
 
 

Yousra Gaimes 

 

  

 

Deep Learning Applications in 

Non-Intrusive Load Monitoring 

      

Supervised by:  

DR. ANTÓNIO EDUARDO DE BARROS RUANO 

 
 

2021 

 
 

 

UNIVERSIDADE DO ALGARVE 
Faculdade de Ciencias e Tecnologia 

 



ii 
 

Work Authorship Declaration 

 

I declare to be the author of this work, which is unique and unprecedented. Authors and works 

consulted are properly cited in the text and are in the listing of references included.  

 

 

Yousra Gaimes 

…………………………… 

 

 

 

 

 

 

Copyright  

© Copyright: Yousra Gaimes.  

The University of Algarve has the right, perpetual and without geographical boundaries, to 

archive and make public this work through printed copies reproduced in paper or digital form, 

or by any other means known or to be invented, to broadcast it through scientific repositories 

and allow its copy and distribution with educational or research purposes, noncommercial 

purposes, provided that credit is given to the author and Publisher. 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

  

  



iv 
 

Acknowledgements  

To my parents, my brothers, my family, Hélder Gonçalves and all those that one way or 

another contributed to my personal, social, and professional evolution.  

A Very special thanks to my Professor Antonio Ruano and my colleague Habou Laouali 

Inoussa.   

 

  



v 
 

Abstract 

Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home 

Energy Management Systems, this work will present a deep learning application in non-

intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the 

Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in 

different houses. For the sake of this study, two models will be trained: 

- Convolutional Neural Network 

- Long Short-term Memory Recurrent Neural Network  

on three datasets:  

- UKDale 

- REDD 

- Data from the Portuguese private residential house from the project NILM for 

IHEMS.     

 

Keywords:  

NILM, CNN, LSTM, UKDale, REDD, NILM for IHEMS.   

  



vi 
 

Resumo  

No âmbito do projeto Monitorização de Carga Não Intrusiva para Sistemas Inteligentes de 

Gestão de Energia Doméstica, este trabalho apresentará uma aplicação de aprendizagem 

profunda na monitorização de carga não intrusiva num estudo de caso numa casa residencial 

em Gambelas, Faro na região sul do Algarve de Portugal. Este trabalho tem por objetivo 

detectar eletrodomésticos tipo 2 em diferentes residências. Para fins deste estudo, dois modelos 

serão treinados: 

-  Rede Neural Convolucional 

-  Rede Neural Recorrente de Memória Longa de Curto Prazo 

em três conjuntos de dados: 

- UKDale 

- REDD 

- Dados da habitação privada portuguesa do projecto NILM para IHEMS. 
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1 Chapter 1: Introduction  

1.1 Non-Intrusive Load Monitoring (NILM) 

As the cost of energy is increasing and climate is changing, awareness of energy 

consumption is rising among households and industrials. Our lifestyle is dependent on a large 

quantity of energy consumption. Almost all our daily tasks are using electric appliances. This 

pushed the humanity to look for ways to understand the user consumption and monitor it. It is 

very important for both the consumer and the provider to understand the patterns of 

consumption so that they can take actions and try to optimize it. For example, if users 

understand their home appliances consumption, they can draw conclusions relatively to the 

appliance consumption rate, when to efficiently operate some appliances and how often. 

Awareness on appliances consumption will help the users to get a more concrete sense of what 

they are consuming through a proper monitoring solution, such as load monitoring. This 

monitoring technique was first applied in the industrial buildings then lately to households.  

Load Monitoring consists of two types “Intrusive Load Monitoring” and “Non-Intrusive 

Monitoring”. The intrusive one consists of installing smart meters to every plug of each 

appliance. The major drawbacks of this first type of load monitoring are that it intrudes the 

household and requires additional hardware that most of the time is expensive. The second type, 

which will be the topic of this thesis, is the Non-Intrusive Load Monitoring (NILM). In this 

later type, it is not required to get into the house and intrude people’s privacy; all what is needed 

are the readings from the general meter of the house.  

Non-intrusive load monitoring was first introduced in 1992 by G. W. Hart (HART, G. W. 

1992). It is a method that, based on household power data acquisition, disaggregates the total 

power into appliances’ single consumptions. This method is based on algorithms that obtain all 

the input data from one meter connected to the grid. This makes it a non-costly and non-

intrusive method that proved its efficiency in multiple researches that will be discussed further 

on in this dissertation.  

Energy monitoring using non-intrusive load monitoring allows multiple outcomes 

(Gopinatha et al., 2020):  

- It can be used to detect and identify appliances. 

- It can be used to give feedback to users on consumption levels of their appliances.  
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- It can identify appliances in houses without invading the house.  

- It can give feedback on the appliances performance and degradation over ageing. 

- It can analyze appliances behavior and detect anomalies. 

- It can be used to control the operation of appliances and the inverter, if a PV installation 

is available. 

Non-intrusive Load Monitoring is an approach that allows the energy consumer and the 

energy provider a cheap, efficient, and a simple access to very important data to have insight 

on the energy consumption.  

We can also define the non-intrusive load monitoring, also known as power 

disaggregation, as an approach trying to solve to following equation:  

𝑃𝐻 = ∑ 𝑃𝑖 +

𝐴

𝑖=1

𝜀 

𝑃𝐻: Total power consumed in the house 

𝑃𝑖: Power consumed by appliance i 

𝜀: Noise 

A: Total number of appliances 

To visualize the general concept of Non-intrusive load monitoring technique, figure 1 shows 

how the appliances are connected to the main power supply of the building, which is the main 

input of the NILM algorithms.  
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To deep dive into what happens in the energy consumption, the following figure (figure 2) 

shows the power consumption of different appliances in a household. 

 

Figure 2   Total power consumption of a house showing different appliances (G. W. Hart, 1992) 

 

Figure 1 NILM general concept (Gopinatha et al., 2020) 
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1.1.1 Appliance Types 

Generally, a wide variety of appliances is used in households. Thus creating a big 

challenge for NILM scientists, who opted for the following appliances’ categorization (figure 

3) to help them better handle the issue on hand.  

  

Type-I:  

Appliances operating on a single state (ON/OFF).  

Example: Lamps, toaster. 

Type-II:  

Appliances operating with finite-states. These have a finite number of operating states, and can 

be denoted as Finite State Machines (FSM). The transition between the states usually cannot be 

manually controlled.  

Example: Washing machine, Stove burner, and hair dryer. 

Type-III:  

Appliances known as Continuously Variable Devices (CVD). They operate on variable power 

with no fixed number of states.  

Example: Power drill, Dimmer lights 

Type-IV:  

 

Figure 3 Appliances types (Gopinatha et al., 2020) 
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Appliances cyclically on/off. These appliances have a periodic nature.  

Example: House alarm, Electric heater.  

 

Figure 4 Power Signatures of different appliance types 

(a) 20 Watt light               (b) Lamp with 3-user controlled intensity settings  

(c) Washing machine             (d) Fridge 

Understanding the types of appliances is crucial in solving NILM problems. Every type 

has a very distinct signature that defines it and allows the algorithms to learn to recognize it.  

1.1.2 Power signal  

Nowadays, the electrical power, almost in every household, comes from the grid as an 

Alternating Current (AC). This household current has an oscillating nature and can go 

negative at moments when power is returning to the grid. For this reason, AC is separated 

in two main types:  

- Active Power (P) 

- Reactive Power (Q)  

1.1.2.1 Active Power 

 It is the Real power used in an AC Circuit. It is measured in Kilowatt (kW). 



6 
 

1.1.2.2 Reactive Power   

 It is the power that moves back and forth to the grid from the household. It is measured 

in Kilo volt-ampere reactive (kVAR). 

In this research, we will be working with the Active Power only.  

1.1.3 Datasets 

In the Non-Intrusive Load Monitoring field many datasets are available for research and 

development. The data is collected from different locations around the world during various 

periods of time and different sampling rates. We can cite for example:  

- Reference Energy Disaggregation Data Set (REDD): “consists of whole-home and 

circuit specific electricity consumption for a number of real houses over several months’ 

time. For each monitored house, we record the whole home electricity signal recorded 

at a high frequency (15kHz); up to 24 individual circuits in the home, each labeled with 

its category of appliance or appliances, recorded at 0.5 Hz; up to 20 plug-level monitors 

in the home, recorded at 1 Hz, with a focus on logging electronics devices where 

multiple devices are grouped to a single circuit.” (Kolter and Johnson, 2011) 

 

- UK Domestic Appliance-Level Electricity (UK-DALE): “an open-access dataset from 

the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the 

whole-house and at 1/6 Hz for individual appliances. This is the first open access UK 

dataset at this temporal resolution. We recorded from five houses, one of which was 

recorded for 655 days, the longest duration we are aware of for any energy dataset at 

this sample rate.” (Kelly and Knottenbelt, 2015b). Some details of this dataset are present 

in the following table: 

 

House 1 2 3 4 5 

Building Type End of 

terrace 

End of 

terrace 

- Mid-terrace Flat 

N° of Occupants 4 2  2 2 

Total Number of 

Meters 

54 20 5 6 26 
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Sample Rate of 

Mains Meters 

6s 6s 6s 6s 6s 

Date of 1st Sampling 09/11/2012 17/02/2013 27/02/2013 09/03/2013 29/06/2014 

Date of Last 

Sampling 

05/01/2015 10/10/2013 08/04/2013 01/10/2013 13/11/2014 

Duration (Days) 786 235 39 206 137 

N° Appliances 53 18 4 11 24 

Average Main 

consumption per day 

(kWh) 

7.64 7.17 - - 13.75 

 

 

- Plug-Level Appliance Identification Dataset (PLAID): “includes current and voltage 

measurements sampled at 30 kHz from 11 different appliance types present in 56 

households in Pittsburgh, Pennsylvania, USA. Data collection took place during the 

summer of 2013. Each appliance type is represented by dozens of different instances of 

varying make/models. For each appliance, three to six measurements were collected.” 

(Gao et al., 2014) 

 

- Electricity Consumption and Occupancy (ECO): “In particular, it contains 

aggregate electricity consumption data – including real and reactive power for each of 

the three phases – and plug-level measurements of selected household appliances. The 

data has been collected at 1 Hz granularity and over a period of 8 months. Furthermore, 

the data set also contains occupancy information of the monitored households.” (C. 

Beckel, W. Kleiminger, R. Cicchetti, T. Staake, S. Santini. 2014) 

 

The table below (Table 1) describes in brief the duration, sampling rate, type and country of 

each of the above-cited datasets:  

Dataset Duration Type Country 

REDD (Kolter and 

Johnson, 2011) 
19 days Residential US 
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UK-DALE (Kelly and 

Knottenbelt, 2015b) 
2 years Residential UK 

PLAID (Gao et al., 

2014) 
- Residential US 

ECO (C. Beckel, W. 

Kleiminger, R. 

Cicchetti, T. Staake, S. 

Santini. 2014) 

8 months Residential Switzerland 

Table 1 Datasets in brief  

  

Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home 

Energy Management Systems, the team supervised by Professor Dr. A. Ruano worked on a 

specific case study in a residential home in Algarve, Portugal. One of the project goals is to do 

energy monitoring using NILM that disaggregates the overall energy usage using the load from 

the utility service entry. The data was collected from a private residential house, recorded at a 

sampling rate of 1s. 

The structure of the house and the appliances it has are described in the quote bellow: “It is a 

detached house, with two floors and with 20 different spaces (including garden, halls, and so 

on). The house has a PV installation, composed of 20 Sharp NU-AK panels, arranged in two 

strings, each panel with a maximum power of 300W. The inverter is a Kostal Plenticore Plus 

converter (KI), which also controls a BYDBattery BoxHVH11.5 (with a storage capacity of 11.5 

kWh). Several electrical appliances exist in this house, and a json file was created according 

to the format used by the NILM Toolkit. The house electric panel is a Schneider panel consisting 

of 16 monophasic circuit breakers, plus a triphasic one. The house also has available a few TP-

Link HS100 Wi-Fi Smart Plugs (SP), one Intelligent Weather Station (IWS), and a few Self-

Powered Wireless Sensors (SPWS) for measuring room climate variables.” (A. Ruano, K. Bot, 

M. Graça Ruano, 2020) 

1.2 Deep Learning  

Two different Deep Learning models are employed in this work. They are briefly described 

below. 
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1.2.1 Convolutional Neural Network  

Convolutional Neural Network, also known as CNN or ConvNet, is a deep learning 

model that specializes in processing data that has a grid-like topology, such as images. Figure 

5 describes the general model of a CNN.  

A CNN typically has three layers: a convolutional layer, a pooling layer, and a fully 

connected layer. 

1 - Convolution Layer: where features are extracted from the input image. 

2- Pooling Layer: used to reduce the dimensionality of each feature. It helps to reduce the 

number of parameters and computations needed. CNN uses max-pooling where it chooses the 

largest element from the spacial neighborhood defined. (S. Patel, J. Pingel, 2017)  

4 - Fully-Connected Layer 

The output from the convolution and pooling layers represent high-level features of the input 

image. The Fully-Connected layers use these features for classifying the input image into 

various classes based on the training dataset. 

 

Figure 5 CNN general model (L., S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997)) 

 

 

Figure 6 CNN architecture (S. Patel, J. Pingel, 2017) 
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1.2.2 Long Short-term Memory Recurrent Neural Network 

Long Short Term Memory networks, shortened as “LSTM”, are a special kind of 

recurrent neural networks. As a work of Hochreiter & Schmidhuber in 1997, LSTMs were first 

introduced to solve the vanishing gradient problem in RNNs. They are capable of learning long-

term dependencies by storing processed information about longer sequence of data.  

An LSTM consists of a set of recurrently connected blocks known as memory blocks. Each 

LSTM is made of one or multiple recurrently connected memory cells as well as the input, the 

output and forget gates. (Alex Graves, et al.,2005) 

LSTM has a similar flow as an RNN. It processes data, sequentially passing on information as 

it propagates forward; the difference are the operations within the cells.  

 

Figure 7 LSTM Structure (M. Phi, 2018) 
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The forget gate will give an output based on the input feature and the hidden state. The sigmoid 

is used as an activation function, and the output ranges between 0 and 1. The output will then 

be multiplied by the cell state, thus resulting in two possible results: if the output is 0 the cell 

state will be empty, if it is 1 then the cell state will remain the same. 

 

After the forget gate stage, the input gate will be given the hidden state of t-1 and the input 

feature. The input gate will determine what new data to keep. The “tanh” function creates a new 

set of values to be stored into the memory. The generated values will be multiplied by the output 

from the input gate then added to the cell state. 

 

Figure 8 Forget Gate (M. Phi, 2018) 
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After the output gate and the tanh function decide what data should be output and transformed 

into the range -1 to 1, the resulting new data will be output along with Ct. 

1.3 Performance Criteria  

The following performance criteria are commonly used in the non-intrusive load 

monitoring field:  

- Mean Absolute Error (MAE): The absolute value of the difference between the 

predicted and the actual value. 

- F1 score: The weighted average of the precision and recall values where the best 

value reaches 1 and the worst 0.  

- Signal Aggregate Error: relative error of the total energy.  

- Estimated Accuracy: The degree to which a prediction varies to its actual value. 

1.3.1.1 MAE   

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

n
 

Where 

yi: prediction 

xi: true value 

n: total number of data points 

 

Figure 9 Output Gate (M. Phi, 2018) 
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1.3.1.2  F1 Score 

𝐹1 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 
 

Where  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

And  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

TP: True Positives 

FP: False Positives 

FN: False Negatives 

1.3.1.3 Signal Aggregate Error  

𝑆𝐴𝐸 =
∑ 𝑦𝑖  

𝑛
𝑖=1 −  ∑ 𝑥𝑖  

𝑛
𝑖=1

∑ 𝑥𝑖   𝑛
𝑖=1

 

Where: 

Yi: prediction 

Xi: true value 

n: total number of data points 

1.3.1.4 Estimated Accuracy 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ |  x𝑡

(m) − yt
(m)|𝑇

𝑡=1

2 ∗  ∑ yt
(m)𝑇

𝑡=1

 

Where: 

T: the time sequence or number of disaggregated readings 

𝐱𝒕 : the estimated power consumed at time t for appliance m 

𝐲𝐭 : the ground truth power consumed at time t for appliance m 
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1.4 Thesis Outline 

This thesis is organized according to the following outline. In chapter 1, up to now, we 

introduced the necessary background for the reader to be comfortable reading the rest of the 

thesis. In chapter 2, we will discuss some previous work done in non-intrusive load monitoring 

using deep learning technics. Next in chapter 3, we will detail the proposed work. Then in 

chapter 4, we will apply the two introduced models, CNN and LSTM, on the two public 

datasets:  

- UKDALE  

- REDD  

Chapter 5, will discuss the application of the same models on the dataset from the Intelligent 

Home Energy Management Systems project. To finish, in chapter 6 final conclusions and future 

work will be drawn.  
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2 Chapter 2: Previous Work  

2.1 State of the art  

All the papers were collected from the trusted commonly reliable website, Web of Science. The 

papers were looked collected using the following keywords: 

- NILM 

- Non-intrusive Load management using deep learning 

- Deep Learning Techniques applied on non-intrusive load management 

The first search produced around 50 papers. Then it was narrowed to the 5 papers chosen below 

based on their suitable titles, interesting abstracts, and their recent publication date of 2020. 
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Paper 1: Investigation of Deep Learning-based Techniques for Load Disaggregation, Low-

Frequency Approach (A. Alkhulaifi, A. J. Aljohani (2020)) 

  

In the paper “Investigation of Deep Learning-based Techniques for Load Disaggregation, Low-

Frequency Approach”, the authors used the following models to disaggregate the energy load: 

o Denoising Auto-encoder (DAE) 

o Recursive Neural Network (RNN) Long Short-Term Memory networks (LSTM) 

o Sequence-to-Point Neural Network (Seq2Point)  

o Gated Recurrent Units Recurrent Neural Networks (RNN GRU) 

The datasets used in this paper are the REDD and UK-DALE where the chosen appliances for 

the experiment are the single state (on/off) and multi-state appliances. The models were trained 

and tested using the two datasets. The metric the authors chose to evaluate the models is the 

Mean Absolute Error (MAE). The obtained results are shown below (tables 2 to 5); the best 

results are in bold (A. Alkhulaifi, A. J. Aljohani (2020)): 

Appliance DAE RNN LSTM Seq2Point  RNN GRU 

Microwave 26.39 42.04 13.15 34.58 

Dish Washer 51.02 90.76 9.93 62.77 

Table 2 - Appliance MAE, in watts, for REDD data set. (A. Alkhulaifi, A. J. Aljohani (2020)) 

Appliance DAE RNN LSTM Seq2Point  RNN GRU 

Microwave 39.61 57.12 20.21 46.64 

Dish Washer 61.17 93.18 16.61 65.73 

Table 3 - Appliance MAE, in watts, for UK-DALE data set. (A. Alkhulaifi, A. J. Aljohani (2020)) 

Appliance DAE RNN LSTM Seq2Point  RNN GRU 

Microwave 46.19 56.96 66.80 59.98 

Dish Washer 152.69 92.94 100.78 148.35 

Table 4 Appliance MAE In Watts. Trained On Redd and Tested On UK-Dale. (A. Alkhulaifi, A. J. Aljohani (2020)) 

Appliance DAE RNN LSTM Seq2Point  RNN GRU 

Microwave 49.22  42.14 41.97 54.39 

Dish Washer 87.35  138.90 78.60 88.26 

Table 5 Appliance MAE In Watt Trained On UK-Dale  and Tested On Redd. (A. Alkhulaifi, A. J. Aljohani (2020)) 



17 
 

Paper 2: A convolutional auto encoder‑based approach with batch normalization for energy 

disaggregation (H. Chen, Y. Wang, C. Fan (2020)) 

 

In this paper, the authors used the following models to desegregate the energy load: 

o Long Short-Term Memory networks (LSTM) 

o Convolutional Auto encoder (CAE) 

o Convolutional Auto encoder with batch normalization (CAEBN) 

o Convolutional Auto encoder with batch normalization and Hill Climbing (CAEBN-HC)  

The dataset used in this paper is the REDD dataset. The metrics that the authors chose to 

evaluate the models are the Mean Absolute Error (MAE) and the Signal Aggregate Error (SAE). 

The obtained results are shown below in Table 6, and the best results are in bold (H. Chen, Y. 

Wang, C. Fan (2020)): 

 

Appliance Error 

Measurement 

LSTM CAE CAEBN CAEBN-HC 

Microwave MAE 21.64 26.95 21.99 9.594 

SAE 0.6944 0.3072 0.41 0.082 

Fridge MAE 26.17 24.22 11.98 7.62 

SAE 0.3999 0.34 0.078 0.013 

Table 6 Results (H. Chen, Y. Wang, C. Fan (2020)) 
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Paper 3: Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multi-

Label Classification (L. Massidda, M. Marrocu, S. Manca (2020)) 

The authors employed only a CNN to desegregate the energy load. 

The dataset used in this paper is the UK-DALE dataset. The metrics that the authors chose to 

evaluate the models are the mean absolute error and Signal Aggregate Error. The obtained 

results are shown below in Tables 7 and 8 (L. Massidda, M. Marrocu, S. Manca (2020)): 

 

 

  

 

Table 7 Performance the seen case on the UK-DALE dataset. (L. Massidda, M. Marrocu, S. Manca (2020)) 

 

 

 

Table 8 Performance for the unseen case on the UK-DALE dataset. (L. Massidda, M. Marrocu, S. Manca (2020)) 
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Paper 4: A Practical Solution for Non-Intrusive Type II Load Monitoring Based on Deep 

Learning and Post-Processing (W. Kong, Z. Y. Dong, B. Wang, J. Zhao, J. Huang (2020)) 

The authors of this paper also used the Convolutional neural network model to desegregate 

the energy. The dataset used in this paper is the UK-DALE dataset where the appliances chosen 

were type 2 appliances. The dataset was preprocessed in the paper using data augmentation. 

Then it was preprocessed using another CNN that classifies whether a sequence of estimated 

consumptions belongs to the target appliance or not. The metrics the authors chose to evaluate 

the models are the Estimated Accuracy and the F1.  

The obtained results are shown below in “Table 7” (W. Kong, Z. Y. Dong, B. Wang, J. Zhao, 

J. Huang (2020)): 

 

F1 

House 1 Dishwasher: 0.916 

Washing Machine: 0.928 

House 2 Dishwasher: 0.879 

Washing Machine: 0.897 

House 3 Dishwasher: 0.854 

Washer Dryer: 0.812 
 

Accuracy 

House 1 Dishwasher: 0.895 

Washing Machine: 0.920 

House 2 Dishwasher: 0.959 

Washing Machine: 0.842 

House 3 Dishwasher: 0.881 

Washer Dryer: 0.735 
 

Table 9 Paper 4 results (W. Kong, Z. Y. Dong, B. Wang, J. Zhao, J. Huang (2020)) 
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Paper 5: A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on 

Multi-Feature Input Space and Post-Processing (H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. 

Ochani (2020)) 

 

In the paper “A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based 

on Multi-Feature Input Space and Post-Processing”, the authors used the Deep LSTM model to 

desegregate the energy. The datasets used in this paper are the UK-DALE dataset and the 

Electricity Consumption and Occupancy (ECO) dataset where the appliance chosen were type 

1 and 2 appliances. The dataset was post-processed in the paper where irrelevant activations 

were eliminated during the disaggregation stage by comparing the lengths of ground-truth and 

predicted appliance activations of both type-1 and type-2 appliances. The metrics the authors 

chose to evaluate the models are the Precision, Recall, and F1, mean absolute error (MAE), 

signal aggregate error (SAE), and estimation accuracy (EA). 

The obtained results are shown below in “Tables 12 to 14” (H. Rafiq, X. Shi, H. Zhang, H. Li, 

M. K. Ochani (2020)): 

 

 

Table 10 Performance on a seen UK-DALE. (H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020)) 

 

 

Table 11 Performance on unseen UKDALE. (H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020)) 
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Table 12 Performance on the ECO datasets. (H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020)) 
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2.1.1 Results Comparison  

This section presents a comparison between the considered papers. The best values are 

in bold. The comparison is made based on the results found in the papers of two metrics cited 

above:  

- Mean Absolute Error (MAE) 

- F1 Score  

Acronyms used in the tables below:  

MW: Microwave 

WM: Washing Machine 

DW: Dishwasher  

WD: Washer Drier  

The table below compares the papers based on Mean Absolute Error (MAE): 

Model 

 

 

Paper/ 

dataset 

DAE LSTM Seq2Point 
RNN 

GRU 
CAE 

CAE with 

batch 

normalizati

on 

 

 

CNN 

1 

REDD 

MW:26.3

9 

DW:51.02 

 

MW:42.04 

DW:90.76 

 

MW:13.15 

DW:9.93 

 

MW:34.5

8 

DW:62.77 

 

- - - 

UK-

DALE 

MW:39.6

1 

DW:61.17 

MW:57.12 

DW:93.18 

MW:20.21 

DW:16.61 

MW:46.6

4 

DW:65.73 

- - - 

2 

REDD - - - - 
MW:26.95 

Fridge:24.22 

MW:21.99 

Fridge:11.98 

 

UK-

DALE 
- - - - - - - 

3 REDD - - - - - - - 
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Table 13 MAE Results 

The table below compares the papers based on F1 Score:  

                               Model 

Paper/dataset 

 

CNN 

 

LSTM 

3 UK-DALE (seen): 

WM:  0.98 

DW:  0.93 

Fridge: 0.87  

(unseen): 

WM:  0.86 

DW:  0.81 

Fridge: 0.87 

- 

4 UK-DALE House 1 DW: 0.916 

WM: 0.928 
- 

UK-

DALE 
- - - - - - 

(seen): 

WM:  41.97 

DW:  20.41 

Fridge: 

15.25 

(unseen): 

WM:  8.31 

DW:  33.07 

Fridge: 

17.03 

5 

UK-

DALE 
- 

(seen): 

MW:  21.45 

DW:  5.877 

Fridge: 5.679 

(unseen): 

MW:  0.392 

DW:  15.275 

Fridge: 19.608 

- - - - - 

ECO - 

MW:  5.402 

DW:  12.346 

Fridge: 4.039 

- - - - - 
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House 2 DW: 0.879 

WM: 0.897 

House 3 DW: 0.854 

WD: 0.812 
 

5 UK-DALE - (seen): 

MW:  0.719 

DW:  0.749 

Fridge: 0.997 

(unseen): 

MW:  0.317 

DW:  0.809 

Fridge: 0.872 

ECO - MW:  0.869 

DW:  0.891 

Fridge: 0.995 

From the cited comparison, we can note that the best values obtained are as follows: 

- UK-DALE:  

 MAE F1 

Fridge 5.679 (Using LSTM) 0.997 (Using LSTM) 

Dishwasher 5.877 (Using LSTM) 0.93 (Using CNN) 

Microwave 0.392 (Using LSTM) 0.98 (Using CNN) 

- ECO: 

 MAE F1 

Fridge 4.039 (Using LSTM) 0.995 (Using LSTM) 

Dishwasher 12.346 (Using LSTM) 0.891 (Using LSTM) 

Microwave 5.402 (Using LSTM) 0.869 (Using LSTM) 

- REDD: 

 MAE F1 

Fridge -   

Dishwasher 9.93 (Using Seq2Point) - 

Microwave 13.15 (Using Seq2Point) - 
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3 Chapter 3: Proposed Work 

3.1 Datasets 

This thesis will be working with three different datasets: 

- UK Domestic Appliance-Level Electricity (UKDale) dataset 

- Reference Energy Disaggregation Data set (REDD)   

- Intelligent Home Energy Management Systems (IHEMS) Project Data 

3.2 Metrics 

The metrics used in evaluating the models are two of the widely used metrics in the 

literature:  

- F1 score  

- Estimated Accuracy 

The detailed formulas can be found above in the section “Performance Criteria” 

3.3 Models 

Two models will be trained using the datasets described above: 

- Convolutional Neural Network   

- Long Short-term Memory Recurrent Neural Network 

Below are all the parameters used in the models.  

The CNN used was introduced in the paper “A Practical Solution for Non-Intrusive 

Type II Load Monitoring Based on Deep Learning and Post-Processing” by Weicong Kong, 

Zhao Yang Dong, Bo Wang, Junhua Zhao, Jie Huang. (W. Kong, Z. Y. Dong, B. Wang, J. 

Zhao, J. Huang (2020))  

The LSTM model was built from scratch layer by layer. 
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3.3.1 CNN Structure 

Layer Index Layer 

1 Input 

2 Conv1D(16,1,relu) 

3 Conv1D(16,1,relu) 

4 Maxpooling1D 

5 Conv1D(32,1,relu) 

6 Conv1D(32,1,relu) 

7 Maxpooling1D 

8 Conv1D(64,1,relu) 

9 Conv1D(64,1,relu) 

10 Conv1D(64,1,relu) 

11 Maxpooling1D 

12 Conv1D(128,1,relu) 

13 Conv1D(128,1,relu) 

14 Conv1D(128,1,relu) 

15 Maxpooling1D 

16 Dense(1024, relu) 

17 Dense(1024, relu) 

18 Dense(1, linear) 

 

3.3.2 LSTM Structure 

Layer Index Layer 

1 Input 

2 LSTM(100, tanh) 

3 Dropout(0.5) 

4 LSTM(100, tanh) 

5 Dropout(0.5) 

6 Dense(100, relu) 

7 Dense(1, linear) 
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3.4 Technologies Used  

Technologies 

Jupyter Notebook 

Python 

Anaconda 

 

3.5 Libraries Used  

Thanks to many researchers and developers in the domain, our work was built on their 

developed build-in libraries. This allowed the work to be smooth and efficient.  

Below are the main libraries used in this thesis:  

3.5.1 Numpy 

“Provides a high-performance multidimensional array and basic tools to compute with and 

manipulate these arrays.” (Conda documentation,2020) 

3.5.2 Pandas 

“Provides “high-performance, easy-to-use data structures and data analysis tools.” pandas 

provide several methods for reading data in different formats” (Conda documentation, 2020) 

3.5.3 Keras 

“Allows users to productize deep models on smartphones (iOS and Android), on the web, or on 

the Java Virtual Machine. It also allows use of distributed training of deep-learning models on 

clusters of Graphics processing units (GPU) and tensor processing units (TPU).” (Conda 

documentation,2020) 

3.5.4 NilmTK 

“Non-Intrusive Load Monitoring Toolkit (NILMTK); an open source toolkit designed 

specifically to enable the comparison of energy disaggregation algorithms in a reproducible 

manner. This work is the first research to compare multiple disaggregation approaches across 

multiple publicly available data sets.  
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NILMTK includes: 

 parsers for a range of existing data sets (8 and counting) 

 a collection of preprocessing algorithms 

 a set of statistics for describing data sets 

 a number of reference benchmark disaggregation algorithms 

 a common set of accuracy metrics” (Nilmtk documentation, 2021)  

3.6 Experimental Setup  

3.6.1 Data Preparation  

 Fridge, type 2 appliance, and is the main target of this thesis  

 Only house 1 was used for both training and testing of the models in the 2 public datasets 

UKDale and REDD 

 For UKDale, all power load series were down sampled from 6-seconds to 1-minute 

frequency  

 For REDD, all power series were sampled at a 10s sampling rate  

 For IHEM Data, all power series were sampled at a 1s sampling rate  

 

In this research the training sets consists of 80% of the dataset and the test set is the remaining 

20%. The table below describes the dates windows chosen for the public datasets: UKDale and 

REDD: 

 

3.6.1.1 UKDALE 

Dataset Start End 

Training dataset 2014-04-25 2016-04-14 

Testing dataset 2016-04-14 2016-06-11 

 

3.6.1.2 REDD 

Dataset Start End 

Training dataset 2011-04-18 2011-05-20 

Testing dataset 2011-05-21 2011-05-24 
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3.6.2  Data Preprocessing  

The dataset was preprocessed using the sliding window technique.  

The concept behind this technique as shown in figure 15 is extracting multiple overlapping 

samples from the sequence inputted.  

The Sliding Window technique generates new samples from the existing data, in order to 

increase the size of the dataset. This method allows the augmentation of the dataset which 

means the generation of a larger dataset from the existing one. Data augmentation can help 

avoiding overfitting when training the model. 

 

Figure 10 Sliding Window (A. Shenfield, M. Howarth, 2020) 

 

3.7 Summary 

The different datasets were set into different time windows then divided into a proportion of 

80% to training and 20% to testing to different. Then a data augmentation technique called 

sliding window was applied to the data. After that, the data was fed to the models described 

earlier to train the models. Results will be described in details in the upcoming chapters.   
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4 Chapter 4: Applications using Public Datasets 

4.1 UK-Dale 

4.1.1 Experimental Setup 

The data used from the UKDale dataset was from House 1 and the target appliance was the 

Fridge. The sampling rate for both the aggregated power and the target power was 60 seconds. 

Below are some graphs visualizing both the aggregated power and the target appliance power.  

Below is the aggregated power plot where the x-axis represents the power consumption in Watt 

and the y-axis represents time:  

 

 

Figure 11 UKDale Aggregated Power 
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A closer look into the aggregated power graph:  

 

Figure 12 Zoom into the UKDale aggregated power 

The target Appliance Power in our case is the Fridge: 

 

Figure 13 Target Appliance Power 
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Figure 14 Zoom into the Target appliance power 

 

The chosen dates windows were:  

Dataset Start End 

Training dataset 2014-04-25 2016-04-14 

Testing dataset 2016-04-14 2016-06-11 

 

Some parameters used in our experiment are described in the following table 

Parameter Value 

Sliding Window 30 

Epoch 1000 

Batch size 128 

Early Stopping Patience= 200 
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4.1.2 Results  

4.1.2.1 CNN 

After the training of the proposed CNN model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 15 Predicted Power of target appliance 

Plotting the predicted power against the testing target appliance power we get the following 

plot:  
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Figure 16 Predicted target power Vs test target power 

If we zoom a little deeper we get:  

 

Figure 17 Zoomed Predicted target power Vs test target power 
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In terms of metrics, the results obtained are as the following table describes:  

  

True Positives 26921 

False Positives 4639 

True Negatives 45667 

False Negatives 6262 

Recall 81% 

Precision 85% 

F1 Score 83% 

Estimated Accuracy 78% 

 

4.1.2.2 LSTM 

After the training of the proposed LSTM model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 18 Predicted Target Power LSTM 

Plotting the predicted power against the testing target appliance power we get the following 

plot:  
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Figure 19 Predicted target power Vs test target power 

If we zoom a little deeper we get:  

 

Figure 20 Zoomed Predicted target power Vs test target power 
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In terms of metrics, the results obtained are as the following table describes:  

 

  

True Positives 24893 

False Positives 5348 

True Negatives 44958 

False Negatives 8290 

Recall 75% 

Precision 83% 

F1 Score 79% 

Estimated Accuracy 69% 

 

4.1.3 Conclusion 

The results of the proposed CNN model outperformed the proposed LSTM model.  

The results, carried out in the UKDale dataset, in term of F1 score were 83% for the CNN and 

79% for the LSTM. Furthermore, in terms of estimated accuracy, the results were 78% for CNN 

and 69% for the LSTM. In terms of True Positives, the CNN model had 4639 and the LSTM 

model had 24893. 

The following table compares both proposed models CNN and LSTM:   

 CNN LSTM 

True Positives 26921 24893 

False Positives 4639 5348 

True Negatives 45667 44958 

False Negatives 6262 8290 

Recall 81% 75% 

Precision 85% 83% 

F1 Score 83% 79% 

Estimated Accuracy 78% 69% 
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The proposed method using the CNN model performance compared with the one proposed in 

the paper (L. Massidda, M. Marrocu, S. Manca (2020)) with no post processing in terms of F1 

Score:  

 Proposed CNN CNN from Massida et. al. 

F1 Score 83% 86% 

 

The proposed method using the LSTM model performance compared with the one proposed 

in the paper (H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020)) in terms of F1 Score:  

 Proposed LSTM LSTM from Rafiq et. al. 

F1 Score 79% 50% 
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4.2 REDD  

4.2.1 Experimental Setup 

The data used from the REDD dataset was from House 1 and the target appliance was the 

Fridge. The sampling rate for both the aggregated power and the target power was 10 seconds. 

Below are some graphs visualizing both the aggregated power and the target appliance power.  

Below is the aggregated power plot where the x-axis represents the power consumption in Watt 

and the y-axis represents time:  

 

Figure 21 REDD Aggregated Power 

A closer look into the aggregated power graph:  
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Figure 22 Zoom into the REDD aggregated power 

Target Appliance Power in our case is the Fridge: 

 

Figure 23 Target Appliance Power 
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Figure 24 Zoom into the Target appliance power 

As we can notice from the graphs above the data has several gaps and NULL values. Because 

of that we will clean the data by dropping the Nulls. Below are both the aggregated and target 

power graphs after Null values dropping. 



42 
 

 

Figure 25 Aggregated power after Null dropping 

 

Figure 26 Target power after dropping Nulls 

 

The chosen dates windows were:  
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Dataset Start End 

Training dataset 2011-04-18 2011-05-20 

Testing dataset 2011-05-21 2011-05-24 

 

The parameters used in this experiment are: 

Parameter Value 

Sliding Window 30 

Epoch 1000 

Batch size 128 

Early Stopping Patience= 200 

 

5.1.1 Results  

4.2.1.1 CNN 

After the training of the proposed CNN model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 27 Predicted Power of target appliance 
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Plotting the predicted power against the testing target appliance power we get the following 

plot:  

 

Figure 28 Predicted target power Vs test target power 

 

In terms of metrics, the results obtained are shown in the following table:  

 

  

True Positives 2933 

False Positives 1690 

True Negatives 5752 

False Negatives 664 

Recall 82% 

Precision 64% 

F1 Score 72% 

Estimated Accuracy 68% 
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4.2.1.2 LSTM 

After the training of the proposed LSTM model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 29 Predicted Target Power LSTM 

Plotting the predicted power against the testing target appliance power we get the following 

plot:  
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Figure 30 Predicted target power Vs test target power 

In terms of metrics, the results obtained are as the following table describes:  

  

True Positives 2980 

False Positives 3777 

True Negatives 3389 

False Negatives 893 

Recall 77% 

Precision 51% 

F1 Score 57% 

Estimated Accuracy 53% 

 

4.2.2 Conclusions  

The results of the proposed CNN model outperformed the proposed LSTM model.  

The results, carried out in the REDD dataset, in term of F1 score were 72% for the CNN and 

51% for the LSTM. Furthermore, in terms of estimated accuracy, the results were 68% for CNN 
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and 57% for the LSTM. In terms of True Positives, the CNN model had 1690 and the LSTM 

model had 2980. 

The following table compares both proposed models CNN and LSTM:   

 CNN LSTM 

True Positives 2933 2980 

False Positives 1690 3777 

True Negatives 5752 3389 

False Negatives 664 893 

Recall 82% 77% 

Precision 64% 51% 

F1 Score 72% 57% 

Estimated Accuracy 68% 53% 
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5 Chapter 5: Applications using the NILM for IHEMS Project 

Dataset 

5.1 Experimental Setup 

5.1.1 Experimental Setup 

The data used from the NILM for IHEMS dataset was from a private independent house in 

Algarve, South of Portugal and the target appliance was the Fridge. The sampling rate for both 

the aggregated power and the target power was 1 second. Below are some graphs visualizing 

both the aggregated power and the target appliance power.  

Below is the aggregated power plot where the x-axis represents the power consumption in Kw 

and the y-axis represents time. The scale used is:  

 

Figure 31 NILM for IHEMS Aggregated Power 
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A closer look into the aggregated power graph:  

 

Figure 32 Zoom into the NILM for IHEMS aggregated power 

Target Appliance Power in our case is the Fridge: 

 

Figure 33 Target Appliance Power 
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Figure 34 Zoom into the Target appliance power 

 

The chosen dates windows were:  

Dataset Start End 

Training dataset 2021-06-02 2021-06-25 

Testing dataset 2021-06-26 2021-06-30 

 

The table is citing some parameters used in our experiment: 

Parameter Value 

Sliding Window 30 

Epoch 1000 

Batch size 128 

Early Stopping Patience= 200 
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5.2 Results  

5.2.1.1 CNN 

After the training of the proposed CNN model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 35 Predicted Power of target appliance 

Plotting the predicted power against the testing target appliance power we get the following 

plot:  
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Figure 36 Predicted target power Vs test target power 

If we zoom a little deeper we get:  

 

Figure 37 Zoomed Predicted target power Vs test target power 
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In terms of metrics, the results obtained are as the following table describes:  

 

  

True Positives 304270 

False Positives 37150 

True Negatives 93739 

False Negatives 23574 

Recall 93% 

Precision 90% 

F1 Score 91% 

Estimated Accuracy 87% 

 

5.2.1.2 LSTM 

After the training of the proposed LSTM model, the predicted power of the target appliance 

obtained can be visualized as follows:  

 

Figure 38 Predicted Target Power LSTM 

Plotting the predicted power against the testing target appliance power we get the following 

plot:  
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Figure 39 Predicted target power Vs test target power 

If we zoom a little deeper we get:  

 

Figure 40 Zoomed Predicted target power Vs test target power 
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In terms of metrics, the results obtained are as the following table describes:  

 

  

True Positives 152847 

False Positives 21092 

True Negatives 25590 

False Negatives 451 

Recall 99% 

Precision 88% 

F1 Score 93,4% 

Estimated Accuracy 86% 

 

5.3 Conclusions  

The results of the proposed LSTM model outperformed the proposed CNN model.  

The results, carried out in the dataset recorded in the frame of the NILM for IHEMS project, in 

term of F1 score were 91% for the CNN and 93.4% for the LSTM. Furthermore, in terms of 

estimated accuracy, the results were 87% for CNN and 86% for the LSTM. In terms of True 

Positives, the CNN model had 37150 and the LSTM model had 152847. 

The following table compares both proposed models CNN and LSTM:   

 CNN LSTM 

True Positives 304270 152847 

False Positives 37150 21092 

True Negatives 93739 25590 

False Negatives 23574 451 

Recall 93% 99% 

Precision 90% 88% 

F1 Score 91% 93,4% 

Estimated Accuracy 87% 86% 
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6 Chapter 6: Conclusion and Future Work  

The work on this thesis was not easy with all the events that happened in our world in 

2021. Unfortunately, the initial plans of this work were more in depth but they had to be changed 

along. This thesis is part of the project NILM for IHEMS. Its work focused on non-intrusive 

load monitoring using two deep learning technics. The models used are the following:  

- Convolutional Neural Network 

- Long Short-term Memory Recurrent Neural Network 

Using two public datasets open for research:  

- UKDale 

- REDD 

And the dataset collected in the private home subject to research in the project frame. 

 As future work, we are planning on improve and better tune the models, as well as to 

apply the models on further appliances.  
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