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Abstract—General-purpose operating systems (GPOS), such as Linux,
encompass several million lines of code. Statistically, a larger code
base inevitably leads to a higher number of potential vulnerabilities
and inherently a more vulnerable system. To minimize the impact of
vulnerabilities in GPOS, it has become common to implement security-
sensitive programs outside the domain of the GPOS, i.e., in a Trusted
Execution Environment (TEE). Arm TrustZone is the de-facto technology
for implementing TEEs in Arm devices. However, over the last decade,
TEEs have been successfully attacked hundreds of times. Unfortunately,
these attacks have been possible due to the presence of several architec-
tural and implementation flaws in TrustZone-based TEEs. In this paper,
we propose Bao-Enclave, a virtualization-based solution that enables
OEMs to remove security functionality from the TEE and move them into
normal world isolated environments, protected from potentially malicious
OSes, in the form of lightweight virtual machines (VMs). We evaluate
Bao-Enclave on real hardware platforms and find out that Bao-Enclave
may improve the performance of security-sensitive workloads by up to
4.8x, while significantly simplifying the TEE software TCB.
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I. INTRODUCTION

General-purpose operating systems (GPOS), such as Linux, are
nowadays significantly complex, encompassing several million lines
of code. As all products of the human intellect, software is intrinsi-
cally subject to defects and statistically likely to present unexpected
behaviors, generally referred to as ”bugs”. Thus, a larger code
base inevitably leads to a higher number of potential vulnerabilities
and inherently a more vulnerable system [1]. These vulnerabilities
can be leveraged to tamper with security-critical information and
consequently subvert the Confidentiality, Integrity, and Availability
(CIA) triad guarantees. To address this problem, it has become
common to implement security sensitive programs outside the domain
of the GPOS, running in Trusted Execution Environments (TEEs)
[2], [3], [4]. TEEs provide an isolated execution environment, which
the main OS cannot tamper with, used to protect the privacy and
data integrity of applications (even under a compromised main
system). Two of the most well-established TEE technologies are
Intel Software Guard Extensions (SGX) [2] and Arm TrustZone
[4], in the cloud/server and mobile/embedded domains, respectively.
Both technologies aim at achieving similar high-level goals, but their
architecture and implementation are significantly different.

Arm TrustZone [4], [5] enforces the separation based on the con-
cept of worlds, i.e., the normal world and the secure world. The secure
world (a.k.a. TEE) is used for the security critical services, while the
normal world for everything else, i.e., the GPOS and applications - the
Rich Execution Environment (REE) [4], [6], [7]. These worlds have
separate dedicated memory regions and different privileges, and the
secure monitor is responsible for switching between secure and non-
secure execution. While the secure world software is able to access
all normal world resources, the reverse is not possible. In the Intel
SGX [2], [8], protected address areas (a.k.a. enclaves) are created for
applications, which enforces protection at the hardware and software
level. Enclaves aims at providing confidentiality and integrity even
when the entire system software is compromised, as the enclave’s
memory region cannot be accessed by any software that does not
reside in the same enclave [9]. While in the TrustZone architecture

the trusted OS can access and tamper with trusted applications (TAs),
in SGX, the main OS is not granted such privilege. In SGX, there
is an extra (and intra-) level of isolation which, in theory, makes
enclaves inherently more secure. Thus, the content of an enclave
is protected and cannot be accessed by any process outside of the
enclave perimeter, including processes executing at higher privilege
levels. This fundamentally minimizes and contains the impact of
potentially vulnerable enclave code.

Arm remains the main provider for computing platforms in the
mobile world, with over 95% [10] of the world’s smartphones
market share. Although ARM platforms are prevalent, TrustZone-
based systems have been show vulnerable hundreds of times [6]. The
expressiveness of the problem encompasses the overall architecture,
the software stack implementation, and the hardware. These flaws
can lead to bypass the full TEE security and allow, for example,
attackers to obtain secrets such as cryptographic keys and biometric
authentication [6], [11]. Architecture deficiencies in the TEE system
are due to fundamental design aspects of TrustZone such as the over-
privileged rights of the secure world [6], [12]. Implementation bugs
involves classic input validation errors, such as buffer overflows. At
the hardware level, important hardware properties are overlooked at
the architectural and microarchitectural level [6].

To address mainly the aforementioned architectural TrustZone
TEEs limitations, the academic community has proposed several
solutions [12], [13], [14], [15], [16], [17], [18]. Most of these
solutions are built on hardware mechanisms, including virtualization
techniques, which enforce access control based on the current execut-
ing context, while removing functionality from the TrustZone TEE.
However, these solutions suffer from problems such as controlled
channel attacks, require compiler changes, and suspension of the
entire operating system while a trusted application (TA) executes,
just to name a few. Additionally, other solutions have been proposed
by academia [19], [20], [21], [22] for commodity x86 platforms,
which mainly use Intel virtualization technology. They feature a
hypervisor, secure context switching, secure processor creation, and
provide security mechanisms to protected applications.

In this paper, we present Bao-Enclave, a virtualization based
solution to create enclaves on ARM(v8-A) platforms. The enclaves
execute in lightweight virtual machines (VMs) in the normal world
and allow developers to relocate complex functionality from the
secure world, reducing the system TCB. Bao-Enclave is built atop the
open-source static partitioning hypervisor Bao [23], which we modify
to support the dynamic creation of VMs. We evaluate Bao-Enclave on
two well-established hardware platforms (NXP i.MX8MQ and Xilinx
ZCU104) and compared with OP-TEE. The results are encouraging,
achieving up to 4.8x better execution times.

II. BACKGROUND

A. TEEs on ARM platforms

TrustZone is used for deploying TEEs [4], [24], which isolate the
execution of security critical programs named Trusted Applications
(TAs). Some TAs implement services for the operating system (OS),
e.g., for user authentication or file disk encryption [25]. Other
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Fig. 1. Arm TrustZone secure world executing the TEE, and normal world
executing the REE.

TAs provide shared user-level functionality, e.g., DRM media de-
coders [26] or online banking services [27]. These TEEs comprise a
stack that offers an API and runtime support for hosting TAs. TEEs
such as Qualcomm’s QSEE and OP-TEE protect the confidentiality
and integrity of TAs’ memory state, thereby ensuring it cannot be
inspected or tampered with by a potentially compromised OS.

TrustZone provides two execution environments: normal world and
secure world. Figure 1 depicts the normal world running a feature-rich
software stack, named Rich Execution Environment (REE), which
comprises a full-blown OS and applications, software considered un-
trusted. The secure world runs a simpler software stack comprised by
a trusted OS and TAs. TrustZone enforces isolation between worlds
and provides specific entry points for world switching, managed by
the secure monitor, whenever the REE invokes TAs’ services. A
physical CPU can be in either of two security states, secure and non-
secure, depending on which software it is executing. It is secure for
monitor Trusted OS and TA, and non-secure for OS and applications.

With ARM platforms being so prevalent, TrustZone-based systems
have been show vulnerable multiple times. The main security issues in
TrustZone are derived from implementation issues that are amplified
by the TrustZone’s own architecture flaws [6]. Implementation bugs
both in TAs and the Trusted OS, are typical implementation errors
such as buffer overflows or dereferencing attacker controlled pointers.
These flaws reach critical security impact due to the TrustZone
architecture giving high privileges to TEE software. This results in
TEE components that can be controlled by an attacker, and from
which devastating attacks can be launched from affecting every part
of the system [6]. This is particularly worrisome as OEM strive for
evermore complex functionality in the secure world leading to larger
TCBs, which in its turn leads to less trustworthy systems.

B. Virtualization

System virtualization [28] is a technology that enables the consol-
idation of multiple, unrelated software stacks onto the same physical
machine by partitioning and multiplexing hardware resources (e.g.
CPUs, memory, etc) between multiple virtual machines (VMs). The
software layer that implements virtualization is called virtual machine
monitor (VMM) or hypervisor. The software executing in the VM is
referred to as guest, typically an operating system, thus guest OS.

In their seminal paper, Popek and Goldberg [29] have identified
the three main properties of virtualization as being (i) equivalence,
meaning that the provided VM abstraction should be as compatible
as possible to that of the physically machine so that guest software
can run unmodified; (ii) efficiency, which implies there should be
minimal performance deterioration of guest software as compared to
when executing directly on the real machine; and, more importantly,
(iii) resource control. In essence, resource control means that all VMs
must be thoroughly isolated from one another. All system resources
must be in full control of the hypervisor which delegates them to

VMs, and it must be impossible for a VM to access resources affected
to other VMs, unless explicitly configured so. Furthermore, they have
developed a model that lays out the basic requirements for a machine
to be virtualizable. It essentially states that besides providing at least
two privilege modes of execution and memory isolation mechanisms
(e.g. page-based virtual memory), an instruction set must make sure
that all sensitive instructions (i.e. instructions that either configure or
depend on the configuration of the system) must also be privileged
instructions which when executed in a lower privilege mode, trap
to the higher privilege modes. The hypervisor will run in a high
privilege mode, while guest software executes in a lower privilege.
The hypervisor can than react to the traps originated due to the a
guest executing sensitive instructions (a.k.a. VM-exits) by emulating
the behavior of the physical machine while guaranteeing the resource
control property, e.g. by implementing shadow page-tables [30] to
guarantee spatial isolation among all VMs.

Due to its current widespread applicability, architectures have intro-
duced virtualization extensions [31], [32], [33], which simplifies the
implementation of hypervisors and reduce overheads by minimizing
the frequency of VM-exists. They typically provide an extra privilege
mode for the hypervisor itself, support for two-stage virtual memory
translation, and fine-grained controls for trapping guest execution.

Starting from the 1960s, virtualization technology has been used
to time-share a single physical machine among multiple users [28],
[34]. In the beginning of the century, due to the World Wide
Web explosion, this technology has been extensively adopted in
server environments to consolidate the many workloads, achieving
higher utilization and lessening power consumption [34], [35] thereby
decreasing total data center maintenance costs. More recently, the
technology has found its way into many other domains of application
such as mobile and embedded (e.g. automotive) [36], [37], not only
due to its cost saving benefits, but also by enabling significantly
smaller form factors, the decoupling of the software stack from the
real hardware easing sharing, maintenance, upgradability and porta-
bility, and, more importantly, due to its security and isolation benefits.
As virtualization guarantees a high degree of isolation between VMs,
it can be used to decompose the system, following the principle of the
least privilege [38] which can greatly improve fault containment. This
allows system designers to segregate security-sensitive functionality
in dedicated VMs, essentially implementing software-defined TEEs.
Furthermore, the hypervisor is a suitable layer to implement security
functionality such as monitoring mechanisms [39].

C. Bao Hypervisor

Bao [23] is a multi-core embedded hypervisor targeting mixed-
criticality use cases where typically small safety- or mission-critical
RTOSs or baremetal applications run in VMs alongside VMs host-
ing feature-rich guest OSs. In this domain, the main goal of the
hypervisor is to help consolidate these multiple workloads while
guaranteeing thorough isolation and strong real-time guarantees.
Also, the hypervisor must minimize attack surface and vectors, but
also be suitable for certification. To accomplish these goals, Bao
implements a static partitioning architecture [40], [41], meaning all
system resources are allocated and assigned to VMs at initialization
time and never reconfigured during execution. Virtual CPUs (vCPUs)
are mapped to physical CPUs (pCPUs) in a 1:1 manner and IO
is purely passthrough, therefore without the need for a scheduler.
In this way, Bao is able to achieve a TCB of about 8.4 KSLoC
for the Armv8 architecture while being a completely standalone
implementation not depending on any external libraries. Bao imple-
ments inter-VM communication based on statically defined shared
memory and asynchronous events mapped as virtual interrupts in
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the VMs communicating through a given channel. Bao also enables
cache partitioning via page coloring [42] reducing the contention
in shared caches and improving predictability and determinism for
critical workloads. This partitioning can also mitigate cache-based
timing side-channels used in a myriad of modern attacks [43].

VM Stacking: Despite simplicity and minimality being pillars in
Bao’s design, they are also one of its main drawbacks as the static and
exclusive assignment of CPUs sacrifices utilization for determinism
even when it is not necessary. To circumvent this, an experimental
Bao branch implements a policy-free mechanism that relaxes the
static 1:1 mapping of vCPUs to pCPUs, allowing multiple vCPUs
belonging to different VMs to execute on the same pCPU. However,
the hypervisor only implements a simple context-switch mechanism
and remains without a scheduler. Instead, at configuration time, it
is possible define a tree of vCPUs for each pCPU. At runtime,
the executing vCPU can issue a hypercall to schedule any of its
child vCPUs. A vCPU can also issue a hypercall to yield execution
to its parent vCPU. If at any time of a child vCPU execution,
an interrupt arrives targeting a parent vCPU, the hypervisor will
immediately schedule it. Furthermore, other exceptions unhandled by
the hypervisor are also forwarded the parent vCPU. This mechanism
is dubbed VM stacking as the scheduling and yielding of child vCPU
can be seen as pushing and popping it of the stack, respectively. Also,
the scheduling of a parent vCPU upon interrupt arrival can be seen
as stack unwinding since this can result in popping multiple vCPUs
from the stack until the target vCPU is reached.

Essentially, VM stacking allows the implementation of arbitrarily
complex functionality without increasing the TCB of critical VMs
by moving it to a a high privilege VM, i.e., a VM in one of the root
nodes of the configuration tree. The most straightforward example
would be to implement scheduling itself in one of the CPUs: the
root node vCPU would decide which of its child VMs according to
some policy at each timer tick. Note this does not have any effect on
a critical VM executing alone in another CPU.

III. MOTIVATION, DESIGN GOALS AND THREAT MODEL

Bao-Enclave focuses on the secure processing of critical data on
Armv8 platforms. The security critical applications must not trust
the OS, as the OS can be compromised by attackers. The typical
solution would be to run this security critical code in the TEE.
However, if the application is flawed, it can lead to a full system
compromise [6]. Thus, this work’s main goal is to provide a solution
that enables the creation of safe execution environments for security
critical applications in the normal world, while preventing these
security critical applications from compromising the system. To this
end, Bao-Enclave will use one primary VM to host the main OS. This
VM will be able to request the creation of additional VM destined to
host TAs inside an enclave, enclave VMs. Additionally, Bao-Enclave
will provide an API and development models similar to SGX’s to
allow for flexible enclave management and deployment.

The TCB of a running Bao-Enclave includes all secure world com-
ponents, as they retain the highest privilege, and the Bao hypervisor.
A TA hosted in an enclave does not directly need to trust the OS or
any other normal world component, except for Bao, as they do not
have privileges to access the enclave’s code and data.

IV. DESIGN AND IMPLEMENTATION

Bao-Enclave creates isolated memory regions for security applica-
tions, hereinafter referred to as TAs. The memory region is provided
as part of a VM which includes both EL1 and EL0 privilege levels.
A TA developer can opt to build its application as a baremetal app
and deploy it in EL1, build it’s application with a library OS, or

Application

Linux Enclave

Bao

EL0

EL1

EL2

Fig. 2. Bao-Enclave architecture overview.

deploy a more typical software stack including an OS and run a
TA, or multiple TAs, on top of it. For simplicity, we depict in
Figure 2 the scenario in which a TA runs as a baremetal application
in EL1. To create an isolated environment in the normal world,
we use virtualization techniques. Specifically, we dynamically create
enclave VMs, while having a primary VM hosting the main OS. We
use stage-2 page tables to control physical memory access. This is
needed to prevent the primary VM (i.e., the OS) from accessing, or
otherwise compromise, the enclave VMs. Bao-Enclave leverages the
Bao hypervisor due to its small size, and because it provides strong
isolation between VMs. As Bao is a static partitioning hypervisor,
it does not feature the ability to dynamically create guest VMs.
Therefore, a small number of modifications were made to Bao to
implement this functionality, including the implementation of the
hypercall interface necessary to allow the primary VM to request the
creation of enclaves. In its original form, Bao allows a single VM to
run in one physical CPU. We take advantage of a work-in-progress
feature in Bao, called VM Stack, see section II-C.

Bao-Enclave follows the same general model as SGX, applying it
to ARM processors, but with some differences. First, Bao-Enclave
does not protect against hardware attacks such as memory bus
snooping [44], or cold boot [45]. SGX achieves this by having a
memory encryption engine in the SoC that encrypts and decrypts data
on the fly when data is being sent to, or fetched from, main memory,
respectively. However, Bao-Enclave could be extended to provide
similar features by implementing a paging mechanism and using on-
chip memory [46], [47]. Enclave creation in SGX is done by the OS
by using initialization instructions specific for enclave creation. These
instructions inform the hardware which memory regions belong to
the enclave, and mark the enclave as initialized. In Bao-Enclave, the
OS issues calls to the hypervisor to create and initialize an enclave.
The OS must donate memory from it’s own address space, and pass
additional information to Bao in order to create the enclave. One last
significant difference between SGX and Bao-Enclave, is that SGX
applications have a CPU instruction available to them, to invoke a
TA. In Bao-Enclave an application must issue a call to the Bao-
Enclave driver to perform a call to the corresponding TA.

A. Physical Address Space control

The main objective of Bao-Enclave is to create an isolated en-
vironment that protects security sensitive applications from being
compromised by a malicious OS. The main mechanism Bao-Enclave
uses to achieve this is stage-2 translation tables (i.e., virtualization).
During the enclave VM creation process, Bao removes access to the
physical memory now belonging the enclave VM from the primary
VM running the main OS. Figure 3 depicts the result of applying this
mechanism. Although Linux has mapped the TA code and data unto
it’s own address space, the stage-2 translation table blocks access to
this memory, allowing only the enclave VM to access it.
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Fig. 3. Physical memory access control by controlling stage-2 translation
tables.

B. Bao-Enclave Execution Flow

Bao-Enclave requires interactions between a user-space application
and a Bao-Enclave driver on the host OS, and between the driver and
the Bao hypervisor. These interactions have three main objectives:
Enclave Creation, Enclave Destruction, and Enclave Invocation. A
communication protocol is implemented at the application and TA
level, to establish a connection between them.

Enclave Creation: The creation process is depicted in Figure 4 in
steps C1 to C7. When an application requires the execution of security
critical code, it will issue a request to the OS through the Bao-Enclave
driver (C1) to allocate memory for the enclave. The OS will then
take some of its own memory and donate it to an enclave VM. This
memory will hold the TA image (e.g., code and data) and be large
enough for the TA to execute correctly. Both the TA image and the
required memory space are previously established and stored in a
file. The size of the communication channel (i.e., shared memory
region) is also information stored in the file. After the OS allocates
the necessary resources, The application will copy the TA information
to the newly allocated memory, and issue a request to create the
enclave VM (C2). This request is first received by the Bao-Enclave
driver, and then a similar request is sent to Bao (C3). Herein lies the
most significant modification to Bao. The modifications transform
Bao from being able to only create VMs during startup to being able
to create them dynamically, specifically for the enclave use case. In
this step Bao will take the memory region that the OS allocated to the
enclave and remove it from the primary VM physical address space
(C4), while mapping that same physical memory to the enclave VM
(C5). After the enclave is fully created, Bao will give back execution
control to the OS (C6), which will execute the application (C7), and
the TA can then be invoked by the application.

Enclave Destruction: Destroying an enclave VM requires the ex-
ecution of similar steps to its creation, but in reverse. These steps
are represented in Figure 4, in steps D1 to D8. When an application
no longer requires the TA services, it issues an enclave destruction
call to the Bao-Enclave driver (D1). The OS will then issue a call to
Bao to destroy the enclave (D2), to regain access to the memory it
donated. Bao will then destroy the VM (D3), another modification we
introduce in Bao. In the destruction process Bao will write the enclave
VM’s memory region to zero, thus preventing the OS from learning
secrets when it regains access to the memory region. After this, Bao
will remap the memory region unto the primary VM’s address space
(D4), and control is given back to the OS (D5), and eventually the
application (D6). The application will then issue a call to the OS to
free the memory allocated for the enclave (D7). Finally the OS will
give back control to the application (D8).

Invoking an Enclave: To invoke the execution of an existing enclave,
an application must issue a call to the Bao-Enclave driver. The
driver will then issue a hypercall to Bao, which will perform the
context switch. We leverage the two additional fields of the VM data
structure, HEAD and TAIL, introduced by Bao’s VM Stacking feature.

Linux

Bao

C1

C3 C6

TA
C2 C7

C4

D1

D2

D3

D5

D6 

C5

D4

Application

D7 D8

Fig. 4. Enclave creation (C1-C7) and destruction (D1-D8) execution flow.

Linux
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TA Executing

Linux

TA
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1 2 3

Fig. 5. How a LIFO data structure is used to control the execution flow of
multiple VMs on the same pCPU in Bao-Enclave.

TAIL holds which VM executed pior and HEAD stores the next VM
to be invoked. This creates a LIFO data structure, used to keep track
of the execution flow between VMs. On receiving the invoke call,
Bao will update the HEAD field of the permanent VM data structure
and set it to point to the enclave VM. After this, Bao will perform the
context switch, and give execution control to the enclave VM hosting
the TA. The TA will execute, and once it has processed the request it
will issue a call to Bao to give control back to the OS. Because the
TA is giving back control of the execution, Bao will look at the TAIL
data field to retrieve the VM that invoked the TA. After this, control
is given back to the OS. Figure 5 demonstrates how the LIFO data
structure is used to control the execution flow between VMs.

Communication: Bao-Enclave inherits the shared memory based
communication mechanism, present in the original Bao. However,
contrary to the original Bao implementation, Bao-Enclave foregoes
interrupt based communication, with the goal of simplifying the
implementation. Thus, application and TA implement a shared com-
munication protocol without relying on interrupts. The TA must
implement a loop, where execution resumes on an invoke request.
In this loop the TA decodes which request it must serve. When the
request is fulfilled, it gives back control, and the loop restarts.

V. PERFORMANCE EVALUATION

We evaluate Bao-Enclave using an i.MX8MQ from NXP and
an ZCU104 from Xilinx, both platforms feature Cortex-A53 cores.
While i.MX8MQ features a core frequency of up to 1.5GHz, a
32KiB L1 caches for data and instruction, and a 2MiB L2 cache, the
ZCU104 features a core frequency of 1.2GHz, 32KiB L1 data and
instructions caches, and 1MiB L2 cache. The toolchain we use is gcc-
arm-10.2-2020.11. Our performance analysis covers three vectors,
micro-benchmarks, real world use case, and TCB size.

Micro-Benchmarks: We first measure the elapsed time for the
execution of each Bao-Enclave API: create enclave, invoke enclave,
destroy enclave. We execute each test 30 times in the ZCU104
platform. Table I shows our results. The operation of entering and
exiting the enclave has a much smaller cost, 7µs, compared to the
operations of creating and destroying the enclave. The added cost of
the create and destroy operations is due to the required stage-2 page
table maintenance for both the enclave VM and the primary VM. The
creation operation requires 138.58ms on average. As for the enclave
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TABLE I
BAO-ENCLAVE MICRO-BENCHMARKS IN ZCU104 PLATFORM.

Create Invoke Destroy
Average (ms) 138.58 70.38E-4 1491.64
Std. Deviation (µs) 763.56 0.58 25.17

TABLE II
BITCOIN WALLET EXECUTION TIMES FOR BAO-ENCLAVE AND OPTEE IN

THE I.MX8MQ PLATFORM.

Average (ms) Relative Average Std. Deviation (µs)

Cmd 1 Bao-Enclave 20,9 8.4x 134,6
OP-TEE 2,5 — 325,0

Cmd 2 Bao-Enclave 82,3 0.6x 64,2
OP-TEE 131,7 — 5849,5

Cmd 3 Bao-Enclave 74,1 0.6x 21,9
OP-TEE 131,6 — 4643,1

Cmd 4 Bao-Enclave 17,3 0.9x 58,7
OP-TEE 19,7 — 3554,5

Cmd 5 Bao-Enclave 59,3 0.2x 27,0
OP-TEE 285,8 — 2786,1

Cmd 6 Bao-Enclave 51,8 0.3x 13,3
OP-TEE 194,7 — 2020,9

destruction, the cost is 1491.64ms, on average, which in addition to
the page table maintenance similar to the creation operation, also
includes the step of writing the enclave VM memory to zero.

Real World Use case: We evaluate the real world performance of a
bitcoin TA running in OP-TEE, and a port of this TA running in a
Bao-Enclave enclave. We measure 30 execution times for each of the
commands provided by the TA for both the OP-TEE and the Bao-
Enclave versions, and compare them to assess the incurred overheads.
The results are shown in Table II. The comparison is performed
between an existing application for OP-TEE and a baremetal version
implemented for this work. The TA is not same for OP-TEE and
Bao-Enclave, as any function that uses libraries or calls to OP-TEE is
replaced by a version implemented in C. As can be seen, Bao-Enclave
presents better results than OP-TEE, in the comparison between all
commands, with the exception of command 1 where Bao-Enclave
is slower, this is caused by differences between applications. Apart
from creating the master key where Bao-Enclave is about 8.2x slower.
The main reason for the increased performance with Bao-Enclave is
because several methods in the API used by the Bitcoin Wallet require
system calls to OP-TEE, whereas all operations in the Bao-Enclave
version of the TA are done in the same privilege level. We observe
that the TA in Bao-Enclave can be up to 4.8x faster in the execution of
the services. Finally, we observe that Bao-Enclave has a significantly
lower standard deviation compared to the OP-TEE.

TCB Size: We measure the size of the TCB by evaluating how
much lines of code are added, and how much the program segments
are increased by the modifications necessary to implement Bao-
Enclave. To measure the lines of code we use Tokei1. To measure
the application segment sizes we use the size tool provided by the
toolchain. We compare these values to typical Bao and to the Bao
implementation including the VM Stacking mechanism. The results
are presented in Table III. Bao-Enclave performs all its functions
with an addition of only 164 lines of code in the hypervisor, which
represents a 1.79% increase. These 164 lines represent changes to
Bao’s core C module, keeping the other sectors practically unchanged.
Regarding memory usage, we analyze the size of the program
segments in the binary. An increase in allocated memory is detectable,
as expected. This increase corresponds to 1.27 KiB or 0.67%.

1https://github.com/XAMPPRocky/tokei

TABLE III
BAO-ENCLAVE IMPACT ON SYSTEM TCB.

Lines of Code Size (bytes)

Bao Bao
vmstack Bao-Enclave

C asm total C asm total C asm total
Bao Bao

vmstack Bao-Enclave

armv8 4864 514 5378 5225 508 5733 5209 508 5717 125159 128068 127628
imx8mq 45 0 45 45 0 45 45 0 45 760 776 776

core 2577 3 2580 2849 3 2852 3029 3 3032 50841 62347 64090
lib 495 0 495 511 0 511 511 0 511 2828 2812 2812

total 7981 517 8498 8630 511 9141 8794 511 9305 179588 194003 195306

VI. RELATED WORK

The two main motivations for this work have already been ad-
dressed separately in two major lines of work, creating an environ-
ment isolated from the main OS without relying on TEE technology,
and reducing the TCB in the secure world of TrustZone. Works
addressing the first line of work include the use of virtualization
techniques. Overshadow [19] leverages shadow page tables to create
different views of physical memory. Inktag [20] introduces the
concept of paraverification to improve isolation. TrustVisor [21]
implements TPM functionality in software that is leveraged as a root
of trust for deploying secure VMs. SP3 [48] encrypts VM memory
by storing a per domain (i.e., collection of VMs) secret key in the
page tables. TFence [15] leverages Armv7A partially privilege mode
to securely instantiate and execute portions of applications, with the
goal of guaranteeing a secure communication channel with the secure
world. Bao-Enclave stands as the first solution aiming to reduce
secure world TCB in Armv8 platforms while relying on a minimal,
and fit for purpose, hypervisor.

In the second line of work, mechanisms are implemented by the
TEE to increase the security guarantees in the normal world, lessening
the need to execute complex applications in the secure world. These
works leverage the TZASC, a TrustZone address space controller
that controls what memory is normal and which memory is secure.
Ginseng [49] leverages TrustZone’s secure monitor to implement a
shadow stack that holds sensitive information available only while
sensitive portions of the application execute. Sanctuary [14] leverages
non-standard features, including the TZASC-400 per master filtering
abilities to create enclaves in the normal world. TrustICE [50] protects
sensitive applications in the secure world while they are not execut-
ing, transitioning them to the normal world when they are needed.
HA-VMSI [18] and vTZ [13] both leverage TrustZone to improve
the security guarantees of a hypervisor, taking from the hypervisor its
direct control over the address space of VMs. ReZone [12] partitions
the TEE in multiple domains by using COTS hardware features to
create sandboxes in the secure world, effectively deprivileging the
Trusted OSes. There are also works that use software techniques,
such as same privilege isolation, to manage the TCB in the secure
world [51], [52]. In Bao-Enclave we securely instantiate workloads
previously hosted by the TEE to reduce the secure world TCB,
without relying on TrustZone.

VII. CONCLUSION

In this paper, we discussed Bao-Enclave, a virtualization based
solution to create enclaves on ARM(v8-A) platforms. The enclaves
execute in the normal world and allow developers to relocate complex
functionality from the secure world, reducing the system TCB. Bao-
Enclave is built atop Bao, which we modify to support the dynamic
creation of VMs. We evaluate our system and compared it with
OP-TEE. The results are encouraging, achieving up to 4.8x better
execution times. In the future, we plan to add other features provided
by SGX such as remote attestation and re-design our system to
generalize to other computer architectures (e.g., RISC-V [33]).
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