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Abstract
Although it is known that trapped lee waves propagating at low levels in a
stratified atmosphere exert a drag on the mountains that generate them, the dis-
tribution of the corresponding reaction force exerted on the atmospheric mean
circulation, defined by the wave momentum flux profiles, has not been estab-
lished, because for inviscid trapped lee waves these profiles oscillate indefinitely
downstream. A framework is developed here for the unambiguous calculation of
momentum flux profiles produced by trapped lee waves, which circumvents the
difficulties plaguing the inviscid trapped lee wave theory. Using linear theory,
and taking Scorer’s two-layer atmosphere as an example, the waves are assumed
to be subject to a small dissipation, expressed as a Rayleigh damping. The result-
ing wave pattern decays downstream, so the momentum flux profile integrated
over the area occupied by the waves converges to a well-defined form. Remark-
ably, for weak dissipation, this form is independent of the value of Rayleigh
damping coefficient, and the inviscid drag, determined in previous studies, is
recovered as the momentum flux at the surface. The divergence of this momen-
tum flux profile accounts for the areally integrated drag exerted by the waves
on the atmosphere. The application of this framework to this and other types
of trapped lee waves potentially enables the development of physically based
parametrizations of the effects of trapped lee waves on the atmosphere.
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gravity wave drag, linear wave theory, mountain waves, wave momentum flux, wave trapping,
weak dissipation

1 INTRODUCTION

Orographic internal gravity waves in a stratified
atmosphere (also known as mountain waves) exert a
pressure drag on the mountains that generate them. By
Newton’s third law, a reaction force of equal magnitude

and opposite direction must be exerted by the mountains
on the atmosphere (Nappo, 2012). Since air is a fluid,
this reaction force may be distributed spatially, in some
cases over large distances, either vertically or horizon-
tally. The mountains that act as a source of these waves
have typical widths of order 10 km or smaller, and usually
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they are not resolved explicitly in weather prediction
or climate models, so the waves must be parametrized
(Stensrud, 2009). The total value of the orographic grav-
ity wave drag and its spatial distribution need to be
specified in such parametrizations (e.g., Lott and Miller,
1997).

A theory for the generation and dissipation of hydro-
static gravity waves, which propagate vertically in the
atmosphere, has been extensively developed over the last
decades (Phillips, 1984; McFarlane, 1987; Shutts, 1995;
Shutts and Gadian, 1999), and serves as the physical basis
for existing orographic gravity wave drag parametrizations.
In this theory, where the linear approximation is typically
made, the total drag can often be calculated analytically
(Smith, 1979; Phillips, 1984; Teixeira et al., 2004; Teixeira
and Miranda, 2006), and even the distribution of the force
exerted on the atmosphere, which is specified through the
divergence of the vertical flux of horizontal wave momen-
tum, can sometimes be expressed analytically (Shutts,
1995; Shutts and Gadian, 1999; Teixeira and Miranda,
2009; Teixeira and Yu, 2014). This tractability results from
the simplifications inherent to the linear and hydrostatic
approximations, whereby the waves not only are always
vertically propagating, but are also absorbed by critical
levels in an inviscid context via a mechanism that mimics
their more realistic (finite-amplitude) attenuation by wave
breaking (Booker and Bretherton, 1967; Shutts, 1995; Gru-
bišić and Smolarkiewicz, 1997; Teixeira et al., 2008). For
stationary waves, critical levels can be defined as levels in
the atmosphere where the mean wind velocity is perpen-
dicular to the horizontal wave-number vector of the wave,
or is simply zero. Since the mean wind vector is likely to
turn substantially with height, or vanish, over the depth of
the atmosphere, critical levels are an effective mechanism
for momentum transfer from the waves to the mean flow.
Other mechanisms that lead to an increase in the ampli-
tude of the waves as their energy propagates upward, and
therefore to their breaking and dissipation, with momen-
tum transfer to the mean flow, are the decrease of density
and variation of static stability with height (Smith, 1979;
McFarlane, 1987). In hydrostatic waves, which propagate
essentially vertically, the occurrence of any of these factors
in an atmospheric column over the source orography will
ensure that the wave momentum flux is totally deposited
into the mean flow as the reaction force acting on the
atmosphere.

However, the situation is less clear for trapped lee
waves, and non-hydrostatic waves in general, whose
properties have received much less attention (Xu et al.,
2021). Untrapped non-hydrostatic waves, if they are
evanescent, produce no drag, and therefore no wave
momentum flux (Teixeira et al., 2013a). Vertically prop-
agating non-hydrostatic waves, although producing a

progressively smaller drag as the width of their source
orography decreases (Xu et al., 2021), are subject to the
same dissipation mechanisms as hydrostatic waves, and
the traditional version of the Eliasen–Palm theorem
applies to them. Trapped lee waves, however, are different.
They are intrinsically non-hydrostatic mountain waves
that propagate horizontally in the atmosphere, as a result
of vertical reflection and trapping (leading to ducting)
within a layer, typically adjacent to the ground (Scorer,
1949; Vosper et al., 2006). Analytical expressions for the
total drag produced by these waves have been derived and
tested, both for generic cases (Bretherton, 1969; Smith,
1976; Gregory et al., 1998) and for waves propagating
in simple two-layer atmospheres (Teixeira et al., 2013a;
2013b; Teixeira and Miranda, 2017). These waves are
expected to be dissipated primarily via friction within
the boundary layer, as their energy repeatedly propagates
towards the ground and is reflected by it (Jiang et al., 2006;
Lott, 2007), but there is no clear idea of how the divergence
of the wave momentum flux may exert drag on the mean
flow in that case. The reason is that, unlike in inviscid lin-
ear theory, where critical levels or the decay of density with
height provide natural ways of producing a momentum
flux divergence, there is no such mechanism for waves that
propagate horizontally. Additionally, the inviscid solution
from linear theory for trapped lee waves produces momen-
tum fluxes that are both horizontal and vertical (Broad,
2002) and that are ill-defined, oscillating with the wave
phase of the (horizontally infinite) wave train. There have
been attempts to analyse the impact of trapped lee waves
on the atmosphere with recourse to the theory proposed by
Broad (2002) or the concept of wave pseudo-momentum
(Shepherd, 1990), but progress has been limited by the
fact that a non-dissipative framework was adopted (Dur-
ran, 1995; Lott, 1998; Xue et al., 2022). Very recently,
Soufflet et al. (2022) (following Lott, 2007) assumed
a diffusive representation of friction in the boundary
layer to calculate the momentum fluxes associated with
trapped lee waves but did not explore the limit of zero
friction, which makes an interpretation of their results
difficult.

As will be seen in this study, in order to obtain
a well-posed mathematical problem for the trapped lee
waves (even restricted to linear theory) that allows a
derivation of the effect of the waves on the mean flow
through the momentum flux divergence terms in the
equations of motion, it is necessary to introduce at least
weak dissipation. The corresponding treatment provides
an example of a situation in a fluid flow in which the
limit of the solution when friction approaches zero is dif-
ferent from the solution when friction is assumed from
the outset to be exactly zero, and physically meaningful
results are only obtained in the former case. This parallels
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F I G U R E 1 Diagram showing the isolated mountain (with
height h0 and half-width a) that generates the trapped lee waves (in
black) and the lines along which the momentum fluxes are
integrated to obtain Pz (red dashed line) and Px (blue dashed line)
according to Equation (20). (x, z) is a generic point defining the
upper limits of integration of Px and Pz. The mean flow is assumed
to come from the left. The graph in the inset describes the potential
temperature 𝜃 profile for the two-layer atmosphere of Scorer.
l1 = N1∕U and l2 = N2∕U are the Scorer parameters in the lower
and upper layer respectively (where N1 and N2 are the
corresponding Brunt–Väisälä frequencies and U is the (constant)
wind speed. The separation between the two layers is at z = H.
[Colour figure can be viewed at wileyonlinelibrary.com]

the mechanisms in boundary-layer theory that resolve
D’Alembert’s paradox, and in other fluid dynamics prob-
lems involving the effects of weak friction (e.g., Teixeira
et al., 2012).

In this study, the simplest representation of friction as a
Rayleigh damping will be adopted, and results will be illus-
trated for the case of the two-layer atmosphere of Scorer
(Scorer, 1949; Teixeira et al., 2013a) (see Figure 1), but the
results are found to be independent of the value of the
Rayleigh damping coefficient, as long as this is small, and
the concept underlying the calculations appears to be gen-
eralizable to other model atmospheres. The independence
of the results from the details of the Rayleigh damping sug-
gest, in particular, that they may be independent of the
type of dissipation adopted (as long as this is weak), and
probably constitute the true quasi-inviscid solution to the
momentum flux profiles that may serve as a leading-order
orographic forcing in gravity wave drag parametrizations.

This article is organized as follows: Section 2 describes
theoretical developments, including an extension of invis-
cid results, results with weak friction, and their appli-
cation to Scorer’s atmosphere. Section 3 presents the
nonlinear numerical model and the linear model with

friction against which the theory is compared. Section 4
presents some preliminary comparisons, both purely invis-
cid and with vanishing friction, used to validate the the-
oretical results. Finally, Section 5 summarizes the main
conclusions of this study.

2 THEORY

In view of the difficulties pointed out, the existing the-
ory for the momentum fluxes associated with trapped
lee waves can be considered unsatisfactory and incom-
plete. Since basic aspects still need attention, the present
treatment will be limited to conditions under which
two-dimensional (2D) linear theory is valid, and a brief
review of previous results is included in the theoretical
development.

For vertically propagating waves, the effect of the waves
on the mean flow (which in a parametrization corresponds
to the resolved atmospheric circulation) is given by (cf.
Stensrud, 2009; Nappo, 2012)

𝜌

𝜕⟨U⟩

𝜕t
= − 𝜕

𝜕z
(𝜌⟨uw⟩) + other terms, (1)

where U is the mean wind velocity (in the x direction), u
and w are respectively the horizontal and vertical veloc-
ity perturbations associated with the waves, and 𝜌 is
the density. The angle brackets denote the average over
a certain area or (in two dimensions) spatial distance
along x, say:

⟨uw⟩ =
∫ +Δx∕2
−Δx∕2 uw dx

Δx
. (2)

In Equation (1), the nonlinear term explicitly presented
on the right-hand side inside the z derivative is the wave
momentum flux, which causes a deceleration (or acceler-
ation) of the mean flow. In Equation (2), Δx may repre-
sent, for example, the grid spacing along x in the model
where the drag parametrization is implemented. Implicit
in the terms omitted in Equation (1) is the idea that the
contribution to the drag from the divergence of the hor-
izontal momentum fluxes is irrelevant, as those fluxes
become zero at the edges of the integration domain used
in Equation (2). This is consistent with vertically propagat-
ing (hydrostatic) waves generated by an isolated mountain,
which justify a so-called “single-column” approach to drag
parametrization.

In the theory of internal gravity waves generated by
isolated mountains that serves as a basis for most drag
parametrizations, what is called the wave momentum flux
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is often denoted by

M = 𝜌
∫

+∞

−∞
uw dx, (3)

or the corresponding 2D integral version for
three-dimensional flow (Bretherton, 1969; Shutts, 1995;
Teixeira and Miranda, 2009; Teixeira and Yu, 2014). The
definition of Equation (3) will be adopted here. Despite
the fact that the integration limits in Equation (3) are
different from those in Equation (2), if the waves are
hydrostatic and generated by an isolated mountain then
the integral should take the same value. From inviscid
linear wave theory, it can be shown (Smith, 1979; Teixeira
and Miranda, 2009; Nappo, 2012) that

M(z = 0) = 𝜌
∫

+∞

−∞
uw(z = 0) dx

= −
∫

+∞

−∞
p(z = 0)𝜕h

𝜕x
dx = −D, (4)

where p is the pressure perturbation associated with
the waves and h(x) is the terrain elevation. D is the
total drag exerted by the atmosphere on the orogra-
phy. This can be viewed as an expression of Newton’s
third law.

It is clear from Equation (1) that the vertical profile of
𝜌⟨uw⟩, or equivalently of M, is crucial to define the drag
exerted on the atmosphere by orographic gravity waves.
However, difficulties arise when one attempts to evalu-
ate M for trapped lee waves. Since the wave solutions are
most conveniently expressed in Fourier space, one might
think that a way to evaluate M would be by applying Par-
seval’s theorem to the definition of momentum flux in
physical space (Bretherton, 1969; Teixeira and Miranda,
2009; Nappo, 2012), which for horizontally bounded waves
yields from Equation (3)

M = 2𝜋i𝜌
∫

+∞

−∞
û∗ŵ dk, (5)

where k is the horizontal wave number, û and ŵ are
the one-dimensional Fourier transforms of u and w,
the asterisk denotes complex conjugate, and i =

√
−1.

Unfortunately, Equation (5) cannot be used for invis-
cid trapped lee waves, at least when z > 0, because u
and w do not approach zero downstream of the moun-
tain as x → +∞ (and hence their Fourier integrals [in
x] do not converge). The momentum flux profile must,
therefore, be obtained from an independent constraint,
which generalizes Eliassen–Palm’s theorem (Eliassen and
Palm, 1960; Broad, 2002). This constraint can be derived

in two alternative ways: either from direct manipula-
tion of the equations of motion, or as a consequence of
the conservation of wave activity under steady condi-
tions (Shepherd, 1990; Lott, 1998). These two results will
emerge as special cases of the more general treatment,
including friction, to be presented next.

Consider the steady, linearized equations of motion
for adiabatic 2D flow with the Boussinesq approximation
(cf. Teixeira et al., 2012):

U 𝜕u
𝜕x
+ w dU

dz
= − 1

𝜌0

𝜕p
𝜕x
− 𝜆u, (6)

U 𝜕w
𝜕x

= − 1
𝜌0

𝜕p
𝜕z
+ b − 𝜆w, (7)

U 𝜕b
𝜕x
+ N2w = 0, (8)

𝜕u
𝜕x
+ 𝜕w
𝜕z

= 0, (9)

where b = g𝜃′∕𝜃0 is the buoyancy perturbation associated
with the waves, g is the gravitational acceleration, 𝜃′ is the
potential temperature perturbation, and 𝜃0 is a reference
potential temperature (assumed to be constant). N2 is the
static stability of the mean incoming flow, and 𝜌0 is a refer-
ence density (assumed to be constant). In this equation set,
Rayleigh friction, with a (constant) damping coefficient
𝜆, has been introduced only in the momentum balance
equations, for simplicity—for a justification of this choice,
see Teixeira et al. (2012).

If Equation (6) is multiplied by u and Equation (7)
is multiplied by w and both equations are added, this
yields

U 𝜕

𝜕x

(
u2 + w2

2

)

+ uw dU
dz

+ 𝜕

𝜕x

(
pu
𝜌0

)

+ 𝜕

𝜕z

(
pw
𝜌0

)

+ N2
𝜁w + 𝜆

(
u2 + w2) = 0, (10)

where 𝜁 is the vertical displacement of isentropes (or
streamlines), which satisfies w = U𝜕𝜁∕𝜕x; Equation (9)
has been used, and a version of Equation (8) integrated
with respect to x, yielding b = −N2

𝜁 , has also been used.
Equation (6) may also be integrated with respect to x,
yielding

Uu + U dU
dz
𝜁 +

p
𝜌0
+ 𝜆
∫

x
u dx = 0. (11)

This equation may be multiplied by u or w, and differen-
tiated with respect to x or z respectively, to eliminate the
pressure terms in Equation (10). When this is done, some
terms cancel out (see Appendix A), and the following
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equation is obtained:

U 𝜕

𝜕x

[
w2 − u2

2
+ 1

2

(

N2 − U d2U
dz2

)

𝜁

2
]

− U 𝜕

𝜕z
(uw) − 𝜆w

∫

x (
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx = 0. (12)

When friction is neglected, and Equation (12) is multiplied
by −𝜌0∕U, it takes the simpler form

− 𝜕

𝜕x

[

𝜌0
w2 − u2

2
+ 1

2
𝜌0

(

N2 − U d2U
dz2

)

𝜁

2
]

+ 𝜕

𝜕z
(𝜌0uw) = 0. (13)

If this equation is integrated between x = −∞ and a
generic x > 0 (assuming that any existing orography is
isolated and centred at x = 0), the following results:

𝜕

𝜕z

(

𝜌0∫

x

−∞
uw dx

)

=
[

𝜌0
w2 − u2

2
+ 1

2
𝜌0

(

N2 − U d2U
dz2

)

𝜁

2
]

(x), (14)

where the fact that no wave perturbations exist as x → −∞
(i.e., upstream of the mountain) has been used. If d2U∕dz2

is neglected, Equation (14) can be shown to be equivalent
to eq. (10) of Broad (2002). Broad (2002) then chose to focus
on a value of x corresponding to a phase of the trapped
lee waves where both u and 𝜁 are zero—note that u and 𝜁
are in phase because u = −(𝜕∕𝜕z)(U𝜁), from w = U𝜕𝜁∕𝜕x
and mass conservation, Equation (9). With these simplifi-
cations, Equation (14) reduces to eq. (15) of Broad (2002)
(where only the term involving w2 on the right-hand
side remains). It is not obvious, however, why this phase
of the trapped lee wave should be privileged. Clearly,
there is no unique limit for Equation (14) when x → +∞;
so, according to Equation (3), M is mathematically
ill-defined.

Another way to arrive at Equation (14) is using the
wave activity balance equation (Shepherd, 1990; Lott,
1998). For a steady flow, the wave activity balance for 2D
gravity waves with the Boussinesq approximation may be
written

𝜕Fx

𝜕x
+
𝜕Fz

𝜕z
= 0, (15)

where

Fx =
𝜌0U
N2 b

(
𝜕u
𝜕z
− 𝜕w
𝜕x

)

+ 1
2
𝜌0

N4

(

N2 − U d2U
dz2

)

b2

− 𝜌0

(
w2 − u2

2

)

, Fz = 𝜌0uw; (16)

compare with Lott (1998, eqs. 23–25) or the left-hand side
of eq. (10) of Soufflet et al. (2022). Equation (15) expresses
the fact that the divergence of the (2D) pseudomomentum
vector (Fx,Fz) is zero. Using the equalities b = −N2

𝜁 , w =
U𝜕𝜁∕𝜕x, and u = −(𝜕∕𝜕z)(U𝜁), Fx may be expressed as

Fx = 𝜌0U2
𝜁

(
𝜕

2
𝜁

𝜕x2 +
𝜕

2
𝜁

𝜕z2 +
2
U

dU
dz

𝜕𝜁

𝜕z
+ N2

U2 𝜁

)

−
[

𝜌0
w2 − u2

2
+ 1

2
𝜌0

(

N2 − U d2U
dz2

)

𝜁

2
]

. (17)

The expression in the first set of parentheses in this
equation is zero—from the equation governing the
behaviour of linear gravity waves; see Lin (2007) (eq. 5.3.1).
This shows that Equation (15) is actually equivalent to
Equation (13); that is, the first term in parentheses in
Equation (13) is minus a simplified form of the x com-
ponent of the pseudomomentum vector. As far as we are
aware, this is the first time that this has been pointed out.

Lott (1998) noted that if Equation (15), or
Equation (13), is integrated horizontally between −∞
and a generic x (for x downstream of the mountain) and
vertically between 0 and z > 0, which is equivalent to inte-
grating Equation (14) in the vertical between 0 and z, the
following is obtained:

𝜌0∫

x

−∞
uw dx

− 𝜌0∫

z

0

[
w2 − u2

2
+ 1

2

(

N2 − U d2U
dz2

)

𝜁

2
]

dz

= 𝜌0∫

x

−∞
uw(z = 0) dx, (18)

or in a more compact form

Px + Pz = Pz(z = 0), (19)

where

Px = ∫

z

0
Fx dz, Pz = ∫

x

−∞
Fz dx, (20)

as defined by Lott (1998) or Soufflet et al. (2022).
Equation (18), or Equation (19), shows that the sum of the
integrated pseudomomentum fluxes along x and along z
adds up to a constant value, which is equal to the vertical
flux of horizontal pseudomomentum (or momentum) at
the surface—by Equation (4), this is additionally equal
(in value) to the surface pressure drag. In Figure 1, the
horizontal red dashed line shows the domain of integra-
tion of Pz and the vertical blue dashed line is the domain
of integration of Px. Clearly, any momentum flux ema-
nating from the mountain (in black) must cross one of
these lines. Equation (18) suggests that inviscid linear
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theory cannot tell anything useful about the way the wave
momentum fluxes force the mean flow, as this would
require a depletion of the total integrated wave pseudo-
momentum flux. In order to make progress, it is necessary
to go back to Equation (12), which includes friction.
Taking Equations (16) and (17) into account (see also
Appendix A), Equation (12) can be considered equivalent
to eq. (10) of Soufflet et al. (2022), with the difference that
the representation of friction on the right-hand side is
more simplified. Soufflet et al. (2022) represent friction
as a vertical diffusion that also affects heat instead of a
Rayleigh damping affecting only momentum.

If Equation (12) is integrated horizontally between−∞
and +∞, the first term with the x derivative now can-
cels out, because when friction is included the trapped lee
waves decay to zero downstream over a longer or shorter
distance. Hence, this integration yields

𝜕

𝜕z∫

+∞

−∞
uw dx = 𝜆

∫

+∞

−∞
𝜁

(
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx, (21)

where w = U𝜕𝜁∕𝜕x has been used, Equation (12) has been
divided by U, and the frictional term has been integrated
by parts (see Appendix A). Equation (21) expresses the fact
that the divergence of the wave momentum flux is bal-
anced by downstream dissipation of the waves due to fric-
tion. To obtain the vertical momentum flux itself (which
is the only one relevant in this problem, as the horizon-
tal momentum flux decays to zero downstream with the
waves), Equation (21) needs to be integrated in the verti-
cal, but now between a generic z and +∞ (where the uw
associated with the waves is zero). Note that this implies
that only trapped lee waves, which by definition decay to
zero as z → +∞, are being considered. This yields

∫

+∞

−∞
uw dx = −𝜆

∫

+∞

z ∫

+∞

−∞
𝜁

(
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx dz. (22)

When friction is included (as is the case in the
present treatment), the wave equation used to simplify
Equation (17), which can be derived from the original
equation set (Equations 6–9), becomes more complicated,
having some additional terms involving 𝜆. However, in the
limit of weak friction, it still takes approximately the same
form. In this approximation, which amounts to neglect-
ing any terms proportional to powers of 𝜆 higher than 1,
Equation (22) may also be written as (see Appendix A)

∫

+∞

−∞
uw dx = −𝜆

∫

+∞

z

1
U

(

N2 − U d2U
dz2

)

∫

+∞

−∞
𝜁

2 dx dz.

(23)
Clearly, under the necessary condition for vertical wave
propagation, N2 − Ud2U∕dz2

> 0, which is required for
wave trapping to occur in a layer, the term on the

right-hand side of Equation (23) will always be negative,
which means that the momentum flux will equally be neg-
ative, and approach zero at high levels. This makes sense,
since the waves are trapped within a layer, and uw(z = 0)
should be negative by Newton’s third law. In their stud-
ies on the diurnal evolution of trapped lee waves, Xue and
Giorgietta (2021) and Xue et al. (2022) assume that the
total momentum flux associated with trapped lee waves
is zero (a consequence of their eqs 7 and 9 respectively).
This results from the fact that, in the absence of a theory
including friction, Xue and co-workers (Xue and Giorgi-
etta, 2021; Xue et al., 2022) inconsistently apply the inviscid
theory of Broad (2002) to numerical simulation results
where the trapped lee waves decay in space. Equation (23)
corrects this inconsistency. Note that, in the term on the
right-hand side of Equation (23), both N and U may vary
with height, so they were kept inside the vertical integral.
Also worthy of note is that this term involves integrals over
the whole wave field (in the horizontal and in the vertical
directions). Therefore, the form and variation of uw with
height is a global property of the wave field (in particu-
lar, horizontally, from its point of generation to its point
of total dissipation). It is this vertical flux of horizontal
momentum that forces the mean flow in the area over the
trapped lee wave field. Although, from Equation (23), the
momentum flux apparently should depend on 𝜆, it actu-
ally does not, at least for low values of that parameter, as
will be shown next. This is not obvious from Equation (23),
but may be understood intuitively in a qualitative way. The
smaller 𝜆 is, the more slowly the wave field spanned by the
horizontal integral in Equation (23) is expected to decay
with x, therefore yielding a larger integral. It is plausible
that these two effects could potentially cancel.

Interestingly, for weak friction, Equation (4) remains
approximately valid. This can be shown departing from
Equation (11). If Equation (11) is multiplied by w and inte-
grated horizontally between −∞ and +∞, the result is the
following:

U
∫

+∞

−∞
uw dx + 1

𝜌0∫

+∞

−∞
pw dx − 𝜆U

∫

+∞

−∞
u𝜁 dx = 0,

(24)
where w = U𝜕𝜁∕𝜕x has been used, the term com-
ing from the second term of Equation (11) vanishes,
because it can be expressed as the horizontal integral of
(1∕2)U2(dU∕dz)𝜕(𝜁2)∕𝜕x, and the last term has been inte-
grated by parts. If Equation (24) is multiplied by 𝜌0∕U and
applied at z = 0, it becomes

𝜌0∫

+∞

−∞
uw(z = 0) dx +

∫

+∞

−∞
p(z = 0)𝜕h

𝜕x
dx

− 𝜆𝜌0∫

+∞

−∞
uh dx = 0, (25)
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TEIXEIRA and ARGAÍN 3217

where w(z = 0) = 𝜕h∕𝜕x and 𝜁(z = 0) = h have been used.
Since h is only non-zero near to the orography (which
is assumed to be isolated), the integral on the last term
does not increase indefinitely as 𝜆 decreases, and there-
fore the whole term vanishes as 𝜆 → 0—unlike the last
term in Equation (23). Therefore, the conclusion is that
Equation (4) still holds, as intended.

2.1 Application to Scorer’s atmosphere

Equation (23) is the main outcome of the preceding
section. It describes the variation of the vertical flux of
horizontal momentum associated with the trapped lee
waves under the linear approximation, representing fric-
tional effects as a Rayleigh damping. In order to proceed
further, it is necessary to assume a specific atmospheric
profile, which will determine the form of 𝜁 inside the
integral on the right-hand side of Equation (23). A crucial
question is how to specify 𝜁 itself. Clearly, in order for the
integrals on the right-hand side of Equation (23) to con-
verge, the wave field must be bounded (which is consistent
with the existence of friction). Analytical expressions for
𝜁 (in physical space) in trapped lee waves with friction
do not exist, even under the linear approximation (Jiang
et al., 2006; Smith et al., 2006). Asymptotic solutions for 𝜁
(downstream of the mountain) from inviscid linear theory
are analytical (Scorer, 1949; Mitchell et al., 1990), but they
(accurately) extend indefinitely in space; so, if they were
used in Equation (23) without adaptation, the horizontal
integral on the right-hand side would not converge. Here,
a compromise will be made, which can be shown to be
increasingly accurate as 𝜆 becomes smaller: the inviscid
solutions for 𝜁 will be used, but multiplied by an exponen-
tially decaying factor that accounts for the effect of weak
friction. This seems a very reasonable approach, since for
the calculation of the right-hand side of Equation (23) the
primary effect of weak friction is to limit the wave field to
a finite extent in space but, apart from this modulation,
the solution for 𝜁 is virtually indistinguishable from the
inviscid one.

More specifically, it will be assumed that

𝜁 = 𝜁inv e−kIx
, (26)

where 𝜁inv is the inviscid form of 𝜁 , and kI is the imaginary
part of the wave number associated with a spectral rep-
resentation of 𝜁 . Whereas kI = 0 for an inviscid solution,
k = kR + ikI in the solution with friction. For all purposes,
in what follows it will be assumed that k = kR, and kI will
be assumed to be non-zero, but very small, in Equation (26)
via a definition to be presented, relating kI to 𝜆. For the
time being, it is sufficient to recognize that Equation (26)

is accurate. Inserting Equation (26) into Equation (23)
yields

∫

+∞

−∞
uw dx = −𝜆

∫

+∞

0 ∫

+∞

z
Ul2

𝜁

2
inv dz e−2kIx dx, (27)

where l = [N2∕U2 − (1∕U)(d2U∕dz2)]1∕2 is the Scorer
parameter. For convenience, the integrations over x and
z have been swapped (note that the exponential term
does not depend on z), and it has been noted that the
trapped lee waves only exist downstream of the mountain
(assumed to be centred at x = 0), hence the lower limit
of integration in x has been changed from −∞ to 0. All of
this ensures that the horizontal integral on the right-hand
side of Equation (27) converges.

The inviscid solution 𝜁inv for the two-layer atmosphere
of Scorer (1949) is easily obtained from the correspond-
ing solutions for the Fourier transforms of flow vari-
ables in Teixeira et al. (2013a), in the same way as this
was done in Teixeira and Miranda (2017) for similar, but
three-dimensional, waves. It is assumed here that not only
is the Scorer parameter constant in each layer, but also that
there is no wind shear and the wind speed in the two lay-
ers is equal. The solution corresponds to a monochromatic
wave resulting from a singularity in the Fourier transform,
as originally noted by Scorer (1949) (the same singularity
that is responsible for the drag from trapped lee waves in
Teixeira et al. (2013a)), and can be written

𝜁inv = −4𝜋
̂h(kL)m1(kL)n2(kL) sin[m1(kL)z]

kL[1 + n2(kL)H]
sin(kLx)

if 0 < z < H,

𝜁inv = −
4𝜋

(l2
1 − l2

2)1∕2

̂h(kL)m2
1(kL)n2(kL) e−n2(kL)(z−H)

kL[1 + n2(kL)H]
sin(kLx)

if z > H, (28)

where H is the height of the interface between the two
layers and ̂h is the Fourier transform of the terrain eleva-
tion h. kL is the horizontal wave number of the resonant
trapped lee wave mode, m1 = (l2

1 − k2)1∕2 is the vertical
wave number in the lower layer, and n2 = (k2 − l2

2)
1∕2 is

the vertical spatial decay rate of the waves in the upper
layer, where they are evanescent. l1 = N1∕U and l2 = N2∕U
are the Scorer parameters in the lower and upper layers
respectively, where N1 and N2 < N1 are the corresponding
Brunt–Väisälä frequencies (since in Scorer’s atmosphere
d2U∕dz2 = 0). Note that, unlike in Teixeira et al. (2013a)
or Teixeira and Miranda (2017), a sum is not included in
Equation (28) because the results will only focus on a sin-
gle trapped lee wave mode (the lowest one), for simplicity.
But, to be strictly correct, the sum over all wave modes
should be included, as in Teixeira et al. (2013a). Strictly

 1477870x, 2022, 748, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4355 by C
ochrane Portugal, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3218 TEIXEIRA and ARGAÍN

speaking, the asymptotic solution of Equation (28) is only
accurate beyond some distance downstream of the moun-
tain (x > 0), as noted by Scorer (1949). But both use of this
approximation in the calculation of the horizontal integral
on the right-hand side of Equation (27) and the adoption of
the lower limit of integration 0 (centred on the mountain),
although subject to some errors for finite friction, are actu-
ally extremely accurate for weak friction. This is because,
for weak enough friction, the portion of the wave field that
is far downstream of the mountain gives an overwhelm-
ingly dominant contribution to the integral, whereas the
contribution of the wave field near to the mountain, as
well as the exact value of the lower limit of integration, are
essentially irrelevant.

The integral in z in Equation (27) is calculated first. The
result can be shown to be

∫

+∞

z
Ul2

1𝜁
2
inv dz = 8𝜋2U

l2
1 − l2

2

| ̂h(kL)|2m2
1(kL)n2(kL)

k2
L[1 + n2(kL)H]2

×
[

l2
2m2

1(kL) + l2
1(l

2
1 − l2

2)n2(kL)
(

H − z

+ 1
2m1(kL)

{sin[2m1(kL)z] − sin[2m1(kL)H]}
)]

× sin2(kLx) if z < H,

∫

+∞

z
Ul2

2𝜁
2
inv dz =

8𝜋2Ul2
2

l2
1 − l2

2

| ̂h(kL)|2m4
1(kL)n2(kL)

k2
L[1 + n2(kL)H]2

× e−2n2(kL)(z−H)sin2(kLx) if z > H. (29)

If Equation (29) is inserted into Equation (27), only the fac-
tors sin2(kLx) depend on x; hence, the following integral
will arise:

∫

+∞

0
sin2(kLx) e−2kIx dx ≈ 1

4kI
, (30)

where the approximation in Equation (30) becomes pro-
gressively more accurate as kI → 0. When this result is
used, Equation (27) becomes

∫

+∞

−∞
uw dx = − 2𝜋2

𝜆U
kI(l2

1 − l2
2)
| ̂h(kL)|2m2

1(kL)n2(kL)
k2

L[1 + n2(kL)H]2

×
[

l2
2m2

1(kL) + l2
1(l

2
1 − l2

2)n2(kL)
(

H − z

+ 1
2m1(kL)

{sin[2m1(kL)z] − sin[2m1(kL)H]}
)]

if z < H,

∫

+∞

−∞
uw dx = −

2𝜋2
𝜆Ul2

2

kI(l2
1 − l2

2)
| ̂h(kL)|2m4

1(kL)n2(kL)
k2

L[1 + n2(kL)H]2

× e−2n2(kL)(z−H) if z > H. (31)

It remains to evaluate kI. One might naively consider
assuming that kI = 𝜆∕U, given the form of the Rayleigh
damping terms in Equations (6) and (7), but this is not
correct. In order to obtain an accurate definition for kI,
it is necessary to go back to the wave solutions. In the
inviscid trapped lee wave solution, the wavelength of the
wave is determined by the (real) wave number at which
the Fourier transform of the solution has a singularity.
When friction is added to the problem, this singularity
moves away from the real axis, corresponding to a complex
value of the wave number at which the Fourier transform
becomes infinite. The imaginary part of that wave number
is kI. The relevant wave solutions can be found in Teix-
eira et al. (2013a, Appendix A). For example, from their
eq. (A1), it can be seen that the Fourier transform of the
vertical velocity (which is proportional to the coefficient
a1) becomes singular (i.e., infinite) if the denominator of
a1 is zero; that is, if

m1 cos(m1H) − im2 sin(m1H) = 0. (32)

In this equation, m1, m2, and the corresponding horizon-
tal wave number k for which Equation (32) is satisfied
may all be complex. To determine kI, it must be noted that
m1 = m1R + im1I, m2 = m2R + im2I and k = kR + ikI. This
encompasses, for example, the cases in which m2 is purely
imaginary (in which case m2I is named n2—cf. Teixeira
et al., 2013a). In order for Equation (32) to be usable, it
is necessary to express the sine and cosine functions in
complex form and expand all the variables into their real
and imaginary parts. Since the aim is to take friction into
account, it is also necessary to assume definitions for m1
and m2 that are consistent with Equations (6)–(9). This
is provided by eq. (12) of Teixeira et al. (2012), which is
reproduced next:

m2
𝑗

=
l2
𝑗

1 − i 𝜆

Uk

− k2
, (33)

where 𝑗 = 1, 2, depending on whether it refers to the
lower or upper layer respectively. The deceptively sim-
ple form of Equation (33), where the effect of friction
is contained in 𝜆, conceals the fact that both m

𝑗
and k

are complex, yielding much lengthier expressions for the
real and imaginary parts of this equation (of which an
example, for real k, is provided by Teixeira et al. (2013a)
(eqs. 14 and 15). To obtain kI, both the real and imagi-
nary parts of Equation (32) must be satisfied, which in a
general case would produce equations that are too com-
plicated. However, for weak friction, some simplifications
are possible. For example, it is known that 𝜆 is small,
but kI is also expected to be small, since it is zero in the
inviscid approximation. Additionally m1I and m2R are also
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TEIXEIRA and ARGAÍN 3219

expected to be small (they are also zero in the inviscid
approximation). With these assumptions, only the leading
order terms are not neglected in the equations for the real
and imaginary parts of Equation (32). After a substan-
tial amount of algebra, it turns out that, to leading order,
Equation (32) reduces to

m1R +m2I tan(m1RH) = 0, (34)

m1I(1 +m2IH) − (m2R +m1Rm1IH) tan(m1RH) = 0, (35)

and Equation (33) can be expressed as

m2
𝑗R = l2

𝑗

− k2
R, (36)

2m
𝑗Rm

𝑗I = l2
𝑗

𝜆

UkR
− 2kRkI, (37)

where 𝑗 = 1, 2 also apply to the lower or upper layer
respectively. Note that Equations (34) and (36) define the
wave resonance condition and the vertical wave number in
the same way as in purely inviscid theory (with m

𝑗R = m
𝑗
,

m2I = n2, and kR = k), whereas Equations (35) and (37)
are equations where each term is of first order in the small
quantities mentioned earlier. m1I is small in the lower
layer, whereas m2R is small in the upper layer, and both 𝜆
and kI are small in both layers. From Equations (34)–(37),
it is possible to obtain kI in terms of kR. The final result is

kI =
𝜆

2U
k2

R + l2
1n2H

k2
R(1 + n2H)

, (38)

where m2I = n2 has been used. Noting that, for a flow with
weak friction that satisfies Equation (32), kR = kL, and
using Equation (38) with n2 = n2(kL) in Equation (31), the
following expressions for the momentum flux are finally
obtained:

M = 𝜌0∫

+∞

−∞
uw dx

= −4𝜋2
𝜌0U2

l2
1 − l2

2

| ̂h(kL)|2m2
1(kL)n2(kL)

[1 + n2(kL)H][k2
L + l2

1n2(kL)H]

×
[

l2
2m2

1(kL) + l2
1(l

2
1 − l2

2)n2(kL)
(

H − z

+ 1
2m1(kL)

{sin[2m1(kL)z] − sin[2m1(kL)H]}
)]

if z < H,

M = 𝜌0∫

+∞

−∞
uw dx

= −
4𝜋2

𝜌0U2l2
2

l2
1 − l2

2

| ̂h(kL)|2m4
1(kL)n2(kL) e−2n2(kL)(z−H)

[1 + n2(kL)H][k2
L + l2

1n2(kL)H]
if z > H. (39)

From Equation (39), it can be concluded not only that
the momentum flux is continuous at z = H (as it should),
but also that it reduces at the surface to minus the total
pressure drag (confirming Equation (25)), namely:

M(z = 0) = −4𝜋2
𝜌0U2| ̂h(kL)|2

m2
1(kL)n2(kL)

1 + n2(kL)H
, (40)

which should be compared with Teixeira et al. (2013a,
eq. 25). However, perhaps the most important feature
of Equation (39) is that the momentum flux is indepen-
dent of 𝜆, because 𝜆 in the numerator of the fraction in
Equation (31) cancels out with kI—which is proportional
to 𝜆 according to Equation (38)—in the denominator of
the same fraction. This feature quantifies the intuitive
qualitative result that was mentioned before when dis-
cussing Equation (23), about the inverse variation of the
spatial extent of the trapped lee wave train with 𝜆.

Equation (39) is the main result of the present section.
It gives a closed-form expression (except for the neces-
sarily numerical root-finding procedure to determine kL)
for the momentum flux associated with trapped lee waves
in the two-layer atmosphere of Scorer (1949). It probably
represents the closest one can get to an inviscid solution
for the momentum flux produced by trapped lee waves
for that model atmosphere; but, as we saw, the inclusion
of friction (no matter how weak), is essential to obtain
it consistently. Hereafter, Equation (39) will be called the
quasi-inviscid theory or solution. For comparison, the
purely inviscid solution for M (with an upper limit of inte-
gration x replacing+∞) from Broad (2002)—deriving from
the first term on the right-hand side of Equation (14),
involving w2—takes the following form, for the two-layer
atmosphere of Scorer (1949):

MB = −
4𝜋2

𝜌0U2

l2
1 − l2

2

| ̂h(kL)|2m2
1(kL)n2(kL)

[1 + n2(kL)H]2

×
[

m2
1(kL) + (l2

1 − l2
2)n2(kL)

(

H − z

+ 1
2m1(kL)

{sin[2m1(kL)z] − sin[2m1(kL)H]}
)]

× cos2(kLx) if z < H,

MB = −
4𝜋2

𝜌0U2

l2
1 − l2

2

| ̂h(kL)|2m4
1(kL)n2(kL) e−2n2(kL)(z−H)

[1 + n2(kL)H]2

× cos2(kLx) if z > H. (41)

The momentum flux deriving from the second and third
terms on the right-hand side of Equation (14) (involving u2

and 𝜁2), on the other hand, may be written

MNB = −
4𝜋2

𝜌0U2

l2
1 − l2

2

| ̂h(kL)|2m2
1(kL)n2(kL)

k2
L[1 + n2(kL)H]2
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3220 TEIXEIRA and ARGAÍN

×
(

m2
1(kL)[l2

2 − n2
2(kL)] + k2

L(l
2
1 − l2

2)n2(kL)(H − z)

+
[l2

1 +m2
1(kL)](l2

1 − l2
2)n2(kL)

2m1(kL)

× {sin[2m1(kL)z] − sin[2m1(kL)H]}
)

sin2(kLx)

if z < H,

MNB = −
4𝜋2

𝜌0U2

l2
1 − l2

2

×
| ̂h(kL)|2m4

1(kL)n2(kL)[l2
2 − n2

2(kL)] e−2n2(kL)(z−H)

k2
L[1 + n2(kL)H]2

× sin2(kLx) if z > H. (42)

The total inviscid solution is the sum of Equations (41)
and (42), MB +MNB. Note that, unlike in Equation (39), MB
and MNB depend on the upper limit of integration x via the
phase of the (infinite) trapped lee wave (the cos2(kLx) and
sin2(kLx) factors included in these expressions). Addition-
ally, MB and MNB are in quadrature. So, when sin(kLx) =
0—the situation envisaged by Broad (2002)—MNB = 0 and
MB is a maximum, whereas MB = 0 and MNB is a maximum
when cos(kLx) = 0. The form of the variation with height
of MNB is, however, very different from that of MB—or of
M as given by Equation (39)—as will be seen next.

3 NUMERICAL MODELS

To compare and validate the previous results from linear
theory, two models will be used. One of them is a linear
model that includes friction exactly in the same form as
envisaged in the theory described earlier herein, but where
the Rayleigh damping coefficient may take an arbitrary
value. The second model is a numerical model where the
fully nonlinear dynamics of the waves can be represented.
These are described next in turn.

3.1 Linear model with friction

This linear model departs from exactly the same equation
set as used in the preceding calculations, comprising
Equations (6)–(9). The approach is similar to that adopted
in Teixeira et al. (2012). Since friction is always non-zero,
and hence the flow perturbations associated with the
trapped lee waves always decay downstream (i.e., they are
bounded spatially), these perturbations can be expressed
as Fourier integrals. The Fourier transform of the vertical
velocity ŵ (in terms of which all other flow perturbation
variables may be expressed) satisfies eq. (6) of Teixeira et al.
(2012). The vertical wave number of the waves m (which

for the two-layer atmosphere of Scorer takes different val-
ues in the lower and upper layer) may be expressed as in
eq. (12) of Teixeira et al. (2012) (with l0 replaced by l1 in the
lower layer and by l2 in the upper layer). This wave number
is, of course, complex, with real and imaginary parts mR
and mI given by eqs 14 and 15 of Teixeira et al. (2012) (again
with l0 replaced by l1 or l2). The procedure to obtain mR and
mI is entirely analogous to that described in Teixeira et al.
(2012), with the difference that boundary conditions for ŵ
and dŵ∕dz (resulting from continuity of pressure) must be
satisfied at z = H, in the same way as was necessary for the
derivation of Equation (28).

From Equation (5), which in this case is valid because
w is bounded spatially, and from mass conservation,
Equation (9), expressed in terms of Fourier transforms, it
can be shown that the momentum flux is given by

M = 4𝜋𝜌0

×
∫

+∞

0

{

Im(ŵ) 𝜕
𝜕z
[Re(ŵ)] − Re(ŵ) 𝜕

𝜕z
[Im(ŵ)]

}
dk
k
,

(43)

where the fact that the integrand is symmetric with
respect to k has been taken into account. The integral in
Equation (43) is not analytical in the presence of friction
(i.e., with 𝜆 > 0) and so must be calculated numerically,
using a Gauss–Legendre quadrature algorithm. In this cal-
culation, 𝜆 cannot be too low, otherwise the contribution
to the integral concentrates progressively more around a
singularity (corresponding to the inviscid resonant trapped
lee wave mode), and the numerical integration procedure
fails. In practice, and as will be seen, a friction coefficient
as small as necessary to make the results converge to those
of the quasi-inviscid theory (presented previously) can be
used.

3.2 Nonlinear numerical model

Numerical simulations are carried out using the
micro-to-mesoscale model FLEX (Argaín, 2003; Argaín
et al., 2009; 2017). This is a 2D fully nonlinear and time-
dependent numerical model using curvilinear orthogonal
coordinates with grid refinement near the ground, which
is able to accurately represent boundary-layer flows. Here,
the model is run in inviscid mode, since the primary aim
is to test the theoretical results presented earlier herein
before any additional flow complications are considered.

The domain of integration consists of 556 grid points
in the horizontal direction and 2,244 grid points in the ver-
tical. With a grid spacing of 180 m in the horizontal and
7 m in the vertical, this yields a domain size of 100 km in
the horizontal and 15.7 km in the vertical. The time step of
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TEIXEIRA and ARGAÍN 3221

the simulations is 0.5 s. In all experiments, the orography
corresponds to a 2D bell-shaped mountain, with terrain
elevation given by

h(x) = h0

1 + (x∕a)2
, (44)

where the mountain half-width is a = 1 km and the moun-
tain height is h0 = 10 m. The wind speed is constant (the
lower boundary condition is free-slip) with a magnitude
U = 10 m⋅s−1, and the Brunt–Väisälä frequency in the
lower layer is N1 = 0.02 s−1, yielding a Scorer parame-
ter of l1 = N1∕U = 2 × 10−3 m−1. The Brunt–Väisälä fre-
quency in the upper layer is defined by the assumed ratio
N2∕N1 = l2∕l1, which varies between simulations. The
flow regime is strongly linear (l1h0 = 0.02) and strongly
non-hydrostatic (l1a = 2), which favours the existence of
trapped lee waves that can dominate the flow (Teixeira
et al., 2013a). Given the aforementioned parameters, the
horizontal domain length corresponds to 100a, with 10a
extending upstream of the mountain and 90a extending
downstream. The purpose of this asymmetry is to focus
on the trapped lee waves, which only exist downstream
of the orography and can persist for a long distance,
especially in inviscid numerical simulations. The vertical
domain length corresponds to five vertical wavelengths
of the hydrostatic mountain waves for the parameters of
the lower layer, 𝜆1 = 2𝜋U∕N1 = 2𝜋∕l1 ≈ 3.1 km. Trapped
lee wave modes with (horizontal) wavelengths between
≈4.5 km and≈11 km are generated, values that can be con-
firmed to a good degree of accuracy using linear theory
from the assumed flow parameters—more details about
the wave modes and wavelength behaviour for similar flow
conditions can be found in Teixeira et al. (2013a). Sponge
layers with thickness 4a exist at the upstream and down-
stream boundaries of the domain. A sponge layer with
thickness 2𝜆1 ≈ 6.3 km exists at the top of the domain.

The simulations are run until a time when an approx-
imate steady state is reached by the wave momentum
flux profile. This time can vary approximately between
100a∕U ≈ 2.8 hr and 400a∕U ≈ 11.1 hr.

4 PRELIMINARY RESULTS

Preliminary tests of the theory developed in Section 2 will
be divided into two parts. First, comparisons will be made
with perfectly inviscid solutions, of the same type as those
produced by Broad (2002) and included in the treatment
presented earlier herein. Second, the quasi-inviscid solu-
tions (with vanishing but non-zero friction), which consti-
tute the bulk of the preceding theoretical treatment and are
those of greatest practical importance, will be tested.

Before this is done, it is useful to check whether the
theory, linear model with friction, and numerical simu-
lations are comparable. Figure 2 shows the normalized
vertical and horizontal flow perturbations associated with
the waves generated for flow of the two-layer atmosphere
of Scorer over a very small amplitude bell-shaped moun-
tain, described by Equation (44). The dimensionless input
parameters on which the normalized results of the linear
theory depend are l2∕l1, l1H∕𝜋, and l1a (Teixeira et al.,
2013a), which are expected to be the same as for the invis-
cid simulations of the FLEX model (since l1h0 = 0.02 is
very small). It is assumed that l2∕l1 = 0.2, l1a = 2, and
l1H∕𝜋 = 0.6. An additional input parameter in the linear
model with friction is 𝜆U∕a. As can be seen, the behaviour
of the three models for x > 0 is very similar, with trapped
lee waves totally dominating the flow—compare with
fig. 18b of Teixeira et al. (2013a) for l1H∕𝜋 = 0.8 instead.
The wavelength of the waves, and even the intensity of
their velocity perturbations (evaluated by the number
of contours), is quite similar between all cases, with the
difference that the wave from inviscid linear theory is
perfectly monochromatic and so must be disregarded for
x < 0. The linear model with friction correctly suppresses
the wave upstream of the mountain, albeit showing some
differences in structure relative to the FLEX numerical
simulation.

The most important message conveyed by Figure 2,
however, is that the structure of the trapped lee wave is, for
x somewhat larger than zero (say, x∕a > 5), almost indis-
tinguishable between the three models. This corroborates
the assumption underlying the calculations presented ear-
lier herein that, for vanishing friction, it is appropriate to
redefine the lower limit of integration in Equation (23)
as zero. This is because an overwhelming contribution to
the integral comes from substantially larger x, where the
approximation from inviscid linear theory is very accurate,
so the exact value of this lower integration limit and the
behaviour of the wave solution in its vicinity are irrelevant.
This result ultimately relies on the asymptotic approxi-
mation of Scorer (1949), but its relevance for the specific
purpose of evaluating the integral in Equation (23) should
be emphasized here.

4.1 Inviscid results

The extension of the results of Broad (2002) presented in
Section 2 will now be tested against numerical simulations.
For this purpose, the inviscid linear model is compared
with inviscid FLEX runs. Since, according to Section 2,
the horizontal flux of vertical momentum, defined with
a +∞ upper limit of integration, does not converge for
purely inviscid flow, the definition using x instead as upper
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F I G U R E 2 (a, c, e) Normalized vertical velocity perturbation w∕(Uh0∕a) and (b, d, f) normalized horizontal velocity perturbation
u∕(N1h0) for the two-layer atmosphere of Scorer, for l2∕l1 = 0.2, l1H∕𝜋 = 0.6, and l1a = 2, from (a, b) FLEX numerical simulations, (c, d)
linear model with friction for 𝜆a∕U = 5 × 10−4, and (e, f) inviscid linear theory. Note that the results from linear theory in (e, f) should be
disregarded for x < 0. Contour spacing: 0.2; solid contours: positive values; dashed contours: negative values

limit of integration, included in Equation (18), is adopted
here.

Figure 3 shows this momentum flux (corresponding to
MB +MNB defined according to Equations (41) and (42),
but here also denoted by M, for convenience), normal-
ized by the surface drag produced by hydrostatic waves in
an atmosphere similar to the lower layer, but extending
indefinitely, D0 = (𝜋∕4)𝜌0U2l1h2

0 (Teixeira et al., 2013a),
in three different ways. Figure 3a shows the momentum
flux as a function of downstream distance at three dif-
ferent heights: z∕H = 0, 0.5, and 1. M∕D0 oscillates with
downstream distance (with an especially high amplitude
at z∕H = 0.5) except at z = 0. This latter result highlights
the well-posedness of the inviscid surface drag problem,
which Teixeira et al. (2013a) took advantage of. It is due to
the fact that z = 0 is the only height at which the trapped
lee waves do not extend indefinitely, because of the sur-
face boundary condition. Since the product of u and w is
rather sensitive to phase differences in the oscillations, in
addition to fluctuations in magnitude, the field of −M∕D0

from FLEX (solid lines) is not as regular in Figure 3a as
those of w and u in Figure 2, showing some modulation,
part of which, existing in the left two-thirds of the domain,
has unclear causes. Nance and Durran (1998) noted a
similar effect previously, even for mountains of very low
amplitude (see their fig. 1a). The monotonic amplitude
decay existing towards the right edge of the domain is
due to the effect of the lateral sponge at the downstream
boundary, but this effect appears to extend considerably
beyond the space occupied by the sponge itself. Naturally,
any amplitude modulation is totally absent in the results
from inviscid linear theory (dashed lines). However, the
overall magnitude of −M∕D0, the amplitude of its oscilla-
tions, their wavelength (which is half the wavelength of the
trapped lee waves), and phase are in quite good agreement
with the numerical simulations, particularly for kLx∕𝜋 <
11. This suggests averaging these fields over a number of
wave cycles to make the comparison easier.

Figure 3b shows such an average, for the same heights
as considered in Figure 3a, taken over the wave cycles
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F I G U R E 3 (a) Normalized momentum flux at three different levels from the FLEX model (solid lines) and from inviscid linear theory
(Equations 41 and 42) (dashed lines), for the two-layer atmosphere of Scorer with l2∕l1 = 0.2, l1H∕𝜋 = 0.6, and l1a = 2. The horizontal
coordinate is normalized using the theoretical wave number of the trapped lee waves, kL. Black lines: z∕H = 0, red lines: z∕H = 0.5, blue
lines: z∕H = 1. (b) Normalized momentum flux as a function of the wave phase, averaged over 1 < kLx∕𝜋 < 10 from (a). Symbols: FLEX
model; lines: inviscid linear model (see legend for details). (c) Profiles of the normalized momentum flux for key values of the wave phase
(averaged as in panel b). Solid lines: FLEX model; dashed lines: inviscid linear theory. See legend for details (note that the dashed blue line
coincides with the dashed green line and is hidden by it) [Colour figure can be viewed at wileyonlinelibrary.com]

existing between kLx∕𝜋 = 1 and 10. The lower limit of
kLx∕𝜋 is dictated by the fact that the oscillation is not
yet quasi-periodic for 0 < kLx∕𝜋 < 1 and the upper limit
by the decay of the oscillation towards the downstream
boundary of the domain. It can be seen that the magni-
tude of −M∕D0, as well as the amplitude and phase of its
oscillation over a wave cycle is in good agreement between
FLEX and inviscid linear theory. The amplitude of the
oscillation is a bit smaller in FLEX than in linear theory at
z∕H = 1, and the oscillation is slightly out of phase at both
z∕H = 0.5 and 1 owing to the slightly larger wavelength
of the trapped lee waves in the numerical simulations (see
Figure 3a).

In Figure 3c, full profiles of −M∕D0 are presented
for key values of the wave phase. kLx∕𝜋 = 0 is the point
at which both the u and 𝜁 flow perturbations are zero
and w is a maximum—that is, the reference point con-
sidered by Broad (2002). At kLx∕𝜋 = 0.5, −M∕D0 is in
phase opposition to the preceding case, with the u and
𝜁 velocity perturbations being at their maxima and w

being zero. The intermediate phase points correspond
to kLx∕𝜋 = 0.25 and 0.75. Clearly, the most interesting
results are for kLx∕𝜋 = 0 and 0.5, as −M∕D0 behaves in
an intermediate way for kLx∕𝜋 = 0.25 and 0.75. When
kLx∕𝜋 = 0—corresponding to the original calculations of
Broad (2002)—dM∕dz = 0 at z = 0 (a feature, that, as will
be seen, is preserved in the quasi-inviscid results with van-
ishing friction), and dM∕dz is continuous at z = H. These
“desirable” features (which result directly from the fact
that w2 is zero at z = 0 and continuous at z = H) may have
influenced Broad (2002) to privilege this particular result.
On the other hand, for kLx∕𝜋 = 0.5, −dM∕dz is positive at
z = 0, with −M∕D0 attaining a maximum slightly below
z∕H = 0.5 that is more than twice its value at z = 0, and
dM∕dz is discontinuous at z = H, with very small values
of −M∕D0 in the upper layer. This is due to the fact that
u2, which is non-zero at z = 0 and discontinuous at z = H,
contributes in this case to −dM∕dz. Agreement between
the FLEX model and linear theory is good, especially con-
sidering the very large modulation that−M∕D0 undergoes
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over the wave cycle, but −M∕D0 from FLEX is slightly
lower than from linear theory in the upper layer. There
is a difference in the profiles of −M∕D0 at kLx∕𝜋 = 0.25
and 0.75 from FLEX, which does not exist in those from
linear theory, because of the phase difference between the
two oscillations, shown in Figure 3b and commented on
earlier herein.

Overall, it can be concluded that the FLEX model, run
in inviscid mode, reproduces the main physical aspects
of the structure of the momentum flux predicted by the
inviscid linear theory presented before, which extends the
analysis of Broad (2002). The results emphasize that the
vertical flux of horizontal momentum does not, in this
case, take a unique form.

4.2 Results with vanishing friction

Comparisons of inviscid simulations of the FLEX model
with the quasi-inviscid linear theory (including vanish-
ingly small friction) are presented next. First of all, it
is necessary to ascertain that this linear theory does,
indeed, accurately represent the limit of very small, but
non-zero, friction. This is done in Figure 4a, which shows
profiles of the normalized momentum flux from the
quasi-inviscid linear theory (black line) and from the lin-
ear model with finite friction (colour lines), for l2∕l1 = 0.2,
l1H∕𝜋 = 0.6, and l1a = 2 (the same conditions as consid-
ered in Figures 2 and 3). In these results, the definition
of M includes the upper limit of integration +∞, as is
consistent with any non-zero friction (since the trapped

lee waves necessarily decay downstream, no matter how
slowly).

In Figure 4a, the momentum flux profiles are clearly
very different from any of those presented in Figure 3c,
including that from Broad (2002). For sufficiently weak
friction, dM∕dz = 0 at z = 0, but dM∕dz is discontinuous
at z = H, with −M∕D0 being much smaller in the upper
layer than in the lower layer. Both aspects can be explained
by differentiating Equation (23) with respect to z, yielding

𝜕

𝜕z∫

+∞

−∞
uw dx = 𝜆

U

(

N2 − U d2U
dz2

)

∫

+∞

−∞
𝜁

2 dx. (45)

If this equation is applied at z = 0, it reduces to

(
𝜕

𝜕z∫

+∞

−∞
uw dx

)

(z = 0) = 𝜆

U(z = 0)

×
[

N2(z = 0) − U(z = 0)d
2U

dz2 (z = 0)
]

∫

+∞

−∞
h2 dx,

(46)

where 𝜁(z = 0) = h has been used. Since h(x) does not
depend on 𝜆, the right-hand side of Equation (46)
approaches zero as 𝜆→ 0 (note that this does not occur for
z > 0, because 𝜁2 then extends downstream for a distance
proportional to U∕𝜆). When z > 0, Equation (45) shows
that dM∕dz is proportional to N2 (if d2U∕dz2 = 0), and that
is why in Figure 4a there is a discontinuity in dM∕dz at z =
H, where N is discontinuous. This is, however, a specific
feature of Scorer’s two-layer atmosphere and would not
exist for a more realistic static stability profile.
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F I G U R E 4 (a) Normalized momentum flux profiles from quasi-inviscid linear theory (black line, corresponding to Equation (39)) and
from the linear model with friction (according to Equation (43)), for the two-layer atmosphere of Scorer with l2∕l1 = 0.2, l1H∕𝜋 = 0.6 and
l1a = 2, for different values of the friction coefficient 𝜆a∕U (see legend for details). (b) Momentum flux and (c) momentum flux divergence
profiles, for the same input parameters, from Broad’s theory, Equation (41) (black dashed line), and from quasi-inviscid theory, Equation (39)
(red solid line). [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 4a shows that the model with friction seam-
lessly approaches the quasi-inviscid theory as 𝜆a∕U
decreases to zero. In particular, it can be seen that, in order
for the −M∕D0 profile to be distinguishable between the
two models, it is necessary that𝜆a∕U is substantially larger
than the value assumed in Figure 2c,d. This corroborates
that the quasi-inviscid linear theory is a consistent limit
of the problem with friction as 𝜆 → 0, with the advan-
tage that it provides closed analytical expressions for the
momentum flux (for this simplified atmosphere). A final
aspect to note is that the non-zero value to which −M∕D0
asymptotes in the upper layer is due to the propagation
of non-trapped waves, which are associated with a con-
stant momentum flux profile (in the absence of any critical
levels, as is the case). This non-zero constant is, however,
by deliberate choice of the input parameters, a relatively
small fraction of the total momentum flux, as this allows
focusing primarily on the trapped lee waves. For reasons
explained in Teixeira et al. (2013a), these two components
of the momentum flux (like the corresponding compo-
nents of the surface drag) may be simply added.

Figure 4b,c exemplifies how the results from
quasi-inviscid theory, Equation (39), differ from those
predicted by Broad’s theory, Equation (41), for the same
conditions as considered in Figure 4a. Although in
Figure 4b the two results for−M∕D0 coincide at the surface
and at high levels, they differ most in the region centred
around Z∕H = 1, where Broad’s model overestimates
quasi-inviscid theory considerably. More importantly for
drag parametrization, the divergence of the momentum
flux shown in Figure 4c predicted by quasi-inviscid theory
exceeds by a factor >3 that predicted by Broad’s theory
immediately below the interface separating the two lay-
ers, and is smaller by an even larger factor in the upper
layer. Admittedly, this is a rather extreme example of this
discrepancy, and the discontinuity in d(M∕D0)∕d(z∕H)
displayed by quasi-inviscid theory is, as pointed out earlier,
an artefact of Scorer’s two-layer atmosphere.

In Figure 5, a comparison is made of a limited subset
of momentum flux profiles for the two-layer atmosphere
of Scorer, between the FLEX model and the quasi-inviscid
linear theory. To reproduce the conditions envisaged in
theory as closely as possible, in FLEX the momentum
fluxes are integrated horizontally over the full length of
the computational domain, including the sponge damp-
ing layers. Despite considering a range of values of l2∕l1
and l1H∕𝜋, the results presented in Figure 5 (like all
the preceding results) are focused exclusively on the first
trapped lee wave mode among the possible modes sup-
ported by Scorer’s atmosphere—as can be checked against
fig. 1 of Teixeira et al. (2013a) from the values of l2∕l1
and l1H∕𝜋 assumed here. This choice is made because
the first trapped lee wave mode is the strongest one and

that likely to be represented most accurately in numeri-
cal simulations (as the wave reflection occurs closer to the
ground, leading to less dispersive weakening of the waves),
and also because the absence of additional wave modes
makes the problem as “clean” as possible to illustrate the
quasi-inviscid theory developed here. Of course, the the-
ory is applicable to a much wider range of conditions.
For l2∕l1 = 0.6, the lowest value of l1H∕𝜋 is 0.7 instead of
0.6, because l1H∕𝜋 = 0.6 is theoretically expected to have
zero trapped lee waves modes (by a narrow margin), and
the focus here is on trapped lee waves. Values of l1H∕𝜋
adopted in Figure 5 are also concentrated within the lower
half of the interval spanned by l1H∕𝜋 corresponding to
a single wave mode, because, as shown by Teixeira et al.
(2013a), the wavelength (Teixeira et al., 2013a, fig. 6b) and
the trapped lee wave amplitude (inferred from the corre-
sponding drag; Teixeira et al., 2013a, fig. 6d,e), as well as
the relative magnitude of the trapped lee wave drag com-
pared with the drag of waves that propagate vertically into
the upper layer, are all maximized for these conditions.

Figure 5 confirms the results of quasi-inviscid theory
with good accuracy, with a few exceptions in detail. Over-
all, both the surface value and shape of the profiles of
−M∕D0 from FLEX and from the quasi-inviscid theory are
in good agreement. Even in the cases where agreement is
not perfect (surface value of−M∕D0 in Figure 5a–e, values
of −M∕D0 in the upper layer in Figure 5c,d,f), the frac-
tional difference is typically small, and qualitative agree-
ment is very good. In particular, the results from FLEX
confirm the zero value of dM∕dz at the surface and its
discontinuity at z = H (where the momentum flux from
FLEX displays some oscillations, presumably of numerical
origin). This discontinuity obviously becomes weaker as
l2∕l1 increases, because dM∕dz was seen in Equation (45)
to be proportional to N2. It is noteworthy that the mag-
nitude of −M∕D0 at z = 0 (which corresponds to the total
surface drag) decreases both as l2∕l1 and l1H∕𝜋 increase.
The first result is due to the fact that the intensity of
the wave reflection that generates the resonant trapped
lee waves is proportional to the contrast in static stabil-
ity between the two layers. The second result is due to the
fact that, for a given mode, the intensity of the trapped
lee waves (of which the associated drag is a good mea-
sure) decreases as l1H∕𝜋 increases—this was first noted
by Corby and Wallington (1956), and can be confirmed
in Teixeira et al. (2013a, fig. 6d). As noted earlier herein,
this occurs due to dispersion effects. The momentum
flux associated with waves that propagate vertically in
the upper layer (shown by −M∕D0 near the top of the
domain displayed in Figure 5) has constant magnitude
with height (as there are no critical levels), and in the
quasi-inviscid theory was simply added to the momentum
flux associated with trapped lee waves, since it comes from
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F I G U R E 5 Normalized momentum flux profiles for the two-layer atmosphere of Scorer for l1a = 2 and different values of l2∕l1 and
l1H∕𝜋 (see legends for details). Black lines: FLEX model; red lines: quasi-inviscid linear theory, Equation (39) [Colour figure can be viewed at
wileyonlinelibrary.com]

a lower, independent range of wave numbers. A similar
result was obtained for the surface drag by Teixeira et al.
(2013a). The part of the momentum flux associated with
vertically propagating waves does not behave monotoni-
cally with the input parameters. It clearly decreases when
l1H∕𝜋 increases, but its variation with l2∕l1 is not as obvi-
ous. However, it can be noticed that, in relative terms,
the momentum flux associated with vertically propagat-
ing waves becomes more important compared with that

associated with trapped lee waves as l2∕l1 increases, since
the former waves do not require reflection at a layer to
exist, unlike the latter. Vertically propagating waves are
also (partially) reflected at z = H, but this does not make
their momentum flux vary between the two layers, in
accordance with the traditional form of the Eliassen–Palm
theorem.

One aspect deserving a more detailed analysis is that
whereas in quasi-inviscid theory the decay of the trapped

 1477870x, 2022, 748, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4355 by C
ochrane Portugal, W

iley O
nline L

ibrary on [05/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


TEIXEIRA and ARGAÍN 3227

lee waves with distance downstream—which enabled the
calculation of the momentum flux from Equation (39)—is
exponential (see Equation (26)), in the FLEX numerical
model it takes quite a different form. Although the wave
field, and especially the partially integrated momentum
flux, is rather noisy (as shown in Figure 3), in the part
of the computational domain outside the lateral sponges
the FLEX model is nominally inviscid, so the amplitude
of the trapped lee wave should be roughly constant. When
the downstream lateral sponge is reached, the wave field
decays to zero in some way prescribed by the sponge damp-
ing. Since Equation (39) was derived assuming an expo-
nential decay, the fact that the FLEX results are so close to
those of the quasi-inviscid theory is puzzling. The expla-
nation may be in the more general form of the momentum
flux expressed by Equation (27). In that equation, clearly,
if the factor modulating the amplitude along x (an expo-
nential in this case, but it could be any other function that
decays to zero as x → +∞) does not depend on z, the shape
of the profile of M is determined only by the integral in the
z direction. The integral in the x direction just plays the role
of limiting the magnitude of the term on the right-hand
side of Equation (27), being therefore equivalent to a scal-
ing factor. It can thus be argued that, for any type of
downstream decay of the trapped lee wave caused by weak
friction that does not depend on z, the result produced by
Equation (27) still holds. This endows the present results
with considerable generality, making them more relevant.
The results also suggest that dissipation in the sponge layer
existing at the downstream boundary of the domain in the
FLEX simulations can be considered weak (as this is one
of the assumptions in quasi-inviscid theory). This is con-
sistent with the requirement that wave decay in the sponge
layer be sufficiently gradual to avoid upstream reflections.
It also seems likely that the assumption of weak dissipation
is satisfied often in nature, as suggested by the considerable
spatial extent of many observed trapped lee wave patterns.

5 CONCLUSIONS

This study presents a long overdue new theory for the
momentum fluxes associated with trapped lee waves,
whose divergence corresponds to the drag exerted by
mountains on the atmosphere, mediated by the waves. As
a first approximation, linear 2D trapped lee waves were
considered, to build the necessary theoretical framework
under the most basic assumptions. Friction, which needs
to be taken into account, was included in the simplest
possible form, as a Rayleigh damping applied only to the
momentum equations. The calculations were developed in
the limit of vanishing friction (a Rayleigh damping coeffi-
cient 𝜆 approaching zero). The solutions to the trapped lee

waves and associated wave momentum flux problem were
found to be self-consistent in this limit, providing a simpli-
fied framework that allows maximally general analytical
results to be obtained.

The wave momentum flux was found to be expressed
in terms of the product of 𝜆 and an integral in space (in the
horizontal and vertical directions) involving a quadratic
quantity of the wave field: the square of the vertical stream-
line displacement. This integral increases in inverse pro-
portion to 𝜆 (because as λ decreases the waves extend for a
larger distance before they decay). So, despite the fact that
the momentum flux is written in terms of an expression
involving𝜆, this dependence cancels out in the limit𝜆→ 0,
yielding a quasi-inviscid approximation that is well-posed
mathematically, finite, and independent of𝜆. Although the
details of this result rely on the adopted Rayleigh damp-
ing formulation for friction, the underlying logic extends
to other forms of friction. It is plausible, for example, that
the same arguments would qualitatively apply to momen-
tum fluxes calculated with the diffusive representation of
friction adopted by Soufflet et al. (2022).

The results were illustrated by application to the
two-layer atmosphere of Scorer, where wave trapping is
induced by a piecewise constant profile of static stability,
with a discontinuity at the top of the trapping layer. For this
atmosphere, the results mentioned earlier herein about
the independence of the momentum flux profile from 𝜆

in the limit 𝜆→ 0 were explicitly confirmed. It was pos-
sible to derive a closed-form analytical expression for the
momentum flux profile, which is different from any of
the expressions for the partial momentum flux (i.e., only
extending up to a certain part of the trapped lee wave train
downstream of the mountain) that could be obtained by
extension of the perfectly inviscid theory of Broad (2002).
As a general result, and for quasi-inviscid conditions,
the momentum flux divergence is zero at the ground, as
originally predicted by Broad (2002), although, of course,
boundary-layer effects (which might be addressed in a
future study) are likely to modify the behaviour of the
momentum flux near the surface (Turner et al., 2021).
Specifically for Scorer’s atmosphere, there is a disconti-
nuity in the momentum flux divergence at the interface
between the two layers, since that divergence is propor-
tional to the static stability N2. This yields momentum
flux divergence profiles that are quite different from those
predicted by Broad’s theory (which are continuous at this
interface), corresponding to a larger drag exerted on the
atmosphere near the top of the lower layer, and much
lower drag within the upper layer. For Scorer’s atmo-
sphere, the momentum flux associated with waves that
propagate vertically into the upper layer has no divergence,
but its magnitude varies according to the relative impor-
tance of those waves and trapped lee waves. In the present
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3228 TEIXEIRA and ARGAÍN

study, cases where trapped lee waves are dominant have
been selected, since these are totally responsible for the
momentum flux divergence at low levels. One aspect on
which the present quasi-inviscid theory and that of Broad
(2002) agree is the magnitude of the momentum flux at
z = 0 (which coincides with the total surface drag for weak
friction). This is a consequence of the fact that the problem
of trapped lee wave surface drag is well-posed mathemati-
cally, even for perfectly inviscid flow (Teixeira et al., 2013a;
2013b). This is because contributions to this drag are con-
fined to the vicinity of the isolated orography generating
the trapped lee waves, even if the waves themselves extend
indefinitely downstream.

The present preliminary results should be viewed as
a useful contribution to the establishment of a workable
theory of the momentum fluxes produced by trapped lee
waves and their impact on the atmosphere. However, what
the theory, as described in this study, provides is only
the vertical flux of horizontal momentum integrated over
the total area (in this 2D case, distance) spanned by the
waves. Since trapped lee waves can extend over quite a
large area (or long distance) downstream of their source, to
know their integrated effect as a function of height (which
is what is provided here) is highly relevant but not the
whole story. It would also be useful to obtain the local
impact of the trapped lee waves on the mean flow at given
points within the wave field, as that region is likely to
occupy a substantial range of model grid-points in reason-
ably high-resolution weather prediction numerical simu-
lations. A treatment of this aspect would require knowing
not only the vertical flux of horizontal momentum at each
point (or at least over a smaller finite area), but also the
horizontal flux of horizontal momentum (since, in the
middle of the trapped lee wave field, the latter is not zero).
Xue and co-workers (Xue and Giorgietta, 2021; Xue et al.,
2022), for example, attempted to interpret their numeri-
cal simulations of trapped lee waves applying momentum
budgets locally, but, as pointed out earlier herein, they
used for that purpose purely inviscid theory. An extension
of the present quasi-inviscid theory would allow this to
be done in a more physically consistent way. Meanwhile,
as a practical compromise, the drag force that the present
theory predicts to act over the whole region spanned by
the waves could be distributed uniformly over the grid
points included in that region, thereby producing an at
least globally accurate impact.

The Rayleigh damping approach adopted to repre-
sent friction in the present study may be viewed as
non-optimal, due to its crudeness and specificity. How-
ever, the independence of the quasi-inviscid results from 𝜆

and their agreement with the inviscid numerical simula-
tions suggest that they may be more general than expected.
Except within the atmospheric boundary layer, friction in

a stratified atmosphere is typically quite weak, and this is
also corroborated by the large horizontal extent of trapped
lee waves that can be visualized through cloud condensa-
tion in satellite images. For these reasons, there is scope
to believe that the results presented here may constitute
a good basis for the development of new physically based
drag parametrizations for trapped lee waves.
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APPENDIX A. DERIVATION OF IMPORTANT
EQUATIONS

A.1 Obtaining Equation (12) from Equations (10)
and (11)
If Equation (11) is multiplied by u or w and differenti-
ated with respect to x or z respectively, the following two
equations are obtained:

𝜕

𝜕x

(
pu
𝜌0

)

= −U 𝜕

𝜕x
(

u2) − U dU
dz

𝜕

𝜕x
(𝜁u) − 𝜆u2

− 𝜆𝜕u
𝜕x ∫

x
u dx, (A1)

𝜕

𝜕z

(
pw
𝜌0

)

= −U 𝜕

𝜕z
(uw) − uw dU

dz
− dU

dz
𝜕

𝜕z
(U𝜁w)

− U d2U
dz2 𝜁w − 𝜆w

∫

x
𝜕u
𝜕z

dx − 𝜆𝜕w
𝜕z ∫

x
u dx. (A2)

Adding these two equations yields

𝜕

𝜕x

(
pu
𝜌0

)

+ 𝜕

𝜕z

(
pw
𝜌0

)

= −U 𝜕

𝜕x
(

u2) − U 𝜕

𝜕z
(uw)

− uw dU
dz

− U d2U
dz2 𝜁w − 𝜆u2 − 𝜆w

∫

x
𝜕u
𝜕z

dx. (A3)

To simplify this equation, we used the mass conservation
Equation (9) in the last terms of Equations (A1) and (A2),
and also the fact that

U 𝜕

𝜕x
(𝜁u) + 𝜕

𝜕z
(U𝜁w)

= −U 𝜕

𝜕x

[

𝜁

𝜕

𝜕z
(U𝜁)

]

+ w 𝜕

𝜕z
(U𝜁) + U𝜁 𝜕w

𝜕z

= −U 𝜕𝜁

𝜕x
𝜕

𝜕z
(U𝜁) − U𝜁 𝜕

2

𝜕x𝜕z
(U𝜁) + U 𝜕𝜁

𝜕x
𝜕

𝜕z
(U𝜁)

+ U𝜁 𝜕w
𝜕z

= U𝜁 𝜕u
𝜕x
+ U𝜁 𝜕w

𝜕z
= 0, (A4)

which implies that the sum of the second term on the
right-hand side of Equation (A1) and the third term
on the right-hand side of Equation (A2) cancel out.
Equation (A4) uses the fact that w = U𝜕𝜁∕𝜕x, and also
that, by Equation (9), u = −𝜕(U𝜁)∕𝜕x. Then, inserting

Equation (A3) into Equation (10), the latter becomes

U 𝜕

𝜕x

(
u2 + w2

2

)

− U 𝜕

𝜕x
(

u2) − U 𝜕

𝜕z
(uw) − U2 d2U

dz2 𝜁
𝜕𝜁

𝜕x

− 𝜆w
∫

x
𝜕u
𝜕z

dx + N2U𝜁 𝜕𝜁
𝜕x
+ 𝜆w2 = 0, (A5)
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where the terms with uw(dU∕dz) and 𝜆u2 cancelled out
and w = U𝜕𝜁∕𝜕x has been used. This can be simplified
further by expressing 𝜁𝜕𝜁∕𝜕x = (1∕2)𝜕(𝜁2)∕𝜕x, group-
ing the second, fourth, and sixth terms on the left-hand
side of Equation (A5) with the first term and noting that
w = ∫ x(𝜕w∕𝜕x) dx. This finally yields Equation (12).

A.2 Obtaining Equation (23) from Equation (12)
If Equation (12) is integrated between −∞ and +∞ in a
situation when 𝜆 ≠ 0, the following results:

U 𝜕

𝜕z∫

+∞

−∞
uw dx = −𝜆

∫

+∞

−∞
w
∫

x (
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx′ dx

= −𝜆U
∫

+∞

−∞

𝜕𝜁

𝜕x∫

x (
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx′ dx

= 𝜆U
∫

+∞

−∞
𝜁

(
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx, (A6)

where the second equality used w = U𝜕𝜁∕𝜕x and the third
one used integration by parts. Equation (A6) is equivalent
to Equation (21). Dividing this equation by U and inte-
grating in the vertical between a generic z and +∞ (where
uw = 0) yields Equation (22), reproduced here:

∫

+∞

−∞
uw dx = −𝜆

∫

+∞

z ∫

+∞

−∞
𝜁

(
𝜕u
𝜕z
− 𝜕w
𝜕x

)

dx dz. (A7)

The last step requires using the equalities w = U𝜕𝜁∕𝜕x and
u = −𝜕(U𝜁)∕𝜕z, yielding

∫

+∞

−∞
uw dx = 𝜆

∫

+∞

z ∫

+∞

−∞
𝜁

[
𝜕

2

𝜕z2 (U𝜁) + U 𝜕

2
𝜁

𝜕x2

]

dx dz

= 𝜆
∫

+∞

z
U
∫

+∞

−∞
𝜁

(
𝜕

2
𝜁

𝜕x2 +
𝜕

2
𝜁

𝜕z2 +
2
U

dU
dz

𝜕𝜁

𝜕z
+ 1

U
d2U
dz2 𝜁

)

× dx dz. (A8)

Finally, assuming that 𝜆 is small enough, the inviscid ver-
sion of the wave equation that is valid in this case (Lin,
2007, eq. (5.3.1), neglecting the nonlinear term),

𝜕

2
𝜁

𝜕x2 +
𝜕

2
𝜁

𝜕z2 +
2
U

dU
dz

𝜕𝜁

𝜕z
+ N2

U2 𝜁 = 0, (A9)

may be inserted into Equation (A8), yielding

∫

+∞

−∞
uw dx = 𝜆

∫

+∞

z
U
∫

+∞

−∞
𝜁

(

−N2

U2 𝜁 +
1
U

d2U
dz2 𝜁

)

dx dz.

(A10)
This is equivalent to Equation (23).
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