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ABSTRACT

Capsule networks (CapsNets) are an emerging trend in image processing. In contrast to a convolutional
neural network, CapsNets are not vulnerable to object deformation, as the relative spatial information
of the objects is preserved across the network. However, their complexity is mainly related to the
capsule structure and the dynamic routing mechanism, which makes it almost unreasonable to deploy
a CapsNet, in its original form, in a resource-constrained device powered by a small microcontroller
(MCU). In an era where intelligence is rapidly shifting from the cloud to the edge, this high complexity
imposes serious challenges to the adoption of CapsNets at the very edge. To tackle this issue, we
present an API for the execution of quantized CapsNets in Arm Cortex-M and RISC-V MCUs. Our
software kernels extend the Arm CMSIS-NN and RISC-V PULP-NN to support capsule operations
with 8-bit integers as operands. Along with it, we propose a framework to perform post-training
quantization of a CapsNet. Results show a reduction in memory footprint of almost 75%, with
accuracy loss ranging from 0.07% to 0.18%. In terms of throughput, our Arm Cortex-M API enables
the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and
90.60 milliseconds (ms), respectively (STM32H755ZIT6U, Cortex-M7 @ 480 MHz). For the GAP-8
SoC (RISC-V RV32IMCXpulp @ 170 MHz), the latency drops to 7.02 and 38.03 ms, respectively.

Keywords capsule networks · capsule network quantization · edge · cloud · CMSIS-NN · PULP-NN

1 Introduction

Convolutional layers have shown an impressive capacity to extract features - edges and shapes - from image pixels
[Sabour et al., 2017, Kwabena Patrick et al., 2019, El Alaoui-Elfels, Omaima and Gadi, Taoufiq, 2021]. However, to
reduce the dimension of feature maps, and consequently the number of parameters to learn, convolutional layers are
typically connected through pooling layers in a convolutional neural network (CNN). Pooling layers take the most
important features present in a region of the feature map generated by a convolution and pass those features to the
following layer. However, this comes at the cost of decreased capacity to recognize pose and object deformation as the
relative spatial information of the features is lost across the network [Sabour et al., 2017, Kwabena Patrick et al., 2019,
El Alaoui-Elfels, Omaima and Gadi, Taoufiq, 2021]. Furthermore, CNNs have shown to be vulnerable to adversarial
examples, i.e., inputs to a machine learning (ML) model that an attacker intentionally designs to compromise the
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integrity of the decision in a process similar to an optical illusion [Su et al., 2019, Sadeghi et al., 2020]. To tackle these
issues, Sabour et al. [2017] proposed a new class of deep learning (DL) architectures, named capsule neural networks
(CapsNets), to extract and classify features from images, while preserving and learning spatial information.

The core unit of a CapsNet is a capsule, a group of neurons organized as vectors. Each vector dimension represents a
different parameter of the same object in the image [Sabour et al., 2017] and the length of the vector represents the
probability of the image containing the object. To date, there are four main variants of CapsNet: (i) transforming
auto-encoders [Hinton et al., 2011], (ii) routing by agreement between capsules [Sabour et al., 2017], (iii) expectation-
maximization routing capsules [Hinton et al., 2018], and (iv) stacked capsule autoencoders [Kosiorek et al., 2019].
However, the most prominent remains the routing by agreement between capsules [Sabour et al., 2017], which is the
target on this work. Dynamic routing is used to calculate a series of coefficients that determine the probability of an
object in a lower capsule layer, being part of an object represented in a higher capsule layer [Sabour et al., 2017]. In
contrast to CNNs, CapsNets are equivariant, learning proportion and pose changing [El Alaoui-Elfels, Omaima and
Gadi, Taoufiq, 2021]. CapsNets already outperform CNNs in some healthcare [Toraman et al., 2020] and automation
mechanisms [Dinesh Kumar, 2018, Pari S. et al., 2019, Wang et al., 2018, Katebi et al., 2019, Kwabena Patrick et al.,
2019, Zhang et al., 2020].

Despite being promoted as the next ground-breaking algorithm in DL [Kwabena Patrick et al., 2019], CapsNets in
their original form are computationally intensive in terms of memory requirements (bandwidth and size) and latency
[Marchisio et al., 2020a,b, 2021, Zhang et al., 2020, 2021, Park et al., 2020, Kakillioglu et al., 2020]. For the same
dataset, the original CapsNet has a ratio of multiply-accumulate (MAC) operations per memory near 100x higher
than AlexNet [Marchisio et al., 2020a], which is also a heavy CNN. In an era where concerns with cloud and internet
infrastructure are disrupting the shift of AI to the deep edge [Stoica et al., 2017, Lai et al., 2018, Véstias et al., 2020,
Li et al., 2018], the feasibility of CapsNets is still mainly confined to powerful cloud servers. To shift AI to the edge,
researchers have been developing mechanisms for compressing artificial neural networks (ANNs) and CNNs, discarding
floating-point representation, and adopting a lighter fixed-point representation [Lai et al., 2018, Garofalo et al., 2020].
If the potential of fixed-point computation in ANNs and CNNs is already known and ultimately led to the development
of APIs tailored for the execution of quantized neural networks in low-end MCUs [Lai et al., 2018, Garofalo et al.,
2020] (e.g., Arm Cortex-M and RISC-V), the feasibility of CapsNets under such constraints is still unknown.

To fill this gap, we evaluate the feasibility of CapsNets on resource-constrained platforms, powered by small MCUs
targeted for intelligent IoT edge nodes. For this purpose, we extended the software kernels from CMSIS-NN [Lai
et al., 2018] and PULP-NN [Garofalo et al., 2020] to support the deployment of CapsNets on Arm Cortex-M and
RISC-V MCUs, respectively. We extended these APIs with functions to support capsule operations with int-8 data
and evaluated their feasibility in terms of latency, accuracy penalty, and memory footprint reduction. As ML models
are typically trained using floating-point precision, we developed a toolchain to perform post-training quantization
of CapsNets developed in TensorFlow. Results show that this framework can reduce the memory footprint of a
CapsNet by almost 75%, with a maximum accuracy loss of 0.18%. Our API was tested in three different Arm
Cortex-M cores, i.e., STM32L4R5ZIT6U (Cortex-M4 @ 120 MHz), STM32H755ZIT6U (Cortex-M7 @ 480 Mhz),
and STM32L552ZET6QU (Cortex-M33 @ 110 MHz). For the fastest MCU (STM32L4R5ZIT6U), our API enables
the execution of primary capsule and capsule layers with medium-sized kernels in just 119.94 and 90.60 milliseconds,
respectively. The API for the RISC-V RV32IMCXpulp architecture was tested on a Gapuino v1 board. For an octa-core
setting at 170 MHz, the latency of medium-sized primary capsule and capsule layers dropped to 7.02 and 38.03
milliseconds, respectively. Our work is open-source and available online 1. We believe our work will open a path in the
application space of CapsNets, mainly in areas till now only explored by CNNs [Costa et al., 2019, Lu et al., 2021] and
encourage the development of lighter CapsNet architectures.

In summary, we make the following contributions: (i) the first public and open-source software kernels for the execution
of CapsNets in Arm Cortex-M and RISC-V (RV32IMCXpulp) MCUs (section 3); (ii) a public and open-source
framework to quantize CapsNets from floating-point precision to int-8, compliant with the Qm.n data format, used
by Arm CMSIS-NN and RISC-V PULP-NN libraries (section 4); (iii) the first public evaluation of the feasibility of
CapsNets in resource-constrained MCUs featuring Arm Cortex-M and RISC-V (RV32IMCXpulp) cores (section 5).

1https://gitlab.com/ESRGv3/q7-capsnets.git
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2 Background

2.1 Capsule Networks (CapsNets): Overview and Evolution

The first concept of capsules applied in DL was introduced in 2011 by Hinton et al. [2011] to tackle the lack of
equivariance affecting CNNs and to show how neural networks can be used to recognize pose. Capsules were described
as sets of neurons, organized as vectors, and each capsule represented a given object of the input image. In contrast to a
CNN, in which layers take as input/output scalars, capsules deal with vectors. They encapsulate posture information
(position, direction, etc.) with other instantiation parameters (width, height, etc.) that together represent an object or
object part. Each layer in a CapsNet is made up of a series of capsules and CapsNets follow a part-whole hierarchy.
Capsules at one layer predict larger objects, represented by capsules at higher layers, via transformation matrices applied
to their output vectors. For an object to be detected, capsules at a lower layer must agree in their spatial arrangement.
This characteristic is highlighted in Figure 1. As observed, for the CapsNet in green, the pose of the mouth is not
spatially aligned with the remaining parts of the face, resulting in a distorted human face to the human eye. As CapsNets
learn the spatial relation of object parts, they can easily spot this distortion. In contrast, a traditional CNN would
recognize the input image as a human face as CNNs learn the parts but not their spatial arrangement. Researchers have
been proposing numerous CapsNet architectures since the proposal of the capsule concept in 2011. Here we review the
most relevant architectures developed to date. For an overview of other architectures, we refer to works [Li et al., 2021,
El Alaoui-Elfels, Omaima and Gadi, Taoufiq, 2021, Kwabena Patrick et al., 2019, Sun et al., 2022].

Transforming auto-encoders (TAEs) are the first CapsNet architecture [Hinton et al., 2011]. They were designed to
encode the input image and regenerate it in the same original pose. TAEs differed from other auto-encoders as they were
designed to explicitly learn the transformation matrix that represents the relation of one part of an image (e.g. eyes) to
the position of other parts (e.g. nose). A TAE’s capsule is composed of two distinct units: (i) recognition units and (ii)
generative units. The recognition units were designed to compute the pose parameters and the probability that the object
represented by the capsule is present in the input image. The generative units take this data as input to reconstruct the
object. The major bottleneck of TAEs is that they require the transformation matrix to be supplied externally.

The previous capsule structure was updated in 2017 for classification tasks. Sabour et al. [2017] succeeded in
implementing a CapsNet with state-of-the-art accuracy of 99.75% on MNIST and triggered the hype around CapsNets.
This architecture features a convolutional layer, a primary capsule layer, and a class capsule layer. The convolutional
layer is intended to extract the most relevant features of the input image, tackling the need to externally provide the pose
matrix of the objects of interest. The primary capsule layer is the first capsule layer following the convolutional layer.
Primary capsules have a convolutional kernel and encode the instantiation parameters of the lower-level objects of the
input image. The last layer is the class capsule layer, which makes the final prediction. Capsules at different layers
connect through a dynamic routing algorithm, which computes the probability of the object represented by a capsule in
layer L being part of the objects represented by the capsules in layer L+ 1. Sabour et al. [2017] updated the capsule
structure in this CapsNet architecture. Capsules are still a group of neurons that output a vector with instantiation
parameters. However, Sabour et al. [2017] gave meaning to the length of the vector - it represents the probability of the
object being present in the input image. This CapsNet architecture is the most supported by the research community
and is the focus of this work. Section 2.2 describes it in detail.

In 2018, Hinton et al. [2018] proposed to replace the input and output vectors of capsules with matrices and updated the
dynamic routing with an expectation-maximization algorithm. Instead of a pose vector, each capsule comprises a 4x4
pose matrix and an activation parameter that represents the probability of the object is present in the input image. This

Figure 1: Basic intuition behind CapsNets
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tackles two of the biggest bottlenecks of the previous CapsNet architecture. Firstly, representing capsules with matrices
of n elements instead of vectors reduces the number of parameters in transformation matrices between capsules from
n2 to n. Secondly, it avoids the use of a squash function to shrink the vectors to a maximum length of 1, which prevents
the existence of any sensible objective function in the network. The new dynamic routing considers every capsule in a
higher layer represented by a Gaussian distribution, defined by a mean and a standard deviation, and the capsules in a
lower layer as the data points to be mapped to the Gaussian distributions. This algorithm encompasses two phases:
(i) the assignment of data points to clusters (expectation) and (ii) the update of the centroids giving the assignments
(maximization). This architecture achieved an accuracy of 98.2% on the smallNORB dataset.

The previous CapsNet architecture was updated in 2019 by Kosiorek et al. [2019] for unsupervised learning applications.
In addition to the pose matrix and activation parameter, this newer version of capsules (stacked capsule autoencoders)
features a vector that represents other properties than pose, such as deformation, velocity, or color. While previous
versions of capsules predict the pose of a parent capsule from the pose of the lower-layer capsules, this new architecture
works in the opposite direction. A capsule that represents an object at one layer, predicts the pose of the parts represented
in the lower layers. Consequently, there is no more need for iterative routing at inference time as every part is explained
as a mixture of predictions from different objects. Stacked capsule autoencoders feature two main parts: (i) part capsule
autoencoder and (ii) object capsule autoencoder. Stacked capsule autoencoders achieved a state-of-the-art accuracy for
unsupervised classification on SVHN (55%) and MNIST (98.7%).

2.2 Capsule Networks (CapsNets) with Dynamic Routing

Dynamic routing between capsules was the first CapsNet architecture proposed for classification tasks. Its successor,
matrix capsules with expectation-maximization routing, promised to reduce the number of parameters to learn and to
deliver better results in more complex datasets like smallNORB. Nevertheless, at the time of accomplishment of this
work, the first version still got the most valuable support from the research community. Furthermore, it is the only
version whose original implementation is publicly available 2. Figure 2 depicts its general architecture.

Figure 2: General architecture of a CapsNet with dynamic routing between capsules

A CapsNet based on dynamic routing between capsules starts with a convolutional layer, used to extract the most
relevant features of the input image. In their model tuned for the MNIST dataset, Sabour et al. [2017] employed 256
convolution kernels with dimensions 9x9 and a stride of 1, followed by a rectified linear unit (ReLU) activation. The
activated feature map is then sent to every capsule in the primary capsule layer. The primary capsule layer is the
first capsule layer of the network and is where the inverse of the rendering process starts. Primary capsules have a
convolutional kernel and are designed to refine the objects of interest identified by the previous convolutional layer and
to determine the instantiation parameters, including spatial information. Each primary capsule represents a different
object from the lowest level objects of the input image. The output of a primary capsule is a vector, where each
dimension represents a given parameter of the object. The length of the output vector represents the probability of
the object is present in the input image. For this purpose, the output of each capsule is squashed by the non-linear
activation detailed in Equation 1. It preserves the original orientation of the output vector but normalizes its length to the
range [0-1]. In their model tuned for the MNIST dataset, Sabour et al. [2017] propose a primary capsule layer with 32
convolutional capsules, each one with 8-dimensional features. The convolution relies on a 9x9 kernel and a stride of 2.

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(1)

The primary capsule layer is followed by a single or multiple capsule layer. In the last capsule layer, each capsule
represents a different object/class to be recognized by the network. For all but the primary capsules, the input is a
weighted sum of the output vectors from the capsules in the layer below. For a given capsule j in layer L+ 1, each

2https://github.com/Sarasra/models/tree/master/research/capsules
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output vector ui from layer L is multiplied by the respective weight matrix Wij as detailed in Equation 2. The resulting
vector ûij (prediction vector) is submitted to the iterative dynamic routing mechanism. This mechanism computes the
coupling coefficients cij between each capsule in layer L and capsules in layer L+ 1. Coupling coefficients determine
the probability of the object represented by a capsule in layer L being part of a capsule in layer L+ 1.

sj =
∑
i

cij ∗ ûji, ûji = Wij ∗ ui (2)

Algorithm 1 details the dynamic routing algorithm [Sabour et al., 2017]. In the first iteration of the routing process, the
prediction vector of a capsule i in layer L is equally routed to every capsule j of layer L + 1. This occurs as logits
bij of the coupling coefficients are initialized as zeros. In the next iterations, each coupling coefficient cij is refined
by measuring the agreement between the prediction vector of capsule i and the output of capsule j. The agreement is
calculated as the scalar product between the prediction vector ûij and the output vector vj . This agreement is added to
the initial logits bij . The output of a capsule at a given iteration is computed as the scalar product of the prediction
vectors and the respective coupling coefficients. To ensure that the coupling coefficients between a capsule of layer
L and all capsules from layer L+ 1 sum to 1, the logits bij that reflect the level of agreement between capsules are
submitted to a softmax function before the output vector is calculated. As the output vector is calculated, it is submitted
to a squash function to ensure that its length belongs to the interval [0, 1]. The routing algorithm is repeated for a given
number of iterations, previously defined or hyper-tuned by the neural network designer. In their network specifically
tuned for the MNIST dataset, Sabour et al. [2017] uses a unique capsule layer, composed of 10 16-dimensional capsules.

Algorithm 1: Dynamic routing algorithm
1: for all capsule i in layer L and capsule j in layer L+ 1: bij = 0
2: for r iterations do
3: for all capsule i in layer L: ci = softmax(bi)
4: for all capsule j in layer L+ 1: sj =

∑
i cij ∗ ûji

5: for all capsule j in layer L+ 1: vj = squash(sj)
6: for all capsule i in layer L and capsule j in layer L+ 1: bij = bij + ûji ∗ vj
7: end for
8: return vj

2.3 Quantization

Quantization refers to techniques for mapping floating-point tensors to integer tensors, with lower bit-width [Gholami
et al., 2021, Wu et al., 2020, Liang et al., 2021, Novac et al., 2021, Wang et al., 2020]. As a consequence, a quantization
process involves the encoding of (i) the sign, (ii) the integer part, and (iii) the fractional part of a float in a single integer
value. In binary, quantized numbers are typically represented in Qm.n notation, where m specifies the number of bits
allocated for the integer part and n the number of bits allocated for the fractional part [Novac et al., 2021]. The main
goal of quantization is to improve inference latency and reduce the memory footprint of neural networks. However, the
success of a quantization procedure is highly dependent on the memory specification and instruction set architecture
(ISA) of the target platform [Gholami et al., 2021, Novac et al., 2021].

Post-training quantization vs. quantization-aware training: Quantization-aware training lowers the impact of the
quantization on model accuracy by simulating the low-precision of weights during training. It considers the quantization
error as part of the loss returned by the loss function, which the optimization algorithm tries to minimize [Gholami
et al., 2021, Wu et al., 2020, Liang et al., 2021, Novac et al., 2021, Wang et al., 2020]. In post-training quantization, the
model is quantized without any fine-tuning during training.

Uniform vs. non-uniform quantization: Quantizing floating-point values to lower bit-width integers can return
values that are equally (uniform quantization) or non-equally (non-uniform quantization) spaced [Gholami et al., 2021,
Novac et al., 2021, Wang et al., 2020]. For a fixed bit-width, non-uniform quantization may return more accurate ML
models, as it captures with higher resolution the more important value regions [Gholami et al., 2021, Novac et al., 2021].
The quantization step is tuned to minimize the quantization error [Gholami et al., 2021, Novac et al., 2021, Wang et al.,
2020]. Nevertheless, non-uniform quantization typically introduces non-negligible overhead in the computation of
quantized models on general-purpose hardware (GPUs and CPUs), sometimes leading to a latency higher than using
the floating-point ML model [Novac et al., 2021, Wang et al., 2020]. As a consequence, uniform quantization is the
de-facto method to perform fast computations on resource-constrained devices [Gholami et al., 2021, Novac et al.,
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2021]. Equation 3 represents a typical uniform quantization function, where r is the float to be quantized, S is a scalar,
and Z is a zero-point or offset.

Q(r) = round(r/S)− Z (3)

Scaling and offset: In uniform quantization, the scaling factor and the zero-point are the core of the quantization
function [Gholami et al., 2021, Novac et al., 2021, Wu et al., 2020, Jacob et al., 2018]. The scaling factor specifies
the step size of the quantizer, dividing a given range of values into equally spaced partitions. The zero-point is an
integer offset used to ensure that a zero is quantized with no error when the range of values to be quantized is not
centered around 0. To define a scaler (Equation 4), it is required to firstly define the target Qm.n format and the range
of floating-point values to be quantized ([xmin, xmax]) [Gholami et al., 2021, Wu et al., 2020]. The clipping range
can be symmetric (|xmin| = |xmax|) or asymmetric (|xmin|! = |xmax|)). For an asymmetric setting, the zero-point
is calculated as defined in Equation 5 [Wu et al., 2020]. Note that the zero-point is rounded to an integer value.
Asymmetric quantization often results in a tight clipping range, which can reduce the impact of quantization on model
accuracy [Gholami et al., 2021, Novac et al., 2021]. Nevertheless, symmetric quantization is widely adopted in practice
as asymmetric quantization can introduce non-negligible overhead during inference [Gholami et al., 2021].

S =
xmax − xmin

2b − 1
(4)

z = −round(xmin ∗ S)− 2b − 1 (5)

Quantization granularity: Two metrics should be considered when selecting the granularity of quantization: (i)
impact on model accuracy and (ii) computational cost [Wu et al., 2020]. The minimum impact on model accuracy is
achieved if the scaling factor and the zero-point are calculated for each weight and activation. However, this would
result in a tremendous computation overhead and memory consumption as scaling and zero-point factors must be saved
for each weight/activation. These factors combined may hamper the main objective of the quantization [Novac et al.,
2021, Gholami et al., 2021]. In contrast, the minimum computational cost is achieved if the scaling factor and the
zero-point are calculated for the whole neural network [Novac et al., 2021, Gholami et al., 2021]. However, this may
result in an accuracy drop that can not be neglected. As a consequence, performing the quantization layer-by-layer or
filter-by-filter are the most common strategies [Novac et al., 2021, Wang et al., 2020].

Fixed bit-width vs. mixed bit-width: In a fixed bit-width setting, the same bit-width is used to quantize the whole
network [Gholami et al., 2021, Wang et al., 2020]. In a mixed bit-width setting, the bit-width of each layer or filter
is tuned for better model accuracy and/or memory footprint reduction [Gholami et al., 2021, Wang et al., 2020].
Activations and weights for layers/filters whose contribution to the final output is smaller get lower bit-width, while
layers/filters that contribute the most get higher bit-widths. For the same memory footprint, this strategy has the
potential to reduce the degradation of the model accuracy, however at the cost of a more complex quantization scheme
and inference-pass software [Gholami et al., 2021, Wang et al., 2020].

Static vs. dynamic quantization: In static quantization, the scaler and the zero-point factors are calculated before
inference, using a representative dataset. In dynamic quantization, these parameters are computed dynamically during
the inference pass for each input [Gholami et al., 2021, Novac et al., 2021]. In this approach, weights and activations are
stored in memory in low-precision bit-width, but the operations (matrix multiplication and convolution) are performed in
floating-point arithmetic. In comparison to static quantization, dynamic quantization lowers the impact of quantization
on model accuracy; however, it incurs a performance overhead that may be prohibited for low-end MCUs [Gholami
et al., 2021, Novac et al., 2021].

2.4 CMSIS-NN

CMSIS-NN [Lai et al., 2018] is a series of open-source software kernels optimized to enable the deployment of neural
networks on resource-constrained Arm Cortex-M MCUs. These software kernels are built upon the CMSIS abstraction
layer and are optimized for Cortex-M MCUs that support single instruction multiple data (SIMD). This API is organized
in two parts: NNFunctions and NNSupportFunctions. NNFunctions include functions for the computation of the most
popular layer types, such as convolution and fully-connected. NNSupportFunctions include support functions for data
precision conversion and activations, which are used in the computation of NNFunctions. These kernels support both
8-bit and 16-bit data. The quantization is assumed to be uniform, symmetric, and to return values with fixed bit-width.

6
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The quantization must also be static and conducted layer-by-layer. As the quantization relies on a power-of-two scaling,
the scaling of a layer output is implemented as a bitwise shift operation.

For a convolutional layer, input data is assumed to be in Height-Width-Channel (HWC) format, i.e., channel first. In
terms of activation functions, CMSIS-NN supports ReLU, sigmoid, and tanh [Dong et al., 2020]. ReLU is implemented
as a simple clipping function that maps negative values to 0 and maintains the value of positive values. Sigmoid and
tanh are implemented using a lookup table (LUT) approach. These kernels were firstly tested by Lai et al. [2018] on the
STM32F746ZG MCU (Arm Cortex-M7) running a CNN featuring three convolutional layers and one fully-connected
layer, at 216 MHz. CMSIS-NN was able to classify 10.1 images per second with an accuracy drop of only 0.04%.

2.5 PULP-NN

PULP-NN [Garofalo et al., 2020] is an open-source API optimized for the execution of quantized neural networks
in RISC-V RV32IMCXpulp MCUs. As this API is based on CMSIS-NN dataflow, it is also divided into two parts:
NNKernels and NNUtils. NNKernels implement matrix multiplication and the standard layer types of neural networks,
while NNUtils include support functions for data precision conversion and batch normalization. PULP-NN supports
8-bit and sub-byte (4-bit, 2-bit, and 1-bit) data types. However, in terms of activation functions its offering is more
limited as it only supports ReLU. For the 8-bit setting, the quantization of weights is processed as for CMSIS-NN.
Notwithstanding, the quantization of activations follows a different approach, as PULP-NN only supports non-negative
activations. Consequently, the quantization must be asymmetric. Similar to CMSIS-NN, data is assumed to be in the
HWC layout.

The key innovation of PULP-NN is the support for multi-core processing. For a convolution, the workload can be split
along the height, width, or channel dimension of the output feature map. For a fully-connected layer, the workload is
split along the output neurons. This library was firstly tested by Garofalo et al. [2020] in a GAP-8 MCU executing a
CNN quantized to int-8 data and featuring three convolutional layers and one fully-connected layer. In an octa-core
setup at 170 MHz, PULP-NN enables this CNN to run in 30x and 19.6x fewer clock cycles than the CMSIS-NN library,
running on STM32L476 (Armv7-M, Cortex-M4) and STM32H743 (Armv7-M, Cortex-M7) MCUs, respectively.

3 Software Kernels

3.1 Matrix Multiplication

Matrix multiplication is a memory-intensive operation. Consequently, reducing memory access by maximizing data
reuse at the register file level is a key factor in increasing the throughput of CapsNets. As Armv7E-M, Armv8-M, and
RISC-V RV32IMCXpulp are 32-bit computing architectures and our software kernels use 8-bit data as operands, matrix
multiplication can strongly benefit from a SIMD to read four operands from memory at once. The maximum throughput
would be achieved by combining this SIMD with a SIMD for the simultaneous MAC of two words containing four
8-bit operands (4x8-bit word). Since the ISAs of Armv7E-M and Armv8-M are very distinct from the ISA of RISC-V
(RV32IMCXpulp), the matrix multiplication kernel was tuned for each computing architecture.

3.1.1 Arm Cortex-M

CMSIS-NN already provides a function for the multiplication of int-8 matrices: arm_mat_mult_q7. However, for all
but the latest ARMv8.1-M architecture, this function does not rely on any type of hardware acceleration, including
SIMD instructions, to read from memory, and for MAC operations. It simply iterates over the rows of the source
matrix A and over the columns of the source matrix B, reading one element at a time and multiplying them. It uses
a 32-bit accumulator, which saturates at 8-bit after the proper right shifting determined in the quantization process.
arm_mat_mult_q7 does not use any loop unrolling technique or parallelism. For a 4x4 sized matrix multiplication
kernel, this function requires 8 load operations without sign extension and 4 MACs. As matrix multiplication is a very
critical operation within the capsule computation, we tried to optimize the CMSIS-NN baseline function and developed
two additional functions for quantized matrix multiplication: (i) mat_mult_q7_trb and (ii) mat_mult_q7_simd.

mat_mult_q7_trb differs from arm_mat_mult_q7 as it transposes the source matrix B before entering in the MAC loop.
As all matrices are stored in memory in height-width format, the parameters of the source matrix B can not be accessed
contiguously. We believe this can reduce the complexity in the calculus of the memory address of the operands during a
MAC operation. The general workflow of mat_mult_q7_trb is outlined in Figure 3.

mat_mult_q7_simd uses the SIMD feature of Armv7E-M and Armv8-M to read from memory and for MAC operations.
For the signed MAC operation, the ISAs of these architectures do not feature instructions with 4x8-bit operands.
However, they still feature instructions with 2x16-bit integers as operands. This means that we have to trade off
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Figure 3: Matrix multiplication in Arm Cortex-M MCUs using mat_mult_q7_trb

the additional speedup delivered by SIMD instructions with the additional computation to perform sign extension.
mat_mult_q7_simd also transposes the source matrix B prior to the MAC loop; however, it also sign-extends it to 16-bit.
This function is also composed of (i) one outer loop over the rows of the source matrix A and (ii) an inner loop over the
columns of the transposed and sign-extended matrix B. However, as the SMLAD instruction takes 2x16-bit operands,
we applied loop unrolling on the inner loop and compute 2 MACs simultaneously. For a 4x4 sized matrix multiplication
kernel, it requires 4 load operations with sign extension and 2 MACs. Algorithm 2 details the mat_mult_q7_simd.

Algorithm 2: mat_mult_q7_simd(a, b, shift, r) for Arm Cortex-M
1: transpose and sign extend b to 16-bit: b_trb = matrix_q7_to_q15_transposed(b)
2: for row i in a do
3: initialize accumulator: sum = 0
4: read and expand int-8 word from a into two int-16 words: read_and_pad(i, a1, a2)
5: for column j in num_cols_b >> 2 do
6: read two int-16 from b_trb: b1 = read_q15x2_ia(j)
7: read two int-16 from b_trb: b2 = read_q15x2_ia(j)
8: MAC: sum = __SMLAD(a1, b1, sum)
9: MAC: sum = __SMLAD(a2, b2, sum)

10: end for
11: for column j in num_cols_b%4 do
12: MAC: sum = sum+ (i ∗ j)
13: end for
14: fix quantization format: sum = __SSAT (sum >> shift, 8)
15: copy accumulator to r: ∗r ++ = sum
16: end for

3.1.2 RISC-V

The ISA of RISC-V does not support SIMD instructions. However, in contrast to Arm Cortex-M, the RV32IMCXpulp
extension provides SIMD instructions for MAC operations with 4x8-bit words as operands. RISC-V SOCs featuring
the RV32IMCXpulp extension are usually provided with a fabric core and a multi-core acceleration cluster tailored for
ANN computation [Flamand et al., 2018]. The fabric core is an MCU built around the RISC-V core and extended for
efficient digital signal processing. The acceleration cluster is turned on from the fabric controller when the programmer
wants to offload computation-intensive kernels. Both the fabric controller and the acceleration cluster feature the
RV32IMCXpulp extension. Nevertheless, PULP-NN does not feature any built-in function for the signed and quantized
matrix multiplication in int-8 format. As a consequence, we developed three additional functions: (i) mat_mult_q7,
(ii) mat_mult_q7_trb, and (iii) mat_mult_q7_simd. They are based on the Cortex-M implementation, but are tuned to
extract the most of the acceleration cluster.

The mat_mult_q7 does not rely on any SIMD instruction for reading and MAC operations, nor transposes the source
matrix B prior to the MAC loop. It is the equivalent of the arm_mat_mult_q7 but re-designed to support parallelization
over the rows of the output matrix. The number of cores used in the parallelization must be a power of two (2n). Similar
to its Arm Cortex-M counterpart, mat_mult_q7 requires 8 load operations without sign extension and 4 MACs for a 4x4
sized matrix multiplication kernel.

mat_mult_q7_trb is very similar to the Arm implementation (figure 3) - it was designed to evaluate the advantages of
transposing the source matrix B prior to the MAC loop. Notwithstanding, there are two main differences. Firstly, it is
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tuned for multi-core processing. The transpose of the source matrix B is parallelized on the acceleration cluster over
the row dimension and the same applies to the MAC loop. Secondly, the sign saturate is performed via a GCC built-in
for the RISC-V RV32IMCXpulp (__builtin_pulp_clip_r). For a 4x4 matrix multiplication kernel, this function requires
8 load operations without sign extension and 4 MACs.

When considering the mat_mult_q7_simd function (Algorithm 3), the RISC-V RV32IMCXpulp version is more efficient
as the ISA of this architecture features a SIMD instruction for the MAC of 4x8-bit operands. This function also
transposes the source matrix B prior to the MAC loop. Both the matrix transposing and the MAC loop is performed in
the same multi-core fashion as for mat_mult_q7_trb. When compared to Arm for a 4x4 matrix multiplication kernel, it
requires 2 loads without sign extension and 1 MAC operation instead of 4 loads with sign extension and 2 MACs.

Algorithm 3: mat_mult_q7_simd(a, b, shift, r) for RISC-V
1: transpose b: b_trb = transpose(b)
2: for row i in a[start_row, stop_row] do
3: initialize accumulator: sum = 0
4: read int-8 word from a: a1 = read(i)
5: for column j in num_cols_b >> 2 do
6: read int-8 word from b_trb: b1 = read(j)
7: MAC: sum = __builtin_pulp_sdotsp4(a1, b1, sum)
8: end for
9: for column j in num_cols_b%4 do

10: MAC: sum = sum+ (i ∗ j)
11: end for
12: fix quantization format: sum = __builtin_pulp_clip_r(sum >> shift, 127)
13: copy accumulator to r: ∗r ++ = sum
14: end for

3.2 Squash Activation and Vector Norm

The squash activation function is designed to receive as input a 2D matrix, where each row corresponds to a vector to
be squashed. For each row, the computation starts with the calculation of the vector length and ends with the squashing
of each vector entry. The calculation of the vector norm uses a 32-bit integer to accumulate the sum of the power of
two of each vector entry. As computing the exact value of a square root leads to severe overhead and latency in both
architectures, we approximate the square root operation using the Newton-Raphson method [Ram, 2009].

The Newton-Raphson method is one of the most efficient techniques to approximate the zeroes of a mathematical
function (f(x) = 0) [Ram, 2009]. It takes as input an initial approximation and then enters into an iterative process that
produces successively better approximations. This iterative process is based on the evaluation of the derivative of the
zero approximation. The square root calculus can be translated as finding the solution to Equation 6, which determines
Equation 7 to find the next optimal solution at each iteration of the Newton-Raphson method [Ram, 2009]. The calculus
ends whenever the absolute difference between the current zero-approximation and the zero-approximation projected
for the next iteration is below 1 [Ram, 2009]. Algorithm 4 details the implementation of the Newton-Raphson method.

f(xn) = x2
n − n (6)

xn+1 =
(xn + n)/xn

2
(7)

Algorithm 4: Newton-Raphson method to calculate the square root of n
1: take n/2 as the initial approximate root: x0 = n/2

2: calculate the next approximate root according to Equation 7: x1 = (xn+n)/xn

2
3: while x1 < x0 do
4: update the current approximate root: x0 = x1

5: update the next approximate root: x1 = (xn+n)/xn

2
6: end while
7: return x0
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As the length of a vector is calculated, each vector entry is squashed. In full-precision arithmetic, the output of squash is
in the range [0, 1]. Therefore, the minimal precision loss is achieved if the output of squash is quantized in absolute Q0.7
format, i.e., all bits except for the sign bit represent the fractional part of a number. To comply with this quantization
format, we tuned the original squash activation (Equation 1) as detailed in Equation 8, where iqn and oqn represent the
number of virtual fractional bits in the input and output data, respectively. By extending the scaling granularity to the
squared norm and norm parameters, we avoid the accuracy loss when the floating-point norm is below 0. For more
details on the absolute and virtual quantization formats, we refer to Section 4. Equation 8 embeds the quantization of
the squash activation output in the squash activation itself, avoiding the use of floating-point division and dynamic
quantization, which introduces severe overhead. For the RISC-V implementation, the squash kernel can be offloaded to
the acceleration cluster and parallelized along the vectors of the input matrix. The number of vectors is equally divided
between each core. In case a fair division is not possible, the last core handles the remaining vectors.

vj =
||sj || << (oqn − iqn)

1 << iqn + ||sj ||2 >> iqn
∗ sj (8)

3.3 Primary Capsule Layer

A Primary capsule layer is the first capsule layer of a CapsNet. It has a convolutional kernel and can be observed
as a convolutional layer with squash activation. Nevertheless, we have to consider that a primary capsule layer is
4-dimensional, while CMSIS-NN and PULP-NN only support convolution over 3D data. This characteristic of a
primary capsule layer can be observed in Fig. 2 - it is characterized by the (i) height, (ii) width, and (iii) depth of
the capsules, as well by the (iv) number of capsules. Instead of implementing a 3D convolutional kernel to perform
convolution over 4D data, we borrowed the implementation strategy of Sabour et al. [2017] and implemented primary
capsule layers with 2D convolution kernels and then perform reshape. The third dimension of the data submitted to
these 2D convolution kernels corresponds to the last two dimensions of the capsule layer (capsule depth x number of
capsules). The output of the convolution is reshaped as a 2D vector where the first dimension corresponds to capsule
height x capsule width x number of capsules and the last dimension correspond to capsule depth. These 2D vectors get
squashed along the last dimension, ensuring that the magnitude of the capsule depth sums to 1. The output feature map
of the squash activation is then reshaped to match the original 4D shape of the primary capsule layer. As detailed in
section 4, quantized primary capsule layers must scale the output feature map of the convolution prior to the squash
activation to minimize the accuracy loss. For this purpose, for both Arm Cortex-M and RISC-V, our software kernel
requires the programmer to pass two scaling factors: (i) one for the bias and (ii) another for the outputs.

3.3.1 Arm Cortex-M

In CMSIS-NN, there are two functions for convolutions with 8-bit data: a basic version -
arm_convolve_HWC_q7_basic_nonsquare and another for reduced latency - arm_convolve_HWC_q7_fast_nonsquare.
Despite the reduced latency, the later version imposes constraints on the dimension of the input and output channels,
which must be multiples of 4 and 2, respectively. Considering that these restrictions are too severe and may not fit all
the design scenarios, we decided to provide the API with two functions for the primary capsules: one based on the
basic convolution (pcap_q7_basic) and another based on the fast convolution (pcap_q7_fast). These functions are
already designed to leverage most of the SIMD features in Armv7E-M and Armv8-M architectures. Nevertheless, as
the remaining CMSIS-NN functions, they are not ready to parallelize the convolution over multi-cores. CMSIS-NN
already embeds in their convolution kernels the scaling of the output feature map. The scaling is performed as a
bitwise-shift operation for the bias and the outputs. The squash activation is detailed in section 3.2. For more details on
the convolution kernels implemented by CMSIS-NN, we refer to the work [Lai et al., 2018].

3.3.2 RISC-V

PULP-NN does not provide any function that can be directly used to implement the convolution part of a primary
capsule. Convolution functions provided by PULP-NN involve the clipping of negative activations to zero, which is
incompatible with the fundamentals of CapsNets. Clipping negative values limit the direction scope and distort the
magnitude of the output vector, introducing an additional non-linearity that CapsNets are not designed to support.
Nevertheless, RISC-V (RV32IMCXpulp) already features SIMDs and GCC builtin-functions for the dot-product of two
vectors with 4x8-bit signed data. Furthermore, it also provides a builtin-function for the saturate operation. Given the
background, we borrowed the PULP-NN functions implementing convolutional layers (pulp_nn_conv_Co_parallel,
pulp_nn_conv_Ho_parallel, pulp_nn_conv_HoWo_parallel) and adapted them for signed int-8 data. We updated the data
type of all arguments and intermediate variables in unsigned integer to signed integer and replaced the GCC built-ins for
the dot-product and saturate operations, which are now performed by __builtin_pulp_sdotsp4 and __builtin_pulp_clip_r,
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respectively. The batch normalization and relu activation were also updated. The new convolution functions -
(i) pulp_nn_conv_Co_parallel_q7, (ii) pulp_nn_conv_Ho_parallel_q7, (iii) and pulp_nn_conv_HoWo_parallel_q7 -
maintain the same inner loop of the convolution used by PULP-NN. They are also optimized to run on the acceleration
cluster. Consequently, our software kernels feature three different functions for the primary capsule layer, each one
devoted to a different parallelization strategy - parallelization can be performed along the channel (pcap_Co_q7), height
(pcap_Ho_q7), or height vs. width (pcap_HoWo_q7). Pixels are equally divided by all cores. If a fair division is not
possible, the last core handles the remaining. Nevertheless, primary capsule kernels can also run in the fabric controller.
For more details on the inner loop of the convolution, we refer to the work [Garofalo et al., 2020]. The squash activation
is detailed in section 3.2.

3.4 Capsule Layer

Algorithm 5 details the workflow of the kernel implementing a capsule layer (capsule_layer_q7). This workflow is
mainly implemented by a series of four support functions, starting with the calc_inputs_hat which calculates the predic-
tion vectors, which is then submitted to the dynamic routing. The dynamic routing starts with the calc_coupling_coefs
which computes the coupling coefficients by applying a softmax function to the logits representing the agreement
between capsules in consecutive layers. These coupling coefficients and the prediction vectors are further used as inputs
to calc_caps_output, which returns the output vectors of the capsule for the current routing iteration. If the dynamic
routing is not in the last iteration, the function calc_agreement_w_prev_caps calculates the agreement between capsules
in layer L+ 1 and capsules in layer L. Each one of these support functions is detailed below.

Algorithm 5: capsule_layer_q7(args) for Arm Cortex-M and RISC-V
1: initialize logits bij as zeroes: memset(b, 0, num_caps ∗ input_num_caps)
2: calculate prediction vectors: calc_inputs_hat(b, layer_input, shift, pred_vectors)
3: for routing r in num_routings do
4: calculate coupling coefficients c_ij: calc_coupling_coefs(b, c)
5: calculate output vectors: calc_caps_output(pred_vectors, c, shift, out_vectors)
6: if r < num_routings− 1 then
7: calculate agreement between capsules: calc_agreement_w_prev_caps(pred_vectors, out_vectors, shift, b)
8: end if
9: end for

3.4.1 calc_inputs_hat

Multiplies the input of the capsule layer by the respective weight matrix. These weights connect each feature of each
capsule in layer L to each feature of each capsule in layer L+ 1. As a consequence, the original weight matrix is 4D
[total capsules in layer L+ 1, total capsules in layer L, capsule size in layer L+ 1, capsule size in layer L] and not
directly supported by our matrix multiplication kernels. Nevertheless, performing a direct 4D matrix multiplication
would require the replication of the input feature map for each capsule, increasing the memory footprint. Instead,
calc_inputs_hat regards the 2 inner dimensions of the weight matrix as valid matrix multiplication dimensions and the
outer dimensions as batch size. calc_inputs_hat has an outer loop that iterates over all capsules of layer L + 1 and
an inner loop that iterates over all capsules of layer L. In the inner loop, the weights connecting a capsule i in layer
L to a capsule j in layer L + 1 are multiplied by the input features of capsule j (output features of capsule i). The
multiplication of these two matrices uses the fastest of the kernels described in section 3.1 - mat_mult_q7_trb for Arm
and mat_mult_q7_simd for RISC-V. The resulting prediction vector is then submitted to the iterative dynamic routing
where the output vector will be iteratively updated.

3.4.2 calc_coupling_coefs

First function of the the dynamic routing and computes the coupling coefficients cij . More specifically,
calc_coupling_coefs applies a softmax function over the logits bij that measure the agreement between capsules
at different layers. Each logit bij measures the agreement between a capsule i in the previous layer (layer L) and a
capsule j of the current layer (layer L+ 1). Applying a softmax function to these logits ensures that the importance
of a capsule i in layer L for all capsules of the current layer L+ 1 sums to 1. For the Armv7E-M and Armv8-M, we
make direct use of the arm_softmax_q7 function provided by CMSIS-NN. In contrast, PULP-NN does not provide any
function implementing softmax. We developed a softmax function based on the Arm implementation.
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3.4.3 calc_caps_output

Multiplies the coupling coefficients with the prediction vectors, returning the output vectors. If coupling coefficients
are already expressed in a 2D matrix, the same is not applied to the prediction vector, which is represented by a
3D matrix [total capsules in layer L + 1, total capsules in layer L, capsule size in layer L + 1]. Consequently,
calc_caps_output regards the 2 inner dimensions as the valid matrix multiplication dimensions and the outer dimension
as batch size. Matrix multiplication is performed using the fastest of the kernels described in section 3.1. When the
matrix multiplication loop finishes, the output vectors are squashed using the kernel described in section 3.2.

3.4.4 calc_agreement_w_prev_caps

Determines the degree of agreement between the weighted output of a capsule in layer L (prediction vectors) with
the output of capsules (output vectors) in layer L+ 1. The agreement is determined as the product of the respective
matrices. As the prediction vector is represented by a 3D matrix [total capsules in layer L+ 1, total capsules in layer
L, capsule size in layer L+ 1], calc_caps_output consider the inner two dimensions as the valid matrix multiplication
dimensions and the outer dimension as batch size. The result is then summed up to the logits bij . For this purpose, we
rely on 2D matrix addition kernels.

4 CapsNet Quantization

The quantization framework is detailed in Algorithm 6. It takes as input a CapsNet developed in TensorFlow and
a quantization dataset and returns the quantized weights and bias, as well as the output and bias shifts. Except for
primary capsule and capsule layers, this framework considers activation functions as independent layers. Embedding an
activation in a dense or convolutional layer may return a faulty quantized model.

As detailed in Algorithm 6, after loading the model and the dataset, the quantization process starts with the quantization
of the model’s weights. The quantization itself is performed as detailed in Algorithm 7. For each layer, the framework
searches for the maximum absolute weight (max_abs) and calculates the number m of integer bits required to represent
it. As we are using a power-of-two scaling (Ax2n), the number of integer bits to represent a value A is calculated as
the ceiling of log2(maxabs). The remaining n bits are considered for the fractional part. Nevertheless, to increase
precision in layers with very small weights (maximum absolute weight lower than 1/127), our framework virtually
increases the number of fractional bits, bringing the maximum norm of the quantized weights closer to the saturation
barrier without never going over it. In absolute or physical terms, every weight is still in Q0.7 format as it still fits in
eight bits, but virtually the quantization format can surpass the eight-bit barrier. It must be noted that the first bit of the
eight available is used for the sign. This Qm.n quantization format allows the representation of values comprised in the
uniform and symmetric range [−max_abs,max_abs]. After getting the quantization Qm.n format, the framework
proceeds to the calculus of the quantized weights, where the floating-point number A is multiplied by 2 powered to the
number of fractional bits n (Ax2n). The quantization finishes with the clipping of values to the range [−128, 127]. The
quantization of the model’s bias is performed under the same workflow.

This quantization strategy enables the addition and multiplication of quantized values with minimal overhead. However,
the results must be scaled to avoid saturation problems. As we are using a power-of-two-scaling, scaling can be
performed as a bitwise shift operation. In the context of CapsNets, scaling takes part of the convolutional, primary
capsule, and capsule layers as these layers apply matrix multiplication and/or addition. Convolutional and primary

Algorithm 6: Quantization framework
1: load CapsNet from .h5 file
2: load quantization reference dataset
3: quantize weights: wqij = round(wij/S)
4: quantize bias: bqij = round(bij/S)
5: calculate amount of output/bias shift:
6: for layer l in CapsNet do
7: for matrix multiplication, matrix addition or convolution k do
8: get Qm.n format of the input, output, and intermediates
9: calculate amount of output shift: out_s = fia + fib − fo

10: calculate amount of bias shift: bias_s = fia + fib − fb
11: end for
12: end for
13: return wq, bq, s
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Algorithm 7: Quantization algorithm
1: get Qm.n format:
2: find maximum absolute value maxabs

3: find amount m of bits to represent the range [−maxabs,maxabs]: the ceiling of log2(maxabs)
4: calculate amount n of bits for the fractional part:
5: n = 7−m
6: while (maxabs >> (n+ 1)) <= 127 do
7: n++
8: end while
9: convert to quantized integer:

10: multiply floating-point values A by 2 powered to the number of fractional bits: Ax2n

11: clip quantized integers for the range [-128, 127]

capsule layers only go through a single matrix multiplication process, and therefore only take one scaling factor for the
bias and another for the output. However, capsule layers involve at least three distinctive matrix multiplications and one
matrix addition. When considering the four support functions of a capsule layer kernel, only calc_coupling_coefs does
not require any scaling factor. calc_inputs_hat requires one output scaling factor and calc_caps_output requires one for
each iteration of the dynamic routing. As calc_agreement_w_prev_caps comprises matrix multiplication and addition,
it requires two output scaling factors per iteration of the dynamic routing unless for the last one.

The scaling factors are calculated as detailed in Algorithm 6. For each matrix multiplication or addition in each layer of
the network, the reference quantization dataset is used to determine the maximum absolute value for the input and output
data. Then, it applies Algorithm 7 to get the quantization format (Qm.n) for this data. At this step, the framework is
ready to calculate the number of right shifts for every matrix multiplication/addition. Considering fia as the number of
fractional bits for the input matrix A, fib as the number of fractional bits for the input matrix B, and fo as the number
of fractional bits for the output, the amount of right shifts (output scaling factor) is calculated as detailed in line 9 of
Algorithm 6. The same process is carried out to calculate the left bias shift of convolutional and primary capsule layers.
The bias shift is calculated as detailed in line 10 of Algorithm 6. fb represents the number of fractional bits for the bias.

5 Evaluation

We evaluated the software kernels and the quantization framework on three imaging datasets: (i) MNIST [Lecun et al.,
1998], (ii) smallNORB, and [LeCun et al., 2004] (iii) CIFAR-10 [Krizhevsky, 2009]. MNIST is a large database of
handwritten digits between 0 and 9. It contains 60k training images and 10k testing images, both shaped as 28x28x1.
smallNORB is a dataset designed to develop applications for 3D object recognition from shape. It contains 5 generic
categories of toys - (i) four-legged animals, (ii) human figures, (iii) airplanes, (iv) trucks, and (v) cars - imaged under
varying light conditions, elevations, and azimuths. Both training and testing batches are composed of 24.3k images,
shaped as 96x96x2. CIFAR-10 consists of 60000 32x32x3 colour images, representing 10 different objects. There are
50k images for training and 10k for testing.

For each dataset, we trained a full-precision and baseline reference CapsNet. We do not intend to build CapsNets
with state-of-the-art accuracy on these datasets but rather build a CapsNet that after quantization fits in the limited
memory resources of the target low-power MCUs without compromising the accuracy. We have built CapsNets that
after quantization take no more than 80% of the RAM available in the least performing target MCU. At the moment of
this evaluation, our software kernels do not support tiling. Thus, we have to ensure that both the CapsNet parameters
and at least one sampling image can fit in the available RAM without compromising the execution of our software
kernels. Table 1 details the architecture and hyper-parameters of the CapsNets used for testing.

The evaluation included three Arm Cortex-M MCUs: STM32L4R5ZIT6U (Cortex-M4 @ 120 MHz, 640 KB RAM),
STM32H755ZIT6U (Cortex-M7 @ 480 MHz, 1 MB RAM), and STM32L552ZET6QU (Cortex-M33 @ 110 MHz, 512
KB RAM). Hence, our evaluation encompasses CPUs featuring Armv7-M architecture (Cortex-M4 and Cortex-M7),
and the more recent Armv8-M (Cortex-M33). At the time of this evaluation, the market’s scarcity of in-silicon MCUs
featuring the RISC-V RV32IMCXpulp ISA severely limited the testing setup. For RISC-V, our software kernels were
tested on a single development board featuring a GAP-8 MCU (GreenWaves GAPuino v1), with a fabric controller
running at 250 MHz and an acceleration cluster with 8 cores running at 170 MHz. All cores share 512 KB of RAM.
Although there are several open-source RISC-V cores using RISC-V RV32IMC ISA, using soft-cores deployed in an
FPGA to test our software kernels would not enable a fair comparison with the Arm Cortex-M MCUs.
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Table 1: Baseline reference CapsNets for evaluation

Dataset Convolutional Layers Primary Capsule Layers Capsule Layers Optimizer
Layer # Configuration Layer # Configuration Layer # Configuration Type LR

MNIST 1

Filters: 16
Kernel Size: 7
Stride: 1
Activation: ReLU

2

Capsules: 16
Dimension: 4
Kernel Size: 7
Stride: 2

3
Capsules: 10
Dimension: 6
Routings: 3

Adam 0.001

smallNORB 1

Filters: 32
Kernel Size: 7
Stride: 1
Activation: ReLU

2

Capsules: 16
Dimension: 4
Kernel Size: 7
Stride: 2

3
Capsules: 5
Dimension: 6
Routings: 3

Adam 0.00025

CIFAR-10 1-4

Filters: [32, 32, 64, 64]
Kernel Size: 4 x [3]
Stride: [1, 1, 2, 2]
Activation: 4 x [ReLU]

5

Capsules: 16
Dimension: 4
Kernel Size: 3
Stride: 2

6
Capsules: 10
Dimension: 5
Routings: 3

Adam 0.00025

5.1 Quantization

The quantization framework was evaluated in terms of memory footprint reduction and accuracy loss. As detailed
in Section 4, the quantization mechanism returns a series of output and bias shifts that must be performed during
inference time. We consider these parameters as part of the memory footprint inherent to the quantized CapsNet. Table
2 details the accuracy and memory footprint of the full precision CapsNets against their quantized counterparts. While
a full-precision CapsNet requires 4 bytes per parameter, the quantized version only requires 1 byte. This represents a
theoretical memory saving of 75%, which is very near to the memory saving achieved by our quantization framework
(74.99%). This demonstrates that the size of the additional parameters required by quantized CapsNets for bias and
output shifting is almost negligible. This applies to conventional 3-layered CapsNets but also deeper CapsNets as the
one developed for the CIFAR-10 dataset.

In terms of accuracy, the maximum loss was achieved for the MNIST dataset (0.18%) and the minimum for the
smallNORB (0.07%). This shows that the accuracy loss resulting from the quantization process does not necessarily
grow with the complexity of the dataset. Nevertheless, it is visible that CapsNets do not perform so-well on complex
datasets like CIFAR-10. CapsNets like to account for everything in the image so it does better when there is no
background noise or the background does not constantly change. As this is not the case with CIFAR-10, CapsNets will
perform poorly when compared to other less noisy datasets.

Table 2: Evaluation of the quantization framework

Dataset Memory Footprint (KB) Accuracy
Float-32 Int-8 Int-8 Saving Float-32 Int-8 Int-8 Loss

MNIST 1187.20 296.82 74.99% 99.01% 98.83% 0.18%

smallNORB 1182.34 295.61 74.99% 92.56% 92.49% 0.07%

CIFAR-10 461.19 115.33 74.99% 78.54% 78.38% 0.16%

5.2 Software Kernels

5.2.1 Matrix Multiplication

To select the fastest matrix multiplication algorithm for each target architecture, we considered the multiplication of
two randomized matrices with dimensions 20x30 and 30x40. The content of each matrix was kept constant during
the entire test and the latency was measured in milliseconds and clock cycles. As detailed in Section 3.1.1, for the
Arm Cortex-M architecture we tested three different algorithms: (i) mat_mult_q7_simd, (ii) mat_mult_q7_trb, and (iii)
arm_mat_mult_q7. The last one is used as a baseline reference as it does not apply any SIMD or matrix transposing
operation to simplify memory access during MAC. Results are detailed in Table 3.

Contrary to what was expected, for the Arm Cortex-M implementation, the maximum performance is not observed for
the algorithm relying on SIMD instructions. This occurs because the Arm ISA only supports MAC instructions with
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Table 3: Evaluation of the matrix multiplication functions for Arm Cortex-M MCUs

STM32L4R5ZIT6U STM32H755ZIT6U STM32L552ZET6QU
(Armv7E-M, Cortex-M4) (Armv7E-M, Cortex-M7) (Armv8-M, Cortex-M33)

Clock Cycles Milliseconds Clock Cycles Milliseconds Clock Cycles Milliseconds
arm_mat_mult_q7 704395 5.87 790989 1.65 654738 5.96

mat_mult_q7_trb 655415 5.47 574532 1.20 605769 5.51

mat_mult_q7_simd 730562 6.09 757482 1.58 697749 6.35

16-bit operands, requiring the signal extension of each 8-bit operand. Despite providing SIMD instructions for the sign
extension operation, it still introduces too much performance overhead. mat_mult_q7_simd is even slower than the
arm_mat_mult_q7, which does not feature any optimization. The mat_mult_q7_trb and arm_mat_mult_q7 functions
are, on average, 1.15x and 1.04x faster than this algorithm, respectively. The maximum performance is registered for
the algorithm not based on SIMD instructions but transposes the second input matrix before the matrix multiplication
process. By simplifying the calculus of memory addresses during MAC, mat_mult_q7_trb is on average 1.15x faster
than the approach based on SIMD instructions, and 1.10x faster than the Arm CMSIS implementation.

Regarding the RISC-V implementation, the results are detailed in Table 4. As GAP-8 SoC features an acceleration
cluster tailored for neural network computation, we tested our matrix multiplication functions leveraging the cluster.
Tests were performed in single-core and octa-core settings. Opposed to Arm Cortex-M, the fastest algorithm here is
based on SIMD instructions - mat_mult_q7_simd. This happens because the RISC-V RV32IMCXpulp features SIMD
instructions for the simultaneous MAC of 8-bit operands, in contrast to Arm Cortex-M that only supports 16-bit operands
and requires data expansion. For the octa-core setting, mat_mult_q7_simd is 2.10x faster than mat_mult_q7_trb and
2.05x faster than mat_mult_q7. In a single-core configuration, the speedup of mat_mult_q7_simd in relation to the
other implementations is slightly higher: 2.20x faster than mat_mult_q7_trb and 2.15x faster than mat_mult_q7. When
comparing the performance of the single-core with the octa-core implementation, we notice that the octa-core is 6.32x to
6.63x faster than the single-core. The combination of the RISC-V RV32IMCXpulp SIMD instructions with multi-core
processing can outperform the STM32H755ZIT6U even though this Arm MCU runs at a much higher clock frequency
than the RISC-V MCU (480 MHz vs. 170 MHz).

Table 4: Evaluation of the matrix multiplication functions for RISC-V MCUs

GAP-8 (single-core) GAP-8 (octa-core)
RISC-V RV32IMCXpulp RISC-V RV32IMCXpulp

Clock Cycles Milliseconds Clock Cycles Milliseconds
mat_mult_q7 696951 4.10 105250 0.62

mat_mult_q7_trb 715602 4.21 107784 0.64

mat_mult_q7_simd 323844 1.91 51238 0.31

5.2.2 Primary Capsule Layer

We tested the primary capsule kernels in terms of latency on the three previously described CapsNets. For the
Armv7E-M and Armv8-M architectures we developed two different functions to implement a primary capsule layer:
(i) pcap_q7_basic and (ii) pcap_q7_fast. The former is a slower version without constraints on the input and output
channel sizes. The latter is a faster version but only supports multiples of 4 and 2 for the input and output channel - a
constraint that is met by the three CapsNets used for evaluation. Table 5 details the latency for the three Arm Cortex-M
MCUs in the classification of a single image.

As expected, pcap_q7_fast outperforms the baseline reference for all datasets - it is at least 1.08x faster. Nevertheless,
the most noticeable impact on the latency is caused by the size of the kernel. The biggest kernel, inherent to the
smallNORB CapsNet, is 2.73x bigger than the smallest of the kernels, designed for the CIFAR-10 dataset. However,
the computation of the smallNORB kernel is 33.32x to 34.23x slower than the computation of the CIFAR-10 kernel.
This means that the computation time does not grow linear with the kernel size of the primary capsule layer, but rather
exponentially. Given the background, big kernels must be avoided whenever possible.
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Table 5: Evaluation of the primary capsule functions for Arm Cortex-M MCUs

STM32L4R5ZIT6U STM32H755ZIT6U STM32L552ZET6QU
Dataset (Armv7E-M, Cortex-M4) (Armv7E-M, Cortex-M7) (Armv8-M, Cortex-M33)

Clock Cycles Milliseconds Clock Cycles Milliseconds Clock Cycles Milliseconds
MNIST pcap_q7_basic 65.79M 548.25 63.49M 132.29 51.34M 466.77
7x7x16x64 (M) pcap_q7_fast 60.12M 500.97 57.57M 119.94 46.65M 424.13

smallNORB pcap_q7_basic 406.35M 3386.29 389.62M 811.70 316.95M 2881.32
7x7x32x64 (L) pcap_q7_fast 372.55M 3104.57 355.22M 740.03 289.06M 2627.78

CIFAR-10 pcap_q7_basic 12.09M 100.75 11.40M 23.75 9.26M 84.17
3x3x64x64 (S) pcap_q7_fast 11.18M 93.19 10.50M 21.87 8.50M 77.30

For the RISC-V RV32IMCXpulp architecture, we developed three different functions implementing a primary capsule
layer. As detailed in Section 3.3, each of them parallelizes a different spatial dimension of the output feature map
over the cores of the acceleration cluster. Table 6 details the latency of the three implemented functions on the three
reference CapsNets. As expected, it is not possible to mention a function that is the fastest for every dataset or CapsNet
architecture. As the latency is directly impacted by the spatial dimension that is parallelized, it all depends on the shape
of the input feature map. pcap_ho_q7 is simultaneously the fastest function for the MNIST dataset and the slowest for
the other two. Similar to Arm, the latency grows exponentially with the kernel size of the primary capsule layer. While
the kernel of the smallNORB is only 2.73x bigger than the kernel of the CIFAR-10, the computation of the smallNORB
kernel is at least 33.39x slower (single-core). This effect is not attenuated in a multi-core configuration.

Table 6: Evaluation of the primary capsule functions for RISC-V MCUs

GAP-8 (single-core) GAP-8 (octa-core)
Dataset RISC-V RV32IMCXpulp RISC-V RV32IMCXpulp

Clock Cycles Milliseconds Clock Cycles Milliseconds
MNIST pcap_co_q7 9.45M 55.59 1.58M 9.27
7x7x16x64 (M) pcap_ho_q7 9.40M 55.27 1.19M 7.02

pcap_howo_q7 9.49M 55.85 1.18M 6.95

smallNORB pcap_co_q7 57.69M 339.35 9.40M 55.32
7x7x32x64 (L) pcap_ho_q7 58.27M 342.76 11.48M 67.53

pcap_howo_q7 57.70M 339.39 11.40M 67.07

CIFAR-10 pcap_co_q7 1.73M 10.15 0.27M 1.59
3x3x64x64 (S) pcap_ho_q7 1.74M 10.26 0.43M 2.55

pcap_howo_q7 1.72M 10.15 0.22M 1.30

When compared to Arm, the RISC-V implementation completely outperform by almost two orders of magnitude. As
the RISC-V RV32IMCXpulp ISA provides SIMD instructions specifically tailored for the simultaneous MAC of two
4x8-bit operands, it requires far less time for the same matrix multiplication kernel. For a single-core setting on the
smallNORB dataset, STM32L552ZET6QU is 5.01x slower than the RISC-V MCU (pcap_q7_fast vs. pcap_co_q7).

5.3 Capsule Layer

We tested the function implementing a capsule layer on the three reference datasets. Tables 7 and 8 detail the results
for the Arm Cortex-M and RISC-V MCUs, respectively. Considering only the single-core scenario, we observe
that the RISC-V implementation outperforms Arm. This arises as a direct consequence of the more efficient matrix
multiplication kernel deployed in RISC-V (Section 5.2.1). As detailed in Section 3.4, three of the four support functions
composing the capsule layer rely on matrix multiplication. As matrix multiplication is more efficient in RISC-V MCUs,
due to the use of appropriate SIMD, the capsule layer function will deliver results with lower latency. When comparing
the fastest of the Arm Cortex-M MCUs in terms of clock cycles (STM32L552ZET6QU) against the RISC-V MCU in
single-core mode, the latter is on average 3.95x faster. Regarding the octa-core setting of the RISC-V MCU, we can
observe that this setting is on average 7.43x faster than the single-core setting. This means that the cap_parallel_q7
function is very near to the theoretical perfect parallelization over all the cores of the acceleration cluster.
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Table 7: Evaluation of the capsule functions for Arm Cortex-M MCUs

STM32L4R5ZIT6U STM32H755ZIT6U STM32L552ZET6QU
Dataset (Armv7E-M, Cortex-M4) (Armv7E-M, Cortex-M7) (Armv8-M, Cortex-M33)

Clock Cycles Milliseconds Clock Cycles Milliseconds Clock Cycles Milliseconds
MNIST cap_q7 40.63M 338.56 49.63M 103.40 23.54 213.97
10x1024x6x4 (L)

smallNORB cap_q7 32.12M 267.65 43.49M 90.60 20.45 185.90
5x1600x6x4 (M)

CIFAR-10 cap_q7 9.55M 79.58 14.22M 29.63 6.91 62.81
10x64x5x4 (S)

Table 8: Evaluation of the capsule functions for RISC-V MCUs

GAP-8 (single-core) GAP-8 (octa-core)
Dataset RISC-V RV32IMCXpulp RISC-V RV32IMCXpulp

Clock Cycles Milliseconds Clock Cycles Milliseconds
MNIST cap_parallel_q7 20.32M 119.52 7.96M 46.83
10x1024x6x4 (L)

smallNORB cap_parallel_q7 16.26M 95.64 6.46M 38.03
5x1600x6x4 (M)

CIFAR-10 cap_parallel_q7 4.55M 26.77 1.92M 11.28
10x64x5x4 (S)

6 Related Work

Zhang et al. [2020] proposed a hybrid computing architecture to accelerate the routing procedure of CapsNets during
inference in GPU platforms. The authors claim that even in modern GPUs, CapsNets exhibit low efficiency due to
their routing procedure. Through runtime profiling, Zhang et al. [2020] showed that the inefficiency of the routing
procedure emerges from (i) tremendous data access to off-chip memory and (ii) intensive synchronizations to avoid
race conditions on the limited GPU on-chip memory. To tackle this issue, the authors proposed a hybrid computing
architecture named PIM-CapsNet. Pim-CapsNet offloads the routing procedure to an in-memory computation solution.
Zhang et al. [2020] stated their hybrid computing architecture is 2.44x faster than a GPU-only execution. The previous
work was later extended with software optimizations. After profiling, Zhang et al. [2021] stated that (i) nearby capsules
have similar coupling coefficients (ii) and not all capsules require the same routing iterations to get stable coupling
coefficients. Zhang et al. [2021] proposed then to group capsules in 3x3 groups, where only the central capsule is used
in the computation of the coupling coefficients. To address the latter finding, Zhang et al. [2021] grouped capsules
in two distinct groups: (i) one containing the capsules whose coupling coefficients are relatively stable and does not
require the total routing iterations; (ii) and the other containing the capsules that benefit from the maximum number of
iterations. With this software optimization, Zhang et al. [2021] achieved a significantly 3.41x speedup.

To counteract the intensive matrix multiplications and the complexity of the dynamic routing, Marchisio et al. [2021]
proposed an RTL-level hardware architecture. At the core of their hardware accelerator, there is a processing element
array, which is responsible for all matrix operations. This hardware accelerator also includes units specialized to
speed up the ReLU, squash, and softmax activations. Despite only supporting inputs as 8-bit integers, the bit-width of
internal operations varies along the pipeline. To thread off the area, delay, and energy consumption of the accelerator,
Marchisio et al. [2021] developed a framework that takes as input a given CapsNet model and a general architecture of
the CapsNet accelerator and returns a set of optimal parameters for the accelerator. Results showed that the accelerator
is 6x faster than a GPU-only solution (Nvidia GTX1070) [Marchisio et al., 2021]. Based on this work, Park et al.
[2020] proposed an accelerator enhanced for 3D CapsNets. This newer accelerator relies on a convolution core with 4
arrays of processing elements, each one designed for multiplications with 8-bit operands. For the design of the dynamic
routing core, Park et al. [2020] stated that most of the coupling coefficients practically maintain their value between
updates. The dynamic routing core was designed to skip the route operation when the variation is less than 0.005%.
These optimizations combined resulted in an accelerator that consumes 53.27% less energy than the solution proposed
by Marchisio et al. [2021].
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In an attempt to reduce the memory footprint of CapsNet, Marchisio et al. [2020a] proposed a quantization framework.
This framework explores different layer-wise and operation-wise precisions for obtaining a quantized CapsNet that
trades off the classification accuracy and memory footprint. For this purpose, it takes as input a trained CapsNet model,
a library of rounding schemes, an accuracy tolerance, and a maximum memory budget. For a CapsNet trained on the
CIFAR-10 dataset, the framework reduces the memory footprint by 83% with only 0.15% accuracy loss.

Kakillioglu et al. [2020] proposed a weight pruning technique to reduce the large set of parameters in CapsNets based
on dynamic routing, enabling their deployment in resource-constrained devices. Weight pruning techniques work by
removing connections between neurons of a trained model. Weights in a tensor are ranked according to their magnitude
and then the smallest of them, for a given percentage, are set to zero. The layer-wise pruning technique developed by
Kakillioglu et al. [2020] enabled the deployment of CapsNets using 84.93% to 97.01% less memory than the original
model proposed by Sabour et al. [2017].

6.1 Gap Analysis

While previous studies accelerate the inference pass of CapsNets on GPUs, ASICs, and FPGA platforms, this paper goes
a step further and evaluates the deployment of CapsNets on off-the-shelf Arm and RISC-V MCUs targeted for intelligent
IoT nodes. We extended ready-available APIs (CMSIS-NN and PULP-NN) for quantized ANNs to support both primary
capsule and capsule layers. As detailed in Table 9, while previous solutions propose hardware accelerators to tackle the
heavy computation of CapsNets, we limit the computation spectrum to resource-constrained MCUs ready-available on
the market. In addition to the price savings, this approach also has the potential to accelerate the adoption of CapsNets
on the edge as it does not require novel and specific hardware solutions to be deployed. As our software kernels only
support fixed 8-bit data, we developed a quantization framework. Due to constraints of CMSIS-NN and PULP-NN, our
framework does not adopt a mixed bit-width quantization scheme as Marchisio et al. [2020a].

Future work may encompass the tune of our software kernels, along with the required kernels of CMSIS-NN and
PULP-NN, to support mixed bit-width. We believe that mixed bit-width quantization can further enhance our software
kernels, as it gives more precision to weights with a higher impact on the final decision while reducing the precision
of the others. This would be the perfect trade-off between memory footprint reduction and accuracy loss. Following
the work from Kakillioglu et al. [2020], we may also use a pruning scheme to enhance our quantization framework.
This will also require the tune of our software kernels with techniques to optimize the loading and storing of zeroes in
memory. Nevertheless, results detailed in Section 3 show that our software kernels, at this stage of development, already
achieve impressive gains in terms of memory footprint and latency, while relying on low-cost platforms available on the
market. It is unfeasible to compare the latency speedup, memory footprint reduction, and accuracy loss of our solution
with the others on Table 9 as the baseline reference is not the same.

Table 9: Functionality of previous research against our approach

R&D Study Target Platform Problems Addressed Proposal

Zhang et al. [2020] GPU Latency 1. Hardware accelerator to offload the computation
of the dynamic routing from the GPU

Zhang et al. [2021] GPU Latency 1. Software optimization to optimize the dynamic routing
on an hardware accelerator coupled to a GPU

Marchisio et al. [2021] FPGA Latency
Energy

1. RTL-level hardware architecture for CapsNet inference
2. Software to optimize the RTL architecture given a CapsNet

Park et al. [2020] ASIC Latency
Energy 1. RTL-level hardware architecture for 3D CapsNet inference

Marchisio et al. [2020a] GPU
FPGA Memory 1. CapsNet quantization tool supporting mixed bit-width

Kakillioglu et al. [2020] GPU
CPU Memory 1. Weight pruning tailored for CapsNets

Costa et. al MCU Memory
Latency

1. CapsNet quantization tool supporting fixed int-8 data
2. API for CapsNets inference in Armv7E-M, Armv8-M MCUs
3. API for CapsNets inference in RISC-V (RV32IMCXpulp) MCUs
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7 Conclusion

In this paper, we proposed the first public and open-source software kernels to enable the deployment of CapsNets
in Arm Cortex-M and RISC-V MCUs. We extended the CMSIS-NN and PULP-NN to support the inference pass of
CapsNets. As CapsNets are typically trained in 32-bit floating-point and low-end MCUs usually do not feature an FPU,
we also proposed a framework, built upon TensorFlow, to quantize CapsNets to int-8 data.

Results show that our work succeeds in addressing the latency and memory footprint problems inherent to CapsNets,
proving that it is possible to efficiently implement them on the deep edge. Our quantization framework reduces the
memory footprint of a CapsNet by about 75% with negligible accuracy loss. Furthermore, the latency induced by our
software kernels on the execution of a primary capsule or capsule layer with medium-sized kernels can be lower than
a few tenths of a second. To the best of our knowledge, this is the first work evaluating the deployment of quantized
CapsNet on resource-constrained MCUs.
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