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Abstract

Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home
Energy Management Systems, this work will present a deep learning application in non-
intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the
Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in

different houses. For the sake of this study, two models will be trained:

- Convolutional Neural Network
- Long Short-term Memory Recurrent Neural Network

on three datasets:

- UKDale

- REDD

- Data from the Portuguese private residential house from the project NILM for
IHEMS.
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Resumo

No ambito do projeto Monitorizacdo de Carga N&o Intrusiva para Sistemas Inteligentes de
Gestdo de Energia Domestica, este trabalho apresentard uma aplicacdo de aprendizagem
profunda na monitorizagcdo de carga ndo intrusiva num estudo de caso numa casa residencial
em Gambelas, Faro na regido sul do Algarve de Portugal. Este trabalho tem por objetivo
detectar eletrodomésticos tipo 2 em diferentes residéncias. Para fins deste estudo, dois modelos

serdo treinados:

- Rede Neural Convolucional

- Rede Neural Recorrente de Memoria Longa de Curto Prazo
em trés conjuntos de dados:

- UKDale
- REDD
- Dados da habitacdo privada portuguesa do projecto NILM para IHEMS.

Palavras-chave:

NILM, CNN, LSTM, UKDale, REDD, NILM para IHEMS
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1 Chapter 1: Introduction

1.1 Non-Intrusive Load Monitoring (NILM)

As the cost of energy is increasing and climate is changing, awareness of energy
consumption is rising among households and industrials. Our lifestyle is dependent on a large
quantity of energy consumption. Almost all our daily tasks are using electric appliances. This
pushed the humanity to look for ways to understand the user consumption and monitor it. It is
very important for both the consumer and the provider to understand the patterns of
consumption so that they can take actions and try to optimize it. For example, if users
understand their home appliances consumption, they can draw conclusions relatively to the
appliance consumption rate, when to efficiently operate some appliances and how often.
Awareness on appliances consumption will help the users to get a more concrete sense of what
they are consuming through a proper monitoring solution, such as load monitoring. This

monitoring technique was first applied in the industrial buildings then lately to households.

Load Monitoring consists of two types “Intrusive Load Monitoring” and “Non-Intrusive
Monitoring”. The intrusive one consists of installing smart meters to every plug of each
appliance. The major drawbacks of this first type of load monitoring are that it intrudes the
household and requires additional hardware that most of the time is expensive. The second type,
which will be the topic of this thesis, is the Non-Intrusive Load Monitoring (NILM). In this
later type, it is not required to get into the house and intrude people’s privacy; all what is needed

are the readings from the general meter of the house.

Non-intrusive load monitoring was first introduced in 1992 by G. W. Hart (HART, G. W.
1992). It is a method that, based on household power data acquisition, disaggregates the total
power into appliances’ single consumptions. This method is based on algorithms that obtain all
the input data from one meter connected to the grid. This makes it a non-costly and non-
intrusive method that proved its efficiency in multiple researches that will be discussed further

on in this dissertation.

Energy monitoring using non-intrusive load monitoring allows multiple outcomes
(Gopinatha et al., 2020):

- It can be used to detect and identify appliances.

- It can be used to give feedback to users on consumption levels of their appliances.



- It can identify appliances in houses without invading the house.

- It can give feedback on the appliances performance and degradation over ageing.

- It can analyze appliances behavior and detect anomalies.

- It can be used to control the operation of appliances and the inverter, if a PV installation

is available.

Non-intrusive Load Monitoring is an approach that allows the energy consumer and the
energy provider a cheap, efficient, and a simple access to very important data to have insight

on the energy consumption.

We can also define the non-intrusive load monitoring, also known as power

disaggregation, as an approach trying to solve to following equation:

A
PH:ZPi+E
i=1

Py Total power consumed in the house
P;: Power consumed by appliance i

€: Noise

A: Total number of appliances

To visualize the general concept of Non-intrusive load monitoring technique, figure 1 shows
how the appliances are connected to the main power supply of the building, which is the main

input of the NILM algorithms.
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Figure 1 NILM general concept (Gopinatha et al., 2020)

To deep dive into what happens in the energy consumption, the following figure (figure 2)
shows the power consumption of different appliances in a household.
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Figure 2 Total power consumption of a house showing different appliances (G. W. Hart, 1992)



1.1.1  Appliance Types

Generally, a wide variety of appliances is used in households. Thus creating a big
challenge for NILM scientists, who opted for the following appliances’ categorization (figure

3) to help them better handle the issue on hand.

___________________________________________________________________________________________

§ Type | Typel Type I
[+]
- Single State (On/Off) Multi-State Continuously Variable

A

Figure 3 Appliances types (Gopinatha et al., 2020)

Type-I:

Appliances operating on a single state (ON/OFF).
Example: Lamps, toaster.

Type-I1I:

Appliances operating with finite-states. These have a finite number of operating states, and can
be denoted as Finite State Machines (FSM). The transition between the states usually cannot be
manually controlled.

Example: Washing machine, Stove burner, and hair dryer.
Type-lll:

Appliances known as Continuously Variable Devices (CVD). They operate on variable power

with no fixed number of states.
Example: Power drill, Dimmer lights

Type-1V:



Appliances cyclically on/off. These appliances have a periodic nature.

Example: House alarm, Electric heater.
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Figure 4 Power Signatures of different appliance types

(a) 20 Watt light (b) Lamp with 3-user controlled intensity settings
(c) Washing machine (d) Fridge

Understanding the types of appliances is crucial in solving NILM problems. Every type

has a very distinct signature that defines it and allows the algorithms to learn to recognize it.

1.1.2 Power signal

Nowadays, the electrical power, almost in every household, comes from the grid as an
Alternating Current (AC). This household current has an oscillating nature and can go
negative at moments when power is returning to the grid. For this reason, AC is separated

in two main types:

- Active Power (P)

- Reactive Power (Q)

1.1.2.1 Active Power

It is the Real power used in an AC Circuit. It is measured in Kilowatt (kW).



1.1.2.2 Reactive Power
It is the power that moves back and forth to the grid from the household. It is measured

in Kilo volt-ampere reactive (kVAR).

In this research, we will be working with the Active Power only.

1.1.3 Datasets

In the Non-Intrusive Load Monitoring field many datasets are available for research and
development. The data is collected from different locations around the world during various

periods of time and different sampling rates. We can cite for example:

- Reference Energy Disaggregation Data Set (REDD): “consists of whole-home and
circuit specific electricity consumption for a number of real houses over several months’
time. For each monitored house, we record the whole home electricity signal recorded
at a high frequency (15kHz); up to 24 individual circuits in the home, each labeled with
its category of appliance or appliances, recorded at 0.5 Hz; up to 20 plug-level monitors
in the home, recorded at 1 Hz, with a focus on logging electronics devices where

multiple devices are grouped to a single circuit.” (Kolter and Johnson, 2011)

- UK Domestic Appliance-Level Electricity (UK-DALE): “an open-access dataset from
the UK recording Domestic Appliance-Level Electricity at a sample rate of 16 kHz for the
whole-house and at 1/6 Hz for individual appliances. This is the first open access UK
dataset at this temporal resolution. We recorded from five houses, one of which was
recorded for 655 days, the longest duration we are aware of for any energy dataset at
this sample rate.” (Kelly and Knottenbelt, 2015b). Some details of this dataset are present

in the following table:

House 1 2 3 4 5

Building Type End of End of - Mid-terrace  Flat
terrace terrace

N° of Occupants 4 2 2 2

Total Number of 54 20 5 6 26

Meters




Sample Rate of 6s 6s 6s 6s 6s

Mains Meters
Date of 1% Sampling | 09/11/2012 17/02/2013 27/02/2013 09/03/2013 29/06/2014

Date of Last 05/01/2015  10/10/2013  08/04/2013  01/10/2013  13/11/2014
Sampling

Duration (Days) 786 235 39 206 137

N° Appliances 53 18 4 11 24
Average Main 7.64 7.17 - - 13.75

consumption per day
(kwh)

Plug-Level Appliance Identification Dataset (PLAID): “includes current and voltage
measurements sampled at 30 kHz from 11 different appliance types present in 56
households in Pittsburgh, Pennsylvania, USA. Data collection took place during the
summer of 2013. Each appliance type is represented by dozens of different instances of

varying make/models. For each appliance, three to six measurements were collected.”

(Gao et al., 2014)

Electricity Consumption and Occupancy (ECO): “In particular, it contains
aggregate electricity consumption data — including real and reactive power for each of
the three phases — and plug-level measurements of selected household appliances. The
data has been collected at 1 Hz granularity and over a period of 8 months. Furthermore,
the data set also contains occupancy information of the monitored households.” (C.
Beckel, W. Kleiminger, R. Cicchetti, T. Staake, S. Santini. 2014)

The table below (Table 1) describes in brief the duration, sampling rate, type and country of

gach

of the above-cited datasets:

Dataset Duration Type Country

REDD (Kolter and

19 days Residential uUsS
Johnson, 2011)



UK-DALE (Kelly and

2 years Residential UK
Knottenbelt, 2015b)

PLAID (Gao et al.,
2014)

- Residential us

ECO (C. Beckel, W.
Kleiminger, R.
Cicchetti, T. Staake, S.
Santini. 2014)

8 months Residential Switzerland

Table 1 Datasets in brief

Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home
Energy Management Systems, the team supervised by Professor Dr. A. Ruano worked on a
specific case study in a residential home in Algarve, Portugal. One of the project goals is to do
energy monitoring using NILM that disaggregates the overall energy usage using the load from
the utility service entry. The data was collected from a private residential house, recorded at a
sampling rate of 1s.

The structure of the house and the appliances it has are described in the quote bellow: “It is a
detached house, with two floors and with 20 different spaces (including garden, halls, and so
on). The house has a PV installation, composed of 20 Sharp NU-AK panels, arranged in two
strings, each panel with a maximum power of 300W. The inverter is a Kostal Plenticore Plus
converter (K1), which also controls a BYDBattery BoxHVH11.5 (with a storage capacity of 11.5
kWh). Several electrical appliances exist in this house, and a json file was created according
to the format used by the NILM Toolkit. The house electric panel is a Schneider panel consisting
of 16 monophasic circuit breakers, plus a triphasic one. The house also has available a few TP-
Link HS100 Wi-Fi Smart Plugs (SP), one Intelligent Weather Station (IWS), and a few Self-
Powered Wireless Sensors (SPWS) for measuring room climate variables.” (A. Ruano, K. Bot,
M. Graga Ruano, 2020)

1.2 Deep Learning

Two different Deep Learning models are employed in this work. They are briefly described
below.



1.2.1 Convolutional Neural Network

Convolutional Neural Network, also known as CNN or ConvNet, is a deep learning
model that specializes in processing data that has a grid-like topology, such as images. Figure

5 describes the general model of a CNN.
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Figure 5 CNN general model (L., S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997))

A CNN typically has three layers: a convolutional layer, a pooling layer, and a fully

connected layer.
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Fiqure 6 CNN architecture (S. Patel, J. Pingel, 2017)

1 - Convolution Layer: where features are extracted from the input image.

2- Pooling Layer: used to reduce the dimensionality of each feature. It helps to reduce the
number of parameters and computations needed. CNN uses max-pooling where it chooses the
largest element from the spacial neighborhood defined. (S. Patel, J. Pingel, 2017)

4 - Fully-Connected Layer

The output from the convolution and pooling layers represent high-level features of the input
image. The Fully-Connected layers use these features for classifying the input image into

various classes based on the training dataset.



1.2.2 Long Short-term Memory Recurrent Neural Network

Long Short Term Memory networks, shortened as “LSTM”, are a special kind of
recurrent neural networks. As a work of Hochreiter & Schmidhuber in 1997, LSTMs were first
introduced to solve the vanishing gradient problem in RNNSs. They are capable of learning long-

term dependencies by storing processed information about longer sequence of data.

T Ct

i T tanh i
e ‘ e : i
i it cd i

0 o tanh ©

____________________________________________________________________________

Figure 7 LSTM Structure (M. Phi, 2018)

An LSTM consists of a set of recurrently connected blocks known as memory blocks. Each
LSTM is made of one or multiple recurrently connected memory cells as well as the input, the

output and forget gates. (Alex Graves, et al.,2005)

LSTM has a similar flow as an RNN. It processes data, sequentially passing on information as

it propagates forward; the difference are the operations within the cells.
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The forget gate will give an output based on the input feature and the hidden state. The sigmoid
IS used as an activation function, and the output ranges between 0 and 1. The output will then
be multiplied by the cell state, thus resulting in two possible results: if the output is O the cell

state will be empty, if it is 1 then the cell state will remain the same.

1 1
1 1
1 1
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1 1
1 1
1 1
1 1
1 1
1 1
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1 1
L Gt i
| — c '
1 t 1
1 1
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1 1
| ht 1
1 1
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1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 8 Forget Gate (M. Phi, 2018)

After the forget gate stage, the input gate will be given the hidden state of t-1 and the input
feature. The input gate will determine what new data to keep. The “tanh” function creates a new
set of values to be stored into the memory. The generated values will be multiplied by the output

from the input gate then added to the cell state.
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Figure 9 Output Gate (M. Phi, 2018)

After the output gate and the tanh function decide what data should be output and transformed

into the range -1 to 1, the resulting new data will be output along with Ct.

1.3 Performance Criteria

The following performance criteria are commonly used in the non-intrusive load

monitoring field:

- Mean Absolute Error (MAE): The absolute value of the difference between the
predicted and the actual value.

- F1score: The weighted average of the precision and recall values where the best
value reaches 1 and the worst 0.

- Signal Aggregate Error: relative error of the total energy.

- Estimated Accuracy: The degree to which a prediction varies to its actual value.

1.3.11 MAE
MAE — Z?=1|J’i — x]
n
Where
yi: prediction
Xi: true value

n: total number of data points

12



Where:

1.3.1.2 F1 Score

precision * recall

F1=2x* —
precision + recall
Where
Precision — TP

recision = TFP
And

Recall = e

T TP Y FN

TP: True Positives
FP: False Positives
FN: False Negatives

1.3.1.3 Signal Aggregate Error

n n
i=1Yi T i=1%i

n
i=1%i

SAE =

Where:

Yi: prediction
Xi: true value
n: total number of data points
1.3.1.4 Estimated Accuracy
i1l Xt(m) - Yt(m)|

T
2 * thl Yt(m)

Estimated Accuracy =

T: the time sequence or number of disaggregated readings
X, : the estimated power consumed at time t for appliance m

y: : the ground truth power consumed at time t for appliance m

13



1.4 Thesis Outline

This thesis is organized according to the following outline. In chapter 1, up to now, we
introduced the necessary background for the reader to be comfortable reading the rest of the
thesis. In chapter 2, we will discuss some previous work done in non-intrusive load monitoring
using deep learning technics. Next in chapter 3, we will detail the proposed work. Then in
chapter 4, we will apply the two introduced models, CNN and LSTM, on the two public

datasets:

-  UKDALE
- REDD

Chapter 5, will discuss the application of the same models on the dataset from the Intelligent
Home Energy Management Systems project. To finish, in chapter 6 final conclusions and future

work will be drawn.
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2 Chapter 2: Previous Work

2.1 State of the art

All the papers were collected from the trusted commonly reliable website, Web of Science. The

papers were looked collected using the following keywords:

- NILM
- Non-intrusive Load management using deep learning

- Deep Learning Techniques applied on non-intrusive load management

The first search produced around 50 papers. Then it was narrowed to the 5 papers chosen below
based on their suitable titles, interesting abstracts, and their recent publication date of 2020.
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Paper 1: Investigation of Deep Learning-based Techniques for Load Disaggregation, Low-
Frequency Approach (A. Alkhulaifi, A. J. Aljohani (2020))

In the paper “Investigation of Deep Learning-based Techniques for Load Disaggregation, Low-

Frequency Approach”, the authors used the following models to disaggregate the energy load:

o Denoising Auto-encoder (DAE)

o Recursive Neural Network (RNN) Long Short-Term Memory networks (LSTM)
o Sequence-to-Point Neural Network (Seq2Point)

o Gated Recurrent Units Recurrent Neural Networks (RNN GRU)

The datasets used in this paper are the REDD and UK-DALE where the chosen appliances for
the experiment are the single state (on/off) and multi-state appliances. The models were trained
and tested using the two datasets. The metric the authors chose to evaluate the models is the
Mean Absolute Error (MAE). The obtained results are shown below (tables 2 to 5); the best
results are in bold (A. Alkhulaifi, A. J. Aljohani (2020)):

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 26.39 42.04 13.15 34.58
Dish Washer 51.02 90.76 9.93 62.77

Table 2 - Appliance MAE, in watts, for REDD data set. (A. Alkhulaifi, A. J. Aljohani (2020))

Appliance DAE RNN LSTM Seqg2Point RNN GRU
Microwave 39.61 57.12 20.21 46.64
Dish Washer 61.17 93.18 16.61 65.73

Table 3 - Appliance MAE, in watts, for UK-DALE data set. (A. Alkhulaifi, A. J. Aljohani (2020))

Appliance DAE RNN LSTM Seqg2Point RNN GRU
Microwave 46.19 56.96 66.80 59.98
Dish Washer 152.69 92.94 100.78 148.35

Table 4 Appliance MAE In Watts. Trained On Redd and Tested On UK-Dale. (A. Alkhulaifi, A. J. Aljohani (2020))

Appliance DAE RNN LSTM Seq2Point RNN GRU
Microwave 49.22 42.14 41.97 54.39
Dish Washer 87.35 138.90 78.60 88.26

Table 5 Appliance MAE In Watt Trained On UK-Dale and Tested On Redd. (A. Alkhulaifi, A. J. Aljohani (2020))
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Paper 2: A convolutional auto encoder-based approach with batch normalization for energy
disaggregation (H. Chen, Y. Wang, C. Fan (2020))

In this paper, the authors used the following models to desegregate the energy load:

o Long Short-Term Memory networks (LSTM)

o Convolutional Auto encoder (CAE)

o Convolutional Auto encoder with batch normalization (CAEBN)

o Convolutional Auto encoder with batch normalization and Hill Climbing (CAEBN-HC)

The dataset used in this paper is the REDD dataset. The metrics that the authors chose to

evaluate the models are the Mean Absolute Error (MAE) and the Signal Aggregate Error (SAE).

The obtained results are shown below in Table 6, and the best results are in bold (H. Chen, Y.
Wang, C. Fan (2020)):

Appliance Error LSTM CAE CAEBN CAEBN-HC
Measurement

Microwave | MAE 21.64 26.95 21.99 9.594
SAE 0.6944 0.3072 0.41 0.082

Fridge MAE 26.17 24.22 11.98 7.62
SAE 0.3999 0.34 0.078 0.013

Table 6 Results (H. Chen, Y. Wang, C. Fan (2020))
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Paper 3: Non-Intrusive Load Disaggregation by Convolutional Neural Network and Multi-
Label Classification (L. Massidda, M. Marrocu, S. Manca (2020))

The authors employed only a CNN to desegregate the energy load.

The dataset used in this paper is the UK-DALE dataset. The metrics that the authors chose to

evaluate the models are the mean absolute error and Signal Aggregate Error. The obtained
results are shown below in Tables 7 and 8 (L. Massidda, M. Marrocu, S. Manca (2020)):

Fridge Dishw asher Washing Machine
Ensemble Mean 90% Interval  Ensemble Mean 90% Interval Ensemble Mean 90% Interval
Precision 0.875 {0867, 0.885) 0.942 (0,904, 0.9565) 0.975 (0,968, 0.979)
Recall 0.859 (0546, 0871 0.919 (0.890, 0.942) 0.982 (0977, 0.987)
Accuracy 0.880 (0878, 0.382) 0.997 (0.995, 0.997) 0997 (0,996, 0.997)
F1 scome 0.867 (0564, 0.870) 0.930 (0.905, 0.945) 0.978 (0,976, 0.980)
MCC 0.759 (0755, 0.762) 0.928 (0,903, 0.945) 0.977 (0,974, 0.979)
MAE [W] 15.25 {15.08, 15.47) 20.41 (19.99, 21.00) 41.97 (41.80, 42.21)
SAE —.020 {—0.045, 0.002) —0042 {—0.082, —0.005) —0.077 (—0.085, —0.066)
Table 7 Performance the seen case on the UK-DALE dataset. (L. Massidda, M. Marrocu, S. Manca (2020))
Fridge Dishwasher Washing Machine
Ensemble Mean 90% Interval Ensemble Mean 90% Interval Ensemble Mean  90% Interval
Precision 0.892 (L3833, 0.898) 0.788 (0.738, 0.825) 0.858 (0811, 0.893)
Recall 0.851 (0.541, 0.561) LB35 (0.768, 0.897) 0.869 (0.827, 0.918)
Accuracy 0.905 (0.900, 0.908) 0.989 (0,987, 0.990) 0.997 (0.99, 0.998)
F1 score 0.871 (0.863, 0.576) 0.809 (0.790, 0.822) 0.863 (0.835, 0.900)
MCC 0.796 (0786, 0.803) 0.805 (0.7584, 0.817) 0.862 (0834, 0809
MAE [W] 17.03 (16,82, 17.24) 3307 (31.19, 35.68) 831 (7.88, 870)
SAE —0.046 (—0.066, —0.025) 0063 (—0.054, 0.21%) 0.014 (—0.059, 0.115)

Table 8 Performance for the unseen case on the UK-DALE dataset. (L. Massidda, M. Marrocu, S. Manca (2020))
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Paper 4: A Practical Solution for Non-Intrusive Type Il Load Monitoring Based on Deep

Learning and Post-Processing (W. Kong, Z. Y. Dong, B. Wang, J. Zhao, J. Huang (2020))

The authors of this paper also used the Convolutional neural network model to desegregate

the energy. The dataset used in this paper is the UK-DALE dataset where the appliances chosen

were type 2 appliances. The dataset was preprocessed in the paper using data augmentation.

Then it was preprocessed using another CNN that classifies whether a sequence of estimated

consumptions belongs to the target appliance or not. The metrics the authors chose to evaluate

the models are the Estimated Accuracy and the F1.

The obtained results are shown below in “Table 7” (W. Kong, Z. Y. Dong, B. Wang, J. Zhao,

J. Huang (2020)):

House 1 Dishwasher: 0.916
Washing Machine: 0.928
House 2 Dishwasher: 0.879
H Washing Machine: 0.897
House 3 Dishwasher: 0.854
Washer Dryer: 0.812
House 1 Dishwasher: 0.895
Washing Machine: 0.920
Accuracy House 2 DishV\-/asher: 0.?59
Washing Machine: 0.842
House 3 Dishwasher: 0.881

Washer Dryer: 0.735

Table 9 Paper 4 results (W. Kong, Z. Y. Dong, B. Wang, J. Zhao, J. Huang (2020))
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Paper 5: A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on
Multi-Feature Input Space and Post-Processing (H. Rafig, X. Shi, H. Zhang, H. Li, M. K.
Ochani (2020))

In the paper “A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based
on Multi-Feature Input Space and Post-Processing”, the authors used the Deep LSTM model to
desegregate the energy. The datasets used in this paper are the UK-DALE dataset and the
Electricity Consumption and Occupancy (ECO) dataset where the appliance chosen were type
1 and 2 appliances. The dataset was post-processed in the paper where irrelevant activations
were eliminated during the disaggregation stage by comparing the lengths of ground-truth and
predicted appliance activations of both type-1 and type-2 appliances. The metrics the authors
chose to evaluate the models are the Precision, Recall, and F1, mean absolute error (MAE),

signal aggregate error (SAE), and estimation accuracy (EA).

The obtained results are shown below in “Tables 12 to 14” (H. Rafiqg, X. Shi, H. Zhang, H. Li,
M. K. Ochani (2020)):

. Without Post-Processing With Post-Processing
House # Appliances
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

1 Kettle 0.658 2162 0179 0911 0.995 1.837 0217 0.891
1 Fridge 0.497 13.980 0138 0919 09% 5.679 0.347  0.526
& Microwave 0.535 5090 0028 0986 0719 21.450 0.515 0743
2 Dzt asher 0.559 13.076 0094 0953 0749 5877 0.419 0790
1 Washing Machine 0322 65720 Lol0 0492 0795 18.870 0.655  0.673
2 Electric Stove 0.886 3519 0623 0688 0981 0.240 0.005 0997
2 Television 0.976 0.976 a0ls 0991 0.995 0497 .01z 0.9

Owerall 0.633 23.503 0298  0.848  0.B90 7778 0,310 0.B45

Table 10 Performance on a seen UK-DALE. (H. Rafig, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020))

. Without Post-Processing With Post-Processing
House # Appliances
F1 MAE (W) SAE EA F1 MAE (W) SAE EA
5 Kettle 0.701 14.973 0.685  0LB57 0965 1.966 noss 0971
5 Fridge 0732 27.863 0.270  0.B6S 0872 19.608 0467 0.766
5 Microwave 0.242 0546 0.5M 0748 0317 0.392 0828  0.586
5 Dishw asher 0.554 35129 0.273 0863  0.809 15.275 0323 (.838
5 Washing Machine — 0.189 30.990 218 -0.09 0765 14422 0512 07
Owverall 0.484 21.900 0782 0609 0746 10,333 0438  0.781

Table 11 Performance on unseen UKDALE. (H. Rafig, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020))
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Without Post-Processing

With Post-Processing

House # Appliances
F1 MAE (W) SAE EA F1 MAE (W) SAE EA

2 Kettle 0.9:1 3.906 0.0 0998 0951 2353 0043 0978
2 Fridge 0.838 13.667 0170 0915 0995 4.039 0.121 0.939
2 Microwave 0.721 7.285 0.276 0862 0869 5402 0437 0781
2 Dighwasher 0.745 25736 0.024 0988 089 12346 0.288  0.856
2 Washing Machine 0189 30.990 0.68 —0.09 0701 5.400 0.641 0.679
2 Rice Cooker 0.299 8.900 0699 -0161 0781 1115 0378 0811
5 Electric Oven 0.550 B8.611 0448 0594 0736 28.911 0013 0993
5 Television 0.512 5.695 0.219 0890 0879 3428 0649 0675

Owerall 0.688 2354 0361 0714 0976 8.999 0.367  0.959

Table 12 Performance on the ECO datasets. (H. Rafig, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020))
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2.1.1 Results Comparison

This section presents a comparison between the considered papers. The best values are
in bold. The comparison is made based on the results found in the papers of two metrics cited

above:

- Mean Absolute Error (MAE)
- F1 Score

Acronyms used in the tables below:

MW: Microwave

WM: Washing Machine
DW: Dishwasher

WD: Washer Drier

The table below compares the papers based on Mean Absolute Error (MAE):

odel

CAE with
_ RNN batch
DAE LSTM Seq2Point CAE | CNN
GRU normalizati
Paper/
on
dataset
MW:26.3 MW:34.5
9 MW:42.04 MW:13.15 8
REDD DW:90.76 DW:9.93 - - -
DW:51.02 DW:62.77
1
MW:39.6 MW:46.6
UK- 1 MW:57.12 MW:20.21 A
DALE DW:93.18 DW:16.61
DW:61.17 DW:65.73
MW:26.95 MW:21.99
REDD - - - - ) )
Fridge:24.22 | Fridge:11.98
2
UK-
DALE
3 REDD - - - - - - -
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(seen):
WM: 41.97
DW: 20.41
Fridge:
UK- 15.25
DALE | _ ) ) (unseen):
WM: 8.31
DW: 33.07
Fridge:
17.03
(seen):
MW: 21.45
DW: 5.877
UK- Fridge: 5.679
DALE ) (unseen): ) ) )
MW: 0.392
DW: 15.275
Fridge: 19.608
MW: 5.402
ECO - DW: 12.346 | - - -
Fridge: 4.039

Table 13 MAE Results

The table below compares the papers based on F1 Score:

Paper/dataset

Model

CNN

LSTM

3

UK-DALE

(seen):
WM: 0.98
DW: 0.93
Fridge: 0.87
(unseen):
WM: 0.86
DW: 0.81
Fridge: 0.87

UK-DALE

DW: 0.916
WM: 0.928

House 1
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House 2 DW: 0.879

WM: 0.897

DW: 0.854
WD: 0.812

House 3

UK-DALE

(seen):

MW: 0.719
DW: 0.749
Fridge: 0.997
(unseen):
MW: 0.317
DW: 0.809
Fridge: 0.872

ECO

MW: 0.869
DW: 0.891
Fridge: 0.995

From the cited comparison, we can note that the best values obtained are as follows:

UK-DALE:
MAE F1
Fridge 5.679 (Using LSTM) 0.997 (Using LSTM)
Dishwasher 5.877 (Using LSTM) 0.93 (Using CNN)
Microwave 0.392 (Using LSTM) 0.98 (Using CNN)
ECO:
MAE F1
Fridge 4.039 (Using LSTM) 0.995 (Using LSTM)
Dishwasher 12.346 (Using LSTM) 0.891 (Using LSTM)
Microwave 5.402 (Using LSTM) 0.869 (Using LSTM)
REDD:
MAE F1
Fridge -
Dishwasher 9.93 (Using Seqg2Point) -
Microwave 13.15 (Using Seqg2Point) | -




3 Chapter 3: Proposed Work

3.1 Datasets

This thesis will be working with three different datasets:

- UK Domestic Appliance-Level Electricity (UKDale) dataset
- Reference Energy Disaggregation Data set (REDD)
- Intelligent Home Energy Management Systems (IHEMS) Project Data

3.2 Metrics

The metrics used in evaluating the models are two of the widely used metrics in the

literature:

- F1score

- Estimated Accuracy

The detailed formulas can be found above in the section “Performance Criteria”

3.3 Models

Two models will be trained using the datasets described above:

- Convolutional Neural Network

- Long Short-term Memory Recurrent Neural Network
Below are all the parameters used in the models.

The CNN used was introduced in the paper “A Practical Solution for Non-Intrusive
Type 11 Load Monitoring Based on Deep Learning and Post-Processing” by Weicong Kong,
Zhao Yang Dong, Bo Wang, Junhua Zhao, Jie Huang. (W. Kong, Z. Y. Dong, B. Wang, J.
Zhao, J. Huang (2020))

The LSTM model was built from scratch layer by layer.
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3.3.1 CNN Structure

Layer Index Layer
1 Input
2 ConvlD(16,1,relu)
3 Conv1D(16,1,relu)
4 Maxpooling1D
5 Conv1D(32,1,relu)
6 ConvlD(32,1,relu)
7 MaxpoolinglD
8 ConvlD(64,1,relu)
9 ConvlD(64,1,relu)
10 ConvlD(64,1,relu)
11 MaxpoolinglD
12 Conv1D(128,1,relu)
13 ConvlD(128,1,relu)
14 Conv1lD(128,1,relu)
15 MaxpoolinglD
16 Dense(1024, relu)
17 Dense(1024, relu)
18 Dense(1, linear)

3.3.2 LSTM Structure

Layer Index

Layer

~N oo o1 A W DN

Input

LSTM(100, tanh)
Dropout(0.5)
LSTM(100, tanh)
Dropout(0.5)
Dense(100, relu)
Dense(1, linear)
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3.4 Technologies Used

Technologies
Jupyter Notebook
Python

Anaconda

3.5 Libraries Used

Thanks to many researchers and developers in the domain, our work was built on their

developed build-in libraries. This allowed the work to be smooth and efficient.
Below are the main libraries used in this thesis:
3.5.1 Numpy

“Provides a high-performance multidimensional array and basic tools to compute with and

manipulate these arrays.” (Conda documentation,2020)

3.5.2 Pandas

“Provides “high-performance, easy-to-use data structures and data analysis tools.” pandas

provide several methods for reading data in different formats” (Conda documentation, 2020)

3.5.3 Keras

“Allows users to productize deep models on smartphones (iOS and Android), on the web, or on
the Java Virtual Machine. It also allows use of distributed training of deep-learning models on
clusters of Graphics processing units (GPU) and tensor processing units (TPU).” (Conda
documentation,2020)

3.54 NilmTK

“Non-Intrusive Load Monitoring Toolkit (NILMTK); an open source toolkit designed
specifically to enable the comparison of energy disaggregation algorithms in a reproducible
manner. This work is the first research to compare multiple disaggregation approaches across

multiple publicly available data sets.
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NILMTK includes:

3.6

3.6.1

parsers for a range of existing data sets (8 and counting)

a collection of preprocessing algorithms

a set of statistics for describing data sets

a number of reference benchmark disaggregation algorithms

a common set of accuracy metrics” (Nilmtk documentation, 2021)

Experimental Setup

Data Preparation

Fridge, type 2 appliance, and is the main target of this thesis

Only house 1 was used for both training and testing of the models in the 2 public datasets
UKDale and REDD

For UKDale, all power load series were down sampled from 6-seconds to 1-minute
frequency

For REDD, all power series were sampled at a 10s sampling rate

For IHEM Data, all power series were sampled at a 1s sampling rate

In this research the training sets consists of 80% of the dataset and the test set is the remaining

20%. The table below describes the dates windows chosen for the public datasets: UKDale and

REDD:

3.6.1.1 UKDALE

Dataset Start End

Training dataset 2014-04-25 2016-04-14

Testing dataset 2016-04-14 2016-06-11
3.6.1.2 REDD

Dataset Start End

Training dataset ‘ 2011-04-18 2011-05-20

Testing dataset ‘ 2011-05-21 2011-05-24
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3.6.2 Data Preprocessing

The dataset was preprocessed using the sliding window technique.

The concept behind this technique as shown in figure 15 is extracting multiple overlapping

samples from the sequence inputted.

The Sliding Window technique generates new samples from the existing data, in order to
increase the size of the dataset. This method allows the augmentation of the dataset which
means the generation of a larger dataset from the existing one. Data augmentation can help

avoiding overfitting when training the model.

Sample window

Step

Next sample window

Figure 10 Sliding Window (A. Shenfield, M. Howarth, 2020)

3.7 Summary

The different datasets were set into different time windows then divided into a proportion of
80% to training and 20% to testing to different. Then a data augmentation technique called
sliding window was applied to the data. After that, the data was fed to the models described

earlier to train the models. Results will be described in details in the upcoming chapters.
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4 Chapter 4: Applications using Public Datasets
4.1 UK-Dale
4.1.1 Experimental Setup

The data used from the UKDale dataset was from House 1 and the target appliance was the
Fridge. The sampling rate for both the aggregated power and the target power was 60 seconds.

Below are some graphs visualizing both the aggregated power and the target appliance power.

Below is the aggregated power plot where the x-axis represents the power consumption in Watt
and the y-axis represents time:
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5,000+
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Apri July Oictaber 205 April July Oriober 2016 Apri

Figure 11 UKDale Aggregated Power
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A closer look into the aggregated power graph:
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Figure 12 Zoom into the UKDale aggregated power

The target Appliance Power in our case is the Fridge:
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Figure 13 Target Appliance Power
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Figure 14 Zoom into the Target appliance power

The chosen dates windows were:
Dataset Start End
Training dataset 2014-04-25 2016-04-14
Testing dataset 2016-04-14 2016-06-11

Some parameters used in our experiment are described in the following table

Parameter Value
Sliding Window 30
Epoch 1000
Batch size 128

Early Stopping

Patience= 200

32



4.1.2 Results

4.1.2.1 CNN
After the training of the proposed CNN model, the predicted power of the target appliance

obtained can be visualized as follows:
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Figure 15 Predicted Power of target appliance

Plotting the predicted power against the testing target appliance power we get the following

plot:
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Figure 16 Predicted target power Vs test target power

If we zoom a little deeper we get:
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Figure 17 Zoomed Predicted target power Vs test target power
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In terms of metrics, the results obtained are as the following table describes:

True Positives
False Positives
True Negatives
False Negatives
Recall
Precision

F1 Score

Estimated Accuracy

4122 LSTM

26921
4639
45667
6262
81%
85%
83%
78%

After the training of the proposed LSTM model, the predicted power of the target appliance

obtained can be visualized as follows:
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Figure 18 Predicted Target Power LSTM
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Plotting the predicted power against the testing target appliance power we get the following

plot:
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Figure 19 Predicted target power Vs test target power

If we zoom a little deeper we get:
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Figure 20 Zoomed Predicted target power Vs test target power
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In terms of metrics, the results obtained are as the following table describes:

True Positives
False Positives
True Negatives
False Negatives
Recall

Precision

F1 Score

Estimated Accuracy

4.1.3 Conclusion

24893

5348

44958

8290
75%
83%
79%
69%

The results of the proposed CNN model outperformed the proposed LSTM model.
The results, carried out in the UKDale dataset, in term of F1 score were 83% for the CNN and

79% for the LSTM. Furthermore, in terms of estimated accuracy, the results were 78% for CNN
and 69% for the LSTM. In terms of True Positives, the CNN model had 4639 and the LSTM

model had 24893.

The following table compares both proposed models CNN and LSTM:

CNN LSTM
True Positives 26921 24893
False Positives 4639 5348
True Negatives 45667 44958
False Negatives 6262 8290
Recall 81% 75%
Precision 85% 83%
F1 Score 83% 79%
Estimated Accuracy 78% 69%
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The proposed method using the CNN model performance compared with the one proposed in

the paper (L. Massidda, M. Marrocu, S. Manca (2020)) with no post processing in terms of F1
Score:

Proposed CNN CNN from Massida et. al.
F1 Score 83% 86%

The proposed method using the LSTM model performance compared with the one proposed
in the paper (H. Rafig, X. Shi, H. Zhang, H. Li, M. K. Ochani (2020)) in terms of F1 Score:

Proposed LSTM LSTM from Rafiq et. al.
F1 Score 79% 50%

38



4.2 REDD

4.2.1 Experimental Setup

The data used from the REDD dataset was from House 1 and the target appliance was the
Fridge. The sampling rate for both the aggregated power and the target power was 10 seconds.
Below are some graphs visualizing both the aggregated power and the target appliance power.

Below is the aggregated power plot where the x-axis represents the power consumption in Watt
and the y-axis represents time:
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Figure 21 REDD Aggregated Power

A closer look into the aggregated power graph:
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Figure 22 Zoom into the REDD aggregated power

Target Appliance Power in our case is the Fridge:
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Figure 23 Target Appliance Power
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Figure 24 Zoom into the Target appliance power

As we can notice from the graphs above the data has several gaps and NULL values. Because
of that we will clean the data by dropping the Nulls. Below are both the aggregated and target

power graphs after Null values dropping.
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Figure 25 Aggregated power after Null dropping
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Figure 26 Target power after dropping Nulls

The chosen dates windows were:

50,000

80,000

T
100,000

120,000

T
140,000

42



Dataset Start End
Training dataset 2011-04-18 2011-05-20
Testing dataset 2011-05-21 2011-05-24

The parameters used in this experiment are:

Parameter Value

Sliding Window 30

Epoch 1000

Batch size 128

Early Stopping Patience= 200

5.1.1 Results

42.1.1 CNN
After the training of the proposed CNN model

obtained can be visualized as follows:
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Figure 27 Predicted Power of target appliance
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Plotting the predicted power against the testing target appliance power we get the following

plot:
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Figure 28 Predicted target power Vs test target power

In terms of metrics, the results obtained are shown in the following table:

True Positives 2933
False Positives 1690
True Negatives 5752
False Negatives 664

Recall 82%
Precision 64%
F1 Score 2%
Estimated Accuracy 68%
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4212 LSTM

After the training of the proposed LSTM model, the predicted power of the target appliance
obtained can be visualized as follows:
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Figure 29 Predicted Target Power LSTM

Plotting the predicted power against the testing target appliance power we get the following
plot:
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Figure 30 Predicted target power Vs test target power

In terms of metrics, the results obtained are as the following table describes:

True Positives 2980
False Positives 3777
True Negatives 3389
False Negatives 893

Recall 77%
Precision 51%
F1 Score 57%
Estimated Accuracy 53%

4.2.2 Conclusions

The results of the proposed CNN model outperformed the proposed LSTM model.
The results, carried out in the REDD dataset, in term of F1 score were 72% for the CNN and
51% for the LSTM. Furthermore, in terms of estimated accuracy, the results were 68% for CNN
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and 57% for the LSTM. In terms of True Positives, the CNN model had 1690 and the LSTM

model had 2980.

The following table compares both proposed models CNN and LSTM:

CNN LSTM

True Positives 2933 2980
False Positives 1690 3777
True Negatives 5752 3389
False Negatives 664 893

Recall 82% 77%
Precision 64% 51%
F1 Score 2% 5%
Estimated Accuracy 68% 53%
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5 Chapter 5: Applications using the NILM for IHEMS Project
Dataset

5.1 Experimental Setup

5.1.1 Experimental Setup

The data used from the NILM for IHEMS dataset was from a private independent house in
Algarve, South of Portugal and the target appliance was the Fridge. The sampling rate for both
the aggregated power and the target power was 1 second. Below are some graphs visualizing
both the aggregated power and the target appliance power.

Below is the aggregated power plot where the x-axis represents the power consumption in Kw

and the y-axis represents time. The scale used is:
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Figure 31 NILM for IHEMS Aggregated Power
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A closer look into the aggregated power graph:
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Figure 32 Zoom into the NILM for IHEMS aggregated power

Target Appliance Power in our case is the Fridge:
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Figure 34 Zoom into the Target appliance power

The chosen dates windows were:

Dataset Start End
Training dataset 2021-06-02 2021-06-25
Testing dataset 2021-06-26 2021-06-30

The table is citing some parameters used in our experiment:

Parameter Value

Sliding Window 30

Epoch 1000

Batch size 128

Early Stopping Patience= 200
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5.2 Results

5.2.1.1 CNN
After the training of the proposed CNN model, the predicted power of the target appliance

obtained can be visualized as follows:
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Figure 35 Predicted Power of target appliance

Plotting the predicted power against the testing target appliance power we get the following
plot:
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Figure 36 Predicted target power Vs test target power

If we zoom a little deeper we get:
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Figure 37 Zoomed Predicted target power Vs test target power
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In terms of metrics, the results obtained are as the following table describes:

True Positives
False Positives
True Negatives
False Negatives
Recall
Precision

F1 Score

Estimated Accuracy

5.21.2 LSTM

304270
37150
93739
23574
93%
90%
91%
87%

After the training of the proposed LSTM model, the predicted power of the target appliance

obtained can be visualized as follows:
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Plotting the predicted power against the testing target appliance power we get the following

plot:
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In terms of metrics, the results obtained are as the following table describes:

True Positives
False Positives
True Negatives
False Negatives
Recall
Precision

F1 Score

Estimated Accuracy

5.3 Conclusions

152847
21092
25590
451
99%
88%
93,4%
86%

The results of the proposed LSTM model outperformed the proposed CNN model.

The results, carried out in the dataset recorded in the frame of the NILM for IHEMS project, in
term of F1 score were 91% for the CNN and 93.4% for the LSTM. Furthermore, in terms of

estimated accuracy, the results were 87% for CNN and 86% for the LSTM. In terms of True
Positives, the CNN model had 37150 and the LSTM model had 152847.
The following table compares both proposed models CNN and LSTM:

CNN LSTM
True Positives 304270 152847
False Positives 37150 21092
True Negatives 93739 25590
False Negatives 23574 451
Recall 93% 99%
Precision 90% 88%
F1 Score 91% 93,4%
Estimated Accuracy 87% 86%
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6 Chapter 6: Conclusion and Future Work

The work on this thesis was not easy with all the events that happened in our world in
2021. Unfortunately, the initial plans of this work were more in depth but they had to be changed
along. This thesis is part of the project NILM for IHEMS. Its work focused on non-intrusive

load monitoring using two deep learning technics. The models used are the following:
- Convolutional Neural Network
- Long Short-term Memory Recurrent Neural Network

Using two public datasets open for research:

- UKDale
- REDD

And the dataset collected in the private home subject to research in the project frame.

As future work, we are planning on improve and better tune the models, as well as to

apply the models on further appliances.
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