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Abstract—In many self-organising systems the ability to extract
necessary resources from the external environment is essential to
the system’s growth and survival. Examples include the extraction
of sunlight and nutrients in organic plants, of monetary income
in business organisations and of mobile robots in swarm intelli-
gence actions. When operating within competitive, ever-changing
environments, such systems must distribute their internal assets
wisely so as to improve and adapt their ability to extract available
resources. As the system size increases, the asset-distribution pro-
cess often gets organised around a multi-scale control topology.
This topology may be static (fixed) or dynamic (enabling growth
and structural adaptation) depending on the system’s internal
constraints and adaptive mechanisms. In this paper, we expand
on a plant-inspired asset-distribution model and introduce a more
general multi-scale model applicable across a wider range of
natural and artificial system domains. We study the impact that
the topology of the multi-scale control process has upon the
system’s ability to self-adapt asset distribution when resource
availability changes within the environment. Results show how
different topological characteristics and different competition lev-
els between system branches impact overall system profitability,
adaptation delays and disturbances when environmental changes
occur. These findings provide a basis for system designers to select
the most suitable topology and configuration for their particular
application and execution environment.

Index Terms—self-adaptive asset distribution, multi-scale con-
trol, topology, dynamic environment

I. INTRODUCTION

Autonomic and self-organising systems must manage avail-
able resources from their environment and invest them ef-
ficiently into internal assets, to ensure their growth, com-
petitiveness and survival [2]. Examples range from natural
systems such as trees, through social systems such as business
organisations, and all the way to cyber-physical systems (CPS)
such as collaborative robot swarms. To improve their resource
intake within dynamically changing environments, such sys-
tems must often self-adapt their internal structures and their
asset distribution within those structures. To ensure viability
as the amount of managed assets increases, the system’s self-
adaptive control often takes the form of a multi-scale topology.

Multi-scale structures (e.g. [7], [8]) include multiple abstrac-
tion levels, where each level increases the granularity of ob-
servation of the level below — i.e. information about the lower
scale (micro) is lost in the abstraction process to the higher
scale (macro). This allows multi-scale systems to increase their
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scopes, or operation domains, while limiting the amount of
resources needed to handle information at each scale. Hence,
multi-scale schemes can be applied to achieve system-wide
coordination among numerous self-adaptive processes in large
systems [8] (e.g. adaptive asset distribution here).

While numerous self-adaptive algorithms exist for context-
aware asset distribution in various application domains (sec.
II), much less is known about the various impacts that the
topology of the multi-scale control system has on the self-
adaptation process in general. This paper aims to provide the
basis for such analysis by identifying several key topological
features and linking them to generic characteristics of the self-
adaptation process (e.g. reactivity and costs).

We consider three illustrative examples (Fig.1) of sys-
tems featuring self-adaptive asset distribution, to guide an
initial selection of topologies to analyse. First, we consider
a common example from natural systems [24]: trees absorb
sunlight, water and mineral resources and transform them into
organic matter, in turn forming internal structures that are
essential to growth and survival. Hence, depending on resource
availability in the environment, trees self-adapt their growth
process to prioritise development towards resource-rich areas
(e.g. leafy branches growing towards sunny patches and roots
towards moist, mineral-rich soils). Similarly, within the socio-
economic realm, business organisations must employ their as-
sets (e.g. workers) to fulfill service requests from their market
environment, so as to grow and survive within a competitive
context [23]. They must self-adapt to unexpected fluctuations
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Fig. 1: Examples of systems that feature an adaptive distribu-
tion of internal assets. a) adaptive nutrient flows within a tree;
b) adaptive budget investments within a business organisation;
c¢) adaptive distribution of robots across various regions.



in market demands by reallocating assets to the most popular
service sectors. Finally, we consider a cyber-physical systems
(CPS) example: a robot swarm must coordinate their actions
across several rooms to achieve a shared task (e.g. cleaning).
Robot distribution across the rooms should self-adapt to the
level of cleaning services required within each room, which
may dynamically change [22], [25].

In previous works [21], [23], we proposed a decentralised
asset distribution algorithm for systems featuring tree-like
multi-scale control structures (e.g. tree plants and business
organisations). Here, the system’s internal assets were em-
ployed to maintain and to grow system branches. Feedback
from the branches indicated their efficacy in acquiring external
resources. This feedback was used to skew asset distribution
towards more successful branches. e.g. tree branches getting
more sun received more nutrients for further growth. Business
departments making more profits received more workers for
reinforcing their capacity.

This paper capitalises on this initial experience to generalise
our asset distribution algorithm for more diverse structures.
This allows its applicability across a wider range of topologies
and self-adaptive features. Based on the new algorithm, we aim
to study the impact of system topology on the context-aware
self-adaptation of asset distribution. We consider a control
system’s topological variation along three main dimensions:

« Single or multiple roots: resulting in tree topologies or
directed acyclic graphs, respectively;

« Static or growing topology: in static cases, assets are
merely relocated within a pre-existing system structure;
whereas in growing cases, assets also contribute to struc-
tural self-adaptation.

« Single or multiple control scales: resulting in single or
multiple decision levels.

From the combinatorial space of these dimensions, we select
several concrete topologies that we consider representative for
natural and artificial systems (Cf. illustration in Fig. 5). On
the one hand, we analyse several tree topologies for plants and
business organisations — i.e. single-root with growing multi-
scales, with static single-scale, or with static multi-scales.
On the other hand, we consider several multi-root topolo-
gies with a single control scale, as representative for robot
swarms carrying-out collective tasks — i.e. ‘linear’, ‘circular’
or ‘complete’ topologies (Fig. 5). Here, control coordination
between roots only occurs indirectly via observable impacts on
the shared entities they control. This corresponds to the fact
that robots in different rooms only coordinate via individual
representatives located at the doors between rooms.
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Fig. 2: Examples of various systems’ topological structures
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We study the self-adaptability of these topologies to varia-
tions in resource availability within the environment. We focus
on environment changes that require system-wide coordination
between self-adaptation processes (rather than being address-
able via local self-adaptation). This choice allows studying
the impact of the entire system control topology (rather than
just local control sub-trees). In all cases, we introduce self-
adaptation delays within controlled entities to emphasise the
role of the control topology in the self-adaptation behaviour.

Results show the impact of system topology on key
self-adaptation features, notably including: the extent of
self-adaptability to context changes; the duration of self-
adaptation; and the disturbance in efficiency during self-
adaptation. Some of the key findings include (Cf. sec. VII):

1) Growing topologies self-adapt better to new opportunities
(via asset re-specialisation) and provide more profits than
static ones. This comes at the price of longer adaptation
delays and profit disturbances during adaptation.

2) Multi-root topologies achieve global control coordination
slower than tree topologies. This incurs longer adaptation
delays and more profit disturbance. Similar effects would
be observed in multi-scale topologies when including
inter-scale communication delays (e.g. studied in [14]).

3) While some level of performance-oriented competition is
necessary to drive self-adaptation, too much competition
actually hampers self-adaptation by creating too much
inertia and preventing the detection of new opportunities.

These findings provide a basis for system designers to
reflect upon and select the most suitable topology for their
particular application and execution environment, considering
all the advantages and limitations of each topological choice.
They also provide opportunities for further studies on larger
and more complex topologies (e.g. scale-free or community
networks), as found in many real-world systems (e.g. [15]).

II. RELATED WORKS

Asset distribution is a broad research topic covering numer-
ous application domains (e.g. from dynamic VM allocation in
cloud systems [10] and process scheduling in mixed-criticality
real-time systems [13]; through adaptive data-mediation [5]
and power networks [1]; and all the way to group organisation
in social insects [12] or swarm robotics [25]). We can only
mention a few of these approaches here, emphasising some of
their key characteristics relevant to our study. Still, to the best
of our knowledge, only limited studies assess the importance
of the control topology in asset distribution approaches that
are self-adaptive and multi-scale. e.g. [16] studies the impact
of topology on decentralised data-collection in complex net-
works, yet these are non-adaptive and single-scale.

Concerning self-adaptive resource allocation in static (non-
growing) structures, [6] proposes decentralised resource al-
locations in grid networks based on a spatial algorithm
optimisation approach. [3] targets power grids to optimally
distribute produced electricity to users, minimising their costs
while covering their demands. [10] proposes self-adaptive



resource-allocation in virtual environments, to deal with dy-
namically deployed services and their workload fluctuations
by adding/removing application servers to clusters and virtual
CPU cores to virtual machines (VMs). [18] also deals with
resource allocation in clustered servers, by self-adapting the
number of replicated databases in a clustered J2EE application
when the load varies.

Resource distribution solutions with self-adaptive structures
(e.g. growing), may concern, for instance, the long-term ex-
tension and restructuring of energy system infrastructures, by
investing into new power plants to match shifting demands
[1]. In data-mediation systems, [5] investigate self-growing
and self-adapting structures as means to address unexpected
changes in data sources/consumers, workloads and servers.

Another category of resource allocation solutions concerns
self-adaptive group formation from members of social organ-
isations that aim to achieve a collective task. This involves
the self-adaptive distribution of members into different task
groups in, e.g. social insects (honeybees [9], [17], wasps [19],
termites [4], and ants [12]). Similarly, in technical systems
inspired by social insects, swarm robots self-coordinate to
dynamically allocate themselves to various regions depending
on the dynamic demands imposed internally by the swarm or
externally by the environment [11], [20], [22], [25].

In all relevant cases, distributed assets are conserved (en-
ergy, money, physical resources), whereas control information
may not be (because of various multi-scale abstractions).

III. BACKGROUND AND PREVIOUS WORK
A. Multi-scale control systems

Multi-scale structures (e.g. [7], [8]) include multiple ab-
straction levels, where each level increases the granularity
of observation of the level below (i.e. coarse graining). As
higher scales often observe larger domains, or scopes, than
lower scales, inter-scale abstraction allows them to avoid an
ever-growing need for information storage and processing
resources. e.g. a world map provides fewer details than a city
map, so that both maps can fit onto an A3 page. Hence, the
multi-scale principle allows observation systems to scale-up
with the size of their observation domain.

This structural principle also applies to multi-scale control
systems, which are characterised by two main information
flows [8]: 1) observation abstraction flow (bottom-up), as
above — where an entity at a higher-scale (macro) collects
and abstracts information about several entities at the lower
scale (micro); and, ii) control flow (top-down) — where a
higher entity (macro) provides self-adaptation directives to
lower entities (micro). Directives rely on decisions taken based
on abstracted information from their micro entities (bottom-up
observation flow) and adaptation directives from their macro
entities (top-down control flow). Hence, the two flows —
abstraction and control — form multiple control feedback-loops
between subsequent system scales (e.g. Fig.3).

Such multi-scale control schemes enable system-wide co-
ordination among self-adaptive processes while limiting the
amount of resources required at each decision node (e.g. [8]).
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Fig. 3: A multi-scale system distributing internal assets in a
way that is well-adapted to its environment.

This explains their wide-spread occurrence in complex self-
adaptive systems, including the large-scale asset distribution
systems that we study here.

B. Distribution of internal assets

A system contains various internal assets, which enable its
functions and ensure its survival. The manner in which these
assets are distributed among different system parts is essential
to the system’s development, adaptability and survival in the
face of changing conditions. The most effective investment
of available assets within various system parts depends on
the system’s internal structure (e.g. topology) and its external
environment (e.g. available resource distribution). To illustrate
these ideas, we consider three examples — from the natural,
business, and artificial world (Fig. 1) — and use an analogy
between them to highlight the essential roles and behaviours
of internal asset distribution.

The natural example consists of a plant (e.g. a tree), where
water and minerals provided at the root represent internal
resources, or assets. These are distributed throughout the plant
and ‘invested’ in various branches to produce sugars (for
energy provision) and hence to enable growth and further
branching. The way in which available assets are allocated
among various branches depends on the local state and context
of each branch — e.g. local sunlight availability, meaning that
the more access to sunlight a branch has the better it grows.

A similar phenomenon can be observed within a business
organisation. Here, internal assets consist of workers and the
budget available to hire them. The budget is allocated to hire
and remunerate workers for each service that the organisation
offers. It is distributed among these services depending on the
demand and profitability of each service.

The final example is a collective of robots that are assets
for taking care of given tasks in different regions of an arena.
The distribution of the robots among these different regions
depends on the amount of work needed in each region.

The abstract model introduced in this study is a generalized
version of a plant-inspired model that is introduced previously
[24] and summarized in the following sub-section.

C. Plant-inspired model of asset distribution

The overall shape of a plant results from a combina-
tion of genetically-encoded features, physical and chemical



mechanisms, and environmental features, including available
resources [24]. A plant has a root and a tree-like structure of
branches above the ground. The root provides the aerial plant
with essential nutrients i.e. water and minerals. The nutrients
are transported via vessels within the plant’s branches. The
nutrients are the plant’s assets to be distributed internally and
favour differential branch growth. The leaves on each branch
use sunlight to convert these assets into sugars (providing
the plant with energy) — via the process of photosynthesis.
The plant’s growth process relies not only on the assets (i.e.
nutrients) reaching the leaves of each branch, but also on
the local environmental resources (e.g. sunlight) available at
the branch. The growth process shapes its crown so as to
improve its leaves’ access to sunlight. The plant’s shape can
be abstracted as a directed acyclic graph (Fig. 1a): branches,
including the vessels inside them, correspond to graph edges;
the plant’s tips to the graph’s leaf nodes; and the branch
junctions to the graph’s non-leaf nodes.

The growth process relies on two flows with opposite
directions: 1) a forward-flow through the edges (plant vessels),
from the root towards the leaves (plant tips), carrying common
assets (nutrients); and 2) a backward-flow from the leaves
(plant tips) towards the root carrying information about the
attractiveness of the sub-trees, i.e. access of each sub-tree to
local resources (sunlight). These flows correspond to the two
multi-scale flows (subsec. III-A), where (1) asset distribution
from roots to leaves belong to the control flow that adapts
the tree shape, based on previous observation flows (2) from
leaves to the root informing about sub-tree attractiveness.

In real plants, the backward information flow is realized
via a hormone produced at the tips based on the intensity of
sunlight. It flows along the plant’s vessels and incrementally
changes their thickness — more hormone flow leads to a
thicker vessel over time. This mechanism allows junctions to
estimate the attractiveness of each branch, informing the future
investment of the assets in that part of the plant. At the branch
junctions, the differences between the vessel thickness of the
various branches determine the distribution of the nutrients
among them — thicker vessels take a larger share of the assets
available at that junction.

In the plant-inspired model [21], [23], the vessel thickness
of every branch is abstracted as a variable that is attributed to
the corresponding edge. This variable changes incrementally
in response to the values of the backward flow passing through
that edge. The non-leaf nodes, or junctions, decide on the
distribution of assets among their children. They do this
by considering the corresponding variables of their outgoing
edges to their children. Therefore, we refer to these nodes as
decision nodes (see Fig. 3).

The leaf nodes are the main points of interaction of the
system with the local environment. The backward-flows are
initiated at each leaf node as a function of the assets invested
at the node and the quality of the local environment. Invest-
ing more assets at the leaves that are located within more
interesting regions (i.e. richer in resources) of the environment
benefits the system. As leaf nodes are the production sites of

the backward-flows, which indicate the investment profitability
within each corresponding region, the leaf nodes are also
called service nodes (Fig. 3).

The system’s growth model is designed so that the corre-
sponding system graph only grows at the leaf nodes and only if
the invested assets at the leaf node crosses a given threshold.
Likewise, the system can shrink by removing all the leaves
of a node, if the total assets invested in these child leaves is
below a given threshold. The node will then become a leaf
node holding all the assets previously invested in its children.

D. Various types of system structures

Many complex systems, such as plants and large-scale busi-
ness organisations, feature some form of tree-like structure.
Above, we have already highlighted the tree topology of
plants. Similarly, large business organisations are often also
structured into tree-like topologies — divided into departments,
with each department further divided into several sections, in
turn divided into sub-sections, and so on (Fig. 1b). Such tree
structures are a particular kind of multi-scale control topology.

On the other hand, some systems do not have a tree-like
structure. An example is a group of robots (Fig. 1¢) distributed
across a number of rooms to perform some collective tasks,
e.g. keeping the rooms clean. Once there is a lack of tasks in a
room (e.g. the room is already relatively clean), the robots may
start moving to the neighboring rooms where there are more
tasks to perform (e.g. dirtier rooms). The decision for robot
redistribution can be taken by an exogenous agent located at
the gates between neighboring rooms, or it can happen via
direct interactions between robots that exchange information
through the gates. In either case, the decision-making process
based on the information from the neighboring rooms can be
abstracted and represented as a decision node.

In the example in Fig. lc, decision nodes are the roots of
the graph. The system has multiple roots, meaning that there is
no higher level of coordination amongst those decision nodes.

When systems need to adapt to internal and external changes
— e.g. internal growth, external resource fluctuations — their
structure may change accordingly, e.g. similarly to the shaping
of a plant crown. For example, an organisation may subdivide
one of its sections into subsections if the number of workers
in that section becomes too large to administer by a single
manager; or in case further specialisation of experts is needed.

Fig. 2 exemplifies several systems with various types of
control topology. Fig. 2a shows a tree-like structure with a
single root. Fig. 2b Shows a multi-root system with a single
scale of decision making (a.k.a control). Fig. 2c depicts a
rather complex multi-scale system with multiple roots. In
addition to the graph representation, Fig. 2 also depicts the
systems as overlapping decision sets, to give an alternative
view of the interactions between the service nodes. Every
decision set is equivalent to a sub-tree (including a parent
node) in the graph representation.

IV. MULTI-SCALE ASSET DISTRIBUTION MODEL

The model we introduce here, namely, the Multi-Scale
Asset Distribution (MSAD) model, is more general than the



plant-inspired model presented in sec. III-C. Similar to the
plant model, we represent a system generically as a directed
acyclic graph that (potentially) can grow. The decisions on
asset distribution are taken at the decision nodes based on
information flows arriving via the graph edges, in a bottom-up
and top-down manner. The service nodes are the lowest-level
entities of the system located at the interaction points of the
system with the environment.

Unlike the previous model, assets here are modeled ex-
plicitly. That is, there is a distinction between the forward-
flow that carries information about the assets, and the actual
assets which can move within the system according to local
decisions. Additionally, the backward-flow carries two pieces
of information: one related to the attractiveness of the sub-
trees (i.e. profitability); and the other related to the estimation
of the assets already invested at the sub-trees. The definition
of assets, profitability, and flows, as well as the mechanisms
involved in the redistribution of assets are detailed below.

A. Assets

Assets in the MSAD model are equivalent to the system’s
workforce, either directly (e.g. as workers) or indirectly (e.g.
as budget used for hiring workers). In decision nodes, assets
are mainly used for performing management tasks. In service
nodes, assets are mainly used to provide services that produce
some form of profit for the system. In general, assets can be
added or removed, but once in the system, they follow the
principle of mass conservation.

B. Environment and profitability

Service nodes are the main interaction points between
system assets and the external environment, where interactions
acquire profit for the system. The local environment of each
service node is considered as a local resource — i.e. more
local resource at a service node leads to more profit for
the same amount of assets. In the plant example (Fig. 1a),
more sunlight reaching a branch increases the conversion of
nutrients (assets) into sugars within that branch'. This leads
to further growth and branching, and thus to more hormones
production, indicating the higher profitability of that region.
In the business organisation example (Fig. 1b), the budget
(asset) is used at the service nodes to hire workers that
provide services to customers and hence acquire profits for
the organisation. In the example of robots cooperating across
several rooms (Fig. 1c), the robots (assets) operate as groups,
where each group (service nodes) performs requested tasks
within one room (local environment). The amount of work
done within each region indicates its profitability.

C. Information flows

The proposed model relies on three information flows (Fig.
4). The direction of each information flow is indicated via the
name of its corresponding variable as: an 1 sign for bottom-up
flows and a | sign for top-down flows. The three flows are:

lin plants, assets are constantly added to the system from the roots and
turned into sugars at the leaves.

1) 1A: estimation of existing assets

2) 1 F': estimation of profitability

3) | A: amount of eligible assets

Fig. 4 exemplifies a decision node with two parents and
two children. The values of the flow variables T/L and Tl*:‘l
represent the estimation of the contained assets and of the
profitability in the left sub-tree. The flows 1 A, and 1 F,
represent the equivalent variables in the right sub-tree. Variable
1 A; represents the amount of assets that the node is eligible
to hold, according to its left parent. The | A, is the equivalent
variable from the right parent.

Fig. 4: An example decision node (thick circle) with incoming
and outgoing flows. The bottom-up and top-down flows are
respectively depicted in green and orange. The entering and
exiting flows are respectively in solid and hatched colors.

In practice, updating the outgoing flows is often subject to
time delays. The delayed information update can occur either
suddenly after a delay period (hard delay), or gradually over a
period of time (soft delay) — Cf. details below. In the following,
the computation of each flow is described in more details. The
system dynamics are implemented via discrete time steps.

1) 1 A, estimation of assets existing within a sub-tree:
This information flow starts at the service nodes (leaves)
and flows toward the root(s). The flow from each node to
its parent(s) is an estimation of the total assets available at
that node and all of its children — i.e. the whole sub-tree
of that node. In every decision node, at every simulation
time ¢, the value of the output flow is updated. The value
is updated such that it gradually approaches a target value,
AA() 4D cenitdren 1 A;(t), which is the total sum of the assets
currently located at the decision node (AA), and the current
values of the incoming flows from all the children of that
node. To implement the gradual approach to the target value,
the difference (A 4(t)) between the target value and the current
value of the output flow (Tflout(t — 1)) is computed as:

Aa(t)=AA®) + D 1A -t Aot —1) (1)
i€children

A 4(t) is then used to compute the new value of the output:
TAout (t) ::TAout (t - 1) + YA - AA(t) (2)

where v44 € [0, 1], is a weighting factor determining the rate
of change toward the target value. The weighting factor is
responsible for a soft delay in information communication



between nodes and their parents. A hard delay can be included
by delaying the update of the output flows for a given period
(not implemented here).

2) 1+ F, estimation of profitability within a sub-tree: This
information flow behaves similarly to 1 A, starting at the
service nodes and flowing toward the root(s). The output
flow from each node to its parent(s) is: an estimation of
the profitability of the node, if it’s a service node; and an
estimation of profitability of all the children of the node, if it’s
a decision node. In every decision node, at every simulation
time ¢, the value of the output flow is updated to gradually
approach a target value » . iiien 1 Fy(t). Similar to 1 A, the
difference between the target value and the current value of
the output flow is computed (A (t)) and is used to compute
the new value of the output flow, as:

T Fout () =1 Fout(t — 1) + 710 - Ap(t) 3)
Ap(t)= > 1tF(t)—1Fou(t—1)
i Echildren

where v € [0, 1] is a weighting factor inducing a soft delay
in information communication.

3) A, eligible amount of asset, according to a parent: This
information flow reflects local system decisions to control the
asset distribution. It starts at the roots based on the estimation
of total assets within their sub-trees (1 A). At every decision
node, the total flow arriving from all the parents of the node
is summed up (3 | A) and its value is corrected based on the
estimation of the total assets within the sub-tree of the node:

LA :==min( > LA, Y 1A+ 44) 4
i€ parents jEchildren
where | A’ is the corrected value, AA is the amount of assets
currently located in this node.

Then, the amount of assets that is needed at the node (e.g.
management costs, ¢) is subtracted and the remaining flow
is divided between the child nodes based on the estimated
profitability (1 F') of each child and on a competition factor:

~ B
S N
~ B
Zj Echildren T Fj
"

where | Aj is the amount of asset for the sub-tree of child
k computed based on the most recent information, c¢ is the
node’s asset consumption and 3 is a competition factor. By
increasing [ to values larger than 1 the competition between
sibling nodes is intensified. 5 = 0 means that all siblings get
the same amount of | A flow irrespective of their profitability.

To take adaptation delay into account, the new value of | A,
can be updated incrementally toward the value computed based
on the latest information, iA%, as follows:

LAY :==max (0,J A" —¢) - (5)

LA =LAt — 1)+ yu - A (6)
A =LA~ LAt - 1)

where A is the difference between the current and the target
value, v 4 is a weighting factor inducing communication delay.

D. Asset relocation

The asset distribution process self-adapts to changes in the
external environment and the internal conditions. Following
the local decisions in the system, reflected by the top-down
flow | A, assets may move between sibling nodes or between
children and parents. In the following, we describe the imple-
mentation of asset relocation operations used in this study.

In the current implementation, assets are in one of
two states: resident or non-settled. Resident assets, namely
AATesident - are bound to the node they are located at and
are not ready to relocate. The non-settled assets, namely
AA™"s€t are not settled and are in the process of relocation
at a decision node. As decision nodes abstract all information
related to asset distribution among their children, in this
implementation the asset relocation between sibling nodes is
done only via their parents. The parent aggregates non-settled
assets from its children and redistributes them based on the
needs of the child nodes (Cf. details will follow). Extra assets
will remain at the parent node and can be used later for its
children or moved by the node’s parents if needed.

The relocation process is implemented starting with the
computation of a value, AP, namely pressure difference,
between every child and each of its parents. It is computed
with respect to each parent as:

AP = (1A — AA™"set)_ | A (7)

This value represents an estimated difference between the
available and the expected (eligible) amount of assets at
the node, indicating if (and how much) assets need to be
exchanged between the parent and the child. In this equation,
AAmonset jg decremented from 1A because AA™"s¢t shows
the amount of assets already in the process of relocation.

AP > 0 means that there is a pressure to hand-over some
assets to the parents, so as to reduce the difference. If the
node is a service node, it will change the state of a fraction
of its resident assets to non-settled and hand them over to the
corresponding parent. The fraction equals to « - AP where
a < 1 is the release factor of service nodes, leading to a soft
delay in the relocation operation. If the node is a decision
node, it can hand over all the unused assets (AA™°™5¢),

AP < 0 indicates that the node needs to receive assets
from its parents. After all children with a AP > 0 make their
attempt to reduce the pressure difference by transferring assets
to their parent, the parent goes through all the children with
AP < 0 and moves the collected non-settled assets to them
according to their need. The children receiving the non-settled
assets may change them to resident, or keep them available for
relocation to their children, depending on the needs.

It is not always possible to release all the pressure difference
AP between children and parents. Likewise, some of the
children may still need assets from their parents after the
relocation. Such imbalances may be solved over time (in the
next simulation steps). Although the relocation operation can
be performed within a time-scale that differs from the time-
scale of the information flow updates, in the current study, an
identical time-scale is used for both operations.



E. Order of operations

In the current implementation, at every simulation step ¢,
the operations updating the information flows and relocating
the assets are executed in the following order:

1) Update bottom-up information flows (1 A and 1 F) for
all the nodes, starting from the highest depth toward the
lowest (bottom-up order).

2) Update top-down information flows ({ fl) for all the
nodes, starting from the lowest depth (roots) toward the
highest (top-down order).

3) Execute asset relocation operations at all the decision
nodes, starting from the highest depth toward the lowest
(bottom-up order).

V. EXPERIMENTAL SETUP
A. Environment

An environment is implemented as a 1-dimensional se-
quence of regions, m = 1..M. In Fig. 5, the bars below each
graph represent a sample environment with M = 8 regions,
numbered 1..8. Every region m has a quality value, q,,, that is
the profitability of the region. This value indicates how much
profit can be produced per simulation step if one unit of asset is
fully invested in that region. The profitability of the regions are
color-coded in Fig. 5, with yellower colors indicating higher
profitability for the region.

A service node can support services demanded in a single
or multiple regions. In Fig. 5, the regions that are supported
by each service node are indicated using curly brackets. In
the example of the ‘fixed tree’ topology, every service node
supports two regions. On the other hand, in the example
of ‘growable’ topology, the service nodes A and B support
only one region each; service node C supports 2 regions;
and service node D supports 4 regions. The profitability of
a service node is computed as the product of its assets and the
average profitability of the regions it supports.

- 1
Fi=AA- = g ®)
|C| ceC

where AA; is the assets invested at service node i; C' is the
set of regions supported by the service node; and |C| is the
number of such regions. The profit produced by the assets in
a service node with multiple supporting regions is the average
of the profit that can be produced in each of those regions
separately (Eq. 8). This is equivalent to a worker equally
dividing their time between different services.

In the examples of Fig. 5, the ‘growable’ topology benefits
from the further branching into service nodes A and B that
specialise to correspondingly support regions 1 and 2. This
branching allows larger amounts of assets to be invested
specifically in the more profitable region 1.

The bars on top of Fig. 6 show the environments used
in all the experiments reported in this paper. Initially, the
leftmost region of the environment has a higher profitability
q1 = 0.3 and all the other regions have a lower profitability
q¢; = 0.1,Vi = 2..8 (Fig. 6 left). After a given period of T’
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Fig. 5: Tllustration of topologies used in the experiments.

simulation steps, the environment changes and the rightmost
region gets the high profitability: ¢, = 0.1,Vi = 1..7 and
gs = 0.3 (Fig. 6 right). In all the experiments reported here,
T = 400. The first switch occurs at simulation step ¢ = 7" and
the experiments continue for another 7" steps and then switch
back to the initial environment at ¢ = 27". The experiments
end at t = 37T

B. Topologies

As illustrated in Fig. 5, the experiments are conducted for
the following topologies: a) growable tree: a binary tree that
initially starts with a root and two leaves and can adapt its
shape by further growing or trimming branches; b) fixed tree:
a static balanced binary tree with 4 leaves, where every leaf
supports 2 regions of the environment; c) line: 4 leaves where
the neighboring leaves share a root; d) circle: similar to a line
except that the first and the last leaves share a root as well;
e) complete network: 4 leaves where every two leaves share a
root; f) all-to-root: 4 leaves all sharing a single root.

C. Model parameters

All the experiments are initiated with 100 units of assets
uniformly distributed among the service nodes. The growable
topology is initiated with one root and two leaves. To grow
new branches on a leaf node, the amount of assets in the
node must exceed a threshold of 25 units. Likewise, to trim
a branch, a threshold of 20 must be crossed (Cf. sec.IlI-C).
The management costs are ¢ = 0 for all the experiments. The
default values for y44 = y4r = yj4 = o = 1. That is, there is
no communication or operation delay, unless stated otherwise
in the experiment. The value of the competition factor 3 is
explicitly stated for each experiment.

VI. EXPERIMENTAL RESULTS

In the first set of experiments, a competition factor 5 = 0.7
is used. This particular value of (3 is selected based on
preliminary experiments (not shown here) to represent a case
where the behavioural dynamics are not drastically different
for the various topologies. The experiments start with the
region 1 of the environment being the most profitable region.
At simulation step 400, the environment changes and region 8
becomes the most profitable region. At simulation step 800, the
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Fig. 6: A series of selected stages of growth.

environment switches back to the initial setup. Fig.7 shows a)
the asset investment per each region of the environment, b) the
total profit produced within the system, and c) the percentage
of relocated assets over time, for various topologies. The
results indicate a relatively slow response of line topology
to the changes in the environment. The system with growable
topology produces highest profit by effectively investing most
of the assets into the best region. Note that unlike growable
topology that can grow deeper to specialise in service node
regions, in all other topologies (static topologies) each service
node is extended in a pair of neighboring regions — indicated
in the figure by different shades of the same color.

Fig. 6 shows a series of snapshots from various stages of
structural adaptation of growable topology. Four snapshots are
taken in the initial environment and 4 are taken after the first
switch. As it is shown in the figure, the system starts with
two leaves, each supporting 4 regions of the environment. The
structure grows toward region 1 with the highest profitability
while retracting from all the other regions. After the first
switch, the structure starts retracting from the previously best
region and grows toward the new best region 8.

The second set of experiments investigate the effects of
various values for the competition factors 3 on the dynamics of
asset investment and profit production in systems with various
topologies. Here, the release factor of assets («) is set to
0.2 applying a delay in the asset relocation operation. Fig. 8
shows the asset investment dynamics for various values of
£ in different topologies. Table. I shows the average profit
productions over the first 800 simulation steps of the same
experiments. The highest and the lowest profit production
levels (indicated in bold) belong to the growable topology at
B = 0.8 and the line topology at S = 1.1 respectively.

The first row in Fig. 8 shows the results for 5 = 0, leading
to no competition between sibling branches irrespective of
their profitability. That results in a uniform asset distribution
in all the regions of the environment. With larger [, the
neighboring branches start to compete with each other based
on their profitability. This leads to the attraction of assets to
more profitable regions. As shown in the figure, when 3 gets
too large, the system loses its flexibility and adaptability to
the environmental change. For different topologies, the effect
kicks in at different 5 values — e.g. growable topology fails

to adapt at 5 = 0.9, while the fixed tree fails at 5 = 1.1. For
all values of (3, the Line topology shows slower response to
changes and a relatively lower profit production.

Another interesting observation is in the fixed tree at 5 =
0.9 (and with less clarity at 8 = 0.8, also in growable topology
at § = 0.8 and 0.9). In this case, after the environment
switches, the speed of asset relocation to the newly profitable
regions is very slow and almost invisible until a certain
period. Meanwhile, assets move from the service nodes in the
previously profitable regions to their siblings (e.g. from the
blue regions to the pink ones), which is not beneficial in terms
of profit production (profit production dynamic are not shown
here). After this first period and as soon as enough assets
are relocated to the newly profitable regions, the relocation
process gets a high speed until most of the assets are in the
newly profitable regions.

TABLE I: Mean profit over 800 simulation steps, with o = 0.2

B Growable | Fixed tree | Line | Circle | Complete | All-to-root
0.0 12.5 12.5 12.5 12.5 12.5 12.5
0.6 20.2 15.0 14.5 14.8 14.8 14.8
0.7 24.5 16.5 15.3 16.0 16.1 16.0
0.8 26.2 18.3 15.9 17.9 18.1 18.0
0.9 19.6 17.6 14.9 19.0 19.4 19.4
1.0 19.6 17.6 14.9 17.5 14.9 14.9
1.1 19.6 14.9 12.3 13.4 14.9 14.9

VII. DISCUSSION

The most important insights we draw from the obtained
results include the following.

Growable versus static topologies: topologies that self-
adapt via growth (‘Growable’) have higher potential to pro-
duce profits under changing conditions compared to static
topologies. This is because growth allows to reallocate and
re-specialise more assets in areas that become profitable.
This comes at the cost of longer adaptation periods and
lesser profits during these periods. In business organisations,
reallocation and re-specialisation practices may also negatively
impact worker experience. In comparison, static topologies can
reallocate assets but cannot re-specialise them. This limits their
ability to adapt to (and profit from) new opportunities that were
not predicted in their fixed structures. At the same time, they
incur fewer asset re-allocations, because of lower generated
profits; and shorter self-adaptation profit disturbance.

Tree versus multi-root topologies: in multi-root topologies
(e.g. ‘line’), global control coordination occurs via indirect
propagation of control information across roots (i.e. indirect
horizontal coordination). This causes less effective asset re-
allocation (i.e. going through ineffective intermediary states),
inducing longer self-adaptation periods and impact on profits.
This is similar to the impacts of communication delays in
multi-scale structures (e.g. [8]), except propagating horizon-
tally rather than vertically.

As these delay and perturbation effects are directly related to
global control coordination, they tend to disappear when self-
adaptation only requires local coordination. In the presented
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various topologies. Results are shown for asset release (o = 0.2).

experiments, this was the case in the ‘circle’ and ‘complete’
topologies. Here, the system parts concerned by the environ-
mental changes were under the control of a single root, hence
removing the need for coordination among several roots. For
the same reasons, we note that multi-root topologies with
complete meshing amongst roots behave similarly to single-
scale tree topologies because all environment changes concern
system parts that are observed directly by one root, so no root
coordination is needed. Yet, the former topology (‘complete’)
induces more management and communication costs.
Competition level: Some level of profit-oriented compe-
tition amongst system branches is necessary to drive self-
adaptation— otherwise assets are distributed equally across

all environment areas, irrespective of their profitability and
changes (Cf. Fig. 8, competition = 0.0). However, ‘extreme’
competition hampers self-adaptation — the actual degree de-
pending on the competition degree and topological features.
The main reason is that high competition favours high adap-
tation for short-term profits (e.g. over-fitting). Thus, when
profitability changes, there aren’t enough assets to detect the
new profit opportunities, as most assets have been allocated to
the previously profitable areas. This incurs increasingly long
adaptation delays, with inefficient intermediary adaptation
states. e.g. in Fig. 8 this can be observed for the ‘fixed tree’
and ‘line’ topologies, with competition factor = 0.9, via large
pink areas, which indicate significant asset allocations to non-



profitable areas (i.e. located in the middle of the environment
bar, whereas the profitable areas are at the extremes). Extreme
competition ultimately leads to the inability to adapt, as the
amount of assets allocated to the previously profitable area
(that has become less profitable) is large enough to generate
higher profits than the fewer assets allocated to the newly
profitable area. This causes high inertia and blocks reactivity.

Single versus multi-scale of control: Importantly, we only
considered communication delays of one step across multi-
scale topologies (just as for single-scale topologies). In most
real systems this will not be the case as more scales will incur
heavier control delays and potentially significant impacts on
the self-adaptation outcomes (as we showed in previous work
[14]). Similarly, considering management costs at the decision
nodes will weight heavier on multi-scale structures with more
decision nodes (not shown in the results).

In general, we can conclude that topologies and configura-
tions that are more reactive (i.e. favouring more self-adaptation
to changing environments) produce more profits on the short-
term, while necessarily incurring more adaptation costs. At the
same time, too much reactivity (i.e. self-adaptation leading to
over-fitting) can hamper further self-adaptation on the longer
term. These findings are consistent with common observations
from control and feedback systems, while providing specific
insights into the asset distribution domain. The provided
results offer useful intuitions into which kinds of topological
characteristics and configurations favour more or less self-
adaptation and the ensuing consequences.

VIII. CONCLUSIONS

Within the asset-distribution domain, this paper studied
the relation between multi-scale systems topology and the
ensuing self-adaptative behaviour. We proposed a novel asset-
distribution algorithm, generalising from previous work. We
studied topologies with single or multiple roots; with growing
capacities or static; and with multiple or single control scales.
We also considered internal competition as an important
concern across all topologies. Results led to the following key
insights: 1) topologies that allow asset re-specialisation (e.g.
by ‘growing’) are more adaptable to unforeseen opportunities
and can provide higher profits than static topologies; 2)
multi-root topologies incur higher delays than trees, due to
extra inter-root communication delays (i.e. horizontal, same-
scale communication) — this is similar to delays in multi-
scale topologies (i.e. vertical inter-scale delays); 3) while
some level of competition between system branches is needed
for self-adaptation, too much competition actually hampers
adaptation, by causing over-fitting and too much inertia. In all
cases, more adaptation is achieved via more asset relocation
and/or re-specialisation and hence incurs higher delays and
disturbance. These insights provide a basis for further studies,
aiming to offer reusable guidance for selecting suitable system
topologies in various dynamic environments.
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