
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2022

Abstractive Text Summarization for Tweets Abstractive Text Summarization for Tweets

Siyu Chen

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages

 Abstractive Text Summarization for Tweets

 A Project Report

 Presented to

 The Faculty of the Department of Computer Science

 San Jose State University

 In Partial Fulfillment

 of the Requirements for the Degree of

 Master of Science

 By

 Siyu Chen

 Fall 2022

 © 2022

 Siyu Chen

 ALL RIGHTS RESERVED

 The Designated Committee Approves the Master’s Project Titled

 ABSTRACTIVE TEXT SUMMARIZATION FOR TWEETS

 by

 Siyu Chen

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 SAN JOSÉ STATE UNIVERSITY

 December 2022

 Dr. Chris Tseng Department of Computer Science

 Dr. Genya Ishigaki Department of Computer Science

 Dr. Nada Attar Department of Computer Science

 ACKNOWLEDGMENTS

 My sincere gratitude goes out to Dr. Chris Tseng, who is my project adviser, for his

 knowledge, patience, direction, and inspiration. I deeply appreciate all of his support and

 supervision, as well as his willingness to answer emails even on weekends and holidays. I would

 like to express my gratitude to Dr. Genya Ishigaki and Dr. Nada Attar for their contributions and

 suggestions. Finally, I would like to thank my family and friends for their thoughtful support.

 II

 ABSTRACT

 In the high-tech age, we can access a vast number of articles, information, news, and

 opinion online. The wealth of information allows us to learn about the topics we are interested in

 more easily and cheaply, but it also requires us to spend an enormous amount of time reading

 online. Text summarization can help us save a lot of reading time so that we can know more

 information in a shorter period. The primary goal of text summarization is to shorten the text

 while including as much vital information as possible in the original text so fewer people use this

 strategy on tweets since tweets are commonly shorter than articles or news. However, as social

 networking software becomes more widespread, Text summarization can assist us in swiftly

 reviewing a large number of comments and discussions. In this project, we applied fuzzy logic

 and a neural network to extract essential sentences, followed by an abstraction model to provide

 a summary. Summaries generated by our model contain more vital content and obtain a better

 ROUGE score than classic abstraction models since we extract the crucial information first;

 summaries generated by our model are more similar to human-written summaries than traditional

 extraction models because we are using an abstract model. In the end, we provided a web-based

 application to display our model more interactively.

 III

 TABLE OF CONTENTS

 Acknowledgement………………………………………………………………………………. Ⅱ

 Abstract…………………………………………………………………………………………..Ⅲ

 Table of Contents………………………………………………………………………………...Ⅳ

 List of Figures………………………………………………………………..……..…………..VII

 List of Tables………………………………………………………………………………...…VIII

 1. Introduction…………….……………………..……………………………………………….10

 2. Background and Prior Work……………………………………………..……………………11

 2.1 Automatic Text Summarization……………………………………..……………….11

 2.2 Text Pre-Processing………………………………………………………………….15

 2.3 Fuzzy Logic …………………………………………………………………………16

 3. Dataset…………………………………………………………………………………………17

 4. Design and Implementation…………………...………………………………………………18

 4.1 Data Pre-Processing………………………………………………………………….19

 4.2 Fuzzy Logic …………………………………………………………………………20

 4.3 Neural Network……………………………………………………………………...23

 4.4 Summarization Model……………………………………………………….………27

 4.5 ROUGE Score………………………………………………………………………27

 4.6 Web-based Application………………………………………………………………28

 5. Experiments and Results………………………………………………………………………31

 5.1 Experiment 1: BBC News Summary…………….…………………………………..31

 5.2 Experiment 2: TweetSum ……………………………………………………………33

 IV

 6. Conclusion and Future Work………………………………………………………………….37

 References………………………………………………………………………………………..39

 VI

 LIST OF FIGURES

 Figure.1 Automatic Text Summarization Types………………..………………………………..12

 Figure.2 Simple architecture of extractive summarization model……………….………………13

 Figure.3 Simple architecture of abstractive summarization model………………….…………..14

 Figure.4 Dataset Information…………………………………………………………..………...18

 Figure.5 Project Architecture………………………………………………………….…………19

 Figure.6 Example of a text after pre-processing…………………………………….….………..20

 Figure.7 Sample Fuzzy Membership Graph………………………………………….….………23

 Figure.8 Sample Fuzzy Score Graph…………………………………..………….……..………23

 Figure.9 Neural Network Architecture…………………………….…………………….………23

 Figure.10 Example of Neural Network Set Up …………………..……………………….……..24

 Figure.11 Example of Less Important Feature Result……………..………………...….……….25

 Figure.12 Example of Medium Importance Result………………….…………………….…….26

 Figure.13 Example of Important Result……………………………..………………….……….26

 Figure.14 ROUGE-N and F1-Score Formulars ………………………………………….……...27

 Figure.15 Architecture of Web-Based Application for Text Summarization .………….….……29

 Figure.16 Sample Page of Web Application………………………………………………….….30

 Figure.17 Snapshot of Neural Network Outcome ……………………………..………..……….32

 Figure.18 Graph of Experiment One Result…………………...……………..…….……………33

 Figure.19 Snapshot of Neural Network Outcome of TweetSum……………………...…………34

 Figure.20 Graph of Experiment Two Result Compares to Abstractive Summary ..…………….36

 Figure.21 Graph of Experiment Two Result Compare to Extractive Summary…….……...……36

 VII

 LIST OF TABLES

 Table 1. Neural Network Result of BBC News Summary………………………………………32

 Table 2 ROUGE-N Score Comparison for BBC News Summary………………………………33

 Table 3. Neural Network Result of TweetSum Dataset………………………………………….34

 Table 4 ROUGE-N Score Comparison for TweetSum…………………………………………..35

 VIII

 1. INTRODUCTION

 In the discipline of Natural Language Processing, text summarization is a formidable

 challenge, because producing a quality summary necessitates accurate text analysis such as

 semantic and lexical analysis [1]. It can benefit corporations, celebrities, and consumers in

 efficiently summarizing articles, news, feedback, comments, and postings related to the

 information they care about, resulting in a major improvement in user experience and quality of

 life.

 On the other hand, social media has grown increasingly significant in our everyday lives,

 to the point that it has replaced traditional forms of communication. This has become even more

 apparent as a result of the Covid-19 pandemic and the sudden cessation of in-person interactions.

 Online communication and the usage of social media in changing times have expedited

 technological adaptation and online socializing. The shift in communication channels has also

 influenced feedback gathering. For example, if someone wanted feedback on a thought or an

 idea, they could ask their close friends, family, or coworkers for input but would be severely

 limited from data sources outside of their social circle without massive input of both time and

 other resources. One of the advantages of social media includes the ability to receive and search

 for input from both within and outside of a person’s social circle for all-encompassing and broad

 feedback on a subject matter. Not only does this broaden the regular scope of feedback from a

 person’s social circle to the entire userbase of a popular social media platform but would also

 drastically speed up the process of data collection. However massive data collection also has its

 drawbacks. While a single user or a team of data analysts can process and summarize all the data

 if given enough time, it would never be able to match the processing speed of a computer if there

 was a model that can summarize and give an abstract on a specific matter.

 10

 This project will be focusing on using fuzzy logic with neural networks to improve the

 performance of an abstractive model that can process not just articles but also tweets, and

 comments from a singular post into an abstract or summary that encompasses all the data

 provided. Unlike summarizing a book or an article that often has one singular opinion, a tweet

 would often have conflicting feedback, multiple stances, and variation in the severity of

 opinions, thus making the need for an AI model even more apparent due to the increase in

 difficulty. We also compared the performance with extractive models using different types of

 datasets using the ROUGE score. We also created a web-based application for our model using

 Drupal and Django.

 2. BACKGROUND AND PRIOR WORK

 In this section, we will provide an overview of text summarization, natural language

 processing, and fuzzy logic as well as discuss and compare some popular models for two main

 methods used for automated summarization: abstraction and extraction. In addition, we will

 explore related natural language processing techniques and how fuzzy logic can be applied to

 improve the model's performance.

 2.1 Automatic Text Summarization

 Text summarization (TS) is one of the most challenging topics in Natural Language

 Processing (NLP) [1]. The basic idea is to find the most informative phrase or sentence in a

 document. It can be applied to different types of text like articles, news, books, novels, emails,

 and Tweets to reduce reading time and analyze a large set of text. According to El-Kassas, the

 earliest research on ATS was from Luhn in 1958. Luhn's algorithm exploits abstracts of

 11

 magazine articles and technical publications automatically [1]. Since Lun’s Publication in 1958,

 text summarization has been developed into many different types and directions, as illustrated

 below in Fig 1.

 Based on the summarization method, we have three major approaches: extractive,

 abstractive, and hybrid. Extraction-based summarization generates a summary from a subset of

 existing sentences or phrases in the given text. A simple model architecture is shown in Fig.2,

 sentences’ scores will be calculated based on the analysis from the pre-processing stage, and the

 length of the summary can be adjusted by providing a maximum value as the cutoff. Extractive

 summarizing is simple and resilient, it is used in the majority of popular summarizing

 systems[2]. On the other hand, summaries generated using the extractive method may be quite

 different from human write summaries especially when the given text is short. The result may

 contain redundant sentences, temporal expressions disagreeing, and conflicting information as

 well as a lack of semantics and cohesiveness in summary sentences as a result of poor sentence

 12

 linking and unresolved co-reference connections [1]. There are many available models online

 extractive, like TextRank, Sumy, LexRank, and SpaCy.

 Abstraction-based summarization will generate the sentences of the summary by itself

 instead of extracting it from the input. To be able to create new phrases and sentences, a deeper

 understanding of the source's fundamental idea is necessary. To construct the summary, we

 would need to develop an internal semantic representation, as illustrated in Fig.3; some common

 methods include graph-based, tree-based, rule-based, and deep-learning-based. Unlike extractive

 models, it can include words not found in the given source based on fusion, paraphrasing, and

 compression [1] which can help reduce redundancy and summary length. One of the major

 drawbacks is the lack of sophistication therefore high-quality models would often default to

 other methods, and require more data to train compared to the extractive method [1]. Recent

 abstractive summarizing attempts have mostly focused on the use of deep learning models,

 particularly in short text summarization [3]. Etemad compared fifteen models using deep

 learning methods including CNN, Seq2Seq RNN, Convolutional Seq2Seq, BERT, Transformer,

 LSTM, etc; Zhang's Convolution Seq2Seq model and Raffel's T5 model outperform in multiple

 datasets. He mentioned most of the researchers are focused on solving the two major difficulties

 of text summarization: syntactic and semantic [4].

 13

 Lastly, the hybrid model is the combination of both previous methods by extracting the

 important sentence using extractive methods and summarizing it using abstractive methods. It

 contains the advantage of both abstractive and execrative models but produces a lower quality

 abstractive summary than the pure abstractive technique since the resulting summary is based on

 extracts rather than the source text [1].

 Based on the input size, we will have two types of summarizers. A single document

 summarizing will be much easier since the input is shorter and usually has a primary theme.

 Because multi-document summarization provides a summary based on more than one input, it

 may include contradictory information, and will be difficult to incorporate all information in

 summary.

 Text summarization is not limited to English, so models can be classified based on input

 and output languages. When the source text and output summaries are both in the same language,

 we call it monolingual; when we want to generate summaries in different languages than the

 input, we call it cross-lingual; and when the input source included more than one language, we

 call it multilingual. Monolingual would be the easiest to build because it does not require the

 model to handle more than one language or translation procedure.

 Next, we will talk about systems depending on the summary type. Some of the more

 common types are headlines, highlights, sentences, and full summaries. Headlines and highlights

 are commonly used to offer high-level overviews of the sources. The abstractive approach is

 14

 typically used by sentence-level summarizers, and complete summary summarizers are most

 commonly led by the needed compression ratio or summary length [1].

 Last but not least, unsupervised algorithms do not require training data and phase, unlike

 supervised algorithms. The latter requires texts with human-generated summaries to identify

 which features are more essential to the sentence. Term frequency, the number of proper nouns in

 the sentences, the position or length of the sentences, and so on are examples of features.

 2.2 Text Pre-Processing

 As noted previously, text pre-processing is an important part of TS. It transfers sentences

 and paragraphs into structured data based on the needs of the model. According to Widyassari’s

 research about the pre-processing methods used in TS over the last ten years, the most frequently

 used are stop word removal, stemming, tokenizing, sentence segmentation, sentence selection,

 lemmatize, team weight, word frequency, sentence by term matric, word segmentation,

 normalize, paragraph segmentation, pos tagging, proper noun set, and a bag of words [5].

 Stop word removal is a method to remove meaningless and common words from inputs.

 Usually includes conjunctions (like “yet”, “for”, “and”), pronouns (like “he”, “her”, “you”),

 prepositions (like “in”, “by”, “about”), and articles (like “a”, “the”, “an”). By filtering stop

 words, we can reduce the dataset size and the model will focus more on relevant information. To

 be able to use the method, we will need to come up with a list of stop words. Many users on

 Github give free stopword lists; Python libraries such as NLTK, spaCy, Gensim, and Scikit-learn

 also include stopword filtering functions.

 The bag of words technique would convert sentences into a collection of word tokens

 with how many times the word appears in the text. It is useful when calculating the team weight,

 15

 and word frequency. However, the order of the word will be ignored. If we would like to keep

 the relationship between words, N-gram will be a better fit. N-grams return a collection of

 sequences of n-words.

 Stemming and Lemmatize are also frequently used for TS. Both approaches are used to

 normalize words so we can translate them to their basic format. The difference is that stemming

 is a rule-based technique that will chop out the extra part of a word without considering

 morphological analysis or context information; lemmatization will reduce a word back to its

 dictionary form depending on the context [5]. For example, “change, changing, changes” will

 become “chang” after stemming but “change” after lemmatization. Stemming may cause

 misunderstandings on some words or when over-stemming or under-steaming. For example,

 “caring” or “universe” will transfer to “car” and “universe” instead of “care” and “universe”.

 Even though it looks like lemmatize is more accurate than stemming, stemming will run faster

 and be easier to implement.

 The last method I want to point out is phrase chunking. It works on top of part of speech

 tagging (POS tagging) and will divide a sentence into its sub constituents like coordinating

 conjunction, verb, adverb, noun (single or plural), pronouns, adjectives, etc with notation.

 Libraries like NLTK, and spaCy provide functions to chunk sentences easily.

 2.3 Fuzzy Logic

 After a long period of development, the sentences/phrase ranking stage in TS has been

 improved to consider more and more features. The earliest model created by Luhn extracts

 summaries from documents based on high-frequency terms [6]; later on, developers discover that

 information such as locations, length, sentence similarity, numerical data, and so on should also

 16

 be considered. In Widyassari’s paper, she reviewed TS models from 2008 to 2019 and presented

 the top ten features used are title word, keywords, thematic word, proper noun, numerical data,

 sentence position, sentence length, sentence certainly, semantic term, and frequent semantic [5].

 However, classic logic is restricted to two values that can not be applied to all situations. For

 example, a sentence with three thematic words has more value than one with one thematic word.

 In the standard ways, however, there is no distinction between these two phrases. Also, some

 features may be more important than others. How can we design which one has a higher score, if

 we have a shorter sentence that includes two numerical data and a longer one with one proper

 noun? Fuzzy logic would be the key to overcoming this problem. It can derive an imprecise and

 possible result from a potential and imperfect beginning set because it uses relative reasoning

 logic [7]. With fuzzy logic, we can also assign weight and provide membership functions to each

 feature to solve the inequality problem of features [6].

 To investigate if the fuzzy logic method can improve the performance of TS, Suanmali

 analysis results from a fuzzy-logic-based text summarizer, general statistic method, Microsoft

 Word 2007 Summarizer, and baseline summarizer with eight features: proper noun, sentence

 length, sentence position, title feature, term weight, sentence similarity, numerical data and

 thematic word[6]. She used DUC 2002 as a dataset and used ROUGE-1 scores to do the

 comparison. Her results show that the fuzzy summarizer has the best score in average precision,

 recall, and F-measure [6].

 3. DATASET

 For this project, datasets must include summaries that can be compared to the one

 generated using our model. Because our experiment comprises both extractive and abstractive

 17

 models, we'd like to have a dataset for each. To execute the experiments using the Tweet dataset,

 we discovered a dataset of 1100 dialogs from Twitter customer service discussions. Each dialog

 contains three extractive and three abstractive summaries generated by humans. The BBC News

 dataset includes 2225 items from the BBC's new website, divided into five distinct areas

 (technology, sport, politics, business, and entertainment), each with an extracted summary. It has

 no connection with tweets, but we'd want to test the model with a different type of dataset so we

 can compare the Neural Network results and investigate the impact of dataset type on feature

 weights.

 4. DESIGN AND IMPLEMENTATION

 This project will mainly use Python to build the text summarization model and use

 Drupal and Django to build a web-based application for demonstration. The main step for the TS

 model is shown in Fig.6. We will first pre-process the source text and apply fuzzy logic with the

 proper weight we get from the neural network then summarize it using abstractive models and

 18

 compare results using ROUGE scores. The web-based application will be hosted in localhost to

 avoid fees during the development and testing.

 4.1 Data Pre-Processing

 We will be pre-processing the dataset using Python libraries. Based on the need of our

 model, we decided to apply to “stop word”, “bag of words”, “noun-phrase chunking”, and “word

 to number” methods. For “stop word” and “bag of words”, we used CountVectorizer from

 Sklearn. It contains a list of English stop words and allows us to choose if we would like to

 convert all characters to lowercase. To convert numerical words into numbers for later

 extraction, we used a library called word2number in Python. For noun-phrase chunking, we used

 RegexpParser, from NLTK. Fig.8 shows an example of a text after pre-processing, the input text

 is a sentence from the BBC News dataset.

 19

 Fig.6. Example of a text after pre-processing

 4.2 Fuzzy Logic

 After pre-processing, we used eight features to calculate feature scores (zero to one) of

 each sentence.

 1. Title/Keyword: We believe that words appearing in an article's title are likely to include

 relevant information. For text without titles like tweets, we can use this feature for

 topic-based summarization. We count the number of words in the sentence that matches

 with title/keyword, divided it by the total number of words in the title/keyword, and

 divided it with the maximum score:

 𝐹 1 = # 𝑜𝑓 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 / 𝑚𝑎𝑥

 2. Top 5 Frequency Words: High-frequency words are highly related to the document. We

 got the top five frequency words from the text. To avoid high-frequency but meaningless

 words (“an”, “the”, and “is”) to be selected as the top five, we removed stop words in

 pre-processing stage. The score is calculated by the number of top-frequency words

 20

 appearing in the sentence over the maximum number of top-frequency words in the

 sentence for the whole article.

 𝐹 2 = # 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 𝑀𝑎𝑥 # 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑤𝑜𝑟𝑑 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 3. Number of Proper Nouns: Sentences containing more proper nouns (person, organization,

 place, etc) are sentences carrying more significant information [9]. To calculate the

 number of proper nouns in a sentence, we applied noun-phrase chunking in the text

 pre-processing step. To be fair with shorter sentences, we used the total number of

 proper nouns in a sentence to divide by the length of the sentence.

 𝐹 3 = # 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟 𝑛𝑜𝑢𝑛𝑠 𝑖𝑛 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 4. Number of Numerical Data: A statement containing numerical data is significant, and it is

 most likely included in the reference summary. We converted all numerical words into

 integers in the pre-processing stage. For words like “one hundred and three”, it will turn

 into “1 100 and 3”. We scored sentences depending on the existence of numerical data to

 avoid double counting.

 𝐹 4 = 1 (𝑖𝑛𝑐𝑢𝑙𝑒𝑑) || 0 (𝑛𝑜𝑡 𝑖𝑛𝑐𝑢𝑙𝑒𝑑)

 5. Sentence Length: This feature is good to filter out short sentences like journalist and

 datelines [9]. Also, while Twitter provides an abundant amount of information that can be

 analyzed for text summarization, it goes without saying that it also contains large

 amounts of irrelevant and unnecessary sentences such as common texting abbreviations,

 acronyms, and slang. This feature can help users to lower the chance of those sentences

 appearing in the output summary. We calculated the score by using the length of the

 sentence divided by the length of the longest sentence in the document.

 21

 𝐹 5 = 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 6. Sentence-to-Sentence Similarity: This feature calculated the similarity of a sentence with

 all other sentences in the articles. Important material will be discussed or mentioned

 several times in a document, thus if a sentence is quite similar to previous sentences, it is

 likely to be connected to the primary topic.

 𝐹 6 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 7. Sentence Location: Since the first five sentences in the text could include crucial

 information, we score them by dividing the sentence's position by five and assigning zero

 to all other sentences.

 𝐹 7 = (5 / 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒) 𝑓𝑜𝑟 𝑓𝑟𝑖𝑠𝑡 𝑓𝑖𝑣𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 8. TF/IDF Score: The term frequency-inverse document frequency is a score to reflect the

 importance of a word to a document. The TF/IDF score of a sentence can be computed by

 summing the TF/IDF scores of all words in the sentence [9]. To rank the sentence based

 on TF/IDF score, we will use the score of a sentence to divide the highest score.

 𝐹 8 = 𝑇𝐹 / 𝐼𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒
 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑇𝐹 / 𝐼𝐷𝐹 𝑠𝑐𝑜𝑟𝑒 𝑖𝑛 𝑎𝑙𝑙 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 After defined all features, we used Python library Scikit-fuzzy for the implementation

 and designed to use Gaussian as membership function. The equation of the function is:

µ(𝑥) = 𝑒 − 𝑓 1 *(𝑥 − 𝑓 2) 2

 f1 is the spread and f2 is the midpoint; the function is beneficial if the membership is close to a

 certain value [10]. For each feature, we designed the value for “poor”, “average”, and “good”;

 Fig.7 shows a graph of what the Title/Keyword feature with membership function looks like after

 we defined the values. Next, we created IF-THEN rules for the engine. It is the most important

 22

 part of the inference engine, our features criteria are used to extract the important sentences from

 these regulations [9]. A simple rule will be: IF (F1 is important) and (F2 is important) and (F3 is

 not important) and (F4 is medium) and (F5 is important) and (F6 is medium) and (F7 is

 important) and (F8 is not important) THEN (important). Fig.8 is an example of one sentence’s

 score after being applied to two features in the rule.

 Fig.7. Sample Fuzzy Membership Graph Fig.8. Sample Fuzzy Score Graph

 4.3 Neural Network

 23

 When we use different types of data, a particular feature may be more important. For

 example, when we handle tweets, "sentence location" may not be as important as "number of

 proper nouns" since tweets are usually short. To make sure our model can overcome situations

 like this, we used a neural network model to find out the importance of each feature and designed

 our fuzzy logic rules based on that.

 First of all, we created a model using Tensorflow Kears. The model (see Fig.9) takes

 sentences as input and included three layers with an appropriate number of neurons. The

 activation function of the first two-layer is ReLU and we used sigmoid for the last hidden layer.

 The output of the model will be the eight weights. Unlike the common neural networks model,

 the training target we fit into the model are not weights of features but 0/1 to represent if the

 sentence exists in target summaries.

 24

 To handle the difference between output size and target we created a custom loss function

 and metric function. During the stage we compare the prediction with the target, we included

 feature scores in the custom functions and calculate the predicted target using the formula below:

 𝑦
 𝑝𝑟𝑒𝑑

 = (𝑊 1 * 𝐹 1 + … + 𝐹 8 * 𝑊 8) / (𝑊 1 + … + 𝑊 8))

 Tthe losses are calculated as:

 𝑙𝑜𝑠𝑠 = 1
 2 * (𝑦

 𝑡𝑎𝑟𝑔𝑒𝑡
− 𝑦

 𝑝𝑟𝑒𝑑
) 2

 The metrics are calculated as:

 (True/False) 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = 𝑟𝑜𝑢𝑛𝑑 (𝑦
 𝑝𝑟𝑒𝑑

) == 𝑦
 𝑡𝑎𝑟𝑔𝑒𝑡

 From the sample graph(Fig.11, Fig12, Fig.13) of some weight’s values when training

 with 2984 sentences from BBC News Summary with 50 epochs, we can see that the draft

 weights are around 0.5. Near the end of the experiment, the weights of all sentences are getting

 closer to a final value.

 Fig.11 Example of Unimportant Result

 25

 Fig.12 Example of Medium Importance Result

 Fig.13 Example of Important Result

 26

 4.4 Summriazation Model

 The summarization model we will be using in this project is an abstractive summarizer.

 The main goal is to compare the performance of the abstractive summarizer with and without

 applying fuzzy logic and neural networks. We decided to use the T5 model in transformers

 version 2.8.0 and torch 1.4.0. The model is pre-trained by Google using deep learning on an

 unlabeled big text corpus dubbed Colossal Clean Crawled Corpus [11]. It provides five

 per-trained paths and the difference between those paths is the number of parameters: T5-small

 contains 60 million, T5-base contains 220 million, T5-large contains 770 million, T5-3B

 contains 3 billion and T5-11B contains 11 billion. Because we are only running simulations and

 the dataset is vast, we chose the T5-small pre-trained route to save time.

 4.5 ROUGE Score

 The method we use to compare the result is the ROUGE score. It is one of the most

 common scoring systems used for text summarization models. There are four different measures:

 n-gram overlap compares (ROUGE-N), longest common subsequence (ROUGE-L), weighted

 longest common subsequence (ROUGE-W), and skip-bigram (ROUGE-S)[8]. The one we

 designed to use is ROUGE-1 because our dataset included abstractive and extractive summaries,

 the longest common subsequence may not be a good fit for abstractive summaries comparison.

 Fig.14 ROUGE-N and F1-Score Formulas

 27

 “N” in ROUGE-N is representing the length of overlap words between the reference

 summary and output summary (formulas shown in Fig.13). It will output three different scores:

 precision, recall, and F1-score. For example, we have two sentences here: “I am a student at San

 Jose State University” and “Tom is a student at the University of San Jose”; if we use ROUGE-1,

 overlapping words are “a”, “student”, “San”, “University”, and “Jose”. The precision score will

 be around 0.56, the recall is 0.5 and the F1 score is around 0.53. Python has a library called

 Rouge-Score which provided functionality for ROUGE-N and ROUGE-L, we will use the

 library in our project to get the scores.

 4.6 Web-based Application

 To provide an application for users to use the model simply, we used Drupal to build a

 website with a backend server using Django. The idea is to have two servers: a front-end and a

 back-end. The front-end server will receive the text from the user by simply copy-and-paste to

 the text box or uploading a file, and sending a POST request to the backend server. The back-end

 server will receive the request and process it with our model then send responses back to the

 front end and display it to the user. Figure 16 is showing the architecture of the web application.

 First of all, we used Drupal 9 with MySQL version 8.0.27 and phpMyAdmin version

 5.1.1 to create a simple website on my local host. To be able to use JavaScript and CSS in

 Drupal, we added the Asset Injector module and made sure it preprocess my JS/CSS code. The

 JS code is used to send a request with user input and the CSS code is for styling.

 For the backend server, we used Django to create a local server in another endpoint, it

 will receive the POST request from our Drupal and pass the text into our summarizer. The

 28

 Python version I used is 3.10 and the Django version is 4.0.4. To make sure we can receive

 requests from the front end. We will need to all origins and set up trusted origins in the setting.

 Figure 17 is showing the home and result pages of the website. The home page is where

 users can input text for summarization. Users can select between extractive and abstractive

 summaries and the percentage they would like to extract for extractive summarization. After

 inputting text or uploading a file, it will automatically jump to the result page. It contains a

 summary and original text, and users are able to back to the home page by using the back button.

 29

 Fig.16 Sample Page of Web Application

 30

 5. EXPERIMENTS AND RESULTS

 After pre-processing, we built the Neural Network model to determine the weights of

 each feature. We experimented six times to acquire an average result because the neural network

 models may produce data with minor gaps.

 5.1 Experiment 1: BBC News Summary

 In this experiment, we are utilizing the BBC News Summary dataset. It is unrelated to

 tweets, but we would like to have additional data to test the model and see whether the weights

 of features will vary in different data types. Table 1 displays the outcomes of all six studies. The

 result from one of the experiments is shown in Fig.18, where we can see that the initial value for

 each feature is close to 0.5. After training with all of the articles in the dataset, the values are

 close to zero or one. We determined that traits with a weight of zero are not important, but those

 with a weight close to one are. However, when we see a characteristic change significantly

 during the experiment, such as the third in the picture, we want to label it as "in-between" or

 medium values. From the data, we found the best-fit features are “Keyword/Title” and

 “Numerical Data”. Due to the nature of modern-day journalism, the title of articles often

 pinpoints key findings or important information regarding a subject. Numerical data found in

 articles also often emphasize the magnitude of events and also assists in providing key statistics

 and relevant information. My personal anecdotal observations further solidify the data found

 from our model and find that “Keyword/Title” and “Numerical Data” alone would commonly

 provide a sizeable amount of details regarding a specific article.

 31

 Fig.17. Snapshot of Neural Network Outcome

 Table 1. Neural Network Result of BBC News Summary

 W1 W2 W3 W4 W5 W6 W7 W8

 1 Important Not
 Important

 In between Important Not
 Important

 Not
 Important

 In between Not
 Important

 2 Important Not
 Important

 In between Important Not
 Important

 Not
 Important

 Not
 Important

 Not
 Important

 3 Important Not
 Important

 Not
 Important

 Important Not
 Important

 Not
 Important

 Important Not
 Important

 4 Important Not
 Important

 Important Important Not
 Important

 Not
 Important

 Important Not
 Important

 5 Important Not
 Important

 In between Important Not
 Important

 Not
 Important

 In between Not
 Important

 6 Important Not
 Important

 Not
 Important

 Important Not
 Important

 Not
 Important

 Important Not
 Important

 Result Important Not
 Important

 Medium Important Not
 Important

 Not
 Important

 Medium Not
 Important

 Next, we created fuzzy logic rules based on the importance from above and extractive out

 sentences with high scores. We compared the summary created by the T5 model and the Fuzzy

 Neural Network T5 model with the summary provided by the dataset in Table 2. The highest

 score is the summaries created using the Fuzzy logic score with Neural Network which is an

 extractive summarization. As we mentioned before, extractive summaries are easier to achieve

 32

 since we are comparing words in common. By applying Fuzzy Logic with Neural Network, our

 F-measure score increased about 7.5%.

 Table 2 ROUGE-N Score Comparison for BBC News Summary

 Model Average
 Precision

 Average
 Recall

 Average
 F-measure

 T5 35.3% 75% 48%

 T5 with Fuzzy Neural
 Network

 40.9% 85.0% 55.5%

 Fuzzy Neural Network
 (Extractive)

 70.9% 90.8% 79.6%

 Fig.18 Graph of Experiment One Result

 33

 5.2 Experiment 2: TweetSum

 To check the performance of our model when processing tweets, we experimented using

 the TweetSum dataset. This dataset does not have headlines or titles for each dialog, so we only

 have 7 features. Figure 19 shows a snapshot of one of the results from the neural network, we

 also ran six times for this experiment, and the output results are shown in Table 3.

 Fig.19. Snapshot of the Neural Network Outcome of TweetSum

 Table 3. Neural Network Result of TweetSum Dataset

 W1 W2 W3 W4 W5 W6 W7 W8

 1 \ Not
 Important

 Not
 Important

 Important Not
 Important

 Not
 Important

 In between Not
 Important

 2 \ Not
 Important

 In between Important Not
 Important

 Not
 Important

 In between Not
 Important

 3 \ Not
 Important

 Important Important Not
 Important

 Not
 Important

 In between Not
 Important

 4 \ Not
 Important

 Important Important Not
 Important

 Not
 Important

 Important Not
 Important

 5 \ Not
 Important

 Important Not
 Important

 Not
 Important

 Not
 Important

 Important Not
 Important

 6 \ Not
 Important

 Important Important Not
 Important

 Not
 Important

 Important Not
 Important

 Result \ Not
 Important

 Important Important Not
 Important

 Not
 Important

 Important Not
 Important

 34

 The most essential characteristics as a consequence are "Proper Nouns," "Numerical

 Data," and "Location." Nouns and numerals are quite prevalent in dialogues, and the major issue

 will generally appear at the start of a conversation. This dataset contains customer service

 dialogs from Twitter, and because people seldom repeat themselves in a short period, phrases and

 sentences have a decreased likelihood of being similar to others.

 Table 4 ROUGE-N Score Comparison for TweetSum

 Model Target Summary
 Type

 Average
 Precision

 Average
 Recall

 Average
 F-measure

 T5
 Abstractive 40.6% 30.2% 34.7%

 Extractive 28.6% 41.9% 33.9%

 T5 with Fuzzy
 Neural Network

 Abstractive 50% 27.1% 35.1%

 Extractive 42.3% 47.8% 43.1%

 Fuzzy Neural
 Network

 (Extractive)

 Abstractive 52.9% 14.1% 21.4%

 Extractive 73.8% 43.4% 52.8%

 35

 Fig.20. Graph of Experiment Two Result Compare to Abstractive Summary

 Fig.21. Graph of Experiment Two Result Compare to Extractive Summary

 36

 Because the TweetSum dataset contains both abstractive and extractive summaries, we

 can compare our results to both types. The T5 model received 34.7%, while the abstractive

 summary received 33.9%. It is also the only model that received a better score in abstractive

 summary than extractive. The T5 model was created and trained specifically for abstractive

 summarization so it performs better in abstractive summarization. The extractive model, which

 we created using Fuzzy Logic and Neural Network, got 52% when compared to an extractive

 summary, which is the highest score we have on tweets data, but its abstractive summary score is

 the worse in all models. It is reasonable since the model was not built as abstract. T5 with the

 Fuzzy Neural Network model improved by 9.2% compared to the pure T5 model in extractive

 comparison and improved by 0.4% in abstractive. For the abstractive comparison, we improved

 way less than the previous dataset and also other scores for all models. Tweets data is hard to

 summarize when it is just a short dialog or a few tweets because text summarizers are doing

 better in handling larger text.

 6. CONCLUSION AND FUTURE WORK

 In this project, we discussed different types and methods of Text Summarization. To

 determine the importance of sentences in an article, eight different features, fuzzy logic, and

 neural network was applied to the abstractive model. We utilize Neural Network to determine the

 relevance of each feature in the text to better comprehend and analyze the weight of different

 features in various kinds of data. Then we compared and analyzed the model when dealing with

 tweets and articles. We also built a web-based application for users to simply summarize the

 content using Drupal and Django.

 37

 In the future, we can generate or find a more extensive tweet or another social media

 dataset to improve the training. Currently, very few larger tweet datasets are including a

 human-generated summary since it is hard for people to read hundreds and thousands of tweets

 and come up with a summary. Another part we can improve will be including more features in

 our experiment to consider more possibilities. By using the neural network model, we can

 identify the more important features from a large set of features.

 On the other hand, social media platforms such as Twitter have users from all over the

 world, so applying multilingual and cross-lingual approaches to the model would be beneficial.

 There are numerous non-English messages on Twitter, and our model is currently unable to

 handle tweets in other languages. Many pieces of information are unable to be processed, and as

 a result, many distinct views are lost.

 Last but not least, we may enhance the web-based application with additional

 functionality such as creating accounts, recording the summarization history, selecting alternative

 models, and topic-based summarization.

 38

 REFERENCES

 [1] El-Kassas, W. S., Salama, C. R., Rafea, A. A., & Mohamed, H. K. (2021). Automatic text

 summarization: A comprehensive survey. Expert Systems with Applications , 165 , 113679.

 https://doi.org/10.1016/j.eswa.2020.113679

 [2] Wang, W. M., Li, Z., Wang, J. W., & Zheng, Z. H. (2017). How far we can go with

 extractive text summarization? heuristic methods to obtain near Upper Bounds. Expert

 Systems with Applications , 90 , 439–463. https://doi.org/10.1016/j.eswa.2017.08.040

 [3] Kouris, P., Alexandridis, G., & Stafylopatis, A. (2019). Abstractive text summarization

 based on deep learning and semantic content generalization. Proceedings of the 57th

 Annual Meeting of the Association for Computational Linguistics .

 https://doi.org/10.18653/v1/p19-1501

 [4] Etemad, A. G., Abidi, A. I., & Chhabra, M. (2021). A review on abstractive text

 summarization using Deep Learning. 2021 9th International Conference on Reliability,

 Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO) .

 https://doi.org/10.1109/icrito51393.2021.9596500

 [5] Widyassari, A. P., Rustad, S., Shidik, G. F., Noersasongko, E., Syukur, A., Affandy, A., &

 Setiadi, D. R. (2022). Review of Automatic Text Summarization Techniques & Methods.

 Journal of King Saud University - Computer and Information Sciences , 34 (4),

 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006

 [6] Suanmali, L., Salim, N., & Binwahlan, M. S. (2009, June 1). Fuzzy logic based method

 for improving text summarization . Universiti Teknologi Malaysia Institutional Repository.

 Retrieved November 26, 2022, from http://eprints.utm.my/id/eprint/18963/

 39

 [7] Kyoomarsi, F., Khosravi, H., Eslami, E., Dehkordy, P. K., & Tajoddin, A. (2008).

 Optimizing text summarization based on Fuzzy Logic. Seventh IEEE/ACIS International

 Conference on Computer and Information Science (Icis 2008) .

 https://doi.org/10.1109/icis.2008.46

 [8] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries .

 In Text Summarization Branches Out , pages 74–81, Barcelona, Spain. Association for

 Computational Linguistics

 [9] Shinde, R.D., Routela, S.H., Jadhav, S.S., & Sagare, S.R. (2014). Enforcing Text Summarization

 using Fuzzy Logic.

 [10] Fuzzygaussian . FuzzyGaussian-ArcGIS Pro | Documentation. (n.d.). Retrieved November

 28, 2022, from

 https://pro.arcgis.com/en/pro-app/latest/arcpy/spatial-analyst/fuzzygaussian-class.htm

 [11] Abstractive summarization using Google's T5 . Turbolab Technologies. (2021, November

 12). Retrieved December 4, 2022, from

 https://turbolab.in/abstractive-summarization-using-googles-t5/

 40

https://aclanthology.org/W04-1013

	Abstractive Text Summarization for Tweets
	tmp.1672882147.pdf.xhqnh

