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A B S T R A C T   

This article presents Lock-V, a heterogeneous fault tolerance architecture that explores a dual-core lockstep 
(DCLS) technique to mitigate single event upset (SEU) and common-mode failure (CMF) problems. The Lock-V 
was deployed in two versions, Lock-VA and Lock-VM by applying design diversity in two processor architectures 
at the instruction set architecture (ISA)-level. Lock-VA features an Arm Cortex-A9 with a RISC-V RV64GC, while 
Lock-VM includes an Arm Cortex-M3 along with a RISC-V RV32IMA processor. The solution explores field- 
programmable gate array (FPGA) technology to deploy softcore versions of the RISC-V processors, and dedi-
cated accelerators for performing error detection and triggering the software rollback system used for error 
recovery. To test Lock-V in both versions, a fault-injection mechanism was implemented to cause bit-flips in the 
processor registers, a common problem usually present in heavy radiation environments.   

1. Introduction 

Since the genesis of computing science, electrical systems are 
continuously subject to reliability problems. While in the beginning, 
these were due to components’ nature, such as vacuum tubes and relays 
[1,2], nowadays, and despite the ever-growing semiconductor technol-
ogy, such problems are mainly associated with the highly increased 
systems’ hardware and software complexity. This new silicon era keeps 
providing reduced transistor’s size, higher clock frequencies, lower 
operating core voltages, and hardware components with lower power 
consumption and higher performance ratios. However, systems are now 
more sensitive to single event upset (SEU) errors, which can be induced 
by radiation phenomena, causing bit-flip problems [3]. Dependability, 
one of the main properties of a computing system, consists of the ability 
of a system to be trustworthy and reliable by avoiding failures that can 
last longer than acceptable or even be harmful to people and the envi-
ronment. Achieving dependability through security can be easily 
attained with virtualization-based techniques, specially through static 
partitioning schemes used to enhance real-time systems, where different 
levels of criticality can be assigned to virtual partitions over the same 
hardware resources [4–9]. However, these approaches usually lack in 
exploring design diversity to protect against common-mode failure 

(CMF), which consists of a fault that simultaneously affects all compo-
nents and propagates without being detected. Dependability can be 
achieved using other mitigation approaches, such as fault prevention, 
fault tolerance, fault removal, and fault forecasting [10], which are 
more suitable to prevent SEU errors and CMF. 

Regarding fault tolerance systems, their main goal is to continue 
operating properly in the event of active faults, preventing them from 
propagating to failures. This can be achieved by deploying error 
detection and recovery mechanisms [10,11]. Error detection can be 
performed by using concurrent or preemptive strategies. While in the 
first strategy the detection mechanism executes in parallel with the 
normal system delivering, the preemptive detection suspends the sys-
tem’s delivery and checks for errors or dormant faults. Achieving error 
detection requires the comparison of the output from redundant com-
ponents, deployed both in hardware and software [12]. In some stra-
tegies, this is performed by comparing the output from lockstep 
operations, detecting faults when there are two running systems, known 
as dual-core lockstep (DCLS), or detecting faults and automatically 
correcting errors via a voting mechanism that analyzes the output from 
three systems, known as triplecore lockstep (TCLS). Concerning the 
error recovery, DCLS approaches can restore the system integrity to a 
previous state, e.g., using rollback techniques. 
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Current strategies to develop fault tolerance systems include the 
combination of different error detection and system recovery ap-
proaches [10,11,13]. However, dealing with CMF errors requires design 
diversity in the redundant modules performing the same functionality 
[13]. CMF errors can be caused by any source that creates dependencies 
among the redundant components, making them vulnerable to the same 
faults, e.g., power sources or shared hardware resources [14]. The 
design diversity is usually achieved by: (1) applying time diversity, 
which introduces execution cycle delays between both processors [15]; 
(2) using micro-architectural diversity [16]; and (3) deploying instruc-
tion set architecture (ISA) diversity [17,18]. The combination of these 
solutions can endow safety/mixed-critical systems with higher protec-
tion levels against SEU, mitigating CMF by using fault tolerance along 
with design diversity. 

This article presents Lock-V, a fault tolerance solution highly robust 
against SEU and CMF deployable on both low- and high-end devices. 
Lock-V contributes to the state-of-the-art with: (1) a loosely-coupled 
DCLS system with design diversity at ISA-level that combines two 
different class of processors, an Arm Cortex-A9 with a RISC-V RV64GC 
(Lock-VA), and an Arm Cortex-M3 along with a RISC-V RV32IMA pro-
cessor (Lock-VM); (2) a fault injection mechanism to evaluate the pro-
posed architecture outside a real case scenario; and (3) a detailed 
evaluation and comparison of both implementations in terms of per-
formance, error detection, and system recovery capabilities. However, 
Lock-V does not address hardened by design at component- or circuit- 
level, e.g., leveraged by Self Restoring Logic flip-flops and latch-up 
resistant SRAM. Also, no configuration scrubbing is deployed, the 
lockstep accelerator is not TMR-protected, and other dependability is-
sues like safety and security were not mitigated. If demanded, safety and 
security issues could be mitigated by deploying Lock-V under Bao 
hypervisor [9]. Bao is a minimal, standalone and clean-slate imple-
mentation of the static partitioning architecture for Armv8 and RISC-V 
platforms. 

2. Related work 

Bit-flip problems, early present in aerospace environments, have 
been thoroughly addressed over the years [19–22]. Regarding lockstep 
systems, many fault tolerance solutions already exist in the literature 
[15,21,23–25], following a tightly- or loosely-coupled approach. In a 
tightly-coupled strategy, the comparison is performed in each system 
clock, while with a loosely-coupled the comparison can be only done 
periodically through a checkpoint system [23]. Some processor archi-
tectures already provide hardcore lockstep capabilities to assist fault 
tolerance systems, while other solutions resort FPGA to deploy and 
customize softcore processors along with extra hardware features to 
support the lockstep system [16,26,27]. 

Lock-V provides a fault tolerance architecture deployed into two 
processor architectures, using redundancy and design diversity at the 
ISA-level (Arm and RISC-V). Targeting low- and high-end devices, Lock- 
V improves the methodologies and techniques initially proposed in [18], 
and, for the best of our knowledge, there are no similar implementations 
beyond the contributions provided by this work. Table 1 shows fault 
tolerance systems that are closely related to Lock-V, summarizing them 
in terms of architecture, lockstep approach, redundancy strategy, and 
design diversity support. 

2.1. Tightly-coupled approaches 

The solutions provided by [15,16,29] use a DCLS system following a 
time-diversity approach. For instance, Yiu [15] implements a delay of 2 
clock cycles between two Arm Cortex-M7 processors. Kottke et al. [16] 
propose a DCLS solution deployed in FPGA with two softcore processors 
that implement a delay of 1.5 clock cycles between cores. By using time 
diversity, these solutions perform faster error detection, mainly against 
to CMF. The architecture in [27] includes a DCLS with two MicroBlaze 

softcore processors deployed in the FPGA. The architecture also includes 
a comparator circuit to detect errors, and a multiplexer to connect the 
processors’ outputs. Furthermore, this system uses TCLS with three 
softcore PicoBlaze units in the configuration engine for running without 
any errors. 

In [25], it is used a tightly-coupled TCLS system with three Arm 
Cortex-R5. Due to the safety-critical nature of the Arm Cortex-R5, each 
core includes hardware mechanisms to deal with errors, as well as a 
DCLS system. In contrast to DCLS solutions, this solution has a recovery 
system that executes without any software intervention. 

2.2. Loosely-coupled approaches 

Some loosely-coupled lockstep implementations use a DCLS system 
with a hardcore processor beside an FPGA, which is used to implement 
custom modules to support the synchronization and comparisons be-
tween cores [21,23,24]. In [30], the lockstep system proposes design 
diversity at microarchitectural level. The proposed architecture is 
composed of a main high-performance core that executes in parallel 
with small multiple checker units. The mechanism to detect errors 
consists in verifying each checker application fragment, while the main 
core executes the entire application. The design diversity is applied with 
partial replication of the main core between the checker units. Despite 
the solution proposing a high-performance technique for fault tolerance 
by using a new way of parallelism in the state-of-the-art, it is not yet 
implemented and the main core is currently unavailable. 

3. Lock-V 

Lock-V is a fault tolerance DCLS system that follows a checkpoint and 
recovery strategy while exploring design diversity at ISA-level. Due to 
their architectural differences, processor’s registers cannot be directly 
compared, and the error detection cannot be performed at instruction 
level (in a tightly-coupled way). Therefore, it must use checkpoints 
along the application execution flow to output specific data/register 
values for the comparison. The Lock-V solution, as depicted in Fig. 1, is 
divided into the Code Generation and the Hardware Architecture 
modules. 

The Hardware Architecture module includes the Arm and RISC-V 
processor units, the xLockstep accelerator with DCLS capabilities 
which is not itself resilient to reliability failures, and memory mapped 
Advanced Microcontroller Bus Architecture (AMBA) interfaces to con-
nect the processors with the xLockstep accelerator. Moreover, each 
processor unit includes an independent cache and memory system. 
Despite the existing solutions to provide the I/O interface to redundant 
systems [12,23], protecting such interface is out of the scope of this 
work. The Code Generation module consists of the application’s code 

Table 1 
Gap analysis between existing lockstep solutions and Lock-V.   

Architecture Lockstep D. diversity 

Core FPGA Typea Redundancy Yes/no 

Abate [21] Hardcore Yes L DCLS No 
Hanafi [28] Hardcore Yes L DCLS No 
Yiu [15] Hardcore No T DCLS No 
Kral [23] Hardcore Yes L DCLS No 
Oliveira [24] Hardcore Yes L DCLS No 
Han [29] Hardcore No T DCLS No 
Kottke [16] Softcore Yes T DCLS No 
Cornejo [26] Softcore Yes T DCLS No 
Pham [27] Softcore Yes T DCLS/TCLS No 
Iturbe [25] Hardcore No T TCLS No 
Ainsworth [30] – – L MMR Yesb 

Lock-V Both Yes L DCLS Yes  

a T - tightly-coupled; L - loosely-coupled. 
b Design diversity at microarchitectural level. 
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and the Framework. The Framework is responsible for adapting appli-
cations for the Lock-V architecture, i.e., it provides services for the error 
recovering capabilities, before its compilation to the target architecture. 

3.1. Hardware architecture: xLockstep accelerator 

The DCLS capabilities are provided by the xLockstep accelerator 
(Fig. 2), which is composed of the following modules: (1) synchro, (2) 
checker, and (3) finite state machine (FSM). The xLockstep accelerator 
has also a set of data registers to assist the error comparison process, and 
two AMBA interfaces, one for each core, which is used to communicate 
with both processors. Each interface includes a set of memory-mapped 
registers for control, status, and data operations. 

3.1.1. Synchro 
The Synchro module includes a counter that is responsible for syn-

chronizing both cores, which is activated when one of the processors 
reaches a checkpoint. If the counter reaches the defined timeout before 
the second processor reaching its own checkpoint, the Synchro module 
flags a timeout error, also known as a hang error, which occurs when a 

fault originates a system crash or reaches an infinite loop. Otherwise, 
there are no errors and the system can follow its normal execution. The 
timeout value corresponds to a 32-bit register that is loaded when the 
first core reaches the checkpoint and it can be configured by the 
Framework. The timeout may vary according to the final application 
needs and it must be defined accordingly. A good start point is to 
evaluate the worst execution time between each checkpoint and set the 
timeout with twice this value. An incorrect timeout value may cause 
hang errors and halt the application execution. 

3.1.2. Checker 
The Checker module performs the error detection functionalities by 

comparing a set of data registers (32-bit width) from both processors. If a 
silent data corruption (SDC) occurs, which corresponds to a fault that 
caused an error in the comparing outputs, the module flags an error 
state. This module presents some differences between the Lock-VA and 
the Lock-VM implementations. Lock-VA uses a LIFO-based data struc-
ture to compare simultaneously multiple 32-bit word registers, while the 
Lock-VM implementation can only compare four 32-bit registers in each 
clock-cycle. 

3.1.3. Finite state machine 
The FSM module, responsible for the management and control of the 

xLockstep accelerator, is composed by five main states: (1) Idle, (2) 
Synchro, (3) Checker, (4) Resume, and (5) Error. The xLockstep commutes 
from Idle to Synchro state when the first processor reaches a checkpoint. 
In this state, the xLockstep starts the synchronization process, where one 
of the following situations can occur to the second processor: (1) the 
checkpoint is reached within the timeout, and the xLockstep changes to 
the Checker state; or (2) the timeout value is reached, meaning that the 
checkpoint was not reached in time by the second processor. In this case, 
the xLockstep changes to the Error state. During the Checker state the 
xLockstep compares the output from both processors. If the outputs 
mismatch, the Checker module flags an error and changes to Error state, 
otherwise, the FSM follows to the Resume state. In the Error state, the 
xLockstep waits for the system to be restored to a previous state of 
integrity. Once the error is fixed, the synchronization can be reached, 
and the xLockstep can switch again to Resume state. In the Resume state 
and after the synchronization is completed by both processors, the 
xLockstep resumes its execution and changes to Idle state. 

3.2. Code generation: Lock-V framework 

While the error detection capabilities are handled in hardware by the 
xLockstep accelerator, the recovery capabilities are performed via soft-
ware by the Lock-V Framework. The error detection and the system 
recovery functionalities are available through the following set of 
services: 

initLockV(): initializes the xLockstep accelerator and triggers the 
synchronization process; 
checkpoint(): notifies the xLockstep when a checkpoint is reached, 
sends its output for the comparison task, and waits for the synchro-
nization state. The synchronization is achieved when both processors 
reach the checkpoint and the data to be compared are consistent in 
both cores. On a successful synchronization, a new saveContext() is 
performed. Otherwise, a rollback() must be executed. 
saveContext(): creates a restore point by saving the processor’s 
context according to its ISA implementation; 
rollback(): restores the system to its last state of integrity, previously 
saved by the saveContext() service; 
errorFix(): notifies the xLockstep accelerator when an error is fixed. 

Since Lock-V follows a loosely-coupled approach, mainly due to the 
exploration of design diversity at ISA-level, the software requires 
checkpoints throughout the application code to allow the integrity 

Fig. 1. Lock-V DCLS fault tolerance solution.  

Fig. 2. xLockstep architecture overview.  
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verification on both processors. This enables the system restoring to a 
previous integrity state through a rollback operation. Fig. 3 shows the 
execution flow of an application running in the Lock-V DCLS architec-
ture using the services provided by the Framework. The system starts 
with the synchronization between both processors. If the synchroniza-
tion properly succeeds, the processor’s contexts are saved and the 
application starts running. When a checkpoint is reached and if there are 
no errors in the processors’ output, a new processor’s context is saved 
and the application runs until the next checkpoint. On a checkpoint 
state, if it is detected an active fault that affects the application and 
corrupts the data in one of the processors, the rollback system is trig-
gered and the execution is taken from the previous checkpoint where a 
valid context can be recovered. The checkpoints should be carefully 
chosen by the user according to the application needs and must be 
manually patched at the chosen critical code points. Checkpoint in-
sertions are recommended around message passing between software 
tasks, or when the application interacts with the external world. 

3.3. System recovery 

Achieving full system recovery demands all the application data to 
be saved. However, this may require a considerable amount of data to be 
reliably stored in memory, causing great overheads in the saving and 
restoring processes. To avoid saving and restoring the whole system 
data, some hardware platforms already provide memory with safety and 
data protection mechanisms such as Error Correcting Code (ECC) and 
TMR-based memories, among others [19,31]. Therefore, and assuming 
that the Lock-V can resort to such memory systems, the great source of 
errors is likely to be from the processors’ register file, one of the most 
critical parts of the processor [32–36]. These errors usually occur due to 
SEU that cause bit-flips problems. Thus, context saving and rollback 
mechanisms implemented by the Lock-V target only the processor’s 
register file. 

Although the system’s memory can be protected from external faults, 
e.g., by using ECC memories, stored data can still be affected by the 
propagation of faults from the register file during the save and restore 
processes [36]. Such problems can be magnified when processors with 
load/store architectures are used, since all instructions and register 
operations are only performed through memory accesses. To avoid error 
propagation from registers to the memory, Lock-V restricts its utilization 
to register-related operations, which means that only local variables can 
be used, stored either in registers or in the stack. Thus, and besides 

protecting the register file, the system recovery also needs to protect the 
stack. Saving the stack and register file represents the minimum memory 
required to ensure the proper operation of a lightweight recovery sys-
tem, preventing register file faults from propagating to the memory. 

3.4. Context saving 

Storing processors’ context is performed by saving the register file 
and stack. Although the logic behind this process being the same for both 
cores, the utilization of different processor architectures dictates 
different implementations of the context saving and rollback mecha-
nisms. Fig. 4 depicts the saving context operation on an Arm’s processor 
architecture. When the saveContext service is invoked, the main Frame 
Pointer (FP) and the Link Register (LR) are saved in the function stack. 
Afterward, a copy of the register file is stored, which also includes the LR 
and FP registers. Next, the main FP and Stack Pointer (SP) are used to 
store the stack. In order to copy all the stack data, a pointer is assigned 
with the value of the base of the stack (hold by the FP). After that, 
another pointer is assigned with the top of the stack (hold by the SP). 
Afterward, a third pointer is assigned with the base address of the saved 
stack. The stack is then saved, word by word, until the base pointer (r1) 
matches the top pointer (r0). From now, a copy of the register file and 
the main() stack is safely stored to be used in a context restore (rollback) 
operation. Regarding the memory required by the final application in 
the context saving process, the register file and stack backups must be 
stored in protected ECC or TMR memories. However, remaining data 
must be saved somewhere according to their values. 

3.5. Context restoring (rollback) 

In order to perform the processors’ rollback, depicted by Fig. 5, the 
stack and register file need to be restored by the same order used in the 
context saving process, i.e., the stack is handled before the register file. If 
the register file is restored first, some registers can be corrupted. The 
rollback operation can be triggered in two situations: (1) when the 
xLockstep detects an error in the processors’ output; and (2) when the 
processor detects illegal operations, undefined instructions, load or store 
operations to illegal memory addresses, etc. When these faults occur, the 
processor enters into an exception handler (Arm) or a trap (RISC-V). 
When an error is detected by the xLockstep, a rollback needs to be per-
formed in both cores. This is required since in DCLS systems it is not 
possible to detect which core is the error source. However, when an 
exception or trap occurs, the rollback just needs to be performed in the 

Fig. 3. DCLS execution flow with a rollback situation.  Fig. 4. Context saving on a Arm’s processor.  
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processor that originated the fault. Despite the existence of the rollback 
operation, some errors must be studied and handled accordingly, e.g., 
non-random errors systematically caused by the same source. 

4. Evaluation 

To test the functionality and adaptability of our solution to different 
classes of target devices while keeping the fault-tolerance capabilities, 
Lock-V was deployed and tested in two versions, targeting two different 
classes of processors: (1) Lock-VA was deployed on a Zynq-7000 pro-
grammable system-on-chip (SoC) by Xilinx, and (2) Lock-VM on a 
Smartfusion2 SoC from Microsemi. Due to implementation and platform 
constraints, Lock-VA also uses temporal diversity in the processors’ 
clock, i.e., the Arm Cortex-A9 processor runs at 666 MHz, while the 
RISC-V runs at 25 MHz. In the Lock-VM, both processors, Arm Cortex- 
M3 and RISC-V, run at the same clock speed of 25 MHz. The per-
formed experiments allowed to evaluate the functionality and charac-
terize the Lock-V architecture within the following metrics: (1) FPGA 
resources required for deploying the accelerator and the RISC-V pro-
cessor; (2) the generated memory footprint with and without Lock-V; 
and (3) the execution footprint, with and without the Lock-V architec-
ture. Despite being important, at the current stage of this work, power 
consumption tests were left aside from this evaluation. Furthermore, and 
to properly evaluate the fault tolerance system, the Lock-V architecture 
was tested under a fault injection mechanism to simulate a real case 
scenario, avoiding performing complex heavy-ions irradiation tests. 

4.1. FPGA resources utilization 

Table 2 shows, for each implementation, the hardware resources 
required by the xLockstep, along with its sub-modules, and respective 
RISC-V processor. The results are expressed in terms of Look-Up 
Tables (LUT) and Flip-Flops (FF) in the Lock-VA implementation, 
while in the Lock-VM the same results are expressed in 4-Inputs Look-Up 
Table (4-LUT) and D-Type Flip-Flops (DFF), according to the platforms’ 
nomenclatures. Lock-VA requires a total of 42,124 LUT and 35,850 FF, 
which corresponds to 79.20% and 33.70% of the available resources of 
the Zedboard Zynq-7000 SoC. Lock-VM requires a total of 13,494 4-LUT 
and 7516 DFF, which is 15.66% and 8.72% of the available 4-LUT and 
DFF of the SmartFusion2 M2S090TS SoC. 

In both implementations, the softcore version of the RISC-V proces-
sor represents the component with higher resource utilization. For the 
Lock-VA, the RISC-V module (lowRISC) requires around 81% (34,138 
out of 42,124) of LUT and nearly 46% (16,324 out of 35,850) of FF, 

while in the Lock-VM, the RISC-C core (MI-V) represents nearly 90.13% 
and 92.91% of the used 4-LUT and DFF, respectively. The xLockstep 
accelerator is the hardware module that consumes less hardware re-
sources. In the Lock-VA implementation it only requires 441 LUT and 
672 FF, which for the entire implementation, is around 1% of the LUT, 
and nearly 2% of the FF. In Lock-VM, the xLockstep uses 588 4-LUT and 
544 DFF, which corresponds to 4.36% 4-LUT and 7.24% DFF over the 
entire Lock-VM implementation. 

4.2. Memory footprint 

Table 3 presents the memory footprint (in bytes) for both imple-
mentations, with and without the Lock-V architecture. In the Lock-VA 
version, adding fault tolerance capabilities to the application, the 
memory footprint increases, on average, nearly 6% in Arm deployment, 
and 8.3% in the RISC-V. For the Lock-VM implementation, including 
fault tolerance in the application causes a slight increase of approxi-
mately 3600 bytes. More specifically, there is an increase of 3584 bytes 
in the Arm Cortex-M3 side, and an increase of 3596 bytes for the RISC-V 
implementation. This represents a memory increase of 5.6% and 29.6%, 
respectively. 

Despite Arm and RISC-V deployments of the Lock-V framework 
practically generate the same memory footprint, there are still small 
differences between them, mainly due to the difference in processors’ 
ISAs and application binary interface. Therefore, the binary machine 
code produced by the compiler is different. In the Lock-VA version, there 
are additional factors that increase both RISC-V and Lock-V memory 
overheads. While the RISC-V follows a 64-bit architecture (words of 8- 
byte width) with stack alignment of 16 bytes, the Arm complies with a 

Fig. 5. Context restoring on a Arm’s processor.  

Table 2 
Lock-VA and Lock-VM FPGA resources utilization.  

Module Sub-module Lock-VA Lock-VM 

LUT FF 4-LUT DFF 

xLockstep AMBA interface 0a 122 269 158 224 
AMBA interface 1a 135 267 158 224 
Checker 148 90 129 12 
Synchro 11 6 81 35 
Extra 25 40 62 49 
Sub-total 441 672 588 544 
Percentage (100%) 0.83% 0.63% 0.68% 0.63% 

Softcore LowRISC 34,138 16,324 – – 
RISC-V Mi-V RV32IMA – – 12,537 6774 
Total 42,124 35,850 13,494 7516 
Percentage (100%) 79.20% 33.70% 15.66% 8.72%  

a Lock-VA uses AXI-Lite and Lock-VM uses APB3. 

Table 3 
Lock-VA and Lock-VM memory footprint.   

.text .data .bss Total 

Arm Cortex-A9 
Application without Lock-VA  19,552  1152  22,580  43,284 
Application with Lock-VA  22,096  1216  22,580  45,892 
Lock-VA overhead  2544  64  0  2608  

Arm Cortex-M3 
Application without Lock-VM  4656  16  59,072  63,744 
Application with Lock-VM  6384  80  60,864  67,328 
Lock-VM overhead  1728  64  1792  3584  

RISC-V LowRISC 
Application without Lock-VA  45,864  97  647  46,608 
Application with Lock-VA  49,212  616  660  50,488 
Lock-VA overhead  3348  519  13  3880  

RISC-V Mi-V RV32IMA 
Application without Lock-VM  3824  128  8196  12,148 
Application with Lock-VM  6624  256  8864  15,744 
Lock-VM overhead  2800  128  668  3596  
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32-bit architecture (words of 4-byte width), with a stack alignment of 4 
bytes. Furthermore, in the Lock-VM implementation, the Arm Cortex- 
M3 uses a stack alignment of 4 bytes, while the RISC-V follows a stack 
alignment of 8 bytes. 

4.3. Execution footprint 

Table 4 presents the execution footprint, in terms of clock cycles, 
required by the Lock-V Framework services. In Lock-VA, the measure-
ments were performed in the RISC-V processor, since it represents the 
bottleneck on the implementation, while in the Lock-VM, the measure-
ments were made in the Arm processor. 

4.3.1. Context saving and rollback 
In the Lock-VA, saving the processor context and stack has a cost of 

3128 clock cycles, while in the Lock-VM a total of 335 clock cycles is 
required. Restoring the system through rollback uses 2852 and 248 clock 
cycles in Lock-VA and Lock-VM implementations, respectively. The 
differences in Lock-VA and Lock-VM are due to the amount of data that 
each implementation needs to save and restore. The Lock-VM solution 
requires a smaller stack, thus, less data has to be saved. 

4.3.2. Checkpoint 
Regarding the checkpoint mechanism, the impact of comparing 

different vector sizes (varying from 1 to 100 elements) in the processors’ 
output data was evaluated. In the Lock-VA implementation, without 
errors in data to compare, the checkpoint task requires 10,420 clock 
cycles for one good element, but by each additional ten elements, the 
latency increases around 24,675 clock cycles. When the comparison 
mismatches, the checkpoint overhead increases, on average, around 
1226 clock cycles. In the Lock-VM solution, the checkpoint uses 1459 
clock cycles to compare one valid element, and by each added ten good 
elements, the system increases the required clock cycles by 1767. When 
the checkpoint compares data with errors, this service performs better 
and requires, on average, less than 22 clock cycles. 

4.3.3. Calculating the Fibonacci sequence 
Taking a practical example, the execution footprint was evaluated, 

with and without errors, by calculating inside a function the first 10, 15, 
and 20 elements of the well-known Fibonacci sequence. The scalability of 
the Fibonacci function allows understanding the impact of using the 
Lock-V with one or more checkpoints during its execution. The evalu-
ation was performed by running the execution without errors in the 

sequence, and with an error in the sequence’s first or last comparison 
element. Moreover, for each condition, the Lock-V was tested with one 
or N checkpoints, where N corresponds to the number of elements 
calculated by the function. For instance, when the Fibonacci function 
calculates the first ten elements and only one checkpoint is in use, it will 
only be reached after the calculation of the ten elements, and the 
checkpoint sends ten elements for comparison. If the system includes 10 
checkpoints, each one will be reached after calculating each element, 
and thus, only one element is sent to the compare operation. 

Table 5 shows the obtained results for the execution overhead rela-
tive to the baseline test, i.e., the system without Lock-V functionalities. 
For instance, calculating the first 10 elements with no errors in the 
processor’s output, causes an overhead increase of 14.11% in the Lock- 
VA and 4.25% in the Lock-VM implementation. For the worst-case 
scenario (N checkpoints) and the system with no errors, the overhead 
in the Lock-VA is 112,66% and 1.84% when calculating the Fib(10) and 
Fib(20) elements of the sequence. When the system has an error in the 
first element and uses N checkpoints, the overhead from Fib(10) to Fib 
(20) reduces from 148.40% to 2.09%. Furthermore, if the error is in the 
last element, the overhead decreases from 324,77% to 103.59%. This 
represents the worst- and best-case scenarios for the error detection, 
where the error can be in the last, or in the first element of the com-
parison values. The main reason for the higher values in calculating Fib 
(10) in comparison with the other calculations, lies in the fact that, in the 
Lock-VA, for small interactions and outputs, the system still needs to use 
all Framework functionalities, delivering all outputs to the xLockstep 
accelerator. This overhead is slowly dissipated when the number of it-
erations (checkpoints) increases. 

Under the same conditions, the Lock-VM solution presents a smaller 
overhead than the Lock-VA implementation. This is directly related to 
architectural features of the Arm Cortex-M processors, exhibited in Lock- 
VM implementation, which requires less amount of data to be saved 
during the context saving operation. When there are no data errors and 
the system uses N checkpoints, the overhead decreases from 32.15% to 
0.46%. And when there is an error in the first element and N checkpoints 
are used, the overhead for Fib(10) decreases to 41.00% and for Fib(20) it 
decreases around 0.54%. The worst scenario occurs when the error is in 
the last element and N checkpoints are used, where the overhead de-
creases from 165.67% to 100.94%. In both cases, with the increase of the 
application execution, the overhead of the Lock-V framework reduces 
drastically. 

Curiously, when the error is in the first element, the overhead for 
using the Lock-V with N checkpoints is lower than when using just one. 
This is due the reduced execution granularity of the error detection, 
causing the system to detect and correct errors faster. When just one 
checkpoint is used, the verification can only be performed at the end of 
the program. Therefore, if an error occurs, the system can only perform a 
rollback operation when the program finishes its execution, resulting 
always in an overhead greater than 100%. In contrast, when N check-
points are used, the error can be detected faster and the system can be 
recovered earlier. 

4.4. Fault injection 

In order to test and evaluate the Lock-V, a fault injection mechanism, 
based on [37], and a system monitor were added in both Lock-VA and 
Lock-VM implementations. This fault injection aims at emulating bit- 
flips that may occur in harsh environments due to SEU. Faults were 
only injected on the Arm processor, but it could have been done on the 
RISC-V side, or both. The goal is to force comparisons mismatch to cause 
a rollback, thus it is not relevant which processor originates corrupted 
data. Faults are randomly injected at any time, by using a timer inter-
ruption, causing random bit-flips in a random register of the Arm bank 
registers currently in use. On each round, a timer triggers the fault in-
jection procedure which randomly chooses one bit of one of the 16 
general purpose Arm registers to be flipped. This happens in the 

Table 4 
Lock-V execution footprint.   

Lock-VA Lock-VM 

Clock 
cycles 

@25 MHz 
(μs) 

Clock 
cycles 

@25 MHz 
(μs) 

saveContext  3128  125.12  335  13.4 
rollback  2852  114.08  248  9.92 

Checkpoint      
No. data     

No errors 1  10,420  416.8  1459  58.36 
10  32,851  1314.04  2154  86.16 
100  254,921  10,196.84  18,059  722.36 
Avg. 

increm.b  
24,675  987  1767  70.68 

With 
errora 

1  11,698  467.92  644  25.76 
10  34,118  1364.72  2134  85.36 
100  256,079  10,243.16  18,041  721.64 
Avg. 

increm.b  
24,675  987  1767  70.68 

Overhead 1  1278  51.12  − 815  − 32.6 
10  1267  50.68  − 20  − 0.8 
100  1158  46.32  − 18  − 0.72  

a Error in the last element to compare. 
b Average increment in 10 elements. 
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following way: (1) the register file is copied; (2) the fault is injected in 
the replicated register file through a XOR operation with the register and 
the random bit to flip; and next, (3) the register file is restored with the 
fault injected. 

In the Lock-VA implementation, the sparing Arm Cortex-A9 is used as 
a system monitor, while in the Lock-VM, a dedicated monitoring hard-
ware accelerated with a UART interface was deployed in the FPGA. 
During the test run, both systems execute an application in parallel with 
the fault injection mechanism, while the monitor system tracks the 
number of faults and errors that occurred. Table 6 summarizes the re-
sults obtained from both systems. The main goal of this test is to force 
both SDC and hang errors. SDC errors occur when the data output from 
both cores is different, while hang errors occur when one of the cores 
does not reach the checkpoint. In the Lock-VA implementation, a total of 
45,543 faults was injected, which have originated 933 errors, 137 by 
hang, and 796 SDC errors. When using the Lock-V architecture, the total 
number of errors reduces drastically, where only 31 errors (out of 933) 
were not corrected by the Lock-V mechanism (28 hang errors and 3 SDC 
errors). This result shows an error correction rate of nearly 97%. 

For the Lock-VM tests, a total of 98,957 faults was injected, forcing 
93 errors (85 SDC, and 8 hang errors). In the case of SDC errors, the 
system was able to correct 83 (out of 85) and for the hang errors, only 6 
(out of 8) were corrected. For the total injected faults, 98,957, the Lock- 
VM can achieve an error correction rate of 95.7%. However, the fault 
injection process described above must be further extended towards 
more detailed analysis of soft errors in components of Xilinx Zynq-7000, 
as done in [38,39]. 

5. Conclusions and future work 

This work proposes Lock-V, a loosely-coupled fault tolerance system 
that uses a DCLS technique with design diversity at the ISA-level, 
providing effective protection against SEU and CMF. Whereas typical 
lockstep approaches provide a strong fault tolerance technique, they 
lack in presenting protection against CMF. The proposed architecture 
was deployed and evaluated in two versions, Lock-VA that is composed 
of an Arm Cortex-A9 combined with a RISC-V RV64GC, and Lock-VM, 
which features an Arm Cortex-M3 along with a RISC-V RV32IMA pro-
cessor. The fault injection system, applied to both approaches, revealed 
to be highly efficient in the error correction task, and lightweight in 
terms of execution overhead. Moreover, its small memory and execution 
footprints leverages the reliability of the lockstep system. 

Due to its modular implementation, both in terms of hardware and 
software, Lock-V can be easily ported to other FPSoC systems and pro-
cessor architectures with only minor architectural changes. Hereafter, 
the Lock-V architecture will be enhanced with the following features: (1) 
improve data transfers by resorting the direct memory access (DMA) 
mechanism; (2) provide support for more processor architectures; (3) 
improve the Framework functionality to support profiling features that 
can be used for a better checkpoint insertion, independent from the final 
application. 
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