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Abstract
Aim: Over the past 50 years, anthropogenic activities have led to the disappearance 
of approximately one- third of the world's mangrove forests and their associated 
ecosystem services. The synergetic combined effect of projected climate change is 
likely to further impact mangroves in the years to come, whether by range expansions 
associated with warming at higher latitudes or large- scale diebacks linked to severe 
droughts. We provide an estimate of future changes in the extent and aboveground 
biomass (AGB) of mangrove forests at global scales by considering contrasting 
Representative Concentration Pathway scenarios (decade 2090– 2100 under RCP 2.6 
in line with the Paris Agreement expectations, and RCP 8.5 of higher emissions).
Location: Global.
Methods: Boosted regression trees fitted occurrence and AGB of mangroves against 
high- resolution biologically meaningful data on air temperature, precipitation, wave 
energy, slope and distance to river Deltas.
Results: On the global scale, models produced for present- day conditions retrieved 
high accuracy scores and estimated a total area of 12,780,356 ha and overall biomass 
of 2.29 Pg, in line with previous estimates. Model projections showed poleward 
shifts along temperate regions, which translated into comparable gains in total area, 
regardless of the RCP scenario (area change RCP 2.6: 17.29%; RCP 8.5: 15.77%). 
However, biomass changes were dependent on the emission scenario considered, 
remaining stable or even increasing under RCP 2.6, or undergoing severe losses across 
tropical regions under RCP 8.5 (overall biomass change RCP 2.6: 12.97%; RCP 8.5: 
−11.51%). Such losses were particularly aggravated in countries located in the Tropical 
Atlantic and Eastern Pacific, and the Western and Eastern Indo- Pacific regions (regions 
with losses above ~20% in overall biomass).
Conclusions: Our global estimates highlight the potential effect of future climate 
changes on mangrove forests and how broad compliance with the Paris Agreement 
may counteract severe trajectories of loss. The projections made, also provided at 
the country level, serve as new baselines to evaluate changes in mangrove carbon 
sequestration and ecosystem services, strongly supporting policy- making and 
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1  |  INTRODUC TION

The Paris Agreement under the United Nations Sustainable 
Development Goals calls for adaptation and mitigation actions to 
reduce climate change impacts and increase the resilience of eco-
system services at global scales (Damian et al., 2018). Coastal and 
marine ecosystems are an important component of mitigation ef-
forts (Gattuso et al., 2018) as they represent an effective carbon 
sink with the potential to absorb up to 35% of anthropogenic CO2 
emissions (Khatiwala et al., 2009). In this context, wetlands are in-
creasingly being recognized as essential carbon sink areas (Hiraishi 
et al., 2014), with mangrove forests alone capturing four times more 
carbon than rain forests per unit area (Donato et al., 2011; Hamilton 
& Friess, 2018). Their mean rate of aboveground net primary produc-
tion (NPP) is ~11 Mg ha−1 yr−1, which is in the same order of magnitude 
as terrestrial humid evergreen forests (10.8 Mg ha−1 year−1) and peat 
swamp forests (11.1 Mg ha−1 year−1; Alongi & Mukhopadhyay, 2015; 
Malhi et al., 2011). All carbon burial accounts for ~15% of the total 
organic carbon in marine environments, and this blue carbon is con-
sidered significant long- term storage (Alongi, 2015; Van Lavieren 
et al., 2012). Besides carbon sequestration, mangrove forests provide 
additional key ecosystem services (Mitra, 2020), such as protecting 
coastal areas from erosion and extreme weather events (Barbier 
et al., 2011; Doughty et al., 2016) and providing habitat and energy 
to associated ecological communities (Van Lavieren et al., 2012). 
Altogether, the financial return of mangrove ecosystem services is 
estimated at US$ 194,000 ha−1 year−1, with a global value of US$ 
2.748 trillion year−1 (Barbier et al., 2011; Costanza et al., 2014).

Over the past 50 years, anthropogenic activities, in particu-
lar deforestation, have led to the disappearance of approximately 
one- third of the world's mangrove forests (Valiela et al., 2001). The 
synergetic combined effect of climate change can increase the loss 
of mangroves and their ecosystem services at global scales (Ward 
et al., 2016). Mangroves are particularly sensitive to cold tempera-
tures, with global distributions restricted to tropical and subtropical 
environments (Spalding et al., 2010). Accordingly, ongoing/projected 
warmer conditions have been associated with range expansions into 
salt marsh habitats at higher latitudes (Cavanaugh et al., 2014). The 
substantial part of the organic carbon reservoir of mangroves, rep-
resented by the AGB (Rovai et al., 2016), is also allocated through 
physiological responses to thermal conditions (Wang et al., 2021) 
and, therefore, with significant spatial variability throughout the 
globe (Giri et al., 2011; Hutchison et al., 2014). In particular, warmer 
conditions prevailing in subtropical regions are associated with 

positive effects on the overall productivity of mangroves (Akaji 
et al., 2019). However, above physiological tolerance limits, thermal 
stress can severely impact mangroves (Field, 1995). Changes in pre-
cipitation regimes can also be detrimental (Ward et al., 2016), with 
large- scale diebacks recorded over the past decades associated with 
decreasing rainfall rates and increasing evapotranspiration (Duke 
et al., 2017; Field, 1995). Yet, projected changes in precipitation have 
substantial regional variation, and the overall patterns may increase 
by up to 25% (Houghton et al., 2001). Among the areas projected to 
have higher precipitation levels in the future, such as some Pacific 
Islands, increased sediment and litterfall, as well as increased nu-
trient inputs, may further enhance productivity (Ward et al., 2016). 
Meanwhile, mangroves in semi- arid areas, anticipated to have de-
creased future precipitation, such as the Middle East and northeast 
Brazil, are likely to be impacted from salt- stress and declining pro-
ductivity due to reduced sediment input (Ward et al., 2016). Global 
sea levels are expected to rise substantially in years to come, further 
impacting mangroves in different ways, whether increasing soil C 
stores contributing to blue carbon (Chatting et al., 2022; Sasmito 
et al., 2016) or changing the landscape position of habitats and ex-
posing mangroves to extreme patterns of inundation duration and 
frequency (Ward et al., 2016).

Carbon stored in coastal ecosystems, such as mangroves, 
has recently been integrated into the international policy agenda 
through the Paris Agreement within the United Nations Framework 
Convention on Climate Change. As a result, countries with mangrove 
forests within national boundaries need to estimate and track the 
amount of carbon stored in these systems. Such estimates should 
then be used to support well- informed decision- making and future 
climate change mitigation strategies. In this context, anticipating 
the effect of global climatic change on mangrove forests extent and 
AGB is crucial. There are numerous estimates of mangrove extent 
and biomass levels for present- day conditions, which vary between 
13,000,000 and 24,000,000 ha (Giri et al., 2011; Spalding et al., 2010; 
Twilley et al., 1992) and 1.52 and 2.83 Pg (Hutchison et al., 2014; Hu 
et al., 2020); however, no such attempt has been made for future 
conditions on the global scale. The present study uses a machine 
learning framework tuned with high- resolution predictor variables 
and empirical data on the distribution and biomass levels (e.g., 
Gouvêa et al., 2020) to estimate future changes in mangrove forest 
extent and AGB under contrasting Representative Concentration 
Pathway scenarios (decade 2090– 2100 under RCP 2.6, in line with 
the Paris Agreement expectations, and RCP 8.5, of increased emis-
sion of greenhouse gas). These estimates are provided at the global 

management directives, as well as to guide restoration actions considering potential 
future changes in niche availability.

K E Y W O R D S
aboveground biomass, boosted regression trees, climate change, mangrove forests, Paris 
agreement, representative concentration pathways
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scale and country levels and serve as new baselines to evaluate and 
track changes in mangrove carbon sequestration and ecosystem 
services, aligned with policy requirements guiding conservation pri-
orities, and to account for future changes in niche availability while 
planning restoration actions.

2  |  METHODS

A comprehensive dataset describing the global distribution of man-
grove forests was downloaded from the United Nations Environment 
World Conservation Monitoring Centre. This dataset provides oc-
currence records compiled from earth observation satellite imagery 
by Giri et al. (2011) updated by UNEP- WCMC (version 1.4, March 
2021) and has been widely used to explore the relationship between 
climate changes and distributional range shifts of mangrove forests 
(He et al., 2022; Peereman et al., 2022), thus allowing proper com-
parisons between additional estimates. Empirical AGB data cov-
ering the overall distribution of mangrove forests were gathered 
from the available literature and Rovai et al. (2016) dataset (Table 1; 
Figure S1). Studies were compiled through the Web of Science with 
the searching criteria of “mangrove” and “above- ground biomass,” 
and only those reporting geographic coordinates and/or location 
names were considered.

Six environmental data layers were downloaded from Bio- 
ORACLE 2 (Assis et al., 2018; Tyberghein et al., 2012) for present- 
day conditions (from 2000 to 2017) and the two contrasting RCP 
scenarios (RCP 2.6 and RCP 8.5; decade 2090– 2100), namely, air 
surface temperatures (long- term average of monthly maximum and 
minimum), precipitation, slope, wave energy and distance to river 
Delta. The choice of these layers was based on the biological rel-
evance of mangrove forests. Specifically, mangroves are known to 
thrive in regions with warm temperatures and high humidity levels 
(Osland et al., 2017). Nevertheless, temperatures above extreme 
thresholds can produce losses in AGB levels (Field 1995, Ward 
et al., 2016). Additional drivers, including smoothly sloping intertidal 
areas associated with bays, lagoons, estuaries and deltas (Leong 
et al., 2018; Schaeffer- Novelli et al., 2016), as well as low wave en-
ergy conditions, can also be important to the establishment and 
growth of mangroves (Amma & Bhaskaran, 2020; Sánchez- Núñez 
et al., 2019). The Bio- ORACLE 2 layers are made available at a spatial 
resolution of 5 arcmin resolution (~9.2 km); those for RCP consider 
the ensemble of the general atmosphere– ocean circulation models 
CCSM4, GFDL- ESM2G, HadGEM2- ES, IPSL- CM5A- LR and MIROC- 
ESM processing detailed by Assis et al. (2017). Prior to modelling, 
Pearson's correlation coefficient and variance inflation factor (VIF) 
was estimated between predictors.

The machine learning algorithm Boosted Regression Trees 
(BRT) was chosen to model the distribution and AGB of mangroves 
since it handles nonlinear relationships and complex interactions 
and systematically retrieves high predictive performances (Elith 
et al., 2008). Modelling was based on a two- phase approach: (1) the 
development of a distribution model to estimate the global extent of 

mangroves by fitting mangrove occurrence records against the envi-
ronmental predictors with a “Bernoulli” and (2) the development of a 
biomass model fitting AGB data and the predictors with a “Gaussian” 
distribution. The models were performed based on the aggregation 
of data from multiple mangrove taxa with similar functional forms 
in order to capture the niche of the whole biome (e.g., Jayathilake 
& Costello, 2018, 2020). This approach, also known as “community- 
level” modelling, can accommodate data- poor regions for particular 
taxa (D’Amen et al., 2017; Smith et al., 2019).

To remove surplus information and reduce (Di Cola et al., 2016) 
the potential effect of spatial autocorrelation in the distribution 
model (Segurado et al., 2006), records were gridded to the spatial 
resolution of the climatic layers, and duplicate occurrences were re-
moved. Additionally, a spatial autocorrelation function, as described 
by Di Cola et al. (2016), was used to select one presence record 
only within the distance estimated as significantly autocorrelated. 
Additionally, due to the lack of absence data for the distribution 
model (presence- only modelling), pseudo- absences were randomly 
generated in a 1:1 ratio with presence data, except in the locations 
where mangrove forests occur. This allows improving the perfor-
mance of BRT models while isolating potentially contributive pre-
dictors (Barbet- Massin et al., 2012; Cerasoli et al., 2017). Biomass 
data were averaged in the specific cases of multiple records falling 
within the same cells of the environmental predictors. This process 
might not have strongly impacted the biomass values found in the 
same cells because variability (at the cell scale) was generally low 
(326 records averaged into 171 cells with an average coefficient of 
variation of 1.01 t ha−1).

A cross- validation framework using spatial blocks with 10 ran-
dom folds was implemented in both occurrence and biomass mod-
els based on the method described by Valavi et al. (2019). The use 
of spatial blocks allowed generating independent data to properly 
assess the predictive performance of models and error estimation 
(Roberts et al., 2017; Valavi et al., 2019), here aimed for the selection 
of the optimal BRT hyperparameters (Elith et al., 2008). In this pro-
cess, all parameter combinations (i.e., the “grid search” method) of 
tree complexity (1– 6), number of trees (50– 1000, step 50) and learn-
ing rate (0.01– 0.001, step 0.001) were used to train models with 
nine folds of data, while one independent fold was withheld at a time 
(Figure S2) to test the performance of models with the Boyce index 
for the distribution model (see details below) and deviance explained 
for the biomass model. Monotonicity constraints were further im-
plemented to reduce overfitting and improve the transferability of 
models (Hofner et al., 2011). These were based on the expected 
outcomes of each predictor variable on the response of models, as 
documented in the literature. Specifically, we hypothesize that min-
imum temperature and precipitation have a positive effect on man-
grove occurrence and AGB and, that maximum temperature, slope, 
wave energy and distance to Delta have a negative effect (Cannon 
et al., 2020; Friess et al., 2022).

The performance of the distribution model was reported with the 
Boyce index, particularly suitable for presence- only modelling (Boyce 
et al., 2002), and the area under the receiver operating characteristic 
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curve (AUC). The Boyce index varies between −1 to +1, and the AUC 
index between 0 and 1. Negative values of the Boyce index, or close 
to zero of the AUC index, indicate incorrect model predictions. Boyce 
index values above zero, or AUC values above 0.5, indicate predictions 
better than random, while values of both indices close to 1 indicate 
predictions consistent with the distribution of presence records (Hirzel 
et al., 2006). The performance of the biomass model was reported with 
deviance explained and by plotting observed versus predicted AGB 
values. The ecological significance of the models was investigated by 
determining the contribution of each predictor to the performance of 
models and by developing partial dependency plots, from which tip-
ping points reflecting extreme conditions to occurrence and biomass 
were extracted (Elith et al., 2008).

Global distribution estimates in terms of area and AGB were pro-
duced for present- day conditions and the two RCP scenarios both 
as maps and summary tables aggregating results per marine realm 
(Spalding et al., 2007) and Economic Exclusive Zone (EEZ). In this 
process, predictions from the distribution model were reclassified 
to binomial responses using a threshold allowing to maximize the 
agreement between observed and predicted occurrence records 
(i.e., maximization of true skill statistics, e.g., Allouche et al., 2006). 
Predictions from the biomass model where restricted to the regions 
where the distribution model estimated the presence of mangroves 
and to the maximum observed AGB value to remove potential model 
extrapolation (e.g., Carvalho et al., 2019; Barry & Welsh, 2002). 
Finally, because the resolution of environmental data used in the 
modelling can lead to predictions of suitable areas beyond the 
coastal distribution of mangroves, we implemented a post- filtering 
process, as described by Fournier et al. (2017). This refined the out-
puts of the models, i.e., predictions considering the effect of conti-
nental scale environmental conditions, according to a habitat filter 
at relevant local scales (Fournier et al., 2017). Specifically, a habitat 
filter was developed with the high- resolution (15 arc- second, ap-
proximately 450 meters) General Bathymetric Chart of the Oceans 
(GEBCO, 2019) considering only altimetry/bathymetry values within 
the hydrographic zero, i.e., the lowest level of astronomical tides, 
and the maximum annual tidal amplitude per gridded cell (e.g., Assis 
et al., 2014). This process allowed restricting predictions to realistic 
coastal areas where mangroves might occur, thus reducing poten-
tial area overestimations (Fournier et al., 2017) and also to consider 
the potential add- on effect of projected sea- level rise. In particular, 
future projections took the hydrographic zero 0.45 m higher than 
present- day conditions for RCP 2.6 and 0.93 m higher for RCP 8.5 
(Horton et al., 2020).

All analyses were performed in R (R Development Core Team, 
2018) and RStudio v.3.6.6 (R Core Team, 2018). All data and code 
are openly available (please refer to the data availability statement).

3  |  RESULTS

Occurrence data compilation and processing (after removing dupli-
cates and implementing spatial autocorrelation constraints over the 

initial 20,016 records) resulted in 4806 records (plus 4806 pseudo- 
absence records) to model the global distribution of mangroves 
(Figure S3) and in 109 records to model AGB (Table 1; Figure S1). 
The AGB records varied between 4.3 and 808.96 t ha−1, with an aver-
age of 166.34 ± 166.21 t ha−1, with studies sampling 4.20 ± 8.98 sites 
on average (range between 3 and 92 sites). The distribution model 
retrieved high predictive performance (cross- validation Boyce index: 
0.78 ± 0.19; final prediction Boyce index: 0.99; final prediction AUC: 
0.97) and matched the known distribution of mangroves at global 
scales, as detailed in additional studies (Giri et al., 2011; Hutchinson 
et al., 2014; Hu et al., 2020; Figure 1). The biomass model showed 
little deviation between observed and predicted values (CV devi-
ance explained: 0.61 ± 0.04; final model deviance explained: 0.81, 
Figure 2), resulting in a mean error of 1.00 ± 1.58 t ha−1.

Minimum temperature largely explained the occurrence of man-
groves (relative contribution of 74.38%), followed by precipitation 
and slope (combined contribution of 19.37%; Figure 3). For Biomass, 
precipitation and maximum temperature were particularly import-
ant (combined contribution of 53.03%), followed by wave energy, 
distance to delta, and minimum temperature (Figure 3). These results 
are supported by the generally low correlation found between pre-
dictor layers. Only temperature predictors showed a stronger cor-
relation (Pearson's correlation 0.90; VIF > 5; Figure S4; Table S2), yet 
their opposite fit, as forced by monotonicity constraints, removed 
potential confounding inferences regarding their contributions to the 
response of models. Considering the most contributive predictors, 
conditions for the occurrence of mangroves were predicted with 
temperature above 11.73°C, precipitation above 121.67 mm yr−1 and 
reduced terrain profiles of slope lower than 6.35° (Figures 3 and S5). 
Increased AGB values were predicted with temperatures between 
13.4 and 30.9°C, precipitation above 292 mm yr−1, wave energy 
below 3.1 and distances to deltas lower than 3683 km (Figures 3 and 
S6).

For present- day conditions, models estimated a total area of 
12,780,356 ha and a mean and overall AGB of 179.29 t ha−1 and 
2.29 Pg, respectively. Approximately 90% of the predicted man-
grove extent and biomass were estimated in Tropical Atlantic and 
the Western and Central Indo- Pacific (Table 1). The models consid-
ering the two RCP scenarios of future change projected similar dis-
tribution areas of 14,953,016 and 14,697,409 ha (RCP 2.6 and RCP 
8.5, respectively), corresponding to increases of 17.29% and 15.77% 
when compared with the present (Table 1). These changes were 
mostly driven by poleward shifts along the temperate coastlines of 
the Southern Africa, Northern Pacific, South America, and Northern 
Atlantic (Table 1), at a projected rate of 8.04 and 32.37 km per de-
cade (RCP 2.6 and RCP 8.5, respectively). Area losses of 28.01% and 
43.49% were projected in the Tropical Eastern Pacific and Eastern 
Indo- Pacific, respectively (Figure 4; Table 1).

Future estimates of mean AGB varied between 171.75 and 
136.61 t ha−1, corresponding to 4.20% and 23.80% (Table 1). When 
combined with distribution estimates, these changes translated into 
overall biomass changes highly dependent on the emission scenario 
considered, remaining stable or even increasing under RCP 2.6, or 
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experiencing losses across all tropical regions under RCP 8.5 (over-
all biomass change RCP 2.6: 12.97%; RCP 8.5: −11.51%), particularly 
severe in the Tropical Atlantic, Eastern Pacific, and Western and 
Eastern Indo- Pacific (global losses above ~20% in overall biomass; 
Table 1). Countries like Brazil, Colombia, Ecuador, Guyana, Guinea, 
Mozambique, Sierra Leone and Suriname, predicted to have higher 
present- day overall biomass levels (>5 million tons), are expected 

to be severely impacted under RCP 8.5 (losses >75% in overall bio-
mass; Table S3) owing to increased warming conditions (average 
temperature increase of 3.69 ± 0.22°C; Table S3) and reduced hab-
itat availability due to sea level rise (average habitat reduction of 
−178,875 ± 186,189 ha; Table S3). Among these countries, Suriname, 
Guyana, Guinea and Mozambique are further projected to undergo 
future reductions in precipitation (average precipitation reduction of 
−1.07 ± 0.75 mm yr−1; Table S3). Additional estimates at the country 
level (i.e., per Economic Exclusive Zones) are available in Table S3.

4  |  DISCUSSION

Modelled projections for the period 2090– 2100 estimate poleward 
range expansions along temperate regions, and changes in overall 
biomass levels, particularly intensified under the higher emission 
scenario RCP 8.5. Following the Paris Agreement expectations, 
reduced environmental changes (e.g., temperature and precipita-
tion regimes), coupled with local scale habitat availability, may add 
up 17.29% in global mangrove area and 12.97% in overall biomass, 
while more drastic environmental changes owing to the continuous 
/ intensification of greenhouse gas emissions may severely impact 
the overall biomass of mangroves, with losses of 11.51%, which 
add up to the already lost mangroves over the past 50 years, esti-
mated in approximately one- third when compared with past distri-
butions (Valiela et al., 2001). Projected changes were particularly 
striking along the Tropical Atlantic, Eastern Pacific, and Western 
and Eastern Indo- Pacific, severely impacting countries like Brazil, 
Colombia, Ecuador, Guyana, Guinea, Mozambique, Sierra Leone 
and Suriname. These novel estimates, supporting policy- making 

F I G U R E  1  Potential distribution and aboveground biomass of mangrove forests predicted for present- day conditions at global scales. 
Map aggregated to equal- size polygons for better visualization.

F I G U R E  2  Relationship between observed and predicted 
biomass of mangrove forests (nature logarithm of aboveground 
biomass as t ha−1; deviance explained: 0.811).
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and management directives, highlight the potential effect of future 
climate change on global mangrove forests and how broad com-
pliance with the Paris Agreement may counteract trajectories of 
change.

The models predicting for present- day conditions matched the 
known distribution of mangroves at global scales (i.e., throughout 
the Tropical Atlantic and the Western and Central Indo- Pacific) and 
displayed reduced deviance with the observed AGB data (~80% 
of variability explained). The provided estimates of area and bio-
mass of 12,780,356 ha and 2.29 Pg, respectively, are in line with 
the additional estimates reported of 13,042,000/13,065,675 ha 
(Hu et al., 2020; Tang et al., 2018) and 1.91/2.83 Pg (Hutchison 

et al., 2014; Tang et al., 2018). In particular, the implemented ap-
proach of “community- level” modelling (D’Amen et al., 2017) al-
lowed capturing the niche of the whole biome (e.g., Jayathilake & 
Costello, 2018, 2020), which could be precluded by a species- by- 
species approach, considering the potentially scarce information in 
unsampled or overlooked regions (e.g., Brazil and Africa regions). 
Additional studies using satellite tools have also estimated mangrove 
distributions at the community level and achieved similar results to 
ours, in line with mangroves' empirical occurrence (Giri et al., 2011; 
Hutchinson et al., 2014; Hu et al., 2020). But despite the overall 
agreement found, differences are expected between studies owing 
to different methods used (Hu et al., 2020), and overprediction is 

F I G U R E  3  Relative contribution (%) of predictor variables to the (left) distribution and (right) biomass models. Dotted lines depict 
a contribution threshold of 5%. Tipping points shown represent values from which the models predicted the occurrence or biomass of 
mangroves.

TA B L E  1  Potential distribution areas, average and overall biomass of mangrove forests predicted per marine realm according to Spalding 
et al. (2007) for the present and future (decade 2090– 2100) representative concentration scenarios (RCP).

Realm

Area (ha) Average biomass (t ha−1) Overal biomass (t)

Present

Changes (%)

Present

Changes (%)

Present

Changes (%)

RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5 RCP 2.6 RCP 8.5

Temperate Southern 
Africa

10,588 +37.46 +78.72 45.57 −12.42 −26.60 482,509 +20.39 +31.18

Temperate Northern 
Pacific

243,412 +57.11 +52.40 40.12 −17.18 −14.86 9,765,281 +30.11 +29.75

Tropical Atlantic 2,897,646 +23.41 +19.10 125.40 −15.76 −44.61 363,372,631 +3.96 −34.03

Western Indo- Pacific 3,079,100 +11.59 +6.86 110.33 −4.79 −24.57 339,718,943 +6.25 −19.39

Temperate South America 105,736 +113.03 +234.88 60.46 −8.87 −55.37 6,392,924 +94.12 +49.46

Central Indo- Pacific 5,669,813 +14.16 +6.22 232.77 −0.95 −14.15 1,319,755,150 +13.08 −8.81

Temperate Northern 
Atlantic

97,713 +99.00 +624.14 23.77 +52.11 +77.17 2,322,239 +202.72 +1182.98

Temperate Australasia 132,150 +8.83 +43.37 37.53 −0.36 −20.09 4,959,377 +8.44 +14.56

Tropical Eastern Pacific 542,288 −0.10 −28.01 249.67 +1.21 −31.61 135,394,967 +1.11 −50.76

Eastern Indo- Pacific 1910 +91.31 −43.49 109.15 −85.57 −78.57 208,451 −72.39 −87.89

Global 12,780,356 +17.29 +15.77 179.29 −4.20 −23.80 2,291,418,861 +12.97 −11.51

Note: Areas (ha), average biomass (t ha−1), overall biomass (t) and changes (%) according to RCP scenarios are shown. The minus and plus signs 
represent areas with losses and gains of mangrove forests, respectively.
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somewhat inherent to our approach, as predicted estimates result 
from areas with environmentally suitable conditions, where man-
groves may not currently occur owing to additional factors (e.g., 
human- induced deforestation). Throughout the regions predicted 
as suitable for mangroves to thrive, biomass varied significantly, 
with average observed values of 166.34 ± 166.21 t ha−1, similar to 
predicted values of 179.29 ± 181.40 t ha−1. Biomass estimates were 
particularly high in the Central Indo- Pacific, accounting for almost 
half of the total global AGB (Hutchison et al., 2014). This is also 
the region with the highest diversity of mangroves at global scales 
(Suratman, 2008).

The modelled patterns of mangroves' distribution were mostly 
explained by minimum air temperature and precipitation, while 
those of biomass accounted for the additional contribution of max-
imum temperature. Suitable conditions for mangroves' occurrence 
were predicted with temperatures and precipitation levels above 
11.73°C and 121.67 mm yr−1, respectively, while increasing biomass 
was predicted with temperatures and precipitation above 13.14°C 
and 292 mm yr−1, reaching an optimum state with levels of 25.75°C 
and 730 mm yr−1 (Figure S6). Similar thresholds were empirically ob-
served elsewhere (Field, 1995; Osland et al., 2017). Regarding tem-
perature, studies have reported min air temperatures for occurrence 

F I G U R E  4  Change in potential distribution and aboveground biomass projected for mangrove forests (from 2000– 2017 to 2090– 2100) 
under the (a) RCP 2.6 and (b) RCP 8.5 scenarios of climate change. Maps aggregated to equal- size polygons for better visualization.
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above 13.5°C, with some species tolerating colder environments, 
such as Avicennia germinans in the subtropical northern Gulf of 
Mexico (Cavanaugh et al., 2018; Madrid et al., 2014) and higher 
productivity levels from 15 to 25°C (Hutchings & Saenger, 1987). 
Physiological damage has been observed at temperatures exceeding 
34°C, with photosynthetic rates falling close to zero at 38 and 40°C 
(e.g., Andrews & Muller, 1985; Cheeseman et al., 1991; Field, 1995). 
Regarding precipitation, studies have shown mangroves occurring in 
sub/semi- humid and arid areas experiencing low precipitation rates 
ranging between 320 and 780 mm.yr−1 (Alongi, 2009; Quisthoudt 
et al., 2012; Osland et al., 2017). Non- climatic drivers were also in-
cluded in the models, such as slope, wave energy and distance to 
major river delta, as the establishment of mangrove forests is fur-
ther dependent on smoothly sloping intertidal areas in association 
with bays, lagoons, estuaries and deltas, of low wave energy condi-
tions (Leong et al., 2018; Schaeffer- Novelli et al., 2002). The lack of 
a continental shelf and irregular relief can prevent mangrove occur-
rences (Ward et al., 2016). Additionally, the low wave energy (Amma 
& Bhaskaran, 2020) and distance to the river delta also emphasize 
that mangroves need not only protected regions from precluding 
soil erosion but also favourable nutrient conditions for tree growth. 
However, these predictors had a residual contribution to the model 
when compared with temperature and precipitation (as verified else-
where; Record et al., 2013).

The models allowed to project for the first time the future extent 
and biomass of mangroves at global scales. Poleward range shifts 
were projected in temperate regions regardless of the scenario 
considered, in line with additional studies already reporting the ex-
pansion of mangrove forests (Almahasheer et al., 2016; Cavanaugh 
et al., 2014; Coldren et al., 2019; Osland et al., 2019). These shifts 
have been attributed to the reduction in cold temperature condi-
tions and freezing events, as well as to changes in precipitation re-
gimes (Cavanaugh et al., 2014; Saintilan et al., 2014), corroborating 
our modelling expectations of higher probability of occurrence with 
increasing levels of the two predictors. Overall, projections showed 
a positive trend in the future extent of mangroves, yet biomass was 
largely dependent on the emission scenario considered and showed 
high spatial variability. While countries like Fiji, Madagascar, New 
Zealand, Solomon Islands and Somali may strongly increase biomass 
levels (gains in biomass above 50%; Table S3) owing to increased 
precipitation levels (positive anomaly in precipitation under RCP 
8.5; Table S3), the general trend under the higher  emission scenario 
is of severe losses, strongly impacting mangroves in countries lo-
cated in the Tropical Atlantic, Eastern Pacific, and the Western and 
Eastern Indo- Pacific regions. In the same way, ongoing reports align 
with our future projections, showing climate- induced expansions of 
mangroves in temperate regions, diebacks and biomass losses are 
also being reported across the tropics (Barros & Albernaz, 2014; 
Clausen et al., 2010; Lovelock & Ellison, 2007; Shearman, 2010) 
owing to warmer conditions (Ward et al., 2016; Friess et al., 2022) 
and decreasing rainfall rates (Alongi, 2015; Duke et al., 2007; Ward 
et al., 2016; Wilson, 2017). For instance, the harsh conditions in 
which mangroves can potentially survive, as predicted for some 

regions by our models, means that any slight increase in tempera-
ture and aridity levels (Figures S7 and S8) may result in severe and 
potentially irreversible mangrove changes (Adame et al., 2021).

Despite the high performance of our models, the overall approach 
has some limitations that should be acknowledged. First, it is important 
to recognize that the models considered only the potential impacts of 
climate change on the distribution and biomass of mangroves. Other 
anthropogenic drivers such as deforestation, hydrology alterations, 
CO2 enrichment and pollution may overwhelm the effects of climate 
change in some areas. Over the past decade, the global rate of man-
grove losses has decreased, however, such disturbances are still major 
threats in some countries, and restoration efforts have had mixed re-
sults (Friess et al., 2022; Goldberg et al., 2020). Second, the conversion 
of probability estimates (the first output of models) into binomial maps 
may have degraded the information of predictions (Guillera- Arroita 
et al., 2015). Ideally, models should provide a perfect discrimination of 
presences and absences, ultimately leading to binomial maps depict-
ing the true occurrence of mangroves. But potential data limitations 
and stochasticity in mangroves' occupancy can preclude the use of 
thresholds reclassifying probabilistic predictions of species occurrence 
(Guillera- Arroita et al., 2015). Here, the use of a compressive dataset 
of occurrence records aggregated at the ‘community- level’ (D’Amen 
et al., 2017) may have proved beneficial, producing models with high 
performance, and mimicking the actual distribution of mangroves; nev-
ertheless, probabilistic prediction layers are provided (please refer to 
data availability statement). Third, projecting the impacts of climate 
change can be a challenging task due to the lack of observations sup-
porting predictions (Elith et al., 2008). Also, there is a risk of extrap-
olating to climatic conditions not yet occurring in the present (Elith 
et al., 2008). This may have occurred in our projections with tempera-
tures above ~40°C (Figure S5), potentially occurring in the Persian Gulf 
and the Gulf of Oman (Figure S9). Fourth, the models did not consider 
constraints on the ability of mangroves to migrate inland with sea level 
rise (e.g., anthropogenic barriers), which are likely to have a significant 
impact on future changes in mangrove areas (Schuerch et al., 2018). 
The estimates considered sea level changes through a post- filtering 
technique (Fournier et al., 2017), but the mangrove's ability to per-
form vertical accretion can be precluded if changes exceed 6.1 mm yr−1 
(Saintilan et al., 2020), which translates to 0.49 m by the end of the 
century, largely surpassing the RCP 8.5 threshold of 0.93 m (Horton 
et al., 2020). Furthermore, for passive dispersal species, like mangroves 
that are highly dependent on the patterns of ocean currents, oceano-
graphic barriers may block the expansions projected along temperate 
regions (Molinos et al., 2017).

Overall, our global estimates highlight the potential effect of 
future climate changes on mangrove forests. If broad compliance 
with the Paris Agreement fails, severe mangrove losses may occur 
in tropical regions, as already reported elsewhere. Such losses will 
likely impact the multiple ecosystem services provided, importantly, 
the role in carbon sequestration (Howard et al., 2017). Losses may 
also increase greenhouse gas emissions, and centuries to millennia of 
accumulated carbon can be released in a short period. For instance, 
the recent loss of ~35,000 km2 of mangrove coverage is expected 
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to continue emitting 0.07 Gt CO2 over the next decades (Crooks 
et al., 2011).

The identification of vulnerable regions/ countries to future 
climatic impacts under contrasting scenarios of global change 
serves as new baselines to evaluate changes in carbon sequestra-
tion, strongly supporting international policy agendas, the Paris 
Agreement, within the United Nations Framework Convention 
on Climate Change. In this scope, the Intergovernmental Panel 
on Climate Change highlights the need to provide estimates with 
the lowest possible uncertainty. Here, our models predicting oc-
currence and biomass with high performance do so. Additionally, 
effective conservation planning, decision- making, and mitigation 
strategies can now be climatically informed (Mcleod & Salm, 2006) 
with our projections stressing the urgent need for initiatives con-
serving blue carbon (Taillardat et al., 2018), as evidence shows more 
effective sequestration and reduced losses in intact mangroves 
areas (Miteva et al., 2015; Nam et al., 2016). The establishment 
of climate- smart networks of marine protected areas may be the 
way, particularly relevant in the scope of the new post- 2020 Global 
Biodiversity framework.
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