lower performance impact occur
in workloads with lower memory access rates. Thus, in the YCSB workload with a medium
transaction rate, memory gating reduced memory power by 26%, adding 0.25 ms (30%) of
transaction latency, compared to DimmStore without gating. In the more memory intensive
TPC-C workload and low to medium transaction rate, gating can save 5% of memory power,
adding 1.5 ms (60%) of transaction latency, compared to DimmStore without gating.
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Chapter 1

Introduction

Main memory is a significant consumer of energy in database servers. In general computing
servers, memory is considered to the second-largest power consumer after the processors,
responsible for up to 40% of total server’s power consumption [54]. Typical estimations
of memory power consumption may not represent server configurations that maximize
the amount of memory. It has been projected that increasing memory density and fully
populating memory slots may cause memory power consumption to exceed that of the
processors’ [12].

Servers’ power consumption is an important area of study that has produced practically
significant mechanisms for saving energy. However, most of these mechanism target proces-
sors’ power consumption. Operating systems include power governors to adjust processor
power states, frequency, and voltage in response to changing operating conditions. In con-
trast, memory power optimization is less studied, and is not well supported by existing
systems.

Main-memory database management systems (DBMS) represent an important use-case
for optimizing memory power consumption. The use of main-memory DBMSes is expand-
ing because they offer better performance than traditional disk-based systems. Main-
memory DBMSes store the full database in main memory, thus avoiding direct and indi-
rect costs associated with accessing external storage. A main-memory DBMS must have
enough memory to accommodate the future data growth and potential variation in mem-
ory demand. Exceeding the amount of available memory may cause the system to crash
or significantly degrade its performance. Therefore, it is normal for a DBMS to operate
using a portion of its available memory.
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However, partial memory utilization will not necessarily reduce a system’s memory
power consumption. As it will be shown in Chapter 2, memory power consumption in
existing systems is not sensitive to the memory utilization. Similarly, memory power
consumption is non-proportional with regard to the load i.e., transaction rate. As a result,
memory power consumption is near its maximum over much of the utilization range.

Current memory technology uses power states as a primary mechanism to reduce power
consumption when memory is lightly used. A memory module must be in the highest-
powered state to fulfill requests, but can sink into one of several low-power states when
idle. Memory power consumption in the deepest low-power state is several times lower
than in the highest-powered state. We refer to the part of memory power consumption
that depends on the power state as background power. Background power is not directly
tied to average utilization and load. Reducing load will introduce idle intervals between
accesses but due to the latency associated with power state transitions these intervals
may be too short to allow the memory to enter a low power state. The significance of
background power and low usage of low-power states are the main reasons for the lack of
memory power proportionality with regard to utilization and load in existing systems.

1.1 An Approach to Saving Memory Power

The goal of this work is to study and propose mechanisms to reduce memory power con-
sumption in main-memory DBMSes, focusing on memory power states as the primary
power reduction mechanism. The focus on a narrowly defined class of applications, main
memory DBMSes, allows us to develop techniques that benefit from knowing the memory
organization and access patterns. To maximize the use of low-power states, a power-
efficient DBMS must control data placement in physical memory and shape the flow of
memory accesses to individual memory modules. Due to complexity of the software, man-
aging all memory accesses in an arbitrary system may not be feasible, but a DBMS may
identify memory regions with known access patterns and physically separate them. If
such regions constitute a large portion of all memory, focusing on these region may reduce
average power consumption.

1.2 Thesis Organization and Research Contributions

The thesis is structured as follows. In Chapter 2, we present the necessary background
on memory architecture and how it affects memory power consumption. We also define a
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simple memory power model, based on power state residencies, that can be used to explain
memory power consumption as a function of workload characteristics.

In Chapter 3, we focus on understanding memory power consumption in main-memory
DBMSes. We experimentally investigate memory power consumption under transactional
and analytical database workloads. We measure actual memory power consumption and
demonstrate that it is independent of the database size, and that it is non-proportional
with respect to database load. By measuring power state residencies and using the power
model to break memory power consumption down to components, we explain the effects
of workload characteristics on measured power. We show that background power makes
up the bulk of total power consumption. We also show that low power states are rarely
used even when the database is small and load is low. The reason for this is that memory
accesses tend to evenly spread over all memory and most of the intervals between accesses
are too short for low-power state transitions.

The findings from Chapter 3 inform our approach for designing a memory power-efficient
system. As the memory access patterns in existing systems do not allow for significant
use of low-power states, we target background power through the use of software-based
techniques described in the Chapters 4 and 5.

In Chapter 4, we describe a design of DimmStore, a power efficient main-memory
DBMS, which uses the techniques of rank-aware memory allocation and rate-based place-
ment. To reduce background power, DimmStore divides the database into frequently and
infrequently used regions and places different regions on different DIMMs. The DIMMs
that store the region with a low access rate see significantly longer idle intervals between
memory accesses, which allows them to increase their low-power state residency and reduce
background power. If the database size is smaller than the amount of memory available,
some DIMMs will always stay in the lowest power state. Concentrating most of the memory
load in a few frequently accessed DIMMs does not significantly increase power consump-
tion of this region because the baseline low power state residency was low anyway. The
DimmStore prototype was evaluated using the YCSB and TPC-C transactional workloads.
Compared to the baseline, DimmStore reduces memory power consumption by up to 44%,
with peak throughput degradation below 10%.

In Chapter 5, we propose a second technique called memory access gating, which is
complimentary to rate-based placement and provides additional power savings. In Dimm-
Store, memory access gating is applied to the less frequently accessed database region,
where the access rate is already reduced as a result of rate-based placement. With gating,
longer idle intervals are created during workload by temporary prohibiting (gating) access
to that region’s DIMMs. Memory accesses which would have occurred during these gated
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intervals are temporarily delayed. The longer idle intervals introduced by gating cause an
increased use of low power states and reduce background power.

Memory gating is an intrusive technique that may negatively impact the performance
of the system. We evaluate the effect of memory access gating with the YCSB and TPC-
C workloads by measuring memory power consumption and transaction latency. Higher
memory power savings and lower performance impact occur in workloads with lower mem-
ory access rate. Thus, in the YCSB workload and medium transaction rate, memory gating
reduced memory power by 26%, adding 0.25 ms (30%) of transaction latency, compared
to DimmStore without gating. In the more memory intensive TPC-C workload and low to
medium transaction rate, gating can save 5% of memory power, adding 1.5 ms (60%) of
transaction latency, compared to DimmStore without gating.
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Chapter 2

Background

In this chapter, we provide necessary background on Dynamic Random Access Memory
(DRAM) and its power characteristics. We describe memory organization in servers and
memory architecture, focusing on power states.

In a simple random-access experiment with an instrumented server, we demonstrate
the use of low-power states by the memory controller. The power state policy in our server
uses an idle timer to control when to enter a low-power state. We estimate the values of
timeouts for the Self Refresh and Power Down states.

Later, we introduce a simple power model used to break down power consumption into
components, such as active and background power.

Finally, we describe the memory power measurement system, used in the experiments,
and reference existing work related to methods of memory power estimation.

2.1 System Memory Architecture

Servers are typically built using a Non-Uniform Memory Architecture (NUMA), consisting
of several NUMA nodes. Each NUMA node is a processor connected to local memory.
Nodes can communicate to each other and can access other nodes’ memory via inter-
processor data links.

Modern processors have memory controllers built in. A typical server processor may
have several (up to 4 or more) independent memory controllers.3 Therefore, the proces-
sor packages expose memory interfaces, which are used to directly connect the built-in
controllers to the processor’s memory.
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The memory interfaces are defined by JEDEC standards for DRAM, such as DDR3 [6]
and DDR4 [7]. The standardisation of memory and its interfaces allows for interoperability
between processors and memory made by different manufacturers. It also means that the
behaviour and power consumption patterns of different models of DRAM are similar.

The design of the memory interface in a NUMA node is largely motivated by the desire
to achieve high performance and configuration flexibility. Each NUMA node has several
(up to 24) slots to install memory modules (Dual-Inline Memory Module, DIMM). The
DIMM data bus is 64 bits wide and the signals are bidirectional, changing the information
flow direction dynamically for reading and writing.

To support high bandwidth, server memory interfaces work at the clock rates between
800 and 1600 MHz and use Double Data Rate signalling, sending a bit at both rising
and falling edges of the clock signal, effectively achieving the data rate of up to 3200
mbits per second per data line. Achieving such high data rates in the current design of
the memory interface is challenging, and, unfortunately, causes the interface to be power
hungry. The relatively long signal distance between the CPU and memory modules, needed
to accommodate several DIMM slots, makes it behave as a transmission line. To avoid
signal reflections, the data lines are electrically terminated in the DRAM device and in the
controller, causing substantial amount of power to be dissipated in the termination.

Another aspect of the memory interface design that increases its power consumption
is related to ensuring accurate signal timing at a high data rate. For example, at a rate
of 1866 mbits per second, which is in the lower range of the available rates in a modern
server, the bit duration is only 536 picoseconds. To allow for necessary timing margins,
the signal has to be sampled in the middle of the bit data window with an accuracy of
about 100 picoseconds. To achieve such timing accuracy when the signal propagation times
are affected by even small differences in the length of the wires, the variations in signal
propagation due to changes in temperature or supply voltage, DDR memory utilizes a
Delay Lock Loop circuit (DLL) in each of the DRAM devices, as well in the controller.
The DLL adjusts the timing of the output data signals to precisely align them with the
edge of the input clock received from the controller. DLL uses a control loop that needs
a relatively long time, an order of 0.5 µs, to match the signal delay to the input clock
edge. DLL also consumes significant amount of power, which is a price to pay for the
high data rate in modern server memory interfaces. Historically, memory interface power
consumption increases as data rates become higher and is projected to increase further
with newer generations of memory [48].

Due to having multiple memory slots, modern servers allow the end user to change the
amount of memory in a server to accommodate the application requirements. Electrical
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and signal quality issues limit the number of memory modules that can be attached to
each interface. To enable larger amounts of memory to be installed, processors designers
started to implement multiple memory interfaces in a physical processor, called memory
channels. In a typical modern processor, there are between one and four memory channels,
the upper limit being due to the processor pin count constraints. With multiple memory
channels, the processor can increase its available memory bandwidth by transferring data
in parallel over multiple channels.

Multiple memory channels allow multiple threads to access memory in parallel, max-
imizing total memory bandwidth. However, applications cannot always evenly distribute
memory workload between multiple threads. To increase the available bandwidth even
for memory accesses from a single thread, memory controllers map consecutive blocks in
the physical address space to different channels. This address mapping strategy is called
memory interleaving. The unit of memory interleaving is usually a block of one or a small
number of processor cache lines. Therefore, memory interleaving can effectively parallelize
memory access even for sequential data transfers larger than a few hundreds of bytes.

2.2 Memory Microarchitecture and Power States

Internal DRAM architecture is important for understanding DRAM function and, there-
fore, power behaviour.

The basic architecture of modern DRAM devices has not fundamentally changed since
the 3rd generation DRAM circa 1973 [2]. A DRAM device consists of a two-dimensional
cell array, where bits are stored as electrical charges, and control and interface circuits,
which direct the device’s operations and allow memory to communicate data to the outside
world. The two-dimensional array is formed by rows and columns, which dictates a two-step
access cycle. First, the row address is received from address lines and the corresponding
row is copied to the row buffer. Copying is achieved by sensing the charges in the array
cells by row sense amplifiers. This operation is called row activation (ACTIVATE) and
it is strobed by the RAS signal. Once the bits of a selected row are in the row buffer, a
particular word in the buffer can be read or written using the column address, strobed by
the CAS signal (READ/WRITE).

Sensing a one-transistor DRAM cell is a destructive operation as the small cell charge is
consumed in the process. Therefore, another operation, called PRECHARGE, is required
to write back the contents of the row buffer, potentially modified by writes, to the array.
Even in the absence of row accesses, the cell charge dissipates due to leakage. To ensure
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data preservation, a separate REFRESH operation is periodically performed on each row
in the array.

The cell array and row buffers are asynchronous circuits and their energy consump-
tion occurs due to moving the change between the cells and buffers during ACTIVATE,
PRECHARGE, READ/WRITE, and REFRESH operations. The energy used by the AC-
TIVATE, PRECHARGE, and READ/WRITE operations can be attributed to reads and
writes, and the energy for the REFRESH operations is consumed in order to preserve
memory content.

In contrast, the control and interface circuits are synchronous, as they accept and
internally distribute clock signals. The presence of an active clock signal causes the circuits
to consume energy even when they do not perform any useful work. This component of
power consumption is proportional to the clock frequency. To reduce power consumption
of the control and interface circuits, some of them can be temporarily disabled by removing
the clock signal. In those cases, the DRAM device is said to enter one of the low-power
states.

Memory power is classified into two broad categories: active and background [4], [19],
[81]. Power consumed due to memory performing ACTIVATE, READ/WRITE, and
PRECHARGE operations is considered active power. Active power is directly propor-
tional to the rate of these operations received by DRAM from the memory controller. This
rate is determined by the memory bandwidth demand of the running programs, i.e. the
workload.

Power consumption determined by the current power state of the DRAM is considered
background power. Average background power over a time interval depends on the compo-
sition of the power states during this interval, i.e. memory power state residencies. Power
state residency is a fraction of time the DIMM spends in that state during a measurement
interval. Power consumed due to DRAM refresh is also included in the background power
category because the rate of refresh is always constant, so its average power is constant as
well.

DRAM behaviour can be described by a state machine [7], where each state is associ-
ated with distinct background power consumption. Due to DRAM device complexity, the
number of distinct states is large. For example, the “simplified state diagram” in [7] shows
more than 20 states. DRAM manufacturers specify typical consumption in many of the
states defined by the DDR4 standard. Using this data and knowing state residencies, it is
possible to calculate the total background power consumption, using architectural DRAM
power models (see Section 2.6.1). Architectural models simulate execution of a workload
and produce a detailed execution trace of each device in the system. Using architectural
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State Power, W Exit latency, ns DDR4 States

StandBy 1.5 - Active StandBy and Precharge StandBy

Power Down 0.9 ∼ 50
Active Power Down and Precharge Power

Down
Self Refresh 0.35 ∼ 500 Self Refresh

Figure 2.1: Power states reported by performance counters

models is time consuming and requires a highly detailed description of each component in
the simulated system.

In this work, we measure state residency using performance counters in the memory
controller of Intel Xeon processors [8]. This way, we can obtain actual state residencies in
a real system without the effort associated with modelling. However, states reported by
performance counters are coarse-grained. Each state residency, obtained from performance
counters, corresponds to a mix of state residencies as per the DDR4 specification [7].

The short list of memory states used in this work, with their approximate power con-
sumption and exit latencies, is shown in Figure 2.1. During the StandBy state, all control
and interface circuits are enabled and clocked, and DRAM can immediately receive and
execute commands from the controller. The power consumption in the StandBy state is
the highest.

During the Power Down state, the output buffers are disabled, which reduces DRAM
power consumption. However, they can be enabled after a short (∼ 50 ns) delay. In
the Self Refresh state, all of the interface circuits are disabled with the exception of the
Clock Enable signal receiver, which is necessary to bring it out of the Self Refresh state.
In particular, the Delay Locked Loop (DLL) circuit, used to ensure integrity of high-
speed signals between the DRAM and controller and characterized by relatively high power
consumption, is stopped. Restarting the DLL requires a significant time (∼ 500 ns). In the
Self Refresh state, the DRAM does not receive REFRESH operations from the controller,
but performs array refresh using an internal counter.

The memory controller tries to minimize memory power consumption by switching
DIMMs into a lower-power state when they are idle. Since the use of lower-power states may
result in some performance degradation due to exit latencies, the controller has to balance
energy consumption and performance. A particular algorithm used by the controller to
switch power states based on the workload is called power management policy.

A simple and widely used power management policy is based on the concept of idle
timer. For each power state, the controller implements a timer which is reset on every
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memory access and counts during the idle time. When the timer reaches a certain threshold
(timeout), specific to each power state, the controller initiates the state transition. The
timeout values are lower for “shallow” power states, which have lower exit latency but less
energy advantage.

2.3 Power State Policy Experiment

For the Intel Xeon processors used in this work, the power management policy is not
documented. To get an initial understanding of how power states are used, we set up a
simple experiment. In this experiment, one processor core was generating single cache-
line memory accesses to one of the DIMMs, with a precisely controlled interval between
accesses. To capture possible NUMA effects, we repeated the experiment once for each
processor in the system, with the workload generator thread bound to a core in that
processor. We also repeated the experiment targeting one of the DIMMs in each of the
processor. We will refer to memory accesses from a thread running in one processor to
memory attached to this processor as local and to memory attached to the other processor
as remote. To minimize the effect of processor caches, the addresses were generated at
random over the whole DIMM. We repeated this experiment for multiple values of the
inter-access interval. During each run, we measured DIMM’s power state residencies, as
reported by RAPL counters. The resulting graph that captures these metrics as functions
of the access interval is shown in Figure 2.2 for local accesses and Figure 2.3 for remote
accesses. We noticed that the results differ when accessing the same DIMM from the
locally-attached processor compared to accesses from the other processor.

There are a number of observations that can be made using this graph. First, the
Self Refresh state is never entered when the inter-access interval is shorter than a thresh-
old, which is approximately 200 µs in experiments with remote accesses and 1000 µs for
experiments with local accesses. Since Self Refresh is the state with the lowest power
consumption, a power-efficient system must maximize the number of intervals longer than
these thresholds.

Second, once any of the two low-power states is entered, their state residency increases
with the increase in the inter-access interval. For the Power Down state, its residency
increases until the Self Refresh state starts to take over. The Power Down state was
observed only in remote accesses.

Although the actual algorithm used by the memory controller to control power state
transitions is unknown, these observations are consistent with a timer-based policy [34].
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Figure 2.2: Power state residencies vs. inter-access interval, local memory accesses
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Figure 2.3: Power state residencies vs. inter-access interval, remote memory accesses
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In a timer-based policy, the memory controller implements a counter (timer) which mea-
sures the time elapsed since the last access. Once this time exceeds a constant threshold
(timeout), the controller triggers the transition to the low power state. In case of multiple
states, each state has its own idle threshold and deeper power states take precedence. The
power state timeout value can be estimated by the shortest inter-access interval when this
power state starts being used.

2.4 Measuring Memory Power

For the experimental work in this thesis, I relied on direct measurement of the power
consumed by the DIMMs in the test server, as described in this section. In addition, the
measured power consumption was analyzed using a power model. Specifically, the model
was used to estimate the background and active power components. This power model is
presented in Section 2.5.

To accurately measure memory power consumption, I built a system for individual
DIMM power measurement and installed it in the test server. The measurement system
directly measures power consumption in each of the eight DIMMs installed in the server.
The power readings are generated in real-time while the server is under load.

To obtain the value of power consumption in each DIMM, the system measures current
in the VCC and VPP power rails on the DIMM with a 24-bit resolution. The maximum
sampling rate is 78 thousand per second, however, a low rate of 612 samples per second was
used during experiments. Due to the Sigma-Delta architecture of the Analog to Digital
Converter (ADC) used, each collected sample is an integral of the analog value during the
sampling interval.

To obtain power measurements, the collected values of current are multiplied by the
nominal voltages in the DIMM power supplies, VCC = 1.2V and VPP = 2.5V [7]. Measuring
the voltages would increase the power measurement accuracy, but would require doubling
the number of measurement channels.

The measurement system consists of eight DIMM risers with current sensing capability,
two 8-channel ADC boards, and a microcontroller board for ADC control and transferring
collected data to the computer. For current sensing, each DIMM riser has current sense
resistors installed in the VCC and VPP power rails. The differential voltage on the sense re-
sistor is measured by a ADC board, using the Microchip MCP3914 simultaneous-sampling
Sigma-Delta ADC [9].
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Current measurement was calibrated by running a DC current through the sense re-
sistors at two values of current and measuring the actual value of current with a digital
multimeter. The two calibration points were used to obtain the end-to-end offset and gain
of the current measurement system, which cancels the error due to the resistance of the
traces on the DIMM risers, tolerance of the sense resistors, and linear error in the ADC.
The calibration offset and gain were used in software during converting the raw data to
the value of the current.

2.5 Memory Power Model

I used the memory power model presented in this section to explain measured memory
power consumption as a function of the memory workload. Its explanatory ability relies
on breaking down the measured total power consumption into several components, based
on workload characteristics. I use this model mainly to determine the amount of active
and background power. However, it is possible to further drill down to quantify the effects
of individual workload characteristics on power.

The model estimates power components for one DIMM. The total memory consumption
is the sum of the consumption of all DIMMs. As in other models ([4], [19], [25]), we model
DIMM power as a linear function (weighed sum) of workload metrics. However, the set
of used metrics differs from other models and is chosen based on available performance
counters in the memory controller. The model was described previously [45] in a slightly
different form.

The workload metrics used as model inputs are memory operation frequencies and
power state residencies in the DIMM and in the individual memory ranks within the
DIMM. Specifically, the model inputs include counts of the number of Activate/Precharge
cycles, Read, and Write operations in the DIMM per second. The model inputs also include
measured power state residencies, which represent the fraction of time during which the
DIMM or rank is in the particular state, represented as a value in the range [0 − 1]. The
workload metrics are listed in Figure 2.4.

The DIMM power is modeled as a sum of terms, each of which represents the contri-
bution of a power state or type of memory operation to the total power consumption. The
coefficients in each term are either operation energies or power in each of the states.

Total power is modelled as the sum of Active and Background power:

P = Pbk + Pact (2.1)
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Ref Units Description

TSR - DIMM’s Self Refresh state residency
TSB - DIMM’s StandBy state residency, at least one rank has active CKE
T i
CKE - Active CKE duty cycle for rank i
Nact s−1 Frequency of Activate/Precharge cycles
Nr s−1 Frequency of column Read operations
Nw s−1 Frequency of column Write operations

Figure 2.4: Memory model workload metrics

Ref Units Value Description

PSR W 0.36 Power in Self Refresh state

∆PPD W 0.53
Additional power in Power Down state, over

Self Refresh
∆PSB W 0.67 Additional DIMM power in StandBy state, over Power Down

∆P i
CKE W 0.098

Additional power when i-th rank has active CKE,
over DIMM StandBy

Eact nJ 5.97
Energy of Activate/Precharge

cycle
Er nJ 6.63 Energy of column Read in active bank
Ew nJ 8.74 Energy of column Write in active bank

Figure 2.5: Memory model coefficients

The active power is modelled as the sum of power consumed by Activate/Precharge,
Read and Write operations:

Pact = NactEact +NrEr +NwEw (2.2)

Here, the Ns are operation frequencies from Figure 2.4 and the Es coefficients are
energy costs of the corresponding operations from Figure 2.5.

Background power, in turn, is modelled as a sum of four terms:

Pbk = PSR + (1− TSR)∆PPD + TSB∆PSB +
∑

i∈ranks

T i
CKE∆P i

CKE (2.3)
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Figure 2.6: Background power model as a sum of per-state components

The background part of the power model has been reformulated compared to [45]
to make is possible to estimate the contribution of individual states to the total back-
ground power consumption. The idea behind structuring the background power into state-
dependent components is illustrated in Figure 2.6, where each term in (2.3) is shown in its
own colour. The total power is the area under the whole coloured figure, bounded by a
bold line.

The power model distinguishes between three power states: Self Refresh, Power Down,
and StandBy. The Self Refresh state applies to the DIMM as a whole, including all the
DRAM ranks and additional per-DIMM circuitry. In Figure 2.6, Self Refresh power PSR

is the lowest possible power consumption of the DIMM and always applies regardless of
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the state the DIMM is in. Power components for other, higher-power states are defined as
increments over the previous lower-power state.

When the DIMM is not in the Self Refresh state, each of its DRAM ranks can be either
in the Power Down or StandBy state, independently from the other ranks on the same
DIMM. The DIMM is considered to be in the StandBy state when at least one of its ranks
is in the StandBy state. The activation of the rank’s StandBy state is controlled by its
CKE (Clock Enable) signal. The duty cycle of the CKE signal can be collected using the
memory controller’s performance counters, separately for each rank (T i

SB), as well as the
duty cycle of the “logical OR” of the CKE signals for all ranks in the DIMM (TSB).

The DIMMs in our test server consist of two ranks, and the DIMM’s power consump-
tion is different when none, one, or both ranks are in the StandBy state. Therefore, the
contribution of the StandBy state in the power model is represented by three components.
∆PPD is the additional power consumed when the DIMM is not in the Self Refresh state.
∆PSB is the additional power consumed when at least one rank in the DIMM is in the
StandBy state. Finally, for each rank with an active CKE signal, the per-rank component
∆P i

CKE is added.

The values for model coefficients were obtained in a calibration step, using two synthetic
workloads. One of the calibration workloads is similar to the one described in Section 2.3.
This workload consists of random memory accesses, with a constant interval between ac-
cesses. This workload was run multiple times, varying the interval between accesses, and
the target DIMM. The other calibration workload is a linear memory scan over a large
address range. This workload has no parameters and was repeated for each DIMM in the
system. During each run of a calibration workload, we measured memory power consumed
by the accessed DIMM, and collected power state residencies and operation counts. The
model coefficients were calculated by fitting a linear function of power state residencies
and operation counts (model inputs) to the measured power values, using the least squares
method. The model coefficients and their estimated values for the DIMMs used in the
experiments are listed in Figure 2.5.

2.6 Other Techniques for Measuring and Modelling

Memory Power

This section summarizes other work on memory power modelling (Subsection 2.6.1, Sub-
section 2.6.2), simulation (Subsection 2.6.3), and estimation (Subsection 2.6.4).
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2.6.1 Architectural Models

Low-level models for a particular device are created by DRAM manufacturers once the de-
vices is in a late stage of development. These models are sometimes called transistor-level
models and describe all aspects of the device design and are accurate. Manufacturers typi-
cally do not release those model publicly. However, the results of modelling on standardized
test patterns may be published in a device datasheet instead of actually measured data.
Since a model is created for each device, it cannot be used for modelling experimental or
future devices, or even devices in early stages of development. There have been efforts to
create low-level models that could be adjustable for a wider class of DRAM. Vogelsang [74]
proposed a low-level model that offers the same level of accuracy as a transistor-level
model. However, in order to implement the model, one has to provide more than 70 pa-
rameters, which is the cost of the model’s generality. While some of the parameters, such
as frequency, timings, and supply voltages, are easy to obtain, others depend on the used
technology and materials. Nevertheless, the model can be very useful to assess the trends
in future DRAM power consumption.

2.6.2 Datasheet-based Models

DRAM standards define a set of standardized test patterns, for which DRAM manufac-
turers provide current consumption data in devices’ datasheets. The DDR3 standard [6]
includes IDD current specifications for 15 test conditions, while DDR4 [7] includes more
than 50 such conditions for IDD and IPP , which reflects the increased complexity of DRAM
technology. The datasheet specifications can be a result of measurement on a set of devices
or be derived from manufacturer’s modelling. Describing DRAM power characteristics with
a standard current specification would be much more concise than doing so using a low-
level model. As a result, this approach is widely used in DRAM power modelling. The
downside of datasheet-based current specifications is that transferring them to realistic
memory workloads requires a significant amount of guesswork. For example, DDR3 in-
cludes the specifications of Precharge Standby current (IDD2N), when all banks are closed,
and Active Standby current (IDD3N), when all banks are open. However, it is impossible
to tell directly from the datasheet values the active current with a partial number of open
banks.

A widely used datasheet-based model of DDR3 DRAM power consumption was pub-
lished as a Technical Note by Micron [4]. The model takes the average current values from
the datasheets and decomposes them to produce power consumption estimates for specific
workloads. For the workload description, the model takes percentages of time when a rank
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is in a certain state (Precharged vs Active, StandBy vs Power Down), and the number
(frequency) of Activate, Precharge, Read, and Write operations.

The accuracy of the Micron model was questioned by Schmidt et al [65]. The major
issues were that the state transition effects are ignored and I/O power is overlooked. In
DRAM, switching between power states takes a finite time, and requires a certain amount
of energy, which may not be directly related to energy consumption of either of the states.
As a particularly heinous example, it was found that every time after transitioning to the
Self Refresh state DRAM performs a refresh cycle, which energy cost is not accounted
for by the Micron model. As a result, power savings of a workload that uses the Self
Refresh state are overestimated and the difference is larger when the state state occurs
more frequently.

The I/O power modelling is considerably more complicated than the Micron model
can accommodate. Memory I/O power modelling, as well as timing, is addressed by the
CACTI [72] simulator. Based on a user-supplied description of the physical topology of
the memory interface and memory traffic, CACTI performs a circuit-level simulation of the
interconnects and produces timing and power estimations. CACTI can be used to evaluate
existing, experimental, or future memory channel topologies such as hybrid DRAM/NVM.

A major drawback of DRAM power estimations based on datasheet specifications is
related to accuracy of these specifications. They are mostly intended for system builders
e.g. to design adequate system cooling and not for measurements per se.

2.6.3 Simulation

In order to apply a memory power model to a specific workload, it is important to un-
derstand how memory is accessed. One way to characterize memory access is to run the
workload under a system simulator. The simulator executes the processor instructions
from the workload, and emulates the behaviour of the CPU, caches, and a memory in-
terface. A number of system-level simulators exist, including GEM5 [16], PTLSim [80],
and others. Most system-level simulators’ capabilities do not extend past CPU caches or a
simple memory channel. Therefore, a separate DRAM simulator, such as DRAMSim [75],
or memsim [63] is needed for accurately modelling of DRAM aspects. The result of such
simulation is a memory trace, describing time-based low-level memory events such as row
activates, data transfers, and state transitions. This resulting memory trace can be either
fed directly into the power model, or first aggregated to produce time averages, depending
on the model requirements. Some DRAM simulators already integrate a memory power
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model, for example, DRAMSim, which uses the Micron model. If the existing memory
model is inadequate or not included, another power model is used.

2.6.4 Hardware Estimation

A significant disadvantage of system simulation is its high computational cost. As a result,
many studies limit the simulation interval to a few million instruction, which negatively
impacts the accuracy. An alternative to using simulation for obtaining memory access
information is collecting this information from a live system using performance counters.
Many processors implement various counters to track events such as branch misprediction
or cache misses. Their primary purpose is performance profiling. However, some processors
include counters for the memory subsystem as well. Intel Xeon [8] includes a number of
counters implemented in the integrated memory controller. The counters may be used
to count DRAM Activate, Precharge operations on a per-rank basis, and CAS operations
(corresponding to reads and writes) on per-bank basis. Additionally, the time spent in the
Power Down, Self Refresh state is also available for reporting.

The Intel XEON processors go even further than just counting DRAM operation. They
also include a power model for the DRAM subsystem, integrated in the Running Average
Power Limiting (RAPL) framework [25]. The RAPL hardware collects relevant perfor-
mance counters, runs the power model, and reports accumulated energy values through
hardware registers. The RAPL power model, its accuracy, and calibration procedure have
not been published. The accuracy of RAPL DRAM power estimations was investigated by
Desrochers et al [31]. They compared RAPL energy values with actual measured power
in an instrumented server, under a variety of workloads. The accuracy of RAPL energy
estimation varied between different servers, but was in general within 20% of the real
value. The results matched well when the load was higher. The worst case difference
(38%) appeared in one of the systems in the idle state. Overall, RAPL is a valuable tool
for DRAM power estimation in live experiments, especially considering the difficulty of
adding power measurement instrumentation to a system. Compared to simulation, RAPL
is more likely to produce a reliable estimation for a certain workload, because modelling
cannot accurately emulate all system behaviour and requires selection of a number of input
parameters. RAPL estimation is also available in real time, even for the program under
test.
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Chapter 3

Memory Power Consumption in
Database Workloads

In this chapter, we study memory power consumption for two types of workload: trans-
actional (OLTP) and analytical (OLAP). We characterize memory power consumption
empirically, by measuring memory power while running the workloads on an experimental
server equipped for DIMM power measurements. To study these two types of workloads,
we run the TPC-C and TPC-H benchmarks, respectively. These benchmarks have distinct
data access patterns. TPC-C is dominated by index access and TPC-H is characterized by
large scans and aggregations. We focus on memory-resident workloads. Therefore, in all
experiments we ensured that the database fits in main memory and there is no significant
disk activity.

First, we report memory power consumption as a function of load. For each workload,
we perform multiple test runs varying the transaction rate (in TPC-C) or the number of
concurrent queries (in TPC-H). Second, we show how memory power consumption changes
with the database size by repeating the experiments for different sizes of the database.

Our results indicate that memory power consumption is not sensitive to the database
size, i.e, memory consumes as much power when the database is small as it does when
the database is large. Memory power consumption is only slightly sensitive to load in
a memory-light transactional workload and more sensitive in memory-heavy analytical
workload.

Our analysis also shows that memory power consumption is mostly attributable to
background power, which is not directly affected by load. This result explains the weak
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memory power sensitivity to database size and load. Any technique for memory power
optimization must thus target background power.

Finally, we estimate the power and performance effects of memory interleaving in trans-
actional (OLTP) and analytical (OLAP) workloads. Memory interleaving spreads the
memory traffic across all the DIMMs in the system, increasing background power con-
sumption and making memory power optimization difficult. For each workload, we repeat
one experiment with and without interleaving. In each case, we report peak throughput
and power consumption. Although it is regarded as a performance optimization, memory
interleaving has negligible effect on transactional workload performance and small (around
10%) effect on analytical workload.

3.1 Server Configuration

For the experiments in this section, we used a customized test server equipped for DIMM
power measurements. The server has dual 8-core Intel Xeon E5-2640 v3 (“Haswell”) pro-
cessors, running at 2.60 GHz, on the Asus Z10PE-D16 motherboard with AMI BIOS dated
01/25/2016. Each processor has four memory channels, with two DIMM slots in each chan-
nel. We populated one DIMM slot in each channel with a dual-rank 16GB DDR4-1866
DIMM, totalling 128 GB. We used default BIOS settings in all experiments.

We measured power consumption of each DIMM using the system described in Sec-
tion 2.4. Due to the space constraints imposed by the current sensors installed in each of
the DIMMs slots, every other DIMM slot in the system was left unpopulated. As a result,
the memory power consumption in this test server is lower than when all the memory slots
are used.

3.2 TPC-C Results

We used Shore-MT [43] for the TPC-C experiments. Shore-MT is a research storage
manager, optimized for multi-core systems. It implements a traditional buffer pool with
a variant of the CLOCK page replacement policy and ARIES transaction logging and
recovery. Shore MT comes with a set of benchmarking tools, called Shore Kits. We used
the Shore Kits implementation of the TPC-C workload for our experiments.

In TPC-C, the database scale factor was varied between 100 and 600 warehouses, which
translates to an initial database size of approximately 12.5 to 81 GB. Each experiment
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consisted of a database generation step and three 30-minute runs. Before each run, the
database was restored from a saved copy and the Shore Kits process was restarted. We
divided each measurement run into 15-second intervals and collected performance and
power data for each interval. Since each run started in cold state, we considered intervals
that did not reach 80% of the target throughput as warm-up and discarded the results
obtained during these intervals. To reduce the effect of database growth in TPC-C due to
data insertion, we only report the results of the first 10 “warm” intervals (2.5 minutes). The
database grew between 0.6 and 4 GB during each experiment, depending on the transaction
rate. Although database growth introduces variability in the database memory footprint
in each experiment, this effect is small because database growth during each run is small
compared to the size of available memory.

For TPC-C, we modified the workload generator to insert uniform random think times,
with controllable mean, between requests. First, we determined the nominal maximum
transaction rate by running the experiment with no think time using the smallest database
size. On our system, this was approximately 300000 tpmC. In actual experiments, the
think times were then calibrated to produce target throughputs ranging from 1/8 of the
maximum to the maximum, in 8 steps. The load generator used 1000 client threads and
16 worker threads. When presenting measurement results as a function of throughput in
Section 3.2, we normalize all throughput values to the nominal maximum value.

3.2.1 Memory Power Under TPC-C

For our TPC-C experiments, Figure 3.1 shows the measured average memory power con-
sumption as a function of load (transaction throughput), for three different database sizes.
Memory power consumption is highly non-proportional with respect to load. The highest
transaction rate we tested is about 8 times higher than the lowest rate. Over this range of
workload intensity, memory power grows linearly, but only by about 23%.

Figure 3.1 also shows that, perhaps surprisingly, memory power consumption is not
affected by the database size. That is, if we run TPC-C transactions at the same rate
against databases of two different sizes, the total memory power consumption is the same.
There are several reasons for this. the first reason is memory interleaving, which changes
the mapping of the server’s physical address space to the DIMMs. Interleaving results in a
fine-grained distribution of physical addresses across all of the DIMMs for a given socket.
Hence, the memory load is spread across the DIMMs as well.
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Figure 3.1: Average DRAM power in TPC-C vs. normalized transaction rate, for three
database sizes

Second, even without interleaving, the operating system does not try to contain memory
allocations in a small number of DIMMs. The operating system does not know the DIMM
to address space mapping and cannot take it into consideration when allocating memory.

To further analyze our results, we used the memory power model that was presented
in Section 2.5. Figures 3.2, 3.3, and 3.4 illustrate the accuracy of the power model by
comparing the measured total memory power consumption with the consumption predicted
by the model, for the small (SF 100), medium (SF 300), and large (SF 600) database sizes.
For TPC-C, the model slightly overestimates the measured power throughout the load
range, but the estimation error is small, with a maximum difference of about 10%.

Using the power model with collected state residency and operation counts, we can
break total memory power consumption into background and active components. Fig-
ure 3.5 shows the results for the small database size. Memory power consumption is
almost entirely attributable to background power. Both background power and active
power increase with workload intensity, although the former increases even more than the
latter. Even at the maximum load we tested, active power represents a very small fraction
(less than 10%) of total power consumption. Active power is low because only a fraction
of available memory bandwidth (approximately 120 GB/s) is utilized by TPC-C as shown
in Figure 3.6 shows measured memory read and write bandwidths, as a function of load.
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Figure 3.2: Actual and predicted average DRAM power in TPC-C vs. normalized trans-
action rate, small database (SF=100)
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Figure 3.3: Actual and predicted average DRAM power in TPC-C vs. normalized trans-
action rate, medium database (SF=300)
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Figure 3.4: Actual and predicted average DRAM power in TPC-C vs. normalized trans-
action rate with, large database (SF=600)
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Figure 3.5: Active and background DRAM power breakdown in TPC-C vs. normalized
transaction rate, medium database (SF=300)
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Figure 3.6: Memory read and write bandwidth vs. normalized transaction rate in TPC-C,
medium database (SF=300)

Background power increases with load because DIMMs spend more time in the Standby
power state as the load increases. Figure 3.7 shows the residency in the Standby and Self
Refresh states as functions of load. At the lowest load, DIMMs on average spend only 27%
of the time in the Standby state. This rises to 40% at the highest load. Unfortunately,
Figure 3.7 also shows that the DIMMs almost never sink all the way into Self Refresh state,
even when the load is low. Although we have shown power state residencies for only the
small database size, this observation is true for all database sizes we tested. Thus, even
a moderate workload does not exhibit enough memory idle time to save power in the Self
Refresh state. This represents a lost opportunity, as power consumption in Self Refresh is
significantly lower than in other power states.

3.3 TPC-H Results

For TPC-H, we varied the database scale factor from 6 to 72, which resulted in the database
sizes ranging from 7.2 GB to 86 GB. We control the system load by controlling the number
of concurrent query sessions, while restricting each session to use a single core in the server.
Each session executes a batch of all 22 queries of the TPC-H benchmark in a random order,
to reduce the possibility of inter-query optimization. By varying the number of concurrent
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Figure 3.7: Power state residency vs. normalized transaction rate in TPC-C, medium
database (SF = 300)
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Figure 3.8: Memory power vs. scaled throughput in TPC-H

sessions from 1 to 16, we generate load from 1/16 to 16/16 of full CPU utilization in our
system. We repeated each run 5 times, restarting the database and clearing the filesystem
cache between runs, and take an average for each metric in the last four runs. To measure
throughput, we first compute the reciprocal of the geometric mean of query batch run
time of all client sessions, giving a measure of the query completion rate per session. We
then multiply this by the number of sessions and the database scale factor, since TPC-H
queries take longer for larger databases. This metric, which we refer to as TPC-H scaled
throughput, approximates the amount of work done by the database system per unit of
time.

For OLAP workloads, we ran the TPC-H benchmark on MonetDB [17], which is a
column store. MonetDB relies on OS file mapping mechanism to access persistent data.
Therefore, it operates best when the mapped files are cached by the OS and degrades when
the dataset size exceeds the amount of available memory.

3.3.1 Memory Power Under TPC-H

Figure 3.8 shows measured average memory power consumption as a function of load (TPC-
H scaled throughput), for a range of database sizes. Recall that, for a given database size,
we vary throughput by varying the number of concurrent query sessions. As was the case

28



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

5

10

15

20

25

TPC-H Scale Factor

P
ow

er
,

W

2 sessions 4 sessions
8 sessions 16 sessions

Figure 3.9: Memory power vs. database size in TPC-H

for TPC-C, memory power increases linearly with load, but starts at a relatively high
value. Hence, power proportionality is poor. TPC-H is also more memory power hungry
than TPC-C. Memory power consumption under our most intensive TPC-H workloads is
almost twice as high as that under our peak TPC-C workload.

Figure 3.9 shows the same data as Figure 3.8, but plotted against database size, rather
than load. In general, memory power consumption is largely independent of the database
size, for the same reasons that it is independent for TPC-C.

We used the power model to further explain the power measurements. First, we compare
the actual power measurements to the values of memory power produced by the model in
Figures 3.10, 3.11, 3.12, for small (SF 6), medium (SF 48), and large (SF 96) database
sizes, respectively. We found that the model’s power estimates were very accurate for low
workload intensities. As load increased, the model tended to underestimate the actual
power consumption. However, the underestimation was never more than 15%.

Figure 3.13 shows the model’s estimated breakdown of memory power into background
and active components, for the medium database. This breakdown is similar for all other
database sizes except for the largest one, for which active power falls off at high workload
intensities when the system is overloaded. The active power component is much larger
than it was for TPC-C, because the TPC-H benchmark is much more memory intensive.
Nonetheless, most of the power consumption is still due to the background component, as
was the case for TPC-C. Background power consumption does not grow with load, as it
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Figure 3.10: Actual and predicted average DRAM power in TPC-H vs. scaled throughput,
small database (SF=6)
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Figure 3.11: Actual and predicted average DRAM power in TPC-H vs. scaled throughput,
medium database (SF=48)
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Figure 3.12: Actual and predicted average DRAM power in TPC-H vs. scaled throughput,
large database (SF=96)
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Figure 3.13: Active and background DRAM power breakdown in TPC-H vs. scaled
throughput, medium database (SF=48)
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Figure 3.14: Power consumed by individual DIMMs in TPC-C runs with memory inter-
leaving, SF=100, 100% load

does for TPC-C. The reason for this is is that DIMMs are almost always in the Standby
power state under TPC-H, even with a single query session. Standby power state residency
was at least 98% in all runs.

3.4 Non-Interleaved Memory

Memory interleaving tends to distribute memory accesses uniformly over each processor’s
DIMMs, increasing power consumption in each DIMM. For example, Figure 3.14 shows
the power consumed by each DIMM for a TPC-C run with scale factor 100 and 100% load,
with memory interleaving. DIMMs 1 to 4 are connected to CPU socket 1 and DIMMs 5
to 8 are connected to CPU socket 2. All DIMMs consume similar power, despite the fact
that the database occupies only about 12.5 GB of the 96 GB available on the server.

By distributing memory accesses across DIMMs, interleaving greatly reduces the lengths
of intervals between accesses in each DIMM. This makes memory power optimization dif-
ficult. Memory power consumption is dominated by background power, which cannot be
reduced without introducing sufficiently long idle intervals allowing DIMMs to sink into
lower power states. Additionally, even distribution of memory accesses between DIMMs
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makes it difficult to add idle intervals to some DIMMs without adding a substantial per-
formance penalty for all memory accesses. Thus, memory interleaving is likely to impede
any attempt to optimize DIMM power consumption.

In this section, we consider the implications of disabling memory interleaving, since
doing so appears to be a prerequisite for memory power optimization. Memory interleaving
is a performance optimization, as it allows memory access to be parallelized across DIMMs.
Therefore, they key question we wish to answer is how much of a performance impact
memory interleaving has on our TPC-C and TPC-H workloads. If it is large, then memory
power optimization may require a substantial performance trade-off. If not, then memory
power optimization may be possible “for free”.

To answer this question, we repeated the TPC-C and TPC-H experiments described in
Sections 3.2 and 3.3, but with memory interleaving disabled. Interleaving was disabled by
changing interleaving settings in the system BIOS. In the non-interleaved experiments, we
did not attempt to control how the database systems made use of virtual memory. Neither
did we attempt to control kernel’s use of physical memory or the mapping of physical
memory to DIMMs.

3.4.1 Performance Impact of Memory Interleaving

Figure 3.15 shows peak TPC-C transaction throughput (no client think times) with and
without interleaving, for databases of different sizes. For TPC-C, memory interleaving has
no significant effect on performance, regardless of the database size. This is because the
TPC-C workload is not very memory intensive, as was shown in Section 3.2.

The TPC-H workload is more memory intensive and disabling memory interleaving
does have some negative performance impact. Figure 3.16 shows the total running time
of the batch of all 22 TPC-H queries, for small (scale factor 6) and large (scale factor 48)
databases, with and without memory interleaving. As the table shows, the performance
hit was about 10% on average over all of the TPC-H queries. However, we also found
that some TPC-H queries were more sensitive than others to interleaving. Figure 3.17
shows the run time of each individual TPC-H query, with and without interleaving, for the
large database. Six queries suffered slowdowns of 20% to 40%, and one query (Query 6)
showed about 75% performance degradation. These results suggest that for more memory-
intensive database workloads, like TPC-H, memory power optimization is likely to require
a performance tradeoff.
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Figure 3.15: Maximum TPC-C throughput in runs with and without memory interleaving

Scale With Without Relative
factor interleaving interleaving slowdown

6 22.4 24.6 10%
48 232.2 254.7 9.7%

Figure 3.16: TPC-H total run time, seconds, with and without memory interleaving

3.4.2 Power Impact of Memory Interleaving

Since disabling interleaving does not hurt TPC-C performance, it can be disabled to enable
memory power optimization techniques. Our experiments also found that disabling mem-
ory interleaving does not, by itself, result in significant memory power savings. It does lead
to uneven use of the DIMMs, because of the way data happen to map to DIMMs in our test
server. For example, Figure 3.18 shows the residency in any of the low-power states (Power
Down and Self Refresh) in each individual DIMM for TPC-C runs with and without inter-
leaving. The variance across the DIMMs is significantly higher in the non-interleaved case.
However, these differences do not translate into substantial differences in power consump-
tion. At maximum load, for the small TPC-C database, total memory power consumption
was about 10 watts with interleaving, and 9.6 watts without interleaving, a difference of
less than 5%. Thus, disabling interleaving should be viewed as a prerequisite for the use
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Figure 3.17: Average query run times in TPC-H with and without memory interleaving,
SF=48
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Figure 3.18: Total low-power state residency in individual DIMMs in TPC-C runs with
and without memory interleaving, SF=100, 100% load
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Figure 3.19: Average TPC-H memory power consumption in runs with and without mem-
ory interleaving

of application of memory power optimizations, and not as a power-saving technique in its
own right.

In TPC-H, disabling memory interleaving reduces memory power consumption by ap-
proximately 10%. Average memory power in the entire batch (22 queries), with and without
interleaving, is shown in Figure 3.19. Since the queries run longer without interleaving, the
total energy impact should also be considered. Overall, there is a small reduction in the to-
tal amount of energy consumed for each batch execution. The relative reduction in energy
use, for databases of different sizes, is shown in Figure 3.20. As with TPC-C, disabling
interleaving is not, by itself, an effective method to reduce memory power consumption in
the TPC-H workload.

3.5 Summary of Empirical Results

In this chapter, we studied memory power consumption in transactional and analytical
database workloads. In both workloads, memory power consumption does not depend on
the database size and stays high when the database is much smaller than the amount
of available memory. Memory power consumption is only slightly sensitive to the load
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Figure 3.20: Total energy savings in TPC-H when interleaving is disabled

intensity in a transactional workload, showing about 20% difference in power over a range
of load spanning an order of magnitude. In the analytical workload, the relative difference
between the highest and lowest load is higher, about 60%.

The non-proportional relationship between memory power consumption and changes
in database size and load is due to the background power being the bulk of the total
consumption. Background power is not proportional to the load but depends on the DIMM
state residency, and stays high largely regardless of load and database size. Therefore, any
power optimization technique must reduce background power to be effective.

Memory interleaving, often enabled by default, is an impediment in increasing low-
power state utilization to target background power consumption. Memory interleaving
spreads traffic between DIMMs, which eliminates naturally occurring skew in the access
frequency between DIMMs, and makes memory power optimization difficult. Memory
interleaving is considered to be a performance optimization, however, we found that its
effect on performance is negligible in the transactional workload and small (around 10%)
in the analytical workload. However, disabling interleaving does not automatically create
memory power savings. Explicit management of memory allocation and access are needed,
which will be the focus of the next chapters.
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3.6 Related Work

This section describes prior work on how memory power consumption is affected by factors
such as memory frequency (Subsection 3.6.1), use of low power states (Subsection 3.6.2),
and load (Subsection 3.6.3). The effects of memory size on power consumption in disk-
based databases are discussed in Subsection 3.6.3.

3.6.1 Effects of Memory Frequency

Computer memory can work at different frequencies of the DDR interface, which can be
changed at a reboot. Although the DDR3 and DDR4 standards define the procedure to
dynamically change the frequency at run time, such capability is rarely available in existing
implementations, at the time of writing. Nevertheless, since memory frequency is another
factor affecting its power consumption, there are studies to explore its effects.

Kumar et al [51] found that a small reduction of memory frequency (from 1066 to 866
MHz) causes a proportional reduction in memory power consumption under load. How-
ever, the effect on performance was not proportional to the frequency change and varied
between types of queries. Most queries in TPC-H were not affected by this change, so
their performance/power ratio improved. However, TPC-H Q1 showed a proportional per-
formance drop and TPC-H Q8 suffered by 20%, which is twice as much as the frequency
change, although it is not clear why the performance drop exceeded the frequency re-
duction. This observation confirms that database queries have varying sensitivity to the
memory bandwidth and, even in OLAP workloads, memory bandwidth is not typically
critical for performance.

The effects of frequency scaling on in-memory database workloads are also discussed
in the study by Appuswamy et al [12]. The wider workload set included two synthetic
microbenchmarks (in-memory aggregation and scan), an OLAP workload (TPC-H) and
an OLTP one (TPC-C). The memory frequency reduction step was more significant than
in [51] - 50%, from 1600 to 800 MHz. The power reduction due to this frequency change was
less than proportional, about 20%. Confirming previous findings, the performance drop
varied between workloads, from being proportional to the frequency change in workloads
that saturate memory bus (TPC-H, synthetic aggregation), to less significant in ones with
low channel utilization (TPC-C, synthetic scan).

The non-proportional response of memory power consumption to frequency change
could lead to a mechanism of saving power in a DBMS that would adjust the frequency
based on performance requirements and sensitivity of a particular queries to frequency. For
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queries that are not sensitive to frequency, it should always be reduced. For queries that are
affected proportionally, frequency can be reduced only if it is acceptable to prioritize energy
efficiency over response time. And the rare queries that exhibit poor power efficiency at
lower frequencies should run at the maximum frequency all the time. Changing frequency at
run time can be potentially easy to implement, if the hardware provided this capability, as
no data redistribution is required. However, a method to measure the degree of sensitivity
of a particular workload to memory frequency would be required. The shortcoming of such
a mechanism is the expected magnitude of power saving is low, up to 15% in the best
case [12].

3.6.2 Effects of Power States

DRAM implements low power states to reduce power consumption during periods of inac-
tivity. Appuswamy et al [12] studied the impact of enabling low power states under syn-
thetic and database macrobenchmarks. They collected performance and memory power
consumption data in the configurations with low power states disabled (“CKE disable”
setting in BIOS) and enabled (“CKE enable”). In all cases, the performance impact was
small (less than 5%) while power consumption decreased significantly in all cases except
multi-threaded scan and aggregation microbenchmarks. The TPC-C and TPC-H allowed
for a factor 1.34 and 1.42 reduction in the power/performance ratio. These workloads are
not memory intensive, so memory was able to spend about 90% of time in a low power
state. When running on a single thread, the microbenchmarks generated memory traffic
low enough that low power residency was between 72% and 84%, saving about 20% of
memory power. However, low power state residency dropped to 5% on eight threads and
power consumption similar to the baseline with power state disabled.

In conclusion, enabling low power states improves memory power efficiency in most
workloads, with the exception of ones with very high memory utilization. Since the hard-
ware is conservative in switching to a low power state, the performance effect was minimal
or negligible. The authors only reported the combined residency in the “CKE off” state,
which includes any low-power state. Therefore, it is not possible to tell if the deeper Self
refresh state is used in various workloads. According to my results in this chapter, the
system tends to be very conservative when using the Self Refresh state, as opposed to
the Power Down state. Due to this, and also because memory accesses tend to be evenly
distributed across DIMMs, the system Self Refresh state is not used much, which limits
the power saving potential of a hardware-based power state policy.
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Figure 3.21: Memory power consumption by load, in SPECpower-ssj2008, from Subrama-
niam et al [70]

3.6.3 Effects of Load

Power consumption versus load was studied by Subramaniam et al [70] in the context of
SPEC Power benchmark. SPEC Power allows for gradual adjustment of load level relative
to the separately measured maximum sustainable load. Per-component power estimations
(CPU core, CPU uncore, CPU package, DRAM) were obtained from RAPL. Memory power
consumption showed a characteristic S-shape, shown in Figure 3.21, with a dynamic range
of about 2. Memory power, similar to the uncore part of the processors package, was the
least power proportional subsystem. The bulk of transition between the minimum and
maximum power consumption happens between approximately 20% and 60% load. The
authors did not try to explain the shape of the load characteristic. However, based on my
characterization of memory power consumption, this unique shape may be related to non-
linearity of low power state residency versus load, which results from the timeout-based
power state management policy.
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There are several studies on database power efficiency that either look at total power
consumption only [58], or find that memory consumption is constant vs. other factors [73,
78, 39]. We know that memory consumption does change and these results can be explained
by the lack of focus on memory. For example, memory power management can be disabled
in the system configuration. Estimating or measuring memory power has also required
substantial effort that may not be seen as justifiable in research that is not focused on
memory.

Effects of Memory Size in Disk-based Databases

The main purpose of memory in a disk-based DBMS is to serve as a cache (buffer pool) of
database pages. The system can work with varying amount of available memory, however,
its performance and power consumption will be affected. When such systems employ a
large number of disks to increase I/O bandwidth, disks become responsible for the bulk
of consumed power. This does not represent a particularly valuable use-case for memory
power optimization.

Meza et al [60] studied the power/performance trade-off by varying the number of disks
and memory capacity. Peak throughput in a single workload (TPC-H, 300 GB) was used
as a measure of system performance and power was measured on the AC side, separately
for the main server and storage subsystem. As in many early studies, memory power
consumption was found to be constant 4 W per 4 GB DIMM. In total, this translates
to approximately 12% of the total system power excluding storage, but only 7% when
storage is accounted for. At the same time, memory was critical in improving total power
efficiency, for two reasons. First, in a system with memory used as a cache, its memory
is always full since it holds only a fraction of the total database. Second, a disk-based
storage subsystem has to be configured based on disk throughput and not capacity, which
leads to vast disk subsystem overprovisioning (about 50x in this particular study) and its
exceptionally high power consumption. Additionally, peak throughput only characterizes
systems that are completely busy and partial utilization was not considered. In a system
configured in this way, memory cache is highly efficient in reducing the I/O demand and,
as a result, system power consumption. Considering the low relative impact of memory on
total consumption and the fact that memory is fully used and the system is fully loaded,
memory power optimization in these circumstances seems neither worthwhile nor feasible.

Kumar et al [51] studied memory power in a similar context, for a disk-based DBMS
and a DSS workload. However, they also looked at how memory power consumption and
system performance are affected by the type of workload. The workload was the TPC-H
benchmark, with results broken down by individual queries. Memory capacity was one of
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the two control variables, with the other being memory frequency. Memory power showed
little power proportionality with load variations and its consumption was proportional
only to the number of DIMMs used. The effect of memory capacity was non-uniform for
different queries and this variance was significant. Thus, when the amount of memory was
halved, performance of some queries was affected by 5% or less while two queries suffered
a degradation between 422% and 1241%. This is expected as in a disk-based system
memory is used mostly for caching and its value depends on the query access locality. The
non-uniform effect of memory capacity on performance can also be used in a power-aware
system to adjust the amount of accessible memory. However, this method was considered
to be potentially problematic because it would require the application to know the physical
layout of memory and place the cached data according to this layout. I use this approach is
the foundation of DimmStore, a power-efficient DBMS prototype (described in Chapter4).
This study did not provide a detailed analysis why the impact of memory capacity was not
uniform between queries. Although it can be explained by changing the cache miss ratio
and, consequently, the amount of disk I/O, this is not a complete explanation. For example,
it was noted in the study that query plans of some queries changes on a configuration with
a different amount of memory. For example, a join algorithm switched from a hash to
nested loops implementation. By considering such effects of memory availability on query
plans, the trade-off between memory power efficiency and performance can be explored to a
greater detail. The results of this study are complementary to my work because a different
type of system (disk-based) was in the focus. However, I believe that DSS workloads are
also relevant for in-memory databases and should be studied further.

Niemann at al [61] conducted research on power efficiency of several database work-
loads. One contribution of this work is breaking down power consumption into individual
components, CPU, memory, disks, motherboard, and power supply. In this study, the
ratio of memory and CPU power consumption was between 0.25 and 0.3 over all the tests.
However, CPU and memory consumption was small part of the total as more power went
to the mainboard and power supply. Another point of the paper was evaluating server
power efficiency versus system and workload configuration. Unfortunately, these results
were overly specific to PostgreSQL and mostly affected by its architectural features such as
type of session (single-user vs multi-user) and its dependence on OS cache. However, the
common finding was that more performant configurations were the most energy efficient.
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Chapter 4

DimmStore: Rank-Aware Allocation
and Rate-Based Placement

In this chapter, we present DimmStore, a prototype in-memory transactional database
management system that aims at reducing memory power consumption. DimmStore tar-
gets background power by using memory low-power states as the power-saving mechanism.
Memory power states have a high power reduction potential as a DIMM in the lowest-power
state (Self Refresh) consumes about 80% less power than it would in the high-power state,
ignoring the active power component (Section 2.2). Low-power states need long periods of
idleness to get activated, therefore, they see little use in existing systems and workloads
(Chapter 2).

DimmStore is designed to create periods of idleness in some of the DIMMs by deliber-
ately skewing memory load across the DIMMs. DimmStore achieves that by understanding
the physical layout of the memory address space and using the technique of rank-aware
allocation. With rate-based placement, the most-frequently used elements of the database
are then placed in a subset (ideally, small) of the DIMMs, and the remaining DIMMs are
used for the less frequently used data.

The design of DimmStore is described in Section 4.1. DimmStore is built on top of
H-Store, an in-memory transactional DBMS. DimmStore uses the concepts of eviction
and uneviction in H-Store’s anti-caching feature to achieve and maintain the access skew
between DIMMs.

In Section 4.2, we describe how DimmStore interacts with the operating system to
discover physical memory layout and allocate memory in particular DIMMs. Operating
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system do not currently provide support for these functionalities. Therefore, DimmStore
uses ad-hoc workarounds so that we can test and evaluate it.

In Sections 4.4 and 4.5, we present an empirical study of memory power optimization,
using DimmStore. Our goal is to answer two questions. First, how effective are the power
optimization techniques presented in Section 4.1 at reducing memory power consumption?
Second, do these techniques have a significant impact on performance? We consider two
transactional workloads. The first (Section 4.4) is the Yahoo! Cloud Serving Benchmark
(YCSB) [21], which has simple and easily controllable data access patterns. The second
(Section 4.5) is TPC-C [5], which exhibits more complex and dynamic patterns. The
power savings for a medium database size are approximately 30% in both workloads. The
YCSB workload, which is less memory intensive, showed no performance impact in Dimm-
Store compared to the baseline. In a more memory-heavy TPC-C, the peak throughput
degradation was about 10%.

4.1 DimmStore Design

DimmStore is an in-memory transactional database system, based on H-Store [44]. Dimm-
Store, like H-Store, logically partitions the database, and gives a single worker thread
responsibility for each partition. Single-partition transactions are handled sequentially by
a worker. Cross-partition transactions involve multiple coordinated workers.

In traditional database systems, memory load is distributed more-or-less evenly across
the DIMMs (see Section 4.2.1). As a result, all DIMMs are busy and there is little oppor-
tunity for memory controllers to move DIMMs into low power states. DimmStore’s power-
saving strategy is to unbalance the memory load, shifting it away from some DIMMs and
concentrating it on others. This creates idleness on the least-loaded DIMMs, and provides
opportunities for them to enter low-power states.

To shift load, DimmStore controls memory allocation and data placement. The virtual
address space in which DimmStore runs is divided into two regions, which we refer to as the
system region and the data region. DimmStore has two memory allocators, one for each
region. Whenever DimmStore requires memory, it must choose which region to allocate
the memory from. The formation of DimmStore’s regions is rank-aware. This means that
the virtual memory in the system region is backed by physical memory located on a subset
of the available memory DIMMs. These are called the system DIMMs. The data region is
backed by physical memory located on the remaining DIMMs, called the data DIMMs. In
Section 4.2.2, we describe how this rank-aware memory partitioning is accomplished.
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Figure 4.1: DimmStore with a small database

If possible, DimmStore uses only memory from the system region. This is illustrated
by the DimmStore configuration shown in Figure 4.1. This has the effect of concentrating
all memory accesses on the system DIMMs, leaving the data DIMMs completely idle and
allowing them to sink into the deepest low-power state. This can save considerable power,
as we show in Sections 4.4 and 4.5. However, this situation is possible only if the entire
database fits within the system region. When the database does not fit, DimmStore al-
locates memory from the data region and spills part of the database into it. DimmStore
spills only as much data as it must to relieve memory pressure in the system region, and
it places that data on as few of the data DIMMs as possible, as illustrated in Figure 4.2.
Furthermore, it tries to spill only infrequently accessed (cold) data. The overall goal is to
use as few of the data DIMMs as possible, and to access those that are used as infrequently
as possible, to encourage the data DIMMs to spend as much time as possible in low power
states.

In the remainder of this section, we present a more detailed description of memory
power optimization in DimmStore. DimmStore’s memory management requires support
from the underlying operating system, since the operating system controls the mapping of
DimmStore’s virtual address space into physical memory. In Section 4.2.2, we describe the
operating system support that is required, and how we implemented it in our testbed.
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Figure 4.2: DimmStore after spilling to the Data region

4.1.1 DimmStore’s System Region

As we have described, DimmStore’s power optimization strategy is to squeeze as much
of the memory workload as possible onto the DIMMs that back the system region, so
that power can be saved in the data region. All of DimmStore’s internal data structures,
including all of its database indexes, are allocated in the system region. All newly-inserted
database tuples are also located in the system region, although they may eventually spill
out. Memory allocation in the system region is rank-unaware, i.e., DimmStore does not
control which of the system region DIMMs a new memory allocation will map to.

Physical memory in the system region is managed in the usual rank-oblivous way by the
operating system kernel. Virtual address spaces for all processes, including DimmStore,
are allocated space from this region by the kernel.

The size of the system region is an important DimmStore parameter. It must be a
multiple of the capacity of a single DIMM. In the examples shown in Figures 4.1 and 4.2,
the system region occupies three of the server’s eight DIMMs. DimmStore saves memory
power by creating idleness in the data region DIMMs. If the system region is too large,
then the number of data region DIMMs will be small, and this will limit the memory power
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savings that DimmStore can achieve. If the system region is too small, then DimmStore
may be forced to spill hot data to the data region. This will reduce data region DIMM
idleness and limit power savings.

In our current DimmStore implementation, the size of the system region is fixed at
system boot time. An improved implementation would allow the system region to grow
and shrink dynamically according to the characteristics of the workload and the database.
This is feasible, but this extension is left for future work.

4.1.2 DimmStore’s Data Region

If space becomes tight in the system region, DimmStore workers can spill database tuples
into the data region, as will be described in Section 4.1.3. The available capacity of the
data region is sliced and distributed among DimmStore’s worker threads. Each worker
uses its slice to spill tuples from the logical database partition that it is responsible for.

Each worker’s slice is distributed across all of the data region DIMMs. When workers
spill tuples into the data region, they fill their slices one DIMM at a time, in a common
predefined order, as illustrated in Figure 4.2. The objective of this layout strategy is to
leave some DIMMs completely or mostly unused in situations in which the data region is
not completely filled.

To manage memory in this way, DimmStore’s data region memory allocator must be
rank-aware, i.e., it must understand how to allocate memory on a specific data region
DIMM. We describe how this is accomplished in Section 4.2.2.

4.1.3 Tuple Eviction

When the system region is under space pressure, DimmStore spills database tuples to the
data region. It evicts (spills) cold tuples, and only as many as needed to relieve the space
pressure. The goal is to keep the data region DIMMs as lightly loaded as possible, while
minimizing the performance and power overheads associated with eviction.

DimmStore adapts H-Store’s anti-caching [26] mechanism to implement tuple eviction.
As originally conceived, H-Store’s anti-cache was tuple repository located on secondary
storage. H-Store evicted cold tuples to the anti-cache when main memory was full. Anti-
caching allowed H-Store to handle databases that would not fit into memory, while main-
taining performance close to that of a fully in-memory system. In DimmStore, the data
region serves as the anti-cache. The goal of DimmStore’s anti-cache is to keep memory
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power consumption close to what can be achieved when the database fits entirely in the
system region, and the data region is fully idle.

In DimmStore, tuple eviction is controlled independently in each logical database parti-
tion, and is implemented by the partition’s worker thread. Each worker is given a capacity
threshold, which depends on the size of the system region and the number of partitions.
Every tevict milliseconds, each worker checks the total system region size of the data and
indexes in its partition. If the total exceeds the capacity threshold, the worker pauses
transaction execution and normally evicts Nevict bytes worth of tuples from the system
region to the data region, although this amount may increase if memory pressure does not
abate. Normal transaction processing stalls in the worker’s partition until eviction is com-
plete. The two eviction parameters (tevict and Nevict) control a tradeoff between eviction
stalls (which can impact performance) and the maximum rate with which tuples can be
evicted.

DimmStore workers use per-partition LRU lists to identify cold tuples to evict. A
partition’s LRU list includes all of that partition’s unevicted tuples. When eviction is
required, the worker evicts Nevict bytes worth of LRU tuples and removes them from the
list. To evict a tuple, the worker must allocate space in the data region, move the tuple,
deallocate space in the system region, and update database indexes to reflect the new tuple
location.

The original implementation of anti-caching in H-Store used a global memory moni-
toring thread and per-table LRU lists. DimmStore uses per-partition monitoring, imple-
mented directly in the worker threads, to reduce the overhead of monitoring and eviction.
H-Store’s original per-table LRU list required an additional policy to determine how much
to evict from each table, but also provided the administrative flexibility of completely
avoiding monitoring tables that are known to be hot. DimmStore uses global multi-table
LRU because it is simpler, but it could easily be modified to use per-table LRU lists in
each partition.

4.1.4 Cold Tuple Access

In H-Store, any attempt to access an anti-cached tuple results in that tuple being unevicted
from the anti-cache in secondary storage and returned to main memory. Since DimmStore’s
anti-cache is located in memory, it has more flexibility. Like H-Store, DimmStore can
unevict cold tuples on access. Alternatively, DimmStore can access cold tuples directly in
the data region, without first unevicting them.
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Tuple uneviction is less expensive in DimmStore than it is in H-Store, because H-
Store must read a block of tuples from secondary storage to retrieve the tuple. However,
uneviction in DimmStore is still significantly more expensive than accessing the tuple
directly. Uneviction is essentially the reverse of eviction. Like eviction, it requires memory
allocation and deallocation, a memory-to-memory tuple copy, and index updates.

To avoid these overheads, DimmStore prefers to access cold tuples directly in the data
region, without unevicting them. For cold evicted tuples that are rarely accessed, this is a
good strategy. However, workloads can change, and tuples that had been cold may become
warm. If a cold evicted tuple becomes warm, uneviction is preferable to frequent, on-going
tuple accesses in the data region, which is supposed to remain cold.

DimmStore manages this dilemma using a simple randomized approach. Each time an
evicted tuple is accessed, DimmStore unevicts the tuple with probability punevict, which is
a system parameter. Otherwise, it simply accesses the tuple in place in the data region,
without uneviction. This approach does not require any tracking of access recency or
frequency for evicted tuples. It also has the desired property that cold tuples that become
warm will, with high probability, eventually be unevicted.

4.1.5 Data Loading

We modified the data loading code in H-Store so that tuples can be loaded into the system
and data regions directly at system startup. The user may specify a loading memory
threshold, which may differ from the default memory threshold that triggers tuple eviction.
DimmStore begins loading data into the system region. When the combined data and index
size exceeds the loading threshold, the tuple loader starts to load batches of tuples into
the data region. Of course, such tuples may not actually be cold, but DimmStore’s anti-
caching mechanism will gradually adjust tuple locations as the system runs. Specifying a
loading memory threshold that is lower than the runtime one can be beneficial to reserve
extra space for future index growth.

4.1.6 System region memory reclamation

In H-Store, after a tuple is deleted from a table, the freed space can only be used to insert
tuples in the same table. H-Store implements a custom tuple allocator over large blocks
obtained from the operating system. When a tuple is deleted, its space is added to a free
list which is used for future insertions to the same table only. Deleted tuples’ space cannot
be used to allocate tuples for other tables.
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In DimmStore, tables in the System region are implemented as ordinary in-memory
tables. Evicting a “cold” tuple from a table in the System region causes this tuple to be
deleted from the in-memory table. Therefore, if a large number of tuples is evicted in a table
and the freed space is not used by future insertions or unevictions, the freed space becomes
unusable. The problem is particularly significant because the initial database loading fills
up the System region without knowing the tuple access frequency in the workload. As a
result, a large amount of data is evicted from “cold” tables soon after the workload starts,
creating permanently unused “holes” in the tables in the System region.

To solve this problem, we implemented a mechanism to reclaim free tuples’ space. For
each table, the percentage of the freed space is monitored and once it exceeds a configured
threshold, tuples from several blocks in the table are moved into slots taken from the free
list. The processed blocks become empty and are freed for possible re-allocation to other
tables.

4.2 System Support for DimmStore

DimmStore requires that its two memory regions be placed on separate DIMMs. Within
its data region, DimmStore also needs to be able to fill the underlying DIMMs one at a
time as it spills out cold tuples. These capabilities require support from the operating
system for rank aware memory allocation, i.e, the ability to allocate memory on specific
DIMMs. Unfortunately, although rank-aware memory allocation has been explored in a
variety of research settings [37, 38, 42, 77], we are not aware of any production operating
system that supports rank-aware allocation.

In this section, we describe how we worked around this deficiency to allow DimmStore
to run on our Linux-based testbed server. Our workarounds are not suitable for production
use, but they do allow us to run DimmStore, and hence to gauge the power savings that
could be achieved in production if suitable kernel support were available. The design of
kernel support for rank-aware allocation is beyond the scope of our current work. However,
we expect that an API similar to those currently provided by Linux (and other systems) for
NUMA-aware memory allocation could be used. In addition, the workarounds described in
this section provide some insight into the technical issues that would need to be addressed
by a kernel implementation of such an API.

Applications (like DimmStore) request allocations of virtual memory from the kernel. In
response, the kernel allocates physical memory to back the virtual memory, and establishes
a mapping from virtual to physical addresses. Rank-aware allocation involves going one
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step further, because it is necessary to understand and manage the mapping from physical
memory to the underlying DIMMs. In the remainder of this section, we first discuss
physical-to-DIMM mapping, and then describe how we supported DimmStore’s rank-aware
allocation needs in Linux.

4.2.1 Physical Memory Mapping

The mapping from physical addresses to DIMMs is controlled by low-level configuration
settings in the system BIOS. A common configuration is to interleave physical memory
across the DIMMs, or across the DIMMs attached to a single memory controller in a
multi-socket NUMA system. Memory interleaving stripes each page of physical memory
across the DIMMs at a fine granularity. As a result, each page in an application’s virtual
address space will also be striped across all DIMMs. Memory interleaving is a performance
optimization that can parallelize sequential memory accesses. However, it is incompatible
with rank-aware memory allocation, which seeks to map virtual memory allocations to
specific DIMMs. Thus, as a first step, we disable memory interleaving on our testbed
system through BIOS settings.

Once interleaving has been disabled, the next challenge is to discover the mapping (non-
interleaved) from physical memory addresses to DIMMs, a process we refer to as DIMM
mapping. There is no existing mechanism that we are aware of that can reliably report this
information to software. However, there are several indirect ways to infer the mapping. We
used a method that takes advantage of the RAPL performance counters1 in our server’s
Intel processors. In this method, the system is booted with a minimum amount of memory
allocated for the kernel. We then run a program that sequentially probes physical memory
addresses while monitoring RAPL counters. Depending on the version of the Intel platform,
different RAPL counters are available, some offering per-channel or per-rank resolution. As
the probing program probes a memory location, the counter associated with that location’s
physical memory channel or rank will be incremented, which is detected by the probing
program. In our system, with an Intel E5 v3 processor and single DIMM populated in each
channel, we used the per-channel CAS COUNT event, which reports the number of reads
and writes on a channel. Using this method we can build a complete map from physical
addresses to DIMMs. By applying this method to our testbed server, we learned that
most of the DIMMs are laid out sequentially in the physical address space according to
their hardware numbering on the motherboard, with the exception of the very first DIMM,
which stores two discontiguous physical address ranges.

1Intel processors estimate power consumption using models driven by hardware-maintained counts of
events, such as memory accesses. These counts are accessible to software.
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4.2.2 Rank-Aware Allocation

Once the physical-to-DIMM mapping is known, we use kernel boot parameters to restrict
the physical memory available to the kernel to a subset of the DIMMs. We refer to this
as kernel-managed memory. All memory allocations performed by the kernel occur within
the kernel-managed memory. The physical memory on the remaining DIMMs is visible to
the kernel, but is unmanaged. We limit the kernel-managed memory in Linux by setting
the mem and memmap kernel parameters. The mem parameter sets the initial limit on the
available memory at the beginning of the physical address space. The memmap parameters
are used to add physical memory regions to the memory available to the kernel.

DimmStore’s system region is mapped to kernel-managed memory, as shown in Fig-
ure 4.3. As was noted in Section 4.1.1, DimmStore uses separate memory allocators for its
two regions. The system region memory allocator obtains memory from the kernel in the
usual way, and the kernel satisfies these requests using kernel-managed physical memory.
Hence, the entire system region will be confined to the kernel-managed DIMMs. Any other
processes running on the server also obtain virtual memory from the kernel in the usual
way, and hence they, too, will be confined to the kernel-managed DIMMs.

The physical memory that is not managed by the kernel is managed directly by Dimm-
Store, and forms its data region. To take control of the unmanaged memory, DimmStore
uses Linux’s /dev/mem special device, which represents all of physical memory (including
the unmanaged memory) as a file. DimmStore’s rank-aware data region memory allocator
uses Linux mmap calls to allocate virtual memory that is backed by the unmanaged parts
of /dev/mem. We provide the data region allocator with the complete physical-to-DIMM
mapping so that it can allocate memory on specific DIMMs by targeting specific parts
of /dev/mem. For obvious security reasons, /dev/mem is only usable by privileged pro-
cesses in Linux. Therefore, absent any operating system support for rank-aware allocation,
DimmStore must run as a privileged process for the purposes of our experiments.

4.3 Experimental Setup

All experiments were performed using our testbed server, which has two 8-core Intel Xeon
E5-2640 v3 processors working at nominal 2.6 GHz. Each CPU socket is provided with
four memory channels and two DDR4 DIMM slots per channel. We populated only half of
the DIMM slots to leave room for our memory power measurement apparatus. As a result,
each channel has a single 16 GB DDR-4 DIMM, and the server overall has 8 DIMMs, for a
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total of 128 GB of memory. The number of DIMMs in the system and data regions varies
between experiments, and is specified in the relevant sections below.

Our testbed server includes custom instrumentation for memory power measurement,
as described in Section 2.4. Power consumption of each DIMM in the system is collected
during the experiments.

In addition to these direct power measurements, we use RAPL counters to measure
the number of memory read and write operations in each memory channel, and hence on
each DIMM. We also use RAPL counters to measure memory power state residencies, i.e.,
the amount of time each DIMM spends in each memory power state. These counters are
provided by the integrated memory controller in our Xeon processors. Finally, we measured
application-level performance statistics, such as transaction response times, in DimmStore.

4.4 Experimental Evaluation (YCSB)

Our first set of experiments uses the YCSB workload [21], which has relatively simple
and controllable skewed data access patterns. We used the existing YCSB benchmark
implementation from H-Store.

The YCSB database consists of a single table and a single index on the integer primary
key. The size of the tuples is approximately 1000 bytes. We used a read/write mix with
the ratio of 80% READ RECORD to 20% UPDATE RECORD transactions. Each YCSB
transaction chooses a single primary key value, and either reads the corresponding record
or reads and then updates the record, depending on the transaction type. Keys are selected
independently and randomly, according to a Zipf distribution with skew parameter s.

In each experimental run, transactions are generated at a fixed rate, which we control.
We ran experiments at eight settings of offered load, up to 180 Ktps, which is about 80% of
the peak load sustainable by the baseline H-Store system. The size of DimmStore’s system
region was set to two DIMMs (32 GB) for all YCSB experiments. Figure 4.4 summarizes
the other YCSB workload and DimmStore parameter settings.

Each experimental run consists of three phases: database loading, warm up, and mea-
surement. We ignore measurements collected during the loading and warm up phases. The
warm up and measurement phases are each 5 minutes long at the peak load we tested. For
lower loads, we scale both intervals up so that the same amount of work is performed at
every load level during each phase.
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Parameter Values Default

Zipf skew parameter s 0.5 - 1.2 0.95
Database size 10 - 100 GB 60 GB
Offered load 22.5 - 180 Ktps 90 Ktps

System region size 32 GB 32 GB
Eviction interval tevict 1 ms 1 ms
Eviction volume Nevict 64 KB 64 KB

Uneviction probability punevict
1
64

1
64

Figure 4.4: YCSB Experiment Parameters

4.4.1 Effects of Power Optimizations

We begin with an experiment that is intended to illustrate how the memory power optimiza-
tion techniques implemented in our testbed affect memory usage and power consumption.
For this experiment, we fix the database size at 60GB, and use the YCSB workload at 90
Ktps. We compare per-DIMM memory access rates and power consumption under Dimm-
Store with those of the baseline H-Store system. Later in this section, we look at what
happens to power consumption and performance as the load and database size are varied.

Figure 4.5 shows total memory access rates (reads and writes combined) per DIMM for
DimmStore and H-Store, as well as the average per-DIMM access rate across all DIMMs.
This figure illustrates two key properties of the memory power optimizations in DimmStore.
First, the average per-DIMM memory access rate in DimmStore is very close to that of the
baseline. This indicates that the memory overhead of DimmStore’s anti-cache, including
tracking frequently accessed tuples and migration of tuples between the system and data
regions, is very low for this workload. Second, DimmStore shifts memory accesses away
from the data region, and into the system region (DIMMs 0 and 4), resulting in a very
skewed load distribution across the DIMMs. In contrast, the baseline system, which uses
memory interleaving, is not rank-aware, and does not attempt to separate hot and cold
data, spreads the memory workload more evenly across the DIMMs.

Does the skewed access distribution created by DimmStore actually reduce memory
power consumption? Figure 4.6 shows measured power consumption per DIMM for Dimm-
Store and for the baseline H-Store system. Although both systems are handling approxi-
mately the same memory load, the average power consumption per DIMM is about 30%
lower in DimmStore. DIMMs in the system region (DIMMs 0 and 4) consume more power
in DimmStore than the corresponding DIMMs in the baseline system, due to the shifted
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Figure 4.5: YCSB: Individual DIMM access rate, 60 GB database, 90 Ktps. For Dimm-
Store, the system region consists of DIMMs 0 and 4, with the others making up the data
region.

workload. However, that is more than offset by power savings in DimmStore’s data region
DIMMs.

In this experiment, the server’s memory capacity is not fully utilized. In its data region,
DimmStore is rank-aware, and uses as few DIMMs as possible to store data. Thus, in this
experiment, DIMMs 2, 6, and 7 are essentially empty, allowing them to sink into low-power
states. DIMMs 1, 3, and 5 contain data, but it is cold data. Power consumption in DIMMs
1 and 3 is higher than that of the empty DIMMs, but still substantially lower than power
consumption in the baseline. DIMM 5 also contains cold data but consumes more power
than DIMMs 1 and 3, for reasons we discuss next.

The memory load shifting performed by DimmStore creates longer idle periods on the
less-loaded DIMMs. If idle periods are long enough, those DIMMs can shift into low-power
states, which reduces background power consumption. These background power savings
are the reason for the net memory power savings in DimmStore. Figures 4.7 and 4.8
illustrate this effect. Figure 4.7 shows the memory power state residencies for each DIMM
for the baseline system. All DIMMs spend at least half of their time in the full-power
StandBy state, and almost never enter the very low power Self Refresh state. We can also
observe that the memory controller on our server’s second socket (which controls DIMMs
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Figure 4.6: YCSB: Individual DIMM power consumption, 60 GB database, 90 Ktps load.
For DimmStore, the system region consists of DIMMs 0 and 4, with the others making up
the data region.
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Figure 4.8: YCSB: Average power state residency in DimmStore, 60 GB database, 90 Ktps
load

4-7) makes much less use of low power states than the controller on the other socket,
although both sockets’ DIMMs experience similar loads. We are uncertain of the reason
for this, but it affects both DimmStore and the baseline.

Figures 4.8 shows the corresponding memory power state residencies for DimmStore.
DIMMs 2, 6, and 7, which are empty, spend all of their time in Self Refresh state, reducing
power consumption to about 0.3 W per DIMM. Out of three DIMMs that do contain data,
DIMMs 1 and 3 spend about 80% of their time in the Power Down state and about 10% in
the Self Refresh state, and little time in the full power StandBy state. This is because these
DIMMs hold only cold data. Thus, using both rank-aware allocation and access-rate-based
layout, DimmStore is able to reduce background memory power consumption throughout
the data region.

4.4.2 Effects of Database Size

Next, we show how memory power consumption is affected by the database size (Fig-
ure 4.9). With the largest (100GB) database, when memory is fully utilized, DimmStore
saves roughly 11% of memory power, relative to the baseline system. DimmStore’s power
savings come from concentrating cold tuples in the data region, so that data region DIMMs
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Figure 4.9: YCSB: Memory power consumption by database size, 90 Ktps load.

have low access rates and reduced background power consumption. The corresponding per-
DIMM power measurements are shown in Figure 4.10. The total power consumption of the
two hot DIMMs’ increases by 0.7 W (0.35 W each), while consumption of the six DIMMs
in the data region decreases by 2.86 W total (0.48 W each).

In experiments with smaller databases, memory accesses are “funnelled” to a smaller
number of tuples while the total transaction rate stays the same. The baseline cannot
take advantage of this, because the tuples are spread across all DIMMs. Hence, memory
power consumption is insensitive to database size. In DimmStore, smaller database reduce
memory power consumption. At the smallest database size we tested (10GB), memory
power consumption in DimmStore was about half of that in the baseline. Smaller databases
lead to reduced power consumption in DimmStore because of rank-aware allocation, which
leaves some DIMMs completely unused when their space is not needed. Each DIMM that
is not used saves 0.8 W compared to the average consumption of a DIMM in baseline.
When the database is the smallest, this amounts to about 5 W over 6 idle DIMMs, while
the two hot DIMMs increase their consumption by only 1.5 W in total.

4.4.3 Effects of Load

To study the effects of load, we fixed the database size at 60GB and varied the transaction
request rate. Figure 4.11 shows total memory power consumption as a function of the

59



0 4 3 5 1 6 2 7 Average
0

0.5

1

1.5

2

DIMM #

P
ow

er
,

W

baseline
DimmStore

Figure 4.10: YCSB: Individual DIMM power consumption, s=0.95, 80 GB DB (baseline),
100 GB database (DimmStore), 50% load, read-only mix
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Figure 4.11: YCSB: Memory power consumption by load, 60 GB database
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Figure 4.12: YCSB: Average power state residency in the baseline by load, 60 GB database

request rate. Both the baseline and DimmStore show nearly linear increases in power
consumption with increasing loads. However, DimmStore consumes roughly 30% less power
across all load levels. Active memory power grows in proportion to memory access rate
and is partially responsible for the power consumption increase in both systems. However,
the contribution of active power to total memory power consumption is small, even at high
transaction loads. The primary reason that power increases with load is background power.
To explain this, we show the average DRAM power state residencies for all DIMMs, for
baseline and DimmStore, in Figures 4.12 and 4.13, respectively. Figure 4.12 shows that
increasing load increases time spent in the full-power StandBy state, largely at the expense
of the Power Down state. For DimmStore, Figure 4.13 shows a similar increase in StandBy
state residency, but at the expense of both Self Refresh and Power Down states combined.
Self Refresh residency in Baseline is very low, which means there is not enough idleness in
memory access pattern for transitions to Self Refresh. The Power Down state is utilized
instead due to its short transition interval, but it provides less power savings. Power Down
residency decreases with load with explains the change in the power consumption with
load.

DimmStore reduces access rate to the DIMMs in the cold region so that the intervals
between accessWhile reducing the transaction rate, the Self Refresh residency increases
almost linearly, while the Power Down residency stays almost constant. Effectively, Dimm-
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Figure 4.13: YCSB: Average power state residency of non-empty Data region DIMMs in
DimmStore by load, 60 GB database.

Store uses Self Refresh, which is a deeper low power state, in DIMM’s of the warm region,
instead of Power Down during idle periods between memory accesses.

4.4.4 Effects of Access Skew

We ran experiments in which the workload skew was varied, for a fixed database size (60
GB) and offered load (90 Ktps). Workloads with higher skew have more power saving
potential because tuple accesses are more concentrated towards the hot side of the dis-
tribution. As shown in Figure 4.14, this has only a small impact on power consumption.
The effect is not large because access rates in the data region are already quite low at the
default skew level.

4.4.5 Performance

The memory power optimizations implemented in our testbed may introduce some per-
formance degradation. At the architectural level, concentrating memory load on a small
number of DIMMs may introduce contention for those DIMMs. At the application level,
DimmStore itself incurs costs to maintain the LRU list for identification of cold data, and
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Figure 4.14: YCSB: Memory power consumption by access skew, 60 GB database, 90 Ktps
load

for evicting and unevicting tuples from the data region. However, for the YCSB workload,
we observed little performance impact from these optimizations.

We evaluate the performance cost of DimmStore’s power optimizations by comparing
its peak transaction throughput to the one of baseline. Peak throughput in each system
is determined by offering it a transaction rate higher than the system can sustain and
measuring the actual rate. The benchmark client is also configured in a blocking mode,
meaning it senses backpressure in the transaction queue, and throttles the load queue
when backpressure is detected. We measured a peak sustainable throughput of 224 Ktps
for the baseline H-Store system and 219 Ktps for DimmStore (using a 60 GB database), a
degradation of about 2%.

In addition to peak throughput, we also measured transaction latency at a range of off-
peak loads. Figure 4.15 shows mean transaction latency as a function of load. Latencies
in the two systems are very similar under this workload.

A low performance impact of DimmStore’s power optimizations in YCSB can be ex-
plained by its stable tuple access distribution. In YCSB, the probability of hitting a tuple
never changes. After a warm up period, DimmStore is able to identify cold data and move
it into the data region, where it will tend to remain. Tuple eviction and uneviction rates
are the same as the rate of access to cold data, which is low. Thus, the overheads associated
with eviction and uneviction are also low.
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Figure 4.15: YCSB: Average transaction latency by load, 60 GB database

4.4.6 CPU Power Consumption

The overhead of detecting hot data and evicting and unevicting tuples translates to addi-
tional power consumed by the CPU. To estimate the additional CPU power consumption,
we collected CPU power reports from the RAPL counters. Figure 4.16 shows CPU power
consumption as a function of load. For the YCSB workload, the overhead and resulting
additional CPU power consumption are small. On average, over a set of 16 YCSB experi-
ments with varying loads and database sizes, we observed that CPU power in DimmStore
was less than 1% higher than baseline CPU power, with a worst case increase of 2.7%.

4.4.7 System Region Sizing

In DimmStore, the size of the system region is a configuration parameter, that has to be
set by the system administrator before starting the system. The system region cannot be
smaller than the size of scratch memory needed by the operating system and the DBMS,
and the size of all indexes. Beyond its minimum size, the system region of an optimal size
also fit the most frequently used subset of the data tuples to avoid a high volume of data
migration due to evictions and unevictions, and the associated heavy performance impact.
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Figure 4.16: YCSB: CPU power consumption by load, 60 GB database

As long as the performance cost of DimmStore is small enough with a System region of a
given size, increasing it further will increase memory power consumption due a proportional
increases in its background power consumption.

To illustrate this effect, we repeated the experiment with the System region expanded to
4 DIMMs out of 8 total. Figures 4.17 shows memory power consumption and Figure 4.18
shows transaction latency as a function of load, for two configurations of the System
memory region. Since the DimmStore’s performance impact in the YCSB is minimal, as
was shown in Section 4.4.5, the only effect of a larger System region is a higher memory
consumption.

4.5 Experimental Evaluation (TPC-C)

TPC-C is a widely used transactional benchmark that simulates an order-processing sys-
tem. TPC-C exhibits more complex, time-varying memory access patterns than YCSB.
We repeated our experiments using TPC-C. In particular, we compared the memory power
consumption and transaction performance of DimmStore and the H-Store baseline across
various database sizes and load levels.
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Figure 4.17: YCSB: Total memory power consumption by load, two sizes of the System
region, 80 GB database.
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Figure 4.18: YCSB: Total memory power consumption by load, two sizes of the System
region, 80 GB database.
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Parameter Values Default

Database scale factor 100 - 900 warehouses 350
Database size 10 - 90 GB 35 GB
Offered load 8 - 62 Ktps 36 Ktps

System region size 48 GB 48 GB
Eviction interval tevict 1 ms 1 ms
Eviction volume Nevict 64 KB 64 KB

Uneviction probability punevict
1
64

1
64

Figure 4.19: TPC-C Experiment Parameters

4.5.1 Methodology

We used the TPC-C [5] implementation from H-Store, with several modifications. First,
since DimmStore requires that all indexes reside within the system region, we removed
redundant indexes and dropped foreign key constraints. Second, we switched most indexes
from hash to B-Tree, since the latter are more space efficient. As a result of these changes,
the index-to-data ratio decreased from above 40% to about 22%, allowing us to test with
larger databases. Finally, we disabled out-of-line data storage for large attributes, so that
entire tuples are stored together. In TPC-C, only two columns were affected: S DATA in
the STOCK table (size 64) and C DATA in the CUSTOMER table (size 500). The change
did not increase the effective database footprint because these columns are assigned values
of the maximum size.

For each experimental run, we choose a database scale factor, load the database, and
then run the TPC-C workload. The scale factor in TPC-C, which is measured in “ware-
houses”, determines the initial size of the database. We experiment with scale factors from
100 to 900 warehouses. Each 100 warehouses translates to about 10 GB of data. To leave
some head room for the client processes and background tasks, we configured both Dimm-
Store and the H-Store baseline to use 12 database partitions and 12 workers, which use
12 of the 16 cores available on our testbed server. In DimmStore, the size of the system
region is set to three DIMMs (48 GB) for all experiments. The remaining DimmStore
configuration parameters were set as for YCSB, as shown in Figure 4.19.

Each experimental run has loading, warm up, and measurement phases, as for YCSB.
The warm up and measurement phases lasted 2.5 and 5 minutes, respectively, at the highest
offered load level. During each run, the TPC-C database grows. We extended the warm
up and measurement phases when testing below peak loads so that the actual database
size (after growth) was approximately the same during the measurement period, regardless

67



100 200 300 400 500 600 700 800 900
0

5

10

15

TPC-C Scale Factor, Warehouses

P
ow

er
,

W

baseline
DimmStore

Figure 4.20: TPC-C: Memory power consumption by database scale factor, 36 Ktps load

of the load. We performed runs with offered loads up to 62 Ktps, which is about 90% of
the peak load sustainable by the baseline H-Store system.

When presenting measurement results, we exclude the initial warm-up period and report
averaged measurements for the following 5-minute interval. Accounting for the warm-up
period is necessary because the LRU list of a freshly populated database does not reflect
the tuple access distribution in the workload. Therefore, immediately after workload starts,
the system makes a poor choice of selecting which tuples to evict. This manifests itself as
a sharp spike in the cold region access rate immediately after the workload starts. A local
minimum exists because after the initial spike due to the unwarmed LRU list subsides, the
cold region access rate starts to slowly increase due to newly inserted index records that
gradually reduce the space available for data tuples in the System region.

4.5.2 Effects of Database Size

In our first set of experiments, we fixed a medium offered load level (36 Ktps) and compared
the memory power consumption of DimmStore and the baseline as the initial database size
is varied. Figure 4.20 shows the result of these experiments. The results here are similar
to what we observed for YCSB (Figure 4.9). Memory power consumption in the baseline
is insensitive to the database size, while DimmStore is able to translate smaller databases
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Figure 4.21: TPC-C: Individual DIMM power consumption, DimmStore vs baseline, max-
imum size database (900 warehouses), 50% load

into memory power reductions. The maximum power savings we observed were about 43%,
for the smallest database.

Our TPC-C results differ from YCSB in two ways. First, the memory power savings
we observed for the largest databases were smaller for TPC-C than for YCSB. TPC-C’s
more complex data access patterns make it harder for DimmStore to accurately identify
hot and cold tuples. As a result, the memory access rate in the data region is not as
low as it is in YCSB. Second, DimmStore’s power consumption stops decreasing after the
database size falls below 300 warehouses. Once the database is small enough, it fits entirely
within the 3-DIMM system region, leaving the entire data region idle. Thus, no further
reductions are possible without reconfiguring the testbed to use a smaller system region.
This represents a limitation of our testbed, which statically configures the system and data
regions, rather than a fundamental limitation of the hardware or the application. In turn,
higher warm region access rate causes lower relative power saving in the corresponding
DIMMs, as shown in Figure 4.21. Thus, power reduction in the warm region is 0.25 W
per DIMM, which is lower than in YCSB. However, the increase in consumption of the
System region is 0.36 W per DIMM, which is similar to YCSB. Accounting for the number
of DIMMs in each region, the balance becomes only 0.25 W of net power savings.
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Figure 4.22: TPC-C: Memory power consumption by load, 350 warehouse DB

However, DimmStore draws increasingly less memory power when the database is
smaller. Memory power consumption falls almost linearly, until the database becomes
so small that it can fit in the System region completely. At that point, DimmStore saves
between 30 and 45%, depending on the System region size. The baseline power con-
sumption does not significantly change for various sizes. For the 3 DIMM System region
configuration the power balance becomes as follows. Each of the 6 warm DIMMs saves
0.79 W, compared to the average baseline DIMM power, while the 2 hot DIMMs consume
0.24 W more, which nets 3.2 W savings overall. Power consumption does not decrease
further with databases smaller than the System region because the memory load is spread
between all DIMMs in the System region.

4.5.3 Effects of Load

In our second set of experiments, we fixed the initial database scale factor at 350 ware-
houses, and varied the offered load. Figure 4.22 shows memory power consumption as
function of the offered load. As was the case for YCSB (Figure 4.11), the memory power
gap between DimmStore and the baseline is maintained across the load spectrum. For
both baseline and DimmStore, power consumption increases with load by about 2.5 W
between 25% and 75% load. DimmStore saves approximately 2.5 W in all experiments and
this difference is not affected by load. Most part of the power reduction is due to unused
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Figure 4.23: TPC-C: Peak throughput by database size

memory space on the last DIMMs in the system, allowing them to stay in the Self Refresh
state.

4.5.4 Performance Effects

Next, we consider DimmStore’s effect on TPC-C performance. We measured peak through-
put of DimmStore and the baseline H-Store system with different initial database sizes,
using the same methodology as in the YCSB experiments. Figure 4.23 shows the results
of those experiments. The DimmStore’s peak throughput is approximately 6% below H-
Store’s when the database is small enough to fit in the system region. As the database
becomes larger, the additional overhead of data eviction and uneviction comes into play
and the throughput gap grows to about 10%.

We also measured transaction latency for both systems at offered loads below peak.
Figure 4.24 shows the mean transaction latency (averaged over all TPC-C transaction
types) as a function of the offered load. At low to medium loads, DimmStore’s memory
optimizations have little to no effect on transaction latencies, but the gap was larger at
the highest load levels. Since memory load is relatively light in these experiments, even
at high transaction rates, we attribute this primarily to overheads within DimmStore, and
not to memory contention. Overheads include maintenance of the LRU list and eviction
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Figure 4.24: TPC-C: Average transaction latency by load, 350 warehouse DB

and uneviction of tuples. While these overheads are not very significant at low load, their
impact increases as load gets higher. In particular, tuple eviction in each database parti-
tion monopolizes that partition’s worker for short periods of time, during which pending
transaction work must queue. We believe the impact of these overhead can be reduced in
DimmStore, e.g., by using lighter-weight access frequency estimation and by doing finer-
grained tuple evictions, but we leave improvements of these mechanisms in DimmStore to
future work.

4.5.5 CPU Power Consumption

As for YCSB, we used RAPL performance counters to measure CPU power, which is
shown in Figure 4.25. Due to the more complex workload, DimmStore’s overhead is higher
in TPC-C than in YCSB. Over all of our TPC-C experiments, with various offered loads
and database sizes, we observed that DimmStore’s CPU power consumption ranged from
about 3% to 6% larger than the baseline’s.
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Figure 4.25: TPC-C: CPU power consumption by load, 60 GB database

4.6 Discussion

In this chapter, we presented DimmStore, a prototype of a power-efficient database sys-
tem that reduces memory power consumption by placing database regions with different
access rates into separate sets of DIMMs. We demonstrated that DimmStore reduces
memory power consumption by up to 50%. Relative power savings are higher with smaller
databases.

DimmStore imposes a moderate impact on system performance, which depends on the
workload access patterns. The performance impact is negligible in the YCSB workload,
which has simple and static data access pattern. In TPC-C, which access pattern is more
complex, the performance impact is below 10%.

DimmStore works by placing rarely accessed data into a memory region, backed by a
distinct subset of DIMMs. When the database is smaller than the amount of available
memory, only some of the DIMMs in this regions are used. DimmStore minimizes power
consumption of the unused DIMMs, which will always stay in the deepest low power state
(Self Refresh). The power savings in the used DIMMs depends on the access rate to these
DIMMs. If the memory controller employs a conservative power state policy, even the
reduced access rate may not result in long enough intervals between access to DIMMs of
the Data region.
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One technique to reduce the power consumption in used DIMMs of the Data region,
once the access is reduced by DimmStore, is to introduce temporary idle periods. It will
be discussed in Chapter 5.

4.7 Related Work

DimmStore uses memory low-power states as a mechanism to reduce memory power con-
sumption. Existing work on memory power optimization that are also based on the use
of lower-power states are presented in Section 4.7.1. To maximize memory idleness in its
Data region, DimmStore relies on classifying data tuples into frequently and infrequently
used. Existing work on data classification is covered in Section 4.7.2.

4.7.1 Memory Power Optimization with Power States

Leveraging memory power states has been an important direction of research in power
efficient systems. Power states are attractive targets because their power consumption
differs significantly, indicating that high energy saving can be achieved if low-power states
are better utilized. However, lower power states are associated with delays in memory
access. Therefore, the actual question is finding the optimal strategy of state transitions
to balance the power and performance goals.

In this section, I describe existing techniques for memory power state management.
In current systems, DRAM power state transitions are steered by the memory controller
and there are no direct means for software to control them. Therefore, I will start with
pure hardware approaches. However, hardware approaches may be limited in effectiveness
because of the small amount of information about the state of the program execution
available to the memory controller. Some authors argue for bringing the control of state
transitions to the software, assuming that a power state control mechanism can be added
in the future, if this helps save power. Alternatively, it is also possible to indirectly cause
memory to transition to a lower-power state by shaping the memory access. This approach
is coarser, but it is available for exploration now. The software-based techniques for power
state management will be described later in this section.

Hardware-directed Power State Management

The memory controller utilizes complex algorithms to schedule read and write requests
from the CPU to satisfy DRAM timing requirements, with the primary goal of maximizing
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performance. Minimizing DRAM power consumption has become another goal, but these
two goals are in conflict with each other. There are two reasons for this. First, power state
transitions incur additional access latency. Second, performance-oriented scheduling causes
memory accesses to spread more evenly (over time and hardware interfaces), reducing the
opportunity for memory devices to utilize low power states.

A memory controller with the ability to use low power states is said to implement a
power management policy to balance the conflicting performance and power requirements.
Such a policy can be considered a hardware-based memory power optimization technique
that is transparent to software running on the system. A simple and widely used memory
power management policy is a timeout-based one [53, 34]. In such a policy, a unit of
memory, such as a rank, transitions to the low power state after it has been idle longer than
a specified threshold time. When multiple states are supported, each is associated with its
own threshold value, with longer ones for deeper states. Choosing the right threshold is a
balancing act: going to a low power state too soon will negatively impact performance while
longer thresholds waste more energy before the transition occurs. More advanced adaptive
policies [40] consider the state of the scheduling queue(s) to predict future accesses and
control the state transitions with better accuracy. The mechanisms based on the memory
controller request scheduling are effective in exploiting shallow power states. However,
because of a limited queue depth, they cannot create period of idleness long enough to
enable deeper power states, such as Self Refresh.

A pure hardware technique proposed by Amin and Chishti [10] extends periods of rank
idleness by delaying eviction of some cache lines from the CPU cache. Since the CPU
cache has much larger capacity than a reorder queue in the memory controller, there is a
potential to delay accesses for longer periods. The proposed cache implementation tracks
the rank information for each stored cache line. Among all ranks, some are designated
as prioritized ranks, and the eviction algorithm is modified to avoid evicting cache lines
belonging to prioritized ranks. Periodically, the set of prioritized ranks is rotated to allow
the delayed cache lines to be eventually evicted. The potential cost of prolonged cache
line residency is cache pollution and the resulting increase in cache misses and a drop in
performance. However, balancing the maximum duration of rank prioritization limits the
negative effects while allowing idle intervals long enough so that deeper low power states
can be used.

Compiler-directed Power State Management

In compiler-driven approaches, code generation for a program being compiled is adjusted
to maximize idle intervals in accessing memory ranks. Delaluz et al [27] presented a set of
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compiler optimization techniques aimed at reducing the number of used memory ranks in a
system with multiple ranks. The techniques use static program analysis and target the pro-
gram fragments that operate on arrays. Examples of array-dominated applications include
linear algebra solvers and video processing. The first step of the proposed optimizations
is an array allocation algorithm which tries to place program arrays with similar access
patterns on the same set of ranks. This technique alone improves the rank access locality
of the program, and thus power efficiency. Once the best array placement is computed, the
other techniques make further improvements. Loop Fission converts a loop consisting of
several independent statements into several loops. As long as the independent statements
access arrays from different ranks, a smaller set of ranks can be activated at a time. Loop
Splitting is an orthogonal technique that converts loops over a large array intervals into a
series of loops over parts of these intervals. It can reduce the number of used ranks when
several arrays spanning multiple ranks are accessed in the loop. Finally, Array Renaming
reduces the program memory footprint by reusing the space taken by previously processed
arrays once they are not needed. The compiler also inserts power state control instructions
when it expects the set of used memory ranks to change, so an explicit power state control
by software is assumed. The advantage of the presented approach is its ability to optimize
power consumption of existing code without modifying it. However, since the techniques
depend on the details of the memory configuration, such as the size of the ranks, recom-
pilation is required when the program is used on a different system. Since array-like data
structures are widely used in DBMS’s, especially the main-memory ones, same ideas can
be employed when designing its algorithms, so that compiler “magic” is not necessary.

The trade-off between performance and memory power consumption of the code gen-
erated by the compiler is explored by Wang and Hu [76]. In their work, variables are
partitioned between memory ranks according to the maximum cut algorithm. Then, an in-
struction scheduling algorithm is used to chooses between favouring performance or favour-
ing power efficiency A high-performance schedule is shorter because of more parallelism
between memory accesses. However, for a given length of the schedule (number of clock
cycles), the proposed algorithm can choose the schedule that maximizes the length of idle
intervals in memory ranks. Similar to reordering of memory commands in the memory
controller queues, an instruction scheduling algorithm in the compiler can only improve
memory idleness over the short term because the reordering distance is limited by program
analysis capabilities.
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OS scheduler-based techniques

A very common approach to maximize rank idleness is to modify the virtual memory and
scheduling subsystems of an operating system. The technique by Delaluz et al [28] gives
the control over memory power states to the OS scheduler. The OS tracks memory pages
accessed by a process used the “referenced” bit in the page table, which is managed by
the CPU’s Memory Management Unit (MMU). Assuming that the OS knows the mapping
between memory pages and ranks, it can collect per-process rank usage information. When
a process is scheduled to run, the memory ranks that are known to be used by the process
are switched into the active state, and the remaining ranks go into a low-power state. The
proposed mechanism is very basic, as it relies on passive monitoring of rank usage without
an attempt to minimize the rank set by steering the allocation strategy. Memory power
efficiency is improved compared to the automatic timeout-based power state management
because it eliminates energy consumption during the unnecessary timeout intervals. How-
ever, the overall efficiency would depend on whether processes’ memory access patterns
tend to naturally cluster in a small subset of memory ranks.

Power-Aware Virtual Memory (PAVM) by Huang et al [37] is a step further in the
same direction, and addresses the problem of minimizing the set of used ranks per process.
Since finding the optimal solution would be computationally expensive, their approach is
heuristic-based. The OS keeps track of the memory ranks used by a process (preferred
nodes) and any further allocations are directed to one of these ranks, as long as there is
space available. The preferred node set is expanded by one rank at a time once it runs out
of space. Switching the power state of memory ranks is performed by the OS scheduler
during a context switch. The study highlights the challenges that arose during evaluation
of the practical implementation. A serious problem is memory sharing between processes,
which causes processes’ memory to become scattered across many ranks. Common causes
of memory sharing are memory-mapped shared libraries and the page cache. The problem
of shared memory was addressed by directing allocation of shared paged to a separate
set of ranks and migrating pages back to the process private ranks once they cease to be
shared. This study is notable due to its practicality, as it was shown that the proposed
technique can be implemented in a real system with little performance overhead. However,
its effectiveness relies on whether memory usage can be partitioned by a process. The
described approach seems more appropriate for multi-tasked mobile environments where
running applications are only occasionally active.

In two related papers [42, 41], threads are clustered into groups so that each group is
associated with one memory rank. Memory allocations from a thread group are directed
into the associated rank so that the association between thread groups and ranks is main-
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tained. The threads in a group are scheduled together so that rank accesses are batched,
increasing memory idleness for the remaining ranks. However, the papers provide few
details on how thread groups are formed and how shared memory is handled.

The important idea of maximizing rank idleness by exploiting or creating access skew
between memory ranks was initially applied at the OS level. The concept of hot and cold
ranks for memory power saving was introduced by Huang et al [38]. The authors made
the observation that the deeper Self Refresh power state break-even idle interval is very
long so that this state is almost never entered. The solution would be to separate memory
pages according to their access frequency so that the pages with higher access rates are
placed to the hot ranks, and the ones with lower rates go to the cold ranks. It was assumed
that a mechanism exists to estimate access frequency of a memory page, for example, by a
memory controller or using page faults. The proposed solution required physical memory
pages to be copied between ranks, as described in an earlier work [37], which may introduce
additional performance and energy cost. However, since memory page access distribution is
uneven, in most workloads it is only necessary to migrate a small percentage (1.5-14.4%) of
all pages to maintain sufficient hot/cold rank separation. My work is also based on the same
concept of data segregation into hot and cold ranks based on access frequency. However,
the solution by Huang et al [38] is application-oblivious and would be implemented at
the OS level. In my work, the memory power management is moved to the application
(database) level, which allows for a finer granularity of hot/cold separation (tuple level vs
page level) and potentially a more accurate and less costly access frequency estimation.

A follow-up work on OS-based memory power management by Wu et al [77] improves
on the hot/cold classification memory pages. Instead of relying only on access counters,
pages are classified using the MQ algorithm. The MQ algorithm maintains M LRU queues
and higher queues store pages that are more recently used in addition to ordering pages
by access recency in each queue. The queues are mapped to memory ranks according to
their queue number and the relative position in the queue. Once the ideal page placement
is produced, a minimum set of migrations is computed that brings the page placements to
the previously found mapping. One advantage of the MQ algorithm is its ability to capture
both frequency and recency information on page accesses. Another advantage is that the
“temperature” of the ranks increases gradually, as opposed to having hot and cold ranks.
The proposed technique demonstrates an improved idle time prediction accuracy, which
comes close to an offline optimal algorithm.
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Improving Memory Rank Idleness in DBMS

Most of the work on improving memory power efficiency did not target a particular class
of applications. There are studies to characterize memory power in database systems
(Section 3.6), but they only suggest directions to save on memory power. One database-
specific work by Bae and Jamel [14] aims at limiting memory power consumption in a
disk-based DBMS under varying load. They have modified a DBMS to dynamically reduce
the buffer pool in order to allow the unused memory to sink into a lower power state.
Since the DBMS controls the memory allocation of the buffer pool, it can estimate the
required size and adjust the amount of allocated space accordingly. In the baseline, even
though some buffers are unused, the physical memory pages are scattered over the memory
ranks, preventing any of them from becoming idle. This work highlights the advantage
of application-level control of memory allocation over intrinsic hardware and OS-driven
methods. The limitation of this work is that there are only two states of the buffer pool:
small and large, each with a predefined size. This limitation reduces the potential of energy
efficiency for arbitrary workloads, as well as introducing performance transients during the
time when the buffer pool capacity changes.

4.7.2 Data Classification

To save memory power by better utilizing its low power states, longer idle periods are
needed. A simple way to increase idleness, is to separate memory space into a hot and
cold regions and maintain access skew between the regions. In this setting, the problem
of placing data elements between the regions becomes similar to the classical problem of
designing a replacement policy in a buffer pool (cache). The goal of a replacement policy
is to ensure a minimum access probability of secondary storage (buffer pool miss), given
a smaller buffer pool located in main memory. Scores of replacement policies have been
proposed for OS and DBMS buffer pools over the decades. They differ by how accurately
they predict the likely used elements, which is workload-specific, and by computational
and memory costs. I will briefly outline a few of them, mainly to illustrate the cost aspect.
The Least Recently Used (LRU) [13] algorithm is probably the most ubiquitous. The LRU
algorithm reasonably well approximates the optimal replacement policy, and is trivial to
implement. A typical implementation uses a doubly-linked list, which requires a substantial
space cost of two pointers per element. On every access of an element that is currently in
the cache (the normal case), at least four random memory writes are needed. The LRU
algorithm also fails to effectively handle some important access patterns, such as scans.

79



The CLOCK policy [23] is a cost-efficient approximation of LRU. The space overhead
of CLOCK is only 1 bit per element and at most one memory write is needed per element
eviction (amortized). Despite its simplicity, CLOCK performs comparably to LRU and,
therefore, widely used in operating systems as a page replacement algorithm. In that case,
the access bit is updated by the CPU hardware.

The two general-purpose extensions of LRU and CLOCK correspondingly are ARC [57]
and CAR [15]. They substantially improve buffer pool efficiency, handle sequential scans,
and reduce the work in the hit path. However, both come with the additional memory
overhead for maintaining variable-length lists for elements in the pool, as well as a subset
of the evicted ones.

In traditional DBMS and OS the element of the buffer pool is a block or page. The
size of both in the order of kilobytes and a space overhead of several words per element is
generally acceptable, as well as a cost to update a reference bit in the hit path. However,
main-memory databases get away from the concept of a data block and build their data
structures directly from individual tuples. For a system that handles datasets larger than
its memory, it is natural to identify skew and manage data migration at the individual tuple
level. Note that this applies primarily to OLTP systems, as in-memory OLAP databases
tend to store data column-wise, which will be discussed later.

Levandoski et al [69] specifically addressed the problem of hot/cold data classification
in an OLTP system. They estimated that a traditional LRU, LRU-2, or ARC algorithms
would incur at least 25% processing overhead. The corresponding space cost of 16 bytes
per tuple would also be significant. Therefore, an offline strategy was proposed where
tuple rank is not immediately updated during normal operations. Instead, tuple accessed
are written to a separate log and access frequencies are computed based on this log only
at certain discrete times. Such a two-step approach has the advantage of overall low
computation cost and flexibility to schedule the disrupting offline classification portion.
For offline classification, an efficient algorithm reads log records backwards from the end of
the time interval. The algorithm may produce accurate frequency estimates before reading
the whole log and terminate early. Moreover, since frequency information is only needed
for hot tuples, the tuples with low current estimates are discarded so that the size of
the data structure is kept constant regardless of the total database size. The accuracy
of classification was found experimentally to be higher than of LRU-2 and ARC in the
TPC-E workload, using the miss rate as the metric. The same offline algorithm is used in
the work by Stoica and Ailamaki [68] to adjust the tuple placement in OS memory pages
so that the OS paging mechanism can be effective for migration between main memory
and secondary storage.
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In E-Store [71], tuple-level monitoring is used for dynamic load balancing. The actual
hot tuple identification algorithm is expected to work for a short duration, when a partition
is found to be overloaded with a per-partition performance monitoring. The algorithm
involves counting accesses to individual tuples over a short time interval and partial sorting
to extract the hottest tuples. Such a rudimentary algorithm is not suitable for general-
purpose continuous tuple identification and its accuracy may be limited by the short data
collection interval.

Handling datasets larger than memory is also important for main-memory OLAP sys-
tems. Early systems, such as MonetDB [17], rely on OS virtual memory management to
exchange pages between memory and storage. The database file is mapped into the process
address space and the pages are brought in on access. In the case of memory pressure, the
OS will start swapping out pages according to its replacement policy, such as CLOCK.

SAP HANA is a column store that loads whole columns on demand and evicts unused
ones according to a weighted LRU strategy [67] where the weight is assigned heuristically.
Instead of such a coarse-granular loading and eviction, a column can be configured as page
loadable. In that case, the three component of the column, data vector, dictionary, and
inverted index are split into fragments that can be loaded and unloaded individually.
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Chapter 5

Memory Access Gating

In Chapter 4, we introduced DimmStore, a prototype database system aiming at reduc-
ing memory power consumption by exploiting and enhancing idleness between database
memory accesses. DimmStore increases the average amount of “useful” memory idleness,
consisting of longer idle intervals, by concentrating frequently accessed memory in a small
number of DIMMs.

DimmStore saves memory power for two reasons. First, because DimmStore uses rank-
aware memory allocation and rate-based placement, some DIMMs may become completely
idle if there is enough unused memory. The savings depend on the amount of unused
memory. Second, because DimmStore places cold data in the Data region, access rates to
the used portion of the Data region may become low enough to enable the DIMMs in this
region to spend some time in the low power Self Refresh state.

For the second mechanism to be effective, the access rates in the used DIMMs of the
Data region must be so low that a substantial percentage of memory interaccess intervals
are longer than the Self Refresh timeout. Achieving such low rates requires substantial skew
in the access rates between DimmStore’s System and Data memory regions. DimmStore
will show little or no improvement in memory power efficiency if there is little skew or if
it is difficult to identify frequently accessed tuples.

In this chapter, we present and evaluate a complementary technique that specifically
targets power consumption in the used DIMMs in the Data region. This technique works
by concentrating memory accesses in time, as opposed to space, as in DimmStore. This is
achieved by introduction of forced idle intervals, called restricted intervals, during which
access to the Data region is gated, i.e., it is disallowed.
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Figure 5.1: DIMM power consumption vs. random access rate, local DIMMs

The memory gating mechanism builds on top of rate-based placement. It is possible to
implement a similar mechanism in the baseline system, which treats all memory as a single
region. However, access to all memory would have to be gated, meaning that no program
could access memory during the restricted interval.

5.1 Concept of Resource Gating

Memory is an example of a computational resource that exhibits non-proportional power
consumption as a function of load. Power consumption of a memory DIMM only slightly
changes with load over almost all load range, except when the load is very low. To illustrate
this load to power relationship, we ran the random access rate workload, described in
Section 2.3. In each experiment with a certain access rate, the DIMM’s power consumption
was measured. The measured power as a function of access rate is shown in Figure 5.1
(note the logarithmic horizontal scale). DIMM’s power only slightly changes when the
access rate spans hundreds of kilobytes to gigabytes per second, but it starts to drop
significantly when the access rate is below the very low threshold of about 70 kB/s. This
behaviour is determined by the memory’s power states and their conservative application
by the memory controller, as described in Section 2.3.
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For such non-power-proportional resources, power consumption can be reduced by al-
ternating periods of complete idleness with periods of concentrated load. The average
utilization remains the same, but it is concentrated in time.

When naturally occurring idle intervals in the resource access stream are not long
enough, the system may introduce longer idle intervals by periodically restricting access to
the resource for a certain duration, as illustrated in Figure 5.2. We refer to this as gating.
When a thread (program, transaction) attempts to access the resource during a restricted
interval, these accesses will be delayed until the next unrestricted interval, temporarily
blocking the program but allowing the resource to remain idle. Although access gating
will delay execution of threads that attempt to access the gated resource, threads that do
not access that particular resource run without interruption. In particular, if a system has
multiple independently gated resources, for example, multiple memory DIMMs, only some
threads will be affected when a resource is gated.

5.2 Expected Effects of Memory Gating

In this chapter, we consider the application of gating to the DIMMs in DimmStore’s Data
region. We expect that this will have the following effects:

Increased utilization of low power states and reduced power consumption in the
Data region DIMMs. By creating idle periods, restricted intervals allow the memory
controller to use lower power states, such as Self Refresh, saving power. Ideally, Data region
DIMMs would spend the entirety of each restricted interval in the Self Refresh state. In
practice, since the memory controller needs time to detect idleness, the amount of Self
Refresh may be slightly lower than that, but still covering much of the restricted interval.

Higher memory utilization in both the System and Data region DIMMs during
the unrestricted intervals. Memory utilization during the unrestricted interval will
increase, compared to memory utilization without gating. This is because transactions
that attempted to access gated DIMMs during the restricted interval will stall, resuming
when the restriction is lifted. Increased memory utilization will cause memory to consume
more power during the unrestricted intervals. However, we expect this increase to be
smaller than the power savings during the restricted intervals for two reasons. First, active
power during the unrestricted interval will increase by the same amount as active power
is saved during the restricted interval because some memory accesses are merely shifted in
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time. More importantly, low power state utilization was likely already low without gating.
Thus increased utilization during the unrestricted interval will not be able to cause a large
increase in background power consumption since background power will have already been
close to its maximum.

Higher transaction response times. Since transactions may stall during the restricted
interval, some transaction completions will be delayed. By varying the lengths of the
restricted and unrestricted intervals, we expect to observe a trade-off between the increase
in transaction latency and memory power savings.

5.3 Memory Gating in DimmStore

To confirm our expectations and quantify their effects, we prototyped memory access gating
in DimmStore. Recall from Chapter 4 that DimmStore divides memory into System and
Data regions. DimmStore keeps the rarely accessed database tuples in the Data region so
that the access frequency to the DIMMs of the Data region is minimized.

Our implementation applies memory access gating to the Data region. The DIMMs
of the Data region are made to alternate between restricted and unrestricted states, or
intervals, as shown in Figure 5.2.

The lengths of these intervals are statically configured. Transactions attempting to
access the Data region during the restricted interval are blocked for the remainder of the
restricted interval. As a result, DIMMs in the Data region stay idle at least for the whole
duration of each restricted interval. Transactions’ accesses to the Data region outside of
the restricted interval are unaffected, as are accesses to the System region.

Although the Data region normally consists of multiple DIMMs in the Data region,
the prototype implementation treats the whole Data region as a single gated resource.
Therefore, restricted intervals are imposed on all DIMMs of the Data region at the same
time.

5.3.1 Gating Configuration

With memory gating, the Data region alternates between restricted and unrestricted in-
tervals. Therefore, the gating configuration can be defined by the length of the cycle t
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Figure 5.2: Concept of memory gating. A. memory accesses without gating; B. memory
accesses modified by gating; C. gating cycle, restricted and unrestricted intervals, and their
lengths.
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and the length of the restricted interval tR, as shown in Figure 5.2. Considering the unre-
stricted interval as “active time”, we can relate it to a conventional notion of duty cycle D
as D = 1− tR

t
.

In the remainder of the chapter, we will also refer to the compression factor k, which
is simply the inverse of the duty cycle.

k =
1

1− tR
t

=
1

D
(5.1)

Intuitively, compression factor describes how much the utilization of the restricted re-
source has to increase during the unrestricted interval such that the same average access
rate is maintained as without gating. For example, if if the duty cycle is 50%, the com-
pression factor k = 2. This means that we expect the memory access rate during the
unrestricted interval to be twice as high as it would be without gating.

5.3.2 Enforcing Restricted Intervals

Restricted intervals are enforced by each DimmStore worker thread in the code path that
handles accesses to tuples in the Data region. Every time such a tuple is to be accessed,
the thread looks up the current time and determines the offset, which is the time passed
since the start of the current cycle. Total cycle duration is constant, therefore, the offset is
the remainder after dividing the current time, expressed in time units since the epoch, by
the length of the gating cycle t. Each cycle starts with the restricted interval, therefore, if
the offset is less than the restricted interval duration tR, then the restricted interval is in
effect.

If the restricted interval is in effect, the worker thread stalls (sleeps) until the end of
current restricted interval. The thread computes the end time of the current restricted
interval, and blocks by calling clock nanosleep function.

5.3.3 Indirect Stalls

H-Store, and hence DimmStore, implements a non-blocking architecture, in which one
thread processes transactions in each partition. Having only one worker thread per parti-
tion allows H-Store to avoid the overhead of synchronization to maintain data consistency.
In H-Store, worker threads are not blocked as there are no traditional causes to block such
as I/O or database locks.
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The single-threaded DimmStore architecture, when combined with gating, results in
indirect stalling, in addition to the stalling when a transaction attempts to access gated
memory. When a transaction stalls, the worker thread in its partition blocks, preventing
further transactions in this partition from executing until the end of the restricted interval,
even if they do not access the gated memory. Transactions executed by workers in other
partitions are not affected.

Because of indirect stalls, the performance of the gated system will degrade signifi-
cantly, even when transactions rarely access gated memory. In the worst case, when all
transactions during the restricted interval stall, the system throughput will be k (compres-
sion ratio) times lower than in an ungated system. Since worker threads block on the first
access to gated memory during the restricted interval, the actual performance impact will
be lower when transactions rarely access gated memory.

If gating is implemented in a system that can execute multiple transactions at the same
time, unlike in DimmStore, we expect the impact of gating to be lower than in DmmStore.

5.3.4 Synchronizing Workers

DimmStore uses multiple worker threads, each responsible for its own database partition.
Each DIMM in the Data region is shared by all partitions. As a result, each Data region’s
DIMM may be accessed by any worker thread.

To create idle intervals in the Data region DIMMs, it is necessary for worker threads
to enter and exit restricted intervals at the same time. Worker threads read the current
time from gettimeofday to detect the start of the restricted interval and use absolute time
in the clock nanosleep system call to enter the blocking state that ends at the end of
the restricted intervals. In Linux, the gettimeofday and clock nanosleep system calls
provide a time reference that is synchronized between cores and threads. Therefore, there
is no need for additional coordination between threads to ensure that the restricted interval
starts and ends at the same time.

5.3.5 CPU Cache Write-backs

Stalling DimmStore’s worker threads ensures that they will not read or write Data region
DIMMs during the restricted interval. However, writes to the Data region during the
unrestricted interval may be cached by the processor and written back to memory asyn-
chronously at a later time. Normally, timing of these cache line write-backs is determined
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by the processor. If they occur during a future restricted interval, memory idleness during
that interval will be significantly reduced.

In DimmStore, there are two sources of writes to the Data region: tuple eviction and
in-place tuple updates. Tuple eviction occurs periodically, when a batch of cold tuples
from the System region is written to the Data region. In-place tuple updates in the Data
region occur because on access, tuples are only moved to the System region with a certain
probability, as described in Section 4.1.4. To minimize the number of unevictions and
the associated overhead, such as index updates, DimmStore triggers an accessed tuple
uneviction only for a configurable fraction of accesses to the Data region. With gating,
these in-place updates create modified cache lines for Data region memory.

To solve the problem of cache write-backs during the restricted interval, DimmStore
workers issue CLFLUSH instruction after both types of tuple updates in the Data region.
The CLFLUSH instruction in Intel processors writes back a cache line to main memory, if
it is dirty, and removes the cache line from the processor caches. This solves the problem
of deferred write-backs during restricted intervals. However, flushing cache lines may also
have a negative impact on system performance as any subsequent access to that cache will
have to read it back from the main memory.

5.4 Experimental Evaluation (YCSB)

The goal of this section is to experimentally evaluate the power and performance effects
of memory gating. We used our gating prototype, based on DimmStore and described in
Section 5.3.2, to evaluate the memory gating mechanism. We will compare it to DimmStore
without gating, as well as the baseline H-Store.

The outline of this section is as follows. We first present memory power consumption
and system performance, under the YCSB workload, using a default system configuration
and database size. Later, we explore how the workload characteristics, system configura-
tion, and gating parameters affect the results. Finally, in Section 5.5, we present a similar
analysis for the TPC-C workload.
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5.4.1 Evaluation environment

Hardware Configuration

The database system under test runs on a dedicated server instrumented for memory power
measurement. The load is generated from a separate load generator (client) machine. The
client and server machines are connected with a 1 Gbps switched Ethernet network. Due to
the physical separation of the database server and load generating client, power consumed
due to load generation is not included in the results.

The database server has two 8-core Intel Xeon E5-2640 v3 processors with a nominal
frequency of 2.6 GHz. Each processor has four memory channels with two memory slots in
each. One slot in each channel is populated with a 16 GB DDR4 DIMM. Therefore, there
are 8 DIMMs in the system, for a total of 128 GB of memory.

In each experiment, the following data is collected on the server machine, as described
in Section 2.4:

• measured power, for each DIMM;

• memory controller (RAPL) performance counters, representing per-DIMM power
state residency and memory operation rates;

• transactional throughput and latency, measured in DimmStore.

Software Configuration

In all tests, the database is configured with 12 partitions. As dictated by the H-Store
architecture, there is exactly one worker thread serving each partition. The worker threads
are bound to their own dedicated CPU cores, evenly allocated between the two physical
processors. Therefore, six worker threads work on each of the eight-core processors. The
remaining cores are reserved as headroom for any demand for CPU cycles by the database
threads other than partition workers, and by other system processes.

In both workloads, the Java-based benchmark client bundled with H-Store is used for
load generation. Each experiment is run at a predefined target transaction rate, controlled
by the benchmark client. The actual transaction rate is also monitored and the runs in
which the system cannot keep up with the offered target load are excluded from the results.

Under H-Store’s default benchmarking configuration, transactions experience high re-
sponse times due to internal queueing and batching of requests in both the client and the
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server. For example, in the YCSB benchmark at a low load and default settings, the trans-
action latency as measured at the client was around 10 ms, though it takes only about
50 µs for the server to process the transaction. The long response times are the result of
extensive use of queues during many stages of transaction processing in H-Store. In those
queues, transactions are accumulated for a period of time, and then are dispatched for pro-
cessing as a batch. After a batch is processed, the thread goes to sleep for certain amount
of time, allowing for the next batch to accumulate. Some sleep times are configurable at
run time, but many are hard-coded constants, on both the client and server sides.

These batching delays mask the effect of gating on transaction latency, which we want
to measure. Therefore, the degree of batching in the client and server during transaction
processing was minimized by making changes to the code and configuration. In partic-
ular, the Java classes responsible for load generation (ControlWorker.java), server-side
processing (Distributer.java, PartitionExecutor.java) were modified to reduce sleep time
constants to 1 ms from existing values of 5 ms or 25 ms. In addition, the parameter
site.txn incoming delay was reduced from 5 ms to 1 ms. The overall effect of these
changes was a reduction of the baseline transaction latency from about 10 ms to 1 ms.
Although sleep times could be decreased further, doing so would increase the CPU utiliza-
tion due to the increased frequency of threads polling work queues without blocking. At
the same time, that would have a diminishing effect on the latency reduction. Therefore,
the baseline latency of 1 ms was chosen as an acceptable trade-off.

Workload configuration

We used the YCSB workload that consists of only Read transactions. Each transaction
consists of a single query that reads a tuple from a table by a primary key. The ac-
cessed tuples are selected non-uniformly according to a Zipf distribution with a fixed skew
parameter s = 0.95.

In these experiments, an 80 GB database was used, which occupies approximately two
thirds of the available memory in the server. This database size was chosen to simulate a
“default” use case, in which much but not all of the server memory is used. The effect of
the database size on the power efficiency will be shown in Section 5.4.5.

Memory and Gating Configuration

Experiments with DimmStore use rank-aware memory allocation with identical configura-
tion with and without gating. In DimmStore, 2 DIMMs (32 GB) are used for the System
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region, and the remaining 6 DIMMs for the Data region. This configuration maximizes the
Data region size, with each processor having the same number of DIMMs in each region.

The database takes 22 GB in the System region for its indexes and hot data, leaving
the other 12 GB for non-database memory allocations. The remaining part of the database
spills to the Data region, utilizing 4 of its 6 DIMMs. The last 2 DIMMs are empty.

The gating parameters are fixed, with the restricted interval tR = 2ms, total cycle
length t = 8ms, resulting in a compression factor k = 1.33. As it will be shown in
Section 5.4.4, these values realize the most savings in power consumption, and increasing
them further produces only a marginal improvement.

To evenly split memory load between both memory interfaces, the two DIMMs of the
System region belong to different processors. For the same reason, the DIMMs of the Data
region are evenly split between processors, utilizing alternating allocation order. Thus, as
the database footprint in the Data region increases, memory is first allocated from the
DIMM of the first processor. When that DIMM becomes full, memory allocation switches
to a DIMM of the second processor, then switches back to the first processor, and so on.

Experiment Configuration

Each experimental run consists of three phases: database population, warm up, and mea-
surement. Measurements collected during the database population and warm up phases
are discarded. Even though a main-memory database does not have a disk cache to “warm
up”, the tuple composition of the System Region constantly changes during the run due
to eviction and uneviction activity. Right after the database is populated, the tuple popu-
lation in the System Region is mostly determined by the database loading order and does
not reflect tuple access frequency. Therefore, the first seconds of the workload run see a
burst of evictions and unevictions, as the database is adjusting tuple distribution between
the System and Data regions according to tuple access rates.

Since the system takes more time to warm up when the transaction rate is lower,
the duration of the warm-up and measurement phases is scaled inversely to the relative
load. For example, halving the target throughput doubles the length of the warm-up and
measurement intervals .

Similarly, the duration of the measurement phase is scaled inversely proportionally to
the target transaction rate so that it includes the same number of executed transactions
regardless of rate.
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Parameter Values Default

Database size 60, 80, 100 GB 80 GB
Offered load 37.5 - 300 Ktps 150 Ktps

System region size 32 GB 32 GB
Eviction interval tevict 1 ms 1 ms
Eviction volume Nevict 64 KB 64 KB

Uneviction probability punevict
1
64

1
64

Restricted interval tR 2ms 2ms
Compression ratio k 1.25, 1.33, 2, 3 1.33

Figure 5.3: YCSB Experiment Parameters

We repeated each experiment 10 times and show the sample mean value. On graphs
for total power and latency with default compression factor, we also show 95% confidence
intervals CI for the sample mean µ, estimated as:

CI = [µ± t(0.025,n−1)
S√
n

] (5.2)

Here, n is the sample size (number of identical experiment runs), t(0.025,n−1) is 97.5-
percentile of the Student’s distribution with n− 1 degrees of freedom, and S is the sample
standard deviation.

The workload parameters are summarized in Table 5.3.

5.4.2 YCSB Results: Memory Power and Transaction Latency

We begin by evaluating the impact of the gating mechanism on the overall memory power
consumption and transaction latency. To do this, we compare the gating prototype to two
baselines, DimmStore without gating enabled, and original H-Store.

Figure 5.4 shows total memory power consumption in each system, as a function of
load. Each point on the graph represents a single experiment, in which a system under
test (H-Store, DimmStore without gating, or DimmStore with gating) was loaded using
a fixed transaction rate shown on the X axis. The set of target transaction rates used
in these experiments represents eight equally-spaced points, up to the approximate peak
throughput of the baseline system (300 ktx/s). In DimmStore with gating, since some
of the load during restricted intervals is deferred to unrestricted intervals the peak load
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Figure 5.4: YCSB: Total memory power consumption by load, restricted interval duration
= 2 ms, compression ratio = 1.33x. Confidence intervals are computed as in (5.2).

is limited to approximately 75% of the peak load without gating. Therefore, DimmStore
with gating was tested only up to 225 ktx/s.

Enabling memory access gating in DimmStore reduces memory power consumption by
between 9% and 22%, depending on load, relative to DimmStore without gating. Overall,
this reduction translates to 37% - 48% power savings over baseline H-Store. The relative
power saving is higher at medium and high loads but diminishes at very low load. We will
discuss how memory power consumption depends on load in Section 5.4.3.

Transaction latency, measured at the client, is shown in Figure 5.5. Gating results in a
latency increase between 0.2 and 0.4 ms, relative to both H-Store and DimmStore without
gating. This increase occurs for two reasons: forced blocking of processing threads during
the restricted interval, which adds a constant amount of delay independently of load, and
the increase in the execution time of each transaction as the transaction rate increases
during the unrestricted interval.

5.4.3 Detailed Memory Power Analysis

In this section, we explain how memory gating saves memory power. Recall that memory
gating specifically targets power consumption in the used DIMMs of the Data region. To
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Figure 5.5: YCSB: Transaction latency by load, restricted duration = 2 ms, Compression
Ratio = 1.33x. Confidence intervals are computed as in (5.2).

demonstrate that gating works as expected and reduces power consumption in the Data
region, we start our analysis by breaking down power consumption by memory region.
Later, we show that power savings in the Data region are due to increased low power state
utilization. Finally, we show how much of available power saving opportunity is realized
by gating in DimmStore.

Memory Power by Region

In DimmStore, there are three groups of DIMMs, based on their relative utilization. Fre-
quently accessed data is concentrated in the System region, causing its DIMMs to handle
most memory activity. We call these the “hot” DIMMs. Less frequently accessed database
tuples occupy space in Data region DIMMs, these ones are “warm” DIMMs. Depending
on the number of DIMMs in the Data region and the database size, some DIMMs in the
Data region may stay unutilized. We call these the “cold” DIMMs.

The contribution of each group of DIMMs to memory power consumption as a function
of load, in DimmStore with and without gating, is shown in Figure 5.6. We do not include
the baseline H-Store system because it does not have the concept of memory regions.
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Figure 5.6: YCSB: Total memory power consumption vs load, broken down by DIMM
group, restricted interval duration = 2 ms, compression ratio = 1.33x. Column key: “d” -
DimmStore, “g” - DimmStore with gating
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Figure 5.7: YCSB: Total (read and write) memory throughput in the DIMMs of the System
Region, by load, restricted interval duration = 2 ms, compression ratio = 1.33x

One observation from Figure 5.6 is that the contribution of the warm DIMMs to total
power consumption is significant. In fact, in this system configuration and workload,
warm DIMMs are responsible for most of the memory power. This is true despite the
fact that warm DIMMs handle much less memory traffic than the hot (System region)
DIMMs. The difference between memory traffic between regions in DimmStore (similar
with or without gating) is several orders of magnitude, approximately 5 GB/s in the
System region vs 10 MB/s in the Data region, at maximum load. For reference, memory
throughput in DimmStore with and without gating, as a function of transaction rate, is
shown in Figure 5.7, separately for the System region and Data regions.

We can also see from Figure 5.6 that gating reduces memory power in warm DIMMs
only. This is the expected result as gating only targets the Data region.

Power measurements shown in Figure 5.6 represent sums of power consumption in all
DIMMs in each group (hot, warm, and cold). These sums depend on the region configura-
tion and database size, i.e. the number of DIMMs in each region and the number of used
DIMMs in the Data region. To make power consumption easier to interpret and compa-
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Figure 5.8: YCSB: Average per-DIMM power consumption in the DIMMS of the System
region (“hot”) and used DIMMs of the Data region (“warm”), by load, restricted interval
duration = 2 ms, compression ratio = 1.33x

rable between regions of different sizes, we normalize them by the number of DIMMs in
each group and show the result in Figure 5.8. Memory gating reduces average power con-
sumption in warm DIMMs by between 15% and 43%. The highest relative saving occurs
at medium load.

Power State Use by Region

The power savings in the warm DIMMs are due to an increased use of low power states,
resulting in lower background power consumption. The power state residency for warm
Data and System region DIMMs is shown in Figure 5.9. Gating substantially increases
Self Refresh utilization in warm DIMMs under all loads except the lowest. At the lowest
load, the memory is accessed infrequently enough that the Self Refresh state can be used
even without gating.
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Figure 5.9: YCSB: Average power state residency in warm DIMMs, restricted interval du-
ration = 2 ms, compression ratio = 1.33x. Column key: “d” - DimmStore, “g” - DimmStore
with gating
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Although power reductions in the System region are not a goal of the gating mechanism,
Figure 5.8 also shows that memory power consumption in the System region also decreases,
but by a smaller amount, between 4% and 14%. The reduction of power consumption in
the System region is a unintended result of the restricted interval implementation, which
causes worker threads to block for a portion of the restricted interval.

Memory Power by Type

To put the effectiveness of power saving techniques in DimmStore in perspective, and
to see how much of power saving opportunity is realized, we now show memory power
consumption by power component. Figure 5.10. shows memory power components, found
using the memory model from Section 2.5, and aggregated across all DIMMs in the server.
The background power components other than Refresh power are lumped together as
Variable Background power (VBP). For DimmStore, VBP is further broken down for the
System and Data regions. The memory gating in DimmStore directly targets only the
VBP in the Data region. Therefore, the relative amount of reduction in the VBP in the
Data region is an indication of the actual gating effectiveness, or how much of the saving
potential is realized in a particular workload. As shown in Figure 5.10, actual reduction in
the VBP in the Data Region due to gating is between 32% (low load) and 61% (medium
load).

The remaining power components are not targeted by the gating mechanism and are
not expected to significantly change. The Refresh power component is the largest of these
but it is intrinsic to operating a DIMM while retaining data. The Variable background
Power component in the System region is also significant, but this region handles almost all
database memory activity, as well as those not managed by the database system. Therefore,
significantly reducing power consumption in the System region is outside of scope of this
work.

CPU Power

CPU power consumption, reported by RAPL power monitoring counters, is shown in Fig-
ure 5.11. CPU power consumption is reduced compared to the ungated DimmStore by
between 26% and 5%. The observed reduction CPU power consumption is unintended and
was not studied further. However, a possible explanation of this phenomenon is switching
of the processor cores to idle states (C-states) during the restricted intervals as worker
threads, which are bound to cores, become blocked.
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Figure 5.11: YCSB: Total CPU power consumption by load, restricted interval duration
= 2 ms, compression ratio = 1.33x. Confidence intervals are computed as in (5.2).

5.4.4 YCSB: Effects of Gating Parameters

In this section, we explore how gating configuration affects power consumption and trans-
action latency. In DimmStore, gating is controlled by two configuration parameters, the
length of the restricted interval tR and the total length of the gating cycle t. Recall, that
we defined the compression factor k = 1

1− tR
t

(Section 5.3.1).

The length of the restricted interval, tR, sets the minimum amount of idle time in each
gating period that is available for using low power states, such as Self Refresh. Generally,
each DIMM is expected to spend most of the restricted interval in a low power state. This
amount of low-power state per gating period is load-independent. Idle time outside of
the restricted interval may add more low power state utilization, and this addition will be
higher with lower load. Since the compression factor k determines the the memory load
increase during the unrestricted interval, we tested the effects of the gating parameters by
varying tR and k.

To understand the impact of these parameters on memory power and transaction la-
tency, we ran experiments with different parameter values. We considered all combinations
of 20 values for the restricted interval, in the range from 1 to 6 ms, and 8 values of com-
pression factor, in the range from 1.25x to 3x. Therefore, the parameter space represents
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a rectangular grid in which every combination of the parameter values corresponds to a
separate test run.

First, we describe the combined effect of both parameters by showing the general shape
of the trade off between memory power and system performance due to changes in the
parameters. In other words, can power consumption be further reduced by tuning the
parameters, and will the transaction latency necessarily increase by doing so?

This trade off can be illustrated using scatterplots in the latency/power coordinate
system. Figures 5.12, 5.13, and 5.14 show the scatterplots for low, medium, and high
loads, respectively. Each point in a plot corresponds to one experiment with a distinct
combination of gating parameters. In addition to points obtained from experiments with
gating, each plot includes a point from baseline H-Store (marked as a solid square), and
from DimmStore without gating (marked as a solid circle).

In the lowest load setting (Figure 5.12), gating parameters do not substantially reduce
memory power consumption relative to DimmStore, regardless of parameter settings. The
maximum power reduction from any gating configuration is less than 10%. However,
depending on the parameter values, transaction latency may almost double. At medium
and high loads (Figures 5.13, 5.14), the gating parameters control the tradeoff between
memory power consumption and transaction latency. However, the incremental power
reduction becomes smaller once the latencies increase and stops improving as the latency
reaches about 2.5 ms in the case of medium load. At higher load, the trade off between
power consumption and additional latency becomes less clear and and occurs in the region
of longer latencies.

Given that the gating parameters affect power savings and transaction latency, we will
discuss how to tune them. First, we consider the restricted interval length. Figures 5.15 to
5.17 show memory power consumption and transaction latency as a function of restricted
interval length (tR), for several values of the compression factor (k). Increasing restricted
interval length reduces power consumption when the interval length is less than 2 - 3
ms, and increasing it further provides little additional power savings. The reason for this
diminishing return is that the longer the restricted interval is, the smaller fraction of it is
not used for the Self Refresh state due to a constant Self Refresh timeout. Since transaction
latency continues to increase with higher restricted intervals values, there is no practical
advantage in setting the interval length above 3 ms.

To study the effect of the compression factor k, we fix the restricted interval at 2 ms
and vary the compression factor at various loads. The power consumption and transaction
latency, as functions of load, for different compression factors, are shown in Figures 5.18
and 5.19, respectively. In contrast to restricted interval length, the compression factor
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Figure 5.12: YCSB: Memory power versus response times, low load.
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Figure 5.13: YCSB: Memory power versus response times, medium load.
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Figure 5.14: YCSB: Memory power versus response times, high load.
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Figure 5.15: YCSB: Memory power consumption and transaction latency as functions of
restricted interval length, for different compression factors, low load (25%).
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Figure 5.16: YCSB: Memory power consumption and transaction latency as functions of
restricted interval length, for different compression factors, medium load (50%).
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Figure 5.17: YCSB: Memory power consumption and transaction latency as functions of
restricted interval length, for different compression factors, high load (75%).
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Figure 5.18: YCSB: memory power consumption by load and compression factor k, re-
stricted interval duration = 2 ms
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Figure 5.19: YCSB: Latency by load and compression factor k, restricted interval duration
= 2 ms

affects power consumption over its full permissible range. Similarly, higher values of the
compression factor consistently increase transaction latency. Therefore, it is not possible
to give a single recommendation for setting of the compression factor. For power sensitive
application, it should be set to the maximum possible value, depending on load. For
applications that impose quality of service requirements, the value of the compression
factor can be set to a maximum value for a permissible latency penalty.

5.4.5 Effects of Database Size(YCSB)

In this section, we will vary the size of the database to understand how memory power
consumption is affected by these changes. We consider 60 GB and 100 GB database sizes,
in addition to the default 80 GB size. The 100 GB database was too big for the 2 DIMM
System region because its indexes and hot data did not fit into the 22 GB section of the
System region reserved for the database. Therefore, we increased the System region to 4
DIMMs and repeated the experiment for the smaller database sizes using the 4 DIMMs
System region.

The 4 DIMM System region configuration imposes a 44 GB limit on the hot data and
indexes, which is twice the limit imposed by the 2 DIMM configuration. In both configu-
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Figure 5.20: YCSB: Total memory power consumption by load, three database sizes, 2
DIMM System region, gating configuration with restricted interval duration = 2 ms, com-
pression ratio = 1.33x. Left: low load (approx. 40 ktx/s), right: medium load (approx 180
ktx/s).

rations, the System and Data regions are symmetrically split between the two processors
in the server. The other experimental settings are identical to the ones in the previous
YCSB experiments.

Total memory power consumption for various database sizes is shown in Figure 5.20,
for low and medium transaction rate settings. At low load, gating does not reduce mem-
ory power consumption over DimmStore, for all database sizes. This extends the results
obtained in Section 5.4.2) for the medium database size.

At a medium load, memory power savings due to gating are larger for larger databases.
DimmStore’s power consumption increases with larger database sizes and becomes as high
as in the baseline when the database uses all the DIMMs in the Data region. With gating,
increasing the database size leads to smaller increases in memory power consumption than
in DimmStore. This is because gating improves the utilization of low power states in the
used DIMMs of the Data region.
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Parameter Values Default

Database scale factor 450 warehouses 450 warehouses
Database size 45 GB 45 GB
Offered load 7.5 - 60 Ktps 30 Ktps

System region size 48 GB 48 GB
Eviction interval tevict 1 ms 1 ms
Eviction volume Nevict 64 KB 64 KB

Uneviction probability punevict
1
64

1
64

Restricted interval tR 2ms 2ms
Compression ratio k 1.33, 2 1.33

Figure 5.21: TPC-C Experiment Parameters

5.5 Impact of Gating: TPC-C

In this section, we will show the effects of memory gating on memory power consumption
and transaction latency in a different workload, TPC-C. The TPC-C benchmark represents
a more complex workload, simulating a transactional application. The benchmark consists
of 5 transaction types and 9 tables, featuring a variety of access patterns to tuples in
different tables and transactions.

The default System region configuration is is the same as in YCSB experiments, with
the System region consisting of 2 DIMMs, one DIMM in each CPU socket, with a total of
32 GB. The remaining six DIMMs, 96 GB, makes up the Data region.

We used a default database scale factor of 450 warehouses, resulting the database size
of 62 GB, including the indexes. The system uses 22 GB of the System region for hot data
and indexes. The remaining data, approximately 40 GB, is in the Data region, where it
occupies three of the six available DIMMs. The remaining 3 DIMMs of the Data region
are unused (cold). In the TPC-C workload, the database grows during the run, so the used
part of the Data region expands. The amount of database expansion is approximately 3.5
GB total over the measurement interval. As with YCSB experiments, each experiment
was repeated 10 times and the mean value is shown in figures. The parameters of the
experiments are summarized in Figure 5.21.

The design of the TPC-C experiments is similar to the YCSB design, as described in
Section 5.4.1. In each experiment, the database system (baseline H-Store, DimmStore, or
DimmStore with gating) executes transactions generated from a separate client machine,
at a fixed rate. The system is allowed to warm up for 5 minutes and the next 5 minutes is
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the measurement interval, for the nominal 60 ktps load. For lower than nominal loads, the
warm-up and measurement intervals are proportionally stretched so that the same amount
of work is performed by the DBMS during each interval.

During the measurement interval, we measure power consumed by each DIMM in the
server, record transaction latency data from the client generator, and collect DRAM RAPL
performance counters representing power state residencies. For presentation, the measured
quantities are averaged over the measurement interval.

The workload was run at several load settings, each representing a fraction of the
nominal maximum transaction rate, set at 60 ktps. The nominal maximum transaction
rate corresponds to the maximum load the baseline system could sustain. However, the
maximum sustainable load was lower in DimmStore, therefore, the 100% (60 ktps) load
points are not included in the DimmStore results.

In the experiments with gating, the length of the restricted interval is 2 ms, and two
settings for the compression ratio are used: 1.33x and 2.0x.

TPC-C: Memory Power

Total memory power consumption for the three systems, with two settings of gating com-
pression ratio (k) is shown in Figure 5.22. Enabling gating with the compression factor of
1.33 reduces the power consumption by 5-15% compared to DimmStore without gating,
with the higher power savings for higher load. Further increasing the compression factor
to 2.0 reduces the power consumption by approximately the same amount. The additional
power savings due to gating are lower in absolute terms compared to those achieved by
DimmStore over the baseline, but still significant, considering they occur on top of the
reduction achieved by DimmStore.

Memory power reduction is mainly caused by the increased utilization of the Self Refresh
state in the used DIMMs of the Data region, i.e., the warm DIMMS, as it was the case for
YCSB. The power state residency versus load in warm DIMMs for two gating settings (2
ms restricted interval, 1.33x and 2x compression) is shown in Figure 5.23.

With gating, the Self Refresh state utilization does not depend on load and its residency
is close to the ratio of the restricted interval to the full cycle length 1 − 1

k
, where k is

compression ratio. For reference, this ratio is 1
4

for the 1.33x compression, and 1
2

for the 2x
compression. Therefore, Self Refresh state must be in effect during much of the restricted
interval but not used during the unrestricted interval. This is in contrast with the YCSB
workload (Section 5.4.3) where Self Refresh residency substantially increased at lower loads.
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Figure 5.22: TPC-C: Memory power consumption in baseline, DimmStore without gating,
and with various gating parameters, versus load. Confidence intervals are computed as in
(5.2).
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Figure 5.23: TPC-C: Average power state residency in warm DIMMs, restricted interval
duration = 2 ms, compression ratio = 1.33x and 2x. Column key: “d” - DimmStore,
“g1.3x” - DimmStore with gating k = 1.33, “g2x” - DimmStore with gating k = 2
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Figure 5.24: TPC-C: Transaction latency in baseline, DimmStore without gating, and with
various gating parameters, versus load. Confidence intervals are computed as in (5.2).

Even though gating increases the Self Refresh state utilization, this happens at the
expense of the Power Down state. This means that the natural idle time that exists
between memory accesses without gating can make use of the Power Down state. With
gating, these short idle intervals are coalesced together during the restricted interval, but
the total usage of all lower power states is not substantially increased. These two factors
(no increase in the Self Refresh residency at lower loads, the Self Refresh state replacing
existing Power down state) explain the lower power savings in a more memory-intensive
TPC-C workload, compared to YCSB.

TPC-C: Transaction Latency

While memory gating reduces TPC-C memory power consumption, it also introduces a
significant latency penalty. The transaction latencies are shown in Figure 5.24. The
increase in latency is modest (0.5 - 1.5 ms, 30-60%) for the lower compression factor setting
(1.33x) as long as the load is low (<50%). However, even with the lower compression
factor, the additional latency grows to 6 ms (150%) for higher utilization. With the 2x
compression, transaction latencies rise rapidly with increasing load.

With gating, some increase in latency is expected because the system capacity is re-
duced. In the worst case, when no transactions can execute during the restricted interval,
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Figure 5.25: TPC-C: CPU power consumption in baseline, DimmStore without gating,
and with various gating parameters, versus load. Confidence intervals are computed as in
(5.2).

system utilization during the unrestricted interval is increased by the same value as the
compression factor. For example, system utilization of 50% with compression factor of
1.33 becomes 66% during the unrestricted interval, if no work can be performed during the
restricted interval.

TPC-C: CPU Power Consumption

Estimated total CPU power consumption, obtained from RAPL, is shown in Figure 5.25.
Compared to DimmStore without gating, CPU power consumption stays the same for low
loads and decreases by approximately 8% with higher loads. As CPU power consumption
in DimmStore is higher than in the baseline by 4-5%, gating compensates for this increase
in low loads and additionally saves a small amount in a higher load.

5.6 Discussion

In this chapter, we described the memory access gating mechanism, which was implemented
in DimmStore. Memory access gating saves additional power in the used DIMMs of the
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Figure 5.26: Inter-access interval length distribution in a used DIMM of the Data region,
without gating (pdf)

Data region, compared to DimmStore without gating. Memory power savings occur in
most of the load range, except very low loads, and are approximately 20% in the YCSB
workload and between 5% and 10% in the TPC-C workload in typical settings.

Memory gating imposes a performance cost. Temporary blocking of worker threads
adds to transaction latency and increases system utilization when the threads are not
blocked. The observed increase in transaction response times over DimmStore without
gating was 20%-30% in YCSB and 30%-100% in TPC-C.

The difference in power savings and performance impact between the two workloads are
due to their different memory access characteristics. Due to more complex and non-regular
access patterns, caching of frequently used tuples in the System region is less effective in
TPC-C. As a result, the average access rate to DIMMs of the Data region is higher and the
average interval between the accesses is shorter. We collected a trace of memory accesses
to one of the DIMMs in the Data region and its probability density function is shown in
Figure 5.26.
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Increasing the degree of access gating by using higher values for the compression factor
and the length of the restricted interval leads to a higher performance impact. In other
words, there is a tradeoff between power savings and performance. We did not develop
an automated mechanism to navigate this tradeoff to find an optimal gating configuration
according to the application requirements. This is left for future work.

The access gating prototype, as implemented in DimmStore, has several limitation that
reduce its power efficiency and worsen the performance impact. These limitations are due
to the underlying H-Store architecture, which does not allow for reordering of transaction
processing. Accessing a DIMM in the Data region during the restricted intervals forces the
partion’s worker thread to delay processing other transactions, even those that would not
access the Data region.

If the gating is implemented in a database system that supports out-of-order transaction
processing, restricted intervals could be imposed in a rolling fashion. In that case, restricted
intervals are forced only on a subset of DIMMs at a time. This technique would reduce
the average amount of worker thread blocking for the same total number of restricted
intervals. We believe that the rolling restricted intervals technique could further improve
power efficiency with a lower performance impact.

5.7 Related Work

Memory gating mechanism in DimmStore aims to further increase memory low power
state utilization by implementing restricted intervals when access to a memory resource
is forbidden. The concept of low power states is applicable to system components other
than memory. For processors, the lower power states are usually referred to as C-states.
A line of related research targets maximization of the processor C-states utilization by
periodically putting processors to sleep. In [33], a request batching technique is used in
a Web server. Incoming network requests are accumulated by the network adapter for a
certain duration of time, called batching timeout. The duration of the batching timeout
is dynamically adjusted based on the resulting quality of service level. It was found that
the request batching policy provides greater energy savings for light workloads, compared
to a policy based on Dynamic Voltage Scaling (DVS). This work targets a similar type of
workload (web requests) as DimmStore (database transactions) and uses a request batching
technique, which is similar to memory access gating in DimmStore. However, the system
is assumed to consist only of a single element (processor) and request batching affects
all requests handled by the system. In contrast, DimmStore defines and maintains two
memory regions such that their access rates differ greatly, and applies an access gating
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technique to the region with the lower rate. As a side note, it is interesting that the
response time target used for evaluation in that study is 50 ms (90th %-ile), which is an
order of magnitude longer than typical response times with DimmStore and gating.

A technique to reduce the power cost of C-state transitions due to clock interrupts in
virtual machines is used in the IdlePower architecture [11]. The technique targets virtual
machines in an idle state and adjusts the amount of interrupt delay is heuristically adjusted
based on the machine’s utilization history.

DreamWeaver [59] extends the idea of forced sleep times for multi-core systems. The
reason that request batching performs poorly on multiprocessors with parallel request
execution is the variance in the request processing times. For processors implementing
per-package C-states, continuing execution of a straggling request will destroy much of the
low power state potential. This problem will become more prevalent with more parallelism
in the processor. The proposed solution is to suspend all cores as soon as any single one
becomes idle, while also putting a bound on the amount of delay for each request. The
desired result is having the processor switch between states when all cores are busy or all are
idle. The work to implement forced idle states in Dreamweaver is offloaded to a secondary
low-power processor. Although memory is not considered in that work, the problem of
coordinating idle time between worker threads is also very actual for DimmStore because
memory DIMMs are shared between the threads. DimmStore addresses this problem in
a simpler way, by imposing a predefined single schedule of restricted and unrestricted
intervals for its Data region.

A separate class of work focuses on scheduling algorithms that maximize idle time on
uni- and multiprocessors for energy savings. Typically, task scheduling problems apply in
the real-time systems context, where a priori task execution information can be utilized.
A continuum of scheduling algorithms has been proposed that balance the requirement
for the tasks to meet deadlines, energy utilization, and computational complexity for var-
ious system models. A family of Energy-Saving Rate-Harmonized Scheduling (ES-RHS)
algorithms [64, 32] schedules periodic tasks, according to their priorities, on boundaries
of the periodic time interval, called Harmonizing Period. To produce optimal energy sav-
ings, forced sleep is inserted at the beginning of each Harmonizing Period, which duration
is determined based on the worst-case execution time of all tasks. As a result, all idle
time in the period is coalesced into a single idle interval. Although the real-time task
scheduling has very distinct setting from where DimmStore operates, there are obvious
analogies between periodic insertion of forced sleep in ES-RHS and restricted intervals in
DimmStore. To address the problem of energy saving scheduling in multicores that go
into C-states synchronously, the same work [32] defines the SyncSleep Scheduling, where
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known real-time tasks are partitioned between cores, each running ES-RHS, to maximize
common sleep time.

Typically, when processors are put to sleep, much of the entire system will become idle
and transition to some sort of a lower power state. This especially applies to memory,
and even though existing work does not specifically targets memory, with any technique
that puts the processor into a sleep state the memory power consumption will be reduced
as well. The real-time scheduling problem of Maximizing Common Idle Time (MCIT) is
explored in [20] in the context of multiprocessors. Effects of several MCIT algorithms on
power consumption of shared memory are evaluated in [35].
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Chapter 6

Additional Related Work

In this chapter, we include references to related work on topics not previously covered in
individual chapters. The first group of references describe existing approaches to memory
power savings that do not rely on memory power states. These approaches are not specific
to databases and include application of memory voltage and frequency control (Section 6.1)
and saving on memory refresh energy (Section 6.2). We also present work on power saving
techniques in DBMS, which do not specifically target memory. These include power-
efficient query planning (Section 6.3), and application of processor DVFS in database
systems (Section 6.4).

6.1 Memory Voltage and Frequency Control

Adjusting operating frequency according to changing application performance demand is
a widely used technique to control energy consumption in a variety of computing systems,
from smartphones to servers. In an operational state, the power consumed by CMOS cir-
cuits increases with the switching rate of logic gates. Since the switching rate does not
necessarily directly correspond to the amount of useful work performed by the circuit,
reducing frequency can help minimize energy consumption when utilization is low. Addi-
tionally, the supply voltage can be reduced as timing requirements become less tight at
lower frequencies. The combined effect of power reduction due to frequency and voltage
scaling is used in a technique called Dynamic Voltage and Frequency Scaling (DVFS).
DVFS has been successfully used in CPU power management, but is not yet available for
memory.
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David et al [24] conducted an extensive experimental study of the potential of memory
DVFS. Existing systems often allow a user to statically change memory frequency between
reboots. Modern DRAM standards [6, 7] also define a procedure to change frequency at
run time. However, there is no procedure to change voltage during operation, even though
some systems include programmable DRAM voltage regulators. A number of potential
issues need to be addressed to dynamically adjust voltage, such as data retention and need
for interface recalibration. Nevertheless, it was found that minimum stable voltages of
DDR3 decrease with frequency, albeit not significantly, with the reduction from 1333 to
800 MT/s. The time to switch voltage was estimated to be about 20 µs. According to the
results of measurement and modelling, reducing frequency alone from 1333 MT/s in steps
to 1066 MT/s and 800 MT/s would correspond to power reduction of about 8% in each
step. The additional effect of voltage scaling was estimated to be about 6% per step.

Memory frequency reduction proportionally reduces the available bandwidth. The pro-
posed power management strategy should increase memory frequency for applications with
higher memory bandwidth demand. Particularly interesting was the observation of how
frequency reduction affects the memory access latency, illustrated in Figure 6.1. As long
the required bandwidth is much lower than the available bandwidth, the increase in la-
tency is small and is determined by the longer transfer time. The latency starts to increase
visibly due to waiting in the memory controller queues as the required bandwidth becomes
roughly half of the peak. This observation led to a simple memory frequency control algo-
rithm that uses constant bandwidth ranges for each frequency setting. The actual memory
bandwidth is estimated during an interval, and memory switches to the frequency set
for the corresponding bandwidth range. This technique showed the reduction of memory
energy between 3.5-4.5% in the non-memory-intensive subset of SPEC CPU benchmark,
with negligible impact on performance for all the benchmarks in the set.

Reducing memory frequency may negatively affect application performance because it
reduces the memory throughput. The holy grail of DVFS is a frequency control algorithm
that would minimize the consumed energy while keeping performance degradation to the
minimum. Therefore, current research is largely focused on choosing the right spot on the
energy-performance trade-off imposed by DVFS.

Deng et al [30] proposes present MemScale, a control algorithm for DVFS that adjusts
the memory frequency in response to changes in the workload. The algorithm is based
on the observation that performance of a workload with a higher ratio of instructions
that produce the last level cache (LLC) misses is more sensitive to frequency reduction.
Therefore, the counters representing the number of instructions executed and the number of
LLC misses are used to characterize the workload in the current time interval. Based on this
information, expected performance and power consumption is predicted by a corresponding
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model, once for each of the available frequencies, and the one that entails a minimal power
consumption for a fixed allowed performance degradation is chosen for the next interval.

This work does not investigate practical feasibility of DVFS, nor does it experimentally
characterize memory power consumption under DVFS. The evaluation of the algorithm is
based on the combination of simulation, modelling, and a number of assumptions, such
as quadratic dependency of power consumption on voltage. Overall, the expected mem-
ory energy savings in the SPEC benchmark are between 6-31% with performance degra-
dation restricted to 10%. For non-memory-intensive programs, the algorithms achieve
maximum savings (about 31%) with small performance degradation (<2%), while the
memory-intensive ones show less energy saving (5-20%) with higher degradation (4-8%).

An extension to MemScale for systems with multiple memory controllers, MultiScale,
by Deng et al [29], is motivated by the adoption of multicore systems that exhibit non-
uniform load between channels, or composed or heterogeneous hardware. Utilization skew
between channels calls for per-channel, or per-controller, DVFS. The performance and
power model is the same as in [30], but now an application may access more than one
memory channel. By adjusting the frequencies of all channels, the system minimizes the
total estimated energy while restricting its relative performance degradation.

Recent work by Sharifi [66] is a further development in DVFS control algorithms. As
in MultiScale, memory frequency is adjusted independently for each memory channel in
a multi-core system. Running applications are grouped according to their performance
sensitivity to memory frequency and assigned to a CPU core with a channel operating at
the optimal frequency for each group. A novel idea is considering burstiness of memory
accesses when estimating the sensitivity. Thus, instead of using the counter of memory
accesses as a measure of application memory heaviness, a counter for distinct groups of
memory accesses is used. The intuition behind this idea is not deeply investigated, but
it is based on the observation that applications with bursty memory access patterns tend
to be less affected by a reduction in memory frequency, the average memory access rate
being the same. Compared to the baseline from [30], the new algorithm improves power
saving and reduces performance degradation due to DVFS on mixed and memory-intensive
workloads.

The difficulty of assessing various DVFS algorithms comes from the fact that there is
no support for memory DVFS in existing systems. The evaluation of proposed algorithms
in [30, 29, 66] is performed under a simulator, which raises questions on how much of the
improvement can be expected under real-life conditions.

Variable frequency support has been improved in the most recent standard of mo-
bile DRAM, LP-DDR4 [1]. Even though previous DDR standards defined a procedure to
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change frequency at run time, memory would need to undergo a set of time-consuming
calibration sequences to adjust interface parameters to new timings. In LP-DDR4, mode
registers that store calibrated settings are duplicated so that switching between two fre-
quency operating points is possible without retraining. This improvement reduces the
frequency switching time and can potentially improve effectiveness of workload-controlled
DVFS implementations.

In general, managing memory power with DVFS is mostly complementary to the ap-
proaches based on memory power states. Power states provide higher power differential,
while reducing frequency can be effective even when there are no long enough idle inter-
vals. Since my strategy of memory power management causes highly skewed bandwidth
utilization between channels, it may be useful to combine it with a per-channel DVFS
mechanism.

6.2 Reducing Memory Refresh Energy

A separate category of work on memory power optimization is related to energy consumed
when memory is idle. DRAM memory requires periodic refresh of its rows to retain infor-
mation. Refreshing contributes to the background portion of DRAM energy consumption
that does not depend on how actively memory is being used. Refresh power is the lowest
level of a memory rank power consumption at which information is guaranteed to be safe.
Quantitatively, it closely corresponds to power consumption in the Self Refresh state.

Refresh power is especially important for mobile devices that spend much time in a
sleep state. However, refresh power can also be manipulated when regions of DRAM do
not hold valid data or this data is not critical. Two existing methods can potentially be
used to reduce the Self Refresh power: reducing the refresh rate and completely disabling
refresh at the granularity of a memory rank or its subset. Since refresh is critical for
data retention, both methods cause potential loss of all or part of the stored data. Let us
consider the latter idea first.

Most of the current DRAM devices support a feature called Partial Array Self Refresh
(PASR) that allows the system to restrict the subset of the array that is subject to refresh in
the Self Refresh state. Reduction of the refreshed portion is accompanied by a reduction
of power consumption, although not linearly. Thus, for the oldest LPDDR standard,
refreshing 1/16 of the array reduces the Self Refresh power by 62% [18]. The Maximum
Power Savings mode in LPDDR4 [1] can be seen as a coarse granular version of PASR,
when refresh is disabled for a whole rank. Potential integration of PASR into Linux kernel

122



to reduce power consumption in a sleep mode was investigated by Brandt et al [18]. Since
switching to or from a sleep mode can be made in a restricted OS code path that only uses
a small dedicated memory region, all other physical allocated memory can be “compressed”
into one of the refresh-enabled regions of DRAM during the transition. On device wake-
up, a reverse “decompression” process takes place which restores the original memory
map before the rest of the system is made operational. Kjellberg [49] presented a low-
level kernel driver for a finer granularity PASR mode in LPDDR2 devices, which makes
memory “compression” and “decompression” unnecessary. The driver is integrated with
the kernel memory allocator and tracks usage of individual DRAM banks, which is the
PASR unit in LPDDR2. Upon entering the sleep mode, the PASR is configured to exclude
the unused banks from refresh. The proposed mechanism can only save power when the
device is inactive. Despite these limitations, even in a running system memory can be in
the Self Refresh state for significant time, while some of the memory remains unallocated.
For such circumstances, Coquelin and Pallardi [22] describe a similar modification of the
Linux kernel that aims at using PASR to avoid refreshing of unused physical memory. The
proposed mechanism consists of a low-level driver that configures PASR through memory
registers, and a high-level governor that controls memory compaction. However, there
appears to be significant difficulties in designing an effective governor for a general purpose
operating system, therefore, the proposed techniques have not made it to existing systems.

However, PASR is a potentially valuable method to save power in large-scale database
systems when memory is underutilized. As with rank-aware allocation, there is gap be-
tween hardware capabilities and tools available to software as there is no interface for the
software to describe the usage patterns of memory allocations. Closing this gap would
mean designing system interfaces that would expose the power structure of the system and
provide memory intensive applications, such as DBMS, tools to exploit these capabilities.

PASR and the Maximum Power Saving mode can be seen as an additional low-power
state that allows the stored data to be lost. The common requirement for any power-state
based power strategy is its ability to concentrate data with similar access characteristics
into consecutive intervals of the physical address space. Once this is achieved, any remain-
ing intervals may become large enough so that the associated PASR region, or a whole
rank, can be switched to the state with no refresh.

An orthogonal method to reduce refresh energy is to reduce the rate of refresh. Such a
reduction is possible both in Self Refresh state and when refresh commands are issued by
the memory controller during normal operation. It has been noted that standard refresh
interval (64 ms) is very conservative and increasing it to 1 second only causes errors at
the rate of 4.0 × 10−8 [55]. This observation has lead to the design of Flikker [55], a
system that saves memory energy but creates a possibility of a data loss in the part of
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the program data that is not critical, such as lossy compressed images. Sparkk [56] is
another, even more complex system of the same type, which stores bits of numeric values
of various importance in memory modules that are refreshed at different rates. Therefore,
less important bits are more likely to be corrupted while the important ones are stored
intact. Shifting errors to less significant bits allows the system to reduce the average refresh
rate for the same perceived level of data corruption. Techniques based on controlling the
refresh interval establish a class of approximate memory storage systems, while general-
purpose mainstream systems are not designed to accept any data corruption.

6.3 Energy Efficient Query Planning

The memory energy required to execute a particular database query may vary depending
how the query is executed. For example, it was found that energy cost of the same query
may vary by a factor of four when different query plans are chosen [62]. Such a large
difference indicates that there is a high potential to save energy if the optimizer is made
aware of query energy cost, in addition to execution cost. Not surprisingly, an impressive
amount of research exists that explores the direction of power efficient query planning.

There are more factors that may affect the power cost of a query. Psaroudakis et
al [62] look at the level of CPU parallelism and frequency to see how they affect CPU
and memory power and system performance. Two algorithms typical for an in-memory
DBMS, concurrent partitioned scan and parallel aggregation, in a multi-socket system, were
considered. In particular, for a given level of load, how many cores in each of the CPU in
the system should be allocated to query processing, to maximize the ratio of performance
to combined energy consumption of the CPU and memory? It was found that that the
optimal performance/energy ratio is achieved with the smallest number of CPUs used,
such that the memory bus in each used socket is saturated. Knowing the amount of work
that saturates the socket memory bus in a socket, we should evenly spread it among all the
cores in the CPU, choosing the lowest sufficient frequency. This result can be explained if
memory is the least power proportional component in the system, therefore, it is the most
energy efficient when a unit of memory is fully utilized or completely idle. In my work, I
have made the same observation and use a strategy to concentrate memory workload, but
I do that with a finer granularity - memory ranks, instead of all memory attached to a
CPU socket.

The power-performance behaviour is too complex to directly codify in a query opti-
mizer, therefore, an open problem is navigating over the search space of query plans with
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added energy parameters. A feasible strategy would be to build and calibrate a power-
performance model on a number of operational points and use this model in the optimizer
to associate a power cost for a query plan. A work by Gotz et al [36] had the focus of
finding the best CPU frequency and number of threads, referred to as the sweet spot, in
the context of a complex (TPC-H) workload. However, the paper stops short of suggesting
an automated approach to integrate this information into the query optimizer.

Lang et al [52] look at the effects of query plan selection on energy consumption and
efficiency. They show that, for example, different join algorithms, e.g. hash-join or merge-
join, may have different energy/performance ratios. The best performance plan, which
is normally selected by the optimizer, may not be the most power efficient. If a certain
penalty in query response time is allowed, as specified in the Service Level Agreement
(SLA), the system could save some energy by exploiting the energy/performance trade-off.
To make this possible, the query optimizer must consider the energy cost of each operator.
The proposed energy model predicts this cost as a weighted sum of expected CPU cycles,
I/O reads and writes, and the number of memory accesses. The model only needs five
parameters to learn and achieves an average error rate of around 3% and a peak error rate
of 8%.

A similar way of leveraging a cost-based query optimizer to balance between query times
and consumed energy is presented by Xu et al [79]. In their work, the single query cost
metric combines both time and power costs using an adjustable weight factor. The trade-off
between time and power costs forms essentially a Pareto curve, which shape is determined
by the weight factor, for a query with a fixed total cost. The power cost component is
computed by associating power costs for elementary operations, such as processing a tuple
by the CPU or reading a page from the disk. Once the power component is integrated
into the cost metric, the query optimizer can consider it in the otherwise unmodified plan
search procedure.

The effectiveness of database energy optimization based on query plan selection depends
on availability of reasonable plan candidates that realize this trade-off. For workloads that
are dominated by simple and short queries, which is common e.g. in OLTP, there just may
not be enough possible plans to choose from. On the other had, such workloads execute
queries from multiple clients in parallel, which provides opportunities to adjust relative
execution scheduling of the queries. For these workloads, the other possible approach is to
adjust scheduling of individual queries.
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6.4 CPU Frequency Scaling in DBMS

CPU frequency and voltage scaling (DVFS) is a general technique, usually applied to all
applications running in a system.

In these techniques, both application performance and power consumption are modelled
to choose the DVFS operating point that balances the power consumption and performance
degradation. For a database server, the accuracy of performance modelling can be improved
by allowing the database engine itself to act as a DVFS controller. Korkmaz et al [50]
presents an algorithm to control CPU frequency scaling and scheduling for transactional
workloads. In such a workload, the level of system performance can be characterized by
response times of individual transactions. Provided with a latency target for transactions
and estimating their expected execution times at various frequencies, the system can choose
a frequency setting such that the majority of transactions during a time interval satisfy their
latency targets. To further tighten the energy budget, POLARIS schedules transaction
execution according to their deadlines. The combined effect of frequency scaling and
transaction reordering allows the system to save energy under a variety of load conditions
while keeping the number of missed latency targets to a minimum. A related but less
sophisticated algorithm, without transaction reordering, was described earlier by Kasture
et al [47].

A significant feature of existing techniques for achieving CPU power efficiency is their
reliance on frequency settings (P-states) while idle states (C-states) do not seem to be
useful as long as the processor is at least minimally loaded. Memory, in contrast, does
not currently support frequency scaling, and current progress in power efficiency fully
relies on idle states (low power states). However, the theoretical application of memory
frequency scaling has been explored (see Section 3.6.1) and one should expect its practical
implementation in near future. If that happens, the ideas of DBMS-resident frequency
control could be extended to both CPU and memory.
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Chapter 7

Conclusion

Memory power consumption is a significant contributor to servers’ energy footprint, but is
also relatively unexplored area in the wider space of power optimization research. In this
work, we attempt to understand how memory consumes power and develop techniques to
reduce the memory power consumption of main-memory database systems. Main-memory
database systems are an important case for memory power optimization because of their
requirement to fit the entire database in memory, including space for future growth.

We characterized the memory power consumption in existing database systems (Chap-
ter 3) and showed that memory power consumption stays high regardless of the database
size, and only weakly depends on load. This happens because the bulk of the power
consumption is background power, which depends on power state residencies, but is not
proportional to load. Memory allocation and accesses in existing systems tend to be spread
evenly across DIMMs and over time. Even when memory is not fully used and load is lower
than peak, accessing all DIMMs at the same rate does not create long idle intervals on
any DIMMs. Long idle intervals are required for low-power states to be used. In the
following chapters, we develop two orthogonal mechanisms to reduce background power
consumption.

In Chapter 4, we present a power-saving DBMS prototype, DimmStore, based on rate-
based placement and rank-aware memory allocation. With these techniques, frequently
used data is concentrated in a subset of DIMMs, so that the access rate in the remaining
DIMMs is reduced. We demonstrated significant power savings (up to 50%) in DimmStore
in transactional workloads with minimal performance impact. Most memory power savings
occur due to minimization of power consumption in unused regions of memory when data-
base size is smaller than the amount of available memory. Power consumption in rarely
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used DIMMs is also reduced, however, the amount of reduction depends on the residual
access rate to these DIMMs. Workloads with simpler and more regular access patterns,
such as YCSB, demonstrate larger power savings than more complex workloads.

In Chapter 5, we augment DimmStore with a memory access gating mechanism, which
targets memory power consumption in the region with rarely-accessed data. Although
basic DimmStore reduces the average access rate in that region, these memory accesses
were still evenly distributed over time. Memory access gating inserts long periods of idleness
in the rarely accessed DIMMs by periodically stalling threads that attempt to access those
DIMMs. DimmStore with memory access gating specifically reduces power consumption
in used but rarely accessed DIMMs. Added longer idle intervals and shifting some accesses
to other time intervals impacts performance. We analyzed the power/performance tradeoff
of gating and discussed the ways to tune gating parameters to navigate this trade-off
according to application requirements.

Although I successfully prototyped the power saving techniques in an open-source main-
memory DBMS, I expect more consistent results in a system where memory power opti-
mization is a part of its design. To enable a clean implementation of rank-aware alloca-
tion, the operating system should provide a system interface for applications to discover
the physical memory layout and route memory allocations into specified physical memory
regions. Such an interfaces may be modelled after the set of APIs for management of
threads and memory allocations in NUMA systems, such as libnuma. Possible designs of
system interfaces for rank-aware allocations are discussed in more detail in Section 8.3.1.

The rank-aware allocation and rate-based placement techniques are generally applicable
to data management applications and have little performance overhead. Therefore, I would
recommend to implement them in new and existing systems to improve power efficiency.
The biggest consideration is a mechanism to identify and maintain access rate information
for data items, which should be tailored to the data structures used in the system.

The memory access gating technique produced workload-dependent power savings, with
a higher performance impact. It would be beneficial to include it when the system may
experience a high variance in load and the application can tolerate an increase in response
times. An important implementation consideration is integration of idle interval scheduling
due to gating with other work scheduling in the system. In particular, the system should
be able to insert the idle intervals with good timing accuracy and execute the batch of
delayed work without interruption. With a careful implementation, a favorable balance of
performance overhead and power savings can be achieved.
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Chapter 8

Future Work

In this chapter, we outline future directions for the work on memory power consumption,
started in this thesis. In Section 8.1, we discuss possible improvements to the techniques
used in DimmStore. Later in Section 8.2, we elaborate on extending the techniques from
this work to other workloads and types of systems. In Section 8.3, we consider hypothetical
support from operating systems that would make the techniques described in this work
more practical.

8.1 DimmStore improvements

8.1.1 Rank-aware index allocation

In its current implementation, DimmStore always allocates memory for indexes in the
System region. This reduces the amount of scarce System region memory available for
storing hot data tuples. Since every key in a secondary index corresponds to a tuple in the
primary table store, it may be possible to distinguish between frequently and infrequently
used keys and place them to the System and Data regions, respectively. The difficulties in
rank-aware index key placement are the following:

• In existing indexes, the location (address) of a key is uniquely determined by the
data structure used by the index. For example, in a B-Tree, a key must located in a
block according to its value. In a hash table, the location of the key in the table is
determined by its hash value. It is not possible to separately store the cold subset of
keys in a different location.
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• Index keys are often small and the memory overhead associated with computing and
adding and maintaining frequency information will increase storage and run time
costs.

• The flag indicating that the tuple is in the Data region iself currently is also stored in
the index. Not storing this flag for tuples in the Data region will require a two-step
search procedure, first in the System region, and if not found, in the data region.

A Hypothetical Hot/Cold B-Tree Index

In a B-Tree, keys are organized in blocks of a fixed size (nodes), using pointers to form a
tree. A B-tree search traverses the tree starting from the root and ending in a leaf node
containing the key. Due to the fanout, the upper levels of the tree are accessed more
often than the lower levels. If only a small number of keys in the leaf nodes are frequently
accessed, it will beneficial to store frequently-accessed keys in a separate set of nodes and
move the least accessed nodes to the Data region. Essentially, the index will consist of two
trees, hot and cold. The hot part of the index will likely be smaller and will have fewer
levels. Searching in such an index would first involve searching the hot part, and if the
value was not found, continue searching the cold part. Since the hot part is smaller, even
an increased number of total block traversals may impose only a small cost, which will be
offset by the reduction in memory use.

Since the keys in leaf nodes uniquely correspond to tuples, an additional mechanism to
track the frequency of access to the keys is not needed. The keys in leaf nodes are moved
between the hot and cold parts at the same time the corresponding tuples are evicted or
unevicted. The keys in the upper levels of the cold part can be assumed to be frequently
used and always stored in the System region.

The potential problem with two-stage hot-cold index is frequent searches for non-
existent keys. Such searches will always fall back to search in the cold part, unnecessarily
increasing the access rate to the Data region. If such searches are expected, this problem
can be addressed by adding markers for frequently searched non-existing keys in the hot
part of the index and using additional Bloom filters.

8.1.2 Dynamic Sizing of the System region

In DimmStore, the number of DIMMs in the System region is configured before starting
the system. A smaller System region is beneficial for memory power reduction (because of
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more Data region DIMMs) but it would incur a higher cost (performance and, potentially,
power too) of evictions and unevictions. The two issues here are to determine the optimal
size of the System region, and to implement the incremental reclassification of one DIMM
from System to Data region, or vice verse.

Since the System region is similar to a cache, the algorithms used for dynamically
sizing caches should also apply. Alternatively, a simple heuristic approach may be based
on limiting (or fixing) the rate of evictions while allowing uneviction to occur according to
the workload. To keep the System region constant, these processes must be balanced. A
too small System region would cause an increase in the rate of unevictions. If the eviction
rate does not change, the System region will naturally grow. As the System region grows,
its miss rate is expected to decrease, eventually balancing out evictions and unevictions
when it reaches a certain size.

Extending or shrinking the System region would involve data migration. In contrast
to caches, tuples in the System region are not duplicated in the Data region. However,
the data migration may happen asynchronously and the additional cost will amortize over
time. When extending or shrinking the Data region by one DIMM, the chosen DIMM will
be temporarily shared by both regions. Allocating space for new (inserted or unevicted)
tuples will use free space in this DIMM. The tuples that existed in this DIMM while it was
in the Data region, will be evicted at the first priority, possibly even without observing the
eviction rate limit.

8.1.3 Shared Data Region

The current DimmStore implementation applies the H-Store partitioning scheme to both
System and Data region. Essentially, every partition has its own fraction of the total
memory, divided into the partition’s System and Data regions. This was done because in
H-Store, all partitions are completely independent. However, since partitions access their
Data regions very infrequently, it may be possible to share a single Data region between
partitions with a minimal synchronization cost.

The benefit of the shared Data region would an improved memory allocation efficiency
in case partitions allocate memory unevenly.

8.1.4 Rate-aware Data Region

Currently, DimmStore does not take advantage of having multiple DIMMs in the Data
region. It allocates memory starting from the physical address of the first DIMM, and
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continues to allocate memory sequentially in all DIMMs. Therefore, the distribution of
tuples in the Data region does not follow their access rate.

There is almost certainly a skew in the access rate to tuples in the Data region. It may
be possible to reduce the total power consumption by migrating tuples to each DIMM,
according to their access rate. This additional access skew to the Data region’s DIMMs
may reduce the residual access to the coldest set of DIMMs so that the inter-access intervals
are long enough for the Self Refresh power state.

In addition, if memory gating is used, the “colder” Data region’s DIMMs may be
configured with more aggressive gating settings than the “warmer” DIMMs. If shared
Data region is also implemented (Section 8.1.3), the access rate skew between DIMMs may
be higher as it will include all the tuples in the Data region.

8.2 Future Extensions

8.2.1 Analytical Workloads

In this work, we focus on transactional workloads. These workloads are characterized by a
high rate of transactions and small amount of work in each. Tuples are typically accessed
using indexes with little scanning. Transactions typically arrive from many clients and are
largely independent. Memory accesses are predominantly random and little of the total
memory bandwidth is used.

The other class of database workload is Online Analytical Processing (OLAP). OLAP
workloads are antithetical to OLTP workloads. User queries process large amount of data,
often with large scans. These properties of the workload result in higher memory bandwidth
utilization, which makes it more difficult to save memory power.

The first concern with OLAP workloads in conjunction with memory power saving
techniques is memory interleaving. As it was discussed in Chapter 3, disabling interleaving
reduced query performance. However, it is important that different queries were affected to
different degree, which means that different queries have different requirements for memory
throughput. Since the only other performance bottleneck is the CPU, different queries have
different ratio of needed CPU cycles and memory bandwidth.

Analytical queries typically consist of several operators, each implementing a known
algorithm. For each query operator, its performance requirements may be estimated. In
the worst case, a memory-bound operator will saturate the memory bus and we cannot

132



DIMM1 DIMM2

CPU

DIMM1 DIMM2

CPU

DIMM2

CPU

DIMM1

Single step

Step 1 Step 2

Baseline

Optimized

Figure 8.1: Data flow between DIMMs and processor, for a query operator requires the
bandwidth of one CPU and two DIMMs (memory channels).

expect to save memory power. However, if the operator is CPU-bound and the required
memory bandwidth is lower than the maximum available from all channels, it may be still
obtained using a smaller number of memory channels. In analytical DBMS, for example
in MonetDB, data is often broken down to blocks so that one block is processed at a time.
The primary goal is performance optimization due to more efficient use of processor caches.

A memory power-efficient approach to OLAP may be based on scheduling processing
of blocks located in particular DIMMs to control the memory bandwidth, as illustrated
in Figure 8.1. A query operator that needs the total memory bandwidth provided by two
channels to saturate all CPUs, will start processing only blocks locating in DIMMs installed
in two channels. The remaining DIMMs will be unused during this time. Once these data
blocks are processed, the system will switch to process the data blocks located in DIMMs
of the next two channels, and so on.
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8.2.2 NUMA Systems with Large Number of Nodes

The DimmStore design is also applicable to system with a larger number of processors and
NUMA nodes. Since the great majority of memory accesses are directed to the System
region, NUMA strategies related to memory allocation are only important for the System
region and should be the same as in the baseline system.

If the workload exhibits a high degree of access locality, it would be beneficial to allocate
a separate System region in every node in the system and pin the worker threads to the local
CPU. If the access locality is poor, pinning threads to cores will provide less advantage.

If the workload is unevenly distributed between nodes, it may be beneficial to allocate
the System region only on a subset of nodes, leaving the other nodes with Data region
memory only. The worker threads should preferably use the cores of the nodes with System
regions. In that case, memory power consumption may be reduced because of a smaller
System region.

8.3 System Support

8.3.1 Support form Platforms/BIOS

Memory Configuration Discovery

The system should be able to report its memory information for two reasons. First, knowing
its configuration is necessary when deploying load in a distributed system. Second, it is
needed for rank-aware allocations.

Currently, memory information is maintained by the platform BIOS and can be re-
ported to the operating system through the DMI interface [3] and applications can read
it with the dmidecode tool. This information includes the list of memory modules, their
sizes, frequency, and NUMA location. This information is sufficiently complete to estimate
system’s capabilities for the purpose of load balancing. However, the DMI information in
out test server does not indicate interleaving configuration and reported modules’ address
ranges did not correspond to actual physical addresses as configured in the memory con-
troller. With interleaving, multiple modules may serve one address range, which DMI is
likely not able to represent.

For rank-aware allocation, the platform should additionally provide information to the
operating system derived from the memory controller configuration. This information
should include the following items:
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• the list of memory regions with identical configuration and their accurate address
ranges;

• the configuration for each region, such as interleaving granularity and state manage-
ment policy;

• the mapping of regions to physical devices as reported by DMI.

Dynamic and Partial Memory Configuration

Currently, memory configuration is a cumbersome process. Memory settings are set man-
ually by the boot-time BIOS program and require a lengthy reboot to take affect. Chang-
ing memory configuration for different application requirements can be significantly sped
up if the memory controller can be reconfigured from the operating system. The Linux
and Windows operating systems can already “hot-add” and “hot-remove” memory devices
to survive such reconfiguration. Based on scarce information available for Intel memory
controllers[8], it can be speculated that multiple regions with different interleaving config-
urations can be supported at the same time. For example, a system with 16 DIMMs on 4
channels may be configured with interleaving the first DIMM in each channel, proving a
4 DIMM region of “fast” memory, and without interleaving for the remaining 12 DIMMs.
For power savings, the non-interleaved DIMMs should be able to use the Self Refresh state
independently from other DIMMs on the same channel.

Explicit Control of Memory Power States

Memory power efficiency could be improved if the software could directly switch memory
power states. Currently, such state transitions are triggered by a timeout in the memory
controller. Direct state control could eliminate the need to enforce long idle intervals during
which memory is in a higher-power state only to induce a state transition. Alternatively, a
similar effect can be achieved by keeping the state transitions to the controller but allowing
the software to set timeouts dynamically.

8.3.2 Support from Operating Systems

Operating systems do not currently provide an interface for applications to request mem-
ory from a particular physical memory region. This is the reason why DimmStore “hides”
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memory from the operating system. The major drawback of this approach is the require-
ment for superuser privileges for the DBMS process. To make physical memory allocation
more practical, the operating system should provide tools that can be based on existing
capabilities. The existing mechanisms in Linux operating system that serve a similar pur-
pose are the madvise and set mempolicy interfaces, and the hugetlbfs filesystem. The
madvise system call allows the application to apply an integer bit mask for a virtual mem-
ory region, according to the usage pattern it expects for this region. Some of the flags set
performance expectations for the region. For example, there are bits to indicated expected
sequential or random access patterns, and whether this region will be accessed soon. The
limitation of this interface is due to a limit on the number of bits in the bit mask and
lack of additional arguments. The set mempolicy interface controls on which nodes of the
NUMA system memory allocations should take place for the current process. This call
takes a mask of NUMA nodes and is not directly applicable to control memory allocations
within a node, but a similar call may be added that accepts a mask of physical memory
modules instead. Additionally, the call should apply to particular memory allocations, for
example, specified as a virtual address range. The hugetlbfs file system allows the system
administrator to “mount” memory backed up by huge pages into a directory such that all
files in that directory will use huge pages. The directory can be made to be owned by
any user so superuser privileges may not be required. A similar system mechanism could
be envisioned to dynamically associate physical memory regions with user virtual memory
allocations.
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