
Towards a Heterogeneous Fault-Tolerance
Architecture based on Arm and RISC-V Processors

Cristiano Rodrigues, Ivo Marques, Sandro Pinto, Tiago Gomes, and Adriano Tavares
Centro ALGORITMI, University of Minho (PORTUGAL)

Corresponding author: mr.gomes@dei.uminho.pt

Abstract—Computer systems are permanently present in our
daily basis in a wide range of applications. In systems with mixed-
criticality requirements, e.g., autonomous driving or aerospace
applications, devices are expected to continue operating properly
even in the event of a failure. An approach to improve the
robustness of the device’s operation lies in enabling fault-
tolerant mechanisms during the system’s design. This article
proposes Lock-V, a heterogeneous architecture that explores a
Dual-Core Lockstep (DCLS) fault-tolerance technique in two
different processing units: a hard-core Arm Cortex-A9 and a soft-
core RISC-V-based processor. It resorts a System-on-Chip (SoC)
solution with software programmability (available trough the
hard-core Arm Cortex-A9) and field-programmable gate array
(FPGA) technology, taking advantages from the latter to support
the deployment of the RISC-V soft-core along with dedicated
hardware accelerators towards the realization of the DCLS.

Index Terms—Dual-core lockstep, fault tolerance, heteroge-
neous architectures, field programmable gate array, RISC-V,
Arm.

I. INTRODUCTION

Processors industry keeps moving fast towards reduced
transistor’s size, higher clock frequencies, and lower operating
core voltages. However, many problems to digital systems
have emerged due to such progress, like system failures
caused by bit-flipping induced by many possible sources, e.g.,
radiation and voltage glitch. These problems can result in
critical issues, not only in aerospace applications but also on
daily basis systems [1]–[6]. This boosts research towards the
necessity of developing and deploying fault tolerance systems
in order to mitigate several failure situations, while keeping
other important requirements such as system robustness, reli-
ability, performance and security.

One way to deploy reliable devices in mixed-critical ap-
plications, is to provide them with fault tolerance techniques.
Redundancy is one of the most used forms of fault tolerance
mechanisms and several solutions can be already found in the
literature. While some techniques replicate processing units in
a technique called dual-core lockstep (DCLS) -implemented
either loosely- or tightly-coupled to the processor- [4,7]–[11],
others apply a triple modular redundancy (TMR) mechanism,
where the processing units are triplicated and a voter module is
added to the system [12]. Other techniques can be used in or-
der to achieve fault tolerance systems, such as time redundancy
applied to low-cost architectures [13], and virtualization-based
systems [14], where several guests can virtually run over the

same processing unit as if they were individually running
each of them in one unique processor. This way, each guest
operating system (OS) can replicate the execution of the same
software application, while another guest acts as the voter
module. These software-based systems can behave similarly
to a hardware-based TMR without the need of replicating the
hardware resources.

Fault tolerance techniques can be performed both in soft-
ware and/or hardware, according to the available resources.
With the ongoing technological trends, hybrid system-on-chip
(SoC) solutions provide software programmability, available
through hard-core processors, and field-programmable gate ar-
ray (FPGA) technology that can be resorted for deploying soft-
core processors or dedicated hardware accelerators in order
to enhance the computation of several types of algorithms in
terms of speed and energy consumption [15]–[17]. Despite
several architectures and techniques for fault-tolerance being
available in the literature, to the best of our knowledge, none
of them targets heterogeneous architectures that resort hybrid
SoC solutions to implement different processor architectures,
either deployed in hard- or soft-core approaches.

This article presents the Lock-V, a heterogeneous archi-
tecture that explores a Dual-Core Lockstep (DCLS) fault
tolerance technique in different processing units: a hard-core
Arm Cortex-A9 and a soft-core RISC-V-based processors.
The solution handles the system heterogeneity at different
levels, such as at processors architecture (different instruction
set architecture (ISA)), execution conditions, clock domains,
etc. The available FPGA is used not only to deploy a soft-
core processor, but also custom accelerators in a loosely-
coupled fashion. These latter support the DCLS fault tolerance
mechanism in order to synchronize and to verify the system’s
integrity during run-time execution.

The main contributions of this article are: (1) the Lock-V,
a heterogeneous architecture that explores a DCLS fault toler-
ance technique; (2) the deployment of the DCLS on a hybrid
SoC, providing support to multi-core heterogeneity (dual-core
Arm Cortex-A9 processors, along with an untethered soft-
core RISC-V-based processor, the lowRISC); (3) a loosely-
coupled hardware accelerator, the xLockstep, used to support
the DCLS architecture; and (4) the Lock-V framework that will
allow the programmer to adapt the DCLS solution according
to the application needs through the available application
programming interface (API), and with future implementations
of code-generation mechanisms.

978-1-7281-4878-6/19/$31.00 ©2019 IEEE 3112

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND OVERVIEW

This section addresses three main topics to understand
the development of the proposed fault tolerance system: (1)
understanding the differences between a fault, an error and
a failure; (2) the lockstep concept used as a fault tolerance
technique; and (3) the RISC-V open-source ISA.

A. Fault, Error, and Failure

It is important to understand the concepts of fault, error and
failures and how they can trigger a fault tolerance system to
successfully recover from failure situations caused by errors.
A fault tolerance system must continue to provide the specified
service, even at the event of a fault, and should react to errors
caused by faults, preventing the error propagation to a state of
system failure. In [18] it is provided the main concepts and
terminologies for the fault tolerance context:

• Fault: is defined as a logical manifestation caused by
one or more physical defects, which change the normal
operation of a component in a system;

• Error: is caused by one or more faults in a system when
it transits into an internal state;

• Failure: occurs when some event deviates the delivered
service from the specified service, a specified service is
defined as a previously agreed description of the system
behavior.

B. Redundancy and Dual-Core Lockstep (DCLS)

Fault tolerance characteristics can be added to a system
by applying redundancy techniques, which can be both in
hardware and/or software. Traditionally, hardware techniques
use multiple instances of the same module, where each of
them receives the same input and compares the generated
output. However, such approaches can lead to a diagnostic
decision for verifying if a fault had occurred when the outputs
are different [19]. In the event of a fault, an error is usually
generated, which is easily detected if the generated outputs are
different. Depending on the implemented technique, the fault-
tolerant system can adopt different approaches to perform a
fast system recovery.

The most common redundancy hardware mechanisms are
the duplication with comparison (DWC) and the TMR, which,
respectively, duplicates and triplicates the execution of the
main module. The main advantage of the TMR over the DWC
is when fault occurs in just one execution module, the voter
system can still determine which module produced the error
and choose the valid output from the other two. However, this
TMR-based solution is the most costly in terms of required
hardware (and other related resources), since a third execution
module and a voter must be added to the system [12]. The
DCLS technique has proven to be a good option for fault
tolerant systems, while requiring less resources than the TMR.
It is a hybrid fault tolerance method based on the DWC,
which uses dedicated hardware for error detection and core
duplication. Likely the DWC, each core receives the same
input and the extra hardware compares the output from each
core, and when the outputs are different from each other,

Application

Compiler

Application for
Arm

Application for
RISC-V

Soft-Core

RISC-V

Processing System Programmable Logic

Hard-Core

Arm

Output 2Output 1

Target Hardware

So
ftw

ar
e

H
ar
dw

ar
e

Synchro

 Checker
xLockstep

Lockstep
Framework

AXI4-Lite AXI4-Lite

AXI4-LiteAXI4-Lite

Fig. 1. Proposed DCLS heterogeneous architecture.

the mechanism detects an error. In case of error detection
the system can: (1) continue its normal execution, giving
priority to the output of one of the modules; (2) restore the
system to a well-known integrity point (software execution
checkpoint), which requires the system to create restore points;
(3) completely restart or stop the system.

Despite all efforts in providing fault tolerance solutions, it is
not possible to guarantee that a system is 100% error-free. In
some techniques, a fault can affect redundant components all at
the same time, which makes it hard to detect. This is known
as a common-mode fault, and it can only be mitigated by
introducing design diversity in the whole system. In a lockstep-
based redundancy technique, this can be achieved by using
different processors’ architectures, as proposed by Lock-V.

C. RISC-V

RISC-V is an open-source ISA [20] based on a reduced
instruction set computer (RISC). It was designed focusing
embedded systems, Internet of Things (IoT), and other modern
devices. RISC-V allows a new level of software and hardware
freedom on architectures in an open extensible way. This ISA
allows the implementation of RISC-V ISA-based cores and
adapts them to fault tolerance techniques, in this case to DCLS.
It is possible to create new processor instructions due to the
architecture freedom, and target them to a specific purpose.

III. LOCK-V

The Lock-V system, depicted in Fig. 1, can be split into
two main components: the software block and the hardware
block. Regarding the software, the Lockstep framework is
responsible to generate the final machine binary code for a
given application. Such binary, compiled for the two target

3113

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

architectures (Arm and RISC-V), was generated and patched
from the same source code application. The framework also
provides a set of functionalities in order to allow users to
insert and configure execution checkpoints in the source code.
The checkpoints are predefined verification points, introduced
prior the compilation time, in order to endow the system with
lockstep functionalities. Such checkpoints are essential for the
auxiliary mechanism of the DCLS architecture, the Synchro
and Checker blocks. Their main tasks are, respectively, the
synchronization of both cores and the verification of the
processors’ output in order to detect data integrity problems
during code execution.

Regarding the hardware, the Lock-V is divided into two
main areas, the processing system (PS) and the programmable
logic (PL). The PS is mainly composed by a hard-core
Arm Cortex-A9 processing unit and the associated software
application. By its turn, the PL hosts a soft-core RISC-V
processor (where the same software application also runs), and
the hardware accelerators, which are responsible for deploying
the lockstep functionalities, performed by the Synchro and
Checker sub-modules. The PS and PL execute concurrently
and are both connected through a standard advanced micro-
controller bus architecture (AMBA) protocol, the advanced
extensible interface (AXI), in order to exchange information
among all hardware modules. The main hardware components
of the Lock-V architecture are detailed as follows:

• Arm Cortex-A9 processor: a 32-bit processor that fol-
lows the ARMv7-A architecture and available in the PS
as a hard-core processor. It runs the application machine
binary code in parallel with the soft-core processor.

• RISC-V processor: a soft-core processor deployed in the
FPGA fabric of the PL and it also runs the application
code. This 64-bit processor is based on the lowRISC, an
untethered implementation of the RISC-V ISA based on
the Rocket Chip.

• Lockstep accelerator (xLockstep): a hardware accel-
erator deployed in the PL following a loosely-coupled
approach, which was developed under the specification of
the Chisel hardware construction language [21]. Such ap-
proach provides several advantages when compared with
the tightly-coupled design, such as hardware customiza-
tion, flexibility, and portability for using the xLockstep
in other SoC and processor architectures. The xLockstep
is responsible for the auxiliary lockstep mechanism and
its main tasks are: (1) the synchronization of the code
execution on both cores; (2) the comparison and verifica-
tion of the outputs from each processor; (3) the control
on the code execution when the compared outputs are
validated and coherent; and (4) the ability to suspend the
processors’ execution when an error is found, until the
error is processed and marked as solved.

A. lowRISC

Most of the freely available RISC-V soft-core implementa-
tions require host environment features, both for the booting

Idle

Checker

Error

sync

Synchro

first_checkpoint

recovered_error

resumes_execution

Resume

success

timeout_error

error

Fig. 2. Main finite state machine (FSM) of the xLockstep.

process and for the processor to run and execute the appli-
cation. Such implementations, e.g., Rocket Chip, are called
tethered processors [22], as they require a host processor to
start up and to interact with the environment. For this reason,
we have selected the lowRISC core, which is an untethered
processor built upon the Rocket Chip implementation of the
RISC-V ISA that eliminates the need for a companion core,
which is replaced with FPGA peripherals. The lowRISC pro-
cessor has three important characteristics that fit with the soft-
core requirements for the Lock-V: (1) it is an untethered soft-
core processor, which is a key aspect for the implementation
of the lockstep mechanism since each processor (Arm Cortex-
A9 and RISC-V) have to execute their own binary machine
code independently; (2) it is a 64-bit processor, different from
the 32-bit Arm Cortex-A9; and (3) it is a customizable core,
enabling the refactoring of the lowRISC processor to the
project requirements, such as adding a master/slave Not A
STandard Interface (NASTI) bus, which is similar to AXI, and
tightly-coupled accelerators that can work as co-processors.

B. xLockstep

The xLockstep is a memory-mapped AXI-compliant periph-
eral deployed in the PL. It has two slave AXI-Lite interfaces,
one for each processor. The accelerator has an exclusive bank
of registers dedicated for each processor, being their access
restricted by hardware. Therefore, each processor can only
access their register bank. The xLockstep has more three sub-
modules, two instances of the Synchro and one of the Checker
modules. The module Synchro is responsible for ensuring that
both processors are synchronized and the module Checker
is responsible for comparing the output of both processors.
Fig. 2 depicts the FSM of the xLockstep accelerator, which is
composed of five states: Idle, Synchro, Checker, Resume, and
Error. The FSM stays in the Idle state until the first checkpoint
(from Arm or RISC-V processor) is reached. When this event
occurs, the FSM changes the state to Synchro and waits for the
second checkpoint to be reached, until a programmer-defined

3114

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

timeout occurs. If that time is exceeded, an error by timeout
in synchronizations is signalized and the FSM changes to the
Error state. If the timeout is not exceeded, the FSM changes
to Checker state. In the Checker state, a vector of outputs
from both processors is compared and if they are different,
the FSM changes its state to Error. Otherwise, if the outputs
are the same, the FSM changes its state to Resume state in
order to resume each processor execution. In the case of the
FSM being in the Error state, the xLockstep stays in that state
until both processors signalize that the error was corrected and
the system is ready to recover from that state.

C. Synchro

Due to the difference in clock domains and architectures
between the soft-core and hard-core processors, the program
execution between them is asynchronous, demanding for the
synchronization of both processors. For this purpose, it was
created the Synchro module, which is used in two differ-
ent scenarios. First, to synchronize the processors when a
checkpoint is achieved, and second, to simultaneously return
the code execution after the verification mechanisms of the
lockstep have actuated. In both system operation scenarios, the
xLockstep has to wait for both processors to indicate that they
are ready to synchronize. This is achieved when: (1) the pro-
gram reaches the checkpoint, and (2) both processors are ready
to resume the execution. Therefore, to achieve those func-
tionalities, the Synchro module implements a FSM with three
states: Idle, Ready, and Sync. In the Ready state, the Synchro
module expects both processors to enable the b_ready_to_sync
bit, and afterwards, the Synchro gives feedback to both cores
and enables the b_ready bit. Then, the state of the FSM
changes to the state Sync. At this moment, the Synchro module
is waiting for the synchronization’s acknowledgment from
each processor, which consists in disabling b_ready_to_sync
bit. As a result, the processors’ synchronization ends and both
cores are synchronized.

D. Checker

For implementing the lockstep mechanism, both processors
outputs must be compared. For that purpose, each core sends
its output vector to the Checker module in order to perform
their verification. The received outputs are stored in two
different memory regions (one for each processor) by the
Checker using a last in first out (LIFO) approach. Because both
parts are involved in the data transfer process (processors and
checker), both of them need to know the state of each other.
For that, the Checker uses a control bit, b_Tx, to coordinate
the data transfer, which works in the following way: (1) when
the Checker is available to receive and store an output, it puts
its b_Tx bit to 0, signalizing the processor that it is available
to perform the transaction. Next, it waits for the processor to
signalize its availability to initialize a data transfer. After the
data transfer, the Checker module clears the b_Tx bit and it is
ready for another transaction. (2) after the data is received from
both processors, at a given checkpoint, the Checker performs
the comparison of the entire LIFO contents, checking for data

83C0001C ARM_STATUS_REG 8000001C RISCV_STATUS_REG

83C00018 UNUSED 80000018 UNUSED

83C00014 UNUSED 80000014 UNUSED

83C00010 UNUSED 80000010 UNUSED

83C0000C UNUSED 8000000C UNUSED

83C00008 ARM_TIMEOUT_REG 80000008 RISCV_TIMEOUT_REG

83C00004 ARM_CONTROL_REG 80000004 RISCV_CONTROL_REG

83C00000 ARM_DATA_REG 80000000 RISCV_DATA_REG

Fig. 3. The xLockstep peripheral memory address space.

integrity errors. There are two possible error cases that can be
detected and signalized by the Checker to both processors. The
first case occurs when an element from LIFO 1 is different
from the respective element from LIFO 2. The second case
results when the number of written outputs in both LIFO
memories is different. The Checker LIFOs work as a circular
buffer with limited size. Therefore, if one processors’ output
vector size cannot be accommodated by its respective LIFO,
the Checker signalizes to the processor a busy state. This way,
the Checker module is unaware of the data size and content,
being the main concern only its storage and comparison. While
the data is being processed, the processor waits for the Checker
confirmation for the data processing in order to allow new data
to be transferred (for the next checkpoint or for repeating the
previous one).

E. xLockstep Framework

The xLockstep framework (currently under development)
aims to be a tool that will help programmers to easily
configure and use the Lock-V architecture, as well as to
provide an API that is used to interact with the xLockstep
accelerator. The framework will later support other features
such as code inspection an code injection after the final
application is done. The xLockstep API is composed by four
functions: initXLockstep(), sync(), checker(), and
errorFixed(), which are used to interact with the xLock-
step. The initXLockstep() function is responsible to
setup and initialize the xLockstep, as well as all the memory
address space registers for each processor (Fig. 3). This func-
tion also sets the timeout value for the next checkpoint. The
sync() function, is used for processors’ synchronization. If
the synchronization is not possible, an error is returned. The
checker() function is responsible to handle the Checker
functionalities, returning an error if both processor outputs,
reported by the Checker module, are different. When an
error occurs, the programmer should define the desired be-
havior, according to the application needs. After that, the
errorFixed() function is called. This function signalizes
the xLockstep accelerator that the error was processed and that
the system is already in a normal state, reached after the error
recovery.

3115

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
CHECKER FUNCTIONAL TESTS.

VA / VB Size NB = 0 NB = 1 NB = 2 NB = 3 NB = 4 NB = 5 VA0,VB0 VA1,VB1 VA2,VB2 VA3,VB3 VA4,VB4 State

NA = 0 7 7 7 7 7 7 , = = = = 7

NA = 1 7 X 7 7 7 7 = , = = = 7

NA = 2 7 7 X 7 7 7 = = , = = 7

NA = 3 7 7 7 X 7 7 = = = , = 7

NA = 4 7 7 7 7 X 7 = = = = , 7

NA = 5 7 7 7 7 7 X = = = = = X

7 Error; XSuccess; , Element VAn different from VBn ; = Element VAn equal to VBn .

IV. EVALUATION

The Lock-V architecture, and its main components, was
deployed on a Zynq-7000 SoC, featuring a dual-core Arm
Cortex-A9 and FPGA fabric used to host the RISC-V soft-
core processor. In this implementation, the Arm Cortex-A9 is
running at the frequency of 666 MHz and the lowRISC at
the frequency of 25 MHz. These different clock domains will
allow to check all the Synchro functionalities. In order to test
the Lock-V and its main components, we have created three
software modules: (1) a simple application to run on both
processor architectures; (2) a test for the Synchro module,
which prevents a checkpoint from being reached; and (3) a
module for testing the Checker, that changes the output vectors
for one of the cores. These software modules were inserted in
the application with the purpose of testing the behavior of the
xLockstep accelerator in the two fault detection situations:

• A processor never achieves the checkpoint: this can
occur when a fault originates a bit-flip in the code
memory, and the execution fails to match its original
purpose. In such case, an error occurs due to the code
execution never meeting the desired checkpoint or due a
checkpoint timeout;

• The processors output vectors are different: the fault
is detected when the VAn element is different from the
VBn element, or when the number of expected elements
in the vector VA is different from the vector VB.

A. Checker Module Functional Tests

Table I depicts a summary of the tests performed to the
Checked module, where the size of the output vectors, as well
as their content, are tested and compared. The possible input
combinations for the Checker module depend on the output
vector’ size defined by the programmer. For the purpose of our
tests, the vector size was set to five (one more element than
the maximum storage size supported by each Checker’s LIFO,
which was set to four). The left side of Table I depicts the
thirty-six possible combinations for testing the vector output’s
size. When VA has a different size from VB, the Checker
module outputs an error. Besides the vector size, the Checker
module also verifies the content of each vector’s element. The
right side of Table I depicts all the combinations that we have
tested for testing the values of both vectors’ elements, where
two vectors of 5 elements were compared. The symbol , is

used when one element VAn does not match the content of
respective element VBn . When the content of both vectors is
different the Checker module outputs an error.

B. Synchro Module Functional Tests

Table II shows all combinations for the Synchro input
signals that were tested, which can be summarized as follows:

• Both processors reach the checkpoint before the timeout;
• Only one of the checkpoints is reached before the timeout;
• None of the checkpoints is reached before the timeout.
Whenever the execution time between checkpoints is higher

than the timeout, the Synchro outputs an error to the xLock-
step. On the other hand, when both checkpoints are reached
within the timeout value, the Synchro signalizes that both
processes reached the checkpoint and the synchronization
operation was executed with success.

C. PL Resources Utilization

Table III shows the hardware resources needed, after imple-
mentation, for the lowRISC soft-core and all the xLockstep
modules. The results are expressed in terms of look-up tables
(LUTs) and flip-flops (FFs). The lowRISC module is the most
costly in terms of hardware needed, representing around 98%
(34138 out of 34579) of LUTs and nearly 96% (16324 out
of 16996) of FFs. This is due to the deployment of a soft-
core RISC-V processor, rather than a hard-core implemen-
tation, which is one of the trade-offs of our solution. The
solution provides flexibility and the possibility to customize
the RISC-V architecture, but it comes with the cost of FPGA
resources. Regarding the resources needed by the xLockstep
accelerator (441 LUTs and 672 FFs), it is possible to conclude

TABLE II
SYNCHRO FUNCTIONAL TESTS.

Checkpoint Arm Checkpoint RISC-V State

*Y **Y X

**Y *Y X

Y N timeout 7

N Y timeout 7

N N 6

N Checkpoint Not Reached; Y Checkpoint Reached;
* Arrives First; ** Arrives in Second; 6 Don’t Care.

3116

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

TABLE III
POST-IMPLEMENTATION RESULTS OBTAINED FROM VIVADO 2016.2

HW module LUT FF

lowRISC 34138 16324

xL
oc

ks
te

p

Axi_RISCV_Slave 135 267
Axi_ARM_Slave 122 269

TopxLockstep 25 40
Checker 148 90
Synchro 6 3

Synchro_to_Resume 5 3

lowRISC + xLockstep 34579 (65%) 16996 (16%)

that the xLockstep has a lightweight implementation, and if
both processors were available in the SoC in a hard-core
implementation, the solution could resort an FPGA with less
resources. Because the xLockstep follows a loosely-coupled
approach, it is a good candidate to be used in other solutions,
both in terms of hardware or processor architectures.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a heterogeneous and fault-tolerance
architecture, Lock-V, that explores a DCLS technique applied
to different processor architectures. The proposed accelerator,
the xLockstep, was deployed in a loosely-coupled fashion
and connects a hard-core Arm Cortex-A9 and a soft-core
RISC-V lowRISC, providing the lockstep capabilities to both
processors at a very reduced hardware cost.

Hereafter, in order to keep improving the functionalities of
the xLockstep accelerator, new features will be added: (1) a
mechanism dedicated to perform fault-injection, which will be
helpful in simulating the wrong device’s operation due to bit-
flipping; (2) the framework optimization in order to provide
code injection capabilities. This feature will allow the code
application to be automatically analyzed by the framework,
which will choose the best places to deploy the lockstep
checkpoints, and later create the data to configure the xLock-
step accelerator; and (3) the exploration of the RISC-V open-
source ISA, which will allow the creation of ISA instructions
customized to the xLockstep peripheral. This will allow a
complete deployment of the lockstep mechanism on the RISC-
V architecture in a tightly-coupled fashion, which will help in
understanding the advantages between both approaches, i.e.,
loosely-coupled and tightly-coupled.

VI. ACKNOWLEDGMENTS

This work has been supported by national funds through
FCT -Fundação para a Ciência e Tecnologia within the
Project Scope: UID/CEC/00319/2019.

REFERENCES

[1] R. C. Baumann, “Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 305–316, Sep. 2005.

[2] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection,
Isolation, and Reconfiguration Methods,” IEEE Transactions on Control
Systems Technology, vol. 18, no. 3, pp. 636–653, May 2010.

[3] F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante, “New
Techniques for Improving the Performance of the Lockstep Architecture
for SEEs Mitigation in FPGA Embedded Processors,” IEEE Transac-
tions on Nuclear Science, vol. 56, no. 4, pp. 1992–2000, Aug. 2009.

[4] Á. B. de Oliveira, G. S. Rodrigues, and F. L. Kastensmidt, “Analyzing
Lockstep Dual-Core ARM Cortex-A9 Soft Error Mitigation in freeRTOS
Applications,” in Proceedings of the 30th Symposium on Integrated
Circuits and Systems Design Chip on the Sands - SBCCI ’17. Fortaleza,
Ceará, Brazil: ACM Press, 2017, pp. 84–89.

[5] E. Ozer, B. Venu, X. Iturbe, S. Das, S. Lyberis, J. Biggs, P. Harrod,
and J. Penton, “Error Correlation Prediction in Lockstep Processors for
Safety-Critical Systems,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Fukuoka: IEEE, Oct. 2018,
pp. 737–748.

[6] J. Han, Y. Kwon, Y. C. P. Cho, and H.-J. Yoo, “A 1GHz Fault Tolerant
Processor with Dynamic Lockstep and Self-Recovering Cache for ADAS
SoC Complying with ISO26262 in Automotive Electronics,” in 2017
IEEE Asian Solid-State Circuits Conference (A-SSCC). Seoul: IEEE,
Nov. 2017, pp. 313–316.

[7] J. S. Klecka, W. F. Bruckert, and R. L. Jardine, “Error self-checking and
recovery using lock-step processor pair architecture,” May 21 2002, US
Patent 6393582.

[8] A. B. de Oliveira, G. S. Rodrigues, F. L. Kastensmidt, N. Added, E. L. A.
Macchione, V. A. P. Aguiar, N. H. Medina, and M. A. G. Silveira,
“Lockstep Dual-Core ARM A9: Implementation and Resilience Analysis
Under Heavy Ion-Induced Soft Errors,” IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1783–1790, Aug. 2018.

[9] A. Hanafi, M. Karim, and A. E. Hammami, “Dual-Lockstep Microblaze-
Based Embedded System for Error Detection and Recovery with Re-
configuration Technique,” in 2015 Third World Conference on Complex
Systems (WCCS). Marrakech: IEEE, Nov. 2015, pp. 1–6.

[10] H.-M. Pham, S. Pillement, and S. J. Piestrak, “Low-Overhead Fault-
Tolerance Technique for a Dynamically Reconfigurable Softcore Proces-
sor,” IEEE Transactions on Computers, vol. 62, no. 6, pp. 1179–1192,
Jun. 2013.

[11] R. D. Kral, J. S. M. Chong, and A. L. Schreiber, “Implementation
of a loosely-coupled lockstep approach in the xilinx zynq-7000 all
programmable soc for high consequence applications.” Sandia National
Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2017.

[12] P. Garcia, T. Gomes, F. Salgado, J. Cabral, P. Cardoso, M. Ekpanyapong,
and A. Tavares, “A Fault Tolerant Design Methodology for a FPGA-
Based Softcore Processor,” IFAC Proceedings Volumes, vol. 45, no. 4,
pp. 145–150, 2012.

[13] M. Pignol, “DMT and DT2: Two Fault-Tolerant Architectures developed
by CNES for COTs-based Spacecraft Supercomputers,” in 12th IEEE
International On-Line Testing Symposium (IOLTS’06). Como, Italy:
IEEE, 2006, pp. 203–212.

[14] S. Pinto, A. Tavares, and S. Montenegro, “Space and time partition-
ing with hardware support for space applications,” Data Systems In
Aerospace, European Space Agency, ESA SP 736, 2016.

[15] M. Berg and C. Michael, “FPGA Mitigation Strategies for Critical
Applications, support of NASA/GSFC,” Sep. 2018.

[16] T. Gomes, F. Salgado, A. Tavares, and J. Cabral, “CUTE Mote, A
Customizable and Trustable End-Device for the Internet of Things,”
IEEE Sensors Journal, vol. 17, no. 20, pp. 6816–6824, Oct. 2017.

[17] F. Salgado, T. Gomes, J. Cabral, J. Monteiro, and A. Tavares, “DBTOR:
A Dynamic Binary Translation Architecture for Modern Embedded Sys-
tems,” in 2019 IEEE International Conference on Industrial Technology
(ICIT), Feb 2019, pp. 1755–1760.

[18] J.-C. Laprie, “Dependable Computing and Fault Tolerance: Concepts
and Terminology,” in Twenty-Fifth International Symposium on Fault-
Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’.
Pasadena, CA: IEEE, 1995, p. 2.

[19] Z. Gao, C. Cecati, and S. X. Ding, “A Survey of Fault Diagnosis
and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-
Based and Signal-Based Approaches,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 6, pp. 3757–3767, Jun. 2015.

[20] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architec-
ture Atlas, 1st ed. Strawberry Canyon, Nov. 2017.

[21] J. W. Jonathan Bachrach, Krste Asanović, “Chisel 3.0 Tutorial,” EECS
Department, UC Berkeley, Tech. Rep., 2017.

[22] M. Nöltner-Augustin, “RISC-V — Architecture and Interfaces The
RocketChip,” COMPUTER ENGINEERING, p. 6, 2016.

3117

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on January 03,2023 at 14:49:10 UTC from IEEE Xplore. Restrictions apply.

