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Abstract—Using paired images of JAST/T80 Telescope in
OAJ and of Hubble Space Telescope we aim at increasing the
resolution of JAST/T80 images with the objective of enhancing
object detection. Higher resolution versions of JAST/T80 images
in crowded areas of the sky will significantly increase the number
of stars and/or galaxies detected, enabling a better measurement
of their photometry. We pre-processed both low-resolution and
high-resolution images to build a dataset of paired crops, which
is used to train the Real-ESRGAN neural network. We are able
to get super-resolved images with a 4× scale and a FSIM=0.8903,
showing an improvement in the source detection in crowded
areas. However, visual inspection of bright stars and nearby
galaxies reveals that there is room for learning a better model that
can reproduce the PSF and the details of the extended objects.

I. INTRODUCTION

Telescopes are the instruments we use to observe our
Universe. The cameras installed on them provide us with the
data needed for its study: images and spectra. Astronomical
observations from Earth are always limited by the presence
of the atmosphere. While space telescopes avoid atmospheric
aberrations, they are an expensive solution and will still
have technical limitations, as the point spread function (PSF)
consequence of the finite aperture and light dispersion within
the telescope.

An image shows the brightness of an object in the spatial
domain, i.e., how many photons are coming from a specific
location in space. Three properties of an image – size, bright-
ness, and resolution – are the most important from a scientific
point of view. From size, we learn about astronomical scales.
From brightness, we learn the amount of energy that an object
is producing, in order to investigate how it is producing that
energy. The ability to distinguish one location from a nearby
location is called spatial resolution. Higher resolution lets us
know things like whether or not two galaxies are merging or
if there are two stars close to each other instead of one star by
itself. Astronomers aim at having the largest possible images
with the highest possible resolution.

In addition to their large size, astronomical images have
special characteristics: they are commonly stored in Flexible
Image Transport System (FITS) digital file format; they have
high range of grey values (32-bit float); and they are usually
quite noisy. Though images are grey-scale, they contain some
colour information because they are taken through a colour
filter. Telescopes, instruments and detectors have different
sensitivities to different wavelengths and usually work with

a well-defined set of filters. These filters can have a variety
of widths, from broad-band to narrow-band (∼1000Å to few
10Å). Finally, one particularly important aspect of astronomi-
cal image processing is the choice of the stretch function. The
representation of the pixel values that one selects has a high
impact on the number and shape of the objects that we see
in the image. For instance, a logarithmic representation tends
to suppress the bright parts of the image and to enhance the
fainter ones. This can be desirable though it will reduce the
contrast, producing a lower dynamic range.

Super-resolution describes a class of methods that can
upscale video or images from lower resolutions to higher ones.
Such methods have been successfully demonstrated on as-
tronomical imaging (e.g. [1]–[4]). Traditionally, interpolation
methods such as bilinear and nearest neighbour interpolation
are used for upscaling. However, these methods often intro-
duce side effects such as noise amplification and blurring. If
the PSF can be well determined, deconvolution techniques can
be applied to removing the effect of the instrumentation and
increasing the image resolution [3], [5]. However, obtaining
the PSF is a very difficult task [6].

Over the past decade, deep learning approaches have been
introduced to solve a variety of astronomical problems: de-
noising [7], segmentation [8], galaxy classification [9], cosmic
web simulations [10], etc. Different neural networks dedicated
to super-resolution tasks have shown promising results in
natural image restoration, e.g., [11], [12] . These techniques,
applied to ground-based astronomical images, can help to
overcome instrumental limitations (e.g., large pixel scale)
and the presence of the atmosphere of observations from
observatories like the Observatorio Astrofı́sico de Javalambre
(OAJ).

In this work, we tackle the problem of increasing the
resolution of large pixel-scale ground-based astronomical im-
ages. We aim at generating super-resolved versions of images
taken with the 83 cm Javalambre Auxiliary Survey Telescope
(JAST80) and its T80Cam camera, with the focus on enhanc-
ing source detection. Higher resolution images should allow
us to better disentangle close sources in crowded regions of
the sky (e.g., globular clusters or the core of distant galaxy
clusters), thus increasing the number of objects detected and
enabling a better measurement of their brightness (photome-
try).
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II. DATA

Most works we find in the literature addressing astronomical
image restoration tasks use simulated data instead of real
data to train their models, e.g. [2], [4], and usually, the
reason is the lack of target images. However, after decades
of space astronomy, there are loads of publicly available high-
quality images that we expect can be used as targets. Below
we describe in more detail the data selected to achieve our
objectives.

A. J-PLUS data

J-PLUS [13] is a survey being conducted at the Observatorio
Astrofı́sico de Javalambre (OAJ) using the 83 cm Javalam-
bre Auxiliary Survey Telescope (JAST80) and T80Cam, a
panoramic camera of 9.2k × 9.2k pixels that provides a 2
deg2 field of view, with a pixel scale of 0.55 arsec pix−1. The
J-PLUS filter system is composed of seven mediumband and
five broadband filters spanning the full optical range (3500 -
10000 Å). This work started making use of the second data
release (DR2) of J-PLUS and was extended to the internal
DR31. It covers more than 3000 square degrees, with 1642
(co-added) individual images of 2 deg2. To create the paired
image sample we exploit in this work, we run queries using
the Astronomical Data Query Language (ADQL) interface and
the Image Search services of the J-PLUS database [14].

J-PLUSsurvey strategy uses the rSDSS filter as the reference
to perform source detection, therefore rSDSS images are what
we aim at super resolve to improve object detection as the
initial objective.

B. ACS/HST data

The Advanced Camera for Surveys (ACS) is a third-
generation Hubble Space Telescope (HST) instrument. It em-
ploys two fundamentally different types of detectors: Charge-
coupled device (CCD) for use from the near-UV to the near-
IR, and a Multi-Anode Microchannel Array detector (MAMA)
for use in the UV. ACS/HST has three channels: the Wide
Field Channel (WFC), the High Resolution Channel (HRC),
and the Solar Blind Channel (SBC). Installed in March 2002,
its CCD Electronics Box and Low Voltage Power Supply
incrementally failed in June 2006 and January 2007. The
replacement components installed on May 2009, successfully
restored the function of the WFC. This WFC has a field of
view of 0.056× 0.056 deg2 and a pixel scale of ∼0.05 arcsec
pix−1. The format of the WFC images is 2 × 2048 × 4096
pixels, which means two rectangles with a gap between
them. Its filter system consist of nine broadband and three
narrowband filters.

To obtain ACS/HST images we use the Astroquery python
package, that has a module to query the Barbara A. Mikulski
Archive for Space Telescopes (MAST) [15]. From all the data
products available in MAST, we get the _drc and _drz
images: calibrated, geometrically-corrected, dither-combined
images created by AstroDrizzle.

1the early internal data release took place on 10th June 2022

From the nine broadband filters of ACS/HST, F625W is the
most similar, i.e. covers a comparable wavelength range, to
the rSDSS filter from J-PLUS. The F606W filter has a broader
coverage and fully includes the rSDSS filter, but goes further
into the blue. In Fig. 1 we show the transmission profiles of
these three filters.

C. Paired images

J-PLUS and ACS/HST archives have a huge amount of data,
including both images and catalogues. However, the number of
overlapping fields in the sky is limited, for example, compared
to J-PLUS, ACS/HST has only surveyed a small fraction of the
sky. In addition, not all ACS/HST fields have been observed
with all filters, specifically, our target filter F625W is not
the most common one and has limited amount of data. The
methodology we follow to gather the maximum number of
paired J-PLUS and ACS/HST images is:

• We download the J-PLUS catalogue that includes the
information about all the rSDSS tiles (co-added images
of 2 deg2).

• From the central position (RA,DEC) of the J-PLUS tile
and with a search box of width 0.8 deg, we look in the
ACS/HST MAST archive for the science F625W _drc
and _drz images available.

• When a J-PLUS tile has matching ACS/HST images we
download both from their respective archives.

• We visually inspect paired images for quality control. We
discard paired images that are not well aligned (usually
due to ACS/HST bad quality astrometry), ACS/HST
images that are too noisy or that the cosmic ray correction
was not (correctly) applied, and ACS/HST images that
are not fully covered in the J-PLUS tile. As a result 24
ACS/HST images overlapping with 17 J-PLUS tiles are
selected, while ACS/HST images from other 30 J-PLUS
tiles are rejected.

D. Data pre-processing

As mentioned before, the pixel value representation plays
a fundamental rule in how the information contained in the
image is displayed (e.g., reduce noise or boost faint objects).
In astronomical images most of the information is concentrated
on a small range of counts, i.e., a field may have a few very
bright stars with thousands of counts per pixel while the rest
of the sources in that area of the sky would be in the range of
tens to hundreds of counts. Thus, the pre-processing tasks on
the image are a sensitive step. The pre-processing we apply is
as follows:

• Only for ACS/HST images, we resize them to match 4×
the pixel scale of J-PLUS images.

• We scale the image using a linear, a logarithmic and
a square root function. See Sect. IV-B for more details
about the final scaling function.

• We clip the highest and lowest values of the image. Based
on our observations of crowded fields, particularly the
centre of a globular cluster and a nearby elliptical galaxy,
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Fig. 1. Transmission profiles of the filters of J-PLUS and ACS/HSTimages
used in our sample: rSDSS and F625W, respectively. The first includes the
transmission through the entire system formed by the filter, the instrument and
the atmosphere, while the second is in space and therefore does not include
the atmosphere. We also show in grey the filter F606W for ACS/HST that is
compatible with J-PLUS rSDSS filter.

we set the clipping of J-PLUS images in the 0.01-99.99%
range and of ACS/HST images in the 0.1-99.9% range.

• We normalize the image to the [0, 1] range. This should
facilitate the training process and the validation with
different metrics.

• We generate small paired crops of the ACS/HST and J-
PLUS images. The 24 ACS/HST images are two times
2048 × 4096 pixels, too large to be fed as input to any
neural network. Thus, a trimming process is required
to make small images. Our approach is to scan the
entire image from left to right and top to bottom by
shifting half the target crop size. This means that half
of the crop overlaps with the next one. Once we have an
ACS/HST crop, we use its central sky position (RA,DEC)
to trim from J-PLUS image a matched crop. At this
point, the astrometric alignment between ACS/HST and
J-PLUS is crucial to make sure that the paired pixels
contain the same information. For the cropping process
we use the astcrop function of the GNU Astronomy
Utilities (Gnuastro) package [16]. To avoid numerical
issues during the learning process we remove all crops
that have NaN values in any pixel.

We run several test with paired crops following this pre-
processing getting unsatisfactory results. The main problem
was the appearance of many faint sources in the super-resolved
images, even when the J-PLUS image showed a rather dark
uniform background. We conclude that one important factor
causing this effect was the fact that ACS/HST images are
much deeper than the J-PLUS counterparts, making an unfair
comparison. To mitigate this effect we added the following
steps after the scaling and before the normalization for the
ACS/HST images:

• We detect sources above 2σ after an iterative 3σ clipping

TABLE I
TRAIN, VALIDATION, AND TEST SAMPLES.

Sample J-PLUS tiles ACS/HST images Paired crops
Train 11 14 2842
Validation 3 5 1039
Test 3 5 -

process.
• We mask circular apertures around the detected sources.
• We estimate the background as the median and the noise

as the standard deviation over the masked image with a
3σ clipping estimation.

• We remove the background level from the scaled
ACS/HST image.

• We clip all pixels below 10 times the noise estimate. This
means that we are keeping only those sources with a 10σ
level of detection in ACS/HST.

• We add random noise equivalent to 10 times the noise.
This means that the original 10σ detections turn into 1σ
detections.

Figure 2 shows a zoom in of a J-PLUS crop and the same
region in the ACS/HST original image and the ACS/HST
crop after pre-processing (including resizing, background sub-
traction and noise addition). We observe how the original
ACS/HST image has more faint sources and less noise, which
can confuse the neural network. To process astronomical FITS
images we utilize several functions of Astropy2 a community-
developed core Python package for Astronomy [17], [18],
along with Photutils [19] an affiliated package that provides
tools for detecting and performing photometry of astronomical
sources.

E. Train, Validation and Test samples

The set of crops is split into train, validation and test sets
where only the training sample is used to update the weights
of the network; the validation sample is used to monitor
the performance of the network and to optimize the hyper-
parameters; and the test sample is not seen by the network
during training and reserved for final evaluation.

The overlapping of crops causes that the information in two
contiguous crops is not independent, as part of the image is
repeated. This means that crops from the same image can not
be used for training, validation and testing. Thus, we split
the samples based on the J-PLUS tiles: 11 for training, 3
for validation and 3 for testing. The selection of validation
and test images is not random, we select in both cases one
tile including a nearby galaxy and other tile including a
globular cluster. In Table I we summarize the total number
of tiles/images and crops that form each subsample. Note that
for the final evaluation of our model we do not use small crops
but a large squared trim of the ACS/HST image, as we want
to compare the number of (reliable) objects detected.

2http://www.astropy.org

3

http://www.astropy.org


Fig. 2. Zoom into one crop to show the difference between the J-PLUS (left), ACS/HST pre-processed (centre), and ACS/HST original (right) images.

III. METHODOLOGY

A. Model Architecture

The input to our super-resolution model is the J-PLUS crop
and for the target image we use the ACS/HST resized crop
with 4× the resolution of J-PLUS. For our super-resolution
problem, we take an approach based on a GAN architecture
[20]. GANs use a generator network (see Fig. 3) to generate
realistic images and a discriminator network (see Fig. 4) to
ensure that the generated images are visually indistinguish-
able from the high-resolution target images. We follow the
approach of Real-ESRGAN [11] because of its proven success
to super-resolve real-world images, especially in relation to
background textures. In addition, all the codes and models are
publicly available to use [21], [22].

Real-ESRGAN model builds upon ESRGAN [23], which is
an enhancement of the seminal SRGAN [24]. The generator is
the same used in ESRGAN, i.e. a deep network with residual-
in-residual dense blocks (RRDB, see Fig. 3). This block is
inspired by the DenseNet architecture [25] and connects all
layers within the residual block with each other. It consists
of three Dense Blocks, each containing four consecutive
convolution layers followed by Leaky ReLU activations and
an additional convolutional layer. The concatenated output of
every previous layer is fed into the next convolution layer. The
upsample layers consist of a nearest-neighbour interpolation.

The discriminator in Real-ESRGAN aimed at producing
accurate gradient feedback for local textures, instead of dis-
criminating global scales. Such requirement of a greater
discriminative power for complex training outputs led the
authors to use as discriminator a U-Net [26] with spectral
normalization [27]. The U-Net outputs realness values for each
pixel, as shown in Figure 4, and can provide detailed per-pixel
feedback to the generator.

B. Loss functions

We follow the prescription from [11] for the loss functions.
These authors first trained a model with the L1 loss. Then, with
this model - named Real-ESRNet - as the initialization of the
generator, the Real-ESRGAN is trained with a combination
of L1 loss, perceptual loss [28] and GAN loss [20]. The

perceptual loss is a feature reconstruction loss that encourages
the pixels to have similar feature representations as computed
by a loss network ϕ. The feature reconstruction loss is the
squared and normalized Euclidean distance between feature
representations:

ℓϕ,jfeat(ŷ, y) =
1

HjWj
∥ϕj(ŷ)− ϕj(y)∥22 (1)

Following [11] our perceptual loss includes the {conv1,
...conv5} feature maps (with weights {0.1, 0.1, 1, 1, 1}) before
activation in the pre-trained VGG19 network [29]. For the
GAN loss we use its standard form (called vanilla in the
basicsr [22] package) through the binary cross entropy loss:

ℓG = ℓBCE(1, D(G(z)))

ℓD = ℓBCE(1, D(x))− ℓBCE(0, D(G(z))) (2)

Thus, the combined loss used to train the generator of the
GAN is as follows:

ℓG−GAN = αℓℓG + ψℓpercep+ νℓ1 (3)

where α = 0.1 and ψ = ν = 1.

C. Evaluation Metrics

To evaluate our training we monitor the losses describe
in III-B along with two evaluation metrics: the Peak Signal
to Noise Ratio (PSNR) and the Structural Similarity Index
(SSIM). The PSNR is a measure of the ratio between the
maximum signal and the corrupting noise. It is commonly
used to quantify reconstruction quality in denoising models.
A higher PSNR value equates to better, though it is only
conclusively valid when it is used to compare results from
the same content. The SSIM is a perceptual metric that
incorporates the idea that spatially close pixels have strong
inter-dependencies. These two metrics are included in the
BasicSR [22] open-source image and video restoration toolbox
distribution based on Pytorch, thus we can directly compute
them in the Real-ESRGAN pipeline.

For a quantitative evaluation during the optimisation of the
hyper-parameters and the final performance of the model,
we also compute the Multi-scale Structural Similarity Index
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Fig. 3. Architecture of the generator (RRDBNet)

Fig. 4. Architecture of the discriminator (UNet)

(MS-SSIM), the Feature Similarity Index (FSIM [30]) and
the Haar wavelet-based Perceptual Similarity Index (HaarPSI,
[31]) metrics. MS-SSIM measures the similarity of structure
in images on a combination of different scales. FSIM maps the
features and measures the similarities between two images: it
uses phase congruency as the primary feature to measure the
significance of a local structure and the gradient magnitude
as the secondary feature to obtain the contrast information.
HaarPSI utilizes the coefficients obtained from a Haar wavelet
decomposition, followed by an additional logistic function
mapping to the local similarities obtained from high-frequency
Haar wavelet filter responses, to construct local similarity
maps. To compute all these metrics we use the PyTorch Image
Quality (PIQ [32]) library, which contains a collection of
measures and metrics for image quality assessment.

IV. EXPERIMENTAL SETUP

A. Training details

We train with a scaling factor of ×4 between the J-PLUS
(low resolution) and the ACS/HST resized (high resolution)
crops. These input images are only 1-channel, meaning that
when training from the pre-trained ESRGAN model, which
uses 3-channel input images, the weights and bias from the

first and last convolutional layers are ignored. Our implemen-
tation uses training codes and architecture algorithms from
BasicSR [22] and Real-ESRGAN [11] open-source reposi-
tories. Some codes were modified to take into account the
special format of our astronomical images (FITS) and other
requirements for our training procedure (e.g. reading the
LR/HR pairs from a meta-file, change of the learning rate
milestones on-the-fly).

Following ESRGAN and Real-ESRGAN prescriptions, we
divide the training process into two stages. First, we train
the model with the L1 loss. The weights are initialized with
the pre-trained ESRGAN model. The learning rate starts at
2 × 10−4 and is divided by 2 at [100k, 200k] iterations.
Then, this trained L1 model is used as the initialization for
the generator. The generator is trained using the loss function
in Eq. 3, with the learning rate set to 10−4 and halved at
[100k, 200k] iterations.

In both stages the training HR patch size is set to 256 and
the batch size to 4 (see Sect. IV-B for more details). The
Real-ESRGAN training applies a second-order degradation
model (it includes blurring with different types of kernels,
adding Gaussian and Poisson noise, and a JPEG compression
quality factor). We made several tests with this degradation
approach and found that it produces undesired results, like
deep depressions around bright sources. Thus, we only apply
resizing (with a percentage of 80 to 120 and a probability
of 0.25, 0.25, and 0.5 for up, down, and keep, respectively)
and the last sinc function with a 0.8 probability (use to
model ringing and overshoot artifacts). The training pairs are
synthesize on the fly. At each iteration, the training samples are
randomly selected from a training pair pool to form a training
batch with higher diversity. The size of the pool is set to 100.

We employ Adam optimizer, with typical values β1 and
β2 of 0.9 and 0.99, and alternately update the generator and
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discriminator network until the model converges. We train our
models within the Google Colaboratory environment, so the
GPUs assigned vary from run to run. The GPUs available and
that we used are NVIDIA Tesla P100, T4 and K80.

B. Optimization of the hyper-parameters

1) Model
There is a set of parameters that define the model or how

it learns that are subject to tune to improve the final result. In
our model, the number of RRDB blocks and the number of
convolutional filters have to be the same as in the architecture
of ERSGAN that we are using as pretrained model: 23 and
64, respectively.

We determine the learning hyper-parameters by running a
random hyper-parameter search over a set of learning rate
(between 2×10−3 and 10−4) and batch size (1, 2, 4) values.
We train a subsample of 1739 images in linear scale in 7
random configurations for 500 iterations. Based on the SSIM
tendency of the validation subsample and the trend of the loss
of the training subsample we select a learning rate of 2×10−3

and a batch size of 4. The learning rate is the higher value that
shows an increasing SSIM and reasonable low values for the
loss function. Our strategy for training includes a multi-step
learning rate decrease, so this value is successively divided in
half after [100k, 200k] iterations.

2) Data
As described in Sect. II-D, the pre-processing of the image

modifies how the information is weighted and this could have a
huge impact on the performance of the model. We test different
scaling options, namely, linear, square root, and logarithmic
scales. In Figure 5, we show the effect of these three scales in
two different images. Finally, we select the linear scale as the
one with the best performance: highest values is most metrics
and best visual super-resolution solution. After scaling, the
values for the clipping are set by a qualitative analysis of
target objects (as bright globular clusters) and we keep this
process outside of the hyper-parameter optimization.

The last pre-processing step we take into account is the
size of the crops we use for training. As we are aiming at
a 4× super-resolution, we are limited on the bigger side by
the hardware capacity and on the smaller side by the PSF of
J-PLUS. We test two different pairs of image sizes: 32/128
and 64/256 (J-PLUS/ACS/HST). We note that the size of the
training set is going to be different depending on the size of
the crop due to the methodology for cropping we follow. The
results for both sizes are quite similar (e.g. SSIM=0.541 vs
0.542 or FSIM=0.648 vs 0.649). We select the ACS/HST 256
size to facilitate the generalization of the model as the smaller
size will not include big sources and many of the J-PLUS
crops might display only background noise. As observed by
[23], training a deeper network benefits from a larger patch
size, since an enlarged receptive field helps to capture more
semantic information. However, it costs more training time
and consumes more computing resources. We run a test with
even larger crops of 128/512 that showed good convergence.
The problem is that such a large size reduces significantly the

TABLE II
RESULTS OF OPTIMIZATION OF THE HYPER-PARAMETERS ON VARIOUS

METRICS.

Scale Size PSNR SSIM MS-SSIM FSIM HaarPsy
Linear 64/256 23.5255 0.5197 0.7707 0.7391 0.2875
Sqrt ” 15.7723 0.4204 0.5187 0.6550 0.2849
Log ” 21.1608 0.5414 0.7235 0.6483 0.4648
Log 32/128 22.5977 0.5420 0.7280 0.6492 0.4644

Fig. 5. Images of the centre of the globular cluster NGC6341 (top) and of
the galaxy NGC5866 (bottom) in ACS/HST (first and third rows) and J-PLUS
(second and fourth rows) for the three scales tested: linear (left), logarithmic
(centre), and square root (right). After scaling we apply clipping and normalize
to the (0, 1) range (see the text for more details). The gray-scale is the same
in all panels with black for 0 and white for 1.

training sample as the ACS/HST images are small, rotated, and
have a gap of NaN values in the diagonal, what causes that
we cannot generate crops of size 512 from many ACS/HST
images.

V. RESULTS

A. Training and evaluation

We are limited in time, in part due to the use of GPUs
in Colab for computing, so the number of iterations in the
training process has yet to be increased, probably in the two
training stages (see Sect. IV-A). We show in Figure 6 the
loss functions obtained in the two training stages. We can
see how the L1 loss of the upper panel follows the expected
behaviour: during the first iterations the decline is fast and
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Fig. 6. Loss functions from our training process in two stages: L1 loss of
the first stage (top) and the generator total loss and discriminator real and
fake losses of the second stage (bottom). Vertical dashed black lines indicate
where the learning rate is halved.

bouncy and then it flattens and decrease very slowly. We train
for 300k iteration before going into the second training stage,
but the result may improve continuing the training for a few
more 100k iterations. For example the original Real-ESRGAN
was trained for 1000k iterations. The training with the GAN
is more complicated and each iteration consumes more time.
We can see from the bottom panel that the losses from the
generator and the discriminator are stable. In this case, we
run 300k iterations, so we expect the final model to improve
with more training time.

To have a better idea of the performance of the models
as we train, we measure at selected number of iterations the
evaluation metrics described in Sect. III-C. For computing
these values we used the test sample described in Sect. II-E.
In Table III we report the metric estimates for initial, inter-
mediate, and final training, while in Figure 7 we show the
complete trend. Regarding the Real-ESRNet model from the
first training stage, most metrics show a steep increase during
the first ∼100k iterations. SSIM and MS-SSIM seem to reach
almost their maximum value (above 0.98) just after 100k, not

Fig. 7. Evaluation metrics computed over the test sample as a function of
the iterations for the first (top) and second (bottom) training stages.

leaving much room for quantifying improvement, while we
know via visual inspection that this model is far from giving
a satisfactory super-resolved image. Thus, SSIM and MS-
SSIM are probably not appropriate metrics to evaluate super-
resolution tasks for astronomical images. PSNR and FSIM
keep increasing more slowly after the first 100k iterations,
indicating, as we already mentioned, that more training time
could still improve our model. HaarPhi reports a rather low
value (around 0.6), which would agree what our visual inspec-
tion (see Sect. V-B). However, it also flattens after ∼100k
iterations, while we do observe that the model gets better
between about 150k and 300k.

Regarding the Real-ESRGAN model from the second train-
ing stage, metrics do not show a good trend. All but FSIM
start at the highest value, rapidly drop in a few iterations, then
show a moderate increase up to ∼100-150k, continuing later
with the descent. FSIM starts at a high value, close to 0.9
and similar to the 0.89 value of the Real-ESRNet 300k, that
grows slightly to 0.91 during the first 50-100k and flattens here
for the rest of the training. This behaviour is rather compatible
with the super-resolved images we obtain (see Figure 9) where
there is no significant improvement between 100 and 300k.

B. Qualitative results

In Figure 8 we show examples of the super-resolved ver-
sions of a test image after 1k, 100k, 200k, and 300k iterations
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TABLE III
RESULTS OF THE TWO STAGE TRAINING.

Model Iter PSNR SSIM MS-SSIM FSIM HaarPsy
Real-ESRNet 1k 13.4043 0.0161 0.5878 0.8164 0.1451

100k 35.9025 0.6718 0.9365 0.8722 0.6042
300k 49.4180 0.9833 0.9891 0.8886 0.6624

Real-ESRGAN 2k 31.6790 0.3933 0.8684 0.8933 0.3814
100k 29.2125 0.3182 0.8268 0.9171 0.3540
300k 27.6371 0.2511 0.7959 0.8903 0.2883

for the Real-ESRNet model. The 1k model entirely corrupts
the image: the galaxy disappears, and the big star is grainy. As
we train, the model progressively recovers the details of the
image: the galaxy shows the bulge, the disk, and the extended
low surface brightness parts; the stars become more point-
like sources, with most of the brightness concentrated, and
the brightest star starts to show the spikes of the PSF from
ACS/HST. However, we are still far from recovering the fainter
objects: we cannot see the more extended part of the galaxy
or the faintest stars that we discern in the original J-PLUS
image.

In Figure 9 we see examples of the super-resolved images of
the same test image after 2k, 100k, 200k, and 300k iterations
for the Real-ESRGAN model. Compared to the previous
Real-ESRNet models, we can notice three main differences:
(i) the background shows a stronger textured pattern; (ii)
the extended, low brightness parts of the galaxy are better
distinguished from the background; and (iii) fainter sources are
present. Though the final result is unsatisfactory in reproducing
visually a real astronomical image, these three differences
represent an improvement with respect to the Real-ESRNet
300k model in three key properties of our images. Thus, we
can support the need for the second training stage including
the perceptual loss, and the GAN loss with the discriminator.
The test with other discriminator architecture or even without
discriminator remains as future work.

C. Source detection

We can roughly check the effectiveness of our super-
resolution model (though knowing it can be improve) by
performing source detection over the J-PLUS image and its
super-resolved version, comparing the result of the latter also
to the ACS/HST image to confirm that the sources detected
are real and not just artifacts produced by the GAN. We use
GNUAstro [16] dedicated functions for detection, segmenta-
tion, and catalogue generation. For a fair comparison, we use
the same parameter values in these functions for both images.
We find a positive result in the crowded region at the centre
of the globular cluster NGC6341 (one of the validation tiles):
more sources are detected in the super-resolved image version
and these sources are also found in the ACS/HST image.
In Figure 10 we show this result. For example, focusing on
the centre of the image we see that only two sources are
detected in the original J-PLUS image, while a total of 5 are
extracted in the super-resolved version, all having counterparts
in ACS/HSTṠlightly to the upper left from the centre, we have

another clear detection that in the original J-PLUS was blended
between two brighter sources. In the middle of the bottom half
we have another source that in the original J-PLUS is too faint
to be detected but that becomes a clear detection in the super-
resolved image. We are aware that many more sources appear
in the ACS/HST image, but we are limited not only by the
power of the super-resolution model but also by the depth on
the original J-PLUS image. Finally, we note that there is a
small shift between the detections in both images, being the
J-PLUS original detection more consistent with the ACS/HST
image, suggesting that is our model the one that introduces
such displacement. We estimate that the shift is of the order of
1px of the J-PLUS original image. Further analysis is required
to find the origin of this issue and correct it.

D. Caveats and future work

1) Training sample: Filters
We are limited by the amount of data that we can retrieve

from both ACS/HST and J-PLUS covering the same portion
of the sky at similar wavelengths. We select the broadband
rSDSS filter from J-PLUS because it is the one used for object
detection, which is the main task that we want to improve.
The closest filter from ACS/HST in matching the rSDSS
transmission curve is the F625W filter. However, the broader
F606W filter also contains rSDSS in its wavelength coverage.
Figure 1 shows the transmission curves of these three filters.
The number of images using F606W in the HST archive is
much higher, meaning that we can greatly increase our training
set in number by the cost of pairing images that represent
slightly different parts of the electromagnetic spectrum. We
begin the training with the most similar filter, i.e. F625W with
a limited training sample, getting good results. However the
model can be greatly refined and the use of a much larger
sample using F606W data is a strong candidate for improving
the model.

We follow the steps described in Sect. II-C and II-D to
augment the LR/HR paired sample. So far we are testing
whether the model improves by increasing the original F625W
training sample of 2842 crops to an F625W+F606W training
sample of 11348 crops. This sample is generated from 15
new J-PLUS tiles that have 36 overlapping ACS/HST F606W
images in total. The initial results up to date are included
in Appendix A. Note that we can still greatly augment this
sample as we are still downloading ACS/HST F606W data,
for instance, after 3 days of querying the MAST archive we
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Fig. 8. Original J-PLUS test image (left) and its super-resolved version after 1k, 100k, 200k, and 300k iterations of the first training stage, i.e. the Real-ESRNet
model, along with the corresponding ACS/HST pre-processed image. We show the entire crop of the ACS/HST area (top), a zoom in into the biggest star
(second row), a zoom in into the galaxy (third row), and a zoom in into a couple of faint objects (bottom).

have new 350 ACS/HST images overlapping 99 J-PLUS tiles
pending quality control.

2) Pair matching: astrometry solutions

The astrometry solution, meaning the precise measurement
of celestial objects’ positions in the sky, is recorded in the
FITS header of the images. We use directly this information
as downloaded from the respective archives. During the quality
control check we discard those pairs of ACS/HST/J-PLUS
images which astrometry visually disagrees. However, we are
aware that the current match is limited by the J-PLUS pixel
size, which is much larger than the ACS/HST one. This
means that still certain misalignment between images could
be present and could affect the learning process. We expect
this mismatch to be random, i.e. that there is none preferential
direction, and the neural network seems to be able to handle it
since we do not observe any trend in the trained models that
we can associate to this issue.

3) Include extra-info: seeing, exposure time, PSF

In addition to the pixel brightness that the images provide,
we can gather other helpful information related to its the
meta-data. For instance, in the case of the J-PLUS tiles the
estimate of the seeing is provided in the archive, and it
would give to the network extra information about how good
were the observing conditions and how punctual the point-
like sources are expected to be. From the ACS/HST archive
we could retrieve the total exposure time of the image, which
would be a proxy for how deep is the image, i.e. how faint
are the faintest sources we find. The PSF provides essential
information regarding the shape of the point-like sources. As
can be seen in the second row of Figures 8 and 9, the PSF of J-
PLUS and ACS/HST are very different and, so far, our model
is failing at converting the J-PLUS PSF into the ACS/HST one.
We expect that modifying the architecture to receive this extra
information could boost the learning process and improve the
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Fig. 9. Original J-PLUS test image (left) and its super-resolved version after 2k, 100k, 200k, and 300k iterations of the second training stage, i.e. the
Real-ESRGAN model, along with the corresponding ACS/HST pre-processed image. We show the entire crop of the ACS/HST area (top), a zoom in into the
biggest star (second row), a zoom in into the galaxy (third row), and a zoom in into a couple of faint objects (bottom).

performance of the final model. However, this is out of the
scope of the present work and will remain as future work.

4) Other SR architectures
We selected the Real-ESRGAN model because a direct

inference of the official trained version on two test images of
a globular cluster and a nearby galaxy provided a good result,
both visually and on a quick source detection. The generator
of this architecture has recently showed promising results on
super-resolution and denoising of simulated X-ray astronomi-
cal images [4]. However, there are other models that we aim
at testing and, if the initial results are satisfactory, training.
For instance, we are interested in Normalizing Flow models
like SRFlow [33], that outputs many different images for a
single input. These type of models have fewer hyperparameters
than GAN approaches and converge monotic and stable. They
also show higher consistency between the input and the super-
resolved outputs, which can help in minimizing the artifacts.
Foreseeing the offer of super-resolution within the J-PLUS

archive, we would also like to test lighter and faster models,
like the efficient PAN model [12].

E. Computational resources

This work implies a heavy use of computational resources.
On the one hand, the original images and their crops require
lots of storage space. A single J-PLUS tile image is about
50Mb, but the size of a single ACS/HST image can vary from
250Mb to almost 600Mb. This means that only for the storage
of the samples listed in Table I we need ∼20Gb, but for the
augmented dataset described in Sect. V-D1 we require of the
order of 220Gb. To train our models in Colab, we have to
upload at least the crops to Google Drive, which for the sample
of F625W crops only takes up more than 1Gb. But not only
the images take a large amount of storage, both the models
and the training states - which we have to save every 1-2k
iterations - take up 120 to 160Mb, meaning that have to be

10



Fig. 10. Central region of the NGC6341 globular cluster in J-PLUS (left), its Real-ESRGAN 300k super-resolved version (centre), and the ACS/HST pre-
processed (right). The super-resolution and the ACS/HST image are smoothed for clarity purposes. We overlay the sources detected in J-PLUS (blue squared)
and the ones detected in its super-resolved version (black circles).

careful and download and remove them from the Drive every
few 10k iterations to avoid a full storage on Drive.

On the other hand, this work has a high computational time
consumption, which is even larger because the use of Colab is
discontinuous. From the ETA provided by the training pipeline
we estimate that the non-stop training time of 300k iterations
for first stage is about 1.1 days and for the second, about 3.3
days. Another task that consumes much time is downloading
images from the archives. While downloading a J-PLUS tile
is the order of seconds, an ACS/HST image takes 4 to 10min.
The pre-processing of the images is done locally, and it takes
∼20min to do the J-PLUS and ACS/HST crops for the training
sample in Table I.

VI. CONCLUSIONS

We develop a deep-learning based super-resolution model 
to enhance source detection in ground-based low-resolution 
astronomical images. We use paired images of J-PLUS and 
ACS/HST to train a Real-ESRGAN model in two different 
stages: first with the L1 loss and, then, the trained Real-
ESRNet is used as initialization for the generator during the 
training of the GAN. Due to the special characteristics of the 
astronomical data a careful pre-processing of the images is 
essential to the success of the learning process.

The resulting Real-ESRGAN after 300k iterations, our final
model up to today, shows problems at reproducing the PSF of
ACS/HST images and the extended details of nearby galaxies.
However, it is successful at highlighting the fainter sources,
a key attribute to enhance source detection in astronomical
images. A quick test to prove the effectiveness of our model,
to reinforce the usefulness of super-resolution techniques in
improving source detection, produce satisfactory results: more
sources are detected in the centre of a crowded field in the
super-resolved version of a J-PLUS image compared to the

original, and all these sources are real since they appear in the
corresponding ACS/HST image.

We note that there is room for improvement, but our project
has demonstrated the feasibility of enhancing source detection
in J-PLUS images is possible through super-resolution tech-
niques.
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Daniel Cámpora Pérez. Deep Learning-Based Super-Resolution and De-
Noising for XMM-Newton Images. In SciOps 2022: Artificial Intelli-
gence for Science and Operations in Astronomy (SCIOPS). Proceedings
of the ESA/ESO SCOPS Workshop held 16-20 May, page 19, May 2022.

[5] William Hadley Richardson. Bayesian-based iterative method of image
restoration∗. J. Opt. Soc. Am., 62(1):55–59, Jan 1972.

[6] K. L. Yeo, A. Feller, S. K. Solanki, S. Couvidat, S. Danilovic, and N. A.
Krivova. Point spread function of SDO/HMI and the effects of stray
light correction on the apparent properties of solar surface phenomena.
Astronomy and Astrophysics, 561:A22, January 2014.

[7] Antonia Vojtekova, Maggie Lieu, Ivan Valtchanov, Bruno Altieri, Lynd-
say Old, Qifeng Chen, and Filip Hroch. Learning to denoise astronom-
ical images with U-nets. , 503(3):3204–3215, May 2021.

[8] Ryan Hausen and Brant E. Robertson. Morpheus: A Deep Learning
Framework for the Pixel-level Analysis of Astronomical Image Data. ,
248(1):20, May 2020.

[9] H. Domı́nguez Sánchez, M. Huertas-Company, M. Bernardi, D. Tuccillo,
and J. L. Fischer. Improving galaxy morphologies for SDSS with Deep
Learning. , 476(3):3661–3676, February 2018.

[10] Andres C. Rodrı́guez, Tomasz Kacprzak, Aurelien Lucchi, Adam Amara,
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use, J. L. Lamadrid, N. Lasso-Cabrera, G. López-Alegre, A. López-
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APPENDIX

A. Preliminary results: Real-ESRNet trained with
F625W+F606W

We select a sample of 11+15 J-PLUS tiles that have
60 overlapping ACS/HST images in total to generate a
F625W+F606W training sample of 11348 crops and test if
the augmentation of the training sample (even though with
images covering a longer wavelength range to the blue) helps
us improve the model. Figure 11 shows the L1 loss function
during the training of the first stage up to 300k iterations, it
is rather flat with spikes and declines slowly. In Figure 12
we show the metrics measured for our test sample during
the 300k iterations. Compared to the results obtained with
the F625W sample, the learning curves for this metrics grow
monotonically (with noisy peaks) showing that no overfitting
is happening and that there is still room for learning as none of
them have reach their maximum. Figure 13 continues is this
direction showing that the learning process is taking longer
with this larger and more diverse training dataset. However,
from the brightest star we can see how the recovery of the
PSF seems to go in a better direction than the previous model
(compare to Figure 8). We will continue training in this stage
for a few more 100k iterations before passing to the second
training stage.
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Fig. 11. Loss function from the first training stage: L1 loss. Vertical dashed
black lines indicate where the learning rate is halved.

Fig. 12. Evaluation metrics computed over the test sample as a function of
the iterations for the first training stage, i.e. Real-ESRNet.
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Fig. 13. Original J-PLUS test image (left) and its super-resolved version after 1k, 100k, 200k, and 300k iterations of the first training stage, i.e. the Real-
ESRNet model, along with the corresponding ACS/HST pre-processed image. We show the entire crop of the ACS/HST area (top), a zoom in into the biggest
star (second row), a zoom in into the galaxy (third row), and a zoom in into a couple of faint objects (bottom).
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