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Abstract As with most real optimization problems, polymer processing technologies can 
be seen as multi-objective optimization problems. Due to the high computation times 
required by the numerical modelling routines usually available to calculate the values of 
the objective function, as a function of the decision variables, it is necessary to develop 
alternative optimization methodologies able to reduce the number of solutions to be 
evaluated, when compared with the technics normally employed, such as evolutionary 
algorithms. Therefore, in this work is proposed the use of artificial intelligence based on a 
data analysis technique designated by DAMICORE surpasses those limitations. An 
example from single screw polymer extrusion is used to illustrate the efficient use of a 
methodology proposed. 

  

1. INTRODUCTION 

Industrial processes, such as polymer processing, are characterized by a different type of data 
that can influence decisively its performance. Parameters such as operating conditions, 
material properties and system geometry have an impact on its functioning since the 
thermomechanical environment of the process allows obtaining mathematical relations 
between these design variables and the objectives to be accomplished. Thus, it is possible to 
optimize directly the process using those routines to evaluate the solutions proposed by the 
optimization algorithms. 
However, are other types of variables that cannot be related directly to the objectives, such for 
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example, environmental parameters, which can influence the performance of the processes. 
Also, very often, plenty of experimental data is available that is not used in the optimization. 
This work aims to apply Artificial Intelligence techniques to optimize the single screw 
polymer extrusion process, which is a multi-objective optimization problem consisting in 
satisfying simultaneously several objectives and constraints. This optimization depends on the 
definition of the best set of design variables, operating conditions and/or geometrical 
parameters. 
Usually, this problem is solved by associating a numerical modelling routine with 
optimization algorithms, in which this routine must be run several times, implying necessarily 
high computation times due to the sophistication of the numerical codes. 
An alternative methodology is used to reduce the number of modelling evaluations required 
during the optimization, which is based on a data analysis technique named DAMICORE, 
able to define important interrelations between all variables related to extrusion and, then, 
optimize the process. 
The results obtained a practical example agree with the expected thermomechanical behaviour 
of the process, which demonstrated that AI techniques can be useful in solving practical 
engineering problems. 
This paper is organized as follows: in section 2 important details about the single screw 
polymer extrusion are introduced, the concepts and the methodology adopted for data-driven 
optimization are described in section 3, in section 4 the results are presented and discussed, 
and in section 5 the conclusions are stated. 

2. SINGLE SCREW POLYMER EXTRUSION 
Polymer extrusion is a technological process where a melted polymer is forced to cross a 
die at a given output that provides the final shape to the product being made. As can be 
seen in Figure 1, the extruder machine is constituted by a heated barrel having an 
Archimedes type screw rotating inside at a prescribed velocity [1-4]. 
The solid polymer is fed in the hopper and by the action of gravity falls inside the barrel, 
where, by the action of the screw rotation, is forced to move to the heated barrel zone and, 
after melting, is pressurized and forced to pass through the die. This process is known as 
plasticizing and consists of the following steps [1-4]: 

1) Solids conveying in the hopper: transport of loose pellets in the hopper by the action 
of gravity; 

2) Solids conveying in the screw: transport of a solid plug balance resulting from the forces 
acting in the barrel and screw surfaces due to the friction differences; 

3) Delay zone: characterized by the development of a melt film near the barrel 
surface; 

4) Melting zone: characterized by the development of a specific melting mechanism 
through the formation of a melt pool near the active screw flank; 

5) Melt conveying: transport of the melted polymer that results from a balance 
between the positive flow due to drag and negative flow due to pressure increase; 

6) Melt pressure flow through the die. 
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Figure 1. Single screw extruder: geometry and operating conditions. 

This is a complex process as is its numerical modelling, which involves the resolution of 
the differential momentum and energy equations for each one of the stages identified 
above taking into account, for that purpose, the corresponding boundary conditions and 
continuity conditions between the stages. Details of this modelling can be found 
elsewhere [5]. 
The functioning of the process, as well as its performance, depends on variables related to 
the properties of the material (physical, thermal and rheological), the geometry of the 
system (mainly the screw) and the operating conditions (barrel temperature and rotation 
speed of the screw). Simultaneously, the performance can be measured by taking into 
account: mass output, melt temperature, length of screw required for melting, mechanical 
power consumption, mixing degree and viscous dissipation. 
Therefore, to optimize the process the decision variables are related to the operating 
conditions and screw geometry, being the aim to maximize output and mixing and 
minimize all the other performance measures referred to above [5]. 

3. DATA-DRIVEN OPTIMIZATION 

3.1. Concepts 
When dealing with Multi-Objective Optimization Problems (MOOP), it usually requires some 
interaction with a DM that is the expert in the field. Therefore, the aim here is to use data 
analysis to reduce these interactions and to provide in the end a very good approximation to 
the final solution to be used in the real problem studied. This can be done by linking data 
analysis tools with optimization methodologies to facilitate the search and help the decision-
making process, i.e., to use data to drive the optimization. 
The use of data-driven optimization can be understood, at least, in two ways: 

i) the original methodology of calculating the objectives can be replaced by a 
metamodel or a surrogate model that, making use of available data, can determine 
the parameters of the model, e.g., polynomial regression [6], kriging [7], 
Artificial Neural Networks (ANN) [8], radial basis function networks [9], and 
swarm optimization [10]; 

ii) helping the computer to decide on the best solution to use based on existing or 
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generated data [11]. 
There are available in the literature different metamodels based on Artificial Intelligence 
(AI), such as linear and nonlinear regression, incremental dynamic model decomposition 
[12, 13], Support Vector Machines (SVM) [14], ANNs [15], decision trees, and 
Code2Vect [16]. Nevertheless, it is necessary to take into account that the possibility of 
the system being influenced by other variables, not considered when the model is 
obtained, can constitute a limitation of machine learning. 
Based on these characteristics, the aim is to use the DAMICORE (proposed in 2011) 
framework based on the estimation of distances by compression algorithms, called NCD, 
to facilitate the investigation in the present scenario where a small amount of data is 
available and the system can be dependent of external effects [17, 18]. 
Simultaneously, a Feature Sensitivity Optimisation based on Phylogram Analysis (FS-
OPA) will be used to find the set of the principal features of a problem considering a real 
context, namely in what concerns its feature interactions and their contribution to a target 
or an objective [17]. The proof of concepts and important experimental results concerning 
the performance of OPA for difficult combinatorial mono and multi-objective 
optimization problems can be found elsewhere [18, 19]. 
DAMICORE method is the core of the FS-OPA mechanisms used to work directly with 
raw data, i.e., to introduce the process of learning from raw data and to generate models to 
be used in the optimization. 

3.2. DAMICORE and FS-OPA for Data-Driven Optimization 
DAMICORE is a builder of models based on phylograms able to deal with any type of 
data (integer, real and complex numbers, categorical, images, sound, etc., and mixtures of 
them), and involves the use of three main tasks in sequence: 

1) The use of the Normalized Compression Distance (NCD) metric to generate a 
distance matrix from the data [20]. 

2) The use of phylogram based modelling to construct evolutionary trees. 
DAMICORE uses a distance reconstruction algorithm called Neighbour Joining 
(NJ) in which the quality of the models is improved by a systematic resampling 
strategy. 

3) To perform community detection by analysing the phylograms found previously 
to extract significant and reliable information from them. For that purpose, a 
Complex Network approach called Fast Newman (FS) is applied [21]. This is, the 
aim is to find subgroups of data that share common information (DNA), in the 
present case designated by clades, which identify the communities. 

In practice, data is saved for each object to be analysed, DAMICORE runs NCD to 
calculate the distance between pairs of data and generates a distance matrix, NJ is applied 
to this matrix to create a phylogram, and, in the end, FN is running to found the clades 
(communities). 
The application of this methodology to the problem under consideration, single screw 
extrusion, involves the generation of phylograms with information that can provide two 
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levels of learning. 
In first-level learning, the aim is to find clades, each representing a cluster of variables 
sharing information. For optimization, each one of these clusters represents the set of 
variables with important interactions. As a result, a table with a list of variables with a 
cluster per row is obtained. 
In second-level learning, the FS-OPA calculates the contribution of each clade of 
variables to the objectives. This is made by measuring the distance between the clades of 
objectives (oclade) to each variable clade (vclade) using the phylogram obtained. These 
distances correspond to an estimation of the power of a clade to improve an objective. In 
some cases, there is the possibility of a clade containing variables and objectives, which 
need to be separated before the calculation of the distances. In this level, two different 
matrices are produced, one with the phylogram distances from vclades to oclades and the 
second with the relative phylograms distances from each variable to each objective. 
In the future, this information can be used to implement two additional learning levels, 
that will not be applied in this work. 
Third-level learning, which involves the decomposition of a problem in subgroups 
having some equivalence and some level of independence, can be used to build a 
surrogate quantifying the power of a clade to improve an objective. The result of this level 
will be M Bayesian Networks. 
Fourth-level learning, where a multivariate model can be built up from the set of 
information including the frequency distribution of variable values in each clade, which is 
the type of model required by an Estimation of Distribution Algorithm [18], a type of 
evolutionary optimization algorithm. Thus, DAMICORE can produce multivariate 
probabilistic models that can learn from a small amount of data and help in the 
optimization process. The result of this level is a multiobjective EDA. 
In the present study, the two first levels of learning will be used to study a case using real 
data, as presented in the next section. 

4. RESULTS AND DISCUSSION 

4.1. Case Study 
As can be seen in Figure. 1, the extruder used has a square pitch screw with a diameter (D) of 
25 mm and an L/D ratio equal to 20. It was fitted with a conventional screw with the lengths 
of the feed, compression, and metering zones equal to 8D, 8D, and 9D, respectively. Different 
screw geometries were tested, using three internal diameters in the metering zone (D3), i.e., 
Screw 1 with 22 mm, Screw 2 with 21 mm, and Screw 3 with 20 mm. Screw 2 was also tested 
for three different pitches (Pitch) in all screw lengths, 20, 25, and 30 mm, respectively. 
Concerning operating conditions, the barrel temperature (Tb) was fixed at 170°C, and 
screw speed was tested for three values, 40, 80, and 120 rpm. 
The extruder was used to process a Low-Density Polyethylene, Malen E FGAN 18-D003 
from Basell. The viscosity was obtained experimentally using a capillary rheometer the 
data fitted using the power-law model and the remaining properties were obtained either 
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from the material manufacturer or the literature. 
 

 
Figure 2. Single screw extruder: geometry and operating conditions. 

Under these conditions, a modelling program based on a numerical method, as referred to 
in section II above, was used to perform the calculations shown in Table 1. The data was 
divided into three categories, decision variables, objectives and Error, and is characterized 
by three types of decision variables: i) data that do not change, e.g., Grooves, RBS, etc.; 
data that is redundant, e.g., Screw and D3, as they represent the same screw geometry; and 
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data that changes, e.g., Screw, D3, Pitch and N. 
The aim is to test the ability of the methodology even in the presence of data that do not 
have any influence on the objectives. Also, an additional variable is introduced, Error, to 
take into account the cases that produce results without practical meaning. Only one result 
is in these conditions. 
Decision Variables Objectives E 

S. G. RBS Dext D1 D3 Lfeed L1 L2 L3 Pitch Tf. Tb N Output Tmelt Power Lmelting WATS VD  
1 0 0 25 16.6 22 100 200 200 225 25 70 170 40 1.8 175.3 995 6.2 315 1.04 0 
1 0 0 25 16.6 22 100 200 200 225 25 70 170 80 3.5 182.1 1594 12.4 296 1.36 0 
1 0 0 25 16.6 22 100 200 200 225 25 70 170 120 5.2 188.6 2460 13.2 299 1.25 0 
1 0 0 25 16.6 22 100 200 200 225 20 70 170 80 2.8 182.1 1953 10.6 334 1.38 0 
1 0 0 25 16.6 22 100 200 200 225 25 70 170 80 3.5 182.1 1594 12.4 296 1.36 0 
1 0 0 25 16.6 22 100 200 200 225 30 70 170 80 4.3 182.4 1314 14.7 279 1.07 0 
1 0 0 25 16.6 22 100 200 200 225 20 70 170 40 1.7 175.1 1063 6.7 319 1.19 0 
1 0 0 25 16.6 22 100 200 200 225 25 70 170 40 1.8 175.3 995 6.15 316 1.04 0 
1 0 0 25 16.6 22 100 200 200 225 30 70 170 40 1.8 175.4 918 6.7 306 1.04 0 
1 0 0 25 16.6 22 100 200 200 225 20 70 170 120 5.1 188.1 2404 14.0 329 1.39 0 
1 0 0 25 16.6 22 100 200 200 225 25 70 170 120 5.2 188.6 2460 13.2 299 1.25 0 
1 0 0 25 16.6 22 100 200 200 225 30 70 170 120 5.4 189.7 2224 14.7 292 1.12 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 40 2.3 176.3 946 8.7 263 1.04 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 80 4.6 183.2 1487 15.4 245 1.08 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 120 7.1 188.8 2201 17.1 219 1.11 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 40 2.1 176.1 1157 6.8 295 1.04 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 40 2.3 176.3 946 8.67 263 1.04 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 40 2.3 176.4 966 6.8 272 1.04 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 120 6.4 187.7 2425 15.7 266 1.14 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 120 7.1 188.8 2201 17.1 219 1.11 0 
2 0 0 25 16.6 21 100 200 200 225 25 70 170 120 7.6 190.6 2116 17.6 204 1.12 0 
3 0 0 25 16.6 20 100 200 200 225 25 70 170 40 2.8 176.8 724 14.2 210 1.04 0 
3 0 0 25 16.6 20 100 200 200 225 25 70 170 80 5.9 182.9 1371 17.8 157 1.08 0 
3 0 0 25 16.6 20 100 200 200 225 25 70 170 120 10.2 185.2 1727 21.6 70 1.09 0 
3 0 0 25 16.6 20 100 200 200 225 20 70 170 40 2.5 177 1233 5.8 295 1.04 0 
3 0 0 25 16.6 20 100 200 200 225 25 70 170 40 2.8 176.8 724 14.2 210 1.04 0 
3 0 0 25 16.6 20 100 200 200 225 30 70 170 40 2.9 177.1 668 14.9 193 1.04 0 
3 0 0 25 16.6 20 100 200 200 225 20 70 170 120 7.3 185.7 2518 16.6 195 1.09 0 
3 0 0 25 16.6 20 100 200 200 225 25 70 170 120 10.2 185.2 1727 21.6 70 1.09 0 
3 0 0 25 16.6 20 100 200 200 225 30 70 170 120 53.9 224.5 2432 25.0 2 1.32 1 

Table 1. Data-Set 

Before proceeding with the application of the methodology, data is normalized to avoid 
the comparison between values of different levels. For that, all values in each column 
were divided by the maximum value found in that column, except in the case the 
maximum value is zero.  

4.2. Global Analysis 
First, a global analysis of all data is made. Figure. 2 shows the phylogram obtained. Each 
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node in this figure corresponds to each column in Table 1, either a variable or an objective. 
The different colours identify the data that share information, i.e., clusters of information with 
a small distance between them. 
The lower distance between the data shown in this phylogram indicates the sharing of 
information and mutual influence between variables and/or objectives. The colours in 
Figure 1 identify the clusters found in the first-level learning. Therefore, two important 
conclusions can be drawn: 

i) all objectives are strongly interconnected, as they are all located very near;  
ii) variables D3, Pitch, Screw and N, due to their location, are the ones that share 

more information with the objectives. This is what is expected since the changes 
in the values of the objectives are produced by changes in these decision 
variables. 

However, it is important to note that some variables may not be related to any useful 
information for the analysis, such as, for example, to infer how much a decision variable 
contributes to improving objectives. This apparent interconnection can emerge due to 
spurious reasons, e.g., an exogenous factor that is not relevant for this analysis. This is the 
case of Grooves, RBS, Error and Tbarrel since they are near the objectives, but their 
values do not change. An alternative can be to use additional information that can be 
obtained from the original data set, e.g., the standard deviation of each column in Table 1. 
This will not be considered here. 
Therefore, accordingly, with these results, D3, Pitch, Screw and N, share information 
between themselves and the objectives. 
Given this information, another way of measuring the potential contribution of a variable 
to an objective is the normalized average of the distances from the variables to all the 
objectives, as represented in Table 2, which resulted from the second-level learning. 
These distances are calculated as the longest path between the oclades and vclades, i.e., 
the maximum number of edges from all paths in the found phylogram (also called 
cophenetic distances), which can be calculated using Figure 2. 
 

Decision 
Variables Output Tmelt Power Lmelting WATS ViscD Average 

'D3' 0.53 0.40 0.33 0.27 0.47 0.20 0.37 
'Grooves' 0.60 0.47 0.40 0.33 0.53 0.27 0.43 

'RBS' 0.60 0.47 0.40 0.33 0.53 0.27 0.43 
'Pitch' 0.60 0.47 0.40 0.33 0.53 0.27 0.43 

'Tbarrel' 0.67 0.53 0.47 0.40 0.60 0.33 0.50 
'Screw' 0.67 0.53 0.47 0.40 0.60 0.33 0.50 

'N' 0.67 0.53 0.47 0.40 0.60 0.33 0.50 
'Lfeed' 0.80 0.67 0.60 0.53 0.73 0.47 0.63 
'Tfeed' 0.80 0.67 0.60 0.53 0.73 0.47 0.63 
'Dext' 0.80 0.67 0.60 0.53 0.73 0.47 0.63 
'D1' 0.87 0.73 0.67 0.60 0.80 0.53 0.70 
'L1' 0.93 0.80 0.73 0.67 0.87 0.60 0.77 
'L2' 1.00 0.87 0.80 0.73 0.93 0.67 0.83 
'L3' 1.00 0.87 0.80 0.73 0.93 0.67 0.83 

Table 2. Results from the second-level learning 
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From the point of view of the extrusion process, the variables that most influence the 
objectives are D3 and Pitch, which are two variables related to the geometry of the screw 
because of the average distance to the objectives (last column of this table) is smaller than 
for the remaining variables. This is what is expected and is in agreement with the theory, 
as these variables are recognized by their strong effect in the process, as known by 
specialists. 

4.3. Partial Analysis 
To test the influence of the design variables in each one of the objectives, different runs were 
performed considering only part of the data that improves a specific objective. For that, the 
data set is ordered by each objective and three studies are made, each one using 100%, 50% 
and 25% of the better solutions of the data are used in the analysis. 
The importance of this study is illustrated in Figure 3, where the trade-off between Output 
and WATS, both to maximize, is plotted using all values of the data set except the one 
with variable Error equal to 1. As can be seen, these objectives are in conflict and the 
solutions are spread in the bi-objectives space and no trend can be observed. Also, it is 
necessary to take into account that there are other objectives and, thus, is not possible to 
identify, in this bi-objective space, the non-dominated solutions. 
 

 
Figure 3. The trade-off between objectives Output and WATS. 

Tables 3, 4 and 5 present the same type of results for the second-level learning but know 
using the 100%, 50% and 25% best solutions, respectively, for output. The order of the 
distance between the relevant decision variables (i.e., D3, Pitch, Screw and N) changes, 
which by decreasing order is: for 100% D3, Pitch, Screw, N; for 50% N D3 Screw, Pitch; 
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and for 25% D3, Screw, Pitch, N. This indicates clearly that for Output the important 
decision variables are the internal diameter in the metering screw zone (D3) and the screw 
speed (N), but without a preponderance of one over the other. Again, this is following the 
knowledge about the process. 
 

Decision 
Variables Output Tmelt Power Lmelting WATS ViscD Average 

'D3' 0.54 0.38 0.54 0.31 0.54 0.23 0.42 
'RBS' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 

'Tbarrel' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 
'Pitch' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 

'Grooves' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 
'Screw' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 

'N' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 
'Lfeed' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'Tfeed' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'Dext' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'D1' 0.85 0.69 0.85 0.62 0.85 0.54 0.73 
'L1' 0.92 0.77 0.92 0.69 0.92 0.62 0.81 
'L3' 1.00 0.85 1.00 0.77 1.00 0.69 0.89 
'L2' 1.00 0.85 1.00 0.77 1.00 0.69 0.89 

Table 3. Results for the 100% better solutions for output 

Decision 
Variables Output Tmelt Power Lmelting WATS ViscD Average 

'N' 0.54 0.38 0.54 0.31 0.54 0.23 0.42 
'RBS' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 

'Tbarrel' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 
'D3' 0.62 0.46 0.62 0.38 0.62 0.31 0.50 

'Grooves' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 
'Screw' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 
'Pitch' 0.69 0.54 0.69 0.46 0.69 0.38 0.58 
'Lfeed' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'Tfeed' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'Dext' 0.77 0.62 0.77 0.54 0.77 0.46 0.66 
'D1' 0.85 0.69 0.85 0.62 0.85 0.54 0.73 
'L1' 0.92 0.77 0.92 0.69 0.92 0.62 0.81 
'L2' 1.00 0.85 1.00 0.77 1.00 0.69 0.89 
'L3' 1.00 0.85 1.00 0.77 1.00 0.69 0.89 

Table 4. Results for the 50% better solutions for output 

Finally, Table 6 presents the summary of this analysis for all objectives. The conclusions, 
taking into consideration the knowledge about the thermomechanical behaviour of the 
polymer inside the extruder, for the relative importance of the decision variables in the 
objectives considered individually are the following: 

i) for Output, Lmelting and WATS the most important variables are D3 and N; 
since there is an alternation between these variables when the percentage of better 
solutions used in the analysis changes; 

ii) for Tmelt is D3, as in all cases this variable has the lower distance to the 
objective: 
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iii) for Power and ViscousD is N because when the solutions with better power 
consumption are selected (i.e., 50% and 25%) the screw speed has a lower 
distance to the corresponding objectives. 

 
Decision 

Variables Output Tmelt Power Lmelting WATS ViscD Average 

'D3' 0.47 0.33 0.40 0.27 0.27 0.27 0.34 
'Screw' 0.47 0.33 0.40 0.27 0.27 0.27 0.34 
'Pitch' 0.47 0.33 0.40 0.27 0.27 0.27 0.34 

'Grooves' 0.60 0.47 0.53 0.40 0.40 0.40 0.47 
'RBS' 0.60 0.47 0.53 0.40 0.40 0.40 0.47 

'Tbarrel' 0.73 0.60 0.67 0.53 0.53 0.53 0.60 
'Dext' 0.73 0.60 0.67 0.53 0.53 0.53 0.60 
'Tfeed' 0.80 0.67 0.73 0.60 0.60 0.60 0.67 
'Lfeed' 0.80 0.67 0.73 0.60 0.60 0.60 0.67 

'D1' 0.80 0.67 0.73 0.60 0.60 0.60 0.67 
'N' 0.87 0.73 0.80 0.67 0.67 0.67 0.74 
'L1' 0.93 0.80 0.87 0.73 0.73 0.73 0.80 
'L2' 1.00 0.87 0.93 0.80 0.80 0.80 0.87 
'L3' 1.00 0.87 0.93 0.80 0.80 0.80 0.87 

Table 5. Results for the 25% better solutions for output 

This analysis constitutes the first step in the persecution of the next levels of learning, this 
is, the definition of the order of importance of the decision variables in the objectives to 
determine a metamodel relating decision variables and objectives that can be used by 
optimization algorithms. 
 

Objectives Percentage Decision Variables Order Importance of the 
decision variables 

Output 
100% D3, Pitch, Screw, N 

D3 and  N 50% N, D3, Screw, Pitch 
25% D3, Screw, Pitch, N 

Tmelt 
100% D3, Pitch, Screw, N 

D3 50% D3, Pitch, N, Screw 
25% D3, Pitch, Screw, N 

Power 
100% D3, Pitch, Screw, N 

N 50% N, D3, Screw, Pitch 
25% N, D3, Screw, Pitch 

Lmelting 
100% D3, Pitch, Screw, N 

D3 and N 50% D3, Pitch, Screw, N 
25% N, D3, Screw, Pitch 

WATS 
100% D3, Pitch, Screw, N 

D3 and N 50% D3, Pitch, Screw, N 
25% Screw, Pitch, N, D3 

ViscousD 
100% D3, Pitch, Screw, N 

N 50% D3, Pitch, Screw, N 
25% N, Pitch, Screw, D3 

Table 6. Results from the second-level learning 
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5. CONCLUSIONS 
A data mining methodology was applied to a real data set in the field of polymer 
processing to analyse and optimize a single screw extrusion polymer process. This 
computational data is characterized by being scarce and was obtained randomly and 
considered very different aspects of the process, namely, operating conditions, system 
geometry and optimization objectives. 
Two levels of learning based on a methodology designated by DAMICORE were applied 
to obtain information about the sharing of information between decision variables and 
objectives and relevant interactions were found, enabling some conclusions about the 
importance of specific design variables in the objectives. 
The results obtained have physical meaning and are following the thermomechanical 
knowledge about the process. 
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