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Abstract
High-altitude island environments, with their characteristic strong seasonal contrast and limited resources, are challenging 
contexts for human subsistence. However, although archaeological contexts in this kind of setting hold great potential to 
explore the diversity of human biological and cultural adaptations, such sites are rare. In this paper, we present the results of a 
microcontextual geoarchaeological study carried out at Roques de García Rockshelter, the highest altitude cave archaeological 
site in the Canary Islands (Spain). The site was inhabited by the aboriginal population of the island and has yielded a rich 
archaeological context derived from combustion activity. We carried out soil micromorphology to characterize site function 
and lipid biomarker analysis to investigate the natural and anthropogenic organic record. Our data indicate that the aboriginal 
groups that occupied the site kept goats with them (in the rockshelter) and probably used Juniperus turbinata (sabina) wood, 
a current distant fuel source. These results suggest that the aboriginal societies of Tenerife occupied the highlands regularly, 
taking their herds and firewood with them. Further research is necessary to explore the use and exploitation of fuel sources, 
the seasonality of these occupations and their differences with lowland sites.
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Introduction

In this paper, we approach a high-altitude aboriginal site in 
Tenerife, Canary Islands, by studying its anthropogenic com-
bustion residues using microstratigraphic geoarchaeological 
techniques. This approach aims to add detail to previous 
research on highland adaptations of the aboriginal Tenerife 
population (Arnay de la Rosa et al. 2011, 2017; Arnay de la 
Rosa and González Reimers 2006; Hernández Gómez and 
Galván Santos 2008; Morales et al. 2021; Vidal-Matutano 
et al. 2019) and contribute to our current understanding of 
human subsistence in highland environments as viewed from 
the archaeological record.

Highland settings are interesting targets of archaeological 
research because their environmental and geomorphologi-
cal features constrain the development of human subsist-
ence strategies. Due to the inverse correlation between tem-
perature and elevation, agriculture tends to disappear with 
altitude, resulting in the usual conception of highlands as 
marginal human landscapes (Carrer et al. 2019; González 
Álvarez et al. 2016). However, as shown by recent studies 
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(Arnay de la Rosa et al. 2017, 2019; Arnay de la Rosa and 
González Reimers 2006; Biagetti 2019; Capriles and Tripce-
vich 2016; Carrer 2017; Carrer et al. 2019; González Álva-
rez 2013; González Álvarez et al. 2016; Égüez et al. 2020; 
Elliott et al. 2015; Marshall and Capriles 2018; Meinekat 
et al. 2021; Shahack-Gross et al. 2004, 2008; Simões et al. 
2020; Vidal-Matutano et al. 2019), such areas have been 
key for human subsistence through time, as they are linked 
to the development of pastoralism as an essential economic 
strategy. Mobile pastoralism has been shown to be an effi-
cient activity for the seasonal exploitation of highland natural 
resources (Égüez et al. 2020). However, the seasonal, ephem-
eral nature of high mountain pastoralist settlements has ham-
pered archaeological identification of campsites and herd-
ing areas (Égüez et al. 2018; González Álvarez et al. 2016; 
Shahack-Gross et al. 2008) and high-resolution multi-proxy 
approaches are necessary. For example, in a study of dung 
deposits from different pastoral rockshelters in central Italy 
(Monti Sibillini) using a multi-proxy approach that included 
botanical analysis, micromorphology and stable isotope anal-
ysis, Égüez et al. (2020) were able to reconstruct seasonality 
patterns linked to different vegetation belts exploited by local 
herders. As shown by this study, well-preserved highland 
archaeological sites hold great analytical potential.

Such sites have been documented in the Canary Islands, 
a volcanic archipelago located in the Atlantic Ocean, at 
approximately 300 km off the west coast of Saharan Africa. 
The islands were inhabited by aboriginal populations. 
Genetic data has shown that the archipielago was first settled 

by North African people (Fregel et al. 2019; Maca-Meyer 
et al. 2004). Recent studies employing AMS radiocarbon 
dating on seeds indicate that the earliest documented settle-
ments date to the first millenium CE (Hernández-Marrero 
et al. 2016; Morales Mateos et al. 2017). In particular, the 
aboriginal population of Tenerife, known as the “Guanches,” 
exploited highland natural resources (Arnay de la Rosa and 
González Reimers 2006). Tenerife’s highlands, or “Las 
Cañadas del Teide,” comprise a 190 km2 depression at 
2200 m.a.s.l. in the center of the island, at the foothill of the 
Teide peak (3718 m.a.s.l.) (Fig. 1). Specifically, the aborigi-
nal occupation of Las Cañadas probably extended from the 
early settling stages of Tenerife (around 1600 BP) to the 16th 
Century, as dating has shown (Arnay de la Rosa et al. 2011, 
2019; Vidal-Matutano et al. 2019).

The Guanches developed an economic system that was 
basically focused on mobile pastoralism and sheep/goat 
herding, even though activities such as plant and shell gath-
ering, coastal fishing and agriculture have also been docu-
mented (Arnay de la Rosa et al. 2011; Diego Cuscoy 2008; 
Morales et al. 2021; Morales Mateos et al. 2017). In this 
scenario, Las Cañadas del Teide has been proposed as a 
seasonal, summer (May to September) habitat of shepherds 
and their goats (Arnay de la Rosa et al. 2017, 2011; Arnay 
de la Rosa and González Reimers 2006; Diego Cuscoy 
2008; Vidal-Matutano et al. 2019). The exploitation of lithic 
resources from the area (mainly basalt and obsidian) has 
been previously documented (Arnay de la Rosa et al. 2017, 
2019; Hernández Gómez and Galván Santos 2008). Las 

Fig. 1   Map showing the location of Tenerife, the Teide National Park and the Roques de García archaeological site
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Cañadas highlands might also have represented a refugium 
for Guanche communities after the arrival of the Castillians 
between the 13th and the 15th Centuries (Arnay de la Rosa 
et al. 2011; Espinosa 1980; Aznar Vallejo 1988).

Among the different types of aboriginal archaeological 
contexts documented for Las Cañadas, combustion features 
hold high potential for the reconstruction of past human 
mobility and behavioral subsistence patterns. Fire has played 
an essential role for human societies throughout time, as 
several studies have shown (Aldeias et al. 2012; Berna et al. 
2007, 2012; Goldberg et al. 2009; Mallol et al. 2007), and 
combustion structures are considered key archaeologi-
cal remains to study human behavior given their exclusive 
anthropogenic origin (Berna et al. 2012; Mallol et al. 2013). 
Presence of combustion structures in archaeological contexts 
implies the ability to control and produce fire, and a role of 
fire in subsistence strategies and other behavioral domains 
(Mallol et al. 2013; Mentzer 2014). By studying fire we can 
obtain information about fuel sources and associated group 
mobility, intensity and functionality of fire use and domestic 
spatial organization (Galanidou 1997; Leierer et al. 2019; 
Mallol et al. 2013, 2007; Mentzer 2014; Miller 2011), and 
therefore, it is also a source of information about human cul-
ture and behavior (Karkanas et al. 2004; Leierer et al. 2019, 
2020; Mallol et al. 2007; Schiffer et al. 2001; Vallverdú et al. 
2012). Combustion structures can also be an aid in the iden-
tification and characterization of human occupation surfaces, 
which can be well-preserved by low-temperature burning 
from the fire above them (Mallol et al. 2013).

Combustion features are essentially sedimentary deposits. 
Thus, we can obtain relevant data by studying them from a 
geoarchaeological perspective (Aldeias et al. 2016; Berna 
et al. 2007; Berna and Goldberg 2007; Ferro-Vázquez et al. 
2022; Gur-Arieh et al. 2014; Karkanas 2021; Karkanas et al. 
2007, 2019; Leierer et al. 2020; Mallol et al. 2017; Miller 
2011; Nicosia and Stoops 2017; Portillo et al. 2017), particu-
larly through microstratigraphic approaches (Courty et al. 
1989; Goldberg et al. 2009; Leierer et al. 2019, 2020; Mallol 
et al. 2013; Mentzer 2014).

Here, we present geoarchaeological data from Roques de 
García Rockshelter, a recently excavated Guanche site in Las 
Cañadas. This is the highest altitude cave archaeological site 
documented in the Canary Islands and the only documented 
inhabited cave in the area. We carried out a microcontextual 
study of a combustion feature coupling soil micromorphol-
ogy and lipid biomarkers (compound identification and com-
pound-specific carbon isotope analysis) of sediment samples 
to approach site formation processes and to characterize and 
assess the degree of integrity of the archaeological combustion 
feature. Our study included lipid and isotopic characterization 
of reference samples from Canarian endemic plants present 
in the site surroundings and identified by anthracologists in 

different archaeological contexts within Las Cañadas (Machado 
and Galván 1998; Vidal-Matutano et al. 2019). With this 
approach, we aim to improve our understanding of Guanche 
mobility patterns, resource catchment and site use, and obtain 
paleoenvironmental and site formation data to approach eco-
nomic practices in highland archaeological contexts.

Materials and methods

Environmental and site background

Roques de García Rockshelter is an archaeological site 
located at 2290 m.a.s.l. in Las Cañadas del Teide, which is 
part of Teide National Park (Fig. 2). This highland area is 
characterized by a semi-arid climate with dry air, low annual 
rainfall and high insulation (Criado et al. 2009; Jonsson et al. 
2002; Santos Guerra 1984).

The site is located in one of many aa and pahoehoe lava 
tubes visible on the SW slope of El Teide volcano, which 
dates to 27,030 ± 430 yr BP (Carracedo et al. 2007) (Fig. 1). 
The Teide-Pico Viejo lava flow complex rests on Lower 
Pleistocene deposits mainly composed of trachybasalts 
and plagioclassic basalts (Dorado et al. 2021; Martín and 
Esnaola 1984).

The rockshelter is a collapsed portion of a volcanic tube 
linked to the Pico Viejo (3135 m.a.s.l.) volcanic edifice. 
Volcanic rockshelters are formed by lava flow dynamics, 
and their main geomorphic features consist of collapsed lava 
tubes, liftup caves, blisters and inflationary caves (Mentzer 
2017). Rockshelters have been occupied by human popu-
lations for a wide variety of purposes: storage, protection, 
natural resources management and rituals (Binford 1998; 
Mentzer 2017). From an archaeological perspective, rock-
shelters are geomorphological features that contribute to the 
preservation of the archaeosedimentary record deposited 
inside them (Mentzer 2017).

Roques de García Rockshelter has been investigated 
by M.A. and E.M. since 2013, as part of a broader project 
centering on the high-altitude aboriginal occupation of 
Las Cañadas. Archaeological excavations (carried out by 
PRORED Soc. Coop.) at the Eastern and Southern areas 
of the sedimentary deposit took place in 2013 and 2018, 
unearthing a 50-cm-thick stratified sequence comprising 
several layers with aboriginal archaeological remains.

The lithostratigraphic sequence is made up of five distinct 
layers of loose pyroclastic silty sands with variable propor-
tions of gravel (Table 1; Fig. 3). Part of the deposit showed 
recent anthropogenic disturbance evidenced as localized 
sediment reworking and removal. The aboriginal archaeo-
logical remains are homogeneous throughout the excavated 
deposit and mainly consist of low amounts of scattered 
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sheep/goat burnt and calcined bone fragments, basalt and 
obsidian flakes and pottery fragments.

Archaeological soil micromorphology

Archaeological soil micromorphology is a geoarchaeologi-
cal technique with great potential for analyzing and under-
standing site formation, specific sedimentary components, 
paleoenvironment, depositional and postdepositional pro-
cesses, as well as microcontextual features (Courty et al. 
1989; Goldberg and Berna 2010; Nicosia and Stoops 2017).

For the analysis, three intact and oriented sediment blocks 
(Fig. 4) from two Northeast profiles of the site were taken, 
and then processed into 8 petrographic thin sections in two 
different laboratories. Block 1 was processed by Thomas 
Beckmann (Schwülper-Lagesbüttel, Germany) into three 
thin Sects. (9 cm × 6 cm × 30 μm). The remaining blocks 
were processed at the Archaeological Micromorphology and 
Biomarkers Lab (AMBILAB, University of La Laguna, Ten-
erife, Spain) by Caterina Rodríguez de Vera, following the 
procedure described by Leierer et al. (2019). This included 
drying the blocks for 48 h at 60 °C and impregnating them 
with a 7:3:0.1 v/v/v ratio mixture composed of polyester 
resin (palatal cast resin UN1866, TNK compounds), styrene 
(styrene monomer (CAS: 100–42-5) UN2055, TNK com-
pounds) and catalyst (methyl ethyl ketone (Luperox, CAS: 
78–93-3), TNK compounds). Then, the hardened blocks 
were cut into 1-cm-thick slabs using a Euro-Shatal M31100 
radial saw and glued onto 9 × 6 cm glass slides. Their depth 
was reduced to 1 mm using a Uniprec ATA Brilliant-220 

Fig. 2   Photographs of Roques 
de García Rockshelter and its 
surroundings. A) View of Las 
Cañadas plateau and Roques 
de García, and the top of the 
rockshelter B) View of the top 
of the rockshelter and the Teide 
volcano C) View of the inside 
of the volcanic tube

Table 1   Thickness and field descriptions of the Roques de García 
stratigraphic units

Stratigraphic 
Unit

Thickness Description

V 11 cm Dark brown loose pyroclastic sand
IV 8 cm Brown layered pyroclastic sand and clay
III 10 cm Very dark brown loose pyroclastic sand 

and gravel
II 6 cm Light brown compact pyroclastic sand
I 13 cm White loose silt

Fig. 3   Roques de García lithostratigraphic sequence indicating the 
five different units (I-V) that were identified in the field
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precision cutting machine and polished down to 30 μm using 
a G&N MPS-RC-Geology grinding machine.

For the micromorphological analysis, we used two petro-
graphic microscopes, Nikon E600-POL and Nikon AZ100 
with epifluorescence module, located at AMBILAB. Micro-
photos were taken using a Nikon DS-Ri2 camera.

The thin sections were described following standard 
guidelines from Stoops (2003) and Nicosia and Stoops 
(2017). To describe the thin sections, we employed the 
concept of sedimentary microfacies (sensu Courty 2001 or 
Karkanas et al. 2015) and classified micromorphological fea-
tures into Microfacies Units (MFU) and Microfacies Types 
(MFT) to facilitate the identification of depositional and 
postdepositional processes (sensu Goldberg et al. 2009). For 
our purposes, Microfacies Unit (MFU) is a stratigraphically 
and spatially discrete combination of micromorphological 
features and a Microfacies Type (MFT) denotes the pro-
cesses represented by particular groups of Microfacies Units.

Lipid biomarkers

Lipid biomarkers are organic molecules that are representa-
tive of specific biota sources which hold a great potential 
for conservation in soils and sediments (Gaines et al. 2009; 
Peters et al. 2007), because they are hydrophobic complex 
molecular fossils (composed of carbon, hydrogen and other 
elements) derived from past living organisms (Peters et al. 
2007). They have been widely studied in archaeological 
contexts, providing useful information about diet or past 

technology and mainly focusing in ecofacts and artifacts, 
such as pottery (Lucquin et al. 2007; Namdar et al. 2009; 
Rafferty 2006); rocky surfaces (Buonasera 2016), mummies 
and human remains (Evershed et al. 1995; Gülacara et al. 
1990) and natural bitumens, plant resins and plant pyrolysis 
products (Dudd and Evershed 1999; Regert et al. 2003; Pol-
lard et al. 2017). The study of lipid biomarkers in archaeo-
logical sedimentary contexts is more recent (Birk et al. 2012; 
Buonasera et al. 2015; Collins et al. 2017; Connolly et al. 
2019; Égüez et al. 2020; Leierer et al. 2019, 2020; Sistiaga 
et al. 2011, 2014; Prost et al. 2017) and is starting to show 
its potential as a geoarchaeological tool for approaching past 
human societies and their environments.

Lipid extraction, analysis and quantification

Twelve bulk sediment samples were collected from the 
Northeast profile of the site, adjacent to the micromor-
phology blocks (Fig. 4). One of the bulk sediment samples 
(sample 6) contained thin (3 mm ⌀), cm-sized, uniden-
tified charred twigs that were analyzed separately (see 
supplementary material). We also collected fresh sam-
ples from endemic plant species currently present in the 
site’s surroundings as reference to compare their lipid 
profiles. We sampled summer and winter specimens of 
six species: Spartocytisus supranubius (retama), Junipe-
rus cedrus spp. canariensis (Canarian cedar), Juniperus 
turbinata (sabina), Pterocephalus lasiospermus (rosalillo 
de cumbre), Adenocarpus viscosus (codeso de cumbre) 

Fig. 4   Plan view of the exca-
vated area showing the location 
of the micromorphological 
samples included in this study. 
Lipid biomarkers sediment sam-
ples were collected in associa-
tion with Samples 1 and 2
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and Arrhenatherum calderae (mazorrilla del Teide). The 
Juniperus cedrus spp. canariensis (Canarian cedar) and 
Juniperus turbinata (sabina) samples were collected at 
lower altitudes.

All the samples were collected using sterilized metal tools 
and nitrile gloves, then packed in aluminum foil to avoid 
phthalate contamination, and stored at –20 °C. Plant sam-
ples (twigs) were cleaned with Milli-Q® ultrapure water 
and dried at 60 °C for 24 h (Jambrina-Enríquez et al. 2018), 
whereas sediment samples were dried at 60 °C for 48 h 
(Leierer et al. 2019, 2020). We processed each sample in 
a fresh and burnt state to control for changes in the lipid 
profile through charring. For the fresh samples, we cut 1 g 
of branches of each species. For the burnt ones, twigs of 
each species were cut into 1-cm-long pieces, and then burnt 
in a crucible of 4,2 cm diameter and 2,5 height, covered 
with aluminum foil to limit O2 supply during the process 
(Wiedemeier et al. 2015). Each sample was burnt for 1 h at 
350 °C in a muffle furnace, at a ramp of 26 °C / min (Kuo 
et al. 2008). When the combustion had taken place, sam-
ples were left to cool inside the furnace for 24 h, and then 
homogenized and subsampled into ~ 1 g samples.

The plant and sediment samples were processed and 
analyzed at AMBILAB, following the procedure already 
employed by Jambrina-Enríquez et al. (2018), Leierer et al. 
(2019) and Connolly et al. (2019). 1 g of cut and homog-
enized twigs (fresh and burnt) and 2 g of homogenized 
sediment were taken from each sample to extract their 
Total Lipid Content (TLE). Lipids were extracted three 
times using a 20 mL 9:1 v/v mixture of dichloromethane 
(DCM)/methanol (MeOH) under ultrasonic irradiation for 
30 min (USC 600th from VWR International, Barcelona, 
Spain). The mixture was then centrifuged at 4700 rpm for 
10 min (Mega Star 1.6 from VWT International) and filtered 
through pyrolized glass wool. The final extracts were com-
bined and evaporated using a Nitrogen evaporator at 40 °C 
(RapidVap® Vertex Evaporator from Labconco, Missouri, 
USA).

Once the TLE was obtained, it was fractionated using a 
chromatographic column made of 1 g of calcined silica gel 
(70–230 mesh) and 0.1 g of sterilized sand (50–70 mesh). 
Fractions 1 (n-alkanes), 2 (aromatics), 3 (ketones), 4 (alco-
hols) 5 (fatty acids) and 6 (other compounds) were extracted 

for each sample (Table 2), evaporated under nitrogen flow 
and finally stored at –20 °C until the analysis.

For the alcohols, we added 100 μL of N, O-Bis (trimethyl-
silyl) trifluoroacetamide (BSTFA) and trimethylchlorosilane 
(TCMS) 99:1 v/v to obtain trimethylsilyl esters (TMS). The 
mixture was derivatized at 80 °C for 1 h, then dried and 
reconstituted with 50 μL of DCM. The fatty acids and other 
polar compounds, on the other hand, were derivatized to 
methyl-esters by adding 5 mL of MeOH and 400 μL of de 
H2SO4, then heated at 70 °C for 4 h. The mixture was then 
neutralized with a sodium bicarbonate saturated solution and 
extracted three times using 3 mL of n-hexane. The samples 
were finally dried under nitrogen flow and reconstituted with 
50 μL of DCM. Reconstitution for each fraction employed 
50 μL of DCM per sample.

Before measuring employing gas chromatography (GC), 
we added the internal standard (IS) to each fraction accord-
ing to the data presented in Table 2, and then reconstituted 
them using solvent (DCM). Every fraction was analyzed 
employing GC. To determine and quantify the compounds 
present in plants and sediments, an Agilent 7890B gas 
chromatograph was used, attached to a 59774A single 
quadrupole (Q) MSD with an electron impact interface 
and equipped with an automatic injector and a multimode 
injector (Agilent Technologies, Waldbronn, Germany). The 
MassHunter Workstation Software was used to control the 
system, as well as to acquire and process the data.

The equipment conditions were similar to the ones 
described by Jambrina-Enríquez et al. (2018), Herrera-Her-
rera and Mallol (2018) and Leierer et al. (2019). A ((5% phe-
nyl) -metipolysiloxane, length: 30 m, ID: 250 μm, 0.25 μm 
thickness; Agilent Technologies) fused silica capillary col-
umn was used for analyte separation. Helium flux was set 
at 1.0 mL/min. The GC oven was initially programmed at 
70 °C, and this temperature was maintained for 2 min. Sub-
sequently, the temperature increased to 140 °C (at a heat-
ing rate of 12 °C/min), and, finally, it reached 320 °C (at a 
heating rate of 3 °C/min), holding it for 15 min. The multi-
mode injector (MMI) was maintained in the 5: 1 split ratio 
at an initial temperature of 70 °C for 0.85 min, and heated 
to 300 °C, at the configured rate of 720 °C/min. Regarding 
the MS, the transfer line, the ion source and the quadrupole 
were adjusted to 280 °C, 230 °C and 150 °C, respectively. 

Table 2   Solvents and elution 
volumes, and internal standards 
used to extract each lipid 
fraction

Fraction Solvents and elution Internal Standard (IS)

1 n-alkanes 3/8 dead volume (DV) n-Hexane 5α-androstane
2 aromatics 2 DV 8:2 v/v n-Hexane/DCM 5α-androstane
3 ketones 2 DV DCM 5α-androstane
4 alcohols 2 DV 1:1 v/v DCM:EtOAc 5α-androstan-3β-ol
5 fatty acids 2 DV EtOAc Methyl C19:0
6 other compounds 2 DV MeOH Methyl C19:0
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The electron ionization energy level was -70 eV, and the 
analyzer was used in full scan mode (m/z 40–580).

The compounds were identified by comparing their 
retention times and reference spectra from pure standards 
(see supplementary material from Rodríguez de Vera et al. 
2020), as well as using the NIST Mass Spectrum Library. The 
n-alkanes were quantified using calibration curves obtained 
by plotting the Area/AreaIS ratio against the concentration of 
reference standards. In addition, the four most intense frag-
ment ions were taken in the mass spectra for quantification 
(m/z 43, 57, 71, and 85 for alkanes; m/z 67, 81, 95, and 245 
for the IS internal standard). The concentrations for the other 
compounds were estimated by comparison with the IS area. 
Concentrations are presented in μg per gram of dried sample 
(μg/gds).

To facilitate the interpretation of the data from Fraction 1, 
we calculated the following indexes and ratios employing the 
n-alkane quantifications obtained through calibration curves:

–	 OEP 27–31 (odd-over-even predominance), formulated 
by Hoefs et al. (2002), for determining the preservation 
degree of organic matter.

–	 ACL 25–31 (average chain length), the weighted average 
of the various lengths of the carbon chain formulated by 
Freeman and Pancost (2014), which allows the evaluation 
of the characteristics of the biomass.

–	 Ratios nC31/nC29 + nC31 and nC31/nC27 + nC31, which 
allow the identification of the predominance of terrestrial 
and shrub flora vs woody flora (Cranwell 1973; Meyers 
and Ishiwatari 1993).

Compound‑specific carbon isotope analysis (CSIA)

Compound-specific carbon isotope analyses of n-alkanes and fatty 
acids were carried out at AMBILAB (Tenerife, Spain) follow-
ing the steps described by Jambrina-Enríquez et al. (2018, 2019), 
Connolly et al. (2019) and Leierer et al. (2019). This was carried 
out using a Thermo Scientific Isotope Ratio Mass Spectrometer 
Delta V Advantage joint to a GC Trace 1310 through a Conflo 
IV interface with a GC Isolink II. Plant and bulk sediment sam-
ples were injected employing a Programmer Temperature Vapor-
izing injector (PTV) in splitless mode. The initial temperature, 
60 °C (held for 0.05 min), was followed by an evaporation stage 
in which temperature increased to 79 °C (held for 0.5 min) and 
a transfer stage, with temperature increasing to 325 °C (held for 
3 min) and a 10 °C/s rate. In the last stage, temperature reached 
350 °C (held for 3 min and with a 14 °C/s rate) for cleaning. GC 
was fitted with a Trace Gold 5-MS (Thermo Scientific) fused 
silica capillary column ((5%-diphenyl)-dimethylpolysiloxane) 
of 30 m length × 0.25 mm and 0.25 μm film thickness. Helium 
flowed at a rate set of 1.5 mL/min, and the oven temperature 
increased to 70 °C (held for 2 min) to 140 °C (12 °C/min), from 
140 °C to 320 °C (held for 15 min, rate 3 °C/min). Finally, the 
temperature of the combustion reactor was maintained at 1000 °C.

Isodat 3.0 software (Thermo Scientific) was used for data pro-
cessing, repeating measurements three times. The δ13C values 
were normalized with a n-alkane Schimmelmann-type A6 mixture 
(from nC16 to nC30) to the Vienna Pee Dee Belemnite (VPBD) 
scale. Carbon isotope measurements showed a standard deviation 
below 0.5 ‰. For fatty acids, a FAME F8 standard mixture (from 
C14:0 methyl ester to C20:0 ethyl ester, Arndt Schimmelmann 

Table 3   Description of the main 
components identified in the 
micromorphological samples

Components Description

Charcoal Very abundant in the middle of the sequence
Variable size, from silt to coarse sand
Variable shape, from angular to rounded

Charred plant material Very abundant throughout the whole sequence
Silt sized
Rounded, crumbly

Phytoliths In the central area of the sequence, grouped
Orange-colored bone fragments Abundant

Variable size and shape, from rounded to angular
Some burnt and fissured

Sheep/goat tooth fragments Few, in the middle of the sequence
Angular shape

Lithic artifacts Few, in the middle of the sequence
Angular shape
Obsidian and basalt

Herbivore coprolites Few, in the middle of the sequence
Fibrous
Some burnt

Sheep/goat dung Very abundant in the middle of the sequence
Spherulitic
Some burnt
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Biogeochemical Laboratories, Indiana University) was run prior 
to the analyses, and the standard deviation of the FAMEs mixture 
was for each analysis equal or better than ± 0.5‰.

The mass balance equation employed by Goodman and 
Brenna (1992) was used to correct all the free fatty acids 
results from the isotopic signature of the introduced methyl 
groups. The δ13C values for modern plant samples were cor-
rected by + 1.9‰ to match archaeological values (Jambrina-
Enríquez et al. 2019), due to the decrease in atmospheric 
13CO2 associated with 13C. This corrected value is based on 
the assumption of a preindustrial atmospheric δ13C value of 
6.4‰ (McCarroll and Loader 2004) and the δ13Catm value at 
the time of sampling (8.3‰) (Keeling et al. 2010).

Total organic and inorganic carbon

To determine the organic and inorganic carbon presence in the 
archaeosedimentary sequence, total carbon (TC), total organic 
carbon (TOC) and total inorganic carbon (TIC) were analyzed 
from subsamples of each of the twelve bulk sediment samples 
using a LECO SC 144DR furnace at Instituto Pirenaico de 
Ecología (IPE-CSIC), Spain.

Statistical analyses

Statistical analyses, Shapiro–Wilk test (p-value 0.0003631), 
one-way ANOVA (alpha level of 0.05, F = 5.7458, 
p-value = 0.005852), Tukey’s test (95% family-wise confidence 
level), and confidence ellipses of a two-dimensional dataset, were 
performed on R Studio v.1.4.1106. We used analysis of vari-
ance to compare isotopic signatures and to determine probable 
differences between groups: archaeological samples, reference 
samples dataset (Jambrina-Enríquez et al. 2019) and the collected 
modern plants. 95% confidence ellipses of δ13C16:0 and δ13C18:0 
were also calculated for the different groups, to test the variability 
of bivariate group means.

Results

Archaeological soil micromorphology

We identified 23 Microfacies Units (MFU) associated with 
13 biomarker samples (Fig. 6; Table 4).

Fig. 5   Microphotographs of the most representative microscopic 
components identified throughout the sedimentary sequence. A) 
Charcoal. It is commonly found both rounded and angular. B) Burnt 

herbivore coprolite and bone fragments, abundant in the middle of the 
sequence C) Pottery fragment D) Sheep/goat dung. It is found burnt 
and unburnt E) Dung spherulites F) Calcitic wood ash
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All the samples show the same lithological composition 
consisting of sand-to-gravel-sized basalt and pumice frag-
ments, silt-sand-sized obsidian fragments and igneous min-
eral grains. We also documented the presence of silt-sized 
eolian quartz in very small amounts.

We identified two different types of microstructures through-
out the sequence: 1) An intergrain microaggregate microstruc-
ture prevails in the lower and middle third of the sequence 
(MFU 1, 2, 3, 4, 5, 8, 9, 13, 14, 15, 19 and 20); 2) a compact, 
fibrous microstructure prevails in the upper part (MFU 6, 7, 11, 
12, 17, 21, 22 and 23). The predominant c/f-related distribution 
patterns are enaulic and porphyric, and complex packing voids 
were observed throughout the whole sequence.

The main anthropogenic and biogenic components 
observed are charcoal fragments and unidentified charred 
plant material. Other components include: phytoliths, 
orange-colored bone fragments, sheep/goat teeth frag-
ments, lithic artifacts, unidentified herbivore coprolites 
(burnt and unburnt) and sheep/goat dung (see Table 3 and 
Figs. 5 and 6).

Based on the recurrence of different combinations of coarse 
components, level of compaction, c/f-related distribution, 

micromass features and microstructures, we classified the 
Microfacies Units into 10 Microfacies Types (MFT; Fig. 7; 
Table 4).

Lipid biomarkers, CSIA and total organic 
and inorganic carbon

Archaeological samples

n-Alkane data was obtained from 9 of the 13 archaeologi-
cal samples. The n-alkane distribution ranges from nC18 to 
nC31, and n-alkane concentration varies between 0.02 to 
5.21 μg/gds (Fig. 8). n-Alkane indexes and ratios (OEP, ACL, 
nC31/nC29 + nC31 and nC31/nC27 + nC31) were calculated on 
the samples with significant n-alkane content (Fig. 9). OEP 
values oscillate between 7.24 and 1.34, while ACL ranges 
from 29.70 to 26.00. Aromatics, alcohols, acids, terpenoids 
and other compounds were also identified and estimated in 
11 of the 13 samples (see supplementary material).

δ13C values of nC29 and nC31 alkanes were measured in 
the 13 archaeological samples. δ13C values of nC29 range 

Fig. 6   Microfacies units (MFU) identified in the micromorphological samples. A more detailed description of the microfacies units and their 
stratigraphic position is presented in Table 4
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between –30.5‰ and –28.2‰, while δ13C values of nC31 
oscillate between –29.6‰ and –27.2‰ (Figs. 9, 10, 11, 
supplementary material). δ13C values of palmitic (C16:0) 
and stearic (C18:0) acids were also measured in 7 of the 13 
archaeological samples (see supplementary material).

TIC and TOC values were obtained for the 12 loose sedi-
ment samples (Fig. 9). TIC ranges between 4.27% and 0.00%, 
whereas TOC values oscillate between 21.23% and 0.11%.

Reference samples

n-Alkanes, aromatics, alcohols, acids, terpenoids, alde-
hydes and other compounds were identified and quantified 
or estimated in all the plant reference samples, fresh and 
burnt (350 °C) (see supplementary material). δ13C values 
of nC29 and nC31 alkanes were measured for all the sam-
ples. δ13C of nC29 ranges from –25.8‰ and –31.1‰ in 
the summer specimens, and between –24.9‰ and –31.7‰ 
for the winter samples. δ13C of nC31 values, on the other 
hand, oscillate between –25.5‰ and –30.2‰ for the 
summer samples, and between –22.7‰ and –29.7‰ for 
the winter ones (corrected values) (Figs. 9, 10, 11, sup-
plementary material). δ13C values of palmitic (C16:0) and 
stearic (C18:0) acids were also measured in all the samples 
(see supplementary material). The ANOVA (alpha level 
of 0.05) and Tukey’s test performed on the δ13C16:0 and 
δ13C18:0 values from the different sample groups showed 
that the means of summer and archaeological samples 
were similar, as opposed to the winter-archaeological pair-
wise that showed significant differences (diff = 1.5305109, 
lwr = 0.2866333 upr = 2.774388 p-value = 0.0118919).

Discussion

The main goal of this study was to characterize an archaeo-
logical combustion feature from the Roques de García Rock-
shelter site through a microcontextual approach. Our lipid 

and micromorphological results show that the sequence 
preserves reworked residues from at least two overlapping 
combustion structures (MFT 3, 8, 9) associated with two 
diachronous human occupation events (MFT 6, 7). Our 
data has allowed us to identify the fuel source employed 

Fig. 7   Microfacies types (MFT) identified in the micromorphological 
samples. MFT 1) Geogenic pyroclastic sand deposit mixed with silt-
sized, unidentified charred particles. MFT 2) Laminated pyroclastic 
sandy-clayey deposit with iron staining. MFT 3) Pyroclastic detritic 
sandy deposit mixed with silt-sized, unidentified charred particles, 
subrounded charcoal fragments and horizontally bedded bone frag-
ment concentrations. MFT 4) Geogenic volcanic sand. MFT 5) Phy-
tolith-rich fibrous clayey deposit with charcoal fragments at the top. 
MFT 6) Fibrous, horizontally bedded, spherulite-rich, unburnt sheep/
goat excrements mixed with reworked calcitic-crystalitic wood ash. 
There are common horizontal planes. MFT 7) Fibrous, spherulite-
rich sheep/goat excrements (mostly unburnt but some burnt) mixed 
with reworked calcitic-crystalitic wood ash. There are common verti-
cal planes. MFT 8) Reworked calcitic-crystalitic wood ash with char-
coal and bone fragments. MFT 9) Calcitic-crystalitic wood ash. MFT 
10) Silty-clayey crust

▸
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during one of the occupation events. It was also possible to 
identify plant residues representative of the natural habitat 
associated with the human occupations, preserved in the 
lower geogenic pyroclastic deposits (MFT 1, 2). We have 
also identified periods of geogenic sedimentation between 
human occupation layers, probably formed during abandon-
ment periods (MFT 4, 5, 10). In the following paragraphs, 
we discuss the associated relevant information, their possible 
interpretation and their implications.

Fuel sources

Our lipid and micromorphological information has shed 
some light on the possible fuel sources of the Roques de 
Garcia combustion structures. Fuel, understood here as com-
bustible matter that is introduced into a fire and generates an 
identifiable residue, which may have resulted from a circum-
stantial human action or from a tradition.

MFU 8 (MFT3) is a trample (Rentzel et al. 2017) from a 
combustion zone, containing a significant amount of micro-
scopic combustion residues. According to our lipid data, the 
predominant alkane in a sample of loose sediment from this 
trample is nC31 with an odd over even predominance. How-
ever, a series of cm-sized charred woody fragments from 
this layer that were sampled separately showed nC29 as the 
predominant alkane with a smooth n-alkane pattern. Both 
the sedimentary and the woody fragment samples showed 
conifer wood pyromarkers, specifically retene and other 
compounds derived from abietic acid (see supplementary 
material) (Mackenzie et al. 1982; Oros and Simoneit 2001a, 
b). These data point toward a conifer plant fuel source. Our 
reference plant collection includes two conifer species: Juni-
perus turbinata (sabina) and Juniperus cedrus spp. canar-
iensis (Canarian cedar). Both of these showed nC29 alkane 
predominance and produced retene when burnt at 350 °C, 
as expected (Oros and Simoneit 2001a). However, we have 

Fig. 8   Sedimentary n-alkane histograms
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identified differences between the two species regarding the 
abundance and concentration of Cupressaceae specific ter-
penoids (Otto and Simoneit 2001). While Juniperus cedrus 
spp. canariensis’ (Canarian cedar) predominant compound 
is ferruginol (before and after burning), our Juniperus tur-
binata (sabina) samples showed abietane-type acids as the 
more abundant, characteristic terpenoids. However, and con-
sidering the nC31 n-alkane predominance in the sediment 
in which these twigs were found, we cannot absolutely rule 
out the presence of Pinus canariensis (Canarian pine) input, 
even though pine-related features (e.g., pine needles) were 
not identified micromorphologically.

In addition, δ13C C16:0 and C18:0 values from archaeo-
logical charred woody fragments (Fig. 10) plot in a differ-
ent area in 95% confidence ellipses than fresh and burnt 
(350 °C) branches of modern Pinus canariensis (Canarian 
pine) (Jambrina-Enríquez et al. 2019). In fact, our mod-
ern references, fresh and burnt-350 °C Juniperus cedrus 
spp. canariensis (Canarian cedar) and Juniperus turbi-
nata (sabina), plot in a different area than the ellipses for 
C3 wood that were built with modern Pinus canariensis 
(Canarian pine). Moreover, when our reference Juniperus 
turbinata (sabina) fatty acids values were plotted against 
the archaeological charred wood, we observed significant 
similarities between them. More interestingly, we found 

probable indication that wood was collected during the 
summer season, or at least during a season with environ-
mental conditions similar to the present-day Las Cañadas 
summer (Fig. 11). This result is promising and prompts 
further investigation as it could be used as an indicator of 
aboriginal fuel and/or wood management and subsistence 
practices (Machado and Galván 1998; Vidal-Matutano 
et al. 2019, 2021).

Thus, we propose that the predominance of nC29 alkane, 
the dominance of abietic-type compounds and the carbon 
isotopic signature of palmitic (C16:0) and stearic (C18:0) acids 
in the MFU 8 charred woody fragment suggest that Juni-
perus turbinata (sabina) wood was one of the fuel sources 
used by the Guanches occupying the site. The use of sabina 
wood by the aboriginal people of Tenerife has been previ-
ously documented for the manufacturing of artifacts, such 
as vessels and sticks (García Morales and Sánchez-Pinto 
1993; Rosario Adrián et al. 1993). At present, this thermo-
philic species is not found near the site but at much lower 
altitudes, in the midlands of Tenerife (Jiménez et al. 2017). 
If this was the case in Guanche times, procuring this fuel 
required planning and transport strategies. However, the pos-
sibility of Juniperus turbinata (sabina) populations grow-
ing at higher altitudes in the past cannot be ruled out, as 
paleoecological studies have shown for the related species  

Fig. 9   Archaeological samples and their TIC, TOC, total n-alkane con-
centration, OEP1, ACL2, nC31/(nC27 + nC31), nC31/(nC29 + nC31), δ13C 
of nC29 and nC31 n-alkanes values. OEP1 27–31 = (nC27 + nC29 + nC31) / 

(nC26 + nC28 + nC30); ACL.2 25–31 = (Ci*[Ci]) / ∑[Ci]; Ci is the concen-
tration of each n-alkane with i carbon atoms, 25 < i < 33
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Juniperus cedrus (Canarian cedar) in Tenerife (Rumeu and 
Nogales 2021; Sangüesa-Barreda et al. 2022).

The anthropogenic context

Regarding the predominance of nC31 in the anthropogenic 
microfacies (MFUs 8, 13–16 / MFT 3, a trample from a 
combustion zone, and MFT 6–7, human occupation deposits 
mixed with reworked ash and anthropogenic components) 
we propose two possible sources: 1) grasses and/or 2) coni-
fers (Schwark et al. 2002).

In the upper layers (MFUs 13–16), the nC31 alkane 
input is microstratigraphically associated with sheep/goat 
dung scatters reworked into the human occupation depos-
its, as identified micromorphologically by the presence of 
spherulite-rich pellets mixed with reworked combustion 
residues. This evidence suggests that the lipid signature 
could derive from sheep/goat dung derived from consump-
tion of herbaceous fodder (Cranwell 1973; Égüez et al. 

2018). Alternatively, or in addition to the possible fodder 
signature, the presence of dehydroabietic acid in the sam-
ple from these mixed, reworked combustion units could 
link the nC31 alkane input with conifer fuel residues (Otto 
and Wilde 2001).

The conifer source is more evident in the lower anthro-
pogenic microfacies (MFU 8), which showed presence of 
varied terpenoids (Otto and Wilde 2001) (see supplementary 
material). Micromorphologically, dung was not observed in 
this microfacies, and we interpret it as a combustion zone 
trample in which other plant specimens could have been 
burnt in different events.

The natural vegetation

Micromorphological analysis elucidates a distinction 
between combustion-rich anthropogenic surfaces (MFT 
3, 6, 7, 8, 9) and natural, non-anthropogenic deposits 
with geogenic, pyroclastic sandy-clayey components and 

Fig. 10   Scatter plot of δ13C16:0/δ13C18:0 ratios comparison with 95% 
confidence ellipses plotted using the archaeological sediment sam-
ples, reference published data on isotopic ratios for C3 wood (Celtis 
australis and Pinus canariensis from Jambrina-Enríquez et al. 2019), 

and the modern plants collected for this study (summer and winter 
season). Note that modern samples from Juniperus turbinata (sabina) 
fall into the archaeological samples ellipse
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abundant silt-sized plant fragments (MFT 1–2, horizon-
tally layered geogenic pyroclastic deposits). This distinc-
tion has also been observed in the organic matter input 
and preservation shift documented in the middle of the 
sequence (between 30 and 25 cm depth) (Fig. 9). The 
non-anthropogenic layers showed n-alkane patterns with 
predominant nC27 and absence of terpenoids. Among the 
different shrubs we analyzed, as part of our reference 
plant collection from the site surroundings, Adenocarpus 
viscosus (codeso de cumbre), Spartocytisus supranubius 
(retama) and Pterocephalus lasiospermus (rosalillo de 
cumbre) were the only species with a significant nC27 
content. Thus, we propose these taxa as likely candidates 
for the nC27 alkane predominance observed in the non-
anthropogenic facies. A similar disparity between the fuel 
type and the plants that were naturally present around the 
site has been previously observed (Leierer et al. 2019).

General remarks and future perspectives

As discussed above, we have differentiated between differ-
ent kinds of plant input at the site: 1) fuel (sabina), 2) sheep/
goat dung and/or conifer input, and 3) bushy vegetation 
from the natural surroundings (codeso de cumbre, retama, 
rosalillo de cumbre). These data may shed some light on the 
group mobility and subsistence strategies of the Guanches 
occupying Las Cañadas. The presence of charred conifer 
wood associated with combustion features and occupa-
tion surfaces implies that the inhabitants of the rockshelter 
preselected and transported their fuel from lower altitudes. 
In fact, the exploitation of plant resources from different 
areas of the island in Las Cañadas, such as barley and Vis-
nea mocarena, has been previously documented (Morales 
et al. 2021). On the other hand, the presence of sheep/goat 
excrements in close association with the human occupation 
surfaces suggests that highland herding activities played a 

Fig. 11   Boxplot showing the n-alkane carbon isotope values for the 
three analyzed group samples: archaeological, summer and winter. 
The isotopic composition for all samples falls into the range of C3 

plants. Note that the largest isotopic range is from modern plants 
sampled during the winter season
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role in the use of the rockshelter. This is in agreement with 
previous hypotheses on Guanche highland subsistence strat-
egies (Arnay de la Rosa et al. 2011; Arnay de la Rosa and 
González Reimers 2006).

Further research is needed to provide more detailed infor-
mation about fuel sources, seasonality, mobility patterns and 
functionality of the Roques de Garcia rockshelter. Our unburnt 
and burnt lipid reference collection of Las Cañadas endemic 
plants should be expanded to include plant species from outer, 
adjacent areas, including Pinus canariensis (Canarian pine). 
Characterizing plant sources from different altitudes could 
allow us to identify other possible fuel and fodder sources. 
Data collection should include 1) obtaining δ2H data for each 
reference species to help us identify burning temperatures 
(Connolly et al. 2021), 2) experimental burning of different 
anatomical plant parts, which might show significantly dif-
ferent lipid profiles (Connolly et al. 2021; Jambrina-Enríquez 
et al. 2018) and 3) including reference plant samples in differ-
ent states of degradation (e.g., fresh vs dry). Charring experi-
ments with mixed anatomical parts should also be performed 
and compared against archaeological data (Jambrina-Enríquez 
et al. 2019). Finally, further micromorphological and bio-
marker samples should be collected from different areas of 
the rockshelter to corroborate the interpretations made by this 
study.

The joint application of the geoarchaeological high-reso-
lution techniques of micromorphology and lipid biomarker 
analysis to this case study has provided us with an accurate 
interpretation of the deposit of Roques de García Rockshel-
ter. Our results and their implications corroborate the high 
potential of the microcontextual, multi-technique approach in 
geoarchaeology and contribute to advance our knowledge on 
the aboriginal Canary Island societies, as well as our under-
standing of highland pastoralist societies. We have also been 
able to build significant interpretations about fire use and fuel 
sources by studying the sedimentary record of archaeological 
combustion features.

Conclusion

In this geoarchaeological study of the Roques de García 
Rockshelter site, we have identified different combustion 
events and we have proposed Juniperus turbinata (sabina) 
as a likely fuel source used in one of them. Our data has 
also allowed us to differentiate between periods of non-
anthropogenic natural sedimentation and anthropogenic 
occupation events associated with combustion activity and 
sheep/goat excrement input. These results corroborate the 
potential of geoarchaeological high-resolution techniques 
applied to highland archaeological contexts. These inter-
pretations provide proof for some of the main hypotheses 
about the economic activities carried out by the Guanches 

at Las Cañadas del Teide, mainly sheep/goat herding. Fur-
thermore, our data shows that the inhabitants of the site 
preselected and transported their fuel from other parts of 
the island. Further research is needed to corroborate the 
preliminary hypotheses presented in this paper, as well 
as to provide answers to the new questions that resulted 
from this study.
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