A Hardware-assisted Translation Cache for
Dynamic Binary Translation in Embedded Systems

Filipe Salgado, Tiago Gomes, Adriano Tavares, and Jorge Cabral
Centro ALGORITMI, University of Minho (PORTUGAL)
{fsalgado, mr.gomes, atavares, jcabral } @dei.uminho.pt

Abstract—Approaches to Dynamic Binary Translation (DBT)
on resource-constrained embedded systems are not straight for-
ward, leading to several improvements and acceleration sugges-
tions that rely on dedicated hardware. Software to hardware of-
floading is a common acceleration procedure used when software-
only approaches do not meet the performance requirements,
making such approach suitable to be successfully applied to DBT.
This article approaches hardware offloading to address some
limitations of an in-house DBT engine, the DBTOR, regarding
its Translation Cache (TCache) management mechanism. The
suggested approaches are non-intrusive to the target architecture,
which cope with the commercial-off-the-shelf (COTS)-driven
deployment of DBT for the resource-constrained embedded
devices. This work proposes a TCache management hardware
module that overpasses the linked list and hash table software-
only approaches, resulting in a performance improvement of 25%
and 26 %, respectively.

Index Terms—Dynamic Binary Translation, Embedded sys-
tems, Computer architectures, Hardware Accelerator, Con-
strained Devices, System-on-Chip.

I. INTRODUCTION

Dynamic binary translation (DBT) is a technique that was
developed for architectural compatibility, i.e., to run machine
binary code on architectures different from the one it was
compiled for. This technique also eases the bridging of
legacy systems to cheaper and up-to-date platforms [1,2],
assists virtualization systems and promotes legacy support,
providing binary compatibility with minimal non-recurring
engineering. Contrarily to static binary translation (BT), and
because translation is performed dynamically, it usually costs
to a software-implemented DBT thousands of instructions to
translate and optimize a source Instruction Set Architecture
(ISA) instruction, which makes DBT a hard challenge to
perform in low-end devices, which are commonly scarce in
resources. The major costs associated with a DBT system
comprises several translation and emulation overheads, along
with other potential runtime costs. Such overheads are mainly
associated to code decoding and translation, condition codes
(CO) handling (through emulation), memory management
techniques, peripherals remapping and interrupt handling.

DBT has been widely addressed in the past. Borin et al. pre-
sented a strategy to identify the main sources of overhead in-
volved in the process of DBT [3]. Despite the study concerning
DBT aimed at desktop processors, thus, not applied directly to
embedded systems, evaluation parameters such as cold code
translation and translated code execution are transversal to
the DBT topic. Among other suggestions, the authors point

978-1-5386-7108-5/18/$31.00 ©2018 IEEE

that research in overhead reduction through hardware support
should be conducted in order to achieve near zero overhead
DBT. Yao et al. identified that common DBT systems suffer
performance loss because of architectural heterogeneity among
ISAs, control flow and context switches [4]. In the same work,
it is proposed an field-programmable gate array (FPGA)-based
hardware/software co-designed acceleration solution, achieved
through register replication in reconfigurable hardware and
ISA extensions. The authors claim a global speed-up of 56.1%,
but provide very shallow details on the integration of used
techniques with their DBT engine characteristics. Despite
efficient, the approach comes with the cost of architectural
modifications to the target processor.

DBTIM is a hardware-assisted DBT architecture for full vir-
tualization [5]. The solution targets high-performance systems
and uses a reconfigurable DBT chip, deployed in a dual in-
line memory module (DIMM), coupled with a motherboard in
order to provide full hardware virtualization of the host central
processing unit (CPU). The DBT chip receives the source
code and the translation request through the memory interface,
processes the request and delivers the translated code through
the same mechanism. The approach is an example of hardware
integration over traditional systems, without requiring architec-
tural modifications to the target architecture. The use of FPGA
fabric to promote binary compatibility is advocated in [6] and
in [7]. The former proposes the use of hardware to promote
binary compatibility, using reconfigurable coarse grained units
to execute legacy functionalities through a Dynamic Instruc-
tion Merging technique, a form of BT in hardware. In [7]
the authors attempt to understand the challenges of applying
reconfigurable computing to accelerate DBT during runtime
using co-processors. The method is based in the detection of
execution patterns in the source code upon its profiling and
subsequent loading of the accelerator’s bitstream to the FPGA.

Approaches to DBT on resource-constrained embedded sys-
tems have also been explored and evaluated by authors, leading
to several acceleration and improvement suggestions that rely
on reconfigurable hardware [8]. This work evaluates features
of the implemented DBT engine that would mostly benefit
from hardware acceleration, e.g., the CCs handling. Software
to hardware offloading is a common acceleration procedure
used when software-only approaches do not meet the per-
formance requirements. There are however other motivations
to embark on software to hardware tasks migration, namely,
functionality extensions and shortfalls overcome. Despite the

307

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

DBT engine
—

Fig. 1: DBT engine architectural model.

aforementioned mentioned works tackling the main challenges
of a DBT system, hardware-based approaches to tackle the
management and eviction of a Translation Cache (TCache)
have never been attempt. This article presents a hardware-
based mechanism to accelerate and extend the functionalities
of DBT applied to the resource-constrained embedded devices,
approaching hardware offloading to address some limitations
of the DBT engine regarding the TCache management mech-
anism. The TCache management module was deployed in a
non-intrusive hybrid acceleration architecture compliant with
COTS solutions that integrate both a microcontroller system
as well as FPGA fabric.

II. TRANSLATION CACHE IN DBT

The conceptual model of a DBT system is depicted in
Figure 1. It is generally composed by (1) a DBT engine,
which contains the Translation and the Execution modules; (2)
the source binary code; (3) a Translation cache/buffer; (4) the
(emulated) guest data source; and (5) the target host hardware.
Regarding the Execution and Translation, the first refers to the
native execution of the translated code, while the second can
be further split into (6) the Decoder and (7) the Generator sub-
modules. For optimization purposes, an adaptable DBT system
can also profile program runtime behavior and optimize blocks
of frequently executed instructions, designated by basic blocks
(BB), which are considered the basic unit of translation, i.e.,
a sequence of instructions likely to be executed as a whole,
composed by one entry point and one exit point [1].

The normal execution flow can be summarized as follows:
The DBT engine manages the Translation and Execution
processes of the source binaries, which is handled in units
of BBs, where each BB is identified by its first instruction’s
address, i.e., the source architecture’s program counter (PC)
value. After translation, each source BB will generate its
equivalent translated BB (TBB) stored in the TCache memory.
The translation process starts with a query of the source PC
value to the TCache. If the BB is already translated and its
corresponding TBB is in cache, the TCache address where
the TBB is stored is fetched and the DBT engine switches
to the Execution environment in order to run the TBB block.
After the TBB’s execution, the DBT will return its execution

and perform another query to the TCache for the next source
BB to translate and/or execute. If the source PC is not yet
translated, then a new translation must be performed. This is
done by adding a new entry to the TCache for the new BB, and
saving the address (for later execution) where the generated
code of the TBB starts. Then, the Translation process starts its
loop until a control flow instruction is fetched. Each instruction
is decoded and translated individually and the PC updated to
the next value, accordingly with the instruction length. The
previously saved TBB location address is now used by the
DBT to switch to the execution of the new translated BB.

This article focus on the TCache component, which is part
of the DBTOR, an in-house DBT system developed by authors
that targets resource-constrained embedded systems. TCache
is a translation buffer where the translated code is stored prior
its execution and it must be allocated on a section of the host
machine’s memory with write access and execution privileges.
It needs to support content management and replacement
mechanisms to accommodate incoming translations from the
Generator and to keep record of the stored BBs.

A. Related Work

TCache management in DBT has already been approached
in the literature. Baiocchi et al. [9] use scratchpad memory
(SPM) as a auxiliary memory for quick context switch between
the Translation and Execution environments, by reducing the
translated code and by delegating code caching operations in
the SPM. However, the context switch is extremely reduced
(one instruction to save the return address and another to move
the data memory base address). Furthermore, SPM, or Tightly
Coupled Memory (TCM), is not commonly present in the
resource-constrained low-budget embedded devices. In [10]
the authors resort to hardware techniques in order to manage
the code cache either in DBT or dynamic optimizers. Hazel-
wood et al. [11] identify and study the TCache performance
on DBT, presenting a framework to access and manipulate the
translation cache of a binary instrumentation system named
PIN. Chen et al. developed extensive work in this topic,
suggesting hardware to assist a specialized instruction decode
cache, the DICache [12]-[15]. Despite the work presenting
substantial improvements over software-only deployments, it
proposes the integration of hardware extensions at architectural
level into an intellectual property (IP) Arm core processor.
Following Baiocchi, Yao et al. [4] also integrate SPM in FPGA
to reduce context switching overheads. Furthermore, they
present a hardware deployment of the mechanism proposed in
[10], as a simple look-up-table (LUT) composed by a content-
addressable memory (CAM) and a RAM. This mechanism
seems to fit to the application scenario proposed in this work,
but it still uses a software hash table as a secondary mechanism
to decide if the TBB is cached or not.

B. TCache Requirements

The TCache, also called a fragment cache, is the storage
entity where the TBBs are stored to be executed. Besides
the storage functionalities it relates the original BBs with

308

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

the location of the TBBs. This association between source
and target addresses is essential to DBT process because it
records the equivalence between source and target PCs, and
consequently a BB and its TBB. Due to its characteristics,
this entity requires different features from the source binaries
cache, which are described bellow:

1) Write and Execution Privileges: In order to store and
natively execute ISA source code (TBBs stores in mem-
ory), two conditions must be fulfilled: (1) the memory
where the TCache is allocated must be rewritable during
run-time and (2) it must have execution privileges.

2) Content Management: The TCache requires a data
structure to manage and locate the stored TBBs. This has
two purposes: (1) check if the queried BB was already
translated and (2) return the location of the TBB. In
case of a hit (i.e., the BB was translated and the TBB
is stored in the TCache) the TBB’s address must be
returned to the DBT engine to be executed, otherwise
a miss is passed to the DBT engine to start a new
translation. There are multiple suitable data structure for
this purpose, and its complexity and overhead must be
considered. Implementation apart, the TCache inputs a
source PC (i.e., BB base address), which should be used
as a unique key to locate the equivalent TBB.

3) Eviction Mechanism: When the TCache reaches its
maximum capacity, its content must be evicted in order
to accept new TBBs. This might be a partial or total
eviction (i.e., cache flush), depending on the implemen-
tation. However, partial eviction requires coherency en-
forcement when directly linking BB during translation,
which might contribute with excessive overheads.

Regarding the TCache content management, this work

approached two software-based techniques (using linked list
and hash table data structures) and one novel hardware-based
technique, which are further analyzed, evaluated and compared
with each other.

III. HARDWARE-ASSISTED TRANSLATION CACHE

Target address new Tcache hardware manager

Source address new

Circular index logic ‘

Source
address query

Output
target address

Fig. 2: TCache hardware manager diagram.

On an effort to speed up the translated code management
(i.e., to add and search translation entries) and obtaining a
scalable cache management method, the TCache management
effort is delegated to hardware through an FPGA-based so-
lution. The approach followed by [4] is well suited to be

applied because it is non-intrusive and takes full benefit of
available hardware, but it still relies on a heavy software-based
backup mechanism to handle missing translations from the
hardware management. The software hash table mechanism
should be avoided in the resource-constrained embedded sys-
tems, because of the well known latency it originates. A full
hardware TCache approach was considered, but issues were
faced regarding its implementation. A full hardware cache is
a straight-forward implementation, either following a fully-
associative, direct-mapped or set-associative policy. However a
TCache does not exactly resembles a cache, but rather a buffer.
While a typical cache stores a determined memory position,
which the size is known and equal to every entry, a TCache
does not contain the equivalent representation of the source
code at every address. Each translation is only addressable by
its entry address and its size is variable and unknown upon its
creation. Dealing with such traits in hardware would involve
a complicated mechanism to manage the available space,
resulting in small improvements, since most of the overhead
associated with the TCache is related with the management
mechanism, rather than the data caching and memory accesses.

A modified approach of [4] was followed, however the
usage of software hash tables was avoided. The TBB caching,
the eviction policy and the available space management are
processed using a software approach, while adding new TBB
entries and searching for a TBB are processed by auxiliary
hardware. The hardware implementation is based on the regu-
lar TCache memory space allocated on the target data memory
plus a LUT, similar to a fully associative cache (CAM + RAM)
on a integrated implementation, as depicted in Figure 2. In
this approach, and diverting from the one presented in [4],
the output of the CAM is not returned to the microprocessor.
In case of a source address hit, the target address is directly
forwarded to the microprocessor. If an address miss occurs,
then the address 0x00000000 is returned, indicating that
the source address is not yet translated. This address may be
used in case of a miss because the TCache memory is never
allocated at the bottom of the source data memory. There is
one additional valid bit in the architecture to prevent false hits
during the first accesses and after TCache resets. Although the
number of TBBs that fit into the TCache memory space varies,
the number of the hardware LUT entries is fixed. To deal
with this, other approaches include a software hash table to
index additional TBBs after the hardware LUT being full. This
induces the penalty of calculating a hash key and searching
the hash table every time a TCache miss occurs, even when
the TCache is not full.

The implemented approach avoids the use of the software
hash table through an adjustment to the new entry insertion
mechanism. It is implemented resembling a circular list. The
new entries are inserted sequentially until the insertion index
overflows and starts to overwrite the first entries. The eventual
look-ups of overwritten entries will generate a false miss
because the translation is indeed stored at the TCache allocated
memory, but its look-up position was given to another TBBs,
in favor of using the remaining TCache allocated memory

309

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

before requiring a full eviction. Moreover, older entries are
less likely to be required. The hardware LUT size is modifiable
through a parameter and should adequate to the TCache
size, which translates into the typical number of TBB per
TCache filling. From the benchmarks used it was empirically
determined the following correspondence: 32 KB - 256 entries;
16 KB - 128 entries; 8 KB - 64 entries; 4 KB - 32 entries.
The hardware look-up is performed in one clock cycle, plus
the bus access latencies, which represent a total of 5 clock
cycles. The access time is deterministic and therefore remains
constant, no matter the number of TBBs in cache.

IV. EVALUATION

To evaluate how the proposed contributions perform, it is
required to provide input binaries to the DBTOR. The binaries
should replicate the type of programs’ behavior that run in
the source architectures. Since this is also the purpose of any
benchmark suit (i.e., mimic a typical workload of a system),
it was decided to use a benchmark’s binaries as the source
binaries for the DBTOR. Bristol Energy Efficiency Benchmark
Suite (BEEBS) is a set of ten benchmarks ported from other
suites, selected accordingly with its type of operations (branch-
ing, memory intensity, integer and floating point operations),
its applicability for resource-constrained embedded systems
and required porting effort, in order to evaluate the energy
consumption characteristics of the target platform [16].

To test and demonstrate the feasibility of the DBTOR,
we have paired two well-know architectures, Intel 8051 and
Arm Cortex-M3, for the source and target ISAs, respectively.
Each benchmark binary file was loaded into the flash memory
of a reconfigurable System-on-Chip (SoC), the SmartFusion2
from Microsemi, which includes an Arm Cortex-M3 hard-core
processor, besides flash-based FPGA technology. One at the
time, the binary files were loaded into the code cache (CCache)
and executed through the DBT engine. The execution was
timed through a 64-bit timer from the Cortex-M3 hard-core,
clocked at the same speed as the SoC, 122 MHz. The timer is
started before calling the runDBT () function and stopped
after returning from it. The tests were repeated for four
different TCache sizes: 4 KB, 8 KB, 16 KB and 32 KB. The
TCache minimum size must be enough to fit the largest TBB
found during translation, due to the translator not supporting
BB partitioning yet. It was determined experimentally that the
biggest TBB was nearly 3200 bytes long, so the lowest TCache
size was set to 4 KB. The biggest cache size is limited by
the system’s available memory, excluding heap and C stack
utilization and variables. On the test platform, the ceiling
TCache size was set to 32 KB. Besides, and considering that
the translator targets low-budget embedded systems, it was
considered that these TCache sizes were a good representation
of the resources commonly offered by these platforms.

The hardware-managed hybrid TCache is seamlessly inte-
grated in the developed DBT engine and its interface methods
remain the same as the linked list and hash table approaches.
The peripheral is connected through the AMBA 3 AHB-Lite
bus and mapped in memory through a register interface.

A. BEEBS Benchmark Suite Results

Figure 3 displays the obtained results from the performed
experiments. The experiments consisted in evaluating three
different TCache management approaches (linked list, hash ta-
ble and hardware-based TCache manager) for different TCache
sizes (4 KB, 8 KB, 16 KB and 32 KB). The graphic shows
the ratio between the target execution clock cycles and the
native execution clock cycles of every benchmarks, for every
TCache size. Lower bars indicate smaller ratios between target
and source clocks, which invoke better performance. The ratio
between the target and source execution clock cycles varies
between approximately 23 x (Float Matmul, 4 KB) and 2.5x
(CRC32, 16 KB and 32 KB) slower. The results are uplifting,
considering the minimalist approach followed (deployment
lacks of advanced decoding algorithms, unoptimized code
generation, simplistic TCache), the use of an intermediate
representation (IR) for multiple source/target architectures
bridging, and the one-to-many instructions mapping. For a
time based comparison, and on an speculative exercise, the
Cortex-M3 mainstream core line with a clock speed of 72
MHz was selected, considering the modern Cortex-M3 pro-
cessor’s clock speeds variation from a few dozens of MHz
(32 MHz for the low-power families) up to a few hundred
MHz (216 MHz in the powerful Cortex-M7). For the source
clock speed, the common MCS-51 legacy cores used a 11.059
MHz clock frequency. This originates a target/source clock
ratio of 6.51, represented in Figure 3 as the "performance
threshold 1". Under such condition, 13 out of the total 40
tests would be running faster in the translation engine than
on the native platform. Going even further, and taking the
obtained deployment of the translator, running at 122 MHz on
the Microsemi’s SmartFusion2 Arm Cortex-M3 core, the clock
ratio of 11x is represented as a the "performance threshold
2". Under such condition, 25 x of the tests execute in less time
under the translator than under native execution, representing
62.5% of the tests.

1) TCache Size Variation: The size of the TCache has a
direct impact on the execution performance. A size increase
most commonly causes a performance increase, but the re-
lation is not linear. There are even benchmarks where the
TCache size increase does not correlate with the performance
gain. The fundamental fact for the performance increase is
that a bigger TCache accommodates more translated code,
thus fewer translations must be evicted in order to give place
to newer translations. This causes more TCache hits and
less misses, reducing the issuing of repeated translations of
code that was still in use but needs to be discarded. There
are tests where the TCache variation has a sudden impact
on the performance, such as the CRC32 (8 KB to 16 KB),
Float Matmul (16 KB to 32 KB) and Integer Matmul (4 KB
to 8 KB). This is due to occasional relations between the
benchmarks’ cycles size and the TCache size, suggesting that
the performance bumps occur when the TCache size becomes
large enough to accommodate translations of the full source
binaries, or at least an extensively executed cycle(s). However,

310

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

o |_list wwssmhash sssshw_manager ——performance threshold 1 ——performance threshold 2
30,00
- ! H
- |||| |||||-||-||||
| L L NAANRRAE RHRANERNN
Sl | | T |] [| | [T NRANRRNE, SRARRRRNAN
5100 N SR TR TR Ny N eEt T et At aEe T e e N
BGEBGERGERGE |BGELGELSELSE BIEBGERGERGE BGELGELGELSE BHELGERGELGE
23z 2z 23 232 |23 23 23 £z 23 23 2z 23 |23z |22 23 23 | 2z 23 £32 23
K=~ K= K= K= K= K= K= K= K= L2 K= = = K= £ K= K= K= K= =
Cak sk ask | 32k | 4k | sk | 1ek | 32| 4k | sk | ek | 32| | 4k | sk | 16k | 32k | | 4k | sk | 16k 3%
‘ FDCT ‘ 2D FIR ‘ CRC32 ‘ Float Matmul ‘ Cubic root solver
(a) FDCT, 2D FIR, CRC32, Float Matmul and Cubic root solver.
| _list wsmmhash sss=hw_manager ——performancethreshold 1 ———performance threshold 2
30,00
25,00
20,00
15,00
Bl | | | |||
5'00 iiiilli iiliniﬁi-ﬁ” Hi miiri ||||
0,00
BlGEL G EBGESRGE EﬁEEﬁEEﬁEEﬁE BlGELGERGELGE BGERGERGEDLGE 85 ELGELGERGE
S|z 23 2z 23 [|23 3 |23 |2z | €3 |23 2|z 23 |2z £z 3 <2z | £z €3 23 23
= = = = = = = = < = = = = Ny = N = = = =

e s ek sk ek | sk | ek | 3k ||

‘ Integer Matmul ‘ Dijkstra ‘ ‘

(b) Integer Matmul, Dijkstra,

4k‘8k‘16k‘32k‘

e | s e sk ek | sk | ek | 3k

Blowfish ‘ Rjindael ‘ ‘ SHA

Blowfish, Rjindael and SHA.

Fig. 3: Target/source global execution ratio, for linked list, hash table and hardware-based TCache management systems.

this phenomena does not directly explain why benchmarks
such as the Blowfish, Rjindael and SHA do not consecutively
reduce their execution time with the TCache size increase. On
these three cases, the performance improvement for a TCache
bigger than 4 KB, is clearly due to the size increase. However,
the performance decrease, specially for the largest TCache size
(32 KB), can not be explained with TCache and TBB size
relations. It was found that in these cases, what was deployed
as a simpler and apparently effective solution, degrades the
performance for greater TCache sizes and large binaries whose
translation do not fit completely in the TCache. The cause is
the TCache search mechanism, deployed as a linked list and
with insertion and access at the tail, for spatial locality of
reference advantage purposes. The size of the TBB also plays
a role in this assertion, because the smaller the TBBs are, the
more TBBs will be accommodated in the TCache, and the
more extensive the linked lists becomes, increasing the search
time for missed TBB prior to order a new translation.

2) Software-based TCache Mechanisms: Two TCache man-
agement algorithms, linked list and one based on a mini-

3

mal and efficient hash table, were deployed. This allows to
compare both implementations and evaluate the impact of the
constant-time search approach of the hash table method. It is
possible to compare both deployments and observe that none
fully exceeds the other. The linked list management results
show better performance for smaller TCache sizes (4 KB and
8 KB), while for an intermediate 16 KB size there is no
consensus. For the greater size (32 KB) the results for the
TCache managed by hash table always overpass the linked list
results. Nonetheless, hash table managed TCache tests perform
consistently better with the TCache capacity increments. The
explanation relies on the fact that while the search time for
the linked list managed TCache varies with the number of
TBB in the TCache, in the hash table managed the search
time is always the same. This leads to although the hash key
computation overhead being considerable, it is exceeded by
the search time when a large number of TBB are cached. This
is the case for some of the 16 KB results and all of the 32 KB
results, except when all the TBB fit into the TCache. Thus,
hash tables have prejudicial impact on small TCache sizes

11

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I: FPGA resources utilization of TCache manager.

Entries 4LUT DFF Combined Resources
32 1357 2109 3466
64 2704 3678 6382
128 5398 6816 12214
256 10785 13092 23877

configurations of the DBT engine, because of the implied hash
key algorithm computation, however this cost starts to pay off
for greater TCache sizes.

3) Hardware-assisted TCache vs. Software-based TCache:
The new approach was evaluated using the same method used
to compare the linked list and hash table TCache management
approaches, with standard CC evaluation for the non full
legacy support version of the DBTOR. The obtained perfor-
mance exceeds both of the previously presented management
techniques in all tests, either for short or long programs, with
big or small TCache sizes. The hardware LUT results in faster
management than the simple linked list approach and does
not show the performance degradation on the greater TCache
sizes observed in the latter approach. Furthermore, since its
search time remains constant regardless of the number of
TBBs, it outperforms the hash table management on the longer
programs for the greater TCache sizes. The results are on
average 25% and 26% better than the linked list and hash table
implementations, respectively, with the highest performance
increase for the linked list approach with a 32KB TCache.

B. FPGA Resources Utilization

Table I summarizes the synthesis results on the SmartFu-
sion2 FPGA technology, for the different suggested entries
count, in terms of FPGA resources (4-input Look-Up Table
(4LUT), and D-type flip-flop (DFF)). As the entries number
increases, the number of resources needed also increases lin-
early. However, due to the large number of available resources,
this causes minimal impact on the final solution.

V. CONCLUSION AND FUTURE WORK

This article addresses the functionality extension of the DBT
engine using external hardware support. A TCache partially
deployed in hardware and a COTS compliant architecture
for DBT functionality extension and hardware acceleration
were presented. The TCache hardware management with a
circular BB registry dismisses the use of a hash table or
other secondary software management mechanisms, result-
ing in significant performance enhancement, compared with
hardware-only management methods, for every test scenario.
The hardware LUT has a reduced and fixed insertion and
search time, leading to better performance and scalability
(nearly 25% and 26% better than the linked list and hash table
implementations).

The proposed acceleration and functionality extension archi-
tecture is based on an external hardware module, integrated as
a bus sniffer, which results in a hardware and non-intrusive
execution flow technique, never tried before in the state of

the art. As on-going work, the bus sniffer is being tested and
used to trigger software or hardware modules to serve the
DBTOR, based on the source architecture memory accesses,
providing great flexibility on the type of application to serve
without disturbing the base DBT program flow. Three types
of application to the proposed bus sniffer can be adopted: to
handle the CC, to remap source peripherals and to provide
interrupt support.

VI. ACKNOWLEDGMENTS

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT - Fundagdo para a Ciéncia e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] Probst, Mark, “Dynamic Binary Translator,” in UKUUG Linux Devel-
opers’ Conference Linux 2002, 4-7 July 2002, Bristol, 2002, pp. 1-12.

[2] M. Gschwind, E. R. Altman, S. Sathaye, P. Ledak, and D. Appenzeller,
“Dynamic and transparent binary translation,” Computer, vol. 33, no. 3,
pp. 54-59, Mar 2000.

[3] E. Borin and Y. Wu, “Characterization of dbt overhead,” in Workload
Characterization, 2009. [ISWC 2009. IEEE International Symposium on.
IEEE, 2009, pp. 178-187.

[4] Y. Yao, Z. Lu, Q. Shi, and W. Chen, “FPGA based hardware-software
co-designed dynamic binary translation system,” 2013 23rd International
Conference on Field Programmable Logic and Applications, FPL 2013
- Proceedings. IEEE Computer Society., pp. 0-3, 2013.

[5] W. Chen, H. Lu, L. Shen, Z. Wang, and N. Xiao, “DBTIM: An Advanced
Hardware Assisted Full Virtualization Architecture,” 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing, no.
2007, pp. 399-404, Dec. 2008.

[6] A.C.S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, “Transparent
reconfigurable acceleration for heterogeneous embedded applications,”
Design, Automation and Test in Europe, DATE, pp. 1208-1213, 2008.

[7] P. Kinsman and N. Nicolici, “Dynamic binary translation to a reconfig-
urable target for on-the-fly acceleration,” Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, pp. 286287, 2011.

[8] F. Salgado, T. Gomes, S. Pinto, J. Cabral, and A. Tavares, “Condition
codes evaluation on dynamic binary translation for embedded platforms,”
IEEE Embedded Systems Letters, vol. 9, no. 3, pp. 89-92, Sept 2017.

[9] J. a. Baiocchi, B. R. Childers, J. W. Davidson, and J. D. Hiser, “En-

abling dynamic binary translation in embedded systems with scratchpad

memory,” ACM Transactions on Embedded Computing Systems, vol. 11,

no. 4, pp. 1-33, dec 2012.

H.-S. Kim and J. Smith, “Hardware support for control transfers in code

caches,” in 22nd Digital Avionics Systems Conference. Proceedings (Cat.

No.03CH37449). 1EEE Comput. Soc, 2003, pp. 253-264.

K. Hazelwood and R. Cohn, “A Cross-Architectural Interface for Code

Cache Manipulation,” in International Symposium on Code Generation

and Optimization (CGO’06). 1EEE, 2006, pp. 17-27.

W. Chen, Z. Wang, H. Lu, L. Shen, N. Xiao, and Z. Zheng, “A Hardware

Approach for Reducing Interpretation Overhead,” 2009 Ninth IEEE

International Conference on Computer and Information Technology, pp.

98-103, 2009.

W. Chen, D. Chen, and Z. Wang, “An approach to minimizing the

interpretation overhead in Dynamic Binary Translation,” The Journal

of Supercomputing, vol. 61, no. 3, pp. 804-825, Jun. 2011.

W. Chen, L. Shen, H. Lu, Z. Wang, and N. Xiao, “A light-weight

code cache design for dynamic binary translation,” Proceedings of the

International Conference on Parallel and Distributed Systems - ICPADS,

pp. 120-125, 2009.

W. Chen, Z. Wang, and D. Chen, “An emulator for executing IA-32

applications on ARM-based systems,” Journal of Computers, vol. 5,

no. 7, pp. 1133-1141, 2010.

J. Pallister, S. J. Hollis, and J. Bennett, “BEEBS: open bench-

marks for energy measurements on embedded platforms,” CoRR, vol.

abs/1308.5174, 2013.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

312

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:50:31 UTC from IEEE Xplore. Restrictions apply.

