
Microelectronics Reliability 120 (2021) 114120

Available online 16 April 2021
0026-2714/© 2021 Elsevier Ltd. All rights reserved.

Lock-V: A heterogeneous fault tolerance architecture based on Arm and
RISC-V☆

Ivo Marques, Cristiano Rodrigues, Adriano Tavares, Sandro Pinto, Tiago Gomes *

Centro ALGORITMI, University of Minho, Portugal

A R T I C L E I N F O

Keywords:
Dual-core lockstep
Design diversity
Fault tolerance
Field-programmable gate array
RISC-V
Arm

A B S T R A C T

This article presents Lock-V, a heterogeneous fault tolerance architecture that explores a dual-core lockstep
(DCLS) technique to mitigate single event upset (SEU) and common-mode failure (CMF) problems. The Lock-V
was deployed in two versions, Lock-VA and Lock-VM by applying design diversity in two processor architectures
at the instruction set architecture (ISA)-level. Lock-VA features an Arm Cortex-A9 with a RISC-V RV64GC, while
Lock-VM includes an Arm Cortex-M3 along with a RISC-V RV32IMA processor. The solution explores field-
programmable gate array (FPGA) technology to deploy softcore versions of the RISC-V processors, and dedi-
cated accelerators for performing error detection and triggering the software rollback system used for error
recovery. To test Lock-V in both versions, a fault-injection mechanism was implemented to cause bit-flips in the
processor registers, a common problem usually present in heavy radiation environments.

1. Introduction

Since the genesis of computing science, electrical systems are
continuously subject to reliability problems. While in the beginning,
these were due to components’ nature, such as vacuum tubes and relays
[1,2], nowadays, and despite the ever-growing semiconductor technol-
ogy, such problems are mainly associated with the highly increased
systems’ hardware and software complexity. This new silicon era keeps
providing reduced transistor’s size, higher clock frequencies, lower
operating core voltages, and hardware components with lower power
consumption and higher performance ratios. However, systems are now
more sensitive to single event upset (SEU) errors, which can be induced
by radiation phenomena, causing bit-flip problems [3]. Dependability,
one of the main properties of a computing system, consists of the ability
of a system to be trustworthy and reliable by avoiding failures that can
last longer than acceptable or even be harmful to people and the envi-
ronment. Achieving dependability through security can be easily
attained with virtualization-based techniques, specially through static
partitioning schemes used to enhance real-time systems, where different
levels of criticality can be assigned to virtual partitions over the same
hardware resources [4–9]. However, these approaches usually lack in
exploring design diversity to protect against common-mode failure

(CMF), which consists of a fault that simultaneously affects all compo-
nents and propagates without being detected. Dependability can be
achieved using other mitigation approaches, such as fault prevention,
fault tolerance, fault removal, and fault forecasting [10], which are
more suitable to prevent SEU errors and CMF.

Regarding fault tolerance systems, their main goal is to continue
operating properly in the event of active faults, preventing them from
propagating to failures. This can be achieved by deploying error
detection and recovery mechanisms [10,11]. Error detection can be
performed by using concurrent or preemptive strategies. While in the
first strategy the detection mechanism executes in parallel with the
normal system delivering, the preemptive detection suspends the sys-
tem’s delivery and checks for errors or dormant faults. Achieving error
detection requires the comparison of the output from redundant com-
ponents, deployed both in hardware and software [12]. In some stra-
tegies, this is performed by comparing the output from lockstep
operations, detecting faults when there are two running systems, known
as dual-core lockstep (DCLS), or detecting faults and automatically
correcting errors via a voting mechanism that analyzes the output from
three systems, known as triplecore lockstep (TCLS). Concerning the
error recovery, DCLS approaches can restore the system integrity to a
previous state, e.g., using rollback techniques.

☆ This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.
* Corresponding author.

E-mail addresses: ivo.marques@algoritmi.uminho.pt (I. Marques), cristiano.rodrigues@algoritmi.uminho.pt (C. Rodrigues), atavares@dei.uminho.pt (A. Tavares),
sandro.pinto@dei.uminho.pt (S. Pinto), mr.gomes@dei.uminho.pt (T. Gomes).

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

https://doi.org/10.1016/j.microrel.2021.114120
Received 16 November 2020; Received in revised form 28 February 2021; Accepted 1 April 2021

mailto:ivo.marques@algoritmi.uminho.pt
mailto:cristiano.rodrigues@algoritmi.uminho.pt
mailto:atavares@dei.uminho.pt
mailto:sandro.pinto@dei.uminho.pt
mailto:mr.gomes@dei.uminho.pt
www.sciencedirect.com/science/journal/00262714
https://www.elsevier.com/locate/microrel
https://doi.org/10.1016/j.microrel.2021.114120
https://doi.org/10.1016/j.microrel.2021.114120
https://doi.org/10.1016/j.microrel.2021.114120
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2021.114120&domain=pdf

Microelectronics Reliability 120 (2021) 114120

2

Current strategies to develop fault tolerance systems include the
combination of different error detection and system recovery ap-
proaches [10,11,13]. However, dealing with CMF errors requires design
diversity in the redundant modules performing the same functionality
[13]. CMF errors can be caused by any source that creates dependencies
among the redundant components, making them vulnerable to the same
faults, e.g., power sources or shared hardware resources [14]. The
design diversity is usually achieved by: (1) applying time diversity,
which introduces execution cycle delays between both processors [15];
(2) using micro-architectural diversity [16]; and (3) deploying instruc-
tion set architecture (ISA) diversity [17,18]. The combination of these
solutions can endow safety/mixed-critical systems with higher protec-
tion levels against SEU, mitigating CMF by using fault tolerance along
with design diversity.

This article presents Lock-V, a fault tolerance solution highly robust
against SEU and CMF deployable on both low- and high-end devices.
Lock-V contributes to the state-of-the-art with: (1) a loosely-coupled
DCLS system with design diversity at ISA-level that combines two
different class of processors, an Arm Cortex-A9 with a RISC-V RV64GC
(Lock-VA), and an Arm Cortex-M3 along with a RISC-V RV32IMA pro-
cessor (Lock-VM); (2) a fault injection mechanism to evaluate the pro-
posed architecture outside a real case scenario; and (3) a detailed
evaluation and comparison of both implementations in terms of per-
formance, error detection, and system recovery capabilities. However,
Lock-V does not address hardened by design at component- or circuit-
level, e.g., leveraged by Self Restoring Logic flip-flops and latch-up
resistant SRAM. Also, no configuration scrubbing is deployed, the
lockstep accelerator is not TMR-protected, and other dependability is-
sues like safety and security were not mitigated. If demanded, safety and
security issues could be mitigated by deploying Lock-V under Bao
hypervisor [9]. Bao is a minimal, standalone and clean-slate imple-
mentation of the static partitioning architecture for Armv8 and RISC-V
platforms.

2. Related work

Bit-flip problems, early present in aerospace environments, have
been thoroughly addressed over the years [19–22]. Regarding lockstep
systems, many fault tolerance solutions already exist in the literature
[15,21,23–25], following a tightly- or loosely-coupled approach. In a
tightly-coupled strategy, the comparison is performed in each system
clock, while with a loosely-coupled the comparison can be only done
periodically through a checkpoint system [23]. Some processor archi-
tectures already provide hardcore lockstep capabilities to assist fault
tolerance systems, while other solutions resort FPGA to deploy and
customize softcore processors along with extra hardware features to
support the lockstep system [16,26,27].

Lock-V provides a fault tolerance architecture deployed into two
processor architectures, using redundancy and design diversity at the
ISA-level (Arm and RISC-V). Targeting low- and high-end devices, Lock-
V improves the methodologies and techniques initially proposed in [18],
and, for the best of our knowledge, there are no similar implementations
beyond the contributions provided by this work. Table 1 shows fault
tolerance systems that are closely related to Lock-V, summarizing them
in terms of architecture, lockstep approach, redundancy strategy, and
design diversity support.

2.1. Tightly-coupled approaches

The solutions provided by [15,16,29] use a DCLS system following a
time-diversity approach. For instance, Yiu [15] implements a delay of 2
clock cycles between two Arm Cortex-M7 processors. Kottke et al. [16]
propose a DCLS solution deployed in FPGA with two softcore processors
that implement a delay of 1.5 clock cycles between cores. By using time
diversity, these solutions perform faster error detection, mainly against
to CMF. The architecture in [27] includes a DCLS with two MicroBlaze

softcore processors deployed in the FPGA. The architecture also includes
a comparator circuit to detect errors, and a multiplexer to connect the
processors’ outputs. Furthermore, this system uses TCLS with three
softcore PicoBlaze units in the configuration engine for running without
any errors.

In [25], it is used a tightly-coupled TCLS system with three Arm
Cortex-R5. Due to the safety-critical nature of the Arm Cortex-R5, each
core includes hardware mechanisms to deal with errors, as well as a
DCLS system. In contrast to DCLS solutions, this solution has a recovery
system that executes without any software intervention.

2.2. Loosely-coupled approaches

Some loosely-coupled lockstep implementations use a DCLS system
with a hardcore processor beside an FPGA, which is used to implement
custom modules to support the synchronization and comparisons be-
tween cores [21,23,24]. In [30], the lockstep system proposes design
diversity at microarchitectural level. The proposed architecture is
composed of a main high-performance core that executes in parallel
with small multiple checker units. The mechanism to detect errors
consists in verifying each checker application fragment, while the main
core executes the entire application. The design diversity is applied with
partial replication of the main core between the checker units. Despite
the solution proposing a high-performance technique for fault tolerance
by using a new way of parallelism in the state-of-the-art, it is not yet
implemented and the main core is currently unavailable.

3. Lock-V

Lock-V is a fault tolerance DCLS system that follows a checkpoint and
recovery strategy while exploring design diversity at ISA-level. Due to
their architectural differences, processor’s registers cannot be directly
compared, and the error detection cannot be performed at instruction
level (in a tightly-coupled way). Therefore, it must use checkpoints
along the application execution flow to output specific data/register
values for the comparison. The Lock-V solution, as depicted in Fig. 1, is
divided into the Code Generation and the Hardware Architecture
modules.

The Hardware Architecture module includes the Arm and RISC-V
processor units, the xLockstep accelerator with DCLS capabilities
which is not itself resilient to reliability failures, and memory mapped
Advanced Microcontroller Bus Architecture (AMBA) interfaces to con-
nect the processors with the xLockstep accelerator. Moreover, each
processor unit includes an independent cache and memory system.
Despite the existing solutions to provide the I/O interface to redundant
systems [12,23], protecting such interface is out of the scope of this
work. The Code Generation module consists of the application’s code

Table 1
Gap analysis between existing lockstep solutions and Lock-V.

Architecture Lockstep D. diversity

Core FPGA Typea Redundancy Yes/no

Abate [21] Hardcore Yes L DCLS No
Hanafi [28] Hardcore Yes L DCLS No
Yiu [15] Hardcore No T DCLS No
Kral [23] Hardcore Yes L DCLS No
Oliveira [24] Hardcore Yes L DCLS No
Han [29] Hardcore No T DCLS No
Kottke [16] Softcore Yes T DCLS No
Cornejo [26] Softcore Yes T DCLS No
Pham [27] Softcore Yes T DCLS/TCLS No
Iturbe [25] Hardcore No T TCLS No
Ainsworth [30] – – L MMR Yesb

Lock-V Both Yes L DCLS Yes

a T - tightly-coupled; L - loosely-coupled.
b Design diversity at microarchitectural level.

I. Marques et al.

Microelectronics Reliability 120 (2021) 114120

3

and the Framework. The Framework is responsible for adapting appli-
cations for the Lock-V architecture, i.e., it provides services for the error
recovering capabilities, before its compilation to the target architecture.

3.1. Hardware architecture: xLockstep accelerator

The DCLS capabilities are provided by the xLockstep accelerator
(Fig. 2), which is composed of the following modules: (1) synchro, (2)
checker, and (3) finite state machine (FSM). The xLockstep accelerator
has also a set of data registers to assist the error comparison process, and
two AMBA interfaces, one for each core, which is used to communicate
with both processors. Each interface includes a set of memory-mapped
registers for control, status, and data operations.

3.1.1. Synchro
The Synchro module includes a counter that is responsible for syn-

chronizing both cores, which is activated when one of the processors
reaches a checkpoint. If the counter reaches the defined timeout before
the second processor reaching its own checkpoint, the Synchro module
flags a timeout error, also known as a hang error, which occurs when a

fault originates a system crash or reaches an infinite loop. Otherwise,
there are no errors and the system can follow its normal execution. The
timeout value corresponds to a 32-bit register that is loaded when the
first core reaches the checkpoint and it can be configured by the
Framework. The timeout may vary according to the final application
needs and it must be defined accordingly. A good start point is to
evaluate the worst execution time between each checkpoint and set the
timeout with twice this value. An incorrect timeout value may cause
hang errors and halt the application execution.

3.1.2. Checker
The Checker module performs the error detection functionalities by

comparing a set of data registers (32-bit width) from both processors. If a
silent data corruption (SDC) occurs, which corresponds to a fault that
caused an error in the comparing outputs, the module flags an error
state. This module presents some differences between the Lock-VA and
the Lock-VM implementations. Lock-VA uses a LIFO-based data struc-
ture to compare simultaneously multiple 32-bit word registers, while the
Lock-VM implementation can only compare four 32-bit registers in each
clock-cycle.

3.1.3. Finite state machine
The FSM module, responsible for the management and control of the

xLockstep accelerator, is composed by five main states: (1) Idle, (2)
Synchro, (3) Checker, (4) Resume, and (5) Error. The xLockstep commutes
from Idle to Synchro state when the first processor reaches a checkpoint.
In this state, the xLockstep starts the synchronization process, where one
of the following situations can occur to the second processor: (1) the
checkpoint is reached within the timeout, and the xLockstep changes to
the Checker state; or (2) the timeout value is reached, meaning that the
checkpoint was not reached in time by the second processor. In this case,
the xLockstep changes to the Error state. During the Checker state the
xLockstep compares the output from both processors. If the outputs
mismatch, the Checker module flags an error and changes to Error state,
otherwise, the FSM follows to the Resume state. In the Error state, the
xLockstep waits for the system to be restored to a previous state of
integrity. Once the error is fixed, the synchronization can be reached,
and the xLockstep can switch again to Resume state. In the Resume state
and after the synchronization is completed by both processors, the
xLockstep resumes its execution and changes to Idle state.

3.2. Code generation: Lock-V framework

While the error detection capabilities are handled in hardware by the
xLockstep accelerator, the recovery capabilities are performed via soft-
ware by the Lock-V Framework. The error detection and the system
recovery functionalities are available through the following set of
services:

initLockV(): initializes the xLockstep accelerator and triggers the
synchronization process;
checkpoint(): notifies the xLockstep when a checkpoint is reached,
sends its output for the comparison task, and waits for the synchro-
nization state. The synchronization is achieved when both processors
reach the checkpoint and the data to be compared are consistent in
both cores. On a successful synchronization, a new saveContext() is
performed. Otherwise, a rollback() must be executed.
saveContext(): creates a restore point by saving the processor’s
context according to its ISA implementation;
rollback(): restores the system to its last state of integrity, previously
saved by the saveContext() service;
errorFix(): notifies the xLockstep accelerator when an error is fixed.

Since Lock-V follows a loosely-coupled approach, mainly due to the
exploration of design diversity at ISA-level, the software requires
checkpoints throughout the application code to allow the integrity

Fig. 1. Lock-V DCLS fault tolerance solution.

Fig. 2. xLockstep architecture overview.

I. Marques et al.

Microelectronics Reliability 120 (2021) 114120

4

verification on both processors. This enables the system restoring to a
previous integrity state through a rollback operation. Fig. 3 shows the
execution flow of an application running in the Lock-V DCLS architec-
ture using the services provided by the Framework. The system starts
with the synchronization between both processors. If the synchroniza-
tion properly succeeds, the processor’s contexts are saved and the
application starts running. When a checkpoint is reached and if there are
no errors in the processors’ output, a new processor’s context is saved
and the application runs until the next checkpoint. On a checkpoint
state, if it is detected an active fault that affects the application and
corrupts the data in one of the processors, the rollback system is trig-
gered and the execution is taken from the previous checkpoint where a
valid context can be recovered. The checkpoints should be carefully
chosen by the user according to the application needs and must be
manually patched at the chosen critical code points. Checkpoint in-
sertions are recommended around message passing between software
tasks, or when the application interacts with the external world.

3.3. System recovery

Achieving full system recovery demands all the application data to
be saved. However, this may require a considerable amount of data to be
reliably stored in memory, causing great overheads in the saving and
restoring processes. To avoid saving and restoring the whole system
data, some hardware platforms already provide memory with safety and
data protection mechanisms such as Error Correcting Code (ECC) and
TMR-based memories, among others [19,31]. Therefore, and assuming
that the Lock-V can resort to such memory systems, the great source of
errors is likely to be from the processors’ register file, one of the most
critical parts of the processor [32–36]. These errors usually occur due to
SEU that cause bit-flips problems. Thus, context saving and rollback
mechanisms implemented by the Lock-V target only the processor’s
register file.

Although the system’s memory can be protected from external faults,
e.g., by using ECC memories, stored data can still be affected by the
propagation of faults from the register file during the save and restore
processes [36]. Such problems can be magnified when processors with
load/store architectures are used, since all instructions and register
operations are only performed through memory accesses. To avoid error
propagation from registers to the memory, Lock-V restricts its utilization
to register-related operations, which means that only local variables can
be used, stored either in registers or in the stack. Thus, and besides

protecting the register file, the system recovery also needs to protect the
stack. Saving the stack and register file represents the minimum memory
required to ensure the proper operation of a lightweight recovery sys-
tem, preventing register file faults from propagating to the memory.

3.4. Context saving

Storing processors’ context is performed by saving the register file
and stack. Although the logic behind this process being the same for both
cores, the utilization of different processor architectures dictates
different implementations of the context saving and rollback mecha-
nisms. Fig. 4 depicts the saving context operation on an Arm’s processor
architecture. When the saveContext service is invoked, the main Frame
Pointer (FP) and the Link Register (LR) are saved in the function stack.
Afterward, a copy of the register file is stored, which also includes the LR
and FP registers. Next, the main FP and Stack Pointer (SP) are used to
store the stack. In order to copy all the stack data, a pointer is assigned
with the value of the base of the stack (hold by the FP). After that,
another pointer is assigned with the top of the stack (hold by the SP).
Afterward, a third pointer is assigned with the base address of the saved
stack. The stack is then saved, word by word, until the base pointer (r1)
matches the top pointer (r0). From now, a copy of the register file and
the main() stack is safely stored to be used in a context restore (rollback)
operation. Regarding the memory required by the final application in
the context saving process, the register file and stack backups must be
stored in protected ECC or TMR memories. However, remaining data
must be saved somewhere according to their values.

3.5. Context restoring (rollback)

In order to perform the processors’ rollback, depicted by Fig. 5, the
stack and register file need to be restored by the same order used in the
context saving process, i.e., the stack is handled before the register file. If
the register file is restored first, some registers can be corrupted. The
rollback operation can be triggered in two situations: (1) when the
xLockstep detects an error in the processors’ output; and (2) when the
processor detects illegal operations, undefined instructions, load or store
operations to illegal memory addresses, etc. When these faults occur, the
processor enters into an exception handler (Arm) or a trap (RISC-V).
When an error is detected by the xLockstep, a rollback needs to be per-
formed in both cores. This is required since in DCLS systems it is not
possible to detect which core is the error source. However, when an
exception or trap occurs, the rollback just needs to be performed in the

Fig. 3. DCLS execution flow with a rollback situation. Fig. 4. Context saving on a Arm’s processor.

I. Marques et al.

Microelectronics Reliability 120 (2021) 114120

5

processor that originated the fault. Despite the existence of the rollback
operation, some errors must be studied and handled accordingly, e.g.,
non-random errors systematically caused by the same source.

4. Evaluation

To test the functionality and adaptability of our solution to different
classes of target devices while keeping the fault-tolerance capabilities,
Lock-V was deployed and tested in two versions, targeting two different
classes of processors: (1) Lock-VA was deployed on a Zynq-7000 pro-
grammable system-on-chip (SoC) by Xilinx, and (2) Lock-VM on a
Smartfusion2 SoC from Microsemi. Due to implementation and platform
constraints, Lock-VA also uses temporal diversity in the processors’
clock, i.e., the Arm Cortex-A9 processor runs at 666 MHz, while the
RISC-V runs at 25 MHz. In the Lock-VM, both processors, Arm Cortex-
M3 and RISC-V, run at the same clock speed of 25 MHz. The per-
formed experiments allowed to evaluate the functionality and charac-
terize the Lock-V architecture within the following metrics: (1) FPGA
resources required for deploying the accelerator and the RISC-V pro-
cessor; (2) the generated memory footprint with and without Lock-V;
and (3) the execution footprint, with and without the Lock-V architec-
ture. Despite being important, at the current stage of this work, power
consumption tests were left aside from this evaluation. Furthermore, and
to properly evaluate the fault tolerance system, the Lock-V architecture
was tested under a fault injection mechanism to simulate a real case
scenario, avoiding performing complex heavy-ions irradiation tests.

4.1. FPGA resources utilization

Table 2 shows, for each implementation, the hardware resources
required by the xLockstep, along with its sub-modules, and respective
RISC-V processor. The results are expressed in terms of Look-Up
Tables (LUT) and Flip-Flops (FF) in the Lock-VA implementation,
while in the Lock-VM the same results are expressed in 4-Inputs Look-Up
Table (4-LUT) and D-Type Flip-Flops (DFF), according to the platforms’
nomenclatures. Lock-VA requires a total of 42,124 LUT and 35,850 FF,
which corresponds to 79.20% and 33.70% of the available resources of
the Zedboard Zynq-7000 SoC. Lock-VM requires a total of 13,494 4-LUT
and 7516 DFF, which is 15.66% and 8.72% of the available 4-LUT and
DFF of the SmartFusion2 M2S090TS SoC.

In both implementations, the softcore version of the RISC-V proces-
sor represents the component with higher resource utilization. For the
Lock-VA, the RISC-V module (lowRISC) requires around 81% (34,138
out of 42,124) of LUT and nearly 46% (16,324 out of 35,850) of FF,

while in the Lock-VM, the RISC-C core (MI-V) represents nearly 90.13%
and 92.91% of the used 4-LUT and DFF, respectively. The xLockstep
accelerator is the hardware module that consumes less hardware re-
sources. In the Lock-VA implementation it only requires 441 LUT and
672 FF, which for the entire implementation, is around 1% of the LUT,
and nearly 2% of the FF. In Lock-VM, the xLockstep uses 588 4-LUT and
544 DFF, which corresponds to 4.36% 4-LUT and 7.24% DFF over the
entire Lock-VM implementation.

4.2. Memory footprint

Table 3 presents the memory footprint (in bytes) for both imple-
mentations, with and without the Lock-V architecture. In the Lock-VA
version, adding fault tolerance capabilities to the application, the
memory footprint increases, on average, nearly 6% in Arm deployment,
and 8.3% in the RISC-V. For the Lock-VM implementation, including
fault tolerance in the application causes a slight increase of approxi-
mately 3600 bytes. More specifically, there is an increase of 3584 bytes
in the Arm Cortex-M3 side, and an increase of 3596 bytes for the RISC-V
implementation. This represents a memory increase of 5.6% and 29.6%,
respectively.

Despite Arm and RISC-V deployments of the Lock-V framework
practically generate the same memory footprint, there are still small
differences between them, mainly due to the difference in processors’
ISAs and application binary interface. Therefore, the binary machine
code produced by the compiler is different. In the Lock-VA version, there
are additional factors that increase both RISC-V and Lock-V memory
overheads. While the RISC-V follows a 64-bit architecture (words of 8-
byte width) with stack alignment of 16 bytes, the Arm complies with a

Fig. 5. Context restoring on a Arm’s processor.

Table 2
Lock-VA and Lock-VM FPGA resources utilization.

Module Sub-module Lock-VA Lock-VM

LUT FF 4-LUT DFF

xLockstep AMBA interface 0a 122 269 158 224
AMBA interface 1a 135 267 158 224
Checker 148 90 129 12
Synchro 11 6 81 35
Extra 25 40 62 49
Sub-total 441 672 588 544
Percentage (100%) 0.83% 0.63% 0.68% 0.63%

Softcore LowRISC 34,138 16,324 – –
RISC-V Mi-V RV32IMA – – 12,537 6774
Total 42,124 35,850 13,494 7516
Percentage (100%) 79.20% 33.70% 15.66% 8.72%

a Lock-VA uses AXI-Lite and Lock-VM uses APB3.

Table 3
Lock-VA and Lock-VM memory footprint.

.text .data .bss Total

Arm Cortex-A9
Application without Lock-VA 19,552 1152 22,580 43,284
Application with Lock-VA 22,096 1216 22,580 45,892
Lock-VA overhead 2544 64 0 2608

Arm Cortex-M3
Application without Lock-VM 4656 16 59,072 63,744
Application with Lock-VM 6384 80 60,864 67,328
Lock-VM overhead 1728 64 1792 3584

RISC-V LowRISC
Application without Lock-VA 45,864 97 647 46,608
Application with Lock-VA 49,212 616 660 50,488
Lock-VA overhead 3348 519 13 3880

RISC-V Mi-V RV32IMA
Application without Lock-VM 3824 128 8196 12,148
Application with Lock-VM 6624 256 8864 15,744
Lock-VM overhead 2800 128 668 3596

I. Marques et al.

Microelectronics Reliability 120 (2021) 114120

6

32-bit architecture (words of 4-byte width), with a stack alignment of 4
bytes. Furthermore, in the Lock-VM implementation, the Arm Cortex-
M3 uses a stack alignment of 4 bytes, while the RISC-V follows a stack
alignment of 8 bytes.

4.3. Execution footprint

Table 4 presents the execution footprint, in terms of clock cycles,
required by the Lock-V Framework services. In Lock-VA, the measure-
ments were performed in the RISC-V processor, since it represents the
bottleneck on the implementation, while in the Lock-VM, the measure-
ments were made in the Arm processor.

4.3.1. Context saving and rollback
In the Lock-VA, saving the processor context and stack has a cost of

3128 clock cycles, while in the Lock-VM a total of 335 clock cycles is
required. Restoring the system through rollback uses 2852 and 248 clock
cycles in Lock-VA and Lock-VM implementations, respectively. The
differences in Lock-VA and Lock-VM are due to the amount of data that
each implementation needs to save and restore. The Lock-VM solution
requires a smaller stack, thus, less data has to be saved.

4.3.2. Checkpoint
Regarding the checkpoint mechanism, the impact of comparing

different vector sizes (varying from 1 to 100 elements) in the processors’
output data was evaluated. In the Lock-VA implementation, without
errors in data to compare, the checkpoint task requires 10,420 clock
cycles for one good element, but by each additional ten elements, the
latency increases around 24,675 clock cycles. When the comparison
mismatches, the checkpoint overhead increases, on average, around
1226 clock cycles. In the Lock-VM solution, the checkpoint uses 1459
clock cycles to compare one valid element, and by each added ten good
elements, the system increases the required clock cycles by 1767. When
the checkpoint compares data with errors, this service performs better
and requires, on average, less than 22 clock cycles.

4.3.3. Calculating the Fibonacci sequence
Taking a practical example, the execution footprint was evaluated,

with and without errors, by calculating inside a function the first 10, 15,
and 20 elements of the well-known Fibonacci sequence. The scalability of
the Fibonacci function allows understanding the impact of using the
Lock-V with one or more checkpoints during its execution. The evalu-
ation was performed by running the execution without errors in the

sequence, and with an error in the sequence’s first or last comparison
element. Moreover, for each condition, the Lock-V was tested with one
or N checkpoints, where N corresponds to the number of elements
calculated by the function. For instance, when the Fibonacci function
calculates the first ten elements and only one checkpoint is in use, it will
only be reached after the calculation of the ten elements, and the
checkpoint sends ten elements for comparison. If the system includes 10
checkpoints, each one will be reached after calculating each element,
and thus, only one element is sent to the compare operation.

Table 5 shows the obtained results for the execution overhead rela-
tive to the baseline test, i.e., the system without Lock-V functionalities.
For instance, calculating the first 10 elements with no errors in the
processor’s output, causes an overhead increase of 14.11% in the Lock-
VA and 4.25% in the Lock-VM implementation. For the worst-case
scenario (N checkpoints) and the system with no errors, the overhead
in the Lock-VA is 112,66% and 1.84% when calculating the Fib(10) and
Fib(20) elements of the sequence. When the system has an error in the
first element and uses N checkpoints, the overhead from Fib(10) to Fib
(20) reduces from 148.40% to 2.09%. Furthermore, if the error is in the
last element, the overhead decreases from 324,77% to 103.59%. This
represents the worst- and best-case scenarios for the error detection,
where the error can be in the last, or in the first element of the com-
parison values. The main reason for the higher values in calculating Fib
(10) in comparison with the other calculations, lies in the fact that, in the
Lock-VA, for small interactions and outputs, the system still needs to use
all Framework functionalities, delivering all outputs to the xLockstep
accelerator. This overhead is slowly dissipated when the number of it-
erations (checkpoints) increases.

Under the same conditions, the Lock-VM solution presents a smaller
overhead than the Lock-VA implementation. This is directly related to
architectural features of the Arm Cortex-M processors, exhibited in Lock-
VM implementation, which requires less amount of data to be saved
during the context saving operation. When there are no data errors and
the system uses N checkpoints, the overhead decreases from 32.15% to
0.46%. And when there is an error in the first element and N checkpoints
are used, the overhead for Fib(10) decreases to 41.00% and for Fib(20) it
decreases around 0.54%. The worst scenario occurs when the error is in
the last element and N checkpoints are used, where the overhead de-
creases from 165.67% to 100.94%. In both cases, with the increase of the
application execution, the overhead of the Lock-V framework reduces
drastically.

Curiously, when the error is in the first element, the overhead for
using the Lock-V with N checkpoints is lower than when using just one.
This is due the reduced execution granularity of the error detection,
causing the system to detect and correct errors faster. When just one
checkpoint is used, the verification can only be performed at the end of
the program. Therefore, if an error occurs, the system can only perform a
rollback operation when the program finishes its execution, resulting
always in an overhead greater than 100%. In contrast, when N check-
points are used, the error can be detected faster and the system can be
recovered earlier.

4.4. Fault injection

In order to test and evaluate the Lock-V, a fault injection mechanism,
based on [37], and a system monitor were added in both Lock-VA and
Lock-VM implementations. This fault injection aims at emulating bit-
flips that may occur in harsh environments due to SEU. Faults were
only injected on the Arm processor, but it could have been done on the
RISC-V side, or both. The goal is to force comparisons mismatch to cause
a rollback, thus it is not relevant which processor originates corrupted
data. Faults are randomly injected at any time, by using a timer inter-
ruption, causing random bit-flips in a random register of the Arm bank
registers currently in use. On each round, a timer triggers the fault in-
jection procedure which randomly chooses one bit of one of the 16
general purpose Arm registers to be flipped. This happens in the

Table 4
Lock-V execution footprint.

Lock-VA Lock-VM

Clock
cycles

@25 MHz
(μs)

Clock
cycles

@25 MHz
(μs)

saveContext 3128 125.12 335 13.4
rollback 2852 114.08 248 9.92

Checkpoint
No. data

No errors 1 10,420 416.8 1459 58.36
10 32,851 1314.04 2154 86.16
100 254,921 10,196.84 18,059 722.36
Avg.

increm.b
24,675 987 1767 70.68

With
errora

1 11,698 467.92 644 25.76
10 34,118 1364.72 2134 85.36
100 256,079 10,243.16 18,041 721.64
Avg.

increm.b
24,675 987 1767 70.68

Overhead 1 1278 51.12 − 815 − 32.6
10 1267 50.68 − 20 − 0.8
100 1158 46.32 − 18 − 0.72

a Error in the last element to compare.
b Average increment in 10 elements.

I. Marques et al.

Microelectronics Reliability 120 (2021) 114120

7

following way: (1) the register file is copied; (2) the fault is injected in
the replicated register file through a XOR operation with the register and
the random bit to flip; and next, (3) the register file is restored with the
fault injected.

In the Lock-VA implementation, the sparing Arm Cortex-A9 is used as
a system monitor, while in the Lock-VM, a dedicated monitoring hard-
ware accelerated with a UART interface was deployed in the FPGA.
During the test run, both systems execute an application in parallel with
the fault injection mechanism, while the monitor system tracks the
number of faults and errors that occurred. Table 6 summarizes the re-
sults obtained from both systems. The main goal of this test is to force
both SDC and hang errors. SDC errors occur when the data output from
both cores is different, while hang errors occur when one of the cores
does not reach the checkpoint. In the Lock-VA implementation, a total of
45,543 faults was injected, which have originated 933 errors, 137 by
hang, and 796 SDC errors. When using the Lock-V architecture, the total
number of errors reduces drastically, where only 31 errors (out of 933)
were not corrected by the Lock-V mechanism (28 hang errors and 3 SDC
errors). This result shows an error correction rate of nearly 97%.

For the Lock-VM tests, a total of 98,957 faults was injected, forcing
93 errors (85 SDC, and 8 hang errors). In the case of SDC errors, the
system was able to correct 83 (out of 85) and for the hang errors, only 6
(out of 8) were corrected. For the total injected faults, 98,957, the Lock-
VM can achieve an error correction rate of 95.7%. However, the fault
injection process described above must be further extended towards
more detailed analysis of soft errors in components of Xilinx Zynq-7000,
as done in [38,39].

5. Conclusions and future work

This work proposes Lock-V, a loosely-coupled fault tolerance system
that uses a DCLS technique with design diversity at the ISA-level,
providing effective protection against SEU and CMF. Whereas typical
lockstep approaches provide a strong fault tolerance technique, they
lack in presenting protection against CMF. The proposed architecture
was deployed and evaluated in two versions, Lock-VA that is composed
of an Arm Cortex-A9 combined with a RISC-V RV64GC, and Lock-VM,
which features an Arm Cortex-M3 along with a RISC-V RV32IMA pro-
cessor. The fault injection system, applied to both approaches, revealed
to be highly efficient in the error correction task, and lightweight in
terms of execution overhead. Moreover, its small memory and execution
footprints leverages the reliability of the lockstep system.

Due to its modular implementation, both in terms of hardware and
software, Lock-V can be easily ported to other FPSoC systems and pro-
cessor architectures with only minor architectural changes. Hereafter,
the Lock-V architecture will be enhanced with the following features: (1)
improve data transfers by resorting the direct memory access (DMA)
mechanism; (2) provide support for more processor architectures; (3)
improve the Framework functionality to support profiling features that
can be used for a better checkpoint insertion, independent from the final
application.

CRediT authorship contribution statement

Ivo Marques: Methodology, Software, Investigation, Validation,
Writing - Original draft, Writing - Reviewing and editing.
Cristiano Rodrigues: Methodology, Software, Investigation, Vali-
dation, Writing - Original draft, Writing - Reviewing and editing.
Adriano Tavares: Supervision, Resources, Conceptualization,
Investigation, Writing - Reviewing and editing.
Sandro Pinto: Resources, Supervision, Investigation.
Tiago Gomes: Supervision, Resources, Writing - Original draft,
Writing - Reviewing and editing, Investigation.

Declaration of competing interest

The authors have no affiliation with any organization with a direct or
indirect financial interest in the subject matter discussed in the
manuscript.

References

[1] A. Aviziens, Fault-tolerant systems, IEEE Trans. Comput. C-25 (12) (1976)
1304–1312.

[2] W.H. Pierce, Failure-tolerant Computer Design 247, Academic Press, 1965.
[3] E. Normand, Single event upset at ground level, IEEE Trans. Nucl. Sci. 43 (6)

(1996) 2742–2750.
[4] G. Heiser, The role of virtualization in embedded systems, in: Proceedings of the 1st

Workshop on Isolation and Integration in Embedded Systems, IIES ’08, Association
for Computing Machinery, 2008, p. 11–16.

[5] M. Masmano, I. Ripoll, A. Crespo, J. Metge, Xtratum: a hypervisor for safety critical
embedded systems, in: Proceedings of the 11th Real-time Linux Workshop, 2009,
pp. 263–272.

[6] R. West, Y. Li, E. Missimer, M. Danish, A virtualized separation kernel for mixed-
criticality systems, ACM Trans. Comput. Syst. 34 (3) (Jun. 2016).

[7] R. Ramsauer, J. Kiszka, D. Lohmann, W. Mauerer, Look mum, no VM exits!
(almost), in: Workshop on Operating Systems Platforms for Embedded Real-time
Applications (OSPERT), 2017.

[8] S. Pinto, H. Araujo, D. Oliveira, J. Martins, A. Tavares, Virtualization on TrustZone-
enabled microcontrollers? Voilà!, in: 2019 IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS), 2019, pp. 293–304.

[9] J. Martins, A. Tavares, M. Solieri, M. Bertogna, S. Pinto, Bao: a lightweight static
partitioning hypervisor for modern multi-core embedded systems, in: M. Bertogna,
F. Terraneo (Eds.), Workshop on Next Generation Real-time Embedded Systems
(NG-RES 2020), Vol. 77 of OpenAccess Series in Informatics (OASIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2020, pp. 3:1–3:
14.

Table 5
Execution overhead with Fibonacci function.

N. of checkpoints Lock-VA Lock-VM

Fib(10) Fib(15) Fib(20) Fib(10) Fib(15) Fib(20)

No error 1 14.11% 1.02% 0.19% 4.25% 0.44% 0.04%
N 112.66% 14.39% 1.84% 32.15% 4.07% 0.46%

Error (first elem.) 1 129.21% 102.38% 100.14% 109.36% 100.96% 100.09%
N 148.40% 17.95% 2.09% 41.00% 4.86% 0.54%

Error (last elem.) 1 129.54% 102.38% 100.14% 109.27% 100.96% 100.09%
N 324.77% 128.91% 103.59% 165.67% 108.24% 100.94%

Table 6
Fault injection results with and without Lock-V.

Error type Injected faults Errors Error correction

Without Lock-V With Lock-V

Lock-VA
Hang – 137 28 79.56%
SDC – 796 3 99.62%
Total 45,543 933 31 96.68%

Lock-VM
Hang – 8 2 75.00%
SDC – 85 2 97.65%
Total 98,957 93 4 95.70%

I. Marques et al.

http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0005
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0005
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0010
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0015
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0015
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0020
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0020
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0020

Microelectronics Reliability 120 (2021) 114120

8

[10] A. Avizienis, J. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Trans. Dependable Secure Comput. 1 (1)
(2004) 11–33.

[11] M. Al-Kuwaiti, N. Kyriakopoulos, S. Hussein, Network dependability, fault-
tolerance, reliability, security, survivability: a framework for comparative analysis,
in: 2006 International Conference on Computer Engineering and Systems, 2006,
pp. 282–287.

[12] E. Ozer, B. Venu, X. Iturbe, S. Das, S. Lyberis, J. Biggs, P. Harrod, J. Penton, Error
correlation prediction in lockstep processors for safety-critical systems, in: 2018
51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018, pp. 737–748.

[13] E. Dubrova, Fault-tolerant Design, Springer-Verlag New York, 2013.
[14] L. M. Kaufman, S. Bhide, B. W. Johnson, Modeling of common-mode failures in

digital embedded systems, in: Annual Reliability and Maintainability Symposium.
2000 Proceedings. International Symposium on Product Quality and Integrity (Cat.
No.00CH37055), 2000, pp. 350–357.

[15] J. Yiu, Design of SoC for high reliability systems with embedded processors, in:
Embedded World Conference, 2015.

[16] T. Kottke, A. Steininger, A reconfigurable generic dual-core architecture, in:
International Conference on Dependable Systems and Networks (DSN’06), 2006,
pp. 45–54.

[17] S. Mitra, N.R. Saxena, E.J. McCluskey, Common-mode failures in redundant VLSI
systems: a survey, IEEE Trans. Reliab. 49 (3) (2000) 285–295.

[18] C. Rodrigues, I. Marques, S. Pinto, T. Gomes, A. Tavares, Towards a heterogeneous
fault-tolerance architecture based on arm and RISC-V processors, in: IECON 2019 -
45th Annual Conference of the IEEE Industrial Electronics Society, Vol. 1 (2019)
3112–3117.

[19] R.C. Baumann, Radiation-induced soft errors in advanced semiconductor
technologies, IEEE Trans. Device Mater. Reliab. 5 (3) (2005) 305–316.

[20] I. Hwang, S. Kim, Y. Kim, C.E. Seah, A survey of fault detection, isolation, and
reconfiguration methods, IEEE Trans. Control Syst. Technol. 18 (3) (2010)
636–653.

[21] F. Abate, L. Sterpone, C.A. Lisboa, L. Carro, M. Violante, New techniques for
improving the performance of the lockstep architecture for SEEs mitigation in
FPGA embedded processors, IEEE Trans. Nucl. Sci. 56 (4) (Aug 2009).

[22] P. Garcia, T. Gomes, F. Salgado, J. Cabral, P. Cardoso, M. Ekpanyapong,
A. Tavares, A fault tolerant design methodology for a FPGA-based softcore
processor, IFAC Proc. Vol. 45 (2012) 145–150.

[23] R.D. Kral, J.S.M. Chong, A.L. Schreiber, Implementation of a loosely-coupled
lockstep approach in the Xilinx Zynq-7000 all programmable SoCTM for high
consequence applications, in: 42nd Annual GOMACTech Conference, Reno, NV,
2017.

[24] A.B. de Oliveira, G.S. Rodrigues, F.L. Kastensmidt, N. Added, E.L.A. Macchione, V.
A.P. Aguiar, N.H. Medina, M.A.G. Silveira, Lockstep dual-Core ARM A9:
implementation and resilience analysis under heavy ion-induced soft errors, IEEE
Trans. Nucl. Sci. 65 (8) (Aug 2018).

[25] X. Iturbe, B. Venu, E. Ozer, S. Das, A Triple Core Lock-Step (TCLS) ARM® Cortex®-
R5 processor for safety-critical and ultra-reliable applications, in: 2016 46th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop (DSN-W), 2016, pp. 246–249.

[26] J. Gomez-Cornejo, A. Zuloaga, U. Kretzschmar, U. Bidarte, J. Jimenez, Fast context
reloading lockstep approach for SEUs mitigation in a FPGA soft core processor, in:
IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society,
2013, pp. 2261–2266.

[27] H. Pham, S. Pillement, S.J. Piestrak, Low-overhead fault-tolerance technique for a
dynamically reconfigurable softcore processor, IEEE Trans. Comput. 62 (6) (2013)
1179–1192.

[28] A. Hanafi, M. Karim, A. E. Hammami, Dual-lockstep microblaze-based embedded
system for error detection and recovery with reconfiguration technique, in: Third
World Conference on Complex Systems (WCCS), 2015, pp. 1–6.

[29] J. Han, Y. Kwon, Y. C. P. Cho, H. Yoo, A 1GHz fault tolerant processor with
dynamic lockstep and self-recovering cache for ADAS SoC complying with
ISO26262 in automotive electronics, in: 2017 IEEE Asian Solid-State Circuits
Conference, 2017, pp. 313–316.

[30] S. Ainsworth, T. M. Jones, Parallel error detection using heterogeneous cores, in:
2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2018, pp. 338–349.

[31] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, L. Alvisi, Modeling the effect of
technology trends on the soft error rate of combinational logic, in: Proceedings
International Conference on Dependable Systems and Networks, 2002, pp.
389–398.

[32] F.M. Lins, L.A. Tambara, F.L. Kastensmidt, P. Rech, Register file criticality and
compiler optimization effects on embedded microprocessor reliability, IEEE Trans.
Nucl. Sci. 64 (8) (2017) 2179–2187.

[33] M. A. Abazari, M. Fazeli, A. Patooghy, S. G. Miremadi, An efficient technique to
tolerate MBU faults in register file of embedded processors, in: The 16th CSI
International Symposium on Computer Architecture and Digital Systems, 2012, pp.
115–120.

[34] A. Ramos, A. Ullah, P. Reviriego, J.A. Maestro, Efficient protection of the register
file in soft-processors implemented on Xilinx FPGAs, IEEE Trans. Comput. 67 (2)
(2018) 299–304.

[35] G.P. Saggese, N.J. Wang, Z.T. Kalbarczyk, S.J. Patel, R.K. Iyer, An experimental
study of soft errors in microprocessors, IEEE Micro 25 (6) (2005) 30–39.

[36] G. Memik, M. T. Kandemir, O. Ozturk, Increasing register file immunity to transient
errors, in: Design, Automation and Test in Europe, 2005, pp. 586–591 Vol. 1.

[37] R. Velazco, S. Rezgui, R. Ecoffet, Predicting error rate for microprocessor-based
digital architectures through C.E.U. (Code Emulating Upsets) injection, IEEE
Transactions on Nuclear Science 47 (6) (2000) 2405–2411.

[38] L. A. Tambara, F. L. Kastensmidt, N. H. Medina, N. Added, V. A. P. Aguiar, F.
Aguirre, E. L. A. Macchione, M. A. G. Silveira, Heavy ions induced single event
upsets testing of the 28 nm Xilinx Zynq-7000 all programmable SoC, in: 2015 IEEE
Radiation Effects Data Workshop (REDW), 2015, pp. 1–6.

[39] V. Vlagkoulis, A. Sari, J. Vrachnis, G. Antonopoulos, N. Segkos, M. Psarakis,
A. Tavoularis, G. Furano, C. Boatella Polo, C. Poivey, V. Ferlet-Cavrois,
M. Kastriotou, P. Fernandez Martinez, R.G. Alia, K.O. Voss, C. Schuy, Single event
effects characterization of the programmable logic of Xilinx Zynq-7000 FPGA using
very/ultra high-energy heavy ions, IEEE Trans. Nucl. Sci. 68 (1) (2021) 36–45.

I. Marques et al.

http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0025
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0025
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0025
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0030
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0035
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0035
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0040
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0040
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0045
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0045
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0045
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0045
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0050
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0050
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0055
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0055
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0055
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0060
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0060
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0060
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0065
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0065
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0065
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0070
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0070
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0070
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0070
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0075
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0075
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0075
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0075
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0080
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0080
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0080
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0085
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0085
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0085
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0090
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0090
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0090
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0095
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0095
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0100
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0100
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0100
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0100
http://refhub.elsevier.com/S0026-2714(21)00086-X/rf0100

	Lock-V: A heterogeneous fault tolerance architecture based on Arm and RISC-V
	1 Introduction
	2 Related work
	2.1 Tightly-coupled approaches
	2.2 Loosely-coupled approaches

	3 Lock-V
	3.1 Hardware architecture: xLockstep accelerator
	3.1.1 Synchro
	3.1.2 Checker
	3.1.3 Finite state machine

	3.2 Code generation: Lock-V framework
	3.3 System recovery
	3.4 Context saving
	3.5 Context restoring (rollback)

	4 Evaluation
	4.1 FPGA resources utilization
	4.2 Memory footprint
	4.3 Execution footprint
	4.3.1 Context saving and rollback
	4.3.2 Checkpoint
	4.3.3 Calculating the Fibonacci sequence

	4.4 Fault injection

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References

