
Agnostic Hardware-Accelerated Operating System
for Low-End IoT

Miguel Silva, Tiago Gomes, and Sandro Pinto
Centro ALGORITMI, Universidade do Minho, Portugal

Abstract—There is increasing pressure to optimize Internet
of things (IoT) low-end devices. The ever-growing number of
requirements and constraints is pushing towards maximizing
performance and real-time, but simultaneously minimizing power
consumption, form factor, and memory footprint. This has
motivated the adoption of Field-Programmable Gate Array
(FPGA) technology to accelerate computing-intensive workloads
in hardware. However, and despite the ongoing trend of migrating
application-level tasks to hardware, recently, the offload of
system software such as operating system (OS) services has
received little attention. This paper presents CHAMELIOT, a
framework for FPGA-based IoT platforms that provides agnostic
hardware acceleration to OS services by leveraging RISC-V
technology. CHAMELIOT allows for developers to run unmodified
applications in a set of well-established IoT OSes. Currently, the
framework has support for RIOT, Zephyr, and FreeRTOS. The
evaluation showed that latency and determinism can be enhanced
up to 10x while the system’s performance can be increased to
nearly 200%. CHAMELIOT will be open-sourced.

I. INTRODUCTION

The growing popularity of the Internet of Things (IoT)
is fostering the shift of computing workloads from remote
centralized facilities to the edge. However, edge devices are
often resource-constrained, which imposes some challenges
while handling workloads intended for high-end devices [1].
Such devices are widely present in a broad range of sectors,
e.g., transportation, health-care, or industrial, and are required
to constantly gather and process data in applications that
demand real-time and determinism on top of high-performance
ratios. Fulfilling the different requirements that are dictated
by the target application requires each final solution to be
individually tailored to fit tight constraints [2, 3].

IoT endpoints have been outgrowing the capabilities of
traditional microcontroller units (MCUs) to the extent that the
industry is starting to adopt reconfigurable platforms to achieve
the desired metrics [4]. Reconfigurable technology, namely
Field Programmable Gate Array (FPGA), enables the develop-
ment of custom accelerators by offloading compute-intensive
tasks to hardware, often connected to the MCU as standard
peripherals [5]. Until recent years, FPGAs presented several
problems that impeded their mass adoption in IoT applications,
such as high power consumption, large form factor, and diffi-
culty of integration. However, platforms like embedded FPGAs
or low-power FPGAs, are already minimizing those issues and
thus, seeing increasing applicability in low-end IoT devices
[6]. Nevertheless, deploying and optimizing accelerators on
FPGA has been hampered by several challenges, which start
to be alleviated with the rise of RISC-V.

RISC-V is a novel open-source instruction set architecture
(ISA) that follows a reduced instruction set computer (RISC)
design that enables the combination of extensions that eases
the integration of dedicated hardware accelerators with the
application software [7, 8]. Some RISC-V implementations,
such as the Rocket chip [9], already extend the ISA by
defining a subset of instructions for user-defined co-processors,
while other implementations expect these co-processors to
be managed through a memory-mapped interface. Tightly-
and loosely-coupled approaches pose different challenges and
present different trade-offs regarding performance, determin-
ism, real-time, system integration, and portability [10].

Low-end IoT devices often feature embedded real-time
operating systems (RTOS) to support the desired end ap-
plication. RTOSes enforce scheduling policies, implement
synchronization (e.g., mutexes) and communication (e.g., mes-
sage queues) mechanisms, and provide abstractions from the
hardware [11, 12]. Aiming at improving the determinism
and performance of RTOSes, some kernel services have been
migrated to hardware. So far, this trend has been facing several
challenges mainly due to the lack of reconfigurable hardware
and the barriers imposed by closed computer architectures
[10]. With the emergence of RISC-V alongside reconfigurable
low-end platforms [13, 14], there is a renewed opportunity to
explore the migration of kernel services to hardware.

This paper presents CHAMELIOT, a framework for recon-
figurable IoT devices that aims at providing agnostic hardware
acceleration for different OS kernel services. Taking advantage
of the RISC-V ISA extensions, it is possible to integrate dedi-
cated hardware accelerators without adding complex software
abstraction layers. The developed accelerators can be used
transparently by any RTOS, bringing the benefits of hardware
acceleration while keeping the application unmodified. The
evaluation showed that latency and determinism can be en-
hanced up to 10x while the system’s performance is increased
to nearly 200%.

The main contributions of this paper are:
1) An open-source agnostic OS framework that supports a

variety of RTOSes, requiring few changes to the kernel
while keeping the end-user interface intact / unmodified;

2) Highly configurable hardware kernel modules (e.g.,
scheduling, thread management, synchronization, and
communication mechanisms) leveraging RISC-V technol-
ogy and adopting different coupling approaches;

3) Deployment and benchmarking of three widely-used OSes
for IoT low-end systems: Zephyr, RIOT, and FreeRTOS.

II. CHAMELIOT OVERVIEW

A. Motivation

Offloading OS kernel services to hardware have been a par-
ticular topic of interest for the academy [10, 15–22]. Despite
the considerable amount of attempts reported in the literature,
both reconfigurable and hardware-accelerated OSes have not
gained traction in the industry, due to several limitations that
have hampered their adoption. Below, we highlight the main
reasons that have contributed to that lack of adoption.
Software Interface. Hardware OSes typically provide custom
APIs, which impose steep learning curves and enlarge the
desired (industry target) time-to-market. To address these
issues, some works use compatibility standards like POSIX
[17] while others solutions provide generic APIs that easily
map to standard RTOS interfaces [10, 20, 21]. Nonetheless,
these two approaches typically have their intrinsic limitations,
because not all legacy applications leverage POSIX standards
nor the process to map generic to standard RTOS APIs is
automated.
Target Architecture. Hardware OSes are usually developed
targeting a single CPU or architecture, limiting their overall
usability and hindering their adoption. Implementing a tighlty-
coupled accelerator requires modifying the CPU, which, for
proprietary ISA like Arm, is often impossible due to violation
of intellectual property. Open ISAs, such as RISC-V, are now
offering the opportunity to support tightly-coupled acceleration
via co-processors or ISA extensions.
Application Suitability. Due to the IoT heterogeneity, each
application has different requirements and constraints. To cope
with this heterogeneity, hardware OSes must provide enough
configurability points to not only fit the hardware constraints
but also deploy hardware modules only when needed. This is
typically not available on hardware RTOSes, which are usually
tailored to fit a specific application.

With our work, we aim at overcoming the main challenges
which have been hindering the adoption of hardware OSes,
while offering the benefits of accelerating kernel services in
hardware. CHAMELIOT intends to contribute to the state-of-
the-art with:
• An API that can be easily portable to multiple IoT OSes by

mapping and replacing calls to the kernel internals to our
framework interface (this process will be later automated
by a configuration and building tool).

• A set of open hardware building blocks leveraging an
open ISA (RISC-V), which enables easy integration of both
tightly- and loosely-coupled accelerators.

• A set of open-source hardware OS services with multiple
configurability points to ensure that the design variability of
different OSes are fully captured and application’s require-
ments and constraints are met.

B. Architecture

Figure 1 illustrates the architecture of the proposed frame-
work. Built on top of RISC-V technology, the framework is

IoT OS

Abstraction Layer

FPGA

CPU

Hardware

Accelerator

Hardware

Accelerator

System Bus

(Unmodified) Application

C
o
n

fi
g
u

ra
ti

o
n

 a
n

d
 B

u
il

d
in

g
 T

o
o
l

Fig. 1: Framework architecture.

composed of three main components: (1) tightly- and loosely-
coupled Hardware Accelerator(s); (2) the Abstraction Layer;
and (3) the Configuration and Building tool.
Hardware Accelerator. One of the main goals of our frame-
work is the acceleration of OS kernel services in hardware,
such as the scheduler, thread manager, and synchronization and
inter-process communication (IPC) mechanisms. By providing
enough configurability to each service, it is possible to build
the hardware accelerator to fit the application needs without
wasting unnecessary FPGA resources. Designed with flexibil-
ity in mind, the Hardware Accelerator can be deployed fol-
lowing a loosely- or tightly-coupled approach, which translates
into better adaptability or better performance, respectively.
Abstraction Layer. The software API can be easily adapted
and ported to most IoT OSes and RTOSes. Each service
implemented in hardware has a set of minimalist interfaces
to enable a fine-grained abstraction layer, and thus, allows
for easy integration with software RTOSes. Additionally, a
collection of abstractions is provided to enable the software to
access and gather data from the hardware accelerator.
Configuration and Building tool. In order to ease the devel-
opment process and learning curves, our framework intends
to offer an external tool that can be used for hardware and
software customization through a graphical user interface. This
tool reduces the required knowledge about implementation
details, simplifying the process of creating a solution with
different hardware and software components.

C. Goals

The main goals of CHAMELIOT Hardware Accelerator are:
Real-Time and Determinism. CHAMELIOT must provide hard
real-time guarantees and bounded worst-case execution time
(WCET). Moreover, predictability shall not be affected by the
number of active features on a certain component, e.g., the
number of active threads.
Performance. CHAMELIOT must improve system perfor-
mance, by reducing the performance overhead introduced by
standard RTOS services.

Flexibility. The framework must provide several configurabil-
ity points to customize the CHAMELIOT to the application
requirements and constraints.
Agnosticism. The software interface must allow for the user to
transparently run unmodified applications without awareness
of the configuration of the system (software vs hardware).

D. Scope

The CHAMELIOT is close to feature-complete, supporting at
the moment the scheduling services, thread management, and
synchronization and IPC mechanisms. The work presented in
this paper refers to the Hardware Accelerator component of
the framework, which is deployed as a tightly-coupled co-
processor in a RISC-V core. In the short term, we intend to
explore the trade-offs between tightly- and loosely-coupled
configurations. Moreover, some OS services that have been
already deployed in hardware by related work are not within
the scope of our framework. These include:
Interrupt Management. The most common approach to man-
age interrupts is to trap and process them in a custom hardware
accelerator. While this approach has proven to bring benefits,
e.g., by removing multiple priority spaces [23, 24], it would
require the developer to be aware of several implementation
details which conflicts with the CHAMELIOT’s agnosticism.
Time Management. Most IoT OSes rely on platform-available
timers to perform time management, e.g., system tick or man-
aging delays and events. Migrating this time-related operations
to hardware would require the replication a the timer logic
in the FPGA fabric [20, 21], resulting in some sort of redun-
dancy. Furthermore, it would also require redirecting the timer
interrupt to a different source, compromising agnosticism.
Context Switching. As the most architecture-dependent fea-
ture, implementing the context switching in hardware would
require extensive modifications to the CPU datapath. Despite
the migration of this feature to hardware has proven to bring
performance and determinism benefits [10], a highly-tailored
core limits its flexibility and adaptability, and consequently its
reusability and adoption.
Memory Management. Implementing heap and thread stacks
management in hardware would require a large amount of
resources. Since most FPGA-based IoT devices have limited
logic elements, we will keep this service in software.

III. HARDWARE-ACCELERATED OPERATING SYSTEM

Given the heterogeneity of IoT applications, a myriad of
IoT OSes have emerged to cope with the broad variety of
requirements and constraints [11, 12]. However, their design
choices, such as kernel architecture, scheduling policy, and
other available features, can have a significant impact on
the overall system’s behavior and performance. Among the
available OSes suitable for low-end IoT devices, we pro-
vide support to RIOT, Zephyr, and FreeRTOS. Such OSes
present enough variability regarding the main design points
we consider essential to implement and evaluate with our
framework. Furthermore, they present extensive popularity and

TABLE I: Key features of each OS.

OS RIOT Zephyr FreeRTOS

Thread States 14 8 4
Running State 11 6 3
Ready State 12 7 2
Priority Scheme Descending Descending Ascending

Mutexes Yes
Yes (with

Priority Inheritance)
Yes (with

Priority Inheritance)
Semaphores Yes Yes Yes
Message Queues Yes Yes Yes
Mailboxes Yes Yes No

applicability in IoT applications, backed by continuous support
from respective open-source communities.

RIOT, Zephyr, and FreeRTOS share similar design prin-
ciples, e.g., they are based on a preemptive priority-based
scheduler and implement a multi-queue thread1 management
system. However, there are still some design choices that have
a major impact on the accelerator design, as summarized in
Table I. Considering the resource limitations of low-end recon-
figurable platforms, the Hardware Accelerator provides multi-
ple configurability points to trade-off the number of supported
features with the hardware. It is possible to configure the
maximum number of threads, priority, mutexes, semaphores,
and message queues, or finer-grained configurations such as
the presence of priority inheritance in mutexes or the message
size limit for message queues.

The current implementation of the Hardware Accelerator
is based on the open-source SiFive E300, featuring an E31
Coreplex RISC-V core (RV32-IMAC), which supports atomic
(A) and compressed (C) instructions for higher performance
and better code density, respectively. This core is created by
the Rocket Chip generator and its main characteristics include
a single-issue in-order 32-bit pipeline (with a peak sustained
execution rate of one instruction per clock cycle), and a
single L1 instruction cache. The E300 platform also includes a
platform-level interrupt controller (PLIC), a debug unit, several
peripherals, and two TileLink interconnections interfaces (one
of them can be used to interface custom accelerators).

The Hardware Accelerator is implemented tightly coupled
to the E31 core by leveraging the Rocket Custom Co-processor
(RoCC) interface. The RoCC interface is further divided into
two sub-interfaces: (1) the command interface, which manages
communication between the CPU and the co-processor, and (2)
the memory interface, which provides the co-processor access
to the memory system. Regarding the communication with the
CPU, the RoCC interface defines an extension to the RISC-V
ISA by introducing a custom instruction that follows the R-
type format (Figure 2). It specifies the target co-processor, the
source and destination of data, and the performing operation.

funct7 rs2 rs1 xd xs1 xs2 rd opcode
31 25 24 20 19 15 14 13 12 11 7 6 0

Fig. 2: RoCC instruction.

1FreeRTOS naming convention uses the term Task instead of Thread. In
this manuscript, we use the term Thread to refer to Task.

The opcode is used to identify the co-processor, and per
the RoCC specification, this field can only contain one of four
predefined values, thus, limiting the number of co-processors
to a maximum of four. The fields rd, rs1, and rs2 specify
the destination (rd) and source (rs1 and rs2) CPU registers
used to transfer data with the co-processor. The xd, xs1, and
xs2 are used to identify which of the previous registers must
be used by the instruction. Lastly, the field funct7 is used
as a user-defined opcode for each co-processor that indicates
which function has to be executed. This instruction limits
the interaction between the CPU and the co-processor to:
(1) two 32-bit words being received on the co-processor; (2)
a single 32-bit word response; and (3) a maximum of 128
distinct operations. Each of these instructions is implemented
in software as inline functions to avoid the overhead of calling
a function (prologue, epilogue, and jumps). Using macros,
each API is then included in the three OS internals, while
some sections of original code have been removed, or slightly
adapted, without modifying its behavior. Most modifications
are done at the lowest level, on leaf functions, therefore
maintaining the execution flow of each OS.

Taking into account the variability and requirements of the
target OSes, the RoCC interface, and the limitations of the
instruction format, the Hardware Accelerator follows the ar-
chitecture depicted by Figure 3. The two RoCC sub-interfaces
are managed by the Control Unit, which is responsible for
managing the commands sent/received to/from the CPU and
managing all other components. The Thread Manager stores
and manages the data related to each thread present on the
system, while the remaining components, Scheduler, Mutexes,
Semaphores, and Message Queues, are instantiated in arrays to
implement the respective services. Each of these components
is further detailed in the following sections.

A. Control Unit

The Control Unit is the main component of the Hardware
Accelerator and is responsible for managing the RoCC in-
terface (including the command and memory sub-interfaces)
and the remaining hardware components to handle software
requests. Whenever an instruction is issued by the core to the
accelerator, the Control Unit reads the funct7 to decode the op-
eration requested and to identify the target component/service
that matches the request. The input data, available in rs1 and
rs2 fields, is forwarded to the requested service, and the output
data is returned in the rd field. Given the RoCC instruction
protocol, the output has to be available at the same time the
instruction is issued to the accelerator, requiring the Control
Unit to be fully implemented with combinational logic (the
same is valid for the remaining hardware components).

The Control Unit is also responsible for managing the mul-
tiple arrays of Mutexes, Semaphores, and Message Queues.
The array index is selected per the ID from the instruction,
and the maximum number of elements is set at compile-time.
Since the RoCC interface only allows for one memory sub-
interface, the Control Unit is also responsible to control all
memory operations, despite the existence of multiple message

Hardware Accelerator

CPU

Memory

C
M

D

In
te

rf
ac

e

M
E

M

In
te

rf
ac

e

MutexMutex

SemaphoresSemaphores

Message

Queues

Message

Queues

SchedulerScheduler

Control

Unit

Thread

Manager

Fig. 3: Hardware accelerator architecture.

queues that may require memory access. Additionally, mes-
sage queues require local memory to store pending messages.
This memory is also managed by the Control Unit since some
message queue operations still require direct data transfers
between the CPU and the message queue memories.

B. Thread Manager

The Thread Manager is mainly responsible for storing and
managing the thread’s data. This information is stored in a
vector of Thread Nodes. Figure 4 depicts the Thread Node
structure. The size of this vector fixes the maximum number
of threads in the system (configured by the user) and the
element’s index in the array is used as the Thread Identifier
(TID). Each Thread Node has a data field that stores the
pointer to the Thread Control Block (TCB), provided by the
OS. The hardware accelerator being capable of interchange-
ably operate with both TID and TCB offers more flexibility
to accommodate several OS internals. To add a thread, it is
necessary to provide the TCB pointer and thread’s priority to
the Thread Manager. Then, the Thread Manager checks the
dirty bit of all nodes in the array to find one empty position
in the array. If a position is available, the dirty bit is set and the
corresponding index is returned to the software. In contrast,
when the software requests a thread to be removed, the Thread
Manager clears the corresponding dirty bit and a new index
becomes available. The remaining fields in a Thread Node are
used by the Thread Manager to control a multi-queue system
(for threads that participate in the scheduling process). The
multi-queue system includes a linked list per thread priority
level (ready queue). Each linked list includes its respective
threads that are in the ready or the running state. Therefore, the
priority identifies the ready queue where the thread belongs,
the state indicates the thread state (modifying it will cause the
thread to be added or removed from the ready queue), and the
next is the pointer to the next TID in the linked list.

Considering the timing constraints imposed by the RoCC
protocol and to overcome the iterative flow of linked lists,
the Thread Manager keeps track and manages the root, next,

32 bits

data state priority next dirty

log2(#states)
bits

log2(#priorities)
bits

log2(#nodes)
bits

1 bit

Fig. 4: Thread Node structure.

and last node of each list. With that, the Thread Manager is
aware of each ready queue state, and is capable of adding and
removing threads to the corresponding linked list in a single
clock cycle. With the purpose of simplifying the scheduling
process, each queue is implemented with a circular linked
list. Since the Thread Manager is responsible for managing
the ready queues and the thread data, it must also comply
to the requests issued by other hardware components. The
Scheduler accesses the Thread Manager to get the TIDs for
the threads that will be scheduled, while the accesses from
Mutexes, Semaphores, and Message Queues are to request
threads to be added or removed from the ready queues.

C. Scheduler

The scheduling policy implemented follows a preemptive
priority-based algorithm that uses a hardware configuration to
define the priority order, i.e., ascending or descending. Thus,
the thread with the highest priority in ready state will run until
it yields its execution or it is preempted by a thread with higher
priority. In case of multiple threads with the same priority, the
scheduling policy follows a round-robin scheme to determine
which thread is next to execute. To schedule the next thread,
the Scheduler accesses the Thread Manager’s ready queues
to identify which linked lists are not empty, and which of
them have the highest priority. The Scheduler is responsible
for changing the current active thread state from running to
ready, and the way around for the new thread. To maximize
the timing guarantees (i.e., ensure determinism and minimize
jitter), the Scheduler is implemented in combinational logic.

D. Mutexes

A mutex is a synchronization primitive that ensures mutu-
ally exclusive access to a resource. Whenever a thread locks
a mutex, no other thread can lock the same mutex until the
original owner unlocks it. For a thread to successfully lock
a mutex, it must be unlocked, otherwise, the thread trying
to lock it is changed to a blocked state and removed from
the ready queue until the mutex owner unlocks it. Notwith-
standing, whenever a thread is blocked, a priority inversion
may occur resulting, in the worst case scenario, in a thread
being permanently blocked. To solve this problem, some OSes
implement a priority inheritance mechanism that raises the
priority of the mutex owner thread when a thread with higher
priority tries to lock a mutex.

Each Mutex implementation maintains a register with the
current thread that owns the mutex and a list of TIDs of each
thread that has been blocked trying to lock it. This list of
threads also contains their respective priority, to provide a
priority inheritance mechanisms. Whenever a thread’s priority
is raised, the Thread Manager removes that thread from the
current ready queue and adds it to the inherited priority queue.
The reverse operation is requested when the owner thread
releases the mutex. Finally, whenever a thread is forced to
change state, the scheduler is also updated accordingly and the
software receives a response via RoCC instruction to issue a
context switch.

E. Semaphores

Counting semaphores are synchronization mechanisms
where a resource is produced by a thread and consumed by
another. A producer thread signals the semaphore whenever
the processed resource is ready, while a consumer thread
checks if there are resources to be used, waiting otherwise. A
semaphore allows for multiple resources to be shared among
multiple threads. Each hardware Semaphore has an internal
register to count the number of producer threads that have
triggered a give operation. While this value is greater than
zero, any take request from a consumer thread do not block the
thread. However, once the count register is zero, the consumer
thread is blocked and its TID stored into an internal list.

F. Message Queues

Message queues are asynchronous communication mech-
anisms between threads, which use a FIFO to store and
share messages. Each message is a structure that contains the
message size and its content, accessed through a pointer with
a well-defined size. Whenever a thread puts a message in the
queue, if there are no threads waiting for it, its content must
be stored internally to be accessed when requested.

While the internal memory (where each waiting message
is stored) is managed by the Control Unit, each Message
Queue keeps track of which threads are trying to send a
message that has yet been received, and which threads are
waiting for a message. For the latter list of threads, each
Message Queue also stores the pointer to where the thread
intends to receive the data, so it can trigger the Control
Unit to transfer the message from the internal memory to
the CPU memory. Considering that all memory operations
are performed sequentially and the RoCC standard implies a
valid response when an instruction is issued, the data transfer
between both memories is done in background, after the RoCC
instruction is handled by the accelerator. During an ongoing
transfer, the accelerator is not allowed to accept other Message
Queue operations that require memory access, issuing an error
message stating the Message Queue is busy.

IV. EVALUATION

To evaluate the CHAMELIOT framework, we have integrated
and provide support to three IoT OSes: RIOT, FreeRTOS, and
Zephyr. To assess performance and determinism, we measured
the latency of most kernel services APIs (microbenchmark) by
measuring the clock cycles required by each function. We also
evaluated the overall system’s performance using the Thread
Metric benchmark suite, which provides a set of tests stressing
the majority of RTOS-related features (e.g., scheduling, syn-
chronization, IPC, etc.). Each experiment was performed for
the three OSes targeting two different hardware configurations:
(i) without using the hardware accelerator, i.e., the standard
software implementation (henceforth referred as SW), and (ii)
with support of hardware acceleration (hereafter referred as
HW). Lastly, we evaluated the impact of ChamelIoT on the
hardware resources required by different thread and priorities

configurations, which (from empirical experiments) are the
most impactful configurability points.

A. Experimental Setup

We deployed and evaluated our solution on an Arty A7-
100T, which features a Xilinx XC7A100TCSG324-1 FPGA
running at a clock speed of 65MHz. The hardware accelerator
is connected through the RoCC Interface to an E31 Coreplex
RISC-V core (RV32-IMAC). Both RISC-V core and our
accelerator were implemented using the SiFive Freedom E300
Arty FPGA Dev Kit and synthesized in Vivado 2020.2.

The performance evaluation experiments targeted the RIOT
v6ae67, FreeRTOS v10.2.1, and Zephyr v2.6.0-577. All soft-
ware was compiled with the GNU RISC-V Toolchain (version
9.2.0), with optimizations for size enabled (-Os). Apart from
OS-specific configurations such as the priority order, the hard-
ware accelerator was kept with the same configurations for the
three OSes: maximum of 16 threads with 16 unique priorities,
4 different mutexes, semaphores, and messages queues (each
with 16-word size, and a queue of four messages). Regarding
the resource consumption experiments, the aforementioned
configurations were modified independently.

B. API Latency

To assess determinism and performance, we have measured
the number of clock cycles required to execute the most
common RTOS services, for both SW and HW configurations.
Each experiment was repeated 10000 times, and for each ker-
nel service, the results are presented by the average number of
cycles along with the variance measured across all repetitions.
The results are discussed as follows:

1) Scheduling and Thread Management: Figure 5 depicts
the latency of three different APIs related to the scheduling
and thread management: schedule, thread suspend, and thread
resume. The first API occurs at every scheduling point, to
schedule the next thread to execute. The last two APIs are
responsible for changing the thread state, i.e., from ready to
suspended state in thread suspend, and vice versa for the
thread resume. To test the schedule service, we had two threads
yielding execution, while measuring the clock cycles required
to schedule the next thread. For the thread suspend API we
had one higher priority thread suspending itself and for the
thread resume API we had a lower priority thread resuming
the previous thread execution.

For the SW system configuration, FreeRTOS presents higher
execution times when compared to the other OSes. This is
mainly due to the FreeRTOS kernel design related to managing
lists, in particular, due to the need of moving threads between
two different linked lists, e.g., from a ready queue to a
suspended list. For the FreeRTOS HW setup, the latency of
these APIs improved 819.1% in the schedule, 175.2% in the
thread suspend, and 127.7% in the thread resume.

Zephyr has the most optimized scheduling algorithm, thus
presenting improvements of 100.2% for the HW system setup.
The suspend and resume APIs had marginal improvements of
9.6% and 9.3%, due to the amount of sanity checks performed

Fig. 5: Thread Management API latency.

Fig. 6: Mutex APIs latency.

by the kernel in these APIs. In the HW setup, these sanity
checks are translated into instructions to communicate with the
accelerator to check the metadata related to the threads. Hence,
the time spent for sanity checking in the HW configuration is
similar to the one for the SW configuration.

Unlike Zephyr, RIOT performs almost no sanity check in
these three services, resulting in significant gains in terms of
performance, particularly for the schedule operation. For the
HW setup, the latency is lowered 50.1% for the schedule API,
and 9.4% and 8.5% for the suspend and resume, respectively.

2) Mutexes: There are two distinct APIs related to mutexes:
lock and unlock. For both services we have evaluated three
different behaviours: (1) first, the thread can successfully lock
and unlock a mutex, in a loop; (2) second, the thread fails to
lock a mutex, i.e., not being its owner, and fails to unlock a
mutex (the mutex is already free). (3) third, a thread with
lower priority locks a mutex and yields its execution to a
higher priority thread that also attempts to lock the same
mutex, triggering priority inheritance. Once the lower priority
thread reclaims execution, it unlocks the mutex, reverting the
priority changes. The results gathered for both APIs in the
three different OSes are shown in Figure 6.

RIOT does not show any improvement regarding the latency
of successful locks and both successful and failed unlocks. For
these experiments, for the SW setup, RIOT presents already a
small standard deviation (<1); however, for the HW setup, the
deviation is zero. For the failed lock scenario, the latency was
decreased by a 67.9%. Lastly, RIOT mutexes do not implement
priority inheritance, making it unfeasible to reproduce the set
of experiments related to this feature.

For the HW configuration of FreeRTOS, the successful
and failed lock APIs present an improvement of 51.8% and
18.5%, respectively. For the successful and failed unlock APIs,
there is an improvement of 87.8% and 11.1%, respectively.
Notwithstanding, for the priority inheritance related exper-
iments, FreeRTOS presents very high latency for the SW
configuration, due to the need of moving multiple threads
between several different linked lists. In this experiments, the
HW setup reduces the lock and unlock APIs latency by 95.5%
and 76.4% respectively.

For the failed unlock API scenario, Zephyr in the SW setup
shows a small standard deviation (<1), which, in the HW
setup, becomes zero. While in the success unlock case, there
is an improvement of 550.9%. For both successful and failed
lock scenarios, the HW configuration decreases the latency
by 23.4%. Lastly, for the priority inheritance scenario, the
HW setup shows improvements of 461.7% for the lock API,
and 2615.6% for the unlock API. These improvements are
a result of Zephyr’s software priority inheritance algorithm
performing multiple checks to the status of both threads
involved, while the HW setup implements all of these checks
with combinational logic.

3) Semaphores: Semaphores provide two main services:
give and take. For the sake of completeness, we devised two
different experiments to evaluate the different scenarios when
both of these operations are requested by a thread. For the
first experiment, a singular thread performs a give and a take
sequentially, resulting in a give without any waiting, and a
take with ready data. The second experiment evaluates the
remaining conditions for the two APIs. One thread executes
a take without any data waiting, yielding the execution to
another thread that executes a give operation, triggering an
explicit scheduling point. RIOT HW configuration improves
the give API performance by 109.7 when a thread is waiting,
and by 165.3% when there is no thread waiting. Regarding
the take operation, the latency is reduced by 67.5% and 54%
when there is and there is no data ready, respectively.

FreeRTOS presents the higher latencies for the operations
that imply thread state modifications and consequent re-
scheduling, due to the burden cycles for managing linked lists.
Thus, in the HW configuration, the higher latency reduction
occurs for the give service with thread waiting (decrease in
latency of 54.7%) and the take service without data ready
(decrease of 89.6%). The two other scenarios present an
improvement of 24.9% and 11.7% for a give without thread
waiting and a take with data ready, respectively.

Finally, Zephyr’s take service does not present a significant
advantage in the HW configuration, apart from a marginal im-
provement in the standard deviation. However, the give service
takes significant advantage from the hardware acceleration,
by presenting improvements of 747% and 248.9% for both
operations, i.e., with and without thread waiting, respectively.

4) Message Queues: There are two main operations re-
garding message queues, i.e., send and receive. Despite both
operations may cause threads to be suspended or resumed,
the key feature regarding these operations is the message size

Fig. 7: Semaphore APIs latency.

(related to memory transactions). For that reason, the experi-
ments consist in sending and receiving a message through a
message queue, changing and checking its content between
each transaction (ensure correctness), as well as increasing
the size of the message between each experiment. Results are
depicted in Figure 8.

Unlike the other OSes, RIOT does not copy any data to and
from memory when performing send and receive operations.
Instead, RIOT gives access to the pointer to the original data
to the receiving thread. Naturally, this is a design decision that
favours performance while impacting security. Since only the
pointer is copied, RIOT presents a constant latency for both
receiving and sending data through message queues, regardless
of the message size. Therefore, hardware acceleration only
proves beneficial to RIOT, performance-wise, for messages
with a small size (lower than 8 words). In turn, FreeRTOS
implementation for entering and exiting critical code sections
is considerably more complex than in the other RTOSes,
which has a noticeable impact, particularly for small messages.
Since the critical sections code is used in both SW and HW
configurations, the latency of both operations for the HW setup
is higher than the other two RTOSes, despite the message size.

Zephyr’s memory copy algorithm performs additional con-
trol checks. This results in higher latencies for bigger mes-
sages. For the HW setup, most of these operations and checks
are implemented in hardware, and thus Zephyr is the OS
that presents the higher performance improvement in data
transactions through message queues, reaching 238.8% in the
send operation, and 230.7% in the receive.

Fig. 8: Message Queues API latency by message size.

C. RTOS performance

To evaluate the overall system’s performance, we use the
Thread-Metric Benchmark Suite. This synthetic suite imple-
ments several benchmarks that stress a singular RTOS-related
service. In this work, we ran the following benchmarks:
1) Basic Processing: A single thread performs mathematical

operations in a loop.
2) Cooperative Scheduling: Five threads with the same prior-

ity execute concurrently, yielding in a loop.
3) Preemptive Scheduling: Five threads with increasing prior-

ities, each resuming the next thread with a higher priority
and suspending themselves in a loop.

4) Message Processing: A single thread sends a message to
itself through a queue in a loop.

5) Synchronization: A single thread gives and takes a
semaphore in a loop.

Thread-Metric benchmarks count the number of times each
loop is repeated (i.e., a higher loop count indicates better
performance). Table II summarizes the results gathered from
running each benchmark in periods of 30 seconds. The values
presented correspond to the average of 100 samples for a
specific benchmark and for both system configurations (SW
and HW). An additional row presents the percentage compar-
ison between the HW and SW setups, where positive values
correspond to an improvement on the HW over the SW.

The results related to RIOT are in tandem with the results
presented in the previous subsection, i.e., the API latency.
Since the Basic Processing benchmark does not stress any
kernel-related operation, there was no change from running
with or without hardware acceleration. Both Cooperative and
Preemptive Scheduling present a performance increase of
nearly 46%, highlighting that the three main kernel services
involved in these experiments (schedule, thread suspend, and
thread resume) have a considerable impact on the system
performance. The Message Processing benchmark presents a
performance increase of 50%. Although the hardware imple-
mentation still has to copy the same amount of data, most of
the memory management is performed in hardware. Lastly,
the Synchronization benchmark shows the best results, with a
performance increase of 111%.

Zephyr presents only a marginal advantage for both Cooper-
ative and Preemptive Scheduling. This is related to the already
optimized scheduling algorithm, already observed in section
IV-B1. However, for the Message Processing benchmark, there
is a significant performance increase of over 152% for the
HW configuration. This finding corroborates the results from
section IV-B4, where Zephyr was the RTOS that has proven
to benefit the most from hardware-acceleration in the message
queues processing. The Synchronization benchmark also has
non-negligible performance increase of 111%.

Among all evaluated RTOSes, FreeRTOS is the only that
follows a tick-driven implementation. For this reason, FreeR-
TOS presents a 6.7% performance increase in the Basic Pro-
cessing benchmark, due to overhead imposed by the schedule
API. As per the results presented in the previous sections,

TABLE II: Thread-Metric benchmark results.

OS Basic
Processing

Cooperative
Scheduling

Preemptive
Scheduling

Message
Processing Synchronization

SW 67902 4020065 1956595 7103937 7127183RIOT HW 67902 5868621 2849510 10658732 15068628
(%) 0 45.98 45.64 50.04 111.42

SW 63399 1141517 705823 2828726 6853456Zephyr HW 63400 1249308 717260 7151998 13725909
(%) 0.001 9.44 1.62 152.83 100.28

SW 59222 1612707 753302 2362369 3675268FreeRTOS HW 63165 4846436 2086273 3641817 4451240
(%) 6.66 200.52 176.95 54.16 21.11

FreeRTOS APIs related to the scheduling process are the
ones that benefit the most from hardware acceleration. This is
corroborated in the results of the Cooperative and Preemptive
Scheduling benchmarks, with the HW setup achieving per-
formance increases of 200% and 177%, respectively. Finally,
for the remaining two benchmarks, i.e., Message Processing
and Synchronization, the HW setup presents reasonable per-
formance advantages - 54% and 21%, respectively.

D. Hardware Resources

The key feature which has a higher impact on the hardware
resources is the number of supported hardware threads. As
aforementioned, the data related to each thread is saved by
the hardware accelerator in a specific layout which optimizes
accessibility on the combinational logic. Additionally, per the
information provided in Figure 4, several fields in the node
structure can have different sizes. There is a node per hardware
thread. Increasing the number of threads or priorities, often
results in increasing the number of bits in specific fields. These
fields, such as the TID or priority, are propagated throughout
the whole accelerator, which naturally, significantly increases
the resource consumption. This is illustrated in Figure 9, where
we gradually increased (using power of two) the number of
threads supported in the hardware. Since we have assigned
each thread a unique priority, the number of priorities always
matches the number of threads, which also contributes to the
resources consumption increase. In this graph, we show only
the number of LUTs, Muxes, and Flip-Flops (FFs) consumed
by the hardware accelerator (without the resources used by the
RISC-V), as the other resources are kept the same.

We have also evaluated the trade-off between the hardware
resources consumed by the CHAMELIOT and the number of
supported hardware threads, but now including the RISC-V
core. Table III summarizes the FPGA resources in terms of
LUTs, Muxes, and FFs, for the Rocket core, and the Rocket
with CHAMELIOT supporting 2, 4, 8, and 16 threads. For the
baseline, we have deployed only the Rocket core on the FPGA
with all the OSes implementation in software. When migrating
services to hardware, in the smallest setup, i.e., Rocket +
CHAMELIOT with 2 threads, the hardware accelerator adds
only a small resource increase of 10.5% for the LUTs and
nearly 13.3% for the FFs. However, for a typical IoT low-
end device configuration, e.g., Rocket + CHAMELIOT with 8
hardware threads, the resource consumption increase is around
35.5% of LUTs, 42,5% of Muxes, and 18.4% of FFs.

Fig. 9: FPGA resources required by the CHAMELIOT.

TABLE III: FPGA resource consumed by CHAMELIOT inte-
grated with Rocket core.

LUTs Muxes Flip-Flops

Rocket 17246 381 10096
Rocket + CHAMELIOT (2T) 19050 (+10.5%) 374 (-1.8%) 11440 (+13.3%)
Rocket + CHAMELIOT (4T) 19753 (+14.5%) 396 (+3.9%) 11630 (+15.1%)
Rocket + CHAMELIOT (8T) 23361 (+35.5%) 543 (+42.5%) 11950 (+18.4%)
Rocket + CHAMELIOT (16T) 43723 (+153.5%) 959 (+151.7%) 12683 (+25.6%)

V. DISCUSSION

Adaptability vs Performance. We have developed our frame-
work mainly considering RIOT, Zephyr, and FreeRTOS. As
this project evolves, we expect to support other OSes, kernel
features, and hardware platforms. Consequently, we envision
an impact on the configurability points (and complexity) of
the accelerator, which, in turn, may lead to some performance
degradation. One clear example is that some services from
Zephyr only have marginal benefits in the hardware config-
uration. The trade-off between adaptability and performance
has to be made on a per-case basis, as implementing certain
features or configurability points may cause tolerable perfor-
mance degradation in some cases, while in others it would be
beneficial to keep these features in software.
Reusability and Adoption. A major goal of CHAMELIOT is
reusability and widespread adoption. However, current im-
plementation encompasses a tightly-coupled design, mainly
provided as a Rocket core accelerator. This somehow limits
the possibility of being adopted by other RISC-V designs and
platforms. Therefore, supporting a loosely-coupled configura-
tion will enable the accelerator to be integrated with other
systems. Additionally, the Building and Configuration tool is
on our mid-term roadmap. The development of this tool will
ease the process of configuring and building the whole system,
from hardware to software.
Additional Kernel Services. As mentioned in section II-D,
some kernel services (e.g., time, memory, and interrupt man-
agement) were left aside from the current implementation.
Notwithstanding, we strongly believe that they can be imple-
mented as optional features to further enhance the OS perfor-
mance. Other services may have to be implemented to support
features from other OSes, e.g., different scheduling policies.

Lastly, some of the current services may have to be modified or
have to be enhanced with additional configurability points, to
ease the support for additional OSes. For instance, additional
or different error messages to specific events.

VI. RELATED WORK

Two distinct approaches can be identified regarding OS
acceleration in hardware [25]: (1) Reconfigurable OS, which
refers to software-based OSes enhanced with capabilities to
manage reconfigurable hardware and execute hardware tasks;
and (2) Hardware-accelerated OS, which are focused on
minimizing kernel software execution time by migrating kernel
services to hardware. Some of the most prominent recon-
figurable OSes are R3TOS [15] and ReconOS [16]. While
R3TOS leverages FPGA reconfigurability to provide a reliable
and fault-tolerant OS focused on hardware tasks, ReconOS
allows the scheduling of both hardware and software threads.

Concerning the hardware-accelerated OSes, they can be
classified according to the way they are integrated with other
hardware and software components. Hardware integration is
closely related with target CPU architecture and how the
accelerators are coupled with the core (tightly or loosely
approaches). For instance, HThreads [17], HartOS [19], and
SEOS [20] are implemented as loosely-coupled accelerators
connected via a standard peripheral bus to a Microblaze CPU,
which implies the final system to be deployed in an FPGA
platform. On their turn, RT-SHADOWS [21] and ARTESSO-
TC [26] explore the ubiquitous Arm architecture by modifying
its pipeline to support tightly-coupled accelerators. Similarly,
ARPA-MT [18] follows the same tightly-coupled approach
to a MIPS32 architecture. Having the adoption rate and
scalability in mind, ARTESSO-LC [10] implements hardware
acceleration in a loosely-coupled fashion, which connects the
Arm core through a standard AMBA peripheral bus. The
emergence of RISC-V has enabled the creation of hardware
accelerators in a tightly-coupled fashion. For instance, OSEK-
V [22] implements highly tailored modifications to the RISC-
V pipeline to maximize the OS performance.

The software integration of hardware-accelerated OSes is
related to the ability of adapting legacy OS applications or
developing new ones using hardware acceleration. Hardware-
accelerated OSes can achieve this integration by providing
their hardware functions as external features that can replace
software OSes internals. On the other hand, these OSes can
also act as the main OS, requiring current systems to be re-
developed and replace the software OS with the new hardware-
accelerated OS. Furthermore, the API provided by each of
these OSes is directly related with how the OSes can be
integrated with the software. The hardware-accelerated OSes
API can be unique to the OS, follow a standard like POSIX,
or it can be mapped to other API of different OSes. ARPA-
MT, HartOS, and OSEK-V all provided their own unique API
and are to be used as standalone OS in order to maximize
performance. Both ARTESSO-TC and ARTESSO-LC, despite
having to be used the acting OS, they provide an API that can

TABLE IV: Comparison of hardware-accelerated OSes.

Hardware RTOS HThreads ARPA-MT HartOS SEOS RT-SHADOWS OSEK-V ARTESSO-LC ARTESSO-TC CHAMELIOT

CPU Architecture Microblaze MIPS32 Microblaze Microblaze Arm RISC-V Arm Arm RISC-V
Coupling Approach Loosely Tightly Loosely Loosely Tightly Tightly Loosely Tightly Tightly+Loosely
Supported OS Itself Itself Itself Multiple Multiple Itself Itself Itself Multiple
API POSIX Unique Unique Mapped Mapped Unique Mapped Mapped Mapped
Scheduling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Thread Management ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
Synchronization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Communication ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

be mapped to fit other Arm cores. Similarly, HThreads pro-
vides a POSIX-like API. Lastly, with the goal of maximizing
the adoption, both SEOS and RT-SHADOWS can be used to
accelerate other COTS software OS through their interface that
can be used interchangeably with the software API.

Table IV summarizes all the hardware-accelerated OSes
solutions previously discussed, presenting their kernel services
currently supported in hardware, API, coupling approach,
target CPU architecture, and supported OSes. It also depicts
that CHAMELIOT implements all the most important kernel
services, while also aiming for greater adaptability and adop-
tion rate by targeting an open-source ISA (RISC-V), being
implemented in two different approaches (tightly- and loosely-
coupled), and providing a modular API capable of being
mapped and support multiple COTS software RTOSes.

VII. CONCLUSION

In this paper, we presented CHAMELIOT, an agnostic hard-
ware OS framework for FPGA-based IoT devices leveraging
RISC-V. We have deployed and evaluated our system with
three different OSes: RIOT, FreeRTOS, and Zephyr. Results
demonstrated that latency can be decreased up to 96.3%, and
for most services, the jitter was removed. At the application
level, we observed performance increases of up to 200%.

ACKNOWLEDGMENTS

This work has been supported by FCT - Fundação para a Ciência
e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020
and SFRH/BD/146678/2019.

REFERENCES
[1] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and

Challenges for Realizing the Internet of Things,” Cluster of European
Research Projects on the Internet of Things, EU Commision, 2010.

[2] C. Perera, C. H. Liu, and M. Chen, “A Survey on Internet of Things
From Industrial Market Perspective,” IEEE Access, 2014.

[3] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,
“A Survey on the Edge Computing for the Internet of Things,” IEEE
Access, 2018.

[4] D. Oliveira, M. Costa, S. Pinto, and T. Gomes, “The Future of Low-
End Motes in the Internet of Things: A Prospective Paper,” MDPI
Electronics, 2020.

[5] M. Valdés, J. Rodriguez-Andina, and M. Manic, “The Internet of Things:
The Role of Reconfigurable Platforms,” IEEE Industrial Electronics
Magazine, 2017.

[6] M. Elnawawy, A. Farhan, A. Nabulsi, A. Al-Ali, and A. Sagahyroon,
“Role of fpga in internet of things applications,” in IEEE Int. Symp. on
Signal Proc. and Inf. Tech.(ISSPIT), 2019.

[8] A. Waterman, “Design of the RISC-V Instruction Set Architecture,”
Ph.D. dissertation, UC Berkeley, 2016.

[7] K. Asanovic and D. Patterson, “Instruction Sets Should Be Free:
The Case For RISC-V,” EECS Department, University of California,
Berkeley, Tech. Rep., 2014.

[9] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Ce-
lio, H. Cook, P. Dabbelt, J. Hauser, A. M. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moretó, A. Ou, D. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip Generator,” 2016.

[10] N. Maruyama, T. Ishikawa, S. Honda, H. Takada, and K. Suzuki, “ARM-
based SoC with Loosely Coupled type Hardware RTOS for Industrial
Network Systems,” 2014.

[11] M. Silva, D. Cerdeira, S. Pinto, and T. Gomes, “Operating Systems
for Internet of Things Low-End Devices: Analysis and Benchmarking,”
IEEE Internet Things J., 2019.

[12] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems
for Low-End Devices in the Internet of Things: A Survey,” IEEE Internet
Things J., 2016.

[13] S. R. Corp., “RISC-V Market Analysis The New Kid on the Block,”
2019.

[14] P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini, “Slow and Steady Wins the Race? A Comparison of
Ultra-Low-Power RISC-V cores for Internet-of-Things Applications,”
in 2017 27th Int. Symp. on Power and Timing Modeling, Optimization
and Simulation (PATMOS), 2017.

[15] X. Iturbe, K. Benkrid, C. Hong, A. Ebrahim, R. Torrego, and T. Arslan,
“Microkernel Architecture and Hardware Abstraction Layer of a Reliable
Reconfigurable Real-Time Operating System (R3TOS),” ACM Trans.
Reconfigurable Technol. Syst., 2015.

[16] E. Lübbers and M. Platzner, “ReconOS: Multithreaded Programming
for Reconfigurable Computers,” ACM Trans. on Embedded Computing
Systems, 2009.

[17] J. Agron, W. Peck, E. Anderson, D. Andrews, E. Komp, R. Sass, F. Bai-
jot, and J. Stevens, “Run-Time Services for Hybrid CPU/FPGA Systems
on Chip,” in 27th IEEE Int.l Real-Time Systems Symp. (RTSS’06), 2006.

[18] A. Oliveira, L. Almeida, and A. Ferrari, “The ARPA-MT Embedded
SMT Processor and Its RTOS Hardware Accelerator,” IEEE Trans. Ind.
Electron., 2011.

[19] A. Lange, K. Andersen, U. Schultz, and A. Sørensen, “HartOS - A
hardware implemented RTOS for hard real-time applications,” 2012.

[20] S. E. Ong, S. C. Lee, N. B. Z. Ali, and F. A. B. Hussin, “SEOS: Hard-
ware Implementation of Real-Time Operating System for Adaptability,”
in First Int. Symp. on Computing and Networking, 2013.

[21] T. Gomes, P. Garcia, S. Pinto, J. Monteiro, and A. Tavares, “Bringing
Hardware Multithreading to the Real-Time Domain,” IEEE Embedded
Syst. Lett., 2016.

[22] C. Dietrich and D. Lohmann, “OSEK-V: Application-Specific RTOS
Instantiation in Hardware,” in Proc. of the 18th ACM SIGPLAN/SIGBED
Conf. on Languages, Compilers, and Tools for Embedded Systems, 2017.

[23] W. Hofer, D. Lohmann, F. Scheler, and W. Schröder-Preikschat,
“SLOTH: Threads as Interrupts,” in 2009 30th IEEE Real-Time Systems
Symp., 2009.

[24] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong, and
A. Tavares, “Task-Aware Interrupt Controller: Priority Space Unification
in Real-Time Systems,” IEEE Embedded Syst. Lett, 2015.

[25] G. J. Brebner, “A Virtual Hardware Operating System for the Xilinx
XC6200,” in Proc. of the 6th Int. Workshop on Field-Programmable
Logic, Smart Applications, New Paradigms and Compilers, 1996.

[26] N. Maruyama, T. Ishihara, and H. Yasuura, “An RTOS in Hardware for
Energy Efficient Software-based TCP/IP processing,” in IEEE 8th Symp.
on Application Specific Processors (SASP), 2010.

