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A B S T R A C T   

The present work assesses the possibility of using the orbits described by the sun gear in order to 
analyse the load sharing ratio in planetary gear transmissions. Furthermore, the current work is 
extended to observe the impact of the floatability and different tangential pinhole position errors 
in the load borne in a single contact between a pair of teeth in comparison to the load per planet. 
Therefore, it highlights the inaccuracy of the load sharing ratio (LSR) as an indicator of the 
overload in one tooth of the planet. Moreover, the use of the orbits represented with respect to a 
rotating reference provides helpful information to determine the overloads and underloads in the 
planets due to the existence of a tangential error in sequentially phased transmissions. Therefore, 
this proposal provides a simpler solution to the measurement of the LSR in planetary trans-
missions with different numbers of planets than the use of strain gauges.   

1. Introduction 

Power transmissions play a crucial role in the industry. Among the possible transmissions, gear transmissions are one of the most 
common solutions. Within the scope of possible gear transmissions, planetary transmissions present a number of advantages compared 
to others. These are more robust, compact and have a higher power density than analogous conventional transmissions. Furthermore, 
the coaxiality between input and output together with the previous advantages makes them more suitable for applications in wind 
generators [1,2], electric vehicles [3], and helicopters [4,5] among others. 

Given the several applications for planetary gearboxes, in the recent decades there has been a sky-rocketing increment in the 
number of publications [6] and in the development of new models. Modelling in gear transmissions and, more precisely in planetary 
transmissions, can be classified based on the approach taken in each model. This all started by analytical approaches [7] and 
lumped-parameter models, which are still a considerably accurate tool [8–13]. Nonetheless, this is not the only valid approach, other 
authors opted for finite-element (FE) models [14–16] or hybrid approaches combining proposals [17–21]. 

Thus, derived from the development of these models several research works have been presented regarding the load sharing, the 
meshing stiffness [10,18,22–24] and contact forces [25–27] in planetary gear transmissions. These works focus on the impact that 
various effects have in the performance of such a transmission, errors [28,29], misalignments [12,30,31], gravity [32–34], eccen-
tricities [28,35], to name a few. 

Regarding the study of the orbits described by the different gears or even the planet carrier, several approaches have been pre-
sented. On the one hand, a number of models provide the possibility of including floatability in different elements as in [32,36–39] 
among others. On the other hand, some other authors developed different procedures to perform an experimental validation of the 
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orbits [36,40–42]. These works focus on the impact of the stiffness in the supports and rotating components and mainly its dynamical 
response to different working situations. 

The current work presents a previously validated 2-D model for planetary spur gears [19] developed to simulate a series of ex-
periments allowing the definition of simplified simulation environments. The choice of a 2-D model is supported by the fact that they 
have been proved to be a suitable and powerful tool for previous studies in the recent years such as [9,13,23,43]. These 2-D formu-
lations allow to exclude some three-dimensional effects that are less relevant in approaches as the one presented in this work, enabling 
to reduce the computational cost of the simulations without reducing the accuracy. Furthermore, these more computationally-efficient 
approaches allow the statistical analysis of results by the definition of a significant number of simulation scenarios changing different 
working parameters such as the number of planets, the mesh phasing, and the planet spacing among others. A considerable number of 
simulations generates the definition of trends in the results. 

This work proposes the analysis of the contact forces per tooth in comparison with the amount of load borne by each planet. Despite 
the fact that the contact forces do not count with a standardized procedure to be validated, the amount of load in each gear can be 
extrapolated from the deflection in some strain gauges, as seen in [41,42,44–46]. Regarding this point, this model has been employed 
previously in the analysis of the trends followed by the deformations suffered by strain gauges placed on the tooth root [47,48] to 
analyse the discrepancies between the experimental and modelling results shown in [44]. However, there is not a consensus on the 
most suitable approach for the use of strain gauges to obtain the load sharing in a planetary transmission, they can be placed in the sun 
gear [44,45], planet pins [41,42] or ring gear [45,46]. Therefore, in this work, the previously mentioned model is extended aiming to 
use the orbit described by the sun gear centre in order to assess the load sharing in a planetary transmission. 

Fig. 1. Global and local FE models of the sun gear with deflections due the load applied.  

Fig. 2. Application of the superposition principle in the global and local FE models, the deflected profile of the models is presented with the 
applied load. 

Fig. 3. Detail of possible contacts considered by the model with the actual overlaps in a red solid line.  
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The interest of this study comes from the visible difference between the load supported by one tooth alone and the amount of load 
supported by the gear, thus, the load sharing is not an accurate parameter to observe the load supported by each tooth and, conse-
quently, its durability. Furthermore, the new proposal to the measurement of the orbits aims to assess the possibility that this may be a 
simpler viable option to induce the load sharing in a planetary transmission apart from the normal use of strain gauges to perform 
experimental measurements and calculate the load sharing in a planetary transmission. 

Therefore, this manuscript is structured in a number of sections, where Section 2 gathers all the description regarding the model 
employed for this work. Afterwards, Section 3 compiles the configurations that are considered interesting to this aim. Then, in Section 
4 the results both for the orbits described by the sun gear (Section 4.1) and the contact forces (Section 4.2). 

Finally, Section 5 presents the conclusions fruit of the analysis of the results. 

2. Model 

In the current section the different details of the model that are relevant for this manuscript are explained. The focus, given the topic 
of the present work, is on the contact problem, the impact of the tangential errors and the stiffness included in the sun support. 

2.1. Contact location and calculation 

Firstly, the contact solution implemented in the model used for this work [19] combines a couple of finite element models derived 
from [15] with an analytical approach [49] in order to solve the non-linear local contact. 

The algorithm employed to solve the contact between active flanks consists of two different formulations that work in parallel, 

Fig. 4. Coordinate systems in the model: a) local frame, b) local frames in the transmission, c) fixed general coordinate frame and d) balance in the 
sun support for the general coordinate frame. 
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there is a linear algorithm that solves the linear part of the contact, and a non-linear formulation for the local contact in the area next to 
the contact point. On the former, a FE model (Fig. 1) is used to represent the body of the gear and a number of teeth, as seen in [47,50, 
51]. This model will be known from this point on as the global model. Thus, the global model is a planar FE model meshed using 
triangular elements with nodes in each vertex, using the Partial Differential Equations Toolbox in MATLAB. Regarding the boundary 
conditions, all the geometry related to the shaft mounting is considered embedded. Then, there is another FE model (Fig. 1) that 
represents only the geometry of the active flank to a depth of h, this will be referred as local model onwards. This model is meshed 
analogously to the global one. In terms of boundary conditions, the embedment spreads along the line that represents the interface 
between this model and the rest of the tooth. Therefore, by applying in this models the same load in the same point of the tooth profile, 
however, in opposite directions, it is possible to obtain the deformations in the teeth and body of the gear. This is based on using the 
superposition principle, as shown in Fig. 2. As a result, the model provides the deformations on the body of the gear and the repre-
sented teeth due to the action of a unitary force in a specific point along the profile. This approach allows to eliminate the distortion in 
the deformations due to the use of a point force [18,19]. 

Regarding the local contact, Weber-Banaschek’s approach, proposed in [49], is taken for external gears contact and modified by 
Iglesias et al. in [19] for the internal gears. This Hertzian approach provides the deformations suffered by a point inside the tooth due to 
the contact in the active flanks. Thus, by combining the previous FE models and this analytical approach it is possible to know the 

Fig. 5. Diagram of a 5-planet transmission with the numbering of the planets (P1-P5) and fixed and rotating coordinates systems used for the orbits.  

Fig. 6. 3-planet ESSP sun orbits: a) fixed reference b) rotating reference.  
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Fig. 7. Diagram of the meshing stiffness for ESIP and ESSP transmissions.  

Table 1 
Geometrical specifications of the teeth profiles.  

Parameter Value 

Module (mm) 4.5 
Pressure angle (◦) 20 
Addendum (mm) 4.5 
Dedendum (mm) 5.625 
Tip rounding arc radius (mm) 0.225  

Table 2 
Number of teeth for each gear in the considered transmissions, the values are included following the standard set by the ISO-21771.  

N Configuration Zr Zp Zs 

3 & 5 ESIP − 165 44 75 
ESSP − 166 45 74 

4 ESIP − 164 43 76 
ESSP − 166 45 74  

Table 3 
Input torque in the sun gear with the number of planets and reference force.    

Reference force (N) 

N Torque (Nm) ESIP ESSP 

3 1200 2522.5 2556.6 
4 1600 2489.3 2522.6 
5 2000 2522.5 2556.6  

Table 4 
Tangential pinhole position error in one of the planets.  

Transmission configuration Tangential error (µm) 

ESIP 0 1.25 2.5 3.75 5 
ESSP 0 1.25 2.5 3.75 5  
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stiffness of the teeth and the body of the gears. 
On the other hand, this model supposes that the gears can overlap, in fact, at the beginning of the calculation the wheels are forced 

to overlap, as shown in Fig. 3. Thus, by calculating the geometrical overlap between pairs of teeth it is possible to locate the active 
contacts. The number of possible contacts that are considered depend on the contact ratio (ε), and is calculated by using Eq. (1). 

Nc = 2 ⋅ ceil (ε+ 1) (1)  

Thus, for a contact ratio between 1 and 2, the most common situation in spur gears, the number of possible contacts is 6. This is shown 

Table 5 
Sun support stiffnesses in the studied configurations.  

Transmission configuration Sun support stiffnesses (N/m) 

ESIP 1e8 1e6 
ESSP 1e8 1e6  

Fig. 8. Fixed (in black) and rotating (in green) coordinates systems.  

Fig. 9. 3-planet transmissions comparison of the orbits for every tangential error (0, 1.25, 2.5, 3.75, 5 µm): a) ESIP, b) ESSP.  
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in Fig. 3. 
The calculation of the overlaps, which are shown exaggeratedly in Fig. 3 by a solid red line between o and * icons, will make 

difference between different sections along the profile of the gear teeth. Thus, the contact algorithm considers the possibility of 
involute-involute contact or involute-tip-rounding-arc or tip-rounding-arc-involute contact. The criteria used to differentiate each 
contact is the pressure angle (φ). The expressions used for the calculation of the overlap can be found in [19] & [51]. 

Finally, by combining the overlaps and the stiffnesses of the gears, it is possible to obtain the contact forces and solve the balance in 
the transmission, as shown in [51]. 

Fig. 10. Sun orbits of 5-planet ESSP transmission with 1e8 N/m stiffness: a) 0, 2.5 & 5 µm b) 0 µm c) 2.5 µm d) 5 µm.  

Table 6 
Results of maximum in the load sharing for ESSP 5-planet transmission for 1e8 N/m stiffness.   

Planet 1 Planet 2 Planet 3 Planet 4 Planet 5 

max.LSR@et[0] 0.2181 0.2181 0.2181 0.2181 0.2181 
max.LSR@et[2.5] 0.1771 0.2444 0.2128 0.2115 0.2478 
max.LSR@et[5] 0.1382 0.2704 0.2075 0.2068 0.2763  
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2.2. Rotating reference for the sun gear orbit 

In the current work, the 2D-model by Iglesias et al. [19] is reformulated looking for obtaining a new approach to the measurement 
of the sun gear orbit. Firstly, it is relevant to comment this model solves the contact problem per pair of wheels. Thus, every sun-planet 
and planet-ring contacts are solved independently and then balance in the system is searched. Therefore, focusing on every sun-planet 
contact, the coordinate frame shown in Fig. 4a) shows the local coordinate system employed to any of these contacts. This local co-
ordinate frame is defined always with the y axis in the direction of the centre distance between sun and planet. Then, the x axis is 
transversal to the previous one. Therefore, Fig. 4b) presents the local coordinate systems for each sun-planet contact in a 3-planet 
transmission from the general configuration of the transmission. In this coordinate frames every contact force, presented as Fspi is 
exactly the same in an ideal in-phase planetary transmission without error. However, in order to obtain the balance in the transmission 
these contact forces are referred to a fixed general coordinate frame, presented in Fig. 4c). Thus, the results are not identical, but 
provide a balance in the sun gear support, as shown in Fig. 4d). 

Regarding the balance in the sun support, the contact forces are rotated from the local frame, in which they are calculated, to the 
general fixed frame, used for the balance problem in the transmission. Thus, this provides a vector system that allows to observe any 
imbalance, and for configurations with stiffness in the support the wheel modifies its position in order to erase or diminish the 

Fig. 11. Sun orbits of 3-planet ESSP transmission with 1e8 N/m stiffness: a) 0, 2.5 & 5 µm b) 0 µm c) 2.5 µm d) 5 µm.  
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imbalance in the contact forces, and consequently, in the load sharing of the transmission. The movement of the centre of the wheel to 
absorb the imbalance also leads it to describe an orbit around its initial mounting position. Normally, the sun gear orbits are measured 
from a fixed reference, as seen in [32,36–39]. However, in this proposal the formulation of the balance problem, shown in [38], has 
been modified in order to obtain the orbit from a rotating reference, shown in Fig. 5 in green together with the numbering assigned to 
the planets (P1-P5) that is used also for the results presented in Section 4. The mentioned green reference rotates along with the planet 
carrier. 

The approach proposed consists in recreating the measurement of a probe embarked in the planet carrier of a planetary trans-
mission to be able to measure the changes in the position of the sun gear centre from a rotating reference. To this aim, firstly, two 
effects are visible in the orbit described by the sun. First of all, there is a variation of the orbit due to the change in each sun-planet 
contact, this generates a loop around an equilibrium position. Secondly, there is also a rotation around the initial mounting position 
due to the rotation of the planet carrier. By embarking the probe on the carrier, the effect will be that the relative movement of the 
planets around the sun will not be visible for an observer situated on the planet carrier, therefore, the effect of the planet carrier 
rotation will disappear in the measurement of the sun orbit. In order to develop this proposal and erase the effect of the planet carrier 

Fig. 12. 4-planet ESSP transmission 1e8 N/m stiffness, sun orbits for every considered error: 0, 2.5 & 5 µm (left) 1.25 & 3.75 µm (right).  

Table 7 
Results of maximum in the load sharing for ESSP 3-planet transmission for 1e8 N/m stiffness.   

Planet 1 Planet 2 Planet 3 

max.LSR@et[0] 0.3402 0.3402 0.3402 
max.LSR@et[2.5] 0.319 0.351 0.3509 
max.LSR@et[5] 0.2978 0.3619 0.3618  

Table 8 
Results of maximum in the load sharing for ESSP 4-planet transmission for 1e8 N/m stiffness.   

Planet 1 Planet 2 Planet 3 Planet 4 

max.LSR@et[0] 0.2824 0.2823 0.2824 0.2823 
max.LSR@et[1.25] 0.2636 0.2960 0.2743 0.2955 
max.LSR@et[2.5] 0.2450 0.3095 0.2663 0.3088 
max.LSR@et[3.75] 0.2262 0.3230 0.2583 0.3221 
max.LSR@et[5] 0.2076 0.3368 0.2503 0.3354  
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rotation in the measured sun gear orbit, the rotation matrix to convert the local coordinate frames to the general coordinate frames is 
Eq. (2), where only the planet spacing (ψ i) is considered. Then, following Eqs. (3) & (4) the vector system in the sun gear support is 
obtained, eliminating the effect of the planet carrier rotation. 

R =

[
cos(ψi) sin(ψi)

− sin(ψi) cos(ψi)

]

(2)  

F→spigen = F→spiloc ∧ R (3)  

F→s =
∑N

i=1
F→spigen (4) 

In the equations above F→spigen & F→spiloc refer to the contact force between sun and planets in the general and local coordinate frames 

respectively. Then, the F→s refers to the force in the support of the gear due to the balance among the contact forces. In Fig. 6 the sun 
gear orbit in a 3-planet Equally Spaced Sequentially Phased (ESSP) planetary transmission are compared with a measurement from a 
fixed reference and a rotating reference. In both of them 8 meshing cycles completed by the sun have been represented. 

Observing Fig. 6, some advantages can be highlighted of this new method:  

- The orbit is a closed loop for each meshing cycle, in case there is not a time varying effect. Any of these loops represents the change 
in the position of the sun gear centre only due to the evolution of its contacts with the planets.  

- If every contact is equal, every single loop overlaps with the previous and all of them are identical. Thus, it is possible to observe any 
irregularity in any of the meshing cycles, given the fact that, the overlap between loops would not be perfect in such case.  

- It allows to infer the load sharing in the ESSP transmissions by studying the change in the shape of the loops described by the sun 
gear in a meshing cycle.  

- These advantages will be highlighted and described in more detail in Section 4.1 by comparing the results with the previous 
approach and this new proposal and extending the analysis to all the scenarios presented in 3. 

3. Considered configurations 

In this section the working parameters included in the simulations are established. Firstly, the characteristics of the profiles of every 
teeth and the number of teeth in each configuration for Equally Spaced In-Phase (ESIP) and ESSP transmissions. In order to illustrate 
the impact that the mesh phasing has in the performance of the transmission and the scope covered by choosing these configurations, 
in Fig. 7 the variability of the meshing stiffness in any meshing cycle for both kinds of transmissions is shown in a pair of diagrams. 
Therefore, the meshing stiffness in each case varies within a minimum (Kmin) and a maximum (Kmax) value, which are equal for every 
planet. However, in this case, they have been separated to avoid overlapping and ease the understanding of the figure. Besides, these 

Fig. 13. Comparison of ESSP transmissions orbits with the number of planets, for configurations without tangential error.  
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diagrams show how for a ESIP transmission the meshing stiffness is exactly the same for each planet, at any given moment, one of 
which is selected with an orange dot. On the other hand, the meshing stiffness in a ESSP transmission varies with a delay between 
planets and therefore the meshing stiffness in each planet will not be identical to the rest. For these diagrams the reader should take 
into account that no effects of any error were considered and the shape of the meshing stiffness has been simplified. 

The number of planets (N) that are considered are 3, 4 & 5. Thus, Tables 1 and 2 gather all the information regarding these points. 
Regarding the input torque applied in the sun gear, this has to be adapted to the number of planets looking for similar contact forces 

in every scenario, and therefore, similar deflections and orbits independently to the number of planets. The input torque values used 
are gathered in Table 3. 

The reference force refers to the contact force in a planet due to an even distribution of the input torque among all the branches 
present in a planetary transmission. This stands for the transmissions in ideal conditions, which means that the transmission is perfectly 
balanced and no manufacturing error is considered. Thus, this is calculated by using Eq. (5) and as the number of teeth (Zs) in each sun 
varies, so does the base radius (rsi) and the reference force (Fref). However, these variations are slight and unavoidable due to the 
necessary change on the number of teeth in order to study the different configurations and both mesh phasing options. 

Fref =
Tin

N ⋅ rsi
(5) 

Finally, tangential pinhole position errors are included in one of the planets mounting for each transmission. The error is modelled 
by modifying the mounting position of the planet. In this case, a tangential error will be applied in the horizontal direction, tangential 
to the planet carrier. It is necessary to consider this modification when setting the rotations of the gears for the previously mentioned 
initial overlap. This error will modify those overlaps. More details regarding this point are shown in [51]. This error has been chosen 
given their significant influence, as shown in previous works [51]. Thus, Table 4 gathers every error considered. The size of the errors 
are the same for every transmission looking for comparable effects in each. Furthermore, the size of the errors is not significantly big 
looking for avoiding the loss of contact, but having enough scenarios to observe the trends followed by the results with the size of the 

Fig. 14. Comparison of the change in the position of the orbit centroid for all the cases considered in each transmission (et: 0, 1.25, 2.5, 3.75, 5 µm): 
a) 3 planets, b) 4 planets, c) 5 planets. 
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error. 
Besides, another effect that is considered is the stiffness in the sun support. Thus, in Table 5 two different levels of stiffness are 

considered. The first stiffness (1e8 N/m) is chosen by following previous works [20,26,32] and looking for a simplified approach that 
allows including this effect and does not increase significantly the computational cost. Therefore, it is modelled following a 
lumped-parameter formulation and establishing the same stiffness in the x and y directions, following the fixed reference presented in 
Fig. 8. The second level of stiffness (1e6 N/m) is chosen following [52], more precisely, it refers to a reduction of two orders of 
magnitude from the initial support stiffness in order to approximate the floating sun gear configuration. However, for the 3 planet 
configuration the 1e6 N/m stiffness is not considered due to the inherent self-balancing effect present in the 3-planet transmissions 
with a floating sun. 

In Fig. 8 a diagram of a 5-planet transmission is presented to show all the effects considered in the simulations and provide the 
reference taken for the numbering of the planets P1-P5. This pattern is followed also for 3 and 4-planet transmissions reaching up to P3 
or P4 respectively. Besides, in a dotted red line the position of the planet with the tangential error is shown. This planet will be the one 
including the tangential error in all the studied scenarios. 

All in all, this work presents 3 different number of planets (N), 2 mesh phasing options for each, 5 sizes for the tangential pinhole 
position errors (et), and 2 stiffness levels for the sun support. Thus, the results of a total of 55 simulations, excluding the ones for 3- 
planet transmission with 1e6 stiffness, are presented in this work. 

4. Results 

This section gathers all the results to the simulations mentioned before in Section 3. However, this section has been divided in two 
subsections in order to study separately the orbits described by the sun in every scenario, and the contact forces in each tooth and 
planet. 

4.1. Sun orbits 

In this subsection the results to the new representation of the orbits are compared with the classical approach to this problem. 
Besides, the growth and variation of the orbits with the tangential error is presented. 

First of all, the difference between the conventional orbit and the new representation system are presented in Fig. 6 in Section 2.2. 
To this aim, the scenario chosen is the 3-planet transmission ESSP without tangential error. Thus, the orbit is uniform, presents a 
perfect repeatability, and describes a number of loops equal to the number of planets due to the sequential contact with each planet. 
The simulations are performed for 8 meshing cycles in the sun, thus, the carrier does not complete a whole rotation, but it is possible to 
establish the differences between methods. 

Once these differences are established, the following study is focused on the analysis of the orbits by using the new representation 
system. To this aim, Fig. 9a) presents the orbits described by the sun in the ESIP transmission considering all the cases of tangential 
error in the planet 1, which were specified previously in Table 4. Likewise, Fig. 9b) present the same results for the ESSP transmission. 

Fig. 15. 5-planet ESSP transmission sun orbits with 1e8 and 1e6 N/m sun support stiffness.  
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In both kinds of transmissions the errors included are the same and they are included in the same planet pin. 
Therefore, a growth in the translation of the sun centre is visible for ESIP and ESSP transmissions with the growth of the tangential 

error. Then, the size of the orbit described by the sun around this translation position for the ESIP transmission also grows with the 
error, however, it is insignificant compared to the size of the orbit for the ESSP transmission. 

On the other hand, regarding one of the advantages of this new representation that were highlighted in Section 2.2 the best example 

Fig. 16. ESIP (left) & ESSP (right) transmissions 1e8 N/m: a & d) 3-planet b & e) 4-planet c & f) 5-planet.  
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to infer the load sharing in a transmission from its orbit is the 5-planet ESSP transmission. Thus, the case without error, the case with 
2.5 µm and the case with 5 µm are chosen and compared in Fig. 10. Furthermore, in Fig. 10 circles in dotted lines, with the same radius, 
are included to ease the comparison of the sizes of each loop described by the sun orbit. Besides, a sketch is included to show the initial 
position of the planets and the numbering used to refer to them. 

In the case of no error, every loop is equal and so is the amount of load supported by each planet, however, with a delay due to the 
mesh phasing. On the contrary, in the second and third cases considering the position of each planet shown also in Fig. 10, it is possible 
to see that the loop related to planet 1 (the one with the error) becomes bigger due to the unloading related to the delaying tangential 
error. Then, the loops for planet 2 & 5 are smaller due to the higher stiffness in that area, these planets are overloaded. Finally, the two 
loops at the top, linked to planets 3 & 4 are bigger to the ones for 2 & 5, but smaller than the one for planet 1. These results are verified 
by the numerical results to the load sharing presented in Table 6. The variations in the loops are highlighted by including a circle in 
dotted line that is equally big for each scenario. This circle is centred on the centroid of each orbit. In the detail of each orbit (Fig. 10b), 
c) & d)) its centroid is included as a + icon in red or green depending on the colour used for the orbit, the green colour is only used in 
the case the orbit is in red in order to improve the readability of Fig. 10. Finally, in Figs. 10–12 a sketch shows the starting position for 
each planet, following the numbering mentioned before in this work. 

This is also visible for the orbits described by the sun in the 3-planet ESSP transmission, shown in Fig. 11, and the numerical values 
of the LSR are presented in Table 7. However, due to the self-balancing effect the imbalance created by the tangential error is not 
significant and this appears also in the uniformity of the orbit. Thus, the change of the orbits is presented and then the detail for 0, 2.5, 
and 5 µm. However, the variations in the orbits are slight, which is why the dotted circles, also included in Fig. 10, are more helpful in 
this new scenario and highlight the slight differences between orbits. The loops closer to the planet 2 & 3 become smaller and tighter. 
This may be due to the higher stiffness in this area. Likewise, the centroid is included in the representation of the detail of the orbits, as 
done before in Fig. 10. It is possible to observe the change in the position of this centroid with the change in the shape of the orbit. 

The numerical values prove that the imbalances created in the 3-planet transmissions by the tangential errors are not as significant 
as in the 5-planet transmission. 

Fig. 17. 3-planet ESIP transmission 1e8 N/m (planet 1 & 2): a & c) 2.5 µm b & d) 5 µm.  
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Regarding the 4-planet ESSP transmissions the analysis is more difficult due to the change in the shape of the orbit. The orbits are 
presented in Fig. 12 in two figures to avoid the overlap and ease the analysis. The results show that as the tangential error grows it is 
possible to see that the segments that go from planet 2–3 & 4–1 become shorter and the other become longer. This is related to the 
variation in the meshing stiffness due to the tangential error impact, which affects to the mobility of the sun. In these orbits all the 
scenarios are presented to observe the evolution of the orbit with the tangential error in more detail. 

In the numerical values, compiled in Table 8 the trends shown in Fig. 12 are supported by the trends followed by the max.LSR 
results. Thus, the highest load corresponds to the planets where there is more stiffness and, therefore, the segments that start closer to 
these planets are shorter. 

On the other hand, comparing the results among transmissions with varying number of planets, it is possible to see how the ge-
ometry affects the performance of the transmission. As shown in Fig. 13 the orbit described by the sun with the same stiffness in the 
support is smaller for a transmission with 3 or 5 planets, compared with an analogous 4-planet transmission. Even though the amount 
of load in the system is adapted to the number of planets, there seems to be an impact of the geometrical disposition of the planets in the 
size and shape of the orbit in ESSP transmissions. 

Besides, in Fig. 13 it is possible to see the change in the shape with an even or odd number of planets. 
Then, Fig. 14 shows the change in the position of the centroid of the orbit with the growth of the tangential pinhole position error. 

In this figure a number of dotted circles are included as reference for the size of the translation. Thus, it is possible to see how the sun 
gear orbit centroid suffers a higher translation for a 3-planet transmission. On the contrary, the centroid of the 5-planet transmission 
suffers the lowest translation with the tangential error, which is logical given the higher stiffness in the system due to the higher 
number of planets. 

Finally, the stiffness in the support also plays an important role in the orbits. Reducing the stiffness of the sun support influences the 
size of the orbit and the translation suffered by the centre of the orbit, as shown in Fig. 15. 

This stands for any number of planets. Also, it is possible to see how the closer the sun gets to a planet (for example planet 2 in the 5- 

Fig. 18. 3-planet ESSP transmission 1e8 N/m (planet 1 & 2): a & c) 2.5 µm b & d) 5 µm.  
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planet ESSP transmission) the more distorted the orbit is in that area becoming flatter and wider. 

4.2. Contact forces 

Starting off the ideal scenario where there is no error and the load is shared equally among every planet, Fig. 16 shows a comparison 
of this scenario for 3, 4 and 5-planet ESIP and ESSP transmissions. This is the starting point of this study. 

In the case for the ESIP transmissions (Fig. 16a, b & c), every tooth supports the same load in the same way and the summation, 
which would be used for the load sharing, is perfectly uniform and equal for every planet. On the contrary, for ESSP transmissions, in 
Fig. 16d, e, & f, every planet supports the same load but delayed in time, due to the mesh phasing. Thus, there exist fluctuations in the 
load and the amount of load supported by a tooth alone is not the same as for both teeth at the same time. 

It is worth highlighting the significant change (seen in Fig. 16) that exists in the peak-to-peak value of the contact forces for ESSP 
transmissions as the number of planets is changed. This has to be considered bearing in mind that these are ideal transmissions with no 
error and a 1e8 N/m stiffness in the sun support in all of them. 

Focusing on the scenario with 3 planets for the ESIP configuration and for the ESSP configuration the contact forces with a 2.5 and 
5 µm tangential errors are gathered in Figs. 17 and 18. Thus, in Fig. 17a & b it is possible to observe the loads in planet 1. Whereas 
Fig. 17c & d show the same scenario, but for planet 2. This comparison proves the change in the total load and in the maximum load 
borne by a tooth with the change of the size in the error. However, this difference is small due to the effect of the stiffness in the sun 
support. Therefore, it can be extrapolated that for a lower stiffness these differences would get smaller, justifying the decision to 
neglect the simulations of 3-planet transmissions with 1e6 N/m stiffness in the sun support. However, this is a characteristic inherent to 
the 3-planet transmissions. 

On the other hand, in 4-planet transmissions the tangential error plays a different role. For the ESIP transmission, the tangential 
error generates a delay in the contact in planet 1. Besides, this underloads that planet and overloads other planets, as shown in Fig. 19, 
which modifies the amount of pairs of teeth in contact in each planet. The results show that the planet 1 and planet 2 are the most 

Fig. 19. 4-planet ESIP transmission 1e8 N/m for every planet with a 2.5 µm error.  
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underloaded and overloaded respectively. Hence, the results for these planets are extracted and compared for the scenarios with a 2.5 
& 5 µm error, as shown in Fig. 20. 

The change in the number of pairs of teeth in contact appears in the contact forces represented by the fluctuations that can be 
observed in the transition sections, which are the ones where the contact goes from single to double and vice versa. 

In the case of the ESSP transmission, the contact forces for the planet 1 & 2 are the most relevant too. Therefore, they are extracted 
in order to compare them in Fig. 21. In those, there are fluctuations in the load due to the sequential mesh phasing. For the 1e8 N/m 
stiffness these fluctuations lead to 2 maximum load values in any load cycle in each tooth. However, the maximum load corresponds to 
a moment where the load is distributed among both teeth in contact. Therefore, this moment sets the maximum in the load sharing in 
this planet, but it is not representative of the highest overload borne by a single tooth. This stands for all the error sizes considered. 

On the other hand, whenever the stiffness in the sun support is lowered to 1e6 N/m (Fig. 22), the maximum values in the load are 
equal for the single and double contact and it corresponds to a value that is higher in the single contact and lower in the double contact 
in the 1e8 stiffness scenarios. 

Finally, for 5-planet transmissions, the planet 1, with the error, experiments an underloading effect and there is an overloading 
effect in the 2nd planet. Given this, in Fig. 23 the contact forces in planet 1 & 2 are gathered for the scenarios with 1.25, 3.75 and 5 µm 
errors. These show that the moment of highest load in planet 1 corresponds to a single contact. On the other hand, in planet 2 the 
highest load is supported by two teeth at the same time. Thus, the overload due to the error in the planet does not mean an identical 
overload in the tooth. Even though in planet 1 the maximum load is borne by a single contact, the tooth is underloaded due to the effect 
of the tangential error. 

Besides, comparing the behavior seen in Fig. 23 with the previous Figs. 21 and 22, in the 5-planet ESIP transmission the error does 
modify the contact force peak-to-peak value notably. On the other hand, in the ESSP transmissions presented before (Figs. 21 and 22) 
this effect is not visible. As a matter of fact, this happens also for the 5-planet ESSP transmission, whose results are presented in Fig. 24. 

Also for 5-planet transmissions, but with sequential mesh phasing, the tangential pinhole position errors have a significant 

Fig. 20. 4-planet ESIP transmissions 1e8 N/m (planet 1 & 2): a & c) 2.5 µm b & d) 5 µm.  
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influence. However, as done previously, the focus is set on the planet 1 & 2 due to the mentioned underloading and overloading effect 
(Fig. 24). Thus, in these results the effects that can be identified, compared to the analogous ESIP transmission, are different due to the 
sequential mesh phasing. Firstly, there is a fluctuation of the load in the planet that provides almost identical values for the maximum 
load supported in a single contact and in a double contact. This effect has an important impact in the durability of the components 
given the increment in the number of cycles supported by each tooth. 

As seen for 4-planet ESSP transmissions, the reduction in the stiffness in the sun support results in more uniform loads in the 5- 
planet transmissions, compared with the analogous scenario with a 1e8 N/m stiffness. Thus, Fig. 25 shows this effect for the sce-
narios with 1.25, 3.75 and 5 µm tangential error. The variability in the loads is reduced due to the lower stiffness, however, the number 
of cycles does not vary. 

All in all, the effect of the tangential position errors and the stiffness in the sun support can be analysed by using Fig. 26. These 
present the comparison between the highest load supported by a single contact (identified as SC) and the maximum load borne by a 
planet, this could be by a single or double contact. Thus, it is possible to see that for ESIP transmissions with 4 or 5 planets the amount 
of load supported by the wheel is higher than the one supported by a single contact. Therefore, the load sharing is not an accurate 
indicator in this case, at least for the amount of overload that a single tooth has to bear in this scenario. Then, in the case of the ESSP 
transmissions the discrepancies between both magnitudes almost disappear with the variation of the sun support stiffness. 

Therefore, with all the results presented, it is possible to prove the hypothesis presented and observe the discrepancies between the 
load supported by a planet and the real load supported by a tooth alone. 

5. Conclusions 

Regarding the analysis of the orbits described by the sun gear and the contact forces, the following conclusions can be extracted: 

Fig. 21. 4-planet ESSP transmissions 1e8 N/m (planet 1 & 2): a & c)2.5 µm b & d) 5 µm.  
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- The new representation of the orbits, presented in this work, allows to observe the load sharing ratio in ESSP transmissions. Besides, 
it allows to perceive differences between meshing cycles, thus, it provides the opportunity of detecting the effect of time-varying 
errors. However, this technique proves to be less accurate than others, on the contrary, its simplicity is an advantage.  

- The imbalance created in the planetary transmission load sharing by tangential pinhole position errors does not affect in the same 
way the load per tooth and the LSR. The LSR shows the maximum load per tooth in the underloaded planets, whereas it shows the 
maximum load borne by a double contact in the overloaded ones. Therefore, it does not provide crucial information regarding the 
load per tooth and the amount of load borne by an overloaded single contact.  

- As the freedom in the sun support grows, so does the load borne by a single contact and tends to equalize the load borne by a double 
contact in any planet.  

- As the size of the error grows, so does the difference between the load borne by a single and a double contact, in relative terms to the 
average load borne by the wheel.  

- The variability of the load per tooth in ESSP transmissions completes more cycles than in an ESIP transmission. This may have an 
impact in the durability of the teeth given the higher load supported by planets in ESSP transmissions and the higher number of load 
cycles by meshing cycle. 
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Fig. 22. 4-planet ESSP transmissions 1e6 N/m (planet 1 & 2): a & c) 2.5 µm b & d) 5 µm.  
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Fig. 23. 5-planet ESIP transmissions 1e8 N/m (planet 1 & 2): a & d) 1.25 µm b & e) 3.75 µm c & f) 5 µm.  
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Fig. 24. 5-planet ESSP 1e8 N/m (planet 1 & 2): a & d)1.25 µm b & e) 3.75 µm c & f) 5 µm.  
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Fig. 25. 5-planet ESSP 1e6 N/m (planet 1 & 2): a & d)1.25 µm b & e) 3.75 µm c & f) 5 µm.  
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