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Abstract—In the era of the Internet of Things (IoT), billions
of wirelessly connected embedded devices rapidly became part
of our daily lives. As a key tool for each Internet-enabled object,
embedded operating systems (OSes) provide a set of services
and abstractions which eases the development and speedups
the deployment of IoT solutions at scale. This article starts
by discussing the requirements of an IoT-enabled OS, taking
into consideration the major concerns when developing solu-
tions at the network edge, followed by a deep comparative
analysis and benchmarking on Contiki-NG, RIOT, and Zephyr.
Such OSes were considered as the best representative of their
class considering the main key-points that best define an OS
for resource-constrained IoT devices: low-power consumption,
real-time capabilities, security awareness, interoperability, and
connectivity. While evaluating each OS under different network
conditions, the gathered results revealed distinct behaviors for
each OS feature, mainly due to differences in kernel and network
stack implementations.

Index Terms—Benchmarking, embedded systems, Internet of
Things (IoT), low-end devices, operating systems (OSes).

I. INTRODUCTION

THE INTERNET of Things (IoT) is revolutionizing the
Internet for the future by connecting billions of smart

devices over a massive and collaborative network infras-
tructure. The most recent statistics estimate that by the
year 2020 there will be over 50 billion Internet-enabled
devices, motivating an increasing focus from both industry
and academia on such multitrillion dollar market [1], [2]. The
key-concept of the IoT is to enable people and things to
be connected anytime, at anyplace, with anything, and any-
one [3], which leads to a countless number of use cases,
constraints, and requirements in order to satisfy all possi-
ble needs. The constrained nature of the IoT edge network
often implies the deployment of battery-powered and resource-
limited devices. Hence, hardware and software solutions must
support low-power operations while providing the necessary
system’s performance [4]. Additionally, it is required from
any IoT device to connect with others and the Internet,
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which is mainly done through a wireless interface, e.g., RFID,
IEEE 802.15.4, Wi-Fi, bluetooth low-energy (BLE) [5], etc.

The massive heterogeneity of the existing embedded
devices, combined with the connectivity requirement, calls
for proper software solutions to efficiently manage and con-
trol the available hardware resources. This requirement has
driven the development of a multitude of operating systems
(OSes), which tend to be specially tailored to cover a spe-
cific application (e.g., automotive, wearables, healthcare, etc.)
and development needs. Its design choices (e.g., the kernel
architecture and the scheduling policy) have a direct and
significant impact on the overall system’s behavior, both in
terms of performance, determinism, and power consumption.
Among a broad list of open-source OSes, some of them
have been widely deployed in several low-end IoT devices:
Contiki, RIOT, Zephyr, TinyOS, Amazon FreeRTOS, and
many more [6]–[10].

Motivated by this broad collection of OSes and since there
is no “one size fits all” solution, the purpose of this article
is to analyze and benchmark some of the most prominent
open-source OSes for the IoT, taking into consideration the
most important aspects when deploying devices at the very
edge. By understanding their main differences and character-
istics, they can be carefully selected and deployed according
to the application needs, i.e., when real-time is required or a
low-power solution is preferred. For this purpose, this article
contributes to the state-of-the-art with: 1) an analysis on some
of the most prominent open-source OSes for the IoT: Contiki-
NG, RIOT, and Zephyr and 2) a complete benchmarking on
the most important features when designing an IoT embedded
device, such as performance, power consumption, real-time
capabilities, and memory footprint. In our experiments, we
had evaluated the effect of the network stack over the overall
OS metrics, and we had concluded that it is a significant source
of overhead and latency. To the best of our knowledge, this
article goes behind the state-of-the-art [9]–[12], where mostly
a theoretical approach and a literature review is provided.

II. IOT ECOSYSTEM

The Internet engineering task force (IETF) standardized
the classification of constrained devices into different sets
of classes [13]. This classification is done according to the
required memory footprint for both code and data.

1) Class 0: These devices have the smallest resources (less
than 10 KB of RAM and less than 100 KB of Flash),
e.g., tiny sensing motes.
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2) Class 1: These devices have medium-level resources
(around 10 KB of RAM and 100 KB of Flash), e.g.,
motes with routing capabilities and security features.

3) Class 2: Devices from this category have more resources
than the previous ones, e.g., small gateways, but are still
limited when compared to middle- and high-end devices.

Such classes are the result from the requirements imposed
by the IoT ecosystem, where each low-end device must fulfil a
set of requirements: ability to explore low-power modes with
reduced duty-cycle operation, manage resource-constrained
hardware, full connectivity and interoperability support, real-
time capabilities, and security awareness (hardware, data
handling, and secure data transmissions).

A. Low-Power Consumption

IoT low-end devices often resort to low-power hardware,
which leads to a reduced energy consumption when all the on-
board components are lowered to the bare minimal, and when
processor’s low-power modes (e.g., deep sleep) are explored.
While both features are important, the latter is a common
requirement for almost any IoT solution, as these usually only
need to perform periodic tasks with decreased duty-cycle oper-
ation. The software running on such platforms must also be
optimized and aware of the available power-saving features.

B. Resource-Constrained Embedded Devices

There is an ongoing trend in the industry to squeeze, as
much as possible, the so-called size, weight, power, and cost
(SWaP-C) budget. IoT devices are a great example of such
paradigm. These devices are designed with minimal margins
and are usually limited to accommodate only the target appli-
cation, as oversized and unused components also contribute
to an increased power consumption and overall cost. Another
important aspect that greatly limits the resources available on
these devices is their placement, frequently requiring foot-
prints as small as possible. Hence, the number of components
has to be kept to the bare minimum to avoid any waste
of space. Taking into consideration the previous aspects, the
size and type of available memory in a system can be also
an indicator of the class of an IoT device, as these compo-
nents are sometimes the most power-consuming elements of
the final solution. Therefore, it is important to determine the
size of the available memory, both for code and data, while
also minimizing the amount of data that needs to be saved
between sleep/wake-up cycles, as this may require memory to
be permanently powered.

C. Connectivity and Interoperability

At the core of the IoT concept is the ability to connect every-
thing. Hence, each device must include the necessary hardware
and software for connectivity. Regarding the hardware, power
consumption is a crucial aspect that led to the adoption of
standard communication protocols for lossy communication
links. Among them, the most common are the IEEE 802.15.4,
BLE, and Wi-Fi [14]. The physical (PHY) and medium access
control (MAC) layers, as well as the handling protocols, play
a major role in the overall power consumption. Regarding

Fig. 1. Standard IoT network stack.

the software, an embedded network stack must be provided
in order to support such wireless interfaces, while seamlessly
connecting to the Internet.

Such stack (depicted in Fig. 1), was derived from the tra-
ditional seven-layer OSI model stack and it is adopted by
the majority of OSes for IoT low-end devices. It is divided
into five independent layers, which allows full interoperabil-
ity and eases its portability among heterogeneous devices. For
each layer, several standards and protocols, e.g., UDP/TCP,
IPv6, CoAP, and 6LoWPAN, were carefully selected to ful-
fil the tight constraints of the target devices. Regarding the
network layer, by using a 128-bit addressing scheme, IPv6
is the key to connect billions of devices to the Internet.
In order to allow its support over different MAC and PHY
standards, it is necessary an adaptation layer protocol, e.g.,
6LoWPAN for the IEEE 802.15.4. Due to the portabil-
ity and interoperability requirements, the network stack is
usually provided by the OS. Several open-source network
stacks for low-end devices, like OpenWSN [15] or lwIP [16],
provide different characteristics making them suitable for dif-
ferent sets of applications. Additionally, OSes usually offer
the network stack tightly intertwined with the kernel, where
both kernel and network stack are developed and optimized
together.

D. Real-Time

Several IoT applications, e.g., healthcare and automotive
systems [17], [18], require strict real-time guarantees. While
the microcontroller and the remaining hardware play a role
on system’s determinism and predictability, the system soft-
ware is also a major player. Several important aspects, such
as implementation, optimization, architecture, programming
model, scheduling algorithm, and whether or not it sup-
ports real-time events (e.g., interrupts), defines how the OS
is able to attend critical tasks with high predictability and
determinism [19].

OS architectures can be classified in either monolithic or
microkernel. The first approach assumes that all components
of the system are developed in tandem, leading to a simpler
and more efficient design. The microkernel approach is usually
designed with minimum kernel functionalities, implementing
several services in userland. Microkernel-like architectures
strive for simplicity, modularity, and minimality, usually at
the cost of performance. The scheduler is also directly related
to the OS architecture, and therefore, represents another key
aspect when designing the OS, as it is the component that
manages how and when tasks are executed by the processor.
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The scheduler should aim to optimize the system’s through-
put, energy efficiency, and resources utilization, while ensuring
determinism on each thread execution. While there are sev-
eral algorithms, most schedulers can be classified as either
cooperative or preemptive. The former requires each thread
to yield its execution to bring other threads in context, while
the latter relies on the principle that at some scheduling point
the running thread is interrupted and halted by the scheduler
to start the execution of the next thread. Achieving real-
time on a resource-constrained device is a goal that must
be also met by the system software, and thus, choosing
the right OS and configuration for the application is a key
aspect on whether the entire solution will be able to meet the
deadlines.

E. Security and Safety

The ongoing cat-and-mouse game of increasing hacks and
software patches has raised significant concerns on the need
of securing IoT devices. Moreover, the ever-growing volume
of sensible data that is being processed by IoT nodes fol-
lowing their proliferation; examples range from personal or
health-related data acquired from sensors. Therefore, in order
to ensure privacy and security of critical data through com-
munications on the IoT ecosystem, security mechanisms must
ensure confidentiality, integrity, authenticity, and nonrepudia-
tion of the whole information’s life cycle. This can be achieved
through the protocols implemented on the network stack or
other external mechanisms [20].

Safety is another important aspect of IoT devices as most
of them tend to implement an ever-growing number of mixed-
critically features. Furthermore, safety and security stand
hand-by-hand—there is no safety without security and vice
versa. Any kind of malfunction or attack that seizes control of
on-board actuators can directly influence the normal behavior
of the system or even cause hazards to users. For example,
a very common attack to any device connected to a network
or to the Internet is called a denial of service (DoS) attack.
Despite it can be achieved through several ways, the main
idea is to deprive the system of its resources (e.g., process-
ing time), preventing it from performing as expected. This
proves to be a problem, for example, in automotive applica-
tions, when critical tasks need to be executed under bounded
and deterministic deadlines. While the DoS attack is only a
generic example, there are several other types of attacks that
can be performed by simply adapting the same concept from
classical attacks on network-based systems to IoT devices.

Another major concern around security relies on the hard-
ware itself. For instance, Arm TrustZone is a system-on-chip
(SoC) and CPU security solution, which highly increases the
system security and reduces the attack surface by provid-
ing system-wide hardware isolation for trusted software [21].
TrustZone was recently extended to Cortex-M-based systems,
enabling robust levels of protection at all cost points [22].
Embedded software developers can now enhance their produc-
tivity by developing TrustZone-based systems. Such tendency
is already being adopted by prominent embedded OSes such
as Zephyr [8]. Moreover, hardware solutions with embedded

TABLE I
OSES COMPARISON

system “Root-of-Trust” provide enhanced security features in
low-end systems traditionally deprived of security.

III. OSES ANALYSIS

In this article, we evaluate three of the most prominent
OSes for IoT, which apart from being completely open source,
are currently enjoying widespread applicability and contin-
uous support in the context of low-end IoT applications:
Contiki-NG, RIOT, and Zephyr. They were selected regard-
ing the main characteristics discussed in Section II, their
programming model (event-driven and multithreading), kernel
architecture (monolithic and microkernel), scheduling policy
(cooperative and preemptive), and native support of a network
stack for low-end devices (at least for class 0 and/or 1). These
characteristics are summarized in Table I.

A. Contiki-NG

Contiki was originally proposed by Dunkels et al. as an
OS for wireless sensor networks (WSNs) targeting resource-
constrained wireless node, and only later adapted for more
powerful devices [6]. The OS follows an event-driven pro-
gramming model based on a cooperative scheduling approach
using protothreads, a lightweight mechanism for pseudo-
threading, from which the programmer is abstracted. On its
current version, these are seen as statically defined Processes
and do not support priorities, since this OS implements a coop-
erative scheduler. From a developer perspective, aside from
its declaration, each Process must be implemented as a func-
tion that at some point yields the execution time to the next
Process. Failing to yield, e.g., stopping in an infinite loop,
would cause the whole system to halt. When deployed in
low-end devices, it is common to have a Process sleeping or
waiting for events that trigger their execution. While such a
feature is supported by the OS, fast response times to event
occurrence may not be achieved due to its scheduling policy.

To support the OS main requirements, Contiki includes fea-
tures that aim at communication-based low-power systems,
for instance, sleep mode managing, and support for sev-
eral network stacks, e.g., uIP. These stacks offer support
for standard and well-known protocols, such as IPv6, RPL,
6LoWPAN, and CoAP, while supporting several PHY tech-
nologies, such as IEEE 802.15.4, Wi-Fi or BLE. Contiki
is mainly focused on dependable (secure and reliable) low-
power communication and standard protocols for modern IoT
platforms based on 32-bit microcontrollers, mostly support-
ing Arm architectures. On its latest version, Contiki-NG, the
overall code structure was revised and optimized with new
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configurations and a major cleanup of the code base (obsolete
protocols and standards were removed), minimizing the final
binary size.

B. RIOT

Initially designed with the IoT ecosystem as the main tar-
get, its main characteristics comprise real-time capabilities and
low-power efficiency [7]. This OS employs a multithread pro-
gramming model and follows a microkernel-like architecture,
which steams for a simpler and shorter development cycle due
to its modular nature. RIOT implements a tickless preemptive
scheduler, which means that there are no periodic events as
scheduling points. This method tries to optimize the time spent
in low-power modes, i.e., sleep or deep sleep modes, by forc-
ing the system into these states whenever there are no threads
to be executed, i.e., when the idle thread is active. The OS
further guarantees the execution of kernel tasks and interpro-
cess communication, in order to fulfill real-time requirements.
Additionally, this OS includes its own implementation of a full
IoT stack named gnrc, which adds the support to new proto-
cols, such as the 6TiSCH, the IPv6 over the TSCH mode of
IEEE 802.15.4 standard.

C. Zephyr

Zephyr is an ongoing project from the Linux Foundation
designed for resource-constrained systems [8]. Similarly to
RIOT, it follows a multithreading programming model with a
microkernel-based architecture. Zephyr uses a scheduler based
on a tick system to schedule each thread in a periodic fash-
ion. There are two major types of threads: 1) fiber, which is
a lightweight non-preemptible thread, usually with small exe-
cution times and designed to be used in critical contexts and
2) task, that implements the common concept of a task that
can be preempted. While both can be prioritized among them-
selves, fibers are inherently prioritized over tasks, and no task
will be scheduled when there are fibers waiting to execute.

Zephyr implements both a nanokernel and microkernel
architectures. The former is a high-performance, multithreaded
execution environment with a minimalist set of kernel features
conceived for highly constrained devices, while the latter com-
plements this with a set of richer and more complex features,
such as network stack and device drivers for more com-
plex devices. Regarding networking features, Zephyr integrates
its own network stack implementation, including support for
low-power devices that require IEEE 802.15.4 or BLE radio
interfaces to communicate. Therefore, the 6LoWPAN adaption
layer is also supported in order to provide IPv6 connectivity,
leading to a highly modular and flexible implementation of
the network stack. Finally, another important characteristic of
Zephyr is that it already supports RISC-V, an open source
processor architecture that recently has been given a lot of
attention from both academia and industry [23].

D. Conclusion

From Table I it is possible to observe that Contiki-NG is
representative of a different kernel implementation paradigm,
while both RIOT and Zephyr are similar in most aspects.

Fig. 2. Network topology used in the experiments.

Despite both Zephyr and RIOT following a multithreading
programming model, and to some extent, sharing the same
architecture principles, they follow a distinct scheduling pol-
icy: RIOT is deprived of the notion of time and Zephyr
uses periodic events to iterate over the waiting threads. Aside
from the support to the main platforms on the market from
all the OSes, Zephyr is the one that already supports the
next-generation hardware architectures, i.e., TrustZone-M and
RISC-V. Finally, and regarding the supported network stack,
Contiki-NG and Zephyr provide their own monolithic imple-
mentations, while RIOT uses an external stack from the
OpenWSN project.

IV. EVALUATION

In this article, we benchmark the three aforementioned IoT
OSes by running the same set of benchmarks under the same
hardware and network conditions. The performed experiments
aimed at assessing memory footprint, performance, real-time,
and power consumption. Security-related aspects are, however,
out of the scope of this article.

A. Experimental Setup

All experiments were performed on an STM32L476G-
DISCOVERY, connected to a TI CC2520 radio through a
serial peripheral interface (SPI). This development board fea-
tures an Arm Cortex-M4 processor running at a clock speed of
80 MHz. The Arm Cortex-M4 is one of the most widespread
microprocessor architectures on the embedded systems mar-
ket and, therefore, it is widely supported by the develop-
ers community. The radio used in this setup supports the
IEEE 802.15.4 standard, which is one of the most widely
used protocols in IoT applications, such as home automation
and industrial monitoring systems. In such systems, it is com-
mon to have several nodes connected to each other and the
Internet. Due to the intrinsic difficulty in recreating a big-
scale network, a smaller topology was deployed (depicted by
Fig. 2) composed by three nodes, which evaluates a device
under test on different network conditions. Despite simple, it
still recreates the desired scenario where a node in operation
receives random connections from surrounding nodes, and the
incoming data is intended to the node itself or another node
in the network. Node 1 represents the device under test. This
device is able to establish a connection with both other nodes.
However, Nodes 2 and 3 cannot directly communicate with
each other, thus, they rely on the node being tested to for-
ward their message to its destination. Given that the nodes are
role-independent, the communication to and from the device
under test is established through a UDP connection without a
specific protocol at the application layer. As a result, the entire
network is being used with the following configuration: UDP,
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IPv6/RPL, 6LoWPAN, and IEEE 802.15.4 (MAC and PHY).
Whenever Node 1 receives a message from the network, it
must either accept, reject, or forward it.

Experiments were performed by sending a fixed-size UDP
message of 24 bytes (which corresponds to 58 bytes of
the MAC data frame) through a socket on local/remote
ports 8080/8081. The number of frames being sent to the
device under test was kept at an average rate of 230 packets
per second, reaching a point where the network is almost over-
loaded but the receiving node is still able to attend each packet
that is being received. Finally, all the evaluated OSes already
provided support for the target board and only slight modifica-
tions were required to run them. Furthermore, the integration
of the radio driver with the network stack, as well as with the
benchmark suit to each OS, just required a small porting effort.
Also, each OS was kept with its default or suggested settings
for a similar application to the one under evaluation. Therefore,
the conducted benchmarks evaluate each OS as an off-the-shelf
solution, representing the conditions the developers will expect
when using each OS without modifications.

On all performed experiments, the network stack is always
initialized, whether network traffic exists or not. Depending
on the stack implementation and its integration with the
kernel, there may be threads related to the network stack ini-
tiated before each benchmark starts executing. We strive for
this approach as we have the intention of understanding the
influence of the stack, even if it is on an idle state, while
benchmarking for each OS. Additionally, based on Fig. 2, four
different states of the network were used.

1) Idle: In this state, there is no traffic in the network and
only essential tasks are being executed. It is expected
that the system does not perform any network-related
tasks.

2) Accept: All the network traffic is intended to Node 1.
Data must be accepted and processed accordingly,
requiring the intervention of all the network stack layers.

3) Reject: Contrarily to the previous test case scenario, all
the traffic is intended to be rejected, e.g., data is intended
to another node and must not be forwarded. In this case,
the packet is rejected as soon as possible (it can be done
either at the MAC or upper layers).

4) Forward: This last test assumes that the destination of
the packet is unreachable by the original sender but
belongs to the same network and the selected routing
scheme is aware of the existence of this neighbor. In
such case, the packet is forwarded before reaching the
application layer of the stack.

For measuring the performance of each OS, the Thread-
Metric Benchmark Suite was used. This suite aims at evaluat-
ing the most common RTOS services and interrupt processing
mechanisms, encompassing a total of eight benchmarks.

1) Basic Processing (T1): A single thread performs math-
ematical operations in a loop and counts the number of
times the operation was done. It serves as the baseline
for the remaining tests.

2) Cooperative Context Switching (T2): Five threads exe-
cute concurrently, each of them counting the number of
times they run. The result is the sum of all counters from
each thread.

3) Preemptive Context Switching (T3): It consists of five
threads with different priorities, each resuming the next
thread with a higher priority before suspending and
counting the number of times they run. The result is
the sum of the count values of each thread.

4) Interrupt Processing (T4): A single thread is executed,
interrupted, and resumed afterward. The result is the sum
of the number of times the interrupt was attended and
the number of times the thread was executed.

5) Interrupt Processing With Preemption (T5): It consists of
two threads with different priorities, where one of which
triggers an interrupt that is responsible for resuming the
other suspended thread. The value obtained is the sum
of the number of times each thread was executed and
the interrupt was attended.

6) Message Passing (T6): A single thread sends a message
to itself through a queue, and upon receiving, a counter
is incremented.

7) Semaphore Processing (T7): A single thread gets and
releases a semaphore in a loop cycle, counting the
number of times this process is executed.

8) Memory Allocation and Deallocation (T8): A thread
consecutively allocates and deallocates memory blocks
of 128 bytes, counting the number of times it is done.

Each benchmark, after running for a certain number of
iterations based on a 30-s cycle execution time, outputs
a score value, representing the OS impact on the running
application—higher scores express a smaller impact, i.e.,
higher performance. For the purpose of these experiments, it
was decided that all traffic should be either accepted, rejected,
or forwarded. It was not taken into account test case scenarios
that encompass a mix of these network states, as they would
lead to application-biased conclusions.

In order to evaluate the power consumption, the develop-
ment board was powered with a precision power supply of
3.3 V, while an ammeter was used to measure the current that
was only consumed by the SoC. This way, the power con-
sumption of all the external peripherals present on the board,
as well as the radio IC, were not considered.

B. Performance

Table II presents the performance results gathered from
all experiments. Each value corresponds to the average of
1000 collected samples. The three major rows correspond to
each OS for the different network operations. Given that the
hardware is the same in all tests, it is fair to put all OSes
into perspective and establish some comparisons among them.
Notwithstanding, we start by breaking down the results of the
various experiments for each OS.

1) Contiki-NG: In Contiki-NG, a Process is scheduled fol-
lowing a cooperative policy, while the only form of preemption
is used by interrupt handlers in device drivers. For this reason,
preemptive-related benchmarks T3 and T5 were slightly mod-
ified to be supported by Contiki, which means that the results
do not necessarily express a preemptive behavior. Their score
resembles more a cooperative result since all processes run at
the same priority level, and in order to keep the benchmark
realistic, each thread controls the execution of the next one.
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TABLE II
THREAD-METRIC BENCHMARK SUITE RESULTS

Furthermore, with the exception of T4, all experiments have
led to similar results regarding the cooperative context switch-
ing benchmark (T2). This is mainly due to the cooperative OS
nature and the differences observed among the results reflect
the influence of the different APIs being used on each bench-
mark, e.g., semaphores, suspending, or resuming threads, etc.
Finally, a noteworthy outlier in the assessed results, occurs in
T4, where a single thread is interrupted and its execution is
returned after the interrupt service routine (ISR) is finished.
This behavior results in a significant boost of performance, as
no context switches are performed.

2) RIOT: Due to its microkernel architecture, the values
gathered from the experiments reveal that in this OS, the coop-
erative related benchmarks tend to have better performance
when compared to the preemptive ones. This is related to the
fact that the executing task yields itself, instead of resuming
a different one, as observed in preemptive scheduling. The
latter involves more system calls and more effort from the
scheduler since the tasks have different priorities, resulting
in a considerable degradation of performance. Regarding the
interrupt-based benchmarks, the cooperative one reveals the
best results among all the others OSes, since the return from
the ISR does not involve a full context reschedule, once the
task that is resuming its execution is the same task that was
previously executing. On the other hand, in T5, a schedul-
ing point is forced after the interrupt since a different task
resumes its execution. Likewise the results obtained from the
other OSes, from T6 to T8, the obtained scores also reflect
the direct APIs influence on the system’s performance.

3) Zephyr: Similarly to RIOT, Zephyr follows a micro-
kernel approach, and therefore, the achieved results follow a
similar pattern. However, in T4, when the system is going
to leave the ISR context, unlike RIOT, Zephyr does not trig-
ger any context-switching operation. This obviously results
in a higher performance. Accordingly to Table II, the main
performance bottleneck from Zephyr lies on its memory man-
agement subsystem. When comparing the results with T6 and
T7, it is possible to conclude that the process of allocating
and deallocating memory introduces a significant overhead
on the system due to the implemented memory management
schema.

4) Summary: Performance is a requirement in almost every
application, specially when network traffic needs to be handled
by the OS. Considering this, Contiki-NG provides the best

results. However, the application will only run in a cooperative
scheduling policy. Between the other OSes, which implement
a preemptive scheduler, RIOT presents better performance.

C. Time Predictability

In order to evaluate the time predictability of each OS, we
performed a set of micro-benchmarks which encompassed four
typical thread-management APIs: 1) Thread Create, which
allocates TCB resources and puts the thread in the ready state;
2) Thread Resume, which forces a scheduling point to the
appointed thread; 3) Thread Suspend, which suspends the exe-
cution of a specific task; and 4) Thread Delete, which reverses
what was done in thread creation. For measuring the execution
time of each API, we have configured a timer to start count-
ing on the exact instruction before the API call, and to stop
counting the instruction after the function return. However,
in some cases, a scheduling point is forced by the API, and
therefore, the system resumes its execution in a different loca-
tion. In such cases, the timer stops counting right after the
context restoring operation and before jumping to the next
thread. Additionally, due to the cooperative nature of Contiki-
NG, some of the previous APIs are not provided by the kernel.
Their implementation is mostly based on preprocessor macros
and polling mechanisms, making the time measurement inco-
herent with the remaining OSes. For this reason the Thread
Suspend API was not tested for Contiki-NG.

In the context of these experiments, we have used the
preemptive context switching benchmark (T3) from the
Thread-Metric Suite to evaluate the effect of changing param-
eters, such as the number of tasks (from 5 to 20) the priority of
tasks (from 1 to 32), and the priority gap between tasks (from 1
to 5, when possible). Finally, all experiments were repeated for
different network configurations, i.e., idle (without any traffic)
and active (all packets are accepted). The reason to present
results for the active network state is because it represents the
worst case scenario, i.e., the system has a higher workload.
Fig. 3 depicts the achieved results, where the bars represent
the number of clock cycles that each specific API takes in
its execution time, while the lines represent the minimum and
maximum measured values (jitter).

1) Contiki-NG: As aforementioned, for Contiki-NG the
Suspend API was not evaluated. According to Fig. 3, for
the idle network configuration, Contiki-NG presents the worst
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Fig. 3. Time predictability evaluation results.

predictability among the three OSes under evaluation. This
is due to the cooperative nature of Contiki-NG, which leads
to higher amounts of code that can be preempted by inter-
rupts. Another interesting conclusion is that the predictability
of the OS is not affected by the network configuration, as the
variation is similar for the active network configuration.

2) RIOT: RIOT presents the best time predictability (less
variation) among all experimented OSes, with the exception
for one test case scenario: the Suspend API in the idle network
configuration. In this case, the variation is minimal, when com-
pared with the best results (Zephyr) on the same scenario. It
happens because the scheduler implementation on RIOT uses
a circular list of threads and Zephyr uses a generic linked list.
Another fact worth to highlight is that the variation is kept
small and constant among both network configurations for the
Create, Suspend, and Delete APIs. For the Resume API there
is a significant lack of timing predictability when all packets
are intended to be accepted.

3) Zephyr: Zephyr presents, on average, the highest amount
of variation across all OSes. This happens because every event
on Zephyr, e.g., system calls or interrupts, is handled by the
kernel in a privileged mode, which implies a processing mode
switch every time it happens. Whenever an interrupt needs
to be attended, the kernel is invoked to manage the event.
However, the system not always requires a context-switch,
which is the place that by default stops the timer and measures
the API execution time. Such condition leads to an exceedingly
high jitter at run-time, as the time is not measured when it is
supposed to. While this is not fully intended to be measured,
any workaround would require major changes in the internals
of the kernel to modify its default behavior.

4) Summary: For use case applications that impose hard
real-time deadlines, e.g., industrial IoT, a deterministic and
predictable system is mandatory. Therefore, among the eval-
uated OSes, RIOT have shown the best time predictability,
which lead us to conclude that this OS is the best option for
applications that require real-time.

D. Memory Footprint

To assess the memory footprint of each OS, we measured
the required amount of RAM and Flash memory needed by
both the kernel and application. By assessing the memory foot-
print we aim at classifying each OS accordingly to the IETF
device class required by each OS for this application.

TABLE III
MEMORY FOOTPRINT (IN KB)

Table III summarizes the memory required by each OS,
including the generated firmware when all OS services are
selected along with the network stack protocols. The obtained
results show that on average, the required amount of RAM
for Contiki-NG, RIOT, and Zephyr, are, respectively, around
29.8 KB, 33.0 KB, and 52.9 KB. By its turn, the required Flash
memory is 50.6 KB, 59.9 KB, and 130.5 KB. Such values are
not only related to the OS itself but also with network stack
implementation (unique in each OS).

Summary: For the given setup and network stack configu-
ration, Contiki-NG and RIOT can be used in a class 1 device
while Zephyr demands for a class 2. This is due to the required
amount of RAM needed to accommodate both system and user
data. Such requirement is highly related to the network stack
features that for the selected configuration, enables a set of
protocols needed for the experiments with network.

E. Power Evaluation

Finally, we managed to assess the power consumption,
at the SoC level (excluding on-board peripherals and the
radio transceiver), that each OS requires for a specific bench-
mark. Table IV shows the average power consumption by
the SoC during a fixed time period, in which the system is
switching among five threads, similarly to T3. Additionally,
all the tests were performed with the network in both idle
and active states. According to the data-sheet, for the same
clock frequency and voltage supply, the SoC should consume
around 37 mW. Hence, all the results depicted in Table IV are
coherent with the results presented in the previous sections.
RIOT and Contiki-NG have similar power consumption, with
RIOT being nearly 5% better, corroborating the results from
the previous evaluations. On the other hand, Zephyr presents
a higher power consumption, also emphasizing the results
from all other experiments, where the lower performance
and increased memory footprint are here reflected. Across all
OSes, a slight increase in the power consumption is observed
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TABLE IV
POWER CONSUMPTION (IN MW)

when there is traffic on the network. Despite this increment
being minimal, 6.8% on Contiki, 2.6% on RIOT, and 0.4% on
Zephyr, it is due to the number of times the system is being
interrupted to attend network requests and run the related code.

Summary: The power consumption of an IoT device is a
major concern, specially when powered by batteries. Despite
resorting to sleep modes, the final application scenario often
seeks for software that does not incur in additional power
wastes. In this regard, Contiki-NG and RIOT provide the best
results, when compared with Zephyr.

V. CLOSING DISCUSSION

Across all OSes, it was possible to observe that when the
packets need to be forwarded to another node, the performance
and determinism degradation reaches its peak (application-
specific tasks that could be also performance-consuming, such
as sensors reading and heavy-processing algorithms, are not
being considered). This effect is caused by the fact that not
only the packet needs to be rejected but also a new packet
needs to be created, with all necessary changes regarding
addressing and protocol data. Another point that is valid to all
OSes is that the influence of rejecting packets is always smaller
than accepting. When a packet is meant to be rejected, it is
mainly discarded in the lower layers, e.g., MAC or IP, which
means that instead of being forwarded through the entire stack,
fewer software tasks need to be executed, and thus, the system
is free to perform other tasks earlier. Contrarily, when a packet
is to be accepted, it is the upper layer that checks its validity,
inherently requiring more processing cycles. Table V depicts
a subjective comparison of the evaluated OSes.

1) Performance Evaluation: Regarding the performance,
and considering the results from T1 as the baseline with the
network configuration in idle, it is possible to compare the
three OSes among each other. This is due to the fact that in
this case, a single thread is performing simple operations with-
out resorting to any kernel service. Among all OSes, Zephyr
provides approximately 25% less performance.

Comparing the data from T6–T8, it is possible to argue
that: 1) for the conducted experiments, the message queue
system on the microkernel-based OSes perform slightly worse
than in Contiki-NG; 2) semaphores on Zephyr are considerably
better than the other two, despite this OS having an overall
worse performance; and 3) the dynamic memory management
system of Zephyr is far worse than the other two, due to the
overhead induced by its implementation. The last column of
Table II shows the average performance degradation associ-
ated with the different network states. Each percentage refers
to its own OS baseline illustrating the degradation relative to
the system without network traffic. Taking this into consider-
ation, it is possible to understand the influence of the default

TABLE V
QUALITATIVE COMPARISON OF THE EVALUATED OSES

network stack on each system, and the kernel’s ability to attend
the stack demands. Zephyr reveals the worst performance
when the network is active, due to the increased overhead
of its kernel operations, leading to an overall performance
worse than other OSes. Contrarily, Contiki-NG has the least
degradation under the same conditions, given the fact that its
scheduling mechanisms do not involve extensive operations
of context-switching. On the other hand, RIOT stands in the
middle, balancing its performance with the advantages of a
microkernel architecture.

2) Real-Time Evaluation: Regarding the determinism, both
initialization and clean-up stages of the majority of systems
can be neglected since these occur only once. Hence, it is
important to focus on the analysis of the kernel functions
that are used constantly throughout the system’s life cycle.
Moreover, the presence of network traffic greatly affects the
determinism of all OSes, given that the system is continu-
ally being interrupted when new packets are received by the
radio interface. Additionally, on all OSes, the network stack
is implemented in a monolithic fashion with the kernel, which
can cause interference with other OS services.

3) Memory Footprint Evaluation: The resources consumed
by the OS are directly related to the system’s power consump-
tion. Memory is usually the most power-consuming compo-
nent on embedded devices, which is reflected in the performed
evaluations. However, OSes that are mostly implemented with
static resources, usually incur on a higher amount of memory,
which greatly increases their power consumption. Contrarily,
using dynamic management of resources, and despite increas-
ing their memory footprint, can be a determining factor in
reducing the system’s energy consumption.

VI. CONCLUSION

In this article, we presented the requirements and char-
acteristics of the IoT ecosystem from a low-end embedded
system point of view. These requirements are reflected on
features that are expected from the system software running
on such devices, and therefore, not every OS fits all device
types. Three different OSes (Contiki-NG, RIOT, and Zephyr),
chosen by their availability, openness, and their kernel inter-
nals singularities, were thoroughly studied and benchmarked
considering the IoT-related requirements. Such benchmarks,
and other important experiments (real-time, power consump-
tion, and memory footprint), were performed by running the
Thread-Metrics Benchmark Suite over the default configura-
tion of each OS while varying the network state (idle, packets
to be accepted, and packets to be rejected).
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Obtained results reflect their differences and the influence
of the kernel-specific implementation, along with the default
network stack support. Such differences can affect the overall
system’s performance, memory footprint, and power consump-
tion. Considering the target application devices, i.e., edge
low-end devices, we can roughly conclude that when real-time
is not a requirement, Contiki-NG can be a great choice for
applications, where the power consumption and the memory
footprint are a priority. By its turn, when real-time is a demand,
RIOT proved to provide a good balance between performance
and real-time capabilities. Hereafter, as proposed by the several
development stages of ChamelIoT [24], the future work will
encompass a deep study on each OS network stack implemen-
tation and the exploration of hardware acceleration for what
has been deemed a bottleneck. This kind of approach has
somehow been proposed with CUTE mote, where network-
related tasks are already being accelerated, such as the IEEE
802.15.4 and 6LoWPAN standards [25], [26]. However, new
modules that hinder the system might emerge and allow new
solutions to be deployed.
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