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Sentinel-2 satellite data
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Water hyacinth (Eichhornia crassipes) is one of the most aggressive and lethal free-
floating aquatic weed that degrades and chokes freshwater ecosystems and threatens
aquatic life. Early detection and up-to-date information regarding its distribution is,
therefore, crucial in understanding its spatial configuration and propagation rate. The
present study, thus, sought to map the seasonal dynamics of invasive water hyacinth,
in Greater Letaba river system in Limpopo Province, South Africa, using Sentinel-2
data and Linear Discriminant Analysis (LDA). Classification test results showed that
seasonal water hyacinth distribution patterns can be accurately detected and mapped,
using Sentinel-2 data with high accuracies. Water hyacinth was mapped with an
overall accuracy of 80.79% during the wet season, and 79.04% during the dry season,
with kappa coefficients of 0.76 and 0.724, respectively, using combined vegetation
indices and spectral bands. The use of spectral bands (wet: 79.48% and dry: 75.98%)
and vegetation indices (wet: 76.42% and dry: 74.42%) as independent dataset yielded
slighter lower accuracies when compared to the use of the combined dataset. Further,
areal coverage results showed that approximately 63.82% and 28.34% of the river
system was infested with water hyacinth during wet and dry seasons, respectively.
Findings of this study underscore the importance of new generation sensors in
detecting and mapping the seasonal distribution of water hyacinth in river systems.
Overall such findings provide a baseline or provide a framework for developing
invasive aquatic species management and eradication strategies.

Keywords: aquatic weed; infestation; mapping; freshwater ecosystem; remote sen-
sing; seasonal dynamics

1. Introduction

Water hyacinth (Eichhornia crassipes), which originates from the Amazon basin of
Brazil, remains the most troublesome aquatic weed, both locally and globally (Holm
et al. 1991; Mirongs, Mathooko, and Onywere 2014; Thamaga and Dube 2018b). Its
free-floating nature makes it a very effective competitor in newly invaded freshwater
ecosystems (Pyšek and Richardson 2010). Water hyacinth turns to outcompete other
aquatic plant species and forms dense free-floating mats, which in many instances
completely cover freshwater surfaces, such as lakes, rivers, wetlands, and dams (Malik
2007; Shekede, Kusangaya, and Schmidt 2008). Its presence and distribution dominates
and suppresses phytoplankton and submerged vegetation (Roijackers, Szabo, and

Corresponding author. Email: hkgaboreba@gmail.com

GIScience & Remote Sensing, 2019
Vol. 56, No. 8, 1355–1377, https://doi.org/10.1080/15481603.2019.1646988

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0002-2305-9975
http://orcid.org/0000-0003-3456-8991
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/15481603.2019.1646988&domain=pdf


Scheffer 2004). Furthermore, the uncontrolled expansion of water hyacinth is attributed
to natural phenomenon, as well as the pervasiveness of eutrophication level in freshwater
ecosystem (Law 2007). The excessive growth of water hyacinth causes various environ-
mental (or ecological) and socio-economic impacts, which threaten freshwater availabil-
ity and quality (Getsinger et al. 2014; Hill and Coetzee 2017). Water hyacinth thus poses
serious threats to freshwater systems. For instance, the presence of these species in water
can cause hypoxia, water quality deterioration (Ndimele, Kumolu-Johnson, and
Anetekhai 2011; Mironga, Mathooko, and Onywere 2014; Dube, Gumindoga, and
Chawira 2014), change in macroinvertebrate species richness (Stiers et al. 2011), biodi-
versity loss (Villamagna and Murphy 2010; Pyšek and Richardson 2010; Khanna et al.
2011), as well as breeding ground for pests and vectors (Minakawa et al. 2008; Chandra
et al. 2006). These dense mats further increase flood risk by obstructing river flows and
irrigation system (Wilcock et al. 1999; Thouvenot, Haury, and Thiebaut 2013), obstructs
navigation (Holm, Weldon, and van Blackburn 1969) and impair recreational water
activities, which decreases the quality of freshwater ecosystem (Halstead, Michaud,
and Hallas-Burt 2003). In addition, water hyacinth chokes dams or lakes, resulting in
the reduction of hydropower generation (Clayton and Champion 2006), and promotes
water loss through evapotranspiration.

Water hyacinth grows best in tropical and subtropical environmental conditions with
optimal temperatures ranging between 25°C and 27°C, pH of 6–8 and eutrophic, still or
slow-moving freshwater systems (Malik 2007). Under favorable climatic conditions, water
hyacinth can reproduce both vegetatively and sexually, by seeds produced in capsules under
the base of each flower (Penfound and Earle 1948). The species can grow and reproduce
throughout the year, although flowering occurs mostly during spring and summer seasons
(Tiwari, Dixit, and Verma 2007). Growth rates and risks of water hyacinth in most open
water bodies are driven by climate change and variability (i.e. rise in temperatures), high
recharge from sewage disposal and nutrients, through runoff (Palmer, Kutser, and Hunter
2015; Pimentel et al. 2005). The propagation of these species and their threats to freshwater
ecosystem requires immediate attention in terms of monitoring, to understand their spatial
coverage and to put proper management practices in place. However, the use of field surveys
in monitoring water hyacinth have proven otherwise, besides being costly, time consuming,
labor intensive and limited in terms of spatial coverage (Shekede, Kusangaya, and Schmidt
2008; Dube et al. 2015). To ensure sustainable regional or catchment scale monitoring of
freshwater ecosystem, cost-effective methods on the spread of water hyacinth are critical.
Given the spatial extent and the inaccessibility of some rivers, there is a pressing need to
establish suitable water hyacinth geospatial technologies with appropriate spatial and tem-
poral scales and sufficient monitoring capabilities. Multispectral remote sensing seems to
emerge as the primary data source for achieving this task with minimal costs. It provides
timely, cost-effective, and operational tool that can detect and map the spatial distribution
and temporal dynamics of water hyacinth across a broad geographical extent (Hestir et al.
2008; Dube, Gumindoga, and Chawira 2014). In this regard, remote sensing datasets can be
utilized in diverse ways. For example, this data can help to identify areas at risk (Lodge et al.
2006), predict the distribution or patchiness (Bradley and Mustard 2006) and to quantify its
ecological and hydrological impacts. Remote sensing also allows temporal analysis of
species distribution, due to its repeated coverage. Temporal profiling and characterization
of water hyacinth can also enhance our understanding about its seasonal behavior.
Furthermore, temporal information on the distribution of water hyacinth is likely to open
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new avenues for scientific investigations, focusing on the modification of freshwater, climate
change influence and anthropogenic activities surrounding open water systems.

So far, different types of satellite imagery have been applied extensively to map the
distribution of water hyacinth. These include the high-spatial resolution SPOT
(Venugopal 1998), HyMap data (Hestir et al. 2008), medium to low spatial resolution
Landsat TM, ETM+ or MSS (Dube et al. 2017), HJ-CCD (Luo et al. 2017) and MODIS
data (Fusilli et al. 2013). The study by Luo et al. (2017) demonstrated the capability of
HJ-CCD images in mapping submerged aquatic vegetation species in the Taihu Lake.
The study showed that satellite technologies can help to map submerged plants, with an
overall classification accuracy of 68.4%. Despite successful detection and mapping of
submerged plants, the slightly lower accuracy was attributed to low spatial resolution
resulting in the presence of mixed pixels. On the other hand, Albright, Moorhouse, and
McNabb (2004) used multi-temporal Landsat TM images to map water hyacinth infesta-
tion in Lake Victoria and associated river systems. Venugopal (1998), showed the
usefulness of SPOT 4 satellite images in monitoring the infestation of water hyacinth
in Bangalore, India. The study demonstrated that low spatial resolution compromised the
successful mapping of water hyacinth in water bodies. The major limitation with most
studies on water hyacinth is bias towards the use of single date images in mapping
(Everitt et al. 1999; Cheruiyot et al. 2014). Single date species information limits an
understanding on their temporal variability. Comprehensive information on the spatial
distribution of water hyacinth and its annual and seasonal variability is critical in
managing water resources (Molinos et al. 2015). The advent of new generation satellite
images (e.g. Sentinel-2 MSI) offer new opportunities in understanding the distribution
and spatial configuration of water hyacinth across seasons. This sensor was chosen for
this study based on its technological advancement, such as unique spectral bands and
refined spatial resolution, as well as its reported performance as demonstrated in litera-
ture (Shoko and Mutanga 2017; Veloso et al. 2017; Sepuru and Dube 2018; Harmel et al.
2018; Thamaga and Dube 2018b). Further, the sensor has a larger swath path (footprint)
of approximately 290 km and overtime pass period of 10 days each and 5 days when
combined (Sentinel 2A and 2B). Based on this premise, this study, therefore, aims to
detect and map the spatiotemporal growth dynamics of water hyacinth in the Greater
Letaba river system in Tzaneen, South Africa, using Sentinel-2 satellite data. So far,
Sentinel-2 MSI data has managed to provide valuable insights in C3 and C4 grass
mapping (Shoko and Mutanga 2017), crop monitoring (Campos-Taberner et al. 2016;
Zhang et al. 2018), inland and sea water monitoring (Harmel et al. 2018), as well as
agricultural mapping (Wang et al. 2013; Veloso et al. 2017) and it is hypothesized that
this data can provide new knowledge in understanding the distribution of aquatic
invasive species.

2. Materials and methods

2.1. Site description

The study area is located within latitude: 23° 37ʹ 26.83ʹ’ S.036’S and longitude: 31°
5ʹ54.39ʹ’ E geographical co-ordinates (Figure 1). The study area falls within the tropical
climate, with two distinct seasons. The area’s mean annual rainfall ranges from 612 mm
during the wet season to 7 mm during the dry season. This seasonal variability influences
rivers flows and water availability in the catchment which in turn impact nutrient
distributions along river channels. The temperature ranges from 11°C in winter to 35°
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C in summer (DEAT 2001). This creates favorable growing conditions for water hyacinth
as high temperatures enhance photosynthetic rates. For instance, shows that nutrient
concentration and increased land surface temperatures influence the growth patterns and
reproduction of water hyacinth species in open water bodies (Wilson, Holst, and Rees
2005). Water from the Greater Letaba river system serves a variety of services, including
irrigation, domestic, as well as supporting aquatic life, especially in the upper part of the
river. Water quality of the river has deteriorated, due to salinization and nutrient enrich-
ment as a result of anthropogenic activities.

2.2. Data

2.2.1. Field data collection

Field data collection was done in the Greater Letaba river system, during the wet and
dry season. Field data collection for dry and wet season coincided with
acquisition day of Sentinel MSI images. Dry season data was collected from the
24th to the 26th of June 2017 where as for the wet season; it was from the 18th to 20th

of October 2017. A Garmin Global Positioning System (GPS) was used to record the
location of the water hyacinth. Additional data that was also collected included the
dominant land cover types such as, bare land, built up, shrub-land, water, forest,
riparian vegetation, and plantations. These land cover types were collected to enhance
the classification process. A total of 765 points were randomly generated, using
Hwath’s Analysis Tool embedded in ArcGIS 10.4 software. The field data were
used for discrimination, classification using remote sensing images and validation of
satellite-derived water hyacinth of the two seasons.

Figure 1. Locational map of the study area.
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2.2.2. Remote sensing data

In this study, six cloudless tiles (ortho-images in UTM/WGS84 projection) of Sentinel-2
MSI remote sensing data covering the entire study area were used (Table 1). The images
were downloaded from the online Sentinel Copernicus data hub. These images were
acquired in top of atmosphere reflectance. The images were therefore atmospherically
corrected, using the Dark Object Subtraction (DOS1) technique under Semi Automated
Classification tool in QGIS version 2.18.03 software. Selection of this technique was
based on its performance as reported in the literature (Pax-Lenney, Woodcock, and
Macomber 2001; Liu et al. 2017; Thamaga and Dube 2018a). The technique applies
the darkest pixel in the scene as an estimate of atmospheric path radiance (Lp) in all
bands, assuming that, the atmosphere is homogenous across the entire scene (Matthews,
Bernard, and Winter 2010). Further, the DOS1 technique works well in removing haze
components caused by additive scattering from remote sensing data (Chavez 1989).
However, the DOS1 technique has its own limitations for instance; the DOS1 assumes
no atmospheric transmittance loss and no diffuse downward radiation at the surface
(Chavez 1989; Tyagi and Bhosle 2011). Nevertheless, the technique has been used for
correcting satellite images, which have resulted in better accuracies.

For this study, 10 bands from Sentinel-2 images were used to achieve the aforementioned
objective. These included the Blue, Green, and Red, NIR, Red-edge (1, 2 and 3), NIR-narrow
and SWIR (1 and 2). Band 1 (coastal aerosol), 9 (water vapor) and 10 (SWIR – cirrus) were
excluded for analysis, due to their spatial resolution (60 m) and relevance for the detection of
atmospheric features (Drusch et al. 2012; Hagolle et al. 2015). The spectral bands within the
NIR, Red-edge (1, 2 and 3), NIR-narrow and SWIR (1 and 2), with a spatial resolution of
20 m were also resampled to 10 m using the nearest neighbor resampling method in ArcGIS
10.4 software. This was done to ensure that all bands had a similar spatial resolution, for
compatibility purposes and further analysis. Lastly, six scenes of Sentinel-2 images for each
season were layered and mosaicked in ArcGIS 10.4 software. Figure 2 shows a summarised
methodological framework followed in this study.

2.3. Data analysis

In this study, the Linear Discriminant Analysis (LDA) was employed to assess the spatial
variations of water hyacinth in the Greater Letaba River system, for the wet and dry
seasons. The LDAwas run using sampled GPS points and associated Sentinel 2 variables
(presented in Table 2) derived after extracting multi-values to points. LDA is

Table 1. Dry and wet season Sentinel-2 MSI acquisition dates used.

Season Month Scene detail

Dry 25 June 2017 RT_T36KTV_20170625T081348
RT_T36KUU_20170625T080542
RT_T36KTU_20170625T081227
RT_T35KRP_20170625T074618

Wet 19 October 2017 RT_T35KQP_20171019T074941
RT_T36KTU_20171019T074941
RT_T36KTV_20171019T074941
RT_T36KTU_20171019T074941
RT_T35KRP_20171019T074941
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a multivariate statistical classifier, which uses a discriminant or predictor function to
classify land cover features into classes, using a measure of generalized squared distance
(Dube et al. 2017). It converts reflected data derived from satellite images into compo-
nents that explain the variations in reflectance among land cover types. The algorithm
offers cross-validated results with Eigen value or variable scores that indicate the
strength of a specific function in discriminating invasive water hyacinth from other
dominant land cover classes. One of the assumptions of multivariate normality with
equivalent covariance matrices is that the sample points are random, which was the case
with land cover feature points used in this study. Besides, the algorithm applies the Box
test (Chi-square and Fisher’s F asymptotic approximation), Wilks’s Lambda test (Rao’s
approximation), Mahalanobis distances, and Kullback’s test to determine whether within-
class covariance matrices were equal (Sibanda, Mutanga, and Rouget 2015; Sepuru and
Dube 2018). The tests showed that there were significant differences (α = 0.05) between

Field data collection

Dry season Wet season 

Remote sensing data 
• Sentinel-2 MSI 

Pre-processing 

Layer stacking 

8 land cover types 

Masking of study area 

Extraction of multi-values 
for 8 land cover types

Spectral profile 

Calculate Vegetation indices 

Linear Discriminant Analysis 

Training and testing 

Land cover map 

Accuracy assessment 

Figure 2. Methodological framework.
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water hyacinth spectral responses and that of other land cover classes considered in this
study. For statistical analysis, sampled GPS points were randomly split into training
(70%) and testing (30%) sets (Adelabu et al. 2014; Adjorlolo et al. 2013; Sibanda,
Mutanga, and Rouget 2015). Further, three analytically procedures were followed to
discriminate water hyacinth from other land cover classes (Table 3). One-way Analysis
of Variance (ANOVA) was used to test the spectral variation of water hyacinth from
other land cover classes during wet and dry season. Three analytical sets of variables,
namely: (i) spectral bands, (ii) spectral vegetation indices and (iii) integrated spectral
bands and spectral vegetation indices were then used to derive accuracy assessment.
Zonal statistical tool was also used to calculate area coverage of water hyacinth, between
the two seasons.

2.4. Accuracy assessment

Accuracies in the form of cross tabulation matrices, using Millones and Pontius’ allocation
were used to compute Overall Accuracy (OA), User Accuracy (UA), Producer Accuracy
(PA) and kappa statistics from three analytical sets. We further used error bars to check the
significance of the observed accuracies between different land cover types identified within
the study area. Error bars were calculated using standard deviation.

3. Results

The results in Figure 3 show the averaged spectral profiles for water hyacinth and other
key land cover classes of the study area during the wet and dry seasons. It was observed
that, water hyacinth can be spectrally discriminated from other land cover types, i.e. bare
land, built up, shrub-land, water, forest, riparian vegetation, and plantations mainly
within the Red Edge (1, 2 and 3), NIR, NIR-narrow and SWIR (1 and 2) portions of
the electromagnetic spectrum during wet and dry season.

3.1 Image analysis

3.1.1 Analysis I: water hyacinth classification accuracies derived from Sentinel-2 using
raw spectral bands

Table 4 shows classification accuracies derived using spectral bands as independent
data for dry and wet seasons. Spectral bands yielded an overall classification accu-
racy of 79.48% and 75.98% and kappa coefficients of 0.764 and of 0.724 for wet and
dry seasons, respectively. Wet and dry season produced good classification accuracies
derived, using spectral bands as a standalone variable, showed a slight difference of

Table 3. Sentinel-2 MSI experimental measures of accuracy assessment for water hyacinth.

Analysis Data type Spectral information

I Spectral bands Blue, Green, Red, Red edge(RE)-1, RE-2, RE-3, NIR, NIR narrow,
SWIR-1 and SWIR-2

II Vegetation Indices NDVI, NDWI, EVI, SRI, SAVI, GI, GNDVI, Clgreen, ARVI, RVI,
TVI, OSAVI, RDVI, VGI, NGI, DVI

III SB + VIs 10 bands + 16 SVIs

1362 K.H. Thamaga and T. Dube



3.50% (presented in Table 7) in terms of classification accuracy performance.
Furthermore, spectral bands managed classify water hyacinth from other land cover
classes with producer user and producer accuracies of water hyacinth ranging from
44% to 100%. Wet season water hyacinth classification results were achieved with
a user accuracy of 87.18% and producer accuracy of 94.44%. On the other hand, high
classification results were observed for the dry season water hyacinth mapping
yielding user and producer accuracies of 84.62% and 66%, respectively. Other land
cover classes were classified with high accuracies, for instance, Shrubland was
classified with higher user accuracy of 93.33% and plantations with 73.91%.

3.1.2 Analysis II: water hyacinth classification accuracies derived from Sentinel-2
using spectral vegetation indices

The use of spectral vegetation indices as independent dataset in discriminating and
mapping water hyacinth yielded OA of 76.42% (kappa coefficient of 0.706) and
74.42% (kappa coefficient of 0.708) for wet and dry season, respectively (presented
in Table 5). Comparatively, the OA dropped by 3.06% in wet season and by 1.56% in

Figure 3. Averaged spectral reflectance derived from Sentinel-2 MSI (a) wet season and (b) dry
season.
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dry season (presented in Table 7) when compared to the use of spectral bands alone.
UA and PA were derived with improved accuracies for the two seasons. As illustrated
in Table 5, high UA (87.18% and 89.74%) and PA (94.44% and 66.04%), were
observed for wet and dry season, respectively.

3.1.3 Analysis III: water hyacinth classification accuracies derived from Sentinel-2
using raw spectral bands and spectral vegetation indices

The use of integrated dataset (spectral bands and vegetation indices) resulted in further
improvement in the OA. The integrated dataset managed to achieve an OA of 80.79%
(kappa coefficient of 0.780) during wet season compared to 79.04% (kappa coefficient of
0.759) in dry season (Table 6). Similar results were observed for the PA and UA. In this
case, water hyacinth was classified with high UA and PA of 84.62% and 94.29% in wet
season, as well as 89.74% and 68.63% in dry season, respectively. Overall, analysis III
yielded high UA and PA from when compared to analysis II and I. Overall, the
classification results were significantly different demonstrating the value added by data
integration in water hyacinth mapping.

The overall classification accuracies illustrated in Figure 4 were achieved by using
spectral bands (Analysis I), vegetation indices (Analysis II), as well as integrated (spectral
bands and vegetation indices) dataset (Analysis III) derived from multi-seasonal Sentinel-2
MSI. Analysis of variance (ANOVA) showed that there was a significant difference amongst
the accuracies derived from the three experiments, i.e. (t = 1.86, p < 0.001) analysis I,
analysis II (t = 1.761, p < 0.435) and analysis III (t = 1.710, p < 0.472).

3.2 Seasonal mapping of the spatial distribution of water hyacinth

The derived water hyacinth spatial distribution maps for dry and wet seasons are
demonstrated in Figure 5. Overall, Sentinel-2 showed the capability of detecting and
mapping seasonal distribution of water hyacinth. In the lower, mid and upper parts of the
river, it can be seen that there was a high coverage of water hyacinth detected in summer
(wet season), than in dry season. For instance, in the wet season, water hyacinth covered
a surface area of 68.82%, whereas in the dry season, 28.34% coverage was detected, with
a deviation of 40.48%.

4. Discussion

4.1. Characterization of water hyacinth Sentinel 2 using Sentinel 2

The study was aimed at understanding the seasonal distribution patterns of water
hyacinth (Eichhornia crassipes) using Sentinel-2 MSI satellite data, in the Greater
Letaba river system in Tzaneen, South Africa. Results from this study, demonstrated
that Sentinel 2 data can detect and map the spatial distribution of water hyacinth in
narrow river channels. The integration of spectral bands and vegetation indices showed
the highest capability of detecting and mapping the temporal distribution of water
hyacinth in freshwater system with an OA of 80.79% during the wet season and
79.04% in the dry season. The unique performance of Sentinel 2 data has been demon-
strated and reported in other studies with particular emphasis on vegetation mapping, i.e.
estimation of plant biophysical parameters, biomass, crop and fire monitoring as well as
land cover mapping (Sonobe et al. 2017; Forkuor et al. 2018; Mallinis, Mitsopoulos, and
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Chrysafi 2018; Sibanda et al. 2019). Despite its wider use in vegetation monitoring its
utility in water resources applications has remained rudimentary. This work, therefore,
for the first time underlines the importance of the recently launched Sentinel 2 data in
detecting and mapping aquatic weeds such as water hyacinth in open-waterbodies
occurring in very narrow river channels.

Findings of this work also provide new insights into the potential of new generation
sensors like Sentinel 2, with improved spatial, temporal and spectral characteristics in water
resources monitoring ungauged and very narrow or small river channels. Sentinel imagery
provide more accurate and unique information on the spatial distribution and configuration
of water hyacinth, a previous daunting task with broadband multispectral sensors especially
in smaller and narrow water bodies (Shekede, Kusangaya, and Schmidt 2008; Ndungu et al.
2013; Dube, Gumindoga, and Chawira 2014; Dube et al. 2017). This breakthrough provides
critical baseline information required in assessing the status of river water courses and
determining affected areas and possible vulnerable areas. Also, this information is

Figure 4. Combined spectral bands and vegetation indices overall classification accuracies
derived during wet and dry season from Sentinel-2 MSI.

Table 7. Magnitude of classification accuracies of wet and dry season derived from Sentinel-2
MSI.

Deviations in terms of accuracy (%)

Season Parameter Accuracy (%) I II III

wet season Bands 79.48 - 3.06 1.31
VIs 76.42 3.06 - 4.37
Bands + VIs 80.79 1.31 4.37 -

Dry season Bands 75.98 - 1.56 3.06
VIs 74.42 1.56 - 4.62
Bands + VIs 79.04 3.06 4.62 -

*I: Spectral bands, II: Vegetation indices and III: Combined spectral bands and vegetation.

1368 K.H. Thamaga and T. Dube



fundamental to aquatic specialists; water resource-related managers, decision-makers, and
other interested stakeholders, especially in data scarce areas with limited network of field
monitoring frameworks in place. Besides, seasonal mapping of these species gives a better
view in understanding its spatial distribution and configuration required for frequent
monitoring, assessment of infestation levels, sustainable remedial, eradication and effective
management practices (Thiemann and Kaufmann 2002; Shekede, Kusangaya, and Schmidt
2008; Ndungu et al. 2013; Dube et al. 2017; Vaz et al. 2018).

Further, the use of spectral bands and vegetation indices as independent classification
dataset showed slightly weaker water hyacinth classification results for both the dry and
the wet season. This result concurs with the work by Thamaga and Dube (2018a),
Sibanda et al. (2019) and, Shoko and Mutanga (2017) who observed that the integration
of raw band information and vegetation indices. For instance, Sibanda et al. (2019) using
Sentinel-2 derived Red Edge bands estimated leaf area index and canopy storage capacity
for wattle invasive plant species with a high overall accuracy (RMSEP of 0.507 m2

· m−2, a relative RMSE of prediction of 11.3% and R2 of 0.91 for LAI). Thamaga and

Figure 5. Seasonal maps derived using Sentinel-2 MSI (a) wet season and (b) dry season.
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Dube (2018a) confirmed the superior nature of Sentinel over Landsat in mapping water
hyacinth, producing an overall accuracy of 77.56% using combined dataset. Immitzer,
Vuolo, and Atzberger (2016) used Sentinel data based on the object-oriented random
forest algorithm in Central Europe to mapped forest types and the study obtained an
overall classification accuracy of 66.2%. This result illustrates the importance of inte-
grating multispectral derivatives in detecting the invasive water hyacinth across seasons.
The slightly weaker performance from the use of spectral or vegetation indices as
standalone model dataset in mapping water hyacinth can be attributed to saturation
problems or spectral mixing (Dube et al. 2014; Dube and Mutanga 2015). This can
also be attributed by the presence of algae blooms in water, which influences the
reflectance in the NIR and SWIR portions of the electromagnetic spectrum than in the
red, blue and green portions (Muchini et al. 2018).

4.2. The seasonal dynamics of water hyacinth distribution within the river system

The results of the study showed significant variability in the area covered by water
hyacinth between the dry and the wet seasons. During the wet season, water hyacinth
covered approximately 68.82% and 28.34% of the monitored area in dry season. The
concentration varied across the lower, mid and upper part of the river system. These
findings are similar to those of Dube et al. (2017) who observed high water hyacinth
concentrations during wet season than dry season in Lake Manyame and Lake
Chivero. High concentrations during wet season can be attributed to improved growth
rates enhanced by nutrient supplies from surrounding farming areas due to enhanced
river flows and runoff (Shekede, Kusangaya, and Schmidt 2008). Further, warm
temperatures and flow dynamics fuel the spatio-temporal distribution of this species
in freshwater especially during the wet season (Thornton et al. 2014; Brierley and
Kingsford 2009). Adams et al. (2002); Mireri (2005); Téllez et al. (2008); Waltham
and Fixler (2017) observed significant increases in the nutrient concentrations and
raising temperatures cause eutrophication which accelerates water hyacinth infestation
on the lake during the wet season. Less water hyacinth coverage during the dry
season can be attributed to reduced runoff or river flows during in this period as most
of the rivers are ephemeral, only flow when it rains and this hinders the growth due
to limited nutrient supply. During this time of the season, there is less runoff and
nutrient recharge in the river system which result in less movement of nutrients
which supports or favors growth of species invasion. Mitsch (1985) noted that in
water bodies with low nutrient levels the probability of the water hyacinth growth is
likely to be out-competed by other aquatic species exists within water channels.

Further, seasonal variability in temporal distribution of water hyacinth showed
that, the dry season had a deviation of ±3.50% in terms of accuracy when compared
to wet season results. The accuracy difference between two seasonal images can be
attributed to the variability in nutrient load and weather conditions (Téllez et al.
2008; Waltham and Fixler 2017). Extreme temperatures as a result of weather
changes and flow dynamics fuel the spatio-temporal distribution of this species in
freshwater (Thornton et al. 2014; Brierley and Kingsford 2009). These results thus
provides a better view in understanding its spatial distribution and configuration
required for establishing sustainable remedial, eradication and effective management
practices. This finding agrees with several studies that have demonstrated the poten-
tial of the 10 m spatial resolution Sentinel 2 data in tree species mapping in natural

1370 K.H. Thamaga and T. Dube



ecosystems (Immitzer, Vuolo, and Atzberger 2016; Sibanda et al. 2019). Mat-cover-
age of water hyacinth negatively impact freshwater ecosystem and water due to high
to evapotranspiration (Mitchell 1985; Shekede, Kusangaya, and Schmidt 2008;
Mironga, Mathooko, and Onywere 2014). Osmond and Petroeschhevsky (2013)
mentioned that water loss can reach three times greater than the natural evaporation
rate of water surface that does not have water hyacinth. Stan et al. (2016) reported
that evaporation of open water is averaged 4.3 mm day−1 and evapotranspiration of
aquatic plants an average of 7.8 mm day−1. Less amount of water hyacinth during dry
season depicted by Sentinel 2 MSI illustrated is due to unfavorable climatic condi-
tions. Therefore, this result can be used in modeling water loss due to invasive water
hyacinth presence in rivers and can help in prioritization of the eradication endeavors.

The high accuracies observed in this finding can also be attributed to the presence
of unique and strategically position spectral bands found in Sentinel 2 data. For
example, it can be observed that the red edge bands B5, 6 and 7, NIR, NIR-narrow
and SWIR (1 and 2) portions of the electromagnetic spectrum demonstrated a unique
capability in discriminating water hyacinth from other land cover types considered in
this study. This finding concurs with previous studies which highlighted the capability
of using Sentinel-2 MSI in vegetation mapping-related studies (Sibanda, Mutanga,
and Rouget 2016; Dube et al. 2017; Shoko and Mutanga 2017, Forkuor et al. 2017).
Most of these attributed the unique results to the presence of most strategic region of
red edge bands (B5, 6 and 7) which are critical for mapping vegetation properties
(Sibanda, Mutanga, and Rouget 2015). The red edge bands have been reported to be
more sensitive to subtle plant biophysical parameters hence the ability to detect water
hyacinth from other land cover classes with high accuracy. It could be due to this
reason that the inclusion of the red edge bands resulted in high water hyacinth
classification accuracies. In a related study, Sibanda et al. (2019) and Shoko et al.
(2018) illustrated that the red-edge correlated strongly with biophysical parameters
like LAI.

4.3. Implications of remote sensing water hyacinth

Growing of water resource scarcity and their security, in changing environment, has long
been recognized and remains a challenge particularly in African. However, water quality
management is considered challenging due to complexities of water environments, in
connection to their contributing tributaries within the watersheds. Regardless of exten-
sive knowledge on the causes and implications of the proliferation of water hyacinth in
freshwater ecosystems, the accurate and reliable information on their spatial distribution,
configuration, as well as propagation rates remains a challenge in data scarce regions
such as sub-Saharan Africa. Remote sensing of inland waters has faced challenges in the
retrieval of physical and biogeochemical properties. However, findings of this study
suggest a shift towards implementation of cutting edge remote sensing technologies in
monitoring and management of freshwater ecosystems. This information is critical for
development of effective aquatic weed control and eradication programs, especially in
resource scarce regions. The results demonstrate that water hyacinth can be better
controlled during the dry season when its concentration has dwindled as this would
help to minimize the costs of its removal or control.
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5. Conclusions

The present study focused on mapping the spatio-temporal distribution of water hyacinth
in the river system during wet and dry seasons, using Sentinel-2 MSI satellite data. The
findings of this study showed that Sentinel-2 MSI satellite provide new opportunities for
mapping and monitoring of seasonal distribution of water hyacinth in open water
systems.

We conclude that:

● Large spatial coverage of water hyacinth was detected during the wet season,
compared to the dry season.

● Areas of the river system proximity to irrigation systems and residential were
associated with more water hyacinth.

● Sentinel-2 MSI with improved spectral and spatial resolution managed to detect
and map the seasonal distribution and spatial dynamics of water hyacinth in a river
system.

Overall, the findings of this work provide new insights and critical on the usefulness of new
generation sensors in monitoring aquatic water weeds and such findings can be key in
decision-making and policy development and draw remedial measures. It is however,
important to note that any current image classification technique (including the DA) always
produce “mixed classes” (error). This is due to the presence of many natural fuzzy objects,
which are very difficult and even impossible to distinguish automatically and straightforward.
There is, therefore, need to treat these findings with caution and further research to focus only
on water hyacinth and establish whether this can help to minimize classification error.

Highlights

● Growth rate of water hyacinth is higher in wet season than in dry season
● Understanding of temporal distribution of water hyacinth is limited
● There is a need for continuous monitoring of aquatic species in a river system

using non-commercial sensors
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