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Abstract 
The polymer single screw extruder optimal design has been involving the optimization of six 
objectives. Multi-objective optimization methods, in particular those based on the weighted 
Tchebycheff Scalarization (wTS) function, have provided reasonable solutions in a way that 
good trade-offs between conflicting objectives are identified. In this work, a new penalty term 
is added to the wTS function aiming to guide the solution toward the Pareto front. The 
corresponding formulation works similarly to the penalty-based boundary intersection function. 
The goal of the proposed penalty parameter scheme is to balance convergence and diversity. 
Since six objectives are simultaneously optimized, the penalty scheme provides large as well 
as small penalty parameter values to enlarge the improving region. The results show that the set 
of solutions obtained by the penalty-based wTS algorithm can reasonably well cover the Pareto 
front. 

1. Introduction 
The polymer Single Screw Extrusion (SSE) design is concerned with defining the optimal screw 
operating conditions and geometry in such a way that some relevant objectives achieved their 
best values. The most relevant objectives in the SSE design are: mass output (Q), length of the 
screw required for melting the polymer (Zt), melt temperature at die entrance (Tmelt), mechanical 
power consumption (Power), distributive mixing quantified by the Weighted Average Total 
Strain (WATS) and viscous dissipation (Visco). The objective values depend on two sets of 
parameters, geometrical and operating conditions. The geometrical parameters are the internal 
screw diameter of the feed zone (D1) and metering zone (D3), the axial lengths of the feed (L1), 
compression (L2) and metering (L3) zones, the flight thickness (e) and the screw pitch (p). The 
operating parameters that correspond to the operating conditions of the extruder are the screw 
speed (N) and the temperature profile of the heater bands in the barrel (Tb1, Tb2, Tb3).  
The SSE optimal design can be efficiently obtained using an optimization procedure. However, 
the optimization of more than one conflicting objective simultaneously is not an easy task since 
improving one objective leads to another objective degradation [1]. A Multi-Objective 
Evolutionary Algorithm (MOEA) has been used [2] to simultaneously optimize some relevant 
objectives. More recently, a weighted Tchebycheff Scalarization (wTS) method [3] was applied 
to the six-objective simultaneous optimization and an approximate Pareto front was obtained 
[4]. The wTS method finds optimal values for the operating parameters, represented by the 
vector x = (N, Tb1, Tb2, Tb3), in such a way that the objectives Q and WATS are maximized and 
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Zt, Tmelt, Power and Visco are minimized. It is also assumed that the geometrical parameters are 
previously fixed. The range of variation of the screw speed depends on the characteristics of 
the extruder’s motor and the reduction gear. The lower and upper bounds for the range of 
temperatures of the heater bands are the polymer melting temperature and the polymer onset of 
degradation, respectively. Thus, taking into consideration the extruder size range and layout, 
and assuming the processing of typical thermoplastic polyolefin (High Density Poyethylene - 
HDPE), the lower and upper bound vectors for the operating parameters are for N 10 and 60 
rpm and, for Tb1, Tb2, and Tb3 150 and 210 °C, respectively. 

In the line of the work presented in [4], and to guide the solution towards the Pareto front, the 
present study incorporates a penalty parameter scheme into the wTS approach. The proposed 
formulation works similarly to the penalty-based boundary intersection function [5] by 
balancing the convergence and diversity of the obtained solutions. 

2. SSE Design Optimization 
When two or more conflicting objectives need to be optimized simultaneously, the problem is 
recognized as a multi-objective optimization (MOO) problem with the general form 

Find ݔ∗ ∈ Ω ⊆ ℝ௡ that minimizes the functions vector (݂(ݔ)ଵ, ଶ݂(ݔ), . . . , ௠݂(ݔ)),    (1) 

where ݔ ∈ ℝ௡  is the vector of the decision variables, ݊ is the number of decision variables, Ω 
is the feasible search region, ℝ௡  is the decision space, the components of the vector ݂ =
,ଵ(ݔ)݂) ଶ݂(ݔ), . . . , ௠݂(ݔ)) are the ݉ > 1 objective functions to be optimized and ℝ௠  is the 
objective space. When the objective functions are conflicting, does not exist one single optimal 
solution, but a set of alternatives - the nondominated solutions - called Pareto optimal set. The 
decision-maker then selects one (or more) compromise solution, among the alternatives, that 
better satisfies his/her preferences [6]. 

Using a scalarization approach to optimize the vector ݂, in particular the wTS method [3], a 
weighted aggregation of the objective functions fi is minimized:  

minimize ୫ܹୟ୶(ݔ; (ݓ  ≡ max{ݓଵ| ଵ݂(ݔ)− , |∗௜ݖ . . . |௠ݓ, ௠݂(ݔ) − ∗௠ݖ |}   
subject to ݔ ∈  Ω      (2) 

where ݖ∗ = ,∗ଵݖ) … , ∗௠ݖ  ) is the ideal point in the objective space, i.e., ݖ௜∗ =
min{ ௜݂(ݔ)  such that  ݔ ∈ Ω} for ݅ =  1, . . . ,݉ and ݓ = ,ଵݓ)  . . .   .௠) is a vector of weightsݓ,
By varying the weights, the solutions of problem (2) can approximate the complete Pareto 
optimal front. In order to improve the diversity of the obtained solutions and the convergence 
of the solutions towards the Pareto front, an equality constrained optimization problem can be 
defined as follows: 

minimize  ܦ   subject to   ݂ − ∗ݖ = ∋ ݔ   and  ݓ ܦ  Ω                                                (3) 

where D stands for the length of the projection of the vector  ݂ to the ideal point on the weight 
vector ݓ and the constraint ݂ − ∗ݖ =  ensures that the  ݂  value is always on the line with    ݓ ܦ
direction ݓ passing through the ideal point. The goal is to push ݂  as low as possible so that it 
reaches the boundary of the attainable objective set. To deal with the equality constraints, a 
penalty method may be used and a bound constrained optimization problem is solved for a user 
defined penalty parameter µ [5]. By using ܦ = ୫ܹୟ୶(ݓ;ݔ෥), ݓ෥ =  ௐ

୫ୟ୶௪೔
, problem (3) can be 

reformulated as follows:  

minimize ෩ܹ ;ݔ) ෥ݓ  , µ) =  ୫ܹୟ୶(ݓ;ݔ෥) + µ ܦ෩୫ୟ୶(ݓ;ݔ෥)  
    subject to  ݔ ∈  Ω                                                                                                (4) 
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and ܦ෩୫ୟ୶(ݓ;ݔ෥) ≡ max{ ଵ݂(ݔ) − ∗ଵݖ) + ௠ܹ௔௫ ෥ݓ;ݔ)  , (෥ଵݓ(  … , ௠݂(ݔ)– ∗௠ݖ) + ୫ܹୟ୶(ݓ;ݔ෥) ݓ෥௠)} 
is the length of the perpendicular distance from ݂ to ݓ. Thus, solving problem (4) for a set of 
weight vectors, the solutions approximate the points of the intersection of each weight vector 
and the true Pareto front. The smaller the ௠ܹ௔௫ ෥ݓ;ݔ)   ), the closer the solution is to the true 
Pareto front, determining convergence. On the other hand, ܦ෩୫ୟ୶(ݓ;ݔ෥) is penalized by the factor 
µ and determines diversity. A small value of µ emphasizes convergence and a large value 
encourages solution diversity. Setting the µ value for the best performance of the method is not 
an easy task. It depends on the problem and the number of objectives. In general, experiments 
are carried out with several values to select the best-performing µ value.  

3. Results and Discussion 
The weighted Tchebycheff algorithm was coded in MATLAB® (a registered trademark of 
MathWorks, Inc.) and the subproblems (4) are solved using the SA solver - simulannealbnd 
function - from the Global Optimization Toolbox of MATLAB. This solver uses the modelling 
software of the SSE process to provide the objective function values Q, Zt, Tmelt, Power, WATS 
and Visco (the output) given a set of values of the decision variables (the input). 

To improve the diversity of solutions obtained by the method, problem (4) is solved for a large 
µ value (10ଷ), over 5 runs. Seventy-seven nondominated solutions were obtained, from a total 
of 105 solutions (5 runs, each one with 21 weight vectors). Table 1 shows the maximum and 
minimum values obtained for each objective (points A to F). Points C, G and J represent the 
three solutions that achieved the smallest ෩ܹ ;ݔ) ෥ݓ  , µ) values and point H is an intermediate 
solution. The more balanced solutions in terms of all objectives, in particular Q and WATS, are 
solutions C and J. It is possible to conclude that the penalty strategy provides the solutions 
uniformly distributed over the objective space.  

Table 1. Optimized results when solving the problem (4) for µ = 10ଷ   

 
 
To illustrate this optimization process Figure 1 shows, as an example, the two-dimensional 
projections of the Pareto fronts obtained considering the Q and Tmelt (on the left) and Q and 
WATS (on the right) as objectives. In this figure, the red large circles refer to the non-dominated 
solutions obtained over five runs, i.e., the optimal solutions. Due to a lack of space, the 
remaining two-dimensional plots were not represented here. 
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Fig.1.  The two-dimensional projections of the Pareto front that are obtained when solving the problem 
(4) for µ = 10ଷ  

4. Conclusions 

In this study, a penalty-based weighted Tchebycheff scalarization algorithm is applied to find a 
polymer SSE optimal design throughout the simultaneous optimization of six relevant 
objectives. Although the choice of the penalty parameter value remains an issue to address in 
future papers, the selection of a large value provided a good distribution of solutions. Also, it 
was demonstrated that the Pareto solutions obtained were a good starting point towards the 
selection of a more equilibrated solution considering the relative importance of the objectives. 
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