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 ABSTRACT 

 In the high-tech age, we can access a vast number of articles, information, news, and 

 opinion online. The wealth of information allows us to learn about the topics we are interested in 

 more easily and cheaply, but it also requires us to spend an enormous amount of time reading 

 online. Text summarization can help us save a lot of reading time so that we can know more 

 information in a shorter period. The primary goal of text summarization is to shorten the text 

 while including as much vital information as possible in the original text so fewer people use this 

 strategy on tweets since tweets are commonly shorter than articles or news. However, as social 

 networking software becomes more widespread, Text summarization can assist us in swiftly 

 reviewing a large number of comments and discussions. In this project, we applied fuzzy logic 

 and a neural network to extract essential sentences, followed by an abstraction model to provide 

 a summary. Summaries generated by our model contain more vital content and obtain a better 

 ROUGE score than classic abstraction models since we extract the crucial information first; 

 summaries generated by our model are more similar to human-written summaries than traditional 

 extraction models because we are using an abstract model. In the end, we provided a web-based 

 application to display our model more interactively. 
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 1. INTRODUCTION 

 In the discipline of Natural Language Processing, text summarization is a formidable 

 challenge, because producing a quality summary necessitates accurate text analysis such as 

 semantic and lexical analysis [1]. It can benefit corporations, celebrities, and consumers in 

 efficiently summarizing articles, news, feedback, comments, and postings related to the 

 information they care about, resulting in a major improvement in user experience and quality of 

 life. 

 On the other hand, social media has grown increasingly significant in our everyday lives, 

 to the point that it has replaced traditional forms of communication. This has become even more 

 apparent as a result of the Covid-19 pandemic and the sudden cessation of in-person interactions. 

 Online communication and the usage of social media in changing times have expedited 

 technological adaptation and online socializing. The shift in communication channels has also 

 influenced feedback gathering. For example, if someone wanted feedback on a thought or an 

 idea, they could ask their close friends, family, or coworkers for input but would be severely 

 limited from data sources outside of their social circle without massive input of both time and 

 other resources.  One of the advantages of social media includes the ability to receive and search 

 for input from both within and outside of a person’s social circle for all-encompassing and broad 

 feedback on a subject matter. Not only does this broaden the regular scope of feedback from a 

 person’s social circle to the entire userbase of a popular social media platform but would also 

 drastically speed up the process of data collection. However massive data collection also has its 

 drawbacks. While a single user or a team of data analysts can process and summarize all the data 

 if given enough time, it would never be able to match the processing speed of a computer if there 

 was a model that can summarize and give an abstract on a specific matter. 
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 This project will be focusing on using fuzzy logic with neural networks to improve the 

 performance of an abstractive model that can process not just articles but also tweets, and 

 comments from a singular post into an abstract or summary that encompasses all the data 

 provided. Unlike summarizing a book or an article that often has one singular opinion, a tweet 

 would often have conflicting feedback, multiple stances, and variation in the severity of 

 opinions, thus making the need for an AI model even more apparent due to the increase in 

 difficulty. We also compared the performance with extractive models using different types of 

 datasets using the ROUGE score. We also created a web-based application for our model using 

 Drupal and Django. 

 2. BACKGROUND AND PRIOR WORK 

 In this section, we will provide an overview of text summarization, natural language 

 processing, and fuzzy logic as well as discuss and compare some popular models for two main 

 methods used for automated summarization: abstraction and extraction. In addition, we will 

 explore related natural language processing techniques and how fuzzy logic can be applied to 

 improve the model's performance. 

 2.1 Automatic Text Summarization 

 Text summarization (TS) is one of the most challenging topics in Natural Language 

 Processing (NLP) [1]. The basic idea is to find the most informative phrase or sentence in a 

 document. It can be applied to different types of text like articles, news, books, novels, emails, 

 and Tweets to reduce reading time and analyze a large set of text.  According to El-Kassas, the 

 earliest research on ATS was from Luhn in 1958. Luhn's algorithm exploits abstracts of 
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 magazine articles and technical publications automatically [1]. Since Lun’s Publication in 1958, 

 text summarization has been developed into many different types and directions, as illustrated 

 below in Fig 1. 

 Based on the summarization method, we have three major approaches: extractive, 

 abstractive, and hybrid. Extraction-based summarization generates a summary from a subset of 

 existing sentences or phrases in the given text. A simple model architecture is shown in Fig.2, 

 sentences’ scores will be calculated based on the analysis from the pre-processing stage, and the 

 length of the summary can be adjusted by providing a maximum value as the cutoff. Extractive 

 summarizing is simple and resilient, it is used in the majority of popular summarizing 

 systems[2]. On the other hand, summaries generated using the extractive method may be quite 

 different from human write summaries especially when the given text is short. The result may 

 contain redundant sentences, temporal expressions disagreeing, and conflicting information as 

 well as a lack of semantics and cohesiveness in summary sentences as a result of poor sentence 
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 linking and unresolved co-reference connections [1]. There are many available models online 

 extractive, like TextRank, Sumy, LexRank, and SpaCy. 

 Abstraction-based summarization will generate the sentences of the summary by itself 

 instead of extracting it from the input. To be able to create new phrases and sentences, a deeper 

 understanding of the source's fundamental idea is necessary. To construct the summary, we 

 would need to develop an internal semantic representation, as illustrated in Fig.3; some common 

 methods include graph-based, tree-based, rule-based, and deep-learning-based. Unlike extractive 

 models, it can include words not found in the given source based on fusion, paraphrasing, and 

 compression [1] which can help reduce redundancy and summary length. One of the major 

 drawbacks is the lack of sophistication therefore high-quality models would often default to 

 other methods, and require more data to train compared to the extractive method [1].  Recent 

 abstractive summarizing attempts have mostly focused on the use of deep learning models, 

 particularly in short text summarization [3]. Etemad compared fifteen models using deep 

 learning methods including CNN, Seq2Seq RNN, Convolutional Seq2Seq, BERT, Transformer, 

 LSTM, etc; Zhang's Convolution Seq2Seq model and Raffel's T5 model outperform in multiple 

 datasets. He mentioned most of the researchers are focused on solving the two major difficulties 

 of text summarization: syntactic and semantic [4]. 
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 Lastly, the hybrid model is the combination of both previous methods by extracting the 

 important sentence using extractive methods and summarizing it using abstractive methods. It 

 contains the advantage of both abstractive and execrative models but produces a lower quality 

 abstractive summary than the pure abstractive technique since the resulting summary is based on 

 extracts rather than the source text [1]. 

 Based on the input size, we will have two types of summarizers. A single document 

 summarizing will be much easier since the input is shorter and usually has a primary theme. 

 Because multi-document summarization provides a summary based on more than one input, it 

 may include contradictory information, and will be difficult to incorporate all information in 

 summary. 

 Text summarization is not limited to English, so models can be classified based on input 

 and output languages. When the source text and output summaries are both in the same language, 

 we call it monolingual; when we want to generate summaries in different languages than the 

 input, we call it cross-lingual; and when the input source included more than one language, we 

 call it multilingual. Monolingual would be the easiest to build because it does not require the 

 model to handle more than one language or translation procedure. 

 Next, we will talk about systems depending on the summary type. Some of the more 

 common types are headlines, highlights, sentences, and full summaries. Headlines and highlights 

 are commonly used to offer high-level overviews of the sources. The abstractive approach is 
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 typically used by sentence-level summarizers, and complete summary summarizers are most 

 commonly led by the needed compression ratio or summary length [1]. 

 Last but not least, unsupervised algorithms do not require training data and phase, unlike 

 supervised algorithms. The latter requires texts with human-generated summaries to identify 

 which features are more essential to the sentence. Term frequency, the number of proper nouns in 

 the sentences, the position or length of the sentences, and so on are examples of features. 

 2.2 Text Pre-Processing 

 As noted previously,  text pre-processing is an important part of TS. It transfers sentences 

 and paragraphs into structured data based on the needs of the model. According to Widyassari’s 

 research about the pre-processing methods used in TS over the last ten years, the most frequently 

 used are stop word removal, stemming, tokenizing, sentence segmentation, sentence selection, 

 lemmatize, team weight, word frequency, sentence by term matric, word segmentation, 

 normalize, paragraph segmentation, pos tagging, proper noun set, and a bag of words [5]. 

 Stop word removal is a method to remove meaningless and common words from inputs. 

 Usually includes conjunctions (like “yet”, “for”, “and”), pronouns (like “he”, “her”, “you”), 

 prepositions (like “in”, “by”, “about”), and articles (like “a”, “the”, “an”). By filtering stop 

 words, we can reduce the dataset size and the model will focus more on relevant information. To 

 be able to use the method, we will need to come up with a list of stop words. Many users on 

 Github give free stopword lists; Python libraries such as NLTK, spaCy, Gensim, and Scikit-learn 

 also include stopword filtering functions. 

 The bag of words technique would convert sentences into a collection of word tokens 

 with how many times the word appears in the text. It is useful when calculating the team weight, 
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 and word frequency. However, the order of the word will be ignored. If we would like to keep 

 the relationship between words, N-gram will be a better fit. N-grams return a collection of 

 sequences of n-words. 

 Stemming and Lemmatize are also frequently used for TS. Both approaches are used to 

 normalize words so we can translate them to their basic format. The difference is that stemming 

 is a rule-based technique that will chop out the extra part of a word without considering 

 morphological analysis or context information; lemmatization will reduce a word back to its 

 dictionary form depending on the context [5]. For example, “change, changing, changes” will 

 become “chang” after stemming but “change” after lemmatization. Stemming may cause 

 misunderstandings on some words or when over-stemming or under-steaming. For example, 

 “caring” or “universe” will transfer to “car” and “universe”  instead of “care” and “universe”. 

 Even though it looks like lemmatize is more accurate than stemming, stemming will run faster 

 and be easier to implement. 

 The last method I want to point out is phrase chunking. It works on top of part of speech 

 tagging (POS tagging) and will divide a sentence into its sub constituents like coordinating 

 conjunction, verb, adverb, noun (single or plural), pronouns, adjectives, etc with notation. 

 Libraries like NLTK, and spaCy provide functions to chunk sentences easily. 

 2.3 Fuzzy Logic 

 After a long period of development, the sentences/phrase ranking stage in TS has been 

 improved to consider more and more features. The earliest model created by Luhn extracts 

 summaries from documents based on high-frequency terms [6]; later on, developers discover that 

 information such as locations, length, sentence similarity, numerical data, and so on should also 
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 be considered. In Widyassari’s paper, she reviewed TS models from 2008 to 2019 and presented 

 the top ten features used are title word, keywords, thematic word, proper noun, numerical data, 

 sentence position, sentence length, sentence certainly, semantic term, and frequent semantic [5]. 

 However, classic logic is restricted to two values that can not be applied to all situations. For 

 example, a sentence with three thematic words has more value than one with one thematic word. 

 In the standard ways, however, there is no distinction between these two phrases. Also, some 

 features may be more important than others. How can we design which one has a higher score, if 

 we have a shorter sentence that includes two numerical data and a longer one with one proper 

 noun? Fuzzy logic would be the key to overcoming this problem. It can derive an imprecise and 

 possible result from a potential and imperfect beginning set because it uses relative reasoning 

 logic [7]. With fuzzy logic, we can also assign weight and provide membership functions to each 

 feature to solve the inequality problem of features [6]. 

 To investigate if the fuzzy logic method can improve the performance of TS, Suanmali 

 analysis results from a fuzzy-logic-based text summarizer, general statistic method, Microsoft 

 Word 2007 Summarizer, and baseline summarizer with eight features: proper noun, sentence 

 length, sentence position, title feature, term weight, sentence similarity, numerical data and 

 thematic word[6]. She used DUC 2002 as a dataset and used ROUGE-1 scores to do the 

 comparison. Her results show that the fuzzy summarizer has the best score in average precision, 

 recall, and F-measure [6]. 

 3. DATASET 

 For this project, datasets must include summaries  that can be compared to the one 

 generated using our model. Because our experiment comprises both extractive and abstractive 
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 models, we'd like to have a dataset for each. To execute the experiments using the Tweet dataset, 

 we discovered a dataset of 1100 dialogs from Twitter customer service discussions. Each dialog 

 contains three extractive and three abstractive summaries generated by humans. The BBC News 

 dataset includes 2225 items from the BBC's new website, divided into five distinct areas 

 (technology, sport, politics, business, and entertainment), each with an extracted summary. It has 

 no connection with tweets, but we'd want to test the model with a different type of dataset so we 

 can compare the Neural Network results and investigate the impact of dataset type on feature 

 weights. 

 4. DESIGN AND IMPLEMENTATION 

 This project will mainly use Python to build the  text summarization model and use 

 Drupal and Django to build a web-based application for demonstration. The main step for the TS 

 model is shown in Fig.6. We will first pre-process the source text and apply fuzzy logic with the 

 proper weight we get from the neural network then summarize it using abstractive models and 
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 compare results using ROUGE scores. The web-based application will be hosted in localhost to 

 avoid fees during the development and testing. 

 4.1 Data Pre-Processing 

 We  will  be  pre-processing  the  dataset  using  Python  libraries.  Based  on  the  need  of  our 

 model,  we  decided  to  apply  to  “stop  word”,  “bag  of  words”,  “noun-phrase  chunking”,  and  “word 

 to  number”  methods.  For  “stop  word”  and  “bag  of  words”,  we  used  CountVectorizer  from 

 Sklearn.  It  contains  a  list  of  English  stop  words  and  allows  us  to  choose  if  we  would  like  to 

 convert  all  characters  to  lowercase.  To  convert  numerical  words  into  numbers  for  later 

 extraction,  we  used  a  library  called  word2number  in  Python.  For  noun-phrase  chunking,  we  used 

 RegexpParser,  from  NLTK.  Fig.8  shows  an  example  of  a  text  after  pre-processing,  the  input  text 

 is a sentence from the BBC News dataset. 
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 Fig.6. Example of a text after pre-processing 

 4.2 Fuzzy Logic 

 After  pre-processing,  we  used  eight  features  to  calculate  feature  scores  (zero  to  one)  of 

 each sentence. 

 1.  Title/Keyword:  We  believe  that  words  appearing  in  an  article's  title  are  likely  to  include 

 relevant  information.  For  text  without  titles  like  tweets,  we  can  use  this  feature  for 

 topic-based  summarization.  We  count  the  number  of  words  in  the  sentence  that  matches 

 with  title/keyword,  divided  it  by  the  total  number  of  words  in  the  title/keyword,  and 

 divided it with the maximum score: 

 𝐹  1    =     #  𝑜𝑓     𝑘𝑒𝑦𝑤𝑜𝑟𝑑     𝑖𝑛     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 𝑇𝑜𝑡𝑎𝑙     #     𝑜𝑓     𝑘𝑒𝑦𝑤𝑜𝑟𝑑     /     𝑚𝑎𝑥 

 2.  Top  5  Frequency  Words:  High-frequency  words  are  highly  related  to  the  document.  We 

 got  the  top  five  frequency  words  from  the  text.  To  avoid  high-frequency  but  meaningless 

 words  (“an”,  “the”,  and  “is”)  to  be  selected  as  the  top  five,  we  removed  stop  words  in 

 pre-processing  stage.  The  score  is  calculated  by  the  number  of  top-frequency  words 
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 appearing  in  the  sentence  over  the  maximum  number  of  top-frequency  words  in  the 

 sentence for the whole article. 

 𝐹  2    =     #  𝑜𝑓     ℎ𝑖𝑔ℎ     𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦     𝑤𝑜𝑟𝑑     𝑖𝑛     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 𝑀𝑎𝑥     #     𝑜𝑓     ℎ𝑖𝑔ℎ     𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦     𝑤𝑜𝑟𝑑     𝑖𝑛     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

 3.  Number  of  Proper  Nouns:  Sentences  containing  more  proper  nouns  (person,  organization, 

 place,  etc)  are  sentences  carrying  more  significant  information  [9].  To  calculate  the 

 number  of  proper  nouns  in  a  sentence,  we  applied  noun-phrase  chunking  in  the  text 

 pre-processing  step.  To  be  fair  with  shorter  sentences,  we  used  the  total  number  of 

 proper nouns in a sentence to divide by the length of the sentence. 

 𝐹  3    =     #  𝑜𝑓     𝑝𝑟𝑜𝑝𝑒𝑟     𝑛𝑜𝑢𝑛𝑠     𝑖𝑛     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 𝐿𝑒𝑛𝑔𝑡ℎ     𝑜𝑓     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

 4.  Number  of  Numerical  Data:  A  statement  containing  numerical  data  is  significant,  and  it  is 

 most  likely  included  in  the  reference  summary.  We  converted  all  numerical  words  into 

 integers  in  the  pre-processing  stage.  For  words  like  “one  hundred  and  three”,  it  will  turn 

 into  “1  100  and  3”.  We  scored  sentences  depending  on  the  existence  of  numerical  data  to 

 avoid double counting. 

 𝐹  4    =     1    ( 𝑖𝑛𝑐𝑢𝑙𝑒𝑑 )    ||     0    ( 𝑛𝑜𝑡     𝑖𝑛𝑐𝑢𝑙𝑒𝑑 )

 5.  Sentence  Length:  This  feature  is  good  to  filter  out  short  sentences  like  journalist  and 

 datelines  [9].  Also,  while  Twitter  provides  an  abundant  amount  of  information  that  can  be 

 analyzed  for  text  summarization,  it  goes  without  saying  that  it  also  contains  large 

 amounts  of  irrelevant  and  unnecessary  sentences  such  as  common  texting  abbreviations, 

 acronyms,  and  slang.  This  feature  can  help  users  to  lower  the  chance  of  those  sentences 

 appearing  in  the  output  summary.  We  calculated  the  score  by  using  the  length  of  the 

 sentence divided by the length of the longest sentence in the document. 
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 𝐹  5    =     𝐿𝑒𝑛𝑔𝑡ℎ     𝑜𝑓     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 𝐿𝑒𝑛𝑔𝑡ℎ     𝑜𝑓     𝑙𝑜𝑛𝑔𝑒𝑠𝑡     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

 6.  Sentence-to-Sentence  Similarity:  This  feature  calculated  the  similarity  of  a  sentence  with 

 all  other  sentences  in  the  articles.  Important  material  will  be  discussed  or  mentioned 

 several  times  in  a  document,  thus  if  a  sentence  is  quite  similar  to  previous  sentences,  it  is 

 likely to be connected to the primary topic. 

 𝐹  6    =     𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦     𝑜𝑓     𝑡ℎ𝑒     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 ℎ𝑖𝑔ℎ𝑒𝑠𝑡     𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦     𝑖𝑛     𝑎𝑙𝑙     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

 7.  Sentence  Location:  Since  the  first  five  sentences  in  the  text  could  include  crucial 

 information,  we  score  them  by  dividing  the  sentence's  position  by  five  and  assigning  zero 

 to all other sentences. 

 𝐹  7    = ( 5     /     𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛     𝑜𝑓     𝑡ℎ𝑒     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 )       𝑓𝑜𝑟     𝑓𝑟𝑖𝑠𝑡     𝑓𝑖𝑣𝑒     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒       

 8.  TF/IDF  Score:  The  term  frequency-inverse  document  frequency  is  a  score  to  reflect  the 

 importance  of  a  word  to  a  document.  The  TF/IDF  score  of  a  sentence  can  be  computed  by 

 summing  the  TF/IDF  scores  of  all  words  in  the  sentence  [9].  To  rank  the  sentence  based 

 on TF/IDF score, we will use the score of a sentence to divide the highest score. 

 𝐹  8    =     𝑇𝐹  /  𝐼𝐷𝐹     𝑠𝑐𝑜𝑟𝑒     𝑜𝑓     𝑡ℎ𝑒     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 
 ℎ𝑖𝑔ℎ𝑒𝑠𝑡     𝑇𝐹  /  𝐼𝐷𝐹     𝑠𝑐𝑜𝑟𝑒     𝑖𝑛     𝑎𝑙𝑙     𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 

 After defined all features, we used Python library Scikit-fuzzy for the implementation 

 and designed to use Gaussian as membership function. The equation of the function is: 

µ( 𝑥 )   =     𝑒 − 𝑓  1 *( 𝑥 − 𝑓  2 ) 2 

 f1 is the spread and f2 is the midpoint; the function is beneficial if the membership is close to a 

 certain value [10]. For each feature, we designed the value for “poor”, “average”, and “good”; 

 Fig.7 shows a graph of what the Title/Keyword feature with membership function looks like after 

 we defined the values.  Next, we created IF-THEN rules for the engine. It is the most important 
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 part of the inference engine, our features criteria are used to extract the important sentences from 

 these regulations [9]. A simple rule will be: IF (F1 is important) and (F2 is important) and (F3 is 

 not important) and (F4 is medium) and (F5 is important) and (F6 is medium) and (F7 is 

 important) and (F8 is not important) THEN (important). Fig.8 is an example of one sentence’s 

 score after being applied to two features in the rule. 

 Fig.7. Sample Fuzzy Membership Graph  Fig.8. Sample Fuzzy Score Graph 

 4.3 Neural Network 
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 When  we  use  different  types  of  data,  a  particular  feature  may  be  more  important.  For 

 example,  when  we  handle  tweets,  "sentence  location"  may  not  be  as  important  as  "number  of 

 proper  nouns"  since  tweets  are  usually  short.  To  make  sure  our  model  can  overcome  situations 

 like  this,  we  used  a  neural  network  model  to  find  out  the  importance  of  each  feature  and  designed 

 our fuzzy logic rules based on that. 

 First  of  all,  we  created  a  model  using  Tensorflow  Kears.  The  model  (see  Fig.9)  takes 

 sentences  as  input  and  included  three  layers  with  an  appropriate  number  of  neurons.  The 

 activation  function  of  the  first  two-layer  is  ReLU  and  we  used  sigmoid  for  the  last  hidden  layer. 

 The  output  of  the  model  will  be  the  eight  weights.  Unlike  the  common  neural  networks  model, 

 the  training  target  we  fit  into  the  model  are  not  weights  of  features  but  0/1  to  represent  if  the 

 sentence exists in target summaries. 
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 To  handle  the  difference  between  output  size  and  target  we  created  a  custom  loss  function 

 and  metric  function.  During  the  stage  we  compare  the  prediction  with  the  target,  we  included 

 feature scores in the custom functions and calculate the predicted target using the formula below: 

 𝑦 
 𝑝𝑟𝑒𝑑 

   =    ( 𝑊  1 *  𝐹  1    +  …    +  𝐹  8 *  𝑊  8 ) / ( 𝑊  1    +     … +     𝑊  8 ))

 Tthe losses are calculated as: 

 𝑙𝑜𝑠𝑠    =     1 
 2 * ( 𝑦 

 𝑡𝑎𝑟𝑔𝑒𝑡 
−  𝑦 

 𝑝𝑟𝑒𝑑 
) 2 

 The metrics are calculated as: 

 (True/False)  𝑚𝑒𝑡𝑟𝑖𝑐𝑠    =     𝑟𝑜𝑢𝑛𝑑 ( 𝑦 
 𝑝𝑟𝑒𝑑 

)   ==     𝑦 
 𝑡𝑎𝑟𝑔𝑒𝑡 

   

 From the sample graph(Fig.11, Fig12, Fig.13) of some weight’s values when training 

 with 2984 sentences from BBC News Summary with 50 epochs, we can see that the draft 

 weights are around 0.5. Near the end of the experiment, the weights of all sentences are getting 

 closer to a final value. 

 Fig.11 Example of Unimportant Result 

 25 



 Fig.12 Example of Medium Importance Result 

 Fig.13 Example of Important Result 
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 4.4 Summriazation Model 

 The  summarization  model  we  will  be  using  in  this  project  is  an  abstractive  summarizer. 

 The  main  goal  is  to  compare  the  performance  of  the  abstractive  summarizer  with  and  without 

 applying  fuzzy  logic  and  neural  networks.  We  decided  to  use  the  T5  model  in  transformers 

 version  2.8.0  and  torch  1.4.0.  The  model  is  pre-trained  by  Google  using  deep  learning  on  an 

 unlabeled  big  text  corpus  dubbed  Colossal  Clean  Crawled  Corpus  [11].  It  provides  five 

 per-trained  paths  and  the  difference  between  those  paths  is  the  number  of  parameters:  T5-small 

 contains  60  million,  T5-base  contains  220  million,  T5-large  contains  770  million,  T5-3B 

 contains  3  billion  and  T5-11B  contains  11  billion.  Because  we  are  only  running  simulations  and 

 the dataset is vast, we chose the T5-small pre-trained route to save time. 

 4.5  ROUGE Score 

 The  method  we  use  to  compare  the  result  is  the  ROUGE  score.  It  is  one  of  the  most 

 common  scoring  systems  used  for  text  summarization  models.  There  are  four  different  measures: 

 n-gram  overlap  compares  (ROUGE-N),  longest  common  subsequence  (ROUGE-L),  weighted 

 longest  common  subsequence  (ROUGE-W),  and  skip-bigram  (ROUGE-S)[8].  The  one  we 

 designed  to  use  is  ROUGE-1  because  our  dataset  included  abstractive  and  extractive  summaries, 

 the longest common subsequence may not be a good fit for abstractive summaries comparison. 

 Fig.14 ROUGE-N and F1-Score Formulas 
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 “N”  in  ROUGE-N  is  representing  the  length  of  overlap  words  between  the  reference 

 summary  and  output  summary  (formulas  shown  in  Fig.13).  It  will  output  three  different  scores: 

 precision,  recall,  and  F1-score.  For  example,  we  have  two  sentences  here:  “I  am  a  student  at  San 

 Jose  State  University”  and  “Tom  is  a  student  at  the  University  of  San  Jose”;  if  we  use  ROUGE-1, 

 overlapping  words  are  “a”,  “student”,  “San”,  “University”,  and  “Jose”.  The  precision  score  will 

 be  around  0.56,  the  recall  is  0.5  and  the  F1  score  is  around  0.53.  Python  has  a  library  called 

 Rouge-Score  which  provided  functionality  for  ROUGE-N  and  ROUGE-L,  we  will  use  the 

 library in our project to get the scores. 

 4.6 Web-based Application 

 To  provide  an  application  for  users  to  use  the  model  simply,  we  used  Drupal  to  build  a 

 website  with  a  backend  server  using  Django.  The  idea  is  to  have  two  servers:  a  front-end  and  a 

 back-end.  The  front-end  server  will  receive  the  text  from  the  user  by  simply  copy-and-paste  to 

 the  text  box  or  uploading  a  file,  and  sending  a  POST  request  to  the  backend  server.  The  back-end 

 server  will  receive  the  request  and  process  it  with  our  model  then  send  responses  back  to  the 

 front end and display it to the user. Figure 16 is showing the architecture of the web application. 

 First  of  all,  we  used  Drupal  9  with  MySQL  version  8.0.27  and  phpMyAdmin  version 

 5.1.1  to  create  a  simple  website  on  my  local  host.  To  be  able  to  use  JavaScript  and  CSS  in 

 Drupal,  we  added  the  Asset  Injector  module  and  made  sure  it  preprocess  my  JS/CSS  code.  The 

 JS code is used to send a request with user input and the CSS code is for styling. 

 For the backend server, we used Django to create a local server in another endpoint, it 

 will receive the POST request from our Drupal and pass the text into our summarizer. The 
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 Python version I used is 3.10 and the Django version is 4.0.4. To make sure we can receive 

 requests from the front end. We will need to all origins and set up trusted origins in the setting. 

 Figure 17 is showing the home and result pages of the website. The home page is where 

 users can input text for summarization. Users can select between extractive and abstractive 

 summaries and the percentage they would like to extract for extractive summarization. After 

 inputting text or uploading a file, it will automatically jump to the result page. It contains a 

 summary and original text, and users are able to back to the home page by using the back button. 
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 Fig.16 Sample Page of Web Application 
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 5. EXPERIMENTS AND RESULTS 

 After pre-processing, we built the Neural Network model to determine the weights of 

 each feature. We experimented six times to acquire an average result because the neural network 

 models may produce data with minor gaps. 

 5.1 Experiment 1: BBC News Summary 

 In this experiment, we are utilizing the BBC News Summary dataset. It is unrelated to 

 tweets, but we would like to have additional data to test the model and see whether the weights 

 of features will vary in different data types. Table 1 displays the outcomes of all six studies. The 

 result from one of the experiments is shown in Fig.18, where we can see that the initial value for 

 each feature is close to 0.5. After training with all of the articles in the dataset, the values are 

 close to zero or one. We determined that traits with a weight of zero are not important, but those 

 with a weight close to one are. However, when we see a characteristic change significantly 

 during the experiment, such as the third in the picture, we want to label it as "in-between" or 

 medium values. From the data, we found the best-fit features are “Keyword/Title” and 

 “Numerical Data”. Due to the nature of modern-day journalism, the title of articles often 

 pinpoints key findings or important information regarding a subject. Numerical data found in 

 articles also often emphasize the magnitude of events and also assists in providing key statistics 

 and relevant information. My personal anecdotal observations further solidify the data found 

 from our model and find that “Keyword/Title” and “Numerical Data” alone would commonly 

 provide a sizeable amount of details regarding a specific article. 
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 Fig.17. Snapshot of Neural Network Outcome 

 Table 1. Neural Network Result of BBC News Summary 

 W1  W2  W3  W4  W5  W6  W7  W8 

 1  Important  Not 
 Important 

 In between  Important  Not 
 Important 

 Not 
 Important 

 In between  Not 
 Important 

 2  Important  Not 
 Important 

 In between  Important  Not 
 Important 

 Not 
 Important 

 Not 
 Important 

 Not 
 Important 

 3  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 4  Important  Not 
 Important 

 Important  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 5  Important  Not 
 Important 

 In between  Important  Not 
 Important 

 Not 
 Important 

 In between  Not 
 Important 

 6  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 Result  Important  Not 
 Important 

 Medium  Important  Not 
 Important 

 Not 
 Important 

 Medium  Not 
 Important 

 Next, we created fuzzy logic rules based on the importance from above and extractive out 

 sentences with high scores. We compared the summary created by the T5 model and the Fuzzy 

 Neural Network T5 model with the summary provided by the dataset in Table 2. The highest 

 score is the summaries created using the Fuzzy logic score with Neural Network which is an 

 extractive summarization. As we mentioned before, extractive summaries are easier to achieve 
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 since we are comparing words in common. By applying Fuzzy Logic with Neural Network, our 

 F-measure score increased about 7.5%. 

 Table 2 ROUGE-N Score Comparison for BBC News Summary 

 Model  Average 
 Precision 

 Average 
 Recall 

 Average 
 F-measure 

 T5  35.3%  75%  48% 

 T5 with Fuzzy Neural 
 Network 

 40.9%  85.0%  55.5% 

 Fuzzy Neural Network 
 (Extractive) 

 70.9%  90.8%  79.6% 

 Fig.18 Graph of Experiment One Result 
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 5.2 Experiment 2: TweetSum 

 To check the performance of our model when processing tweets, we experimented using 

 the TweetSum dataset. This dataset does not have headlines or titles for each dialog, so we only 

 have 7 features. Figure 19 shows a snapshot of one of the results from the neural network, we 

 also ran six times for this experiment, and the output results are shown in Table 3. 

 Fig.19. Snapshot of the Neural Network Outcome of TweetSum 

 Table 3. Neural Network Result of TweetSum Dataset 

 W1  W2  W3  W4  W5  W6  W7  W8 

 1  \  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 Not 
 Important 

 In between  Not 
 Important 

 2  \  Not 
 Important 

 In between  Important  Not 
 Important 

 Not 
 Important 

 In between  Not 
 Important 

 3  \  Not 
 Important 

 Important  Important  Not 
 Important 

 Not 
 Important 

 In between  Not 
 Important 

 4  \  Not 
 Important 

 Important  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 5  \  Not 
 Important 

 Important  Not 
 Important 

 Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 6  \  Not 
 Important 

 Important  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 Result  \  Not 
 Important 

 Important  Important  Not 
 Important 

 Not 
 Important 

 Important  Not 
 Important 

 34 



 The most essential characteristics as a consequence are "Proper Nouns," "Numerical 

 Data," and "Location."  Nouns and numerals are quite prevalent in dialogues, and the major issue 

 will generally appear at the start of a conversation. This dataset contains customer service 

 dialogs from Twitter, and because people seldom repeat themselves in a short period, phrases and 

 sentences have a decreased likelihood of being similar to others. 

 Table 4 ROUGE-N Score Comparison for TweetSum 

 Model  Target Summary 
 Type 

 Average 
 Precision 

 Average 
 Recall 

 Average 
 F-measure 

 T5 
 Abstractive  40.6%  30.2%  34.7% 

 Extractive  28.6%  41.9%  33.9% 

 T5 with Fuzzy 
 Neural Network 

 Abstractive  50%  27.1%  35.1% 

 Extractive  42.3%  47.8%  43.1% 

 Fuzzy Neural 
 Network 

 (Extractive) 

 Abstractive  52.9%  14.1%  21.4% 

 Extractive  73.8%  43.4%  52.8% 
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 Fig.20. Graph of Experiment Two Result Compare to Abstractive Summary 

 Fig.21. Graph of Experiment Two Result Compare to Extractive Summary 
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 Because the TweetSum dataset contains both abstractive and extractive summaries, we 

 can compare our results to both types. The T5 model received 34.7%, while the abstractive 

 summary received 33.9%. It is also the only model that received a better score in abstractive 

 summary than extractive. The T5 model was created and trained specifically for abstractive 

 summarization so it performs better in abstractive summarization. The extractive model, which 

 we created using Fuzzy Logic and Neural Network, got 52% when compared to an extractive 

 summary, which is the highest score we have on tweets data, but its abstractive summary score is 

 the worse in all models. It is reasonable since the model was not built as abstract. T5 with the 

 Fuzzy Neural Network model improved by 9.2% compared to the pure T5 model in extractive 

 comparison and improved by 0.4% in abstractive. For the abstractive comparison, we improved 

 way less than the previous dataset and also other scores for all models. Tweets data is hard to 

 summarize when it is just a short dialog or a few tweets because text summarizers are doing 

 better in handling larger text. 

 6. CONCLUSION AND FUTURE WORK 

 In this project, we discussed different types and methods of Text Summarization. To 

 determine the importance of sentences in an article, eight different features, fuzzy logic, and 

 neural network was applied to the abstractive model. We utilize Neural Network to determine the 

 relevance of each feature in the text to better comprehend and analyze the weight of different 

 features in various kinds of data. Then we compared and analyzed the model when dealing with 

 tweets and articles. We also built a web-based application for users to simply summarize the 

 content using Drupal and Django. 
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 In the future, we can generate or find a more extensive tweet or another social media 

 dataset to improve the training. Currently, very few larger tweet datasets are including a 

 human-generated summary since it is hard for people to read hundreds and thousands of tweets 

 and come up with a summary. Another part we can improve will be including more features in 

 our experiment to consider more possibilities. By using the neural network model, we can 

 identify the more important features from a large set of features. 

 On the other hand, social media platforms such as Twitter have users from all over the 

 world, so applying multilingual and cross-lingual approaches to the model would be beneficial. 

 There are numerous non-English messages on Twitter, and our model is currently unable to 

 handle tweets in other languages. Many pieces of information are unable to be processed, and as 

 a result, many distinct views are lost. 

 Last but not least, we may enhance the web-based application with additional 

 functionality such as creating accounts, recording the summarization history, selecting alternative 

 models, and topic-based summarization. 
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