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ABSTRACT

Smart metering infrastructures collect data almost continuously in the form of fine-grained
long time series. These massive data series often have common daily patterns that are
repeated between similar days or seasons and shared among grouped meters. Within this
context, we propose an unsupervised method to highlight individuals with abnormal daily
dependency patterns, which we term evolution outliers. To this end, we approach the prob-
lem from the standpoint of High Dimensional Functional Time Series and we use the con-
cept of functional depth to exploit the dynamic group structure and isolate individual
meters with a different evolution. The performance of the proposal is first evaluated empir-
ically through a simulation exercise under different evolution scenarios. Subsequently, the
importance and need for an evolution outlier detection method are shown by using actual
smart-metering data corresponding to photo-voltaic energy generation and circuit voltage
records. Here, our proposal detects outliers that might go unnoticed by other approaches of
the literature that have demonstrated to be effective capturing magnitude and shape
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abnormalities.

1. Introduction

Smart metering infrastructures are spreading and with
them the ability to improve the quality, efficiency, and
sustainability of electricity systems. Nowadays, numer-
ous features such as energy consumption, household
circuit voltage, and photo-voltaic energy generation
are available for long time periods, at a very high-fre-
quency rate. Furthermore, these features are contem-
poraneously collected for a multitude of grouped
meters. For example, residential smart meters record
data from different households in a given neighbor-
hood or city (Street 2012). Another example is a solar
energy farm collecting power generation data at the
inverter level, providing as many time series as inver-
ters (Kanal 2020). This data ecosystem provides not
only big data but complex data structures that
requires new advance methodologies (Meeker and
Hong 2014; Sangalli 2018, 2020).

Within smart metering data analysis, outlier detec-
tion has become a topic of high interest (Sun et al.
2018). Additionally to its application to data quality

(Angelos et al. 2011; Sun and Hou 2016; Jindal et al.
2016; Liu et al. 2020), outlier detection methods stand
out due to their capability to monitor abnormalities
and discover hidden patterns. Methodologies with this
aim have been termed as outlier mining methods (Sun
et al. 2018) and have been useful to reveal consumer
behavior, capture energy theft, find system vulnerabil-
ities and failures, and improve service quality
(Angelos et al. 2011; Liu et al. 2020; Tanasa and
Trousse 2004; Vallakati, Mukherjee, and Ranganathan
2015; Yin et al. 2019; Wang et al. 2019b).

The literature of outlier detection is vast and sur-
veys on methodologies and applications have classified
the literature by groups of data analytic methodologies
(Sun et al. 2018; Blazquez-Garcia et al. 2022; Himeur
et al. 2021). Recently, Himeur et al. (2021) have pro-
vided an extensive taxonomy of the existing algo-
rithms based on the different modules and parameters
adopted, such as machine learning algorithms, feature
extraction approaches, anomaly detection levels, com-
puting platforms, and application scenarios. From the
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Figure 1. Taxonomy of outliers. Magnitude (blue) and shape (red) outliers follow the decreasing dynamics from Day 1 to Day 3 of
the bulk of data (grey curves). In contrast, the evolution outlier (green), which does not exhibit magnitude or shape differences,
evolves differently than the grouped curves that share a decreasing day-to-day trend.

point of view of time series analysis, Blazquez-Garcia
et al. (2022) propose a classification by the type of
input data (univariate or multivariate time series),
outlier type (point, subsequence, or time series), and
nature of the method (univariate or multivariate).
Specific to the context of smart metering, Sun et al.
(2018) classify the available approaches into distance-
based methods, density-based methods, Support Vector
Machines (SVM) methods and hybrid methods.

The above methodologies have been successfully
used in many applications to detect abnormal phe-
nomena of importance for smart meters problems. In
fact, methods based on L-p distances between the
observations of the meters’ functional feature of
interest are particularly useful to identify magnitude
outliers. For instance, the blue curve in Figure 1 rep-
resents an outlier of this kind since it is far away
from the majority in all the days under consideration
and, therefore, it features an abnormally large L —p
distance with respect to the other curves. This figure
also includes two other types of outliers. The red
profile represents a shape outlier, since it is not far
away from the majority, but it exhibits more wiggles
than the other curves. The green one is an example
of what we have termed an evolution outlier, because
it has similar magnitude and shape as the majority,
but its day-to-day variation is quite particular. Note
that the green plot increases from day to day, while
the other curves decrease. As a result, the green plot
evolves abnormally with respect to its peers day after
day. One important drawback of cross-sectional
methods, like the ones based on L-p distances, is
that they might fail to detect both shape outliers
(Marron and Tsybakov 1995) and individuals evolv-
ing in time differently from the rest of the members

of the group (i.e, what we have called evolu-
tion outliers).

To overcome the difficulties in detecting shape out-
liers (like the red plot in Figure 1), the technical lit-
erature includes outlier detection methods based on
Functional Data Analysis (FDA) (Ramsay and
Silverman 2005; Ferraty and Vieu 2006; Srivastava and
Klassen 2016; Dryden and Mardia 2016; Sangalli
2020). This branch of Statistics puts the focus on the
morphological aspects of the observed curves, such as
magnitude, shape, and derivatives, simplifying the task
of outlier detection and the interpretation of
the outcomes.

In this context of FDA, Arribas-Gil and Romo
(2014) propose the Outliergram, which exploits the
parabolic relationship between a functional depth
measure and the Modified Epigraph Index (Lépez-
Pintado and Romo 2011) to identify shape outliers.
Other authors approach the problem of shape outlier
detection using the phase and amplitude decompos-
ition of functional data (Marron et al. 2015; Srivastava
and Klassen 2016; Dryden and Mardia 2016). In Xie
et al. (2017) registration methods are used to separate
the variability of functional data into amplitude and
phase. Subsequently, each of these two components is
visualized in boxplot-type plots, which allows for
independent analysis and outlier detection for ampli-
tude and phase. More recently, Harris et al. (2021)
introduce the family of elastic depths, which are used
with univariate boxplots and thresholding methods to
improve the detection of abnormalities in shape. The
authors use the elastic distances by Xie et al. (2017) to
define amplitude and phase outlyingness measures
that are converted into depths using the type-B con-
struction of Zuo and Serfling (2000).



Yet, none of the available methods and approaches
mentioned before are able to detect evolution outliers
(like the green plot of Figure 1). Notice that this type
of outlier only makes sense when dealing with sam-
ples of curves with temporal dependency, that is, with
Functional Time Series (FTS) (Hormann and
Kokoszka 2012), and, more specifically, when dealing
with a potentially very high number of FTS, as many
as smart meters. Then, this outlier detection problem
can be framed under the literature on High
Dimensional Functional Time Series (HDFTS) (Gao,
Shang, and Yang 2017, 2019). To the best of our
knowledge, the plausibly daily outlying temporal evo-
lution has been ignored so far when identifying poten-
tially relevant outliers (Sun et al. 2018; Wang et al.
2019a). Only Rana, Aneiros, and Vilar (2015) pro-
posed a bootstrap model-based method to detect peri-
ods of abnormal behavior, being only applicable to
one single meter analysis. In this article, we aim at
filling this gap by proposing a specific method to
detect individual meters with abnormal evolution pat-
terns from a group of meters with a common struc-
ture. Our proposal uses the information of functional
depth measures (Tukey 1975; Gijbels and Nagy 2017)
to exploit the group structure and isolate individual
meters with a different evolution. These correspond to
meters with abnormal inter-day evolution patterns or,
in other words, individuals that do not follow the
expected daily evolution mined from the group.

Additionally, we found that when the group of
meters presents a common trend or periodical vari-
ation, the information contained in the functional
depths might not be enough to capture evolution out-
liers with inverse behavior. For example, if the com-
mon trend is positive, our proposal based on
functional depths could still miss evolution outliers
with a negative trend. To overcome this drawback, we
propose an enrichment of functional depth measures
by incorporating the information of the Modified
Epigraph Index.

Therefore, the main contributions of this work are:

o We propose a new class of abnormalities denoted
as evolution outliers that are intrinsic to high-
dimensional functional time series (HDFTS), under
which smart meters data can be framed. Besides,
we design an efficient evolution-outlier detection
method to unmask meters with abnormal evolution
patterns based on functional depth measures.

o We suggest a transformation of depth measures
that empirically demonstrates to distinguish
between increments and decrements produced by
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trends, and peaks and valleys produced by the
time dynamics, so that these key features of the
original smart meter time series are retained and
are taken into account in the outlier detec-
tion procedure.

e We thoughtfully compare our proposal with several
outlier detection methods, not only from the litera-
ture of Functional Data Analysis, but also with
methods that have been successfully used in the lit-
erature of smart meters.

The rest of the article is organized as follows.
Section 2 introduces the notation and definitions
required to describe the methodology. Our evolution-
outlier detection method is presented in Section 3.
Then, in Section 4, we discuss results from a simula-
tion study where we show the empirical superiority of
our proposal against general-purpose methods of the
literature to detect outliers. Additionally, we illustrate
the use of the outlier detection methods with real case
studies in Section 5. Finally, Section 6 draws some
conclusions and outlines some avenues for fur-

ther research.

2. Theoretical framework and definitions
2.1. From smart meter data to functional data

Let {I'(u), u € [1,p x T]} be one meter’s feature in
the form of a time series that is recorded at p x T
points during T windows (e.g., days) with a (daily)
seasonality of length p. Then we consider each com-
plete time series record as a discrete realization of the
functional process,

(%) ={T'(w),
tel,..,T,

u=x+pt—1)}
I <x<p, (1)

where t represents the index of windows (days) and
x € [1,p] is the functions’ domain of definition." In
the context of smart meters, the domain is usually a
range covering the twenty four hours of a day, typic-
ally from midnight to midnight. The result is a series
of daily curves {y',...,yT}, that is, a Functional Time
Series (FTS) (Hormann and Kokoszka 2012).
Importantly, modeling each sample as a curve allows
us to take advantage of the functional nature of the
data. This means, for example, that we can work with
the first derivatives of the curves, which, as we

'Note that in Eq. (1) the functions’ domain are defined as x € [1,p], that
is, as a continuous interval. Therefore, the points at which the observed
curves are evaluated need not to be equally spaced but simply bounded
between the extreme values of that interval.
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Figure 2. Context—Data from multiple smart meters.

illustrate in the case study of photo-voltaic energy
generation of Section 5, can provide valuable informa-
tion for outlier detection purposes.

Many meters provide many FTS, such as the one
introduced in Eq. (1). This data context can be framed
into what is termed in the literature as a High
Dimensional Functional Time Series (Gao, Shang, and
Yang 2017, 2019), setup to which we stick in what fol-
lows. Given i =1, ..., N being the index of the meters,
a sample of high dimensional functions takes the fol-
lowing form:

NN
noVoe N

y=(. . . .| )
IN VN N

Figure 2 visualizes in a nutshell the information
contained in the mathematical object y. Each row of
Eq. (2) represents the information of one individual
meter i (meter-wise), denoted by y;. This is the FTS
of y!,....,y! daily functions for one meter as in Eq.
(1). On the other hand, each column of Eq. (2) repre-
sents the information of a single day t (day-wise),
denoted by y'. This is a sample of N daily functions
¥i» ..y where each one represents a meter for the
same day. In the following, to ease notation, we

denote by y',...,yT the sample of T functions for a
given meter (meter-wise) and by yi,...,yy the sample
of N functions for a given day (day-wise).

2.2. Functional depth measures

The estimation of well-known statistics such as the
median and quantiles are based on the ability to rank
or order a data sample. An important property of
these statistics based on rankings is that they have the
ability to be insensitive to extreme observations or, in
other words, they are robust. This fact has made them
fundamental tools to construct outlier detection meth-
ods such as the classical Boxplot (Tukey 1975).
However, the notion of order is only unique and
straightforward in the univariate case.

To provide a notion of ordering for multivariate
and high dimensional spaces, the literature has pro-
posed the concept of depth measures (Tukey 1975;
Zuo and Serfling 2000; Gijbels and Nagy 2017). More
concretely, in this article, we are interested in func-
tional depths, which provide an ordering of a sample
of curves and, in consequence, functional order statis-
tics counterparts as the functional median. There are
many different definitions of functional depths, which,
according to Nagy et al. (2016), can be divided in gen-
eral into two main families, namely, integrated and
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Figure 3. Synthetic voltage example for one meter for 5 days.

nonintegrated ones. The first class is defined by taking
integrals over given collections of depths of low-
dimensional projections of functions (Fraiman and
Muniz 2001; Lépez-Pintado and Romo 2011). In con-
trast, the nonintegrated ones replace the integral by
the infimum or supremum of these low-dimensional
projections (Mosler 2013; Narisetty and Nair 2016).
Other authors have proposed functional depths par-
ticularly tailored to take into account shape features
of the curves (Harris et al. 2021) based on alignment
methods, which allow to separate phase and amplitude
variability (Marron et al. 2015; Srivastava and Klassen
2016). Here, we opt for the family of integrated
depths because they feature clear practical advantages
to cope with smart meters data (Sun et al. 2018;
Wang et al. 2019a), namely: Fast computation of the
empirical version of the integrated functional depth
and its theoretical guarantees Nagy et al. (2016), given
the massive amount of data smart metering systems
might contain (Sun, Genton, and Nychka 2012); avail-
ability of integrated depths that do not require pre-
processing (smoothing or alignment); and availability
of integrated depths that can deal with missing data
or set of curves observed on different domains (Elias
et al. 2022).

Formally, let FD be a general integrated functional
depth. This statistic evaluates the centrality of a given
function y from a sample of functions y',...,y” with
respect to the center of symmetry of its empirical dis-
tribution Py. This empirical distribution belongs to a
functional random variable taking values in a space of
continuous functions defined in a domain [1,p]. For
x € [1,p], we denote as P, the marginal distribution
of Py at slice x and its cumulative marginal distribu-
tion as Fr ,. In practice, functional data is observed as
a set of discrete points or evaluations of the curves.
To simplify the exposition, we assume that the points
in the grid at which the curves are observed/evaluated
are common for all the functions and equal to x =

1,2,...,p. However, as we said above, there are par-
tially observed integrated functional depths applicable
when the collection of discretized points varies from
curve to curve without the need of preprocessing
(Elias et al. 2022). Then, the empirical integrated
functional depth is defined as

p
FD(y,Pr) = > w(%) %), Prx), (3)

x=1
being w(x) a weighting function that sums up to 1, and
D a suitable depth. More specifically, according to Zuo
and Serfling (2000), a depth function D should be affine
invariant, maximal at the center, monotone with respect
to the deepest point, and should vanish at infinity. In the
same vein, Nagy et al. (2016) and Gijbels and Nagy
(2017) study, adapt and complete the counterparts of
these properties for functional depths.

In essence, Eq. (3) assigns a real number to each y,
typically between 0 and 1. The highest value is the deep-
est function, whereas lower values correspond to observa-
tions that are outliers with respect to the sample of

functions. Let us denote by yl,..,yT the center- out—

ward ordering, being y!!! the deepest function, and y!”)
the most outlying curve of the sample. The statistic y!'! is
a natural functional analog of the median and the litera-
ture has considered it as a robust estimator of the center
of the distribution of the functions.

Different functions D provide different integrated
functional depths. For example, let us consider the
well-known Modified Band Depth (Lopez-Pintado and
Romo 2009), which is defined by

ZZFTx

MBD(y, Pr) = ) (1= Frz(y(x))).

(4)
The MBD is built by plugging w(X) =1/p and
D(y(%), Pr,z) = 2Fr,z(y(x))(1 — Fr,x(y(X))) in Eq. (3).
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Figure 4. Time series of FD and time series of scaled FD for two Functional Time Series.

In plain words, MBD accounts for the average time
that a given function lies inside all the possible bands
built with pairs of the sample curves. As an illustra-
tion, Figure 3 shows a synthetic row sample (see
meter-wise in Figure 2) of smart meters data, that is,
5days of voltage circuit values for one household,
5
2
bands. One of these bands is represented using the
functions Day 1 and Day 2 (grey region). Day 4 is
inside that band for a high proportion of the minutes
of the day, whereas Day 3 and Day 5 are completely
outside. Following this reasoning, notice that Day 1 is
completely inside all the possible bands, thus achiev-
ing the highest depth value. In contrast, Day 2 and
Day 3 have the two smallest depth values.

Finally, Eq. (3) allows introducing the Modified
Epigraph Index (MEI) (Ldpez-Pintado and Romo
2011), which is used in outlier detection methods,
although it is not a functional depth. It measures the
mean proportion of curves lying above a given func-
tion y and is defined as

meaning that there are (Z) :< )z 10 possible

MEI(y, Pr) = z": 1 —Frz(y(x))). (5)

It is straightforward to see that MEI is obtained by
replacing D(y(X),Pr,z) by 1 — Frz(y(x)) and w(x) =
1/p in Eq. (3). Continuing with the example of Figure
3, Day 3 is the one with the highest MEI since it has
a high proportion of curves (4 out of 5) above it
almost all the time. In contrast, Day 2 has the smallest

MEI In Section 3, we leverage this statistic to provide
a meaningful and useful modification of functional
depths to detect evolution outliers.

3. Methodology for evolution-outlier detection

Our idea is to exploit functional depth measures to
capture the dynamic daily evolution of smart meter
data. With this goal in mind, we use the FTS provided
by each meter i, that is, each row of the object y of
Eq. (2) denoted as y; (meter-wise in Figure 2). This is
T daily functions for each single meter, and we com-
pute the depth values of each of the functions in the
sample of curves y; = {y',...,yT}. That is, for each
t=1,..,T, we obtain FD(y',y}).
denote FD(y',y;), as FD(t),
depth value of the day t with respect to its historical
records. Then, our approach is focused on the analysis
of these depths arranged as the following time series

{FD(t), te(1,..,T)}.
To illustrate the intuition behind our proposal, see

Figure 4. The top-left panel shows a FTS that
increases in magnitude from t=1 to t=>5 or, in other

Hereafter, we
that is, the functional

words, it has a positive trend component. The deepest
function is the green curve, =3, and the curves with
the smallest depth values are the red and the black
curves, t=1 and t=5. The top-central panel arranges
depth values as a time series FD(t) where each point
is related to one curve. Then, the highest depth is
observed at time point t=3 and the two lowest are



observed at t=1 and t=5. On the other hand, the
bottom-left panel illustrates the same FTS but with a
decreasing trend component. That is, we invert the
time order of the curves: see, for example, the position
of the blue curve in the top and bottom left panels.
The time depths FD(¢) for this FTS with inverse trend
is represented again in the central bottom panel, fea-
turing exactly the same pattern as that of the FTS on
the top panel.

This toy example illustrates how depth measures
are able to track the time position of each curve and
how the corresponding time series of depths retain
characteristics of the FTS. However, time series of
depths only account for the relative position of a
function with respect to the center and do not dis-
criminate between deviations above or below the cen-
tral deepest function. So, two functions with the same
depth value might be in opposite locations with
respect to the center (see that the FD values of the
green and blue curves are the same in both the top
and bottom panels). As illustrated above, the FTS in
the top panel of Figure 4 and the inverted FTS
emphasize this problem; curves in yellow, red, black
and blue have a different overall position with respect
to the center, some are above and the others below.
Nevertheless, the depth values are not able to capture
this feature.

To overcome this drawback, we incorporate the
information provided by the Modified Epigraph Index
(MEI) to depth measures. Using this statistic, intro-
duced in Eq. (5), we define what we call the scaled
depth as

= sgn(MEI(y!'l) — MEI(y)) 6)
x (ED(y!'') — ED()), (7)

where sgn stands for the sign function and yl' is the
functional median. The term (6) takes into account
whether or not a function is above or below the
median curve, being positive if it is above and nega-
tive otherwise. On the other hand, term (7) centers
the SFD in zero, being this value associated with the
deepest curve. Now, functions below the median have
a negative SFD, while these are positive for functions
above the median. We remark that our aim is not to
provide a new definition of depth, but we scale the
depth to retain the sign of temporal trends and sea-
sons. In fact, it is easy to see that the scaled depth is
not a depth, for example, it does not satisty properties
P-2 (maximality at the center) and P-3 (monotonically
decrease with respect to the deepest point) (Nagy
et al. 2016; Gijbels and Nagy 2017). About P-2, the
scaled depth achieves its maximum at 1 and this value

SFD(y)
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is not the center of symmetry, which is zero.
Regarding P-3, the center is zero and its value might
increase or decrease if the functions move far from
the center upwards or downwards.

Analogously to depth measures, the scaled depth
measures provide a time series where each of the time
points represents the value of a given day f,

{SFD(t),

The time series of scaled depth is defined to cap-
ture the trend and seasonal patterns of the original
time series. This is illustrated in the right-hand panels
of Figure 4 where the scaled depth measures are plot-
ted. Now, the information of the positive and negative
trends are retained in the scaled depths. This is visu-
ally evident by an increasing and decreasing time ser-
ies of scaled depths.

Given N meters, we thus have FD;(t) and SFD;(t)
for i = 1,...N. For simplicity, we continue the expos-
ition for SFD;(t) but everything can be extrapolated to

D;(t). These N time series of SFD;(t) are gathered in
the following multivariate time series of scaled depths,

SFD(t) = [SFD;(t), SFD;(t), ..., SEDy/(t)]. (8)

Daily dependent data must result in time series in
Eq. (8) that vary in a structured way. Additionally,
since we are focusing on meters that belong to a
group, this multivariate time series must be
synchronized sharing common movements among
meters. Hence, deviations from this common evolu-
tion would determine an abnormal dependency pat-
tern. Notice that evolution outlying meters might
result in outlying time series SFD;(t) that could bias
the estimation of the mean evolution. For this rea-
son, to obtain an unbiased estimator of the common
evolution, we use the trimmed mean of SFD(t)
(Fraiman and Muniz 2001) as a robust estimator of
the overall time dependency pattern captured by
scaled depths. This is

[N/2]

Z SFD (t 9)

being SFDy,(t) the r-th time series of SFD(¢) with the
highest depth. Intuitively, Eq. (9) computes the mean
at each time point ¢ but only considering the fifty per-
cent of the most central time series. In other words, it
removes the fifty per cent of the most atypical time
series SFD(¢) for the computation of the mean. We
term uSFD(t) as “baseline” since it is a reference of

USFD(#)

[N/z
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the common evolution
scaled depth.

Then, we use the Euclidean distance between each
time series in SFD(¢) and the baseline pSFD(t) to
find individuals with a time evolution that is far from

captured by depth or

the baseline evolution, that is,

T

> (SED;(t) — uSFD(t))*.

t=1

dist(SFD;(t), uSFD(t)) =

Large values of dist(-, uSFD(¢)) indicate that the
dependency pattern is abnormal with respect to the
baseline evolution.

The next step is to define a threshold or cutoff to
determine which element from the vector of distances d
is large enough to be unmasked as an evolution outlier.
To avoid any distributional assumption, we opt for the
flexible adaptation of the classical Tukey’s Boxplot rule
by Hubert and Vandervieren (2008). It includes a robust
measure of skewness and a correction term in the deter-
mination of the whiskers. More precisely, we highlight a
given meter i as an outlier if its distance with respect to
the baseline exceeds the right whisker, that is,

dist(SFD;(t), uSFD(t)) > Qs(d) + 7 x exp*MC
x IQR(d),

where Q; and IQR are the third quantile and the inter-
quartile range, MC the medcouple statistics, exp **C the
exponential correction model suggested by Hubert and
Vandervieren (2008), and y a parameter to tune the
length of the whiskers. Hubert and Vandervieren (2008)
set it to 1.5 to leave roughly 1% of probability in both
tails but, since we are only looking for right-tailed out-
liers, we consider y = 0.72 to leave approximately 5%
only in the right tail of the distribution. Note that the
flexibility of this rule comes from the fact that, if the dis-
tribution of d is symmetric (MC=0), the proposal by
Hubert and Vandervieren (2008) turns out to be the clas-
sical Tukey’s Boxplot. Therefore, it only corrects under
departures from the symmetry assumption.

In summary, the methodology includes the steps
described in Algorithm 1. We use the short name
“TDEPTH” to refer to the methodology based on the
application of Algorithm 1 to the time series of func-
tional depths computed as in Eq. (3), while
“STDEPTH” alludes to the scaled depth that we have
defined in Egs. (6) and (7). Both of these methods
can be applied to the data curves themselves and their

derivatives, as we do in the numerical experiments of
Section 5.

Algorithm 1: Evolution outlier detection method

Input: Data and parameter y
Output: Evolution outlier status of i
1fori«— 1to N do
2 Compute the time series SFD ;(t)
3 end
4 Compute the baseline evolution uSFD(t)
5 for i« I1toNdo
6 Compute the distance d; between SFD ;(t)
and uSFD(t)
7 end
8 Compute ¢ = Q3(d) + 7 x exp*M“ x IQR(d)
9 fori« Ito N do
10 if d; > c then

11 i is an outlier

12 else

13 i is not an outlier
14 end

15 end

4. Results on synthetic data sets
4.1. Simulation setup

The simulation setting is based on two parts. The first
one aims to generate a set of non-atypical meters with
a common evolution structure (group effect) and indi-
vidual variations to each meter (meter effect). The
second part consists in generating evolution outliers
by modifying the group effect and/or the meter effect
components. In the following, we propose two differ-
ent models: The first one demonstrates the ability of
our proposal to detect evolution outliers by compari-
son against general-purpose outlier identification
methods available in the technical literature. The
second one shows why it is important to reformulate
the standard notion of functional depth to detect
some particular types of evolution outliers.

Model 1: This model generates a common evolution
pattern for the non-outlier individuals and produces
evolution outliers by adding a temporal trend. We
simulate a sample of N typical meters with T daily
curves as follows:

yi(x) = sin (2mx)+ (Group mean)
€' (x)+
D,’(X),

being €'(x) and v;(x) zero-mean Gaussian processes

(Group effect)
(Meter effect)



with covariance functions Cov,(x,x’) = n.e %! and
Cov,(x, %) = n,e =*1, respectively (Rasmussen and
Williams 2005). The parameters were set to 7, =
0.8, Ac=4,=0.1and 5, = L.5.

To generate a meter i that behaves as an evolution
outlier, we select a starting time point for the trend,
t,, from t €1,..,T — p and an end point, f,, so that
the trend remains during p periods. Then, the trend is
generated as a functional linear interpolation between

the curve yi* and the curve y’. More precisely,

y—t t—t, 4
s (x) + “(x) for t €ty ..., by,
Youn () ={ RS (e ‘

ty—ta" ty —
¥i(x) otherwise.
For these outliers, we fix 77, = 0.5.

Model 2: This model generates a group of meters

with a common trend and includes evolution outliers
by inverting the sign of the trend. We simulate a sam-
ple of N typical meters with T daily curves as follows:

yi(x) = sin (27x)+
T—t

T—1° ™

(Group mean)

t—1
+ ﬁET(X)—F

vi(x),

The parameters were set to 1, = 0.8 and /. = 0.1
for the group trend and #, = 1.5 for the meter effect.
The model above includes a common trend that is
increasing or decreasing depending on the difference
between ¢! and ¢”.

To generate an outlier with an opposite trend we
revert the pattern as follows

(Group trend)

(Meter effect)

Youn(*) = sin (27x)+ (Group mean)

T—t
e'(x) + T

t—1
71 (x)+
vi(x).

T—-1

(Outlying trend)

(Meter effect)

4.2. Benchmark methods

Benchmark methods are chosen to cover the taxonomy
of classes proposed by the survey of outliers detection
methods for smart meters (Sun et al. 2018). Additionally,
we include large-scale unusual time series detection
(Hyndman, Wang, and Laptev 2015) and FDA methods
(Arribas-Gil and Romo 2014; Sun and Genton 2011; Xie
et al. 2017; Harris et al. 2021). To apply FDA methods in
our context of High Dimensional Functional Time Series,
we compute the outliers for each row of Eq. (2) (day-
wise) and, then, we identify a meter as abnormal if it has
been detected as an outlier more than a given percentage
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of the days under analysis. For our proposals, TDEPTH
and STDEPTH, we consider the Modified Band Depth
(MBD) (Lépez-Pintado and Romo 2009), Fraiman and
Muniz Depth (FMD) (Fraiman and Muniz 2001),
Extremal Depth (EXTD), (Narisetty and Nair 2016) and
Infimal Depth (INFD) (Mosler 2013). The list of final
methods and their implementation are:

e Distance-based methods: K-Nearest Neighbors
(KNN) (Ramaswamy, Rastogi, and Shim 2000) and
Aggregate KNN (AKNN) (Angiulli and Pizzuti
2002). To set the parameter K we try a range of
values and we show the results of the best per-
formance. Given the KNN and the AKNN scores,
we determine as outlier those individuals with
scores larger than Q3 + 1.5 * IQR.

e Local density methods: Local Outlier Factor (LOF)
(Breunig et al. 2000), Connectivity Based Outlier
Factor (COF) (Tang et al. 2002) and Influenced
Local Outlier Factor (INFLO) (Jin et al. 2006).
Since these methods depend on the K-Nearest
Neighbors, we follow the same procedure as with
the distance-based methods to select the parameter
K and the outlier detection rule.

e One-class classification (ONESVM): We perform one-
class Support Vector Machines (Scholkopf et al. 1999)
classification with radial and polynomial kernels. The
parameter of the radial kernel was fixed to 0.05. We
show the results of the best performing kernel.

e Time series feature selection (FEA): Following
(Hyndman, Wang, and Laptev 2015), we compute, for
each meter, several time series indicators such as
auto-covariance features, entropy, lumpiness, flat spots,
crossing points, mean, variance, maximum level shift
and maximum variance shift. Then, we apply
Principal Components Analysis to the data set of the
features and we detect outliers in the reduced two-
dimensional space produced by the first two principal
components. As outlier detection methods, SVM with
radial or polynomial kernel and the o.— hull method
are considered. We show the results of the best per-
forming method among SVM and o.— hull.

e Dimension reduction methods (PCA): We apply
Principal Components Analysis to our original
data set and apply one-class SVM classification to
the reduced two-dimensional space. We show the
results of the best performing method among SVM
and o— hull.

e Functional Boxplot (FBOX): We apply the func-
tional Boxplot by Sun and Genton (2011) day-wise
with the MBD and with its default parameters for
the whiskers.
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Table 1. Simulation results for Model 1.

Table 2. Simulation results for Model 2.

1% 5% 10% 1% 5% 10%
Outliers Outliers
TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

KNN 0.000 0.899 0.010 0.903 0.014  0.900 KNN 0490 09015 0.388 0916 0.371  0.920
AKNN 0.000 0930 0.000 09316 0.003 0.924 AKNN 0.140 0.931 0.072 0.941 0.086 0.944
LOF 0.250 0.884 0.198 0.8914 0.197 0.892 LOF 0.620 0.889 0678 0904 0.571 0.920
COF 0.180 0.950 0.102 0.9477 0.092 0.961 COF 0.580 0.956 0.608 0.960 0446 09711
INFLO 0.240 0.961 0.194  0.960 0.181 0.963 INFLO 0.520 0.962 0.130 0.961 0.051  0.961
ONESVM 0.510 0,582 0392 05772 0398 0.590 ONESVM 0.310 0.721 0.548 0.69%4 0.551 0.698
FEA 0450 0506 0522 0.5083 0.248 0.478 FEA 0.540 0.506 0460 0504 0.602 0.514
PCA 0450 0506 0522 05083 0.248 0478 PCA 0.540 0.506 0460 0.504 0.602 0514
TDEPTH TDEPTH

MBD 1.000 1.000 1.000 1.000 1.000 1.000 MBD 0.000 1.000 0.000 1.000 0.000 1.000

FMD 1.000  1.000 1.000 1.000 1.000  1.000 FMD 0.000 1.000 0.000 1.000 0.000 1.000

EXTD 1.000 1.000 1.000 1.000 1.000 1.000 EXTD 0.000 1.000 0.000 1.000 0.000 1.000

INFD 1.000 0936 1.000 0.978 1.000 0.987 INFD 0.250 09455 0.222 09532 0.158 0.960
STDEPTH STDEPTH

MBD 1.000  1.000 1.000 1.000 1.000  1.000 MBD 1.000  1.000 1.000 1.000 0.980 1.000

FMD 1.000 1.000 1.000 1.000 1.000 1.000 FMD 1.000 1.000 1.000 1.000 0.980 1.000

EXTD 1.000 1.000 1.000 1.000 1.000 1.000 EXTD 1.000 1.000 1.000 1.000 0.980 1.000

INFD 1.000 0950 1.000 0.976 1.000 0.986 INFD 1.000 0.968 1.000 0.9747 0.980 0.989
FBOX 0.000 0.988 0.000 0.986 0.000 0.986 FBOX 0.020 0.991 0.014 0.9904 0.009 0.992
OUTGRAM 0.000 0.953 0.000 0.952 0.005 0.943 OUTGRAM 0.040 0.953 0.04 0.959 0.031 0.959
GEOM GEOM

AMP 0.000 1.000 0.000 1.000 0.000 1.000 AMP 0.000 1.000 0.000 1.000 0.000 1.000

PHASE  0.000 1.000 0.000 1.000 0.000  1.000 PHASE 0.000 1.000 0.000 1.000 0.000 1.000
ELASTIC ELASTIC

AMP 0.000 1.000 0.000 1.000 0.000  1.000
PHASE  0.000 1.000 0.000 1.000 0.000  1.000

AMP 0.000 1.000 0.000 1.000 0.000 1.000
PHASE  0.000 1.000 0.000 1.000 0.000 1.000

e Outliergram (OUTGRAM): We apply the func-
tional Outliergram by Arribas-Gil and Romo
(2014) day-wise with the default parameters for the
lower bound parabola.

e Geometric Boxplot (GEOM): We apply the method
for shape outlier detection by Xie et al. (2017) day-
wise to detect amplitude abnormalities (AMP) and
phase abnormalities (PHASE).

e Elastic Depth Boxplot (ELASTIC): Also with a
focus on shape outliers, Harris et al. (2021) pro-
pose a definition of elastic depth and provide an
algorithm to detect outliers in terms of amplitude
(AMP) and phase (PHASE).

4.3. Performance metrics

To measure the performance of the outlier detection meth-
ods, we compute the True Positive Rate (TPR) and the
True Negative Rate (TNR) (Gaur et al. 2019), which are:

True Detected Outliers
TPR - N >
Outliers

True Detected No Outliers
No outliers '

TNR =

TPR (sensitivity) measures the fraction of anomal-
ous events identified by a method and TNR (specifi-
city) measures the fraction of non-anomalous events
identified by the method. Therefore, the best perform-
ance would be provided by a method with TPR =

TNR = 1. In contrast, a method that is not useful to
detect the outliers at all would provide TPR =0
and TNR = 1.

4.4. Results

We generate samples with N=100 and T=50.
Besides the N meters, we add a 1%, 5% and 10% of
outliers. Then, we report the mean values of TPR and
TNR for 100 replicates of this experiment. These val-
ues are collated in Tables 1 and 2 for each of the two
data-generating models described in Subsection 4.1.
Table 1 shows the results of Model 1 (p=5) and,
in bold numbers, we highlight the best performing
method. These are the proposed outlier detection
methods TDEPTH and STDEPTH, which tie, both
having TPR = TNR =1 for all the functional depths
considered, except for INFD, which achieves TNR val-
ues slightly lower than 1. They are followed by local-
density methods (LOF, COF and INFLO) but with
TPR values far away from 1. The results of distance-
based (KNN and AKNN) and functional data methods
(FBOX and OUTGRAM) show that, as expected, they
do not have capability of detecting these evolution
outliers. Finally, FEA and PCA seem to split the indi-
viduals into two random groups given the values of
TPR and TNR around 0.5. To show how the methods
perform when there are not outliers, we have re-run
the simulation of Model 1 with the same parameters
but without outliers (results not included in the



Table 3. Identifiers of the detected Magnitude (M), Shape (S),
Evolution based on depth (E) and Evolution based on scaled
depth (E) outliers.
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article). As expected, the methods that were unable to
detect outliers behave similarly and get a TNR equal
to 1. In contrast, the methods that were able to detect
some outliers achieve a value slightly smaller than 1
but our proposals are never smaller than 0.95. For
example, the worst performing method among all the
evolution outlier proposals in 100 replicates was
STDEPTH MBD and it achieved a mean TNR 0.95
with a standard deviation of 0.03.

The results of Model 2 are shown in Table 2. As
expected, TDEPTH does not perform well in these
circumstances as motivated in Section 2. However,
our scaled proposal, STDEPTH, achieves values for
TPR and TNR that are again close to one, meaning
that it is still able to capture this particular evolution
abnormality. The second best performing method for
Model 2 is LOF that improves with respect Model 1
but they are still far from the results provided
by STDEPTH.

In addition to the gains in performance, we found
that the methods based on integrated or non inte-
grated depths (i.e., FMD, MBD, EXTD, and INFD)
are by far faster than the ones based on Elastic distan-
ces or depths. The mean computational cost involved
in one replica of our simulation is 26hours for
ELASTIC, based on the elastic depth, and 11 hours for
GEOM. In contrast, MBD takes 9.36seconds and
EXTD 2.86 seconds.

In conclusion, the results in Tables 1 and 2 clearly
demonstrate that, among all existing outlier detection
techniques in the technical literature, our method-
ology is the only one able to efficiently capture these
evolution outliers, aside from being computationally
tractable in real big data contexts. In the next section,
we corroborate the usefulness and importance of our
approach by identifying evolution outliers that remain
undetected by other methods on real data of house-
hold voltage circuit and solar energy generation.
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5. Results on real data sets

Next we use the advocated FDA approach to evolu-
tion outlier detection with real smart meter data.
Additionally, to cover the complete taxonomy of out-
liers introduced in Figure 1, we also apply the func-
tional Boxplot (Sun and Genton 2011) and the
Outliergram (Arribas-Gil and Romo 2014), two of the
most efficient methods to detect magnitude and shape
outliers in a manageable computational time.
Specifically, we use the Pecan Street data set (Street
2012) that provides access to 1-minute records of
smart meters from Austin over one year. We use
freely available data of voltage circuit (25 households)
and solar energy generation (19 households®).

In all the results, the parameters are set with their
default values as explained in Section 3. Additionally,
for photo-voltaic data, we work with the non-zero
solar generation profiles, obviating night time periods.
The FDA methods are applied to the smoothed level
data and the first derivatives. To smooth the data and
to estimate the derivatives, we use cubic B-splines and
the number of basis functions K is selected to minim-
ize the mean squared error (Ramsay and Silverman
2005; Ferraty and Vieu 2006).

Table 3 shows the identifiers of the households that
have been detected as magnitude outliers (M), shape
outliers (S) or evolution outliers (E and E stand for
time series of depths and time series of scaled depths,
respectively). Columns 2-5 include the outliers
detected using the level data, while columns 6-9 report
those found by using the first derivative. In what fol-
lows, we remark on the key learnings.

Evolution outliers are not detected by other depths:
As Table 3 shows, the methodology proposed in this
article allows us to uncover outliers that are not
caught by existing methods for detecting magnitude
or shape functional outliers. In particular, although
meter volgg;o is not identified as a magnitude or shape
outlier, this household follows an abnormal daily volt-
age evolution with respect to the group of households
and therefore, it is classified as an evolution outlier.
Figure 5a shows 305 daily curves for a non-outlier
household (vol,g;s) and Figure 5b the corresponding
daily curves for the detected evolution outlier
(volgg1o). Each daily curve is colored with a rainbow
palette (Hyndman and Shang 2010) associated with
the calendar day, that is, similar colors are days which
are close in time.

2Given the metadata of the Pecan Street data set, households 8,565,
8,386, 9,922, 5746, 7951 and 7,901 do not have photo-voltaic
energy generation.
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Figure 5. Voltage circuit: evolution outlier not detected with other method. (a) Non-outlier vol2818. (b) Outlier vol9019. (c) Time

series of depths.

A preliminary visual inspection of Figure 5a and b
reveals the outlying nature of volgy9 in comparison
with volyg;g. They show that voltage daily curves of
the same period of time have a different relative mag-
nitude position for the non-outlier and for the outlier.
However, one should expect roughly synchronized
evolution for two households fed by the same

substation branch. Specifically, the outlier profile has
a group of green curves located in low values of volt-
age, while they are located centrally for the non-out-
lier. Light blue curves are above the majority for the
outlier household; and for the non-outlier, they are
located below and in the middle of the majority of
the curves.
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Figure 6. Photo-voltaic energy generation: Computed depths on the derivatives allow detecting outliers not unmasked by the ana-
lysis without derivatives. (a) Time series of depths computed on the zero derivative. (b) Time series of depths computed on the

first derivative.

The difference in the evolution is more evident in
Figure 5c where the time series of depths, FD(t), are
represented for the non-outlier and the outlier.
Moreover, the baseline, uFD(¢), is plotted with a solid
line. Here, the outlier (dotted line) moves far away
from the baseline, while, in contrast, the non-outlier
(dashed line) remains close to it.

First derivatives allow detecting those outliers not
detected with level data: Another remark from Table 3 is
that the use of the first derivatives discloses outliers not
unmasked with the functions’ values themselves. This is
the case for the circuit voltage of the outlying households
volgey, and volyes;, which are two of the just six house-
holds that do not have photo-voltaic energy generation.
The effect of not having solar energy generation on the
household circuit voltage is not large enough to be caught
with level data, however, the derivatives intensify the
shape differences and they are detected as outliers in the
magnitude of the derivative.

Similarly, the first derivatives allow highlighting house-
holds with abnormalities in terms of solar energy

generation. While magnitudes of solar profiles are deter-
mined by the amount of power generation installed, the
shapes are highly influenced by the panels orientation and
tilt. In fact, the two households solg;39 and solgg;9, which
are detected as evolution outliers (E) in the first deriva-
tives, have their solar panels set to the south, whereas the
majority of the households are south-west-oriented.

For a better understanding of these evolution outliers,
Figure 6a shows the time series of depths of one outlier
household (solg;39), one non-outlier household (soly¢7)
and the baseline. The time series of depths for the non-
outlier and the outlier are not far from the baseline, mean-
ing that their daily evolution is fairly similar. In contrast, if
we consider the first derivatives, more discrepancies
appear. To see this, Figure 6b represents the time depths
of the same households and the baseline computed on the
first derivatives where the outlier profile is farther from
the baseline than the non-outlier (shaded grey regions).

3panel tilt is not available from the metadata of the Pecan Street data set
to have the complete picture of the solar panel setting.
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Figure 7. Photo-voltaic energy generation: Scaled depths detect outliers not detected by classical depths. (a) Time series of

depths. (b) Time series of scaled depths.

This points to the fact that the analysis of the
derivatives might capture the shape differences in the
daily generation solar profile due to the differences of
panel orientation and tilt. Therefore, our methodology
can be useful, for example, to detect outliers in terms
of panel settings when data of a group of meters with
a similar panel configuration are available.

Scaled depths unmask those outliers which are not
detected with regular depths: A household with a system-
atic growth of voltage, for example, would provide time
depths that are similar to a household whose voltage cir-
cuit systematically decreases. In contrast, scaled depths
are especially defined to shed light on differences in these
variations in trends and seasons. Table 3 shows that the
use of scaled depths (E) with photo-voltaic solar energy
generation captures the household sol;s;s as an outlier
whereas it is not captured with the other methods,
including classical depths.

Figure 7 illustrates this particular case. More pre-
cisely, Figure 7a shows the regular time depths of the
outlier household (solss33) and one non-atypical
(solyzs7) computed on the first derivatives of solar

energy generation. Both time series of depths are close
to the baseline. However, the scaled depths SFD repre-
sented in Figure 7b highlight periods where the atyp-
ical is remarkably far from the baseline (shaded
grey regions).

Additionally, we see that the SFD of the outlier is
generally above the baseline when the differences with
the baseline are large. This means that the solar set-
ting of this household provides a daily profile with
larger periods of growth (positive derivatives) than the
majority of the households, especially at the start and
end of the year. In fact, checking the Pecan Street
metadata, sol;s3g is the third largest solar installation
facing west and the smallest facing south. This setting
produces a double-humped daily profile with a max-
imum peak of generation that occurs later in the day
than that of the majority.

6. Conclusion

To fill the absence of methodologies focused on tem-
poral daily dependency for smart meters data (Sun



et al. 2018; Wang et al. 2019a), we propose an outlier
detection method that is able to uncover evolution
outliers that remain undetected by current methods.
The underlying methodology takes advantage of the
analysis of multiple grouped meters to extract joint
information that affects them equally. The method-
ology is based on the concept of functional depth
(Zuo and Serfling 2000; Gijbels and Nagy 2017) and,
among all the available definitions in the literature, we
suggest to use the family of integrated functional
depths and its versions for partially observed func-
tional data (Nagy et al. 2016; Elias et al. 2022),
because of their practical advantages to cope with
some of the main challenges posed by smart meters
data (Sun et al. 2018 Wang et al. 2019a).
Additionally, when the evolution outlier arises from a
difference in the sign of trends or seasons, we propose
a scaled version that empirically demonstrates its
superiority against the original definition. However,
the scaled version might suffer when the number of
curves and/or the number of observed points per
curve is small.

Our empirical results show that our proposal out-
performs other benchmark methods not only in terms
of outlier detection but also in terms of computational
efficiency. Furthermore, the pitfalls of not taking into
account the time dimension in the task of outlier min-
ing has been shown with actual smart meters data of
voltage circuit and solar energy generation. Using
voltage circuit, our proposal captures evolution abnor-
malities that remain hidden with other methods that
are specifically tailored for magnitude and shape out-
liers. In this context, our approach for grouped meters
captures deviations from common dynamics of house-
holds fed by the same substation that should have
roughly synchronized evolution patterns. On the other
hand, the temporal evolution plays an important role
in the analysis of solar energy generation. Here, only
the application of our functional approach to the first
derivatives allows highlighting abnormalities due to
the differences of panel orientation and tilt. This fea-
ture makes our approach an appealing method to
monitor solar farms with a given panel configuration
or solar tracker systems.

In summary, our outlier detection method pro-
posal, in conjunction with the available methods from
the literature, covers a wide and general class of pos-
sible atypical phenomena, namely, shape, magnitude,
and evolution outliers. This classification might sup-
port in the crucial tasks of monitoring, understanding
the sources of the potential abnormality and support-
ing the decision to intervene. Future research lines
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will include the study of the statistical properties of
the scaled depth as well as the theoretical relationship
between the time series of depths and the time

dynamics of different classical Functional Time

Series models.
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