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Abstract. This paper presents a new approach to robustness analysis in multi- 
objective optimization problems aimed at obtaining the most robust Pareto front 
solutions and also at distributing solutions along the most robust regions of the 
optimal Pareto set. The methodology proposed is applied to a single screw pol- 
ymer extrusion with the aim to obtain the most robust solutions for the optimi- 
zation of the extruder geometry. The non-dominated solutions obtained take in- 
to account their degree of robustness and the distribution of such solutions 
along the Pareto front accordingly with specific algorithm parameter values. 
The results obtained have physical meaning and are in accordance with the 
practical knowledge about the industrial process studied.  
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1 Introduction 

It is well known that many practical engineering problems are multi-objective, i.e., 
they can be described by the existence of various, often conflicting, objectives. A 
useful way to solve these problems consists using Multi-Objective Evolutionary Al-
gorithms (MOEAs) to find the best trade-off between those objectives. These algo-
rithms are particularly adequate for solving such categories of problems since, instead 
of a single solution, they use a population of candidate solutions that can be evolved 
towards the optimal Pareto front, allowing them to obtain Pareto frontiers represent-
ing the trade-off between the objectives [1]. 

An important question in the optimization of real problems is the sensitivity of the 
solutions obtained when small variations of the design variables or of environmental 
parameters occur. This means that the obtained solutions must be robust, i.e., the per-
formance of the optimal solution(s) should be only slightly affected by changes in 
those parameters [2]. Usually, the perturbations in the design space or related to envi-
ronmental parameters are due to unsatisfactory manufacturing accurateness or from 
noisy design processes, which can be classified into four different categories: a) the 
performance is affected by noise; b) the value of the design variables change after the 
optimal solution has been found; c) the process performance is estimated by an ap-
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proximation to a real value; d) and the case where the performance changes with time 
(dynamic problems). In this work, robustness analysis of the second category will be 
applied to the optimization of the single screw polymer extrusion [3]: 

In multi-objective optimization, two types of robustness measures can be used: i) 
expectation, consisting in replacing the original objective function by a measure of 
both its performance and expectation in the vicinity of the solution considered; and ii) 
variance, consisting in adding a further objective that quantifies the deviation in the 
vicinity of the solution [4, 5]. 

For example, the polymer extrusion process depends on the definition of the ma-
chine temperature. In this case, the solutions found for the operating conditions and/or 
the geometry of the machine cannot be deteriorated in the performance if the envi-
ronmental temperature changes during the day, which only can be accomplished if 
robustness of the solutions is considered taking into account the temperature fluctua-
tions. 

The objective of this work is to apply the multi-objective robustness approach de-
veloped previously by the authors in the optimization of single screw extrusion [6]. 
For that purpose, initially the robustness methodology proposed will be assessed us-
ing a simple case of polymer extrusion process optimization and, then, the methodol-
ogy will be applied to real industrial situations. 

This text is organized as follows: in section 2 the optimization problem will be ex-
plained; in section 3 the optimization problem will be explained; section 4 will be 
devoted to presentation and discussion of the results; and in section 5 the conclusions 
will be presented. 

2 Robustness in Polymer Extrusion 

2.1 Extrusion Process 

Figure 1 shows a scheme of the polymer extruder. It is constituted by an Archimedes 
type screw rotating inside a barrel. The solid polymer in the form of pellets is feed in 
the hopper where, by action of the gravity, it reaches the interior of the cylinder. 
Then, by action of the screw rotation, the polymer is forced to move forward through 
the heated barrel zones where the polymer melts and is created the required pressure 
to the polymer crosses the die that gave the final shape of the product [6]. The work-
ing of the process depends on the polymer properties, operating conditions (screw 
speed, N, and barrel temperature profile, Tb), and of the screw geometry (length screw 
zones, Li, and internal screw diameters, Di). 

The process was modelled numerically using an in-house developed software. The 
calculations of the relevant performance parameters are carried out (output, Q; melt 
temperature at die exit, T; length of screw required for melting, Length; power con-
sumption, Pot; and mixing degree, WATS). The software is able to calculate these 
performance objectives as a function of the operating conditions and the screw geom-
etry [6]. 
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Fig. 1. Single screw extruder decision variables range of variation: operating conditions (N and 
Tb) and screw geometry (L1, L2, D1 and D3). 

2.2 Robustness Methodology 

The robustness methodology adopted consists in an adaptation of the approach pro-
posed by the authors in Gaspar-Cunha et al. [5] in order to take into account a differ-
ent MOEA, in this case the SMS-EMOA algorithm [7]. In this algorithm, the fitness 
of each solution and replacement strategy are based on non-dominated sorting and 
hypervolume contribution. 

In this case robustness of a solution 푖 is computed by the following equation [5]: 

 푅 = ∑ ( )
,         푑 < 푑max (1) 

where 푁 is the number of neighbors, 푥  and 푓(푥 ) are the vectors of decision variables 
and objectives for solution 푖, respectively, and 푑  is the Euclidian distance between 
vectors 푥  and 푥 . Only solutions withe distances from solution 푖 inferior to 푑max con-
tribute to the robustness measure 푅 . All distances were rescaled into the interval 
[0,1] and 푑max was set to 0.1. If no neighbors are within 푑max (푁 = 0) then 푅  is set to 
zero. 

In order to compute the parameter 휖  described in Gaspar-Cunha et al. [5] that de-
fines the degree of robustness used to compute the global fitness of solutions, the 
following parameters values are considered 훾 = 0.2, 훿 = 0.001, and 휖 = 0.1. These 
values allow to achieve an adequate balance of non-dominance, diversity, and robust-
ness. Then, the global fitness of a solution 푖 can be computed by 

 퐹 = + (1 − 휖 ) + (1 − 휖 )  (2) 

 
where, for solution 푖, 푟푎푛푘  is the non-dominance rank, ℎ푣  is the contribution of the 
solution to the global hypervolume of the non-dominated area, and 푅  is the robust-
ness measure. 
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2.3 Multi-objective Optimization with Robustness  

The multi-objective optimization algorithm with robustness was implemented in 
MATLAB based on the SMS-EMOA algorithm [7]. The outline of the SMS-EMO is 
given by Algorithm 1. 

 
Algorithm 1 SMS-EMOA 
푃 ← 푖푛푖푡푖푎푙푖푧푒()  % Initialize population at random with 휇 individuals 
푘 ← 0  
Repeat 
 푞 ← 푔푒푛푒푟푎푡푒(푃 ) % generate offspring by genetic operators 
 푃 ← 푠푒푙푒푐푡푖표푛(푃 ⋃{푞 }) % select 휇 best individuals 
푘 ← 푘 + 1  

Until Stopping Criterion fulfilled  
 

The search starts from an initial population of 휇 individuals generated at random 
satisfying the boundary constraints of the decision variables. In each generation, one 
single offspring is produced by application of a variation procedure. This procedure 
can implement genetic operators such as SBX-crossover, polynomial mutation or 
Gaussian mutation. Next, a deterministic selection procedure selects the 휇 best indi-
viduals to the next generation. The selection is based on a fitness function that balanc-
es three measures (see equation 2): the non-dominated ranking, the hypervolume con-
tribution and the robustness measure. 

First, the 푃 ⋃{푞 } individuals are ranked according to a non-dominated sorting 
procedure defining 푓 fronts of sets of non-dominated individuals [8]. A rank is as-
signed to each front representing its level of domination. All solutions belonging to 
each front are incomparable. The first front 퐹  contains the non-dominated solutions 
in 푃 ⋃{푞 }. The second front 퐹  contains all non-dominated solutions in 
푃 ⋃{푞 }\퐹 . This procedure is repeated until all solution in 푃 ⋃{푞 } are includ-
ed in a front. Any solution in front 퐹  is dominated by at least one solution of front 
퐹  for 푖 ≥ 1. 

Afterwards, the hypervolume contribution [9] and robustness measure of each in-
dividual in 푃 ⋃{푞 } is computed. Hypervolume definition guarantees that any non-
dominated solution will not be replaced by a dominated solution since non-dominated 
solutions will have a higher hypervolume contribution than dominated ones. Hyper-
volume allows to obtain a well-distributed set of solutions in the objective space as 
well as to guide the search towards the Pareto optimal front.  

For the computation of the robustness measure, a given number of random points 
are generated in the neighborhood of the solutions in the population. If the generated 
points do not satisfy the boundary constraints of the decision variables, they are pro-
jected into the feasible space. These points are then evaluated in terms of the objective 
function values. Considering all generated points and the solutions in population, 
equation 1 is used to compute the robustness of solutions. Euclidean distances be-
tween decision variables vectors and objective functions vectors are considered in all 
computations. 



5 

The fitness function expressed by equation 2 balances these three measures. The 휇 
best individuals in terms of the fitness function are selected to be progenitors of the 
next generation. This process is repeated until the stopping criterion is fulfilled. 

3 Results and Discussion 

The methodology proposed was tested using a single screw extruder with an internal 
barrel diameter of 25 mm and a screw with a length of 625 mm and processing a High 
Density Polyethylene. For the purpose of the present study only the maximization of 
the mass output and the minimization of the length of screw required for melting will 
be presented.  

The objectives of the optimization problem are the output (kg/h) and the length of 
screw required for melting (m). This is a bound constrained multi-objective optimiza-
tion problem with the following decision variables bounds: 150푚푚 ≤ 퐿 ≤ 300푚푚, 
150푚푚 ≤ 퐿 ≤ 350푚푚, 16푚푚 ≤ 퐷 ≤ 19푚푚, and 19푚푚 ≤ 퐷 ≤ 23푚푚. 

The population size was set to 20 individuals. The selection is made using a uni-
form distribution and variation is performed by the CMA evolution strategy operator 
[10], which is designed to work with real number representations. The fitness of each 
solution and the replacement strategy are based on the Pareto front rank, the hyper-
volume measure and robustness measure. For the computation of the robustness 
measure, four random points are generated in the neighborhood of the solutions in 
population. The maximum number of generations was set to 20. 

Figure 2 shows the initial and the final populations in the objective space. It can be 
observed that there is a progress towards the Pareto optimal front during the search, 
manly for intermediate values of both objectives. Also, the final population follows a 
linear variation for low (between 3 and 5 kg/h) and high (between 7 and 8 kg/h) val-
ues of output. The random solutions of the initial population are manly located in the 
center of the graph, but during the search the algorithm was able to fill the entire 
space. This can be seen in figure 3 where the size of the circles indicates the number 
of solutions found in that region.  

Therefore, the optimization was accomplished in two different ways: i) finding so-
lutions in the extreme regions and ii) able to find solutions in the intermediate region 
where the process of extrusion plays an important role. In fact, this behavior observed 
for intermediate values can be explained by the nature of the problem under consider-
ation.  

The observation of figures 4 and 5, where Output and Length were plotted against 
the decision variables, respectively, allows one to conclude that the solutions found: i) 
cover almost the entire range of variation allowed for L1 (between 150mm and 
300mm) and D2 (between 16mm and 19mm); ii) concentrate for the lowest value of L2 
allowed (200mm) and iii) concentrate for the lowest value of D2 (19mm). In fact, the 
output is higher when D2 is lower, since in the case the screw channel has its higher 
value given space to the polymer flows easily in the extruder channel. Also, the gap in 
the central location is due to the fact that the objective Length (i.e., length required for 
melting) does not depends linearly on the combination of all decision variables. 
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Figure 6 shows the robustness measure as a function of the output. For the solu-
tions of the final population, it can be seen that the less robust solutions are those with 
larger value of Output. This behavior is due to the slope observed for these solutions 
in Figure 2 that indicates that a small perturbation in one objective corresponds to a 
large change in the other. This also means that the extruder process is more sensitive 
to the decision variables when the aim is to increase the output, which is related to the 
thermomechanical behavior of the real process. 

Figure 7 illustrates the variation of Fitness with Hypervolume. Solutions with larg-
er Hypervolume contributions have a tendency to have a larger Fitness value. Finally, 
in Figure 8, it is possible to observe that the Fitness of solutions increases with the 
Robustness measure, as expected. 

 
 
 

 

Fig. 2. Initial and final populations: Length (m) versus Output (kg/hr). 
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Fig. 3. Quantity of solutions in the final population: Length (m) versus Output (kg/hr). 

 

Fig. 4. Final population in the decision space versus Output. 
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Fig. 5. Final population in the decision space versus Length. 

 

Fig. 6. Initial and final populations: Robustness versus Output (kg/hr). 
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Fig. 7. Fitness versus Hypervolume contributions, initial and final populations. 

 

Fig. 8. Fitness versus Robustness of initial and final populations. 
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4 Conclusion 

The results shown allows one to conclude that the solutions obtained have physical 
meaning in accordance with the knowledge about the polymer extrusion process.  

The application of robustness measures together with multi-objective optimization 
algorithms allow to obtain multiple solutions helping the decision maker in selecting 
the best solutions considering not only the multi-objective nature of the problem, but 
also the influence of environmental parameters that are usually uncontrollable.  

The application of this methodology to the whole process, i.e., considering all the 
decision variables and objectives, constitutes a step forward in the engineering of 
polymer extrusion.  
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