
A Comparison of Automated Time Series
Forecasting Tools for Smart Cities

Pedro José Pereira1, Nuno Costa1, Margarida Barros1, Paulo Cortez1, Dalila
Durães2, António Silva2, and José Machado2

1 ALGORITMI Centre, Dep. Information Systems, University of Minho,
Guimarães, Portugal

pedro.pereira@dsi.uminho.pt, a89167@alunos.uminho.pt,

a89177@alunos.uminho.pt, pcortez@dsi.uminho.pt
2 ALGORITMI Centre, University of Minho, Braga, Portugal

dalila.duraes@algoritmi.uminho.pt, asilva@algoritmi.uminho.pt,

jmac@di.uminho.pt

Abstract. Most smart city sensors generate time series records and
forecasting such data can provide valuable insights for citizens and city
managers. Within this context, the adoption of Automated Time Series
Forecasting (AutoTSF) tools is a key issue, since it facilitates the de-
sign and deployment of multiple TSF models. In this work, we adapt
and compare eight recent AutoTSF tools (Pmdarima, Prophet, Ludwig,
DeepAR, TFT, FEDOT, AutoTs and Sktime) using nine freely available
time series that can be related with the smart city concept (e.g., temper-
ature, energy consumption, city traffic). An extensive experimentation
was carried out by using a realistic rolling window with several training
and testing iterations. Also, the AutoTSF tools were evaluated by con-
sidering both the predictive performances and required computational
effort. Overall, the FEDOT tool presented the best overall performance.

Keywords: Automated Machine Learning · Time Series Forecasting ·
Smart cities.

1 Introduction

Smart cities collect a huge variety of data variables by using edge sensors (e.g.,
traffic cameras, meteorological instruments). Since each sensor often performs a
regular collection of digital records over time, the collected data tends to assume
a time series format. Under this context, Time Series Forecasting (TSF) is a
fundamental component. Indeed, TSF can be used to provide valuable insights
for city managers and users, allowing to optimize city resources and to support
plans. Moreover, TSF can also help to detect anomalies by comparing the real
observations with the values predicted by the forecasting algorithms [5]. In effect,
several recent studies have applied TSF to smart cities issues, such as: weather
conditions [13], city traffic [14] and energy consumption [7].

2 P. Pereira et al.

There are two main TSF approaches used by the related works: Deep Learn-
ing (DL), for instance by adopting the Long Short-Term Memory(LSTM) archi-
tecture; and AutoRegressive methodologies, such as assumed by the AutoRegres-
sive Integrated Moving Average (ARIMA) methodology. ARIMA was proposed
in the 70s [2]. Due to its success, several extensions have been proposed and
evaluated under the smart cities context [14]. Yet, the ARIMA is a rather rigid
model that presents limitations when modeling complex nonlinear relationships.
More recently, several studies adopted TSF DL approaches for the smart cities
domain, including Recurrent Neural Networks (RNNs) for vehicle parking occu-
pancy [3] and LSTMs for modeling vehicle traffic flow [20].

Nowadays, Machine Learning (ML) is widely used by organizations and in-
dividuals. Under this context, there is an increasing focus towards the usage of
Automated ML (AutoML) and Automated DL (AutoDL) tools3 [8]. These tools
allow non-experts to more easily design and deploy ML algorithms that are capa-
ble of providing value in diverse application domains. As described in [8], there is
an increasing number of research works that propose and compare AutoML and
AutoDL tools for supervised learning tasks (classification or regression). How-
ever, less research and empirical studies have been devoted to the Automated
TSF (AutoTSF) task. In [17], a systematic review was performed by compar-
ing 40 Python packages for time series analysis. The packages were analyzed in
terms of their functionalities, such as performed tasks (e.g., forecasting, anomaly
detection). Yet, the review did not perform any kind of empirical comparison.
More recently, the FEDOT AutoTSF tool was empirically compared against the
Facebook Prophet [19] and AutoTS [21] tools, outperforming both in terms of
predictive performances for a set of 12 financial time series [15].

In this paper, we perform a robust benchmark of eight recent AutoTSF tools
(a value that is substantially higher than what was executed in [15]), namely: Pm-
darima, Prophet, Ludwig (an AutoDL that is adapted here for TSF), DeepAR,
TFT, FEDOT, AutoTs and Sktime. To test the tools, nine time series that can
be associated with the smart cities context were used. Within our knowledge,
this is the first study addressing the AutoTSF topic within the smart city appli-
cation domain. The comparison includes the adoption of a robust rolling window
evaluation, which performs several training and testing iterations over time. For
each iteration, the tools are analyzed in terms of two criteria: predictive per-
formances, set in terms of the Normalized Mean Absolute Error (NMAE); and
computational effort, set in terms of training and inference times (measured in
seconds and milliseconds).

2 Materials and Methods

2.1 Time Series Data

A time series represents a collection of time ordered observations (y1, y2, ..., yt),
each recorded at a specific time (t) [6]. This work addresses multi-step ahead

3 Also known as Neural Architecture Search (NAS).

A Comparison of AutoTSF Tools for Smart Cities 3

forecasts, meaning that at time t (the last known value) from t + 1 to t + H
ahead forecasts are performed (H is known as the horizon).

This study considers time series that can be related with the smart cities con-
text, reflecting three city phenomena: meteorology4, energy consumption5 and
city traffic6. For each phenomena, we retrieved three different time series from the
Kaggle platform (Table 1). The meteorological data is relative to the maximum
daily temperature from three cities (Porto, Lisbon and Madrid), collected from
2008 to 2020. The energy consumption hourly data, measured in Megawatts, was
collected from 2004 to 2018. In order to produce a similar time series length (as
for the meteorology case), the data was aggregated on a daily basis by summing
the hourly values. Each series was recorded by a different North American energy
company: American Electric Power (AEP), Commonwealth Edison (COMED);
and PJM East Region (PJME). Regarding the traffic data, the series correspond
to the hourly number of vehicles passing by three different junctions from a city
of the United States of America (USA). The hourly time scale was preserved in
order to maintain a series length similar to the meteorology and energy data.

Table 1: Summary of the selected time series (L – series length, K – seasonal
period, W – window size, S – step, H – horizon).

Context Target Series Location (years) L K W S H

Meteorology

Daily max.
temperature

(in C)

porto Porto (2008-2020) 3946 365 1825 105 7
lisbon Lisbon (2008-2020) 3946 365 1825 105 7
madrid Madrid (2008-2020) 3946 365 1825 105 7

Energy

Daily
consumption

(in MW)

AEP USA (2004-2018) 5055 7 1825 161 7
COMED USA (2011-2018) 2772 7 1825 47 7
PJME USA (2002-2018) 6059 7 1825 211 7

Traffic
Hourly no.
of vehicles
(in units)

junction1 USA (Jan. to June, 2017) 4344 24 2160 108 24
junction2 USA (Jan. to June, 2017) 4344 24 2160 108 24
junction3 USA (Jan. to June, 2017) 4344 24 2160 108 24

For the daily time series (meteorology and energy related) the prediction
horizon was set to one week (H = 7), while for the hourly vehicle traffic the
horizon was set to one day (H = 24). To set the seasonal period (K) we followed
the methodology adopted in [5], which assumes an inspection of the observed
values and its autocorrelations. The visual inspection confirmed seasonal periods
of K = 365 (one year) for the meteorological data, K = 7 (one week) for the
energy data and K = 24 (one day) for the traffic series. As shown in Figure 1,
these K values correspond to higher autocorrelation values within the neighbor-

4 https://www.kaggle.com/datasets/luisvivas/spain-portugal-weather
5 https://www.kaggle.com/robikscube/hourly-energy-consumption
6 https://www.kaggle.com/fedesoriano/traffic-prediction-dataset

https://www.kaggle.com/datasets/luisvivas/spain-portugal-weather
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/fedesoriano/traffic-prediction-dataset

4 P. Pereira et al.

hood of a time lag and its multiple values (e.g., {12,24} time lags for the AEP
dataset). It should be noted that the value of K is often known apriori by the
domain user. Also, the K parameter is only required by the Ludwig tool, to set
the number of time lags used by the searched autoregressive models.

0 100 200 300 400

10
20

30

porto

Index

Te
m

pe
ra

tu
re

0 100 200 300 400

30
00

00
40

00
00

50
00

00

AEP

Index

E
ne

rg
y

0 50 100 150

20
40

60
80

junction1

Index

V
eh

ic
le

s

0 100 200 300

−
0.

5
0.

0
0.

5
1.

0

Lag

A
C

F

porto

0 10 20 30

0.
0

0.
4

0.
8

Lag

A
C

F
AEP

0 5 10 15 20 25 30 35

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

junction1

Fig. 1: Examples of time series (top plots) and their autocorrelations (bottom graphs).

2.2 AutoTSF Methods

We compare eight open-source Python AutoTSF tools, summarized in Table 2 in
terms of: Name, publication Year, bibliographic Reference, automated Type,
Optimization method used for the TSF model search (when known), domain
License and Training Mode. We selected: three AutoDL tools – Uber Ludwig
[12]; Temporal Fusion Transformer (TFT), based on LSTMs [10]; and DeepAR,
based on RNNs [16]); three native AutoTSF tools – FEDOT [15]; Auto Time-
Series (AutoTS) [21]; and Sktime [11]); and two recent implementations that
assume a single TSF model: Auto-Arima [18] and Facebook Prophet [19]). To
maintain a fair comparison, whenever possible the tools were executed the de-
fault parameters, thus corresponding to a natural choice for an non-expert user.
Furthermore, to reduce the computational effort, we limited the models execu-
tion time, either by setting a time limitation, selecting a fast execution option
or performing the model and hyperparamenter selection only during the first
rolling window iteration (Update train mode). This last option assumes fixing
the selected model after the first iteration and then only updating it (fit to newer
training data) in the remaining iterations. The selected AutoTSF tools are:

1. Pmdarima: a recent Python module that implements Auto-ARIMA [18], an
extension that automatically chooses the best ARIMA model [1].

2. Prophet : Facebook’s additive TSF model that is capable to deal with non-
linearity [19]. We used the prophet Python package.

3. Ludwig : Uber’s open source AutoDL software that uses a DL architecture
called Encoder-Combiner-Decoder [12]. The tool is implemented via the

A Comparison of AutoTSF Tools for Smart Cities 5

Table 2: Summary of the analyzed AutoTSF tools.

Name Year Ref. Type Task Opt. License
Train
Mode

Pmdarima 2017 [18] Auto-Arima TSF - MIT Train
Prophet 2017 [19] AutoProphet TSF - MIT Train
Ludwig 2019 [12] AutoDL Reg. - Apache 2.0 Train
DeepAR 2020 [16] AutoRNN TSF - Apache 2.0 Train
TFT 2021 [10] AutoLSTM TSF - Apache 2.0 Train
FEDOT 2022 [15] AutoTSF TSF EA BSD-3-Clause Update
AutoTs 2022 [21] AutoTSF TSF GA MIT Train
Sktime 2022 [11] AutoTSF TSF GS BSD-3-Clause Update

ludwig Python package. Ludwig was adapted for TSF by converting a time
series into a tabular format by using a sliding time window. In particular,
autoregressive models are assumed, where ŷt = f(yt−k1

, ..., yt−kn
) is the pre-

dicted value, f denotes the learned regression function and {k1, ..., kn} is the
set of time lags used by the sliding window to generate the regression inputs.
Similarly to what was proposed in [5], the selected time lags are based on
seasonal period (K) heuristics: temperature series – {1, 2, 3, 4, 5, 6, 365, 366}
(yearly seasonality); energy data – {1, 2, ..., 7, 8} (weekly seasonality); and
traffic – {1, 2, ..., 24} (daily seasonality). To generate multi-step ahead forests,
an iterative input feedback of the previous predictions is adopted [5].

4. DeepAR: a methodology for probabilistic forecasting that uses autoregres-
sive Recurrent Neural Networks (RNNs) [16]. RNNs do not require sliding
windows, since the model is capable of internally memorizing temporal se-
quences. DeepAR is implemented using the Gluonts Python module.

5. TFT : similarly to DeepAR, TFT is an AutoDL tool yet with a particular
focus in LSTM RNN [10]. This tool was also implemented using Gluonts

Python module.

6. FEDOT : an approach to design ML pipelines based on an Evolutionary
Algorithms (EA) and that can be applied to different ML tasks, including
TSF [15]. We used the fedot Python package with the time series preset
setup. Furthermore, the maximum model training time was set to 15 min-
utes. Since this AutoTSF method is computationally expensive, when com-
pared with the other AutoTSF approaches, the tool was set with the Update
training mode.

7. AutoTS : an AutoTSF tool based on Genetic Algorithms (GA) [21]. Regard-
ing its implementation, we used the autots Python package, assuming the
“superfast” model option, which includes a Generalized Least Squares learn-
ing and multiple Naive models.

6 P. Pereira et al.

8. Sktime: is an unified Grid Search (GS) framework for ML with time series
capabilities [11]. We used 4 different models: Theta, Naive, Auto-ARIMA
and Auto-ETS. Similarly to FEDOT, the Update mode is assumed.

2.3 Evaluation

In order to perform a robust comparison, we applied a realistic rolling window
scheme with a total of U = 20 training and testing iterations over time [4].
In each iteration, models are fitted using a training set of a fixed window size
W and then performs up to H-ahead predictions. The first iteration assumes
that the oldest W data observations are used to fit the TSF model. In the
next iteration, the window is rolled by assuming a step size of S, where the S
oldest values are discarded from the training set, which is then updated with S
newer observations, and so on. In order to set the rolling window parameters,
we first adopted a fixed W value for each series type (five years of data for the
meteorological and energy series; 90 days of data for the traffic series). Then,
the rolling window step was defined as S = (L− (W + H − 1))/U .

All selected models were evaluated both in terms of their predictive per-
formances and computational effort. For evaluating the predictive performance,
we used the Normalized Mean Absolute Error (NMAE), computed according to

NMAE = MAE
ymax−ymin

, with MAE =
∑H

i=1 |yt+i−ŷt+i|
H , where yt+i denotes the

target values, ŷt+i the predictions (made at time t for the i-th ahead step),
and ymin and ymax the series minimum and maximum values, respectively. The
NMAE is a scale independent measure. In terms of computational effort, we
measured both the training time, in seconds, and the inference time (when per-
forming one multi-step ahead prediction), in milliseconds. For each time series,
we aggregated the results for all 20 iterations by using the median for NMAE
(which is less sensitive to outliers) and the mean for the training and inference
times (one multi-step prediction). The Wilcoxon non parametric statistic [9] is
used to check if paired NMAE differences are statistically significant (p-value
below 0.05).

3 Results

All experiments were executed using Python code that was run in an Linux Intel
Xeon 2.10GHz server. Table 3 presents obtained results for the meteorological
datasets. For the porto series, Ludwig obtained the best predictive performance
with 9.56% NMAE, followed by Pmdarima (9.87 %) and FEDOT (10.29 %).
Regarding the lisbon series, Pmdarima achieved the best predictive performance,
while FEDOT was the second best AutoTS model, followed by Sktime. For
the madrid dataset, FEDOT tool achieved the best predictions, followed by
Sktime and then Pmdarima. On the other hand, Sktime obtained the worst
NMAE value for the porto series and AutoTS produced the worst predictions
for the lisbon and madrid data. Regarding the computational effort, Prophet
presents the fastest training process but also the slowest prediction times. As

A Comparison of AutoTSF Tools for Smart Cities 7

for Pmdarima, it corresponds to the fastest TSF model to perform predictions,
achieving the lowest inference times for the same datasets.

Table 3: Comparison results for the meteorological data (best values are in bold).

Time series
ML

NMAE (in %)
Train Prediction

Model Time (s) Time (ms)

porto

Pmdarima 9.87 87.74 0.47
Prophet 13.76 0.38 116.33
Ludwig ?9.56 5.84 88.74
DeepAR 10.66 118.13 7.66
TFT 11.98 291.59 4.74
FEDOT 10.29 150.80 1.81
AutoTS 11.34 9.79 7.87
Sktime 18.67 0.51 4.05

lisbon

Pmdarima †5.49 86.61 0.39
Prophet 7.99 0.22 115.95
Ludwig 9.04 5.37 74.96
DeepAR 8.55 118.44 7.65
TFT 5.94 291.89 4.75
FEDOT 5.68 209.46 1.72
AutoTS 14.76 10.54 9.85
Sktime 5.80 0.83 1.84

madrid

Pmdarima 7.26 90.88 0.37
Prophet 13.35 0.25 112.84
Ludwig 7.99 5.88 74.14
DeepAR 7.70 118.72 7.87
TFT 8.64 286.85 4.72
FEDOT �6.31 150.81 1.53
AutoTS 22.56 12.85 9.60
Sktime 6.96 0.49 1.85

? – Statistically significant under a paired comparison with Sktime.

† – Statistically significant under a paired comparison with Prophet and Sktime.

� – Statistically significant under a paired comparison with Prophet and AutoTS.

The energy consumption results are presented in Table 4. The DeepAR model
achieved the lowest NMAE values for AEP series and COMED while AutoTS se-
lected a TSF model that obtained the lowest NMAE for the PJME data (3.44%).
As for Sktime, it presented the worst predictive performances. Similarly to the
results obtained with the meteorological data, Prophet is the fastest model in
the training stage (less than 1 s), while Pmdarima is the fastest to perform
predictions (around 0.4 ms).

8 P. Pereira et al.

Table 4: Comparison results for the energy data (best values in bold).

Time series
ML

NMAE (in %)
Train Prediction

Model Time (s) Time (ms)

AEP

Pmdarima 4.52 128.86 0.40
Prophet 3.93 0.47 113.86
Ludwig 3.75 5.55 77.42
DeepAR ?3.47 120.58 7.83
TFT 3.96 292.24 4.65
FEDOT 3.83 208.16 1.83
AutoTS 4.83 8.28 6.25
Sktime 5.30 3.05 3.52

COMED

Pmdarima 4.75 99.86 0.39
Prophet 4.36 0.39 115.82
Ludwig 3.75 6.28 78.23
DeepAR 2.45 119.80 7.74
TFT 3.96 292.24 4.72
FEDOT 3.77 150.86 1.47
AutoTS 4.40 9.41 8.08
Sktime 6.91 1.29 4.11

PJME

Pmdarima 3.75 97.65 0.40
Prophet 3.62 0.45 115.33
Ludwig 4.63 5.84 78.49
DeepAR 4.48 119.48 8.45
TFT 4.06 292.19 4.62
FEDOT 4.12 207.77 1.40
AutoTS ?3.44 8.19 6.64
Sktime 7.31 1.34 4.15

? – Statistically significant under a paired comparison with Sktime.

Table 5 shows the city traffic results. FEDOT obtained the best predictive
performance for two of the three series (junction1 and junction2), while DeepAR
achieved the lowest NMAE value for the junction3 data. Similarly to the previous
obtained results, the Sktime TSF model presented the highest prediction errors.
In terms of the computation effort, the previously detected behavior is repeated
(e.g., Prophet is the fastest training method).

The overall results are shown in Table 6 in terms of the tool NMAE median
and computational effort average results when considering all 9 time series. The
best median predictive performance is obtained by the FEDOT (4.58%), followed
by Prophet (5.31%) and DeepAR (5.91 %). The obtained results are consistent
with the study performed in [15], since in this work FEDOT also outperforms
the Prophet and AutoTS tools in terms of the obtained median NMAE value.
Moreover, FEDOT produces the lowest NMAE values for 3 out of 9 analyzed

A Comparison of AutoTSF Tools for Smart Cities 9

Table 5: Comparison results for the traffic data (best values in bold).

Time series
ML

NMAE (in %)
Train Prediction

Model Time (s) Time (ms)

junction1

Pmdarima 12.91 98.10 0.21
Prophet 5.52 0.39 34.13
Ludwig 8.17 8.35 28.28
DeepAR 6.26 286.20 8.86
TFT 6.29 711.38 2.25
FEDOT ?3.44 208.22 0.40
AutoTS 6.54 13.51 4.49
Sktime 14.36 1.28 2.59

junction2

Pmdarima 11.00 145.47 0.22
Prophet 7.13 0.36 32.87
Ludwig 11.34 6.21 28.30
DeepAR 10.29 286.90 8.13
TFT 10.70 708.42 2.17
FEDOT ?5.60 208.13 0.39
AutoTS 8.95 13.91 5.22
Sktime 17.19 1.33 3.99

junction3

Pmdarima 3.82 121.28 0.18
Prophet 2.56 0.63 39.20
Ludwig 2.99 6.98 27.67

DeepAR †1.82 279.04 7.65
TFT 2.58 703.93 2.17
FEDOT 2.46 208.38 0.43
AutoTS 2.15 13.70 5.66
Sktime 4.26 0.59 1.74

? – Statistically significant under a paired comparison with all other methods.

† – Statistically significant under a paired comparison with Pmdarima, Prophet, Lud-

wig, DeepAR, TFT, FEDOT and Sktime.

time series (madrid, junction1 and junction2). For demonstration purposes, some
examples of FEDOT forecasts are shown in Figure 2. While DeepAR also ob-
tains three best results (AEP, COMED and junction3), in terms of the median
NMAE, this AutoTSF method is ranked at third place. The other best forecast-
ing results were obtained by: Ludwig – porto series; Pmdarima – lisbon series;
and AutoTS – PJME series. On the other extreme, Sktime achieved the worst
predictive performances in 7 out of 9 time series. As for the computational cost,
Prophet is the lighter model in terms of training time, while Pmdarima pro-
duces TSF models that result in very fast inference times (around 0.34 ms). As

10 P. Pereira et al.

for FEDOT, it requires a reasonable computational effort, around 3 minutes for
model selection and training with thousands of observations and around 1.22 ms
to generate a prediction, which is affordable for the analyzed hourly and daily
time scales.

Table 6: Overall comparison results (median NMAE values and average training
and prediction times; best values in bold).

ML
NMAE (in %)

Train Prediction
Model Time (s) Time (ms)

Pmdarima 6.54 106.27 0.34
Prophet 5.31 0.39 88.48
Ludwig 7.99 6.26 61.80
DeepAR 5.91 174.14 7.98
TFT 5.99 430.08 3.87
FEDOT 4.58 189.18 1.22
AutoTS 6.74 11.13 7.07
Sktime 8.99 1.19 3.09

1 2 3 4 5 6 7

8.5

9.0

9.5

10.0

10.5

11.0
madrid iteration 6, NMAE=1.59%

Target Value
Predicted

1 2 3 4 5 6 7

280000

290000

300000

310000

320000

330000
AEP iteration 16, NMAE=1.01%

Target Value
Predicted

0 5 10 15 20 25
40

50

60

70

80

90

junction1 iteration 2, NMAE=1.92%

Target Value
Predicted

Fig. 2: Examples of multi-step ahead predictions using the FEDOT tool.

4 Conclusions

This paper compares eight recent AutoTSF tools (Pmdarima, Prophet, Ludwig,
DeepAR, TFT, FEDOT, AutoTs and Sktime) using nine freely available time
series that can be associated with smart city contexts. Using a realistic rolling
window scheme, the AutoTSF tools were compared in terms of their predictive
performances and computational effort (training and prediction times). Overall,

A Comparison of AutoTSF Tools for Smart Cities 11

the interesting results were obtained by the FEDOT AutoTSF tool. FEDOT
obtained a low average forecasting error (around 4.58%), while requiring a rea-
sonable computational effort, around 3 minutes to generate a new TSF model
and 1.22 ms to produce a single prediction. In terms of future work, we intend
to enlarge the comparison study by considering more time series (e.g., public car
parking occupation, water consumption levels per district). Furthermore, we also
plan to explore more AutoTSF Python modules (e.g., hcrystalball, pyaf).

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia
within the R&D Units Project Scope: UIDB/00319/2020 and the project “Inte-
grated and Innovative Solutions for the well-being of people in complex urban
centers” within the Project Scope NORTE-01-0145-FEDER-000086.

References

1. Alghamdi, T., Elgazzar, K., Bayoumi, M., Sharaf, T., Shah, S.: Fore-
casting traffic congestion using ARIMA modeling. In: 15th International
Wireless Communications & Mobile Computing Conference, IWCMC
2019, Tangier, Morocco, June 24-28, 2019. pp. 1227–1232. IEEE (2019).
https://doi.org/10.1109/IWCMC.2019.8766698

2. Box, G.E.: Gm jenkins time series analysis: Forecasting and control. San Francisco,
Holdan-Day (1970)

3. Camero, A., Toutouh, J., Stolfi, D.H., Alba, E.: Evolutionary deep learning for
car park occupancy prediction in smart cities. In: Battiti, R., Brunato, M., Kot-
sireas, I.S., Pardalos, P.M. (eds.) Learning and Intelligent Optimization - 12th
International Conference, LION 12, Kalamata, Greece, June 10-15, 2018, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 11353, pp. 386–401.
Springer (2018). https://doi.org/10.1007/978-3-030-05348-2 32

4. Cortez, P., Matos, L.M., Pereira, P.J., Santos, N., Duque, D.: Forecasting store
foot traffic using facial recognition, time series and support vector machines. In:
Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado,
E. (eds.) International Joint Conference SOCO’16-CISIS’16-ICEUTE’16 - San Se-
bastián, Spain, October 19th-21st, 2016, Proceedings. Advances in Intelligent Sys-
tems and Computing, vol. 527, pp. 267–276 (2016). https://doi.org/10.1007/978-
3-319-47364-2 26

5. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet traffic forecast-
ing using neural networks and time series methods. Expert Systems 29(2), 143–
155 (2012). https://doi.org/10.1111/j.1468-0394.2010.00568.x, https://doi.org/
10.1111/j.1468-0394.2010.00568.x

6. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Multi-scale internet traffic forecasting
using neural networks and time series methods. Expert Syst. J. Knowl. Eng. 29(2),
143–155 (2012), https://doi.org/10.1111/j.1468-0394.2010.00568.x

7. Elattar, E.E., Sabiha, N.A., Alsharef, M., Metwaly, M.K., Abd-Elhady, A.M., Taha,
I.B.M.: Short term electric load forecasting using hybrid algorithm for smart cities.
Appl. Intell. 50(10), 3379–3399 (2020). https://doi.org/10.1007/s10489-020-01728-
x

https://doi.org/10.1109/IWCMC.2019.8766698
https://doi.org/10.1007/978-3-030-05348-2_32
https://doi.org/10.1007/978-3-319-47364-2_26
https://doi.org/10.1007/978-3-319-47364-2_26
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1111/j.1468-0394.2010.00568.x
https://doi.org/10.1007/s10489-020-01728-x
https://doi.org/10.1007/s10489-020-01728-x

12 P. Pereira et al.

8. Ferreira, L., Pilastri, A.L., Martins, C.M., Pires, P.M., Cortez, P.: A comparison
of automl tools for machine learning, deep learning and xgboost. In: International
Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22,
2021. pp. 1–8. IEEE (2021). https://doi.org/10.1109/IJCNN52387.2021.9534091

9. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric statistical methods. John
Wiley & Sons (2013)

10. Lim, B., Ark, S.O., Loeff, N., Pfister, T.: Temporal fusion
transformers for interpretable multi-horizon time series forecast-
ing. International Journal of Forecasting 37(4), 1748–1764 (2021).
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012

11. Lning, M., Bagnall, T., Kirly, F., Middlehurst, M., Ganesh, S., Oastler, G., Lines,
J., ViktorKaz, Walter, M., RNKuhns, Mentel, L., Owoseni, T., Rockenschaub,
P., jesellier, Tsaprounis, L., Bulatova, G., chrisholder, Lovkush, Take, K., Meyer,
S.M., AidenRushbrooke, Schfer, P., oleskiewicz, danbartl, eenticott shell, Xu,
Y.X., Ansari, A., Sakshi, A., Arelo, Hongyi: alan-turing-institute/sktime: v0.11.0
(mar 2022). https://doi.org/10.5281/zenodo.6386934, https://doi.org/10.5281/
zenodo.6386934, [Online; accessed 2022-04-06]

12. Molino, P., Dudin, Y., Miryala, S.S.: Ludwig: a type-based declarative deep learn-
ing toolbox. CoRR abs/1909.07930 (2019)

13. Murat, M., Malinowska, I., Gos, M., Krzyszczak, J.: Forecasting daily meteoro-
logical time series using arima and regression models. International Agrophysics
32(2), 253–264 (2018). https://doi.org/10.1515/intag-2017-0007

14. Nagy, A.M., Simon, V.: Survey on traffic prediction in smart cities. Pervasive Mob.
Comput. 50, 148–163 (2018). https://doi.org/10.1016/j.pmcj.2018.07.004

15. Nikitin, N.O., Vychuzhanin, P., Sarafanov, M., Polonskaia, I.S., Revin,
I., Barabanova, I.V., Maximov, G., Kalyuzhnaya, A.V., Boukhanovsky,
A.: Automated evolutionary approach for the design of composite ma-
chine learning pipelines. Future Gener. Comput. Syst. 127, 109–125 (2022).
https://doi.org/10.1016/j.future.2021.08.022

16. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar:
Probabilistic forecasting with autoregressive recurrent networks.
International Journal of Forecasting 36(3), 1181–1191 (2020).
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.07.001

17. Siebert, J., Groß, J., Schroth, C.: A systematic review of python packages for time
series analysis. CoRR abs/2104.07406 (2021), https://arxiv.org/abs/2104.

07406

18. Smith, T.G., et al.: pmdarima: Arima estimators for Python (2017–), http://www.
alkaline-ml.com/pmdarima, [Online; accessed 2022-04-06]

19. Taylor, S.J., Letham, B.: Forecasting at scale. PeerJ Prepr. 5, e3190 (2017).
https://doi.org/10.7287/peerj.preprints.3190v1

20. Vijayalakshmi, B., Ramar, K., Jhanjhi, N.Z., Verma, S., Kaliappan, M., Vijayalak-
shmi, K., Vimal, S., Kavita, Ghosh, U.: An attention-based deep learning model
for traffic flow prediction using spatiotemporal features towards sustainable smart
city. Int. J. Commun. Syst. 34(3) (2021). https://doi.org/10.1002/dac.4609

21. Wang, C., Chen, X., Wu, C., Wang, H.: Autots: Automatic time series forecast-
ing model design based on two-stage pruning. CoRR abs/2203.14169 (2022).
https://doi.org/10.48550/arXiv.2203.14169

https://doi.org/10.1109/IJCNN52387.2021.9534091
https://doi.org/https://doi.org/10.1016/j.ijforecast.2021.03.012
https://doi.org/10.5281/zenodo.6386934
https://doi.org/10.5281/zenodo.6386934
https://doi.org/10.5281/zenodo.6386934
https://doi.org/10.1515/intag-2017-0007
https://doi.org/10.1016/j.pmcj.2018.07.004
https://doi.org/10.1016/j.future.2021.08.022
https://doi.org/https://doi.org/10.1016/j.ijforecast.2019.07.001
https://arxiv.org/abs/2104.07406
https://arxiv.org/abs/2104.07406
http://www.alkaline-ml.com/pmdarima
http://www.alkaline-ml.com/pmdarima
https://doi.org/10.7287/peerj.preprints.3190v1
https://doi.org/10.1002/dac.4609
https://doi.org/10.48550/arXiv.2203.14169

	 A Comparison of Automated Time Series Forecasting Tools for Smart Cities

