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Abstract We propose a nonparametric Item Response Theory model for dichoto-
mously scored items in a Bayesian framework. Partitions of the items are defined
on the basis of inequality constraints among the latent class success probabilities. A
Reversible Jump type algorithm is described for sampling from the posterior distri-
bution. A consequence is the possibility to make inference on the number of dimen-
sions (i.e., number of groups of items measuring the same latent trait) and to cluster
items when unidimensionality is violated.
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1 Introduction

Educational and psychological tests are often based on a set of items which measure
a unidimensional latent trait, that is, a single personal aspect which is not directly
observable (e.g., ability in a certain subject, tendency toward a certain behavior).
When the test is unidimensional, the responses to the items may be validly sum-
marized by a single indicator (e.g., the sum of the correct responses at individual
level) and respondents may be globally ranked according to such an indicator and
the distance between any two respondents in terms of the single latent trait may be

Francesco Bartolucci
Dipartimento di Economia, Finanza e Statistica, Universita di Perugia, Via A. Pascoli 20, 06123
Perugia, Italy, e-mail: bart@stat.unipg.it

Alessio Farcomeni
Dipartimento di Sanitd Pubblica e Malattie Infettive, Sapienza - Universita di Roma, Piazzale Aldo
Moro, 5, 00186 Roma, Italy, e-mail: alessio.farcomeni @uniromal..it

Luisa Scaccia
Dipartimento di Economia e Diritto, Universita di Macerata, Via Crescimbeni 20, 62100 Macerata,
Italy, e-mail: scaccia@unimc.it



2 Francesco Bartolucci, Alessio Farcomeni and Luisa Scaccia

simply measured. A consequent important aspect is how to test the unidimension-
ality assumption and, in case it is violated, how to group items in a sensible way
so that items in the same group measure the same latent trait. Bartolucci (2007)
introduced a multidimensional parametric Item Response Theory (IRT) model for
dichotomously-scored items, which is based on the assumption that respondents are
grouped into k latent classes of ability, and found the number of dimensions, s, and
clusters of items through a hierarchical agglomerative clustering algorithm based
on the model likelihood. However, this approach is based on certain parametric as-
sumptions which may affect the selected number of dimensions.

In this work, we propose to select s relying on a completely nonparametric model
formulated along the lines of Forcina and Bartolucci (2004). This formulation is
based on a set of inequalities on the conditional probabilities of success in each
item given the level of the ability. The distribution of the ability is still assumed to
be discrete, therefore having k latent classes. Consequently, two items measure the
same dimension if their success probabilities have the same ordering with respect to
the latent classes. Any specific model depends on the number of latent classes and
the set of inequalities on success probabilities, which, in turn, determines a certain
partition of the items into s groups. Inference on the nonparametric IRT models pro-
posed is based on the Bayesian paradigm, allowing us to work with unknown & and
s. Relying on the encompassing approach of Klugkist et al (2005), we formulate
the priors on the parameters of a model that includes any other model of interest.
See also Bartolucci et al (2012). Such encompassing model is the latent class model
(Lazarsfeld and Henry, 1968) with k classes. This automatically defines the priors
on any nested model. For estimation purposes, we use the Reversible Jump (RJ)
algorithm (Green, 1995; Green and Richardson, 2001) applied to the latent class
model. The output is then suitably post-processed to estimate the posterior prob-
ability of any nonparametric IRT model. An alternative algorithm, expected to be
more efficient, is also outlined.

The paper is organized as follows. Section 2 formalizes the nonparametric
IRT model and deals with Bayesian estimation. Section 3 illustrates the approach
through an application on the Mathematics test data used in Bartolucci (2007).

2 Model Formulation and Bayesian Inference

LetY;;,i=1,...,n, j =1,...,r denote the binary outcome measured on the i-th
subject for the j-th item. We assume that the sample of respondents is drawn from
a population divided into & latent classes, with individuals in the same class sharing
the same ability level. Thus the ability is represented by a discrete latent variable
C = having k support points denoted, without loss of generality, by 1,... k. Let
i, ..., m be the class weights and A.; = p(Y;; = 1|C = ¢) denote the probability
of success at the j-th item for any subject i in class c. Given two items, j; and j,
say, these are said to measure the same dimension if there exists a permutation of
1,...,k, denoted by cy,...,c, such that
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In other words, the success probabilities of the two items are ordered in the same
way. Such a characterization of items measuring the same dimension is completely
nonparametric, in contrast with the one in Bartolucci (2007) which is based on a
parametric formulation of A ;. For the full set of items, the nonparametric IRT model
is specified by fixing k and a certain permutation c(lj >, .. ,c,(cj >, of the type (1), for ev-
ery item j = 1,...,r. If there are s different permutations, there are s groups of items

measuring distinct dimension, which are are denoted by _#1,..., #;, collected in

The observed log-likelihood of the model defined above may be easily computed
as

o(A,m)=Y log chnaj;if(l—/lcj)lﬂ’u , )
i c j

where A is the k x r dimensional matrix of probabilities A, j» T is the vector of
class weights 7., and y;; is the observed value of ¥;;. To make estimation easier it is
convenient to introduce the latent class indicators z;., i =1,...,n,c=1,...,, where
zie = 1 if the i-th subject is in latent class c; see for instance Diebolt and Robert
(1994). The complete or augmented data log-likelihood, after augmenting the data
with z;, is then

le(Aym) = Y ziclog(m) + )} zielvijlog(Ae) + (1 = yij)log(1 = Acj)l-~ (3)

2.1 Prior Distributions

Any model of the type above is nested in a latent class model in which the prob-
abilities A, ; are left unconstrained (Lazarsfeld and Henry, 1968). Then, once the
priors have been specified for this model, we can automatically specify those of any
nested model by the encompassing approach (Klugkist et al, 2005): prior distribu-
tions for nested models are automatically derived by truncating the parameter space
according to the constraints of interest.

For the encompassing model we adopt Bayes-Laplace priors for the success prob-
abilities and class weights (Tuyl et al, 2009). This choice reduces to an (uncondi-
tional) uniform prior for A.j, ¢ = 1,...,k. For the class weights this choice cor-
responds to a Dirichlet distribution with vector of parameters having all elements
equal to 1. Finally, we use a uniform prior for & in the discrete set 1,. .., kpax.
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2.2 Estimation strategy based on the Reversible Jump algorithm

Our estimation strategy makes use of the RJ algorithm, which samples from the
posterior distribution of all the parameters of the latent class model, including k.
The RJ output is then post-processed for identifiability (Friihwirth-Schnatter, 2001)
and to deliver all the different partitions of items visited by the algorithm.

The algorithm performs the following steps:

1. Sample indicators of latent class z;. from their full conditional distribution:
V7% H] )ycyjlj(] — A,Cj)liyif
YamIl; l,f}" (1—Apj)' 2

Pr(zic = 1|/Y,A, ) =

2. Update A.;. For each j =1,...,r, we propose simultaneous independent zero-
centered normal increments of the current logit (A;), where Aj = (Ayj,..., 4;).
The candidate A is accepted with probability equal to min(1, p A;), where

log(pas) = Y. Y zie{ijlog(Alj/ Acj) + (1 = yij)log[(1 =A%) /(1 = Ae))]} +

c

+3 [log(A;) +log(1 — A%) —log(Ac;) —log(1 = Aj)] . (4)

The first line on the right side is the log-likelihood ratio. The ratio between the
prior densities cancels out when using uniform priors for A.;, as suggested. Also
the ratio between the proposal densities cancels out, apart from logarithm of Ja-
cobian of the logit transformation, given in the second line of 4.

3. Sample the weights 7y,. .., from the full conditional distribution, which is a
Dirichlet with parameters (14 Y;zi1,...,1+ Y, zi)-

4. Update k. We follow the approach consisting on a random choice between split-
ting an existing latent class into two and merging two existing classes into one.
The probabilities of these alternatives are by and 1 — by, respectively. Of course
by =1 and by, =0, and otherwise we choose by = 0.5 for k =2,... kpax — 1.
For the combine proposal we randomly choose a pair of classes (c1,c¢2), with
7., < T,, not necessarily adjacent in terms of the current value of their weights.
These two classes are merged into a new one, labeled ¢* = ¢, — 1, reducing k by
1. We then reallocate all those observations y;;, j = 1,...,r, with z;; =1 and
Zic, = 1 to the new class ¢* and create values for A+; and 7.~ in such a way that:

Arj=Acyj and Tiex = T, + T, .-

In the split proposal, a class ¢* is chosen at random and split into two new ones
labeled ¢ and ¢, augmenting k by 1. The place assigned to the class ¢; is ran-
domly chosen between 1 and ¢*, while the class c¢; takes the place ¢* + 1. Values
for 7., 7176.2,&.”, /'chj, for j=1,...,r, are created by generating a scalar #; and a

vector uy = (u2;)’_, respectively as uy ~ U[0;0.5] and u; ~ U[0; 1] and setting:
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Toy = U1 T, Ty = (1_1"])”6‘*?
Aclj:uzj and A,CU':AC*/ forj=1,...,r. (®))
Finally we reallocate all those observations y;;, j =1,...,r, with z;« = 1 between

the two new classes, in a way analogous to the standard Gibbs allocation move,
used in step 1. We accept the split move with probability min(1, py), where

Pr(k+1) % @(7171,...77Tk+])
Prk) . o(xt,m)

(e )2 (1) B 20 —bir)
- X biP X 71'62,1, (6)
(705 )& Ciex kalloc

pr = (likelihood ratio) x

X

where Pyjj is the probability of this particular allocation and Z is the Dirich-
let density with all parameters equal to 1. The first four terms in the prod-
uct are the ratio of the likelihood and the priors for the new parameter set to
those for the old one. The fifth term is the proposal ratio. The last term is
the Jacobian of the transformation from (7o, Acx1,..., Ay, U, Unp, ..., Upy) tO
(75 Ay 1y o3 Aeyrs Ty s Aty - - -, Acyr). The combine move is accepted with prob-
ability min(1, p,,:1 ), with some obvious substitutions in the expression for py.

From the RJ output, we estimate the posterior probability of any nonparametric
IRT model visited at least once and the posterior distribution of its parameters. Let
k) be the number of classes of the model visited at sweep ¢ of the algorithm and
A and 7 be the parameters of this model, with r = 1,...,T. Then, we exam-
ine every matrix A® and, for j=1,...,r, we obtain the permutations cgj >, . ,cl(({,))
such that the probabilities in the j-th column of this matrix satisfy inequality (1). As
clarified before, these permutations define a partition of the items in groups corre-

sponding to different dimensions. In particular, the permutation at step ¢ is denoted

)

jgt), 4 g[), where s is the number of dimensions that is found. To avoid a
sort of label-switching problem, the groups are ordered so that ¢ gt) includes the
first item, _# g> includes the item with the smallest index among those excluded

from ¢ (1[), and so on. Finally, the posterior probability of the model with a certain

k and a certain partition of items ¢ |,..., ¢ based on s dimensions is estimated
as:
1
Pric g s) =g A = A= 2 @)
r:s() =g

where the sum is over all sweeps for which s) = s and I{-} is the indicator function.

On the basis of posterior probabilities in (7), different strategies may be adopted
for model selection. We suggest selecting first the value of k on the basis of the
largest number of visits. Then, conditionally on the value of k, we take the partition
with the highest value of the probability in (7). This strategy is similar to that in
Bartolucci (2007). Alternatively, k and the partition #,,..., ¢ can be chosen
jointly as those with the highest posterior probability in (7). This method may lead
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to a value of k£ which is suboptimal in terms of posterior probability, and then we
prefer the first strategy in order to avoid such an incoherence. However, this point
deserves to be investigated in more detail.

2.3 An alternative strategy

The algorithm in Section 2.2 is based on post-processing the RJ output. A different
algorithm might be based on in-line processing as briefly illustrated in the following.
This alternative algorithm might be more efficient than the previous one, given that
the parameter space is reduced. However, it is more difficult to find a reversible
move to update k. Thus, we propose to use this algorithm for fixed k.

Under this second approach, we need to specify a prior on the partition ¢ . A
simple solution is the uniform on the space of partitions, which arises under an
urn model (Corander et al, 2007; Van Cutsem, 1996). Note that the prior for A, i
conditional on the order constraints is rather cumbersome, as it is proportional to
[Malljc s, I{Ac;yj < -+ < Acy,j}- However constraints can be simply imposed dur-
ing the estimation algorithm, and thus we can ignore the factor above.

The algorithm proceeds along the following steps:

—_

. Sample indicators of latent class z;. from their full conditional, as in Section 2.2.

2. Update the partition _#. We propose two possible moves, which can be se-
quentially performed. In the re-allocation of items move we pick ¢ dp with
| # d1| >1,je 7 dp and ¢ b uniformly at random, and we build a proposal
J " by adding jto 7, . In the exchange of items move one element from 7,
ismoved to _#, and we have no cardinality constraints. These transition mech-
anisms define an aperiodic and irreducible finite Markov chain, which is guaran-
teed to converge. For a similar strategy, see Corander et al (2009). The moves are
accepted with probability calculated according to the Metropolis-Hastings rule.

3. Update A; for j=1,...,r, as in Section 2.2. After having sampled the candi-
date A%, we impose the ordering constraints as implied by the current #. It is
straightforward to check that, in the acceptance probability of the re-ordered )\;,
the terms involved in the ordering cancel out (Green and Richardson, 2001), so
that the acceptance probability is the same as the one in Section 2.2.

4. Sample a permutation dy,...,ds of 1,... s (this is done to improve the algorithm
mixing). For d = dy,...,d; a new permutation cyg, ..., Cyg, 1S drawn uniformly
at random in the set of all possible permutations of {1,...,k} excluding those
active in any other latent class. The move is accepted with a probability which
preserves the detailed balance condition.

5. Sample 7y, ..., m from their full conditional, as in Section 2.2.

6. Update the number of groups s. This is a relatively new problem, which might be

solved by adding a split/merge move to vary the number of item clusters. This is

in parallel with popular RJ algorithms, but in a different perspective.



A nonparametric multidimensional latent class IRT model in a Bayesian framework 7

We start by choosing with probability 0.5 between a split and a merge move. If
s = 1, only a split move is allowed, while if s = min(k!,r), only a merge move
is allowed. In the split move, a class is chosen uniformly at random among those
with cardinality strictly larger than one. Let this class be _#;. An integer m be-
tween 1 and |_#,| — 1 is drawn uniformly and m elements at random are elimi-
nated from _#; and used to form a new group, labeled ¢, + 1 and all remaining
groups are relabeled accordingly. The A ordering of the new group is randomly
chosen from the permutations not currently in use. The parameters A of the m
elements are reordered accordingly, but not otherwise updated.

In the merge move, a class at random is combined with the next one, delivering
its A ordering to the new class. The moves defined form a reversible pair and
they are accepted with a probability calculated to preserve detailed balance.

3 An Application in Education Assessment

The proposed approach is applied on a dataset concerning a sample of n = 1510
examinees who responded to a set of r = 12 items on Mathematics. This dataset is
part of a larger dataset collected in 1996 by the Educational Testing Service within
the NAEP project; see Bartolucci and Forcina (2005) for a deeper description.

The results correspond to runs of 100 000 sweeps after a burn-in of 10 000
sweeps. Models with a number of latent classes up to kmax = 10 were considered.
Table 1 shows the posterior distribution Pr(k|Y), from which the model with k = 4
latent classes seems to be favored.

k 1 2 3 4 5 6 7 8 9 10
Pr(k[Y)[0.0000 0.0000 0.3684 0.4621 0.1328 0.0311 0.0048 0.0006 0.0002 0.0000

Table 1 Estimated posterior probabilities of the number of latent classes.

Conditionally on k = 4, the partition which is most visited by the algorithm is
7 =({1,2,5,9,10,11},{3,8},{4,6,7,12}). This partition does not anyway re-
ceive a very large posterior mass, given that it is visited only 367 times. If unidi-
mensionality is actually the focus of the analysis, one may also proceed marginally
with respect to k. In our application, regardless of k, s = 1 occurred 36777 times.
Using the encompassing approach of Klugkist et al (2005), given that the prior prob-
ability is about 0.10; the resulting Bayes factor is 3.7. We therefore actually have
some evidence in favor of unidimensionality for the Mathematics data set.
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