
IEEE SENSORS JOURNAL, VOL. 22, NO. 2, JANUARY 15, 2022 1621

DIOR: A Hardware-Assisted Weather Denoising
Solution for LiDAR Point Clouds
Ricardo Roriz, André Campos, Sandro Pinto , and Tiago Gomes

Abstract—The interest in developing and deploying fully
autonomous vehicles on our public roads has come to a full
swing. Driverless capabilities, widely spread in modern vehi-
cles through advanced driver-assistance systems (ADAS),
require highly reliable perception features to navigate the
environment, being light detection and ranging (LiDAR) sen-
sors a key instrument in detecting the distance and speed
of nearby obstacles and in providing high-resolution 3D rep-
resentations of the surroundings in real-time. However, and
despite being assumed as a game-changer in the autonomous
driving paradigm, LiDAR sensors can be very sensitive to
adverse weather conditions, which can severely affect the
vehicle’s perception system behavior. Aiming at improving the LiDAR operation in challenging weather conditions, which
contributes to achieving higher driving automation levels defined by the Society of Automotive Engineers (SAE), this
article proposes a weather denoising method called Dynamic light-Intensity Outlier Removal (DIOR). DIOR combines two
approaches of the state-of-the-art, the dynamic radius outlier removal (DROR) and the low-intensity outlier removal (LIOR)
algorithms, supported by an embedded reconfigurable hardware platform. By resorting to field-programmable gate
array (FPGA) technology, DIOR can outperform state-of-the-art outlier removal solutions, achieving better accuracy and
performance while guaranteeing the real-time requirements.

Index Terms— ADAS, autonomous vehicles, FPGA, LiDAR, point cloud filtering, weather denoising.

I. INTRODUCTION

NOWADAYS, and more than a decade after the first self-
driving car winning the DARPA Challenge, the interest

in developing and deploying fully autonomous vehicles has
come to a full swing. An autonomous vehicle requires reliable
solutions to provide an accurate mapping of the surroundings,
which is only possible with multi-sensor perception systems
relying on a combination of Radar, Cameras, and light detec-
tion and ranging (LiDAR) sensors [1]–[4]. Working together,
they provide the ability to detect the distance and speed of
nearby obstacles as well as their aspect to safely navigate the
environment, contributing to different Society of Automotive
Engineers (SAE) Levels of driving automation. While levels 0,
1, and 2 require the driver to monitor the surroundings,
with higher levels the automated system monitors the entire
driving environment. The utilization of LiDAR sensors in the
automotive sector is relatively new, but already assumed as the

Manuscript received November 10, 2021; accepted December 6, 2021.
Date of publication December 8, 2021; date of current version
January 12, 2022. This work was supported by the Fundação para
a Ciência e Tecnologia (FCT) within the Research and Development
Units Project Scope under Grant UIDB/00319/2020. The associate editor
coordinating the review of this article and approving it for publication was
Prof. Piotr J. Samczynski. (Corresponding author: Tiago Gomes.)

The authors are with the Centro ALGORITMI, Universidade do
Minho, Campus Azurém, 4800-058 Guimarães, Portugal (e-mail:
mr.gomes@dei.uminho.pt).

Digital Object Identifier 10.1109/JSEN.2021.3133873

key technology towards full driverless vehicles, since they can
provide high-resolution 3D representations of the surroundings
in real-time [5]–[7]. A LiDAR sensor works by illuminating a
target with an optical pulse and measuring the characteristics
of the return signal, where the target’s distance is obtained by
calculating the round-trip delay of the reflected light. Despite
simple, applying this principle is not straightforward since this
technology is quite sensitive to several external disturbances.

The advances around LiDAR keep improving its measur-
ing techniques and imaging architectures [6], [8]. Measuring
techniques focus in obtaining the distance by calculating
the time-of-flight (ToF) of the emitted light through pulsed
or continuous wave approaches based on signal modulation
to improve the immunity and increase the signal-to-noise
ratio (SNR). Such techniques can be deployed on a variety
of imaging architectures, which range from beam steering
sensors that use a rotor-based mechanical part to scan the
environment to solid-state sensors with less or no mov-
ing parts [6], [8]. LiDAR technology is steadily improving
and being applied to a wide range of applications. Accu-
rate and precise measurements of the surroundings through
a 3D point cloud representation can assist the perception sys-
tems in several tasks [3], e.g., obstacles, objects, and vehicles
detection [9]–[11]; pedestrians recognition and tracking [12];
ground segmentation for road filtering [13]; among others [14].
Nonetheless, the sparse 3D point cloud of a LiDAR sensor can

1558-1748 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4580-7484
https://orcid.org/0000-0002-4071-9015

1622 IEEE SENSORS JOURNAL, VOL. 22, NO. 2, JANUARY 15, 2022

Fig. 1. Weather denoising methods based on neighbor points relationships.

be subject to several noise sources, e.g., internal components,
mutual interference, reflectivity issues, light, and adverse
weather, which can corrupt the measurements and the output
data.

Most of the current data processing algorithms usually
assume ideal weather. However, it is known that adverse
conditions can affect the normal operation of the vehi-
cle’s perception system. This problem has been thoroughly
addressed in the literature [4], [15]–[17], where several studies
have benchmarked the sensor’s response under different and
extreme weather conditions such as fog [18]–[22], rain [18],
[19], [23]–[26], and snow [11], [27]. All have evaluated
how adverse weather can affect the vehicle’s behavior and
proposed different mitigation approaches. Current state-of-
the-art solutions include: (i) simulators to analyze the influ-
ence of adverse weather under different road conditions and
scenarios [21], [23]–[26]; (ii) improved background filtering
and object clustering methods to better process the road-
side LiDAR data [11], [22]; (iii) learning approaches based
on convolutional neural networks (CNNs) [19], [21]; and
(iv) weather classification systems [17], [18], [22]. The latter
use the information provided by the LiDAR to predict weather
and adapt the sensor’s operation based on atmosphere and
asphalt changes, which contributes to a better understanding
of the surroundings according to the actual environmental
conditions. Despite the broad research that has been devoted
to tackling problems caused by adverse weather, it is crucial to
provide solutions that can overcome current limitations related
to the performance, accuracy, and overall system complexity.

With this work, we enrich the state-of-the-art with: (i) a new
weather denoising method called DIOR, which combines
two approaches of state-of-the-art algorithms; (ii) a weather
denoising framework for LiDAR point cloud data that sup-
ports state-of-the-art algorithms assisted by a reconfigurable
hardware platform; and (iii) an extended benchmark and
comparative review between DIOR and current approaches.

II. POINT CLOUD WEATHER DENOISING

The LiDAR point cloud can be differently affected due
to specific weather conditions. While the water droplets
present in rain and fog scatter the emitted light (reducing
the operating range and producing inaccurate measurements),
the solid particles present in smoke and snow can originate
ghost information in the point cloud. With the most important

metrics for a LiDAR weather denoising system in mind, such
as accuracy, performance, and algorithm’s simplicity, state-
of-the-art solutions include voxel grid (VG) filters [28] and
algorithms based on outlier removal techniques, e.g., radius
outlier removal (ROR) and dynamic radius outlier removal
(DROR) [27], statistical outlier removal (SOR) and fast cluster
statistical outlier removal (FCSOR) [29], and low-intensity
outlier removal (LIOR) [30]. An outlier is an observation
that is noticeably different from other (adjacent) observations
in a dataset. Regarding the 3D point cloud data, which can
hold millions of generated points per second, there are several
points that do not share any relation or characteristics, e.g.,
distance or intensity, with their neighbors. Such outlier points
mostly represent noise in the point cloud, which can compro-
mise the normal operation of the sensor or affect high-level
applications such as object detection and classification algo-
rithms. Aside from outlier removal methods, learning-based
denoising algorithms also started to emerge [19], [21]. How-
ever, they are considered complex since they require real-world
datasets and powerful computational resources. Thus, they are
out of the scope of this work.

VG-based methods, (Fig. 1a), consist in defining 3D boxes
(forming a voxel grid) in the 3D space of the point cloud.
Then, for each voxel, the algorithm selects a point (usually
the central point or the centroid of the box) to approximate
the remaining points inside the voxel. Because of this feature,
VGs can be used for point cloud denoising since a noise point
often lacks in neighbors or does not share information with
them, which will end in being removed from the point cloud.
VG methods are fast and relatively simple to implement. How-
ever, because they cause the down-sampling of the information
within the voxel, not only noise points will be removed from
the point cloud but also points with useful information about
the surroundings.

The ROR method, depicted in Fig. 1b, consists of a simple
technique that computes the distance of each point to its
neighbors (on a k-d tree data structure) within a fixed search
radius R1. When the number of neighbor points is below
the defined threshold, the point is classified as an outlier.
Despite being simple to implement, the ROR algorithm does
not perform well for distant objects in the 3D LiDAR point
cloud due to variation in the point distances, resulting in
points wrongly classified as outliers. To address this limitation,
DROR (Fig. 1b) rather than using static search, dynamically

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

RORIZ et al.: DIOR: HARDWARE-ASSISTED WEATHER DENOISING SOLUTION FOR LiDAR POINT CLOUDS 1623

increases the searching radius R1 as the distance to the
measured points also increases [27]. DROR was evaluated
and compared with other state-of-the-art algorithms, e.g., ROR
and VG, available in the Point Cloud Library (PCL) soft-
ware suite [28], using point clouds generated by a Velodyne
HDL-32E sensor. In tests with falling snow, the filtered point
clouds presented an improvement of over 90%, outperforming
conventional outlier removal filters. Performance-wise, using
this filtering technique can be quite slow, limiting the DROR
utilization in real-time applications.

SOR is a denoising method that, similarly to ROR, removes
the outlier points based on neighbor information (Fig. 1c).
However, instead of using a fixed radius and a minimum
threshold for the number of neighbors, first it calculates the
average distance R1 of each point to its neighbors, defined
as “k-nearest neighbor”, rejecting the points whose distance
is higher than R2, i.e., the average value plus the standard
deviation. Despite improving ROR in detecting outlier points,
SOR severely increases the computation overhead. For this
reason, Balta et al. have proposed the FCSOR method [29].
Before calculating the distance to neighbors, FCSOR performs
a sub-sampling of the point cloud with a VG filter step
(Fig. 1a). However, and despite decreasing the computational
complexity due to the reduction of the number of points,
it still does not fit the real-time requirements, and the success
rate in detecting outlier points slightly decreases. FCSOR was
evaluated using an Intel i7-2650 4 Core (at 2.4 GHz) CPU,
with 16 GB of RAM.

LIOR is a method proposed by Park et al. that aims at
improving the speed and accuracy performance limitations of
previous methods by removing the noise caused by snow or
rain based on the intensity of the reflected light [30]. Noise
points usually present a lower intensity value when compared
with neighbors at the same distance. Thus, every point below
a defined threshold value is classified as an outlier. To reduce
the false positive ratio, a second step is applied to each outlier,
which can be turned into an inlier if several neighbors (defined
by a threshold) are detected within a specified distance. The
working principle behind LIOR is based on the ROR algorithm
(depicted by Fig. 1b) with the addition of the point intensity
information. When comparing LIOR with the previous filtering
methods, it can achieve filtering speeds up to 12x faster than
SOR, and 8x faster than DROR. However, real-time filtering
in high-speed vehicles is only possible if the method is applied
only to certain regions of interest (ROI) rather than the full
point cloud. Regarding the accuracy, the noise points can be
filtered with the same efficiency as the DROR method. In their
evaluation, LIOR claims to achieve a false positive ratio of 1%,
while DROR reached almost 50% of points wrongly classi-
fied as outliers. LIOR was deployed and tested on an Intel
Core i9-9900KF CPU (at 3.60 GHz), with 32 GB of RAM.

Dynamic low-Intensity Outlier Removal (DIOR) is a novel
approach, proposed in this article, for weather denoising
based on existing outlier removal techniques. DIOR fol-
lows the working principle of LIOR, which classifies out-
lier points based on their intensity values within a constant
search radius R1 (as used by ROR). However, instead
of using the ROR principle, DIOR follows the DROR

strategy, which classifies outlier points based on a search
radius R1 that dynamically increments as the distance to the
objects increases. The overall workflow of DIOR is described
by the pseudocode depicted in Algorithm 1. Firstly, for each
point p in the point cloud, the algorithm verifies if its intensity
value Ip is above the defined threshold Ithr to classify the point
as an inlier. If this condition fails, a second step is performed
by the algorithm to count the number of neighbors within
the search radius R1. Because R1 dynamically changes as the
distance to the sensor increases, before counting the number
of neighbors the algorithm verifies the point’s distance rp to
the sensor with Equation 2. If rp is below the minimum search
radius, R1 takes the minimum search radius value S Rmin ,
otherwise it defines R1 using Equation 1. This Equation
calculates the dynamic search radius as follows: β is a tuning
parameter used to compensate the point spacing increase
resulted from surfaces that are not perpendicular to the LiDAR
beams (β should always be > 1); rp is the point’s distance
(calculated with Equation 2); and α is the sensor’s horizontal
angular resolution. Next, if the number of neighbors inside
R1 is above the minimum threshold, the point p is classified
as an inlier, otherwise, an outlier.

S Rp = β × (rp × α) (1)

rp =
√

x2
p + y2

p (2)

Algorithm 1 DIOR Pseudocode
1: for p ∈ P do
2: if Ip > Ithr then
3: Inliers ← p
4: else
5: if rp < S Rmin then
6: R1← S Rmin

7: else
8: R1← S R p

9: n← Neighbor Search(p, R1)
10: if n > nmin then
11: Inliers ← p
12: else
13: Outliers ← p

III. WEATHER DENOISING FRAMEWORK

For deploying and testing weather denoising techniques,
we have developed a weather denoising framework called
ALFA devoted to enhance the real-time pre-processing of
a 3D LiDAR point cloud. The framework is assisted by a
reconfigurable hardware platform that enables the deployment
of weather denoising methods in dedicated accelerators.

A. System Architecture
Fig. 2 depicts the ALFA architecture that, following

a hardware-software co-design approach, enables the fast
deployment and evaluation of state-of-the-art weather denois-
ing methods both in hardware and software. Regarding the

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE SENSORS JOURNAL, VOL. 22, NO. 2, JANUARY 15, 2022

Fig. 2. ALFA architecture.

software layer, ALFA features the Robot Operating Sys-
tem (ROS) environment on top of a minimalist embedded
Linux, providing different levels of abstraction for high-level
applications, e.g., the ALFA-DVC tool. This tool provides sev-
eral features such as debug, a real-time point cloud visualizer,
platform setup, and algorithm’s configurations. The framework
supports a collection of software-based denoising methods
(assisted by the PCL library) and core-libraries that abstract
and interface the weather denoising accelerators.

Regarding the hardware platform, ALFA is built upon
the Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC (avail-
able in the ZCU104 Evaluation Kit), enabling the design
of embedded applications such as Advanced Driver Assisted
Systems (ADAS) with support of video codecs and the most
common peripherals and interfaces for embedded vision solu-
tions. The MPSoC features a processing system (PS) that
includes a quad-core Arm Cortex-A53 application processor,
a dual-core Cortex-R5 real-time processor, a Mali-400 MP2
graphics processing unit, a 4KP60 capable H.264/H.265 video
codec, programmable logic (PL) with field-programmable gate
array (FPGA) technology, and 2GB of DDR4 memory.

The communication is handled by the advanced extensible
interface (AXI)-4 system bus, where the AXI4-full is used for
high-performance memory accesses and the AXI4-stream for
high-speed point cloud data streaming. The hardware features
encompass several core blocks such as: a hardware interface
for the software libraries; a memory management module; and
distance calculator units to be used by the hardware weather
denoising accelerator. The hardware platform also provides
two Ethernet ports to respectively connect the LiDAR sensor
and to make the denoised point cloud available to high-level
applications.

B. Software-Based Denoising Algorithms
The weather denoising framework and the ALFA-DVC

tool currently support the deployment and evaluation of the
following state-of-the-art denoising algorithms: VG, SOR,
FCSOR, ROR, DROR, LIOR, as well as our new method,
DIOR. These software-only implementations are supported

Fig. 3. ALFA hardware implementation.

by the PCL [28] software, which provides a set of modules
for point cloud processing, e.g., filtering, feature estimation,
surface reconstruction, registration, model fitting, and segmen-
tation. While VG, ROR, and SOR have a direct implementa-
tion in the PCL software, for deploying the FCSOR, DROR,
LIOR, and DIOR methods, we have followed each algorithm’s
description and resorted to several PCL libraries.

C. Hardware-Based Denoising Algorithms
One of the key points of the ALFA framework is the

ability to deploy customized hardware accelerators on the
FPGA fabric. This opens the possibility to improve the perfor-
mance of the supported software version of weather denoising
algorithms. Their generic hardware implementation, depicted
in Fig. 3, is composed of four main components: (1) the
hardware controller; (2) a memory interface; (3) several Point
Cluster (PC) blocks; and (4) Neighbor Finder (NF) units. Each
PC block deployment requires at least 2 NFs, requiring each of
them 1 Distance Calculator module available from the ALFA
core accelerators (Fig. 2). The PC and NF blocks are used
to parallelize the algorithm’s execution in finding neighbors
to classify a given point as inlier or outlier, decreasing the
required time to process a point cloud frame.

The Memory Interface module is responsible for interfacing
the memory where the points are stored and the hardware
controller. It also provides control flow mechanisms (stop and
run) to synchronize its execution with the hardware controller.

Hardware Controller is the main block of the denoising
accelerator and it is responsible to: (1) read data points from
memory for validation; (2) store the read points into a local
buffer and allocate them into each PC and NF unit; (3) send
points to the PCs for comparison; (4) check and control the
output of all PCs; and (5) tag and store the points classified
as outliers from each PC.

A PC module is used to store the current point under
validation, i.e., to be classified as an outlier or inlier. The
classification is based on the number of neighbor points that
lie inside the search radius R1. If the number of neighbors
found is below the defined neighbor threshold, the point under
validation is classified as an outlier, otherwise, the point is
tagged as an inlier.

The NF module is used by the PC to calculate the distance
between two given points. The output is then used by the PC
to classify the point under validation considering the neighbor
threshold and the search radius R1.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

RORIZ et al.: DIOR: HARDWARE-ASSISTED WEATHER DENOISING SOLUTION FOR LiDAR POINT CLOUDS 1625

Fig. 4. Point Cloud output before and after applying the DIOR algorithm.

D. ALFA-DVC Tool
The ALFA-DVC tool is a high-level and cross-platform

QT application that runs on a desktop system. It enables
the real-time visualization of point clouds (Fig. 4), allows
the deployment and evaluation of software-based algorithms
directly on top of a point cloud, and provides the debug
and configuration of weather denoising methods. When the
data points are collected in ideal weather conditions, the
ALFA-DVC can also emulate and generate different weather
noise applied to specific regions of the point cloud through a
box system. Such box system allows to label and remove noise
points, as well as to analyze the algorithm through several
performance and accuracy metrics.

Point cloud data can also be loaded into the ALFA-DVC
tool using Point Cloud Data (.pcd) and Polygon File Format
(.ply) files stored in the file system or through the avail-
able ROS interface. This interface can provide point clouds
directly received from a LiDAR sensor connected to the ALFA
hardware platform or from a ROS topic running in a local
ROS node. The tool also enables screenshots saving of the
point cloud currently being played, as well as to publish the
noised/denoised point cloud on a new ROS topic.

IV. EVALUATION: SOFTWARE-BASED ALGORITHMS

All software runs on top of an embedded Linux
(4.19.0-xilinx-v2019.2) with the PCL library (version 1.8.1-r0)
and a ROS environment (Ros1 melodic distribution). The soft-
ware is supported by the ALFA hardware platform, previously
described in Section III-A, with the CPU running at a clock
speed of 1.2 GHz and the DDR4 memory running at 535 MHz.
The FPGA was not used during the evaluation of the software-
based algorithms. The tested point cloud is part of a public
dataset and it was retrieved with a Velodyne Puck (VLP-16)
in a real-world scenario during an intense snow storm [31].
For the evaluation, we have used the full point cloud, which
contains, on average, around 17098 points per frame. The
denoising algorithms were evaluated with the filter parameters
depicted in Table I in the following metrics: (i) points removed
(PR), Equation 3; (ii) true positives (TP), Equation 4; (iii) false
positives (FP), Equation 5; (iv) false negatives (FN),
Equation 6; (v) frame processing time (FPT); and (vi) frames
per second (FPS). The gathered results are summarized

TABLE I
FILTER PARAMETERS

TABLE II
EVALUATION OF SOFTWARE-ONLY DENOISING ALGORITHMS

in Table II. Regarding the DROR, LIOR, and DIOR algo-
rithms, they were executed in a multi-thread configuration
(four threads).

PR = Input Points− Output Points (3)

TP = Filtered Noise Points In Noise Areas

Total Labeled Noise Points
(4)

FP = Filtered Noise Points In Non Noise Areas

Total Labeled Non Noise Points
(5)

FN = Unfiltered Noise Points In Noise Areas

Total Labeled Noise Points
(6)

The VG algorithm outperforms the remaining methods in
terms of the required processing time, i.e., it executes faster.
However, it does not provide enough accuracy in finding noise,
removing around 28% of the points with a false negative rate

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

1626 IEEE SENSORS JOURNAL, VOL. 22, NO. 2, JANUARY 15, 2022

of nearly 87%. Regarding DROR, it gives better results in all
metrics when compared with ROR, but it requires nearly 6.6x
more processing time for denoising one frame. Concerning
SOR and FCSOR, they provide a TP rate between 55% and
60% with a high FN rate of nearly 40%. Respecting LIOR,
which uses ROR principles, it can provide good accuracy
results while processing point cloud frames faster than the
other methods. Lastly, with DIOR, which proposes the same
principle of LIOR combined with DROR, it is possible to
achieve great results in terms of PR (2%), FP (0%), and
FN (14%), but at the cost of a slightly high FPT. Using
the ALFA framework, it requires a higher processing time
to filter in software one point cloud frame, which is mainly
caused by the limited resources in the hardware platform, such
as the PS and DDR memory speed. However, because the
framework provides acceleration capabilities, we will focus
on improving the processing time of the methods that provide
the best TP and FP rate, i.e., DROR, LIOR, and DIOR,
which we consider the most important metric in detecting
noise while removing only the necessary noise points from the
point cloud. These algorithms will be offloaded to dedicated
hardware accelerators deployed in the FPGA. Although the
other algorithms could also be accelerated, they would still
keep their undesired TP, FP, and FN rate.

V. EVALUATION: HARDWARE-BASED ALGORITHMS

The evaluation of the hardware-based denoising algorithms
includes the same setup used in the software version regarding
the software and hardware platform, as well as the filter
parameters for the selected denoising methods. However, the
hardware deployment resorts to the FPGA technology avail-
able in the hardware platform. The gathered results include
the performance assessment of each algorithm for different
combinations of PCs, the hardware resources required to
deploy the solution in the available FPGA fabric, and the
required source lines of code (SLoC) to write the different
hardware modules supported by the framework.

A. Performance Evaluation
Performance-wise, the number of PC and NF dictates the

required time to process one point cloud frame. In our
evaluation, we have set the number of NF to 2, which is
mainly related to the memory interface bandwidth used by
the AXI bus, which allows fetching a total number of 2 points
(16-bit representation) on each memory access. We have evalu-
ated the trade-off between the number of PCs and the achieved
FPT, while analyzing other metrics’ outputs. Table III sum-
marizes the gathered results of the performance metrics for
processing the same point cloud (17098 points per frame) used
in the software-only evaluation, while varying the number of
PCs. Regarding the PR, TP, FP, and FN rates, the obtained
values are identical to the software-only results depicted in
Table II, while it is still visible that our approach provides
better performance results than LIOR. Such results prove the
correctness of the hardware implementation of the selected
algorithms since the hardware deployment only accelerates
the point cloud frame processing time without changing the
algorithm’s behavior.

TABLE III
EVALUATION OF HARDWARE-BASED DENOISING

ALGORITHMS FOR DIFFERENT VALUES OF PCS

TABLE IV
HARDWARE RESOURCES UTILIZATION

Regarding the processing time, and because we have
deployed the algorithms with parallelization capabilities,
increasing the number of PCs has an observable impact on
the time required to process one point cloud frame. When the
system was only deployed with 2 PCs, the processing time
for DROR and DIOR is almost identical with their software
implementation, while for the LIOR it results in a significant
time increase from 109 ms to 631 ms. When the number of
PCs is higher than 2, the results are always better than the
software-only implementation, achieving an FPT of 40 ms for
DROR, and 30 ms for LIOR and DIOR when the number of
PCs is 32. This results in a frame rate of 27.7 FPS for DROR,
and 33.3 FPS both for LIOR and DIOR.

B. Hardware Resources
The performance gain comes at the cost of FPGA hardware

resources, which increases with the increase of the number
of PC blocks. Table IV summarizes the trade-off between
the hardware resources and the number of PCs (varying
from 2 to 32). The three algorithms supported by the hardware
version of the ALFA framework are all deployed inside a PC
module, which can be activated on-the-fly by the ALFA-DVC
tool when required. Deploying the hardware with 32 PCs
requires nearly 39% of the available lookup tables (LUTs),
3.3% of lookup table random access memories (LUTRAMs),
5.68% of Flip-Flops (FFs), 83.3% of the available block RAM
(BRAM), and 14.81% of digital signal processor (DSP) blocks.
However, considering the frame rate achieved by the three
algorithms in processing the selected point cloud, a number
of 16 PCs can already provide real-time capabilities to sensors
with an output of 10Hz at the cost of a few hardware resources.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

RORIZ et al.: DIOR: HARDWARE-ASSISTED WEATHER DENOISING SOLUTION FOR LiDAR POINT CLOUDS 1627

TABLE V
SLOC FOR EACH HARDWARE AND SOFTWARE

MODULE OF THE ALFA-PD FRAMEWORK

C. Source Lines of Code (SLoC)
Table V summarizes the SLoC required to implement

the framework regarding the software- and hardware-based
denoising algorithms, without considering the ALFA-DVC.
This evaluation aims at providing an estimation of the engi-
neering effort required for developing weather denoising algo-
rithms. The hardware implementation of the ALFA framework
is divided into four main modules, as previously explained
in Section III-C. The required code for a PC or an NF is
displayed for a single instance of each module. Regarding the
software implementation, it is important to mention that VG,
ROR, SOR, and FCSOR required just a few lines of SLoC
since they directly use the PCL software library, while for the
other algorithms, the implementation was still simple and did
not require much code writing.

D. Closing Discussion
Comparing DROR and LIOR algorithms with our imple-

mentation (DIOR) and using the ALFA platform, the obtained
results show that DIOR can achieve better performance
ratios due to the combination of LIOR and DROR methods.
Moreover, for the point cloud with 17098 points, DIOR
achieved better frame processing times with an FPS rate up
to around 33 FPS. Regarding the hardware platform, and
because our processing unit provides less resources when
compared with the original setups used by DROR and LIOR,
the ALFA framework offers the possibility to deploy hardware
accelerators to achieve better performance rates at the cost
of FPGA hardware resources, even when using an embedded
configuration.

However, newer LiDAR sensors can provide denser point
clouds with millions of points to be processed. Despite increas-
ing the accuracy of the perception system, they require more
powerful resources to process the point cloud data, ideally in
real-time. In the evaluation of the LIOR algorithm, authors
have used an Ouster OS-1 LiDAR with a point cloud output
of around 60k points per frame. According to their results, and
before applying optimizations, the processing rate performance
for processing the full sensor’s data was 0.16 FPS for DROR
and 1.32 FPS for LIOR. To increase the performance of
their filter, authors have optimized the denoising algorithm

TABLE VI
HARDWARE-BASED ALGORITHMS OPTIMIZATION

by applying a cropbox to different ROI to reduce the number
of points to be processed: Cropbox A (full data); Cropbox B
(forward data); and Cropbox C (only road data). By reducing
the number of points, the achieved performance speed was
9.31 FPS for the Cropbox B and 10.0 FPS for the Cropbox
C. This way, authors could claim a frame rate that can cope
with the real-time processing of the output of a LiDAR sensor
which is commonly 10Hz.

For a fair comparison between the frame rate provided
by the ALFA platform and LIOR’s hardware setup, which
includes more processing capabilities, we have processed the
point cloud from a Velodyne VLP-32C sensor, which can also
output around 60k points per frame. Table VI summarizes the
obtained results when applying the same strategy of including
a cropbox over different ROI. Processing the full point cloud
(Cropbox A) results in a frame rate of around 13 FPS, both
for LIOR and DIOR, which copes with the requirement of
processing a sensor’s output of 10 Hz. Applying the Crop-
box B and C reduces the number of points to be processed
to 27734 and 25456, respectively. This results in a processing
frame rate of around 32 FPS for the Cropbox B and 35 FPS for
Cropbox C, showing that the ALFA hardware is able to achieve
real-time capabilities even for sensors output with higher rates
when ROI are applied.

VI. CONCLUSION

This article presents a new method for point cloud weather
denoising called DIOR, which combines two state-of-the-art
algorithms, DROR and LIOR. DIOR provides better point
filtering ratios while improving the frame processing time
to nearly 33 FPS when resorting to the FPGA fabric. All
algorithms are supported by a weather denoising framework
called ALFA that enables the implementation of different
denoising methods, which can be both deployed in software
and hardware. The framework also includes the ALFA-DVC
tool, which enables the easy deployment and configuration
of different weather denoising approaches, provides software
testing and debug, and allows for point cloud visualization and
integration with a ROS environment. The embedded nature
of the framework shows how state-of-the-art methods can
benefit from hardware acceleration to significantly improve
the processing time of point cloud frames, while keeping the
desired rates of the accuracy metrics used, such as the number
of PR, TP, FP, and FN ratios.

In the near future, we aim at giving support to other weather
denoising methods that could be accelerated in hardware.
Moreover, and since the framework provides enough flexibility
for supporting other tasks in hardware, we aim at expanding
its functionalities to support important features such as ground
segmentation and point cloud compression strategies.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

1628 IEEE SENSORS JOURNAL, VOL. 22, NO. 2, JANUARY 15, 2022

REFERENCES

[1] J. Guerrero-Ibáñez, S. Zeadally, and J. Contreras-Castillo, “Sensor
technologies for intelligent transportation systems,” Sensors, vol. 18,
no. 4, p. 1212, Apr. 2018.

[2] E. Marti, M. A. de Miguel, F. Garcia, and J. Perez, “A review of sensor
technologies for perception in automated driving,” IEEE Intell. Transp.
Syst. Mag., vol. 11, no. 4, pp. 94–108, Winter 2019.

[3] B. S. Jahromi, T. Tulabandhula, and S. Cetin, “Real-time hybrid multi-
sensor fusion framework for perception in autonomous vehicles,” Sen-
sors, vol. 19, no. 20, p. 4357, Oct. 2019.

[4] A. S. Mohammed, A. Amamou, F. K. Ayevide, S. Kelouwani,
K. Agbossou, and N. Zioui, “The perception system of intelligent ground
vehicles in all weather conditions: A systematic literature review,”
Sensors, vol. 20, no. 22, p. 6532, Nov. 2020.

[5] M. E. Warren, “Automotive LiDAR technology,” in Proc. Symp. VLSI
Circuits, Jun. 2019, pp. C254–C255.

[6] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The
principles, challenges, and trends for automotive LiDAR and percep-
tion systems,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 50–61,
Jul. 2020.

[7] R. Roriz, J. Cabral, and T. Gomes, “Automotive LiDAR technology: A
survey,” IEEE Trans. Intell. Transp. Syst., early access, Jun. 15, 2021,
doi: 10.1109/TITS.2021.3086804.

[8] T. Raj, F. H. Hashim, A. B. Huddin, M. F. Ibrahim, and A. Hussain,
“A survey on LiDAR scanning mechanisms,” Electronics, vol. 9, no. 5,
p. 741, Apr. 2020.

[9] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby,
and A. Mouzakitis, “A survey on 3D object detection methods for
autonomous driving applications,” IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 10, pp. 3782–3795, Oct. 2019.

[10] S. Shi, X. Wang, and H. Li, “PointRCNN: 3D object proposal generation
and detection from point cloud,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 770–779.

[11] J. Wu, H. Xu, Y. Tian, R. Pi, and R. Yue, “Vehicle detection under
adverse weather from roadside LiDAR data,” Sensors, vol. 20, no. 12,
p. 3433, Jun. 2020.

[12] X. Peng and J. Shan, “Detection and tracking of pedestrians using
Doppler LiDAR,” Remote Sens., vol. 13, no. 15, p. 2952, Jul. 2021.

[13] W. Huang et al., “A fast point cloud ground segmentation approach based
on coarse-to-fine Markov random field,” IEEE Trans. Intell. Transp.
Syst., early access, Apr. 21, 2021, doi: 10.1109/TITS.2021.3073151.

[14] R. Karlsson, D. R. Wong, K. Kawabata, S. Thompson, and N. Sakai,
“Probabilistic rainfall estimation from automotive LiDAR,” 2021,
arXiv:2104.11467.

[15] M. Jokela, M. Kutila, and P. Pyykönen, “Testing and validation of
automotive point-cloud sensors in adverse weather conditions,” Appl.
Sci., vol. 9, no. 11, p. 2341, Jun. 2019.

[16] P. H. Chan, G. Dhadyalla, and V. Donzella, “A framework to analyze
noise factors of automotive perception sensors,” IEEE Sensors Lett.,
vol. 4, no. 6, pp. 1–4, Jun. 2020.

[17] J. R. Vargas Rivero, T. Gerbich, V. Teiluf, B. Buschardt, and J. Chen,
“Weather classification using an automotive LiDAR sensor based on
detections on asphalt and atmosphere,” Sensors, vol. 20, no. 15, p. 4306,
Aug. 2020.

[18] R. Heinzler, P. Schindler, J. Seekircher, W. Ritter, and W. Stork,
“Weather influence and classification with automotive LiDAR sensors,”
in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2019, pp. 1527–1534.

[19] R. Heinzler, F. Piewak, P. Schindler, and W. Stork, “CNN-based LiDAR
point cloud de-noising in adverse weather,” IEEE Robot. Autom. Lett.,
vol. 5, no. 2, pp. 2514–2521, Apr. 2020.

[20] T.-H. Sang, S. Tsai, and T. Yu, “Mitigating effects of uniform fog on
SPAD LiDAR,” IEEE Sensors Lett., vol. 4, no. 9, pp. 1–4, Sep. 2020.

[21] T. Yang, Y. Li, Y. Ruichek, and Z. Yan, “LaNoising: A data-driven
approach for 903 nm ToF LiDAR performance modeling under fog,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020,
pp. 10084–10091.

[22] Y. Li, P. Duthon, M. Colomb, and J. Ibanez-Guzman, “What happens
for a ToF LiDAR in fog?” IEEE Trans. Intell. Transp. Syst., vol. 22,
no. 11, pp. 6670–6681, Nov. 2021.

[23] C. Goodin, D. Carruth, M. Doude, and C. Hudson, “Predicting the
influence of rain on LiDAR in ADAS,” Electronics, vol. 8, no. 1, p. 89,
Jan. 2019.

[24] S. Hasirlioglu and A. Riener, “A general approach for simulating rain
effects on sensor data in real and virtual environments,” IEEE Trans.
Intell. Vehicles, vol. 5, no. 3, pp. 426–438, Sep. 2020.

[25] M. Byeon and S. W. Yoon, “Analysis of automotive LiDAR sensor
model considering scattering effects in regional rain environments,”
IEEE Access, vol. 8, pp. 102669–102679, 2020.

[26] J. P. Espineira, J. Robinson, J. Groenewald, P. H. Chan, and V. Donzella,
“Realistic LiDAR with noise model for real-time testing of automated
vehicles in a virtual environment,” IEEE Sensors J., vol. 21, no. 8,
pp. 9919–9926, Apr. 2021.

[27] N. Charron, S. Phillips, and S. L. Waslander, “De-noising of LiDAR
point clouds corrupted by snowfall,” in Proc. 15th Conf. Comput. Robot
Vis. (CRV), May 2018, pp. 254–261.

[28] R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011,
pp. 1–4.

[29] H. Balta, J. Velagic, W. Bosschaerts, G. De Cubber, and B. Siciliano,
“Fast statistical outlier removal based method for large 3D point
clouds of outdoor environments,” IFAC-PapersOnLine, vol. 51, no. 22,
pp. 348–353, 2018.

[30] J. I. Park, J. Park, and K. S. Kim, “Fast and accurate desnow-
ing algorithm for LiDAR point clouds,” IEEE Access, vol. 8,
pp. 160202–160212, 2020.

[31] (2018). Richard Kelley. [Online]. Available: https://richardkelley.io/data

Ricardo Roriz received the master’s degree in
industrial electronics and computers engineering
from the University of Minho, Portugal. He is
currently pursuing the Ph.D. degree in sensors
and instrumentation systems for the automotive
industry. He is an Active Research Fellow at
the ALGORITMI Research Center, Embedded
Systems Research Group. His research interests
include embedded systems design and robotics,
with particular focus on FPGA-based systems.

André Campos is currently pursuing the mas-
ter’s degree in industrial electronics and com-
puters engineering with the University of Minho.
His research interests include embedded sys-
tems design, automotive technology, computer
vision systems, and FPGA-assisted acceleration
solutions.

Sandro Pinto received the Ph.D. degree in
electronics and computer engineering. He is a
Research Scientist and an Invited Professor at
the University of Minho, Portugal. He has a
deep academic background and several years of
industry collaboration focusing on operating sys-
tems, virtualization, and security for embedded;
cyber physical; and IoT-based systems. He is
also a skilled presenter with speaking experi-
ence in several academic and industrial confer-
ences. He has published several scientific papers
in top-tier conferences/journals.

Tiago Gomes received the master’s degree in
telecommunications engineering and the Ph.D.
degree in electronics and computers engineering
from the University of Minho, Portugal. He is
a Research Scientist and an Invited Profes-
sor with the University of Minho. His current
research interest includes embedded systems
hardware/software co-design for resource con-
strained wireless Internet of Things low-end
devices.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on December 30,2022 at 18:47:28 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2021.3086804
http://dx.doi.org/10.1109/TITS.2021.3073151

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

