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a b s t r a c t

ABayesian approach is developed for selecting themodel that ismost supported by the data
within a class of marginal models for categorical variables, which are formulated through
equality and/or inequality constraints on generalized logits (local, global, continuation, or
reverse continuation), generalized log-odds ratios, and similar higher-order interactions.
For each constrained model, the prior distribution of the model parameters is specified
following the encompassing prior approach. Then, model selection is performed by
using Bayes factors estimated through an importance sampling method. The approach is
illustrated by three applications basedondifferent datasets,which also include explanatory
variables. In connection with one of these examples, a sensitivity analysis to the prior
specification is also performed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Even if log-linear models are frequently used for the analysis of contingency tables, they do not allow to express, and
consequently test, several hypotheses that are usually of interest, mainly because lower order interactions do not refer to
themarginal distributions to which they seem to refer. This motivatedMcCullagh and Nelder (1989, Chapter 6) to introduce
a class ofmodels inwhich the joint distribution of a set of categorical variables is parametrized through the highest log-linear
interaction within each possible marginal distribution. Several other models have been proposed following the original idea
of McCullagh and Nelder (1989) (see Glonek and McCullagh, 1995; Glonek, 1996; Colombi and Forcina, 2001; Bergsma and
Rudas, 2002; Bartolucci et al., 2007).

In this paper, we deal with a flexible class of models in which: (i) the parameters of the saturated model are given
by generalized logits, in the sense of Douglas et al. (1990), for each univariate marginal distribution, generalized log-odds
ratios for each bivariate marginal distribution, and similar interactions for each higher-order marginal distribution; (ii) any
constrained model may be formulated through linear equality and inequality constraints on such parameters. In this way,
we may express several hypotheses, which are of special interest in the presence of ordinal variables (see Bartolucci et al.,
2001; Colombi and Forcina, 2001), as for instance, that: (i) the marginal distribution of one variable is stochastically larger
than that of another variable, provided that these have the same categories; (ii) a certain type of positive association between
a pair of variables holds; (iii) the marginal distribution of one variable is stochastically increasing with respect to the level
of an explanatory variable.
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0733 258 3242; fax: +39 0733 258 3205.
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For the above class of models, we develop Bayesian inference and, in particular, a model selection strategy based on
the Bayes factor (see Jeffreys, 1935, 1961; Kass and Raftery, 1995), which is defined as the ratio between the marginal
likelihoods of two competing models. For the marginal models considered in this paper, the use of the Bayes factor,
compared to classical strategies based on the likelihood ratio test, has different advantages. First of all, using the Bayes
factor allows for an easy comparison of models parametrized through different types of logit, which would be otherwise
cumbersome using a likelihood ratio test. Moreover, since the Bayes factor is computed as the ratio between two marginal
likelihoods, the presence of nuisance parameters does not affect the inferential results. Notice that this is a relevant problem
in categorical data analysis when studying the association between two variables and the problem also exists when testing
for a certain type of positive association using a likelihood ratio test; for a discussion on this point, see Bartolucci et al.
(2001) and Dardanoni and Forcina (1998). The distribution of this test statistic depends, in fact, on the nuisance parameters
and a possible solution is the conditional approach, which, however, results in a multivariate generalized hypergeometric
distribution for the test statistic. Such a distribution is almost intractable whenever the frequencies or the dimension of the
table aremoderately large, since computing the probability of observing a certain table requires enumerating all the possible
tables with the same margins. The strategy based on Monte Carlo maximum likelihood (Bartolucci and Scaccia, 2004) for
making inference on the parameters of the model under these constraints helps in overcoming the intractability problem
but is still computationally intensive. On the other hand, a drawback of the Bayesian approach proposed here is the need to
specify a prior distribution on the parameters, that does not exist within the likelihood ratio approach.

While the decision theoretic approach leads us to select the model with largest marginal likelihood, we can also use the
Bayes factor as a measure of evidence. In order to assess this evidence we refer to the Jeffreys (1961) scale, which gives the
following guideline: a log Bayes factor below 0.5 indicates poor evidence, between 0.5 and 1 substantial, between 1 and 2
strong, and decisive evidence is provided by a log Bayes factor larger than 2. See also Kass and Raftery (1995).

Bayesian methods for the analysis of categorical data have been dealt with by several authors. For instance, Albert
(1996, 1997) used the Bayes factor to test hypotheses such as independence, quasi-independence, symmetry, or constant
association in two-way and three-way contingency tables. Dellaportas and Forster (1999) proposed a general framework
for selecting a log-linear model through the Reversible Jump algorithm of Green (1995) under a multivariate Normal prior
distribution on the parameters. In practice, both Albert (1996, 1997) and Dellaportas and Forster (1999) dealt with log-linear
models obtained by imposing some linear equality constraints on the parameters of the saturated model; a particular case
is the constraint that a subset of the parameters is equal to zero. Klugkist and Hoijtink (2007), Hoijtink et al. (2008), Klugkist
et al. (2005a,b, 2010), and Wetzels et al. (2010) used, instead, the Bayes factor to compare competing models expressed
through linear inequality and about equality constraints on the saturated model. Under their encompassing prior approach,
the Bayes factor between a constrained model and the encompassing model reduces to the ratio of the probability that the
constraints hold under the encompassing posterior distribution and the probability that they hold under the encompassing
prior distribution. By encompassing model we mean a model whose parameter space includes that of any other model
under consideration. Therefore, once the prior distribution has been specified on the encompassing model parameters
(encompassing prior), it is automatically specified for each submodel.

The selection strategy we adopt for the class of models considered in this paper is related to the approach of Klugkist
et al. (2010). We exploit their encompassing prior approach, which leads to a logically coherent assessment of prior and
posterior model probabilities and parameter distributions, as well as an easy estimation of the Bayes factors. However, our
work differs from that of Klugkist et al. (2010) mainly in three respects: (i) we consider a more general class of models for
categorical data; (ii) we propose an importance sampling method to improve the efficiency of the Bayes factor estimates for
models with very small prior and, possibly, posterior probabilities; (iii) we introduce an iterative algorithm to estimate the
Bayes factor for models specified through about equality constraints, which does not require to sample from a constrained
model parameter space.

The paper is organized as follows. In Section 2 we describe the class of models of interest. In Section 3 we review the
encompassing prior approach and we deal with Bayesian model selection. In Section 4 we illustrate the proposed approach
through three applications involving some datasets of interest in the categorical data analysis literature. Finally, we conclude
with a brief discussion which is provided in Section 5.

2. Marginal models for categorical variables

In this section, we introduce the class of marginal models developed by McCullagh and Nelder (1989) and illustrate
the parametrization based on generalized logits and log-odds ratios; for an overview see also Bergsma et al. (2009). Then,
we show how hypotheses of interest may be expressed through linear equality and inequality constraints imposed on the
parameters of the saturated model.

2.1. Preliminaries

Let A = (A1, . . . , Aq) be a vector of q categorical variables and {1, . . . ,mi} be the support of Ai, i = 1, . . . , q. Also
let r =


i mi be the number of possible configurations of A and let π be the r-dimensional column vector of the joint

probabilitiesπa = p(A = a) arranged in lexicographical order. Suppose, for instance, that there are two categorical variables
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(q = 2) and that the first one has m1 = 2 levels, whereas the second one has m2 = 3 levels. Then, there are r = 6 possible
configurations of the vector A = (A1, A2) and the joint probability vector π has the following structure:

π =

π11, π12, π13, π21, π22, π23


′. (1)

In this context, a possible way to formulate a log-linear model (for a general overview about log-linear models,
see McCullagh and Nelder, 1989, Chapter 6; Christensen, 1997; Agresti, 2002) is as follows. We first define a vector of log-
linear parameters as

λ = H ′log(π), (2)

where H is an r × (r − 1) full rank matrix. Note that the above parametrization may be inverted in an explicit way by

π =
1

exp(Gλ)′1
exp(Gλ), (3)

where G is an r × (r − 1) full rank matrix such that H ′G = Ir−1, with Ih denoting the identity matrix of dimension h,
and 1 is a column vector of ones of the appropriate dimension. Then, this parametrization defines a saturated model, in the
sense that π, as expressed in (3), may assume any possible value in the simplex of dimension r . Constraints on the log-linear
parameters may be expressed as Eλ = 0, for a suitable matrix E and where 0 is a column vector of zeros of the appropriate
dimension. These concepts are clarified below through a simple example.

Again for the case of two variables withm1 = 2 andm2 = 3 categories, considered above, suppose that

H ′
=


−1 1 0 0 0 0
−1 0 1 0 0 0
−1 0 0 1 0 0
1 −1 0 −1 1 0
1 0 −1 −1 0 1

 .

In this way, λ contains two conditional logits for the second variable, that is

log
π12

π11
= log

p(A2 = 2|A1 = 1)
p(A2 = 1|A1 = 1)

and log
π13

π11
= log

p(A2 = 3|A1 = 1)
p(A2 = 1|A1 = 1)

,

one conditional logit for the first variable, that is

log
π21

π11
= log

p(A1 = 2|A2 = 1)
p(A1 = 1|A2 = 1)

,

and the two log-odds ratios

log
π11π22

π12π21
and log

π11π23

π13π21
.

It iswell known that log-odds ratios aremeasures of association between two categorical variables; this point is discussed
in more detail in Section 2.2. In particular, by requiring that all log-odds ratios are equal to 0, we formulate the model of
independence according to which the joint probabilities are given by πa =


i p(Ai = ai). With reference to the above

example, this hypothesis may be formulated as Eλ = 0, with

E =


0 0 0 1 0
0 0 0 0 1


. (4)

2.2. Marginal models

In the following, we describe a saturated parametrization of π based on marginal logits, marginal log-odds ratios, and
similar higher-order interactions.

Marginal logits may be of type local (l), global (g), continuation (c), or reverse continuation (r). For the i-th variable, these
are defined as follows, for ai = 1, . . . ,mi − 1:

• local: ηi(ai; l) = log
p(Ai = ai + 1)
p(Ai = ai)

;

• global: ηi(ai; g) = log
p(Ai ≥ ai + 1)
p(Ai ≤ ai)

;
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• continuation: ηi(ai; c) = log
p(Ai ≥ ai + 1)
p(Ai = ai)

;

• reverse continuation: ηi(ai; r) = log
p(Ai = ai + 1)

p(Ai ≤ ai)
.

Local logits are used when it is of interest to compare the marginal probability of each category with that of the previous
category. Logits of type global and continuation are specially tailored to deal with ordinal variables. In particular, logits
of type global are more appropriate when the variable may be seen as a discretized version of an underlying continuum,
whereas logits of type continuation are more appropriate when categories correspond to levels of achievement that may be
entered only if the previous level has also been achieved, as in education. Finally, using logits of type reverse continuation
is the same as arranging categories in reverse order and using logits of type continuation.

Marginal log-odds ratios are defined as contrasts between conditional logits. For two variables, Ai and Aj, the most well-
known log-odds ratios are shown in the following, where ai = 1, . . . ,mi − 1 and aj = 1, . . . ,mj − 1:

• Local: when logits of type l are used for both Ai and Aj

ηij(ai, aj; l, l) = ηj(aj; l|Ai = ai + 1) − ηj(aj; l|Ai = ai)

= log
p(Ai = ai, Aj = aj)p(Ai = ai + 1, Aj = aj + 1)
p(Ai = ai, Aj = aj + 1)p(Ai = ai + 1, Aj = aj)

;

• Local–Global: when logits of type l are used for Ai and of type g for Aj

ηij(ai, aj; l, g) = ηj(aj; g|Ai = ai + 1) − ηj(aj; g|Ai = ai)

= log
p(Ai = ai, Aj ≤ aj)p(Ai = ai + 1, Aj ≥ aj + 1)
p(Ai = ai, Aj ≥ aj + 1)p(Ai = ai + 1, Aj ≤ aj)

;

• Global: when logits of type g are used for both Ai and Aj

ηij(ai, aj; g, g) = ηj(aj; g|Ai ≥ ai + 1) − ηj(aj; g|Ai ≤ ai)

= log
p(Ai ≤ ai, Aj ≤ aj)p(Ai ≥ ai + 1, Aj ≥ aj + 1)
p(Ai ≤ ai, Aj ≥ aj + 1)p(Ai ≥ ai + 1, Aj ≤ aj)

.

Similarly, three-way interactions are defined as contrasts between conditional log-odds ratios and so on for higher order
interactions.

As mentioned in Section 2.1, marginal parameters cannot be directly expressed by a log-linear parametrization of type
(2). To clarify this point, consider again the case of two variables for which the joint probability vector has the structure in
(1). Then, for instance, we may formulate a model based on the global logits for the second variable, that is

η2(1; g) = log
p(A2 ≥ 2)
p(A2 = 1)

= log
π12 + π13 + π22 + π23

π11 + π21
,

η2(2; g) = log
p(A2 = 3)
p(A2 ≤ 2)

= log
π13 + π23

π11 + π12 + π21 + π22
.

Moreover, wemaymodel the association between the two variables through the following two local–global log-odds ratios:

η12(1, 1; l, g) = log
p(A1 = 1, A2 = 1)p(A1 = 2, A2 ≥ 2)
p(A1 = 1, A2 ≥ 2)p(A1 = 2, A2 = 1)

= log
π11(π22 + π23)

(π12 + π13)π21
,

η12(1, 2; l, g) = log
p(A1 = 1, A2 ≤ 2)p(A1 = 2, A2 = 3)
p(A1 = 1, A2 = 3)p(A1 = 2, A2 ≤ 2)

= log
(π11 + π12)π23

π13(π21 + π22)
.

The previous expressions clarify that these types of logit and log-odds ratio cannot be expressed through the log-linear
form in (2), since they involve logarithms of sums of suitable joint probabilities. As we illustrate in Section 2.3, these effects
are necessary to express certain hypotheses of interest, such as that of marginal homogeneity or certain forms of positive
dependence. On the other hand, marginal models are based on a parametrization that allows us to include these effects. This
is explained in the following.

Let z be a q-dimensional vector of zeros and ones, let ηz be a column vector containing all the marginal interactions
between the variables Ai such that zi = 1 and let η be the vector obtained by stacking, in lexicographical order, the vectors
ηz , for all z ≠ 0. Following Colombi and Forcina (2001), such a vector, which provides the saturated parametrization of π at
issue, may be simply obtained through the following expression, which may be seen as an extension of (2):

η = C log(Mπ), (5)

where C and M are appropriate matrices, whose construction is described in Appendix A; see also Lang (1996). However,
to invert Eq. (5), and so obtain π in terms of η, we must rely on a Newton algorithm as the one described in Glonek and
McCullagh (1995) and Colombi and Forcina (2001); this inversion method is also illustrated in Appendix A. The number of
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elements in η is equal to r − 1, which is the number of free elements of the joint probability vector π, taking into account
the constraint π′1 = 1.

In order to clarify the parametrization in (5), consider again the example above based on two categorical variables. In
this case, the vector of marginal parameters has the following structure

η =

η2(1; g), η2(2; g), η1(1; l), η12(1, 1; l, g), η12(1, 2; l, g)


′, (6)

which is obtained by letting

C =


−1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 −1 0 −1 0 1 0
0 0 0 0 0 0 0 1 0 −1 0 −1 0 1

 , M =



1 0 0 1 0 0
1 1 0 1 1 0
0 1 1 0 1 1
0 0 1 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 0 0 0
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
0 0 0 0 0 1



.

Note that, in this example, the parameter vector η defined in (6) has dimension 5, which is equal to the number of free
elements of the corresponding joint probability vector π defined in (1).

2.3. Constrained models

A variety of constrained models may be formulated by posing linear equality and inequality constraints of the form

Eη = 0, Uη ≥ 0, (7)

on the saturated parameter vector. Here, and throughout the paper, equality constraints are substituted by about equality
constraints of type |Eη| ≤ ϵ, for a vector ϵ > 0 having suitably small elements; this choice is motivated in Section 3.3.

Consider first the case of only two variables, A1 and A2. The most interesting hypotheses are usually on the association
between these variables. Let c = m1 + m2 − 2 be the number of the marginal logits and d = (m1 − 1)(m2 − 1) be that
of the log-odds ratios. For instance, in the case of two variables A1 and A2 with 2 and 3 categories, respectively, we have
m1 − 1 = 1 marginal logits for A1,m2 − 1 = 2 marginal logits for A2, so that c = 3, and d = 2 marginal log-odds ratios.

By requiring that all the log-odds ratios are non-negative, namely by letting

U =

Od,c Id


, (8)

we express the hypothesis of positive association between A1 and A2, where, in general, Oh,j is a matrix of h × j zeros. For
instance, when m1 = 2 and m2 = 3,U is equal to the matrix given in (4). Obviously, the type of association depends
on the type of logit that is used for the two variables. For instance, with local logits for both variables we are formulating
the hypothesis of Total Positivity of Order 2 (TP2; see Karlin, 1968), whereas with global logits for both variables we are
formulating the hypothesis of Positive Quadrant Dependence (PQD; see Lehmann, 1966). Note that there is a hierarchy among
these notions of positive association in the sense that, for instance, TP2 implies that all the continuation log-odds ratios are
non-negative which, in turn, implies PQD (see Douglas et al., 1990, for details). Also note that, regardless of the type of log-
odds ratio, independence between A1 and A2 may be expressed through the constraint that E , rather than U , is equal to the
matrix in (8). A less stringent constraint than that of independence is the constraint of uniform association, namely that all
the d log-odds ratios are equal to each other (Plackett, 1965). This type of constraint is formulated by letting

E =

Od−1,c Dd−1


,

where, in general, Dh =

0 Ih−1


−


Ih−1 0


is a matrix that produces first differences.

When A1 and A2 have the same categories, the number of which is indicated bym, constraints on the univariate marginal
distributions may also be of interest. For instance, we may formulate the constraint of marginal homogeneity by letting

E =

−Im−1 Im−1 Om−1,d


.

When global logits are used for both variables, the constraint that A2 is stochastically greater than A1 may be imposed by
letting U , rather than E , equal to the matrix above. When there are more than two variables, similar constraints may also
involve interactions of order higher than two. These are typically of interest in the presence of longitudinal data. Some useful
insights on how formulating a marginal model in these situations are provided by Glonek and McCullagh (1995).
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The approach outlined above may be easily extended when dealing with one or more explanatory variables, which are
collected in the vector B. Every possible configuration of these variables, say b, defines a stratum conditionally on which we
have a vector of joint probabilities of the response variables, π(b), and a vector of marginal parameters, η(b), defined as in
(5). Obviously, in this settingwemay impose the same constraints illustrated abovewithin each stratumand also constraints
involving the parameters of different strata. These constraints are still of the type Eη = 0,Uη ≥ 0, but in this case by η we
mean the vector obtained by stacking the vectors η(b) for every b. For instance, when we only have two response variables,
we may express the constraint of conditional independence between A1 and A2, given B, by

E = Is ⊗

Od,c Id


,

where s is the number of strata, that is the number of different configurations of B, and ⊗ denotes the Kronecker product.
For instance, if q = 2 and, as in the example considered so far,m1 = 2 andm2 = 3, with s = 2 strata we have

E =

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 .

Wemay also formulate the hypothesis that A1 and A2 have the same degree of association for each stratum by letting

E = Ds ⊗

Od,c Id


,

which, for the example at hand, becomes

E =


0 0 0 −1 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 1


,

or the hypothesis that the explanatory variables do not affect the marginal distributions of A1 and A2, by letting

E = Ds ⊗

Ic Oc,d


.

Finally, if we have only one explanatory variable, B, and this is ordinal, we can express the constraint that the marginal
distributions of A1 and A2 increase with the level of B by letting U , rather than E , equal to the matrix above.

3. Bayesian estimation and model selection

In this section we show how tomake inference on themodels presented in the previous section. In particular, Section 3.1
is devoted to the choice of appropriate priors for the class of models at issue, Section 3.2 is focused on assessing the
plausibility of the different models, given an observed contingency table, Section 3.3 deals with computational issues which
arise in estimating the Bayes factor, and Section 3.4 illustrates how to perform parameter estimation in an efficient way.

In the following, when the data are not stratified, we denote the frequency corresponding to the configuration a of the
observed table by ya and by y the vector with elements ya arranged as in π, so that, with q = 2,m1 = 2, and m2 = 3,
for example, we have y =


y11, y12, y13, y21, y22, y23


′. When the data are stratified according to one or more explanatory

categorical variables, we have a vector of frequencies y(b) for every configuration of such variables and, consequently, y
denotes the vector obtained by stacking the vectors y(b) for every b.

3.1. Prior distributions

In a Bayesian framework, it is natural to include equality and inequality constraints imposed on themodel parameters as
prior knowledge. Since all the constrainedmodels presented in Section 2.3 are nested in an unconstrained (or encompassing)
model, we use the concept of encompassing prior (Klugkist et al., 2005a,b, 2010; Klugkist and Hoijtink, 2007). Therefore, we
specify the prior distribution only for an encompassingmodel and thenwederive the prior distributions for the othermodels
by restricting the parameter space according to the constraints of interest. This approach has a very nice interpretation: the
resulting Bayes factor formodel selection (see Section 3.2) coincideswith the ratio between the proportions of the parameter
space that are in agreementwith the constrainedmodel, under the posterior and the prior distributions of the encompassing
model. This approach also has the advantage that only one single prior distribution needs to be specified. Moreover, the
method can be seen as a generalization of the method based on the Savage–Dickey density ratio, which overcomes the
Borel–Kolmogorov paradox (Dawid and Lauritzen, 2001). See Wetzels et al. (2010) for a detailed discussion on this point.

In the present framework, it is natural to choose the saturated model based on the parameter vector π as the
encompassing model. Under this model, the parameter space is the simplex of dimension r and the frequency vector y
has multinomial distribution with parameters n, the number of observations, and π. The choice of the π parametrization,
rather than the parametrization based on the vector of marginal parameters η, is motivated by the fact that it also makes
straightforward the comparison between different types of logit.
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Let M1 indicate the saturated (encompassing) model and let p(π|M1) denote the encompassing prior distribution. The
prior distribution of each constrained modelMk, for k = 2, . . . , K , directly follows from this prior as

p(π|Mk) =
p(π|M1)δk(π)
p(π|M1)δk(π)dπ

= αkp(π|M1)δk(π), (9)

where the integral is on the simplex of dimension r . Moreover, δk(π) is the indicator function equal to 1 if π is in accordance
with the constraints defining model Mk and to 0 otherwise and αk is the inverse of the proportion of the parameter space
that, under the encompassing prior, is in agreement with these constraints. Obviously, the constrained prior in (9) is not
defined for a model with equality constraints, but it is defined for a model formulated by about equality constraints.

Under the encompassing prior approach, the posterior distribution of the parameters for each constrained model also
follows immediately from the posterior under the encompassing model. In particular, we have

p(π|y,Mk) =
p(π|y,M1)δk(π)
p(π|y,M1)δk(π)dπ

= βkp(π|y,M1)δk(π), (10)

where, now, βk is the inverse of the proportion of the parameter space that, under the encompassing posterior, is in
agreement with the constraints of modelMk.

Coming to the issue of choosing the encompassing prior p(π|M1) for π, the uniform distribution on the simplex of
dimension r has been acknowledged to be the default prior. This is equivalent to assuming for model M1 that, a priori,
π ∼ D(1), where D(1) denotes the Dirichlet distribution with parameter 1. See, for instance, Tuyl et al. (2009) for a detailed
discussion on this choice.

The posterior for the saturated parametrization π, with the default prior choice, is readily derived and it is of type
D(1r + y). Therefore, samples can be independently drawn from the prior and posterior distributions for the saturated
model and the corresponding normalizing constants are available in closed form.

3.2. Model selection

Let M = {M1, . . . ,MK } denote the set of models of interest. As already noted, with the exception of the saturated model
M1, each of these models is defined by a certain type of logit for every response variable and by constraints of type (7) on
the vector of marginal parameters. ModelsM2, . . . ,MK are all nested inM1, but not necessarily nested in one another.

For model selection, we make use of the Bayes factor, which is the ratio of the marginal likelihoods of two competing
models. Thus, the Bayes factor for modelMk versus the encompassing model is defined as:

Bk1 =
p(y|Mk)

p(y|M1)
=


p(y|π,Mk)p(π|Mk)dπ
p(y|π,M1)p(π|M1)dπ

,

where p(y|π,Mk) and p(y|Mk) denote the likelihood of the data and the marginal likelihood for modelMk, respectively. The
Bayes factor measures the evidence that the data provide for one model versus the other and corresponds to the change
from prior model odds to posterior model odds. Obviously, the larger is Bk1, the greater is the evidence provided by the data
in favor of Mk with respect to M1. So, when Bk1 is larger than 1, or equivalently log(Bk1) > 0, model Mk has to be preferred
to modelM1. To compare more than two models, or equivalently to choose the best model in M when K > 2, a convenient
possibility is to single out M1 as the reference model and then to compute the Bayes factor between any other model and
the unconstrained one, that is Bk1, for k = 2, . . . , K . Themodel to be preferred is that with the largest Bayes factor, provided
that it is larger than 1; otherwise the best model is the saturated model. Obviously, the Bayes factor for comparing every
pair of modelsMk and Ml, which are not necessarily nested, is straightforwardly computed as Bkl = Bk1/Bl1.

It is important to note that the Bayes factor, as model selection tool, combines goodness of fit with a correction for model
complexity; see, among others, Spiegelhalter and Smith (1982), Jefferys and Berger (1992), Kass and Raftery (1995) and the
references therein.

3.3. Computational issues in estimating the Bayes factor

Direct computation of the Bayes factor is almost always infeasible, and this also happens for the class of models dealt
with here. Several methods have been proposed to estimate the Bayes factor numerically, but the estimation is generally
cumbersome from the computational point of view (see Gamerman and Lopes, 2006, Chapter 7, for a review).

The encompassing prior approach renders a nice interpretation of the Bayes factor for a constrained model Mk with
respect to the encompassing model M1, which virtually eliminates the computational complications in the Bayes factor
estimation. In fact, as demonstrated in Klugkist et al. (2005a), the Bayes factor for a constrained model Mk versus the
encompassing model M1 reduces to the ratio between the proportions of the parameter space that are in agreement with
the constraints definingMk under the posterior and under the prior distribution ofM1, that is

Bk1 =
αk

βk
. (11)



Author's personal copy

4074 F. Bartolucci et al. / Computational Statistics and Data Analysis 56 (2012) 4067–4080

The above result implies that estimating the Bayes factor is particularly simple. The encompassing prior is sampled and
αk is estimated as α̂k, which is the inverse of the proportion of the sample draws that are in agreement with the constraints
definingmodelMk. Similarly, sampling from the encompassing posterior allows us to estimate βk as β̂k, which is the inverse
of the proportion of the draws that are in agreement with the constraints of modelMk. In this way, using just one sample of
a large number of draws from the encompassing prior and another from the encompassing posterior, the estimate

B̂k1 =
α̂k

β̂k

can be computed for each constrained modelMk, k = 2, . . . , K .
Note that, in our setting, the choice of the Dirichlet default prior for π allows to sample independently under both the

encompassing prior and posterior distributions, leading to further simplifications in estimating the Bayes factor. Moreover,
in some cases αk can be exactly computed without the need of sampling from the encompassing prior. However, there are
two issues that we must deal with when estimating the Bayes factor and that we illustrate in the following.

First of all, a rare event problem can arise. Consider for instance our example in Section 4.1: we have a six by six
contingency table with 35 free parameters under the unconstrained model. The hypothesis of positive association is
formulated by requiring the positivity of the 25 log-odds ratios. When using logits of type l for both variables, the constant
1/αk for a positive association model can be calculated exactly as 0.525

= 2.9802 × 10−8. In this case, sampling from the
encompassing prior is not required, but such a small value of 1/αk can be common to other models. For these models, even
if we drew millions of values from the encompassing prior, we would expect to draw no values satisfying the constraint.
This would lead an estimate of the Bayes factor equal to∞ or to∞/∞, in case the same problem also arises when sampling
from the encompassing posterior. Furthermore, even if a finite estimate of the Bayes factor can be obtained, its variance
would be huge.

The problem described above is that of rare event simulation (e.g., Bucklew, 2004), which is often overcome through
importance sampling. Suppose we want to estimate 1/αk. From (9) it immediately follows that 1/αk = Ep[δk(π)], where the
expected value is calculated with respect to the encompassing prior p(π|M1). Now, letting g(π) be any density such that
p(π|M1) = 0 whenever g(π) = 0, we can re-write

Ep[δk(π)] =


p(π|M1)δk(π)dπ =

 
p(π|M1)

g(π)
δk(π)


g(π)dπ = Eg


δk(π)

p(π|M1)

g(π)


, (12)

where the last expected value is now calculated under the importance density g(π). Then, an importance sampling estimate
of 1/αk can be obtained by samplingπ froman appropriate importance density and estimating the last expected value in (12)
through the sample mean. If required, an estimate of 1/βk can be obtained in a similar way, after choosing an appropriate
sampling density.

In this paper, we propose an automatic way to obtain an adequate importance sampling density. Suppose we want to
estimate 1/βk for a certain modelMk; then the proposed method is based on the following steps:

(i) compute the maximum likelihood estimate of the vector η under the constraints imposed by model Mk (see Colombi
and Forcina, 2001) and indicate this estimate by η̂;

(ii) convert η̂ into π̂ using the Newton algorithm described in Appendix A; see also Glonek and McCullagh (1995) and
Colombi and Forcina (2001);

(iii) choose as importance density a Dirichlet distribution with mean vector equal to π̂, that is g(π) ∼ D(φπ̂), where φ
is a tuning parameter that can be appropriately chosen so that enough draws from the importance density satisfy the
constraints imposed by model Mk. The optimal tuning parameter could be chosen by minimizing the variance of the
approximation, but this expression depends itself on the target quantity. A simple approach, whichwe use in this paper,
is to try different values of φ on a suitable grid (say from 0.02 to 50).

The same strategy can be adopted for choosing an appropriate importance density to estimate 1/αk. In this case, the
maximum likelihood estimate η̂ in (i) will be that corresponding to a hypothetical contingency table having a vector of
frequencies y with all elements equal to a constant value.

A way to assess the success of the importance sampling is given by computation of Effective Sample Size (ESS); see,
among others, Liu (2001). Let

w(π) =
p(π|M1)

g(π)

denote the unnormalized importance weight in (12), and v denote the number of draws from g(π). The ESS is defined as

ESS(v) =
v

1 + cv2
, (13)

where cv denotes the coefficient of variation of the weights. A possible general strategy for tuning the proposal distribution
is by choosing a tuning parameter giving an ESS not too smaller than v.

To give an idea of the precision of the algorithm, we consider again the example in Section 4.1, to which we already
referred. For those data, we compared the true value of 1/αk, exactly computable for the TP2 model, with its estimates
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Table 1
True and estimated 1/αk for the model including TP2 on the basis of the data
in Section 4.1.

True value Estimate #1 Estimate #2 Estimate #3

2.9802 × 10−8 2.2315 × 10−8 2.8510 × 10−8 3.5776 × 10−8

obtained in three separate runs of the algorithm. The results, which are given in Table 1, show that the approximation is
rather satisfactory in all cases. A more convincing evidence was also obtained by independently repeating sampling 100
times. For 93% of these repetitions, the true value of 1/αk fell in the 95% confidence interval calculated around the estimated
value 1/α̂k.

The second issue in estimating the Bayes factor arises in the presence of equality constraints. For models formulated
through these constraints, the Bayes factor cannot be interpreted as the ratio between the proportions of encompassing
posterior and prior in agreement with the constraints, since these proportions would be exactly zero. However, it has been
recently shown (Wetzels et al., 2010) that the encompassing approach naturally extends to exact equality constraints by
considering the ratio of the heights for the encompassing posterior and prior distributions evaluated under the constraint
(i.e., the Savage–Dickey density ratio). However, this approach to handle hypotheses specified through exact equality
constraints complicates the computation of the Bayes factor for models containing both equality and inequality constraints.
For this reason, we rather prefer to follow the idea of Berger and Sellke (1987) and Klugkist et al. (2010) of substituting exact
equality with about equality constraints. In this way, the interpretation of the Bayes factor provided in (11) is preserved and
models containing inequality or about equality constraints, as well as a mix of both constraints, can be handled in a unified
manner.Moreover, Berger andDelampady (1987) noted that a Bayes factor based on equality constraints is indistinguishable
from a Bayes factor based on about equality constraints, provided that the interval around the exact equality constraint is
small enough. However, if this interval is too small, we incur again in the rare event problem illustrated above, when trying
to estimate 1/αk and 1/βk.

To solve the above problem, Klugkist et al. (2010) proposed a stepwise procedure which guarantees that a small enough
interval is used and does not actually need to pre-specify the size of this interval. In principle, we could use this method
to estimate the required constants αk and βk. This method is based on drawing random numbers from suitably truncated
Gamma distributions, which are then normalized to obtain the vectorπ. Theway inwhich the support of these distributions
is chosen depends on the adopted constraints. In our case, however, the complexity of the models implies that it is difficult
to define how the support of each of these variables must be constrained; on the other hand, a rejection sampling procedure
to draw random values from the truncated normal would be rather slow. For these reasons, we prefer to adapt the iterative
procedure in Klugkist et al. (2010) employing again the importance sampling method. According to our procedure, only
two different samples, one drawn from the importance density for the prior and the other one from the importance density
for the posterior, are required to estimate the Bayes factor, thus overcoming the problem of sampling from constrained
distributions, which affects the procedure in Klugkist et al. (2010). The details of the proposed algorithm are given in
Appendix B.

As a further remark, we stress that the complexity of the constraints imposed by the models considered here makes
unfeasible, or at least very time consuming, to estimate themarginal likelihoodof each constrainedmodel using, for example,
the approach in Chib (1995), since this would require an MCMC algorithm for sampling from the constrained posterior
distribution of the parameters. Using the parametrization in ηwould allow to exploit the approach in Chib (1995) but would
complicate the comparison between models based on different types of logit.

3.4. Parameter estimation

Coming to the issue of parameter estimation, we have to recall that, for the class of models considered here, obtaining
point or interval estimates of the parameters is not in general of great interest. Themain interest is rather onmodel selection
as a tool for evaluatingwhich hypothesis is mostly supported by the data. Nevertheless, once a particularmodelMk has been
selected for the data at hand, Bayesian parameter estimation is based on the posterior distribution of the parameters and, in
our setting, a sample from this posterior is already available after model choice, as a byproduct of the procedure to estimate
βk. In particular, we take the set of all the draws from the parameter posterior distribution of the saturated model, D(1+ y),
that are in agreement with the constraints imposed by model Mk. This set should contain enough draws to be also used for
parameter estimation purposes.

Obviously, parameter estimates can be obtained in the way described above for models defined by about equality
constraints but not for models defined by exact equality constraints. As an alternative, if estimates under exact equality
constraints are required, the parametrization in η can be used, after choosing an appropriate prior distribution on
this parameter vector, for example a Gaussian distribution. However, as already noticed, such a parametrization would
complicate model selection in the presence of models expressed through different types of logit.
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Table 2
Father (A1) and son (A2) occupational status for a
sample of 3488 British males.

A1 A2

I II III IV V VI

I 125 60 26 49 14 5
II 47 65 66 123 23 21
III 31 58 110 223 64 32
IV 50 114 185 715 258 189
V 6 19 40 179 143 71
VI 3 14 32 141 91 106

4. Applications

In the following, we illustrate the proposed approach through three applications involving some interesting datasets
which also include explanatory variables. In the first application, illustrated in Section 4.1, we also show the results of a
sensitivity analysis with respect to prior specification.

4.1. Classification of men by social class and social class of their fathers

We first consider a dataset (see Table 2) referred to a sample of British males cross-classified according to their
occupational status (A2) and that of their father (A1). The data have been already analyzed by other authors, such asGoodman
(1991) and Dardanoni and Forcina (1998). In particular, Dardanoni and Forcina (1998), following a likelihood ratio approach,
concluded that the data conform to some forms of positive association. However, due to the presence of nuisance parameters,
given by marginal column probabilities, they did not reach a definitive conclusion about TP2.

For these data we first compared the saturated model (M1) with the independence model (M2), the saturated model
incorporating PQD (M3) and that incorporating TP2 (M4). For each of the latter three models we estimated the Bayes factor
with respect to the saturated model, taken as reference model, through the algorithm described in Section 3.2. We obtained
the following results:

log(B̂21) log(B̂31) log(B̂41)

−34.88 4.32 5.12

To compute B̂21 (see Section 3.3) we used φ = 20 for the prior and φ = 1 for the posterior, where as importance
distribution we used a Dirichlet distribution with parameters corresponding to the maximum likelihood estimate of the
parameters under the independence model. Since we have about equality constraints, we used the algorithm in Appendix B
starting from ϵ = 0.1 · 1, with tuning parameter b = 0.5. The algorithm was stopped after two iterations, hence with
ϵ = 0.025 · 1. The same approximation was computed 100 times and we found it fairly stable (we obtained a standard
deviation of the 100 replicates smaller than 2). We report the average estimate, which can be seen as a single estimate
obtained from a concatenated sample. The other two Bayes factors do not involve about equality constraints, but only
inequality constraints. For the case of PQD (i.e., B̂31), we did not need importance sampling because sampling directly from
the prior and posterior gives a large number of draws satisfying the constraint.

The hypothesis of independence must be definitely rejected, whereas that of positive association may be accepted. In
particular, the model incorporating TP2, formulated by requiring that all the local log-odds ratios are non-negative, has to
be preferred to that incorporating PQD,which is formulated through global log-odds ratios. Thismeans that the data conform
to the strongest notion of positive association among those considered by Douglas et al. (1990). Hence, we can state that
sons coming from a better family have a higher chance of success also conditional on remaining within any given subset of
neighboring classes. On the other hand, the hypothesis of uniform association has to be rejected since, comparing themodel
incorporating this constraint in addition to TP2 (M5) with model M4, we obtained log(B̂54) = −28.01.

In order to perform some sensitivity analysis, we also calculated the Bayes factors in the table above under other three
different Dirichlet priors, obtaining the following results:

log(B̂21) log(B̂31) log(B̂41)

D(0.5 · 1) −34.49 4.26 5.04
D(2 · 1) −34.22 4.36 5.26
D(5 · 1) −32.18 4.39 6.04

It can be seen that there is only a slight sensitivity to prior assumptions for these data. By varying the prior parameters,
we do not reach different conclusions with respect to model choice. We obtained similar results, not reported here, for the
other Bayes factors computed in this section and in the next two sections.

Moving back to the data, we also considered some constraints on the marginal distributions of the response variables.
In particular, we considered model M6, formulated by incorporating in M4 the constraint that the marginal distributions
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Table 3
Alzheimer’s disease (A1) and cognitive impairment (A2) for
a sample of 513 elderly people, stratified by age (B: less
than 75, more than 75).

A1 A2 (<75) A2 (≥75)
IV III II I IV III II I

V 2 1 1 0 14 24 2 0
IV 1 12 10 1 19 48 25 0
III 0 8 27 5 1 25 63 4
II 0 0 20 4 0 0 35 7
I 0 0 0 85 0 0 0 69

of A1 and A2 are equal, and model M7, by incorporating in M4 the constraint that every local logit of A2 is greater than the
corresponding local logit of A1; this in turn implies that the marginal distribution of A2 is stochastically greater than that of
A1. The Bayes factors of these two models with respect toM4 are:

log(B̂64) log(B̂74)

−0.78 2.22

Model M7 seems to be supported by the data. This means that we can observe not only pure mobility, that is positive
association between family’s origin and the son’s status, but also structural mobility, which instead refers to how far apart
the two marginal distributions are and is essentially related to socioeconomic growth.

4.2. Classification of elderly people by Alzheimer’s disease and cognitive impairment

The second dataset we analyzed (see Table 3) is referred to a sample of elderly people cross-classified by Alzheimer’s
disease (A1) and cognitive impairment (A2), stratified by age (B); the data are taken from Agresti (2002, Chapter 7). The
levels ofA1 are: (IV) highly probable; (III) probable; (II) possible; (I) unaffected; the levels ofA2 are: (V) severe; (IV)moderate;
(III) mild; (II) borderline; (I) unaffected.

As the categories of both response variables are in reverse order, we based our analysis on reverse continuation logits.
In this setting, we compared the saturated model (M1) with the model of conditional independence (M2) and the saturated
model incorporating positive association in each stratum (M3). The estimated Bayes factors are:

log(B̂21) log(B̂31)

−6.31 4.76

The hypothesis of conditional independence is not supported by the data, whereas that of positive association in each
stratum is strongly supported. This means that, also conditionally on the age, worst diagnoses of Alzheimer’s disease are
associated with most severe cognitive impairment.

We tried to test further hypotheses on the association between the two response variables. In particular, we considered
the following constraints: (i) the level of the association is the same in each stratum; (ii) the association is stronger in the
first stratum; (iii) the association is stronger in the second stratum. The models obtained by incorporating these hypotheses
in M3 are denoted byM4,M5, andM6, respectively. The estimated Bayes factors for these models with respect toM3 are:

log(B̂43) log(B̂53) log(B̂63)

−4.26 −22.40 8.12

A certain amount of evidence in favor of model M6 is noted. Using this as reference model, further constraints on the
marginal distributions can be added, such as: the marginal distribution of A1 increases, namely the reverse continuation
logits decreases, with age (M7); themarginal distribution of A2 increases with age (M8); bothmarginal distributions increase
with age (M9). We have the following results:

log(B̂76) log(B̂86) log(B̂96)

6.37 17.17 22.14

ModelsM7,M8, andM9 seem to be all compatible with the data, therefore we chose the one with the highest Bayes factor as
the most plausible one, which is model M9. This implies that, as age increases, individuals are more likely to have a serious
level of cognitive impairment and to be diagnosed the Alzheimer’s disease with a higher degree of confidence. Therefore,
age does not only affect the association between the two response variables, that is stronger for elder people, but also shows
a direct effect on their marginal distributions.
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Table 4
Response to treatment over time (A1, A2, A3 , A4) for a sample of 72 subjects, stratified by the type of treatment (B).

Treatment Placebo
A3 I II III I II III

A1 A2 A4 I II III I II III I II III I II III I II III I II III

I
I 0 1 0 0 0 0 0 0 0 0 6 1 0 2 0 0 0 0
II 0 2 0 0 3 2 0 0 1 0 3 1 0 6 2 0 0 0
III 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0

II
I 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0
II 0 0 1 0 2 4 1 1 0 0 1 0 0 1 2 0 3 3
III 0 0 0 0 1 3 0 0 5 0 0 0 0 1 0 0 0 1

III
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
II 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0
III 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0

4.3. Clinical trial for skin disorder

The dataset in Table 4, already analyzed by Glonek and McCullagh (1995) and Koch et al. (1991), refers to a clinical trial
which, for confidentiality, was fictitiously described as pertaining to the treatment of a skin disorder. The 72 subjects in
the study were divided into two groups, the first one receiving the treatment and the second one receiving the placebo.
An ordinal response variable, with levels poor/fair (I), good (II), and excellent (III), was recorded for each subject on four
different occasions: 3 days (A1), 7 days (A2), 10 days (A3), and 14 days (A4) after the treatment. Given the nature of the
response variables, it is natural to use global logits.

The data are very sparse, as 128 of the 162 cells are empty. Therefore, following Glonek andMcCullagh (1995), the largest
model we considered is a reduced model in which all the interactions of order higher than two are set equal to zero. Such a
model, that we indicate by M2, does not constrain the association between every pair of response variables to be the same
in the two strata and, in this respect, is less restrictive than the largest model considered by Glonek and McCullagh (1995).
Note thatM1, the saturated model, is still used as a reference model to calculate the Bayes factors but is not included in the
set of models of interest.

We first compared model M2 with the model that Glonek and McCullagh (1995) chose as final model (M3). The latter is
based on the following constraints: (i) there is uniform association within each stratum and between the strata; (ii) there is
a constant shift between marginal logits over time and between strata. Comparing this model, with modelM2, we obtained
log(B̂32) = 0.19. There is a very mild evidence in favor of M3. Finally, using M3 as reference model, we considered model
M4 obtained from M3 by incorporating PQD and the constraint that the marginal distribution of each response variable is
stochastically greater for the second stratum than for the first one. These hypotheses seem to be supported by the data, as
we have log(B̂43) = 2.38.

5. Discussion

In this paper, we propose a unifying framework for selecting marginal models (McCullagh and Nelder, 1989; Bergsma
et al., 2009) for contingency tables which are specified through about equality and inequality constraints. The approach is
based on a simple specification of prior distributions, for deriving coherent inference, and on the use of the Bayes factor.

Our proposed strategy involves only evaluation of the probability mass given to the constrained parameter space under
the prior and under the posterior. In certain cases this is straightforward. In other cases, importance sampling is needed to
overcome a rare event problem.

Wehave proposed using importance samplingwithDirichlet proposal distribution, and a strategy for obtaining a possibly
good proposal by centering it around the maximum likelihood estimate. We underline that there is nothing making the
Dirichlet distribution a good proposal in general. A great advantage of the Dirichlet distribution is that very efficient
algorithms allow to quickly generate an extremely large number of independent draws from it. In our implementation, we
have sometimes generated up to a million draws in few seconds, obtaining highly precise importance sampling estimates.
The Dirichlet distribution can though be a good proposal only after careful tuning, and our maximum likelihood strategy
does not necessarily give a satisfactory solution. We recommend checking the Effective Sample Size (Liu, 2001) after
performing importance sampling and improving the proposal distribution if needed. A limitation of this procedure is that
it is not automatic, and can be computationally intensive when repeated many times. Nevertheless, we suggest using the
proposed approach, instead of the maximum likelihood approach in the following situations. First of all when comparing
models parametrized through different types of logit, whichwould be otherwise cumbersome using the likelihood ratio test.
Secondly,whenever dealingwith frequencies or tablesmoderately large. The distribution of the likelihood ratio test depends,
in fact, on the nuisance parameters represented by the marginal distributions. The conditional method used to deal with
this problem under the maximum likelihood approach results in the multivariate generalized hypergeometric distribution
(Bartolucci et al., 2001) which is intractable for moderately large tables and requires a computationally demanding Monte
Carlo maximum likelihood approach for parameter estimation (Bartolucci and Scaccia, 2004). The approach we propose in
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this paper, being based on the Bayes factor, is not affected by the presence of nuisance parameters and, in these cases, it
represents a viable alternative to the maximum likelihood approach.

Appendix A. Transformation from π to η and its inversion

The matrices C andM in (5) may be obtained as follows. C is a block diagonal matrix with blocks of columns Cz , ordered
as the subvectors ηz in η, given by

Cz =

q
i=1

Ci,

where Ci = 1 if zi = 1 and Ci =

−Imi−1 Imi−1


otherwise. Similarly,M has blocks of rowsMz given by

Mz =

q
i=1

Mi,

where Mi = 1′ if zi = 0; otherwise, we have

Mi =




Imi−1 0
0 Imi−1


if logits of type l are used for the i-th variable,

Tmi−1 0
0 Tmi−1

′


if logits of type g are used for the i-th variable,

Imi−1 0
0 Tmi−1

′


if logits of type c are used for the i-th variable,

Tmi−1 0
0 Imi−1


if logits of type r are used for the i-th variable,

where Th is an h × h lower triangular matrix of ones.
In order to invert the transformation at issue, and then to obtainπ corresponding to a given η, themost generalmethod is

based on a Newton algorithm. In order to take into account that π belongs to the simplex of order r , this algorithm updates,
instead of π, a log-linear representation of this vector of type (2), which is based on H ′

=

−1 Ir−1


, so that

G =


0′

Ir−1


.

This parametrization is based on a vector of log-linear parameters denoted by λ on the basis of which we obtain π through
the explicit expression in (3).

Let λ(t) denote the vector of log-linear parameters at the t-th step of the Newton algorithm, let π(t) denote the
corresponding joint probability vector, and let η(t) denote the corresponding vector of marginal parameters obtained by
(6). Then, starting from an initial value λ(0), this algorithm iteratively updates it, by performing at the t-step the following
operation:

λ(t)
= λ(t−1)

+ R(t−1)(η − η(t−1)),

where

R(t)
= [C(Mπ(t))−1Mdiag(π(t))G]

−1.

These steps are repeated until convergence, that is until the norm of π(t)
−π(t−1) becomes smaller than a certain threshold,

such as 10−6.

Appendix B. Computing Bayes factors with about equality constraints

First of all, we recall that about equality constraints are specified as |Eη| ≤ ϵ, for a small ϵ > 0. If ϵ is too large, the
corresponding Bayes factor is far from the Bayes factor which would be obtained with precise equality constraints. If ϵ is
too small, estimation of the proportion of the parameter space in agreement with the constraints, under the encompassing
prior and the encompassing posterior distribution, may be inefficient.

In order to fix a suitable value for ϵ, we adapt the iterative procedure of Klugkist et al. (2010). Supposewewant to estimate
Bk1 for the constrained model Mk versus the encompassing model, where the constrained model is specified by |Eη| ≤ ϵ
and, possibly, Uη ≥ 0. Our procedure is based on the following steps:

1. choose a small value ϵ1 and defineMk,1 as the modelMk in which ϵ is put equal to ϵ1;
2. estimate B̂(k,1)1 = α̂k,1/β̂k,1, where 1/α̂k,1 and 1/β̂k,1 are the proportions of the samples from the encompassing prior

and posterior distributions in agreement with the constraints used to formulateMk,1, respectively;
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3. define ϵ2 = bϵ1, with 0 < b < 1, and Mk,2 as the modelMk in which ϵ is put equal to ϵ2;
4. estimate B̂(k,2)(k,1) = (α̂k,2/β̂k,2)/(α̂k,1/β̂k,1), where 1/α̂k,2 and 1/β̂k,2 are the proportions of the samples from the en-

compassing prior and posterior in agreement with the constraints used to formulateMk,2, respectively.

Repeat steps 3 and 4, with each ϵj+1 = bϵj, until the condition B̂(k,j+1)(k,j) ≈ 1 is satisfied. Then the required Bayes factor
estimate B̂k1 can be calculated by multiplication:

B̂k1 = B̂(k,1)1 × B̂(k,2)(k,1) × · · · × B̂(k,j)(k,j−1) = α̂k,j/β̂k,j. (B.1)

In the limit (i.e., when ϵj → 0), this method yields the estimate of the Bayes factor for model Mk with exact equality
constraints versus the encompassing model.

Note that, in the procedure above, the problem of getting inefficient estimates for the proportion of encompassing
prior and posterior in agreement with the constraints is solved by using the importance sampling approach described in
Section 3.3. Thus, only two different samples, one drawn from the importance density for the prior and the other one from
the importance density for the posterior, are required to compute all the Bayes factor estimates in (B.1).
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