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Abstract—Industrial solutions design is a highly complex topic
due to the challenge of integrating multiple technologies into a
single solution, the inherent complexity of the problems to be
solved and also because the proposed solutions often require a
great level of interoperability among their components and also
the outside world. Dynamic Binary Translation has been used as a
tool to deal with such interoperability issues, e.g., legacy support,
virtualization and secure execution, among others. However its
integration in the industry as an end-product is hampered by
the intricate variability management required in this subject. To
address these issues and in an attempt to power DBT utilization
as an interoperability-providing tool, we propose a model-driven
DSL modeling language for DBT architectures. The developed
DSL proved to be efficient to model an in-house DBT engine, and
MODELA DBT, a framework for ready-to-use DBT solutions
was obtained. MODELA DBT provides design validation, easy
configuration of customizable DBT parameters and components,
as well as code generation features.
Index Terms—Domain-Specific Language (DSL), Dynamic Bi-

nary Translation (DBT), Model-driven Development, Generative
Programming

I. INTRODUCTION

Some of the big difficulties in todays’ industrial solutions

design is the high complexity of the systems and the variability

management challenge [1] that the integration of multiple

technologies poses. This is partially caused by the inherent

complexity of the problems that need to be solved but also

because the solutions often require a great level of interoper-

ability between the system’s elements and the outside world.

A long known solution to deal with such interoperability

issues is binary translation, which consists in a process of

disassembling and translating source binary code into target

binary code that will be executed for emulation purpose.

It is classified as static binary translation which translates

code offline and dynamic binary translation (DBT) which

translates code at run-time. DBT may also provide system

functionality expansion by adding new features which were

not originally available (e.g., communication capabilities) in

obsolete systems. In this IoT advent, DBT may become an

emerging technology due to the interoperability it may provide

to heterogeneous industrial environments, and also for its

usability as a tool to support competitors products’s firmware

on a market race perspective [2,3]. In spite of being success-

fully deployed in general-purpose systems to support cross-

ISA binary compatibility, dynamic optimization, profiling,

virtualization, secure execution or debugging environment, in

embedded systems, binary translation has been avoided mainly

due to performance, memory and power overheads [3]–[5].

StrataX [4] is an existing DBT deployment for embedded

devices, developed to evaluate the challenges on bringing DBT

to such resource constrained systems. The authors state that

in order to obtain satisfactory results, the shifting requires the

application of numerous performance enhancing techniques,

which highly depend on the target system characteristics.

However, DBT utilization as an end-product in the industry

has been hampered by the complexity of the subject and its

associated variability management, which brings configuration

challenges into the final solution [5]. The accessible and

profitable use of DBT requires design automation paradigms

and variability management solutions, expanding its usage for

DBT laymen. In this sense, a DBT framework must provide

support for several source and target architectures, optional

execution features (e.g., code profiling, dynamic optimization,

etc.), resource utilization settings (e.g., memory size), design

validation and consequent automatic code generation. In [6],

Kondoh and Komatsu propose a specialization framework to

generated host code to exploit a limited number of char-

acteristics (MMU, bi-endianess and register banks). Their

contribution however does not offer the necessary flexibility to

be applied on different translators or to support other config-

urations than the ones provided. To achieve such type of tool,

a robust base system model is required. This kind of model

must comprise not only the components of the translator and

their characterization, but also specify interfacing rules and

foreknow the accepted variations of the model on a higher ab-

straction level that is subsequently lowered until reaching the

implementation code files and the executable binaries. A DBT

framework model is hard to describe using existing modeling

languages (general-purpose, business, project management,

software development), thus a domain-specific language (DSL)

is required for such task. LLDSAL [7] and PACT:U [8] are

two DSLs applied to DBT for automatic translation generation.

Despite both approaches applying DSL in DBT, the modeling

of the DBT architecture and the generation of translation for

mismatching source/target pairs are not supported. This is

due to their application scope, which is code instrumentation

[8] and application security [7]. For the best of the authors

knowledge, there are no existing DSL modeling solution or

frameworks aimed towards industrial DBT application domain.

In this paper we propose a model-driven DSL modeling
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Figure 1. DBT architectural overview.

language for DBT architectures, aiming to improve complexity

management, design validation and industry interoperability.

Along with the DSL modeling language a framework named

MODELA DBT was also developed, for ready-to-use DBT

solutions, providing easy configuration and code generation

features even for DBT laymen users. The remain of this paper

is organized as follows: Section II introduces an essential DBT

architecture; Section III presents the modeling Elaboration

Language (EL) and the MODELA DBT framework; the DBT

modeling process with the EL is explained in Section IV;

Section V describes the implementation of the DBT system

using the obtained framework and in Section VI and VII the

work evaluation is performed and the conclusion is exposed,

respectively.

II. DBT ARCHITECTURE

In this section a brief technical background is provided

on DBT and the typical architecture of a dynamic binary

translator is represented in Figure 1. In a functional approach,

the execution flow is as follows: a source code is loaded

into a source code cache (CCache). This cache exists for

performance purposes, so that only the code fragment that is

being translated is located on fast random access memory. The

DBT engine, running on top of the target processor, fetches

source binaries from the CCache, proceeds to its translation

and stores the resulting instructions in a Translation cache

(TCache). The code stored in TCache is then natively executed

in the target architecture.

From a modeling perspective, the translator can be split

into source-specific components, target-specific components

and DBT engine-components. The DBT engine itself has two

profiles: the Translation and the Execution. The Execution

profile refers to the native execution of the translated code,

while the Translation profile can be further split into the

Decoder and the Generator sub-components. The Decoder,

which is source ISA specific, is responsible for decoding the

source binary into an Intermediate Representation (IR) for

the Generator component. In its turn, the Generator, which

is target ISA specific, is responsible for generating target

machine code from the IR of the source binaries. The source

binaries execution requires emulation support for architectural

elements like the data and external memories, or the program

counter and other function registers. This support is generally

provided through allocated variables that emulate the source

elements’ behavior.

To evaluate DBT on embedded systems, an in-house re-

sourceable and re-targettable dynamic binary translator was

developed. The details of this translator are outside of the

scope of this paper, however the obtained deployment will be

used as the subject of this study.

III. ELABORATION LANGUAGE (EL)

A domain-specific language (DSL) is a programming lan-

guage that targets a specific problem domain. A DSL should

not provide features to solve every kinds of problems found in

a certain domain, but instead should make it easier to deal with

the problems of the domain it is specific for [9]. The usage

of DSLs over general purpose languages (GPLs) is justified

by several advantages such as gains on expressiveness on the

target domain, ease of use, enhanced productivity, reliability,

maintainability, easier reasoning and validation, and the direct

involvement of domain experts [10]. The effort required to

develop a DSL is however quite hard, as it requires a lot of

technical experience and great understanding of the domain.

Nonetheless, after its implementation, the development cost

easily pays off [11]. The interest in DSLs for generative

programming (GP) [12] and in model-driven development

(MDD) [13] is becoming wider, as they promote software

reuse and fast development through a high abstraction level.

GP purpose is to automatically generate a system given a

set of specifications [12]. MDD is an approach used to

create extensive and descriptive system models on a higher

implementation abstraction, thus simplifying development and

testing activities [13]. Together, these two techniques promote

software reutilization and automatic code generation, powering

the DSL to map different models together and elaborate the

final system code [14].

To pursue such goal, a model-driven DSL, named Elabo-

ration Language (EL), was developed to automatically gen-

erate code from the source files of a given system’s model.

It is based on the Service-Component Architecture (SCA)

standard, which specifies that a model’s components should

follow a composite pattern [15]. SCA features six key ele-

ments: composite, component, service, reference, property and

wire. A complete reference architecture can be constructed

by identifying system components and their interactions, as

well as the properties associated to each component. The

EL grammar was developed using Xtext [16], which is a

framework for programming languages and domain-specific

languages development, offering a full development infrastruc-

ture including parser, linker, type-checker and compiler [17].

An auxiliary tool, Xtend [18], was also used to implement the

language validators, the code generation software and other

additional features. Xtend is a flexible and expressive dialect of

Java, which compiles into readable Java 5 compatible source

code [19]. Both Xtend and Xtext are widely used for DSL

development and integrable with Eclipse IDE [9]. The EL
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Figure 2. Elaboration Language framework workflow.

development will not be covered in this paper. To validate the

EL’s usability as a solution for embedded systems modeling a

case study was elaborated on the modeling of a dynamic binary

translator. The obtained framework was called MOdel-Driven

Elaboration Language Applied to Dynamic Binary Translation

- MODELA DBT.

A. MODELA DBT - EL framework overview

The EL framework workflow, shown in Figure 2, is com-

posed by four main stages: modeling, elaboration, configura-

tion and code generation. During each stage a set of artifacts is

created and then used in the following stages. The modeling

stage goal is to create the model that will be used as the

system’s reference architecture. In this stage every component

must be identified, as well as their dependencies, properties,

interfaces and relations with other components. This model

must be described through the EL. Then, the model representa-

tion goes through the model compiler, which proceeds to syn-

tactic and semantic validations. After a successful compilation,

an architecture-specific Java Elaborator is generated, together

with the XML configuration files, and abstract elaboration and

Java classes for each component. The elaboration stage also

includes the definition of the annotated source files and the

implementation of the elaboration classes (which are based on

the abstract elaboration classes). The elaboration files gather

the information from the whole component’s behavior and

how the source code for that component must be generated.

If there is more than one implementation available to a given

component, the desired implementation should be specified

in the correspondent configuration file. Only one elaboration

class per component is executed by the Elaborator. The anno-

tation process is eased by an API that was created to fetch the

desired values from the configuration files and replace them

within the source code files. During the configuration stage,

it is possible to modify the component properties’ values and

the elaboration file that will be loaded into the Elaborator. It is

also possible to have specific properties for each elaboration

which are not presented in the reference architecture. Finally,

the generated elaborator is executed. During this process,

components’ properties are fetched and the elaboration classes

are loaded using Java reflexion.

B. EL’s Constructs

As previously said, the EL follows a SCA, which means that

an EL file contains the following constructs: interfaces, lan-

guages and components. An interface is a set of functions that

implement a service provided by a component. Components

can be connected through bindings of services and references

that follow the same interface type. Every declared component

must have an implementation language. The language used

by these components should have, in addition to a name,

an annotation section where the user defines a marker that

will be used to specify annotations in the source files. A

component can be composed by a set of other components,

properties, references, services and a free section used to

make assignments or promoting services and/or references. A

component can also inherit another component. This operation

transfers all the content of the inherited component to the top-

level component. Each property may have its own restriction

list or range, for value filtering purposes. Later, the specified

properties will receive their values in the assignments section

or at the code generation step, through the replacement of the

established annotations. By the definition of a composite de-

sign pattern, a component can provide one or more services to

other components. Since a service is implemented by interface

functions, a component can not have more than one service

on the same interface. A reference should be created only

when a component requires to access a composite’s component

service. The assignments field allows the user to set the

value of components properties. In the promotes section

the user can promote references or services of a composite’s

component in order to use them in their top-level component.

Furthermore, it is also possible to bind references to services in

the binds section and to specify the top-level component on

the hierarchy using the keyword compile. This specification

also indicates the classes invocation order to the Elaborator

program. Table I presents the available EL’s keywords and

their respective description.

IV. MODELING THE DBT

The DBT system’s model building was supported on the

theoretical and implementation background on dynamic binary

translation, obtained from the in-house DBT engine develop-

ment. After a thoughtful analysis of the existent deployment,

several components and interfaces were identified. Moreover,

several configuration points were found and transposed to the

model through properties. The end goal of the model was

to automate the system configuration, to perform architecture

validation and to generate the final source code for the end

system.
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Table I
AVAILABLE EL’S KEYWORDS

Keyword Description

annotation Defines the character that limits the annotations.
as Renames a promoted reference or service.
bind Binds a reference to a service.
compile Tells to compiler which is the top level component.
component Defines a component.
final Defines that a component has a concrete elaboration.
import Imports the content of the specified file.
interface Defines a set of functions used by a service or pointed by a

reference.
is Inherits the specified component.
language Defines a language.
promote Promotes a reference or service from a composite’s compo-

nent to the top component.
properties Defines the properties set of a component.
reference Defines the reference used in a promote or in a bind operation.
references Defines the references set of a component.
restrict Restricts the values that a property can take to a user’s defined

set.
service Defines the service used in a promote or in a bind operation.
to Connects a reference to a service in a bind operation.

A. Reference Architecture

In Figure 3 is represented the reference architecture model

for the DBT with a simplified representation of the most

relevant interfaces. The model components are represented as

blocks and the properties as black diamonds. The services

are identified by gray polygons and references by blue poly-

gons. Dashed lines are used to represent interfaces between

components. The composite DBT is made by all the other

components and composites of the dynamic binary transla-

tor reference architecture. Through its modeling, five main

components were identified, all providing the main features of

the system: CCache, TCache, Source Cluster, Target Cluster

and DBT Engine. The Source Cluster is the composite that

aggregates the software blocks associated with the source

architecture, which are Source Environment (also composed

by the data memory), Source Architecture and Decode. The

Target Cluster is also a cluster of related software blocks, but

in this case, related to the target architecture. It is composed

by the Generator and Target Architecture components. The

Dynamic Binary Translation Model

Source Cluster
Source

Architecture

Decoder

Source
Environment

Target Cluster

Target Architecture

Generator

DBT Engine

Translator Executor

Data
Memory

TCacheCCache

- Property - Reference - Service

Figure 3. Reference Architecture.

DBT Engine represents the heart of the translator. It models

the intermediary layer created in run-time that implements

the translation of source code and execution of the target

code. Therefore, it is a composite of other two components:

Translator and Executor.

V. IMPLEMENTATION

A. Model Representation

Based on the DBT reference architecture, an EL code

representation was created for all the components and in-

terfaces. Listing 1 depicts the code representation of the

TranslationCache component with its properties, refer-

ences and services. The component’s properties, TCache_-
Size and cacheType, have default values that can be later

modified by the end user. These properties refer to the total

memory size that will be allocated to store the translated

code, and the type of eviction mechanism to be used when

the TCache is full, respectively. The TranslationCache
has a reference, r_ISA, to the target architecture to define

the Translation Cache word size and the service s_TCache
provided by the Translation Cache.

1 component TranslationCache(cpp)

2 {

3 properties:

4 int TCache_Size : 8192 // 20Kbytes

5 string cacheType : "fullFlush"

6 services:

7 i_TCache s_TCache

8 references:

9 i_ISA r_ISA

10 }

Listing 1. EL representation of Translation Cache component.

The implementation of this component is written in C++
language, therefore a language type entity cpp was created,

where the meta-characters used to annotate the source files

are defined as ’@@’, as exemplified in Listing 2. These

meta-characters are used in the source code preceding and

proceeding the unique identifier of an annotation that will be

replaced by its respective value during the elaboration process

of the final sources.

B. Elaboration

After the EL files being compiled, the elaboration files in

Java and configuration files in XML are generated. In this

phase the annotated source code files and configuration files

are used in the elaboration process of the final files.

1) Configuration Files: The configuration files provide to

the user the capability of modifying the default values of the

component’s properties and the system’s behavior through the

modification of the default elaboration files.

2) Annotated Sources: While building the model, the

designer identifies several configuration points that should

be annotated in the source code with the meta-characters

defined in the EL. The Listing 2 shows the annotations
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TCacheSize, cacheType and CC_type, that will be

replaced by user defined values during the elaboration pro-

cess. These values will replace the (@@TransCache_-
Size@@, @@TransCache_Type@@) and @@CC_type@@
annotations, respectively. TCacheSize and cacheType
refer to the TCache available size to store translated code and

the type of cache management used, respectivelly, while the

CC_type expresses the method used in the DBT to emulate

the source condition codes.

1 #define TCacheSize @@TransCache_Size@@

2 #define cacheType @@TransCache_Type@@

3 #define CC_type @@CC_type@@

Listing 2. Example of Annotations.

3) Elaboration Files: The specific elaboration files for each

source file has the annotations that should be replaced and their

corresponding value. The elaboration API provides methods

to replace the annotations and generate the final files. The

annotations that were previously explained are presented in

the Listing 3 with the replacement methods.

1 openAnnotatedSource("defines.h");

2 replaceAnotation("TransCache_TSize",target.get_TCache_Size());

3 replaceAnotation("TransCache_Type",target.get_cacheType());

4 replaceAnotation("CC_type",target.get_CC_type());

Listing 3. Elaboration File.

In the header file it is necessary to change the annotation

TransCache_Size, TransCache_Type and CC_type.

These annotations should be replaced by the value of their

respective properties, previously configure by the user. The

elaboration file also contains methods that return the names

of the implemented services specific for each elaboration.

VI. EVALUATION

In order to demonstrate the contribution of the EL, a

reference DBT architecture framework was created, the MOD-

ELA DBT. After the system’s configuration, all source

files are automatically generated and ready to be com-

piled. The reference model abstracts the component’s im-

plementation to the user but requires the system designer

to specify the real implementation. An XML configuration

file for the Translation Cache component is created, where

SpecificTransCacheElabTemplate is specified as its

implementation. The translation cache XML configuration file

is shown in Listing 4. Every property requires a value as input,

which can be specified by the end user or retrieved by its

default value. Without these, it is not possible to generate the

final DBT source code. The translation cache default size is

8192, but it was configured as 4096, so the second value will

be used in the compilable source code. The cache type is left

to default (full flush eviction). The generator component is

also configured with the condition codes evaluation type, so

the respective XML configuration file was created.

1 <component type="TranslationCache">

2 <elaboration default="SpecificTransCacheElabTemplate">

3 SpecificTransCacheElabTemplate

4 </elaboration>

5 <properties>

6 <property type="int" name="TCache_Size" default="8192">

7 <value>

8 <element>4096</element>

9 </value>

10 </property>

11 <property type="string" name="cacheType" default="fullFlush">

12 <value>

13 <element></element>

14 </value>

15 </property>

16 </properties>

17 </component>

Listing 4. Translation Cache specific XML configuration file.

SpecificGeneratorElaborator is specified as the

generator component’s implementation. The generator XML

configuration file is shown in Listing 5. The method for con-

ditions codes emulation was modified from lazy to standard
evaluation. The optimizations were also left to default and

remained disable.

After generation, the DBT source code was compiled and

the result deployed on a ARM Cortex-M3, integrated on a

Microsemi’s SmartFusion2 Advanced Development Kit. This

evaluation module was used to run benchmark binaries from

the BEEBS suite [20] compiled for the MCS-51 architecture.

The output is shown in Figure 4, where the configuration

inputs result can be seen. The translation cache size 4096

bytes (0x1000) and the STANDARD EV condition codes

emulation settings are output to the console prior to the

binaries execution.

1 <component type="Generator">

2 <elaboration default="SpecificGeneratorElaboratorTemplate">

3 SpecificGeneratorElaborator

4 </elaboration>

5 <properties>

6 <property type="bool" name="optimizations" default="false">

7 <value>

8 <element></element>

9 </value>

10 </property>

11 <property type="string" name="conditionCodes" default="LAZY">

12 <value>

13 <element>STANDARD</element>

14 </value>

15 </property>

16 </properties>

17 </component>

Listing 5. Specific XML configuration file.
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Figure 4. The compiled DBT source files run on the evaluation board,
translating a program compiled for MCS-51 architecture.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the MODELA DBT framework, the

result of a modeling DSL for embedded systems that targets

dynamic binary translation architectures. The developed DSL

supported by the composite pattern was used to modeled a

dynamic binary translator, creating a higher abstraction level

for system description. The attained functionality demonstrate

that despite a DSL being hard to create, its potential contri-

bution to the modeling, configuration and code generation of

a certain domain tend to pay off, achieving higher productiv-

ity, lower development time and ease of use. The proposed

framework, MODELA DBT, aims to aid design automation,

decreasing configuration efforts and promoting the use of

DBT techonology in the industry as a ready-to-use solution.

To demonstrate the proposed contributions, an in-house DBT

deployment for embedded systems was modeled using the

EL and integrated into the MODELA DBT framework. The

translator was configured through the framework at two levels,

the first one comprising the data support components size (i.e.,

TCache size) and the second one at a functional level, with

the configuration of the CC emulation method. The configured

translator’s end source files were obtained from the framework

without manually changing the source code, neither adding

any code overhead, and used to run the DBT system on a

development kit.

Further testing and validation of the framework depend

on broader configuration options offered by the subject DBT

system. In the future, it is planned to improve the MODELA

DBT by introducing a graphic user interface (GUI) to ease sys-

tem configuration and reduce the number of code generation

steps. Currently, the DSL semantics are also being improved,

with the usage of semantic technology to describe the domain

knowledge. A semantically enhanced DSL will improve the

model validation and reduce the elaboration development

efforts. This will contribute to greater system scalability, con-
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