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Abstract 

 
A crucial aspect of evaluating and maintaining a photovoltaic (PV) installation connected 

to the grid is the availability of models that describe its operation reliably in real operating 

conditions. The nominal power of the PV generator (𝑃!	∗ ) is considered an essential input 

parameter, and several models have been proposed to estimate 𝑃!	∗  for characterizing the 

PV system. 

In the case of PV generators in outdoor conditions, the American Society for Testing and 

Materials, the International Electrotechnical Commission, and others have proposed 

procedures to determine the 𝑃!	∗  of the generator. As part of these procedures, monitoring 

days with ideal conditions is mandatory, notably days with a clear sky, high irradiance 

values, and low wind speeds. Such restrictions can limit the number of suitable 

monitoring days, especially in places where clouds frequently form. 

This thesis proposes a new approach that allows estimating the 𝑃!	∗  with data even from 

non-ideal, partially cloudy days. Based on non-parametric statistics, this procedure 

identifies and filters out noise as well as deviations from ideal conditions of irradiance, 

allowing for an estimation of 𝑃!	∗ with similar accuracy as for a clear-sky day. This new 

procedure enables the characterization of a PV generator on a daily basis without the 

requirement to meet ideal conditions, thus, considerably enhancing the number of suitable 

monitoring days. To overcome the limitation in the 𝑃!∗  estimation and considerably 

extend the number of monitoring days, the new procedure can be applied to ideal and 

non-ideal conditions, such as partially cloudy days. This procedure determines the most 

probable nominal power value within one monitoring day using non-parametric statistics.  
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In order to test the new procedure, a 109.44 kW photovoltaic plant in Granada, Spain, 

was monitored for six months. A referential procedure reported in the literature for large 

PV plants under ideal climatic conditions is first applied to estimate its nominal power. 

The results indicate that the nominal power can be estimated reliably in non-ideal 

conditions, maintaining the same precision as in ideal conditions. 

Then validating the procedure for a smaller PV generator and under different conditions, 

two small grid-connected 1.5 kW PV arrays were used. The PV systems in question are 

located in two different cities in Peru: Chachapoyas (tropical highland) and Lima (coastal 

desert). The objective of this study in Chachapoyas was to validate the methodology in a 

tropical climate with a high presence of clouds but at the same time with high irradiance 

values above 800 W/m2. According to the results obtained, under these conditions, the 

nominal power of the system can be calculated with reasonable certainty. As a precaution, 

monitoring for more than one day is recommended to obtain more data (at least 3 hours 

with high irradiance) to reduce uncertainties. Lima, Peru's second location under study, 

has a particular climate. Since the capital is located in a desert with high relative humidity 

values, dust deposition increases and power output decreases due to these conditions. For 

this purpose, the nominal power was used as a parameter to determine the maintenance 

schedule. Since keeping the system in optimal performance, considering this in future 

installations for operation and maintenance costs, is essential. 

The new procedure developed in this work can be applied to facilitate technical due 

diligence and quality control processes for PV generators of different sizes and under 

different operating conditions that are being re-purchased or have been recently installed. 

The possibility of daily monitoring of the 𝑃!	∗  also enables long-term monitoring of a PV 

generator to ensure the correct operation or identify possible degradation effects.  
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Resumen 

 
Un aspecto crucial a la hora de evaluar y mantener una instalación fotovoltaica (FV) 

conectada a la red es la disponibilidad de modelos que describan su funcionamiento de 

forma fiable en condiciones reales de funcionamiento. La potencia nominal del generador 

fotovoltaico (𝑃!	∗ ) se considera un parámetro de entrada esencial y se han propuesto varios 

modelos para estimar 𝑃!	∗ para caracterizar el sistema fotovoltaico. 

En el caso de generadores fotovoltaicos en condiciones exteriores, la Sociedad 

Estadounidense de Pruebas y Materiales (abreviatura del ingles ASTM), la Comisión 

Electrotécnica Internacional (abreviatura del ingles IEC) y otros han propuesto 

procedimientos para determinar la 𝑃!	∗ del generador. Como parte de estos procedimientos, 

es obligatorio monitorear los días con condiciones ideales, en particular los días con cielo 

despejado, valores de irradiancia altos y velocidades de viento bajas. Tales restricciones 

pueden limitar la cantidad de días de monitoreo adecuados, especialmente en lugares 

donde se forman nubes con frecuencia. 

Esta tesis propone un nuevo enfoque que permite estimar la 𝑃!	∗ con datos incluso de días 

parcialmente nublados no ideales. Basado en estadística no paramétricas, este 

procedimiento identifica y filtra el ruido, así como las desviaciones de las condiciones 

ideales de irradiancia, lo que permite una estimación de 𝑃!		∗ con una precisión similar a la 

de un día de cielo despejado. Este nuevo procedimiento permite la caracterización diaria 

de un generador fotovoltaico sin el requisito de cumplir con las condiciones ideales, lo 

que aumenta considerablemente el número de días de monitoreo adecuados. Para superar 

la limitación en la estimación de 𝑃!	∗  y extender considerablemente el número de días de 

monitoreo, el nuevo procedimiento se puede aplicar a condiciones ideales y no ideales, 
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como días parcialmente nublados. Este procedimiento determina el valor de potencia 

nominal más probable dentro de un día de monitoreo utilizando estadísticas no 

paramétricas. 

Para probar el nuevo procedimiento, se monitorizó durante seis meses una planta 

fotovoltaica de 109,44 kW en Granada, España. Primero se aplica un procedimiento 

referencial reportado en la literatura para grandes plantas fotovoltaicas en condiciones 

climáticas ideales para estimar su potencia nominal. Los resultados indican que la 

potencia nominal se puede estimar de forma fiable en condiciones no ideales, 

manteniendo la misma precisión que en condiciones ideales. 

Luego, para validar el procedimiento para un generador fotovoltaico más pequeño y en 

diferentes condiciones, se utilizaron dos pequeños generador fotovoltaicos de 1,5 kW 

conectados a la red. Los sistemas fotovoltaicos en cuestión están ubicados en dos ciudades 

diferentes de Perú: Chachapoyas (altiplano tropical) y Lima (desierto costero). El objetivo 

de este estudio en Chachapoyas fue validar la metodología en un clima tropical con alta 

presencia de nubes pero al mismo tiempo con altos valores de irradiancia por encima de 

800 W/m2. De acuerdo con los resultados obtenidos, en estas condiciones se puede 

calcular con razonable certeza la potencia nominal del sistema. Como precaución, se 

recomienda monitorear durante más de un día para obtener más datos (al menos 3 horas 

con alta irradiación) para reducir las incertidumbres. Lima, la segunda localidad del Perú 

bajo estudio, tiene un clima particular. Dado que la capital está ubicada en un desierto 

con altos valores de humedad relativa, la deposición de polvo aumenta y la producción 

de energía disminuye debido a estas condiciones. Para ello, se utilizó la potencia nominal 

como parámetro para determinar el programa de mantenimiento. Ya que mantener el 
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sistema en un desempeño óptimo, considerando esto en futuras instalaciones para costos 

de operación y mantenimiento, es fundamental. 

El nuevo procedimiento desarrollado en este trabajo se puede aplicar para facilitar los 

procesos de diligencia debida técnica y control de calidad para generadores fotovoltaicos 

de diferentes tamaños y en diferentes condiciones de funcionamiento que se están 

recomprando o que se han instalado recientemente. La posibilidad de monitorear 

diariamente la 𝑃!	∗ también permite monitorear a largo plazo un generador fotovoltaico 

para asegurar el correcto funcionamiento o identificar posibles efectos de degradación. 
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Chapter I: 

Introduction 
As the electricity demand continues to grow, power companies are increasingly turning 

to sustainable and clean energy sources to meet this demand. Solar and wind are 

becoming more cost-effective as production costs continue to decline [1], the cost of 

photovoltaic installations have dropped below 0.4 USD/Wp in 2021 and also have a long 

useful life of more than 30 years, making them more viable alternatives to traditional 

energy sources [2] and one of the most promising energy sources. Therefore, large-scale 

utility investment in photovoltaic (PV) systems has been installed rapidly [3] [4]. There 

is no doubt that photovoltaic power generation will become one of the primary electrical 

power sources in most countries where grid parity is achieved [4]. Moreover, small PV 

systems are installed in different geographical locations in European countries based on 

the amount of solar irradiation they receive and the local weather conditions [5]. 

PV systems perform differently due to factors [6] such as solar radiation, temperature, 

solar spectrum, humidity, moisture, thermal cycling, UV light exposure, etc. PV modules 

in an array can degrade due to one or a combination of these environmental stresses. Any 

reliable PV analysis or characterization requires a solid understanding and validation of 

data quality regardless of this purpose [7]. In this scenario, determining the status of the 

PV system is crucial to assess its proper operation; for an owner or investor, it is helpful 

to evaluate whether the projected profitability is within the expected margins. By doing 

so, they can make informed decisions about their investment. 

Based on international standards, the Performance Ratio is one parameter widely used 

to determine the general status of a PV system [8] or large photovoltaic plants [9]. As part 

of the performance ratio calculation of PV plants, partial shading of strings or shading of 

irradiance sensors or PV plants is taken into consideration, PV plants can be evaluated 



 
2 

incorrectly when shadows are present [10]. Additionally, it is important to measure 

irradiance, ambient temperature, or module temperature[11] and know the nominal power 

of the PV generator. 

The nominal power of a PV module is the maximum power that the module can produce 

under standard test conditions (STC). These conditions consider an irradiance of 1000 

W/m2, a module temperature of 25 °C, and the AM1.5G spectrum according to the IEC 

60904-3 standard. In the laboratory, measuring the power under STC conditions can be 

done panel by panel. However, measuring each panel would not be feasible for large, 

installed PV generators in order to estimate the total nominal power.    

Therefore, accurately determining the nominal power (𝑃!∗ ) of a PV generator under 

outdoor conditions is necessary [12].  This 𝑃!∗  is a critical parameter in many applications, 

particularly those where commercial transactions are involved, e.g., product guarantees 

and return on investment calculations or quality control of photovoltaic modules or for 

identifying defective modules or arrays [13]. Additionally, comparing the built and 

planned state of PV plants by means of the 𝑃!∗  can help to optimize their design and 

improve their overall efficiency [14], as well as understand why a PV plant's expected 

performance may deviate from its actual performance [15].  

1.1 International Standards for PV Outdoor Characterization 
PV Characterization in outdoor conditions is intended to determine the characteristics of 

the PV generator and compare it with the manufacturer's specifications [16]. With the 

Current-Voltage curve, 𝑃!	∗  is calculated in accordance with the International 

Electrotechnical Commission (IEC 61829). In addition to the nominal power value, this 

procedure also provides the essential electrical parameters from the manufacturer's data 

sheet [18]. Additionally, the shape of the curve I-V gives information about detecting 

possible anomalies, such as disconnected arrays/modules, broken cells, shading, or  
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module mismatches [19] and maintenance alerts or cleaning schedules can be determined 

by the shape of this curve [20]. 

Tracing the current-voltage curve for the entirety of the generator is ideal, but that is not 

always possible [21][23]. As the size of a PV generator increases, so does the complexity 

of measuring. This is because more precautions must be taken into account, and adequate 

measurement equipment is required for high-power generators [22][23]. 

The American Society for Testing and Materials (ASTM) has developed a standard, 

E2848-13[24]to measure the capacity of photovoltaic systems in outdoor conditions. By 

setting so-called Reporting Conditions (RC), this procedure provides a way to analyze 

and determine the installed capacity of a PV system at RC. The RC are user-defined and 

agreed-upon values; for instance, RC could be an irradiance of 1000 W/m2, an ambient 

temperature of 20 °C and a wind velocity of 1 m/s [25]. In order to comply with standard 

E2848-13, a minimum of 10 hours of solar irradiance data must be collected. This data 

must show an average of 1000 W/m2 or more solar irradiance [26]. The E2848-13 can be 

used to test and verify the performance of newly installed DC or AC systems and monitor 

the PV system’s performance. 

 

Fig. 1.1. For five days, irradiance and DC power output were measured every 30 seconds. 

The yellow-marked day (16.05.2018) is the only one that meets the ASTM E2848-13 

requirements for estimating nominal power. 
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For accurate characterization in outdoor conditions, the standard requires having clear 

skies, low wind speeds, and appropriate measurement equipment. The ASTM E2848-13 

specifies that these outdoor conditions may not typically be encountered during a 

monitoring period at some locations [19]. Exemplarily, five days of monitored DC power 

and irradiance are shown in Fig. 1.1, but only one day, highlighted in yellow, meets the 

necessary conditions to calculate 𝑃!	∗ . 

NREL introduced another methodology for evaluating PV system’s nominal power under 

so-called Performance Test Conditions (PTC) [27]. It involves finding the best correlation 

between the power generated by the monitored system, the irradiance, the wind speed, 

and the ambient temperature. Once the parameter settings have been determined, the 

power is evaluated under Standard Test Conditions [28]. As a limitation, this procedure 

also requires high irradiance, close to 1000 W/m2, which is not always the case. 

1.2 Reference Procedure for Nominal Power Estimation 

Due to the lack of an international standard for evaluating the performance of PV 

systems with general-purpose instrumentation, Martinez et al. [29] proposed a 

procedure for calculating the 𝑃!	∗  of a PV generator; and compared its results to those 

obtained by applying (IEC 61829).  

In [29] they provide an experimental procedure for calculating the nominal power of 

a photovoltaic (PV) generator under outdoor conditions, which has the following 

considerations:  

1. High-precision and calibrated instruments to measure power output and 

operating conditions 

The DC output power monitoring requires instruments with a measurement uncertainty 

of around 0.2% in accordance with the IEC 61724-1 standard. PV modules have these 

requirements [32], but larger generators have similar considerations. 
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Usually, thermopile pyranometers or calibrated cells are used to measure the irradiance 

received by a PV generator. Compared to other sensors, pyranometers have better 

accuracy with errors in the range of 1-5% [30]; however, their spectral response is 

spectrally flat in the range of 300-3000 nm, whereas PV modules present different ranges 

in the spectral response. On the other hand, the calibrated cell can be chosen of similar 

technology as the modules of the PV generator, such as crystalline silicon. This way, the 

cell responds to the same spectral range as the installed technology in the PV generator. 

Therefore, there is no consensus regarding the appropriate instrument to measure 

irradiance as it depends on the purpose of the measurement [31][32]. For instance, one 

can use a pyranometer when the purpose is to precisely measure the incident irradiance 

independent of module technology and a calibrated cell when the purpose is to measure 

the captured irradiance by the module. For estimating the 𝑃!∗ , the use of a cell is 

recommended since the angular and spectral effects that are inherently included in the 

response of the cells contribute to better accuracy in the modeling of the PV generator. 

The module temperature can be affected by multiple climatic factors, such as irradiance, 

ambient temperature, humidity, wind speed, and airflow [33][34]. Moreover, the modules 

can present significant temperature differences throughout the plant due to different 

climatic conditions, for example, differences in wind impact between the center and the 

border of the generator. Because the models do not consider temperature gradients, 

reproducibility of the results is difficult. Module temperature is typically measured with 

the PT100 sensor on the back or with a calibrated photovoltaic module that allows 

calculating the module's temperature from its open circuit voltage [29].  

2. Weather conditions 

A minimum of one day with clear skies and low wind speed is required during the data 

measurement time. As well as experimental data filtering, which considers high 
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irradiance values, values between 800 - 1000 W/m2 [35], and eliminates anomalous 

values caused by shadows or inverter saturation, or non-linear PV module efficiency. The 

ASTM standard in Fig. 1.1 also considers these weather conditions. 

3. Measurement time 

The plane-of-array irradiance (𝑮), module temperature (𝑻𝐦) and DC power (𝑷𝑫𝑪) 

values have to be measured at least every minute or quicker for at least one full day. 

Based on these three considerations, the nominal power in outdoor conditions can be 

calculated. The temperature dependence, the incident irradiance, and the power output 

can be expressed in empirical equations [36] or linear dependence on the operation 

conditions [37]. 

 

Fig. 1.2. An example of a day (18.04.2018) that satisfies the test conditions required by Martnez-

Moreno et al. [29]. The DC power temperature-corrected to 25 °C versus irradiance is shown. 
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where γ is the power temperature coefficient provided by the manufacturer (%/℃), 𝑇4	∗  

is the module or cell temperature at STC (25 °C).  

Then, the slope of the linear regression (800-1000 W/m2) gives the nominal power 𝑃!	∗ , 

through: 

𝑃(",$→&'℃) = 𝑃*	∗ ×
𝐺
𝐺∗

 (1.2) 

Where, 𝐺∗ is the irradiance at STC (1000 W/m2). Hence, by performing a linear global 

fit, one can obtain 𝑃!	∗  with data from a single day. In Fig. 1.2, the nominal power is 

calculated using the reference procedure described above under clear skies. In this case, 

the slope gives an experimental nominal power of 𝑃!	∗ = (104.01 ± 003)𝑘𝑊. This value 

is used as a reference for validating the thesis's proposed procedure.  
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1.3 Hypotheses and Objectives 
Photovoltaic generators installed on a site can be successfully characterized in terms of 

their nominal power using the Reference Procedure. However, it requires the specific 

climatic conditions mentioned above, and therefore days without these conditions during 

the monitoring process have to be excluded, such as days with high irradiance values but 

with clouds. For extending the reference procedure to estimate 𝑃!	∗ , this thesis developed 

a method that can extend the characterization to days when monitoring conditions are not 

ideal. For instance, in Fig. 1.1, four days do not meet the requirements because they 

deviate considerably (12.05., 13.05. and 17.05.2018) or slightly (15.05.2018) from the 

highlighted ideal day. Applying the ASTM equations, IEC standards, or Reference 

Procedures lead to inaccurate estimates of 𝑃!	∗  due to their high level of noise.  

In summary, there is no dedicated standard or recognized guide on how to characterize a 

PV generator under any weather conditions, which motivates and highlights the need for 

further research. The hypothesis is based on the notion that non-parametric statistics can 

be applied to identify operating conditions outside a system's expected behavior and filter 

those out to estimate the nominal power of the PV generator using the remaining suitable 

data. 

The novel procedure effectively filters out noise and deviations from ideal irradiance 

conditions and estimates the most probable 𝑃!	∗  value with the remaining data for any day. 

Thus, daily characterization of a PV generator or array can be done without requiring that 

ideal conditions are fully met. 

The general objective of the thesis is to focus on the correct estimation of the Nominal 

Power and uses statistical tools to test its validity. In the thesis, the following specific 

objectives were achieved: 

1) The development of statistical processing procedure for estimating the nominal 

power under varying operating conditions, see chapter 2. 
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2) Validate the new proposed procedure against the reference procedure described 

above for a 109.4 kW photovoltaic generator located in Granada, Spain, see 

chapter 3.  

3) Characterize the array of a generator in Chachapoyas, Peru, under tropical 

highland conditions, see chapter 4. 

4) Determine how dust affects the nominal power calculation of a generator located 

in Lima, Peru, and determine the generator's maintenance schedule for better 

performance, see chapter 4. 
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Chapter II: 

Novel procedure for the nominal power of PV generators 
As a general basis for the interpretation of parametric statistics, sample data are assumed 

to come from a probability distribution that is adequately modeled with parameters that 

allow identifying the quality of a measurement. By taking a set of 𝑛 measurements 

(𝑥1, 𝑥2 …𝑥𝑛), the mean is defined by the following formula: 

𝜇 =
𝑥0 + 𝑥&…+𝑥1	

𝑛
 (2.1) 

Upon determining the mean 𝜇, it will be necessary to determine the average deviation 

from the mean in order to determine the measurement precision, which is then calculated 

by the standard deviation. Standard deviation (𝜎) is the measurement of this deviation: 

𝜎 = .∑(𝑥2 − 𝜇)
&	

𝑛 − 1
 (2.2) 

The parameter 𝑋	is then represented by 𝜇 and 𝜎 (𝑋 = 	𝜇	 ± 	𝜎). The calculations from eq. 

(2.1) and (2.2) are derived from a representation of the data in the form of a Gaussian 

distribution, also known as a Normal distribution. As a general rule, most experiment 

measurements will assume and follow a Normal distribution N(5;7,8)	: 

N(3;5,6) =
1

√2𝜋𝜎
𝑒𝑥𝑝 8−

(𝑥 − 𝜇)&

2𝜎&
9 (2.3) 

An effective way to understand a normal distribution is to describe it graphically and then 

identify its most important parameters. An example of the typical shape of a Normal 

distribution, seen in Fig. 2.1, suggests that the data is centered on the main peak of the 

curve, which is defined by equation eq. (2.3). Furthermore, the mean, median, and mode 

are all the same and centered because most of the values are in the center of the 

distribution. 
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 There are a number of other important characteristics in normal distributions, such as the 

precision of the measurement represented by the Standard Deviation. The Standard 

Deviation of the data is shown with 68.2 % in the experiments. With a greater range, 

however, greater precision is achieved by representing 95.5% (2𝜎) and 99.7% (3𝜎) of the 

all-data values. 

2.1 Probability Density Function 
In order to standardize the frequency distribution, the probability density function (PDF) 

is a concept that must be defined to determine the frequency density [38]. An analysis of 

stochastic processes and probability theory uses this PDF to represent a random 

phenomenon. A random variable consists of values where some range may be assigned 

to it in order to represent the range of possible values. Hence, it has a close relationship 

with frequency distributions in this sense. Hence, the PDF is characterized by a 

distribution function (𝑓(3)) of a random variable x. 

There are two fundamental requirements that the PDF must meet. First, all values of the 

random variable must be nonnegative, and second, the integral of the PDF over all values 

of the random variable must be one. Therefore, the PDF is defined as follows: 

; 𝑓(3)
7

𝑑𝑥 = 1 (2.4) 

 

Fig. 2.1 Gaussian or normal distribution representation with levels of uncertainty. 
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where 𝑅 is the total region of the measurement space and 𝑓(3) contains the experimental 

information. According to the parametric function, 𝑓(3) is considered a member of the 

family of distributions that constitute a parameterized distribution. 

The shape of a PDF is not always that of a normal curve or Gaussian. In some cases, the 

data are densely concentrated in the center and in other cases they are dispersed widely. 

To determine if there is a bias in the measurement that can cause an asymmetry in the 

normal curve, some tests are performed (Kurtosis and Skewness). 

A kurtosis is shown to the left of Fig. 2.2. This measures how flat or dispersed a PFD is 

relative to a normal distribution for a sample or an indicator of concentration values at 

the center of a normal distribution. A positive kurtosis value indicates that the data is 

centered at the center of a normal distribution and is termed leptokurtic. For negative 

values of kurtosis, it indicates that the distribution is significantly dispersed and is referred 

to as platykurtic. 

  

Fig. 2.2. Left is the kurtosis test and right is the skewness test to identify deviations 

from normal distribution. 

 

Data collection bias is represented by a biased (non-symmetric) sample, which is 

calculated using the arithmetic mean, right of Fig. 2.2. A distribution is skewed to the left 

or has a negative skew when your data is concentrated on the right side of the curve or if 

your tail gets longer for values below the mean. The distribution data will be skewed to 
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the right when they are concentrated on the left side of the curve. Positive skewness is the 

result of a right-skewed distribution. 

Unknown data often have a normal distribution, and this is one of the most commonly 

assumed assumptions. This assumption is generally made due to the normal distribution's 

versatility and good behavior. In most cases, the distribution of the measurements in a 

laboratory is normal because most uncertainty in measurements comes from the 

instruments used. In cases where experimental data does not approximate a known 

function, non-parametric statistics can be used. 

2.2 Non-Parametric Statistics 
Non-parametric statistics is a tool used in data science that is often referred to as the study 

of the distribution or the analysis of given data. Compared with parametric methods, non-

parametric methods do not require assumptions such as observed independence and 

normal distributions for populations, which are required for parametric methods [39]. 

Therefore, this non-parametric method is more robust because it does not make 

assumptions before calculating the PDF. For instance, a histogram is the simplest form 

of non-parametric density estimation. The PDF in non-parametric estimation is divided 

into two categories: the Kernel Density and the bandwidth. The following provides the 

basis for understanding the new methodology. Further theoretical details can be found in 

section 3 in [40]. 

Kernel Density Estimation 

The PDF of an unknown distribution can be calculated with the kernel density estimation 

(KDE) [41]. The KDE defined as the convolution of multiple functions (e.g. Gaussianas, 

triangular, delta, etc.) [42]. The KDE is expressed as 

𝐾(𝑢) = (2𝜋)80/&exp	(−
1
2
𝑢&) (2.5) 
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𝐾(𝑢) satisfies condition eq. (2.4) and to be symmetric, 𝑢 is a general variable. Therefore, 

for a random parameter (𝑥9, 𝑥0, … , 𝑥:) from an unknown density, the Kernel Density 

Estimator looks like: 

𝑓C(3,:) =
1
𝑛ℎ
E𝐾(

𝜇 − 𝑥2
ℎ

)
1

2;0

 (2.6) 

Where 𝑓F(5) is the estimated PDF from de KDE, 𝑛 represents the sample size, ℎ is the 

bandwidth and has the interpretation of the standard deviation 𝜎, also called a smoothing 

parameter, 𝐾(;) is the kernel function of	𝑧, 𝑥< is the random variable, and 𝜇 is the mean 

of the set of values in 𝑛.  

The kernel function 𝐾(;) is the base function that keeps counts of the	𝑥<. The simplest 

kernel, 𝐾(;) = 𝑏𝑜𝑥	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, is presented in the histogram. This central rectangular 

function's discontinuous or non-uniform nature makes identifying its peak probabilities 

difficult. The proper kernel that smooths the curve is the Gaussian function [43], which 

will be considered here. Therefore, derived from eq. (2.5) and (2.6), the KDE will be: 

𝑓C(3,:) =
1
𝑛
E

1
√2𝜋ℎ

𝑒𝑥𝑝8−
(𝑥 − 𝜇)&

2ℎ&
9

1

2;0

 (2.7) 

Performance Criteria 
The accuracy of KDE depends strongly on the bandwidth value, and the performance 

criteria will help to estimate the ℎ value [44]. Given a target PDF that will estimate (𝑓(3)) 

and a KDE function 𝑓C(3,:), the Mean Squared Error (MSE) is an appropriate measure of 

the closeness of 𝑓C(3,:) to 𝑓(3): 

𝑀𝑆𝐸I𝑓C(3,:)J = 𝐸(𝑓C(3,:) − 𝑓(3))& (2.8) 

Variance and bias are rewritten as: 

𝑀𝑆𝐸I𝑓C(3,:)J = 𝑉𝑎𝑟(𝑓C(3,:)) + (𝐸𝑓C(3,:) − 𝑓(3))& (2.9) 
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In the case of a local error at 𝑥, a global error criterion is usually considered over the 

entire domain of 𝑥, that is, the Integrated Squared Error (ISE 𝑓F(∷,>)). Following the eq. 

(2.8), the expected value is analyzed by Mean Integrated Squared Error (MISE): 

𝑀𝐼𝑆𝐸I𝑓C(∷,:)J = 𝐸IISE	𝑓C(∷,:)J = 𝐸;(𝑓C(3,:) − 𝑓(3))& 𝑑𝑥 (2.10) 

MISE is the average value of the global ISE eq. (2.10) and it can be rewritten as: 

𝑀𝐼𝑆𝐸I𝑓C(∷,:)J = ;𝑉𝑎𝑟(𝑓C(3,:)) 𝑑𝑥 + ;𝐵𝑖𝑎𝑠&𝑓C(3,:) 𝑑𝑥 (2.11) 

For an optimal ℎ value the 𝑀𝐼𝑆𝐸S𝑓F(∷,>)T will be minimum or:  

ℎ=>?@ = 𝑎𝑟𝑔𝑚𝑖𝑛 W𝑀𝐼𝑆𝐸I𝑓C(∷,:)JX (2.12) 

Calculating eq. (2.12) is not trivial, and eq. (2.11) needs a Taylor expansion for variance 

and bias:  

𝑉𝑎𝑟(𝑓C(3,:)) = (𝑛ℎ)80ℎ&𝑅(𝐾)𝑓(𝑥) + 𝑜((𝑛ℎ)80 (2.13) 

𝐸𝑓C(3,:) − 𝑓(3) =
1
2
ℎ&𝑢&(𝐾)𝑓AA(3) + 𝑜(ℎ

&) (2.14) 

Where:  

 

By adding eq. (2.13) and (2.4), the possibility of obtaining: 

𝑀𝐼𝑆𝐸I𝑓C(∷,:)J = (𝑛ℎ)80ℎ&𝑅(𝐾)𝑓(𝑥) +
1
2
ℎB𝑢&(𝐾)&𝑓AA(3)

& + 𝑜((𝑛ℎ)80 + ℎB) (2.16) 

After that, perform the integration in dx 

𝑀𝐼𝑆𝐸I𝑓C(∷,:)J = (𝑛ℎ)80𝑅(𝐾) +
1
4
ℎB𝑢&(𝐾)&𝑅(𝑓′′) + 𝑜((𝑛ℎ)80 + ℎB) (2.17) 

In the previous equation, the AMISE was defined as: 

𝑅(𝐾) = ;𝐾(3)& 𝑑𝑥 

𝑢&(𝐾) = ;𝑥&𝐾(3)& 𝑑𝑥 

𝑅(𝑓′′) = ;𝑓′′(3)& 𝑑𝑥 

(2.15) 
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𝐴𝑀𝐼𝑆𝐸I𝑓C(∷,:)J = (𝑛ℎ)80𝑅(𝐾) +
1
4
ℎB𝑢&(𝐾)&𝑅(𝑓′′) (2.18) 

As a result of differentiation with respect to ℎ, the AMISE is able to find a solution by 

calculating the root of the derivative. As a result, the optimal bandwidth will be the 

following: 

ℎ = 8
𝑅(𝐾)

𝑢&(𝐾)&𝑅(𝑓′′)𝑛
9
0/'

 (2.19) 

Bandwidth selectors for kernel density estimation  

In the normal distribution, the bandwidth corresponds to the interpretation of the standard 

deviation. Choosing the optimal bandwidth is not easy, and there is not just one best 

method that can be applied universally to solve eq. (2.19) because this is not a trivial task 

[45]. Three types of selectors should be distinguished: rule-of-thumb, cross-validation 

(CV) and plug-in (PI) selectors. 

Rule-of-thumb 

The unknown density is assumed to belong to the normal distribution[46]. Specifically, 

for the 𝐾(𝑥) gaussian or normal kernel function for the case of a single dimension, eq. 

(2.15) is rewritten as: 

𝑅(𝐾) = I√2𝜋J
80

 

𝑢&(𝐾) = 1 

𝑅(𝑓′′) = 3I√8𝜋J
80

 

(2.20) 

Then, from eq. (2.19) the optimal bandwidth is as follows: 

ℎ ≈ 1.06	𝜎c𝑛80/' (2.21) 

𝜎U represents the estimated standard deviation based on the input data. In the case of a 

PDF that does not match a normal distribution, the rule-of-thumb is easy to compute but 

widely inaccurate. 

Cross-validation  

This method uses a subset of a dataset to evaluate another subset of the same data group. 

In other words, cross-validation is a method that uses a subset of the data to evaluate 
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another subset of the same data group, referred to as the validation data [47]. This process 

produces an unbiased estimate of the error in the model and relies on the dependency of 

ℎ on the least squared. This method is also known as ‘unbiased cross validation’. Eq. 

(2.18) is observed in the sum of two terms, ℎ?9and ℎ@. To obtain the minimum AMISE, 

ℎ should not be too small nor too large. 

Plug-in (PI) selectors: Improved Sheather-Jones algorithm 

Introducing a bias in the eq. (2.19) for ℎ allows to solve for the optimal value of ℎ, since 

first- and second-order derivatives R(f’’) need to be calculated [48]. This bias contains a 

function that is derived using a recursive form. This method is applied when the 

distribution of measurements cannot be assumed normal but rather multimodal or other 

non-normal distributions. 

Fast Fourier Transformer-based algorithms  

Fast Fourier Transformer-based algorithms or fast Fourier transform algorithms is a set 

of mathematics that allows computational speedups in the discrete Fourier transform. 

This is done through the use of data structures or computation optimizations. In this 

algorithm, the sampled data is divided into discrete frequency bins for analysis. The basis 

of sampling is to reduce the data size to be analyzed by extracting representative data, 

which preserves most information from this experimental data. 

2.3 Applications of Non-Parametric statistics in PV 
In renewable energy studies, KDE has found a different application in probability 

distribution. For instance, the KDE is also used to study the probability distribution of 

wind power density and power output of wind turbines [43]. The main applications of 

non-parametric statistics in PV will be discussed: 

PV Forecasting Error Distributions 
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As renewable energy becomes increasingly in demand, the need for accurate forecasting 

of PV energy production grows alongside. Precise and reliable solar energy forecasts are 

essential for economic viability [49].  

The Bayesian bootstrapping method is a statistical technique that can be used to improve 

the accuracy of PV energy forecasting models. This method works by resampling data 

from the original dataset to create new, synthetic datasets. These synthetic datasets are 

then used to train and test the forecasting model [50], when capturing non-symmetric 

profiles of global hourly irradiation time, machine learning can be used as a non-

parametric clustering technique [51]. 

Forecasting can be done by using the distribution functions generated by KDE, which 

uses recent data sets to create distribution curves. [52] used historical data from previous 

campaigns to determine what case was most similar to the current one and thus used that 

point as a prediction.  

Forecasts are likely to have uncertainties, and additional information can provide those 

uncertainties. By using the standard error distribution of predictions, forecasts become 

more accurate by including a prediction interval [53]. In addition, [54] demonstrated that 

KDE represents probability distributions more accurately than parametric methods. [55] 

used the prediction error with KDE to evaluate their interval prediction method for solar 

generation. 

As a feasible solution to reduce the uncertainty level of photovoltaic generator forecasts, 

deep learning methods, probability density functions, and meteorological parameters 

have been applied [56]. The study in [57] uses an extreme learning machine (ELM) to 

perform interval forecasting for generated energy, and the forecast error distribution is 

fitted by estimating the kernel density and compared with a normal distribution model, a 
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logistic distribution model, demonstrating that the non-parametric method is effective for 

describing the PV energy forecast error distribution. 

Fault Detection 

Identifying, detecting, and classifying faults from data is vital in grid-connected systems. 

A framework for fault diagnosis using data analysis has been developed [58]. Based on 

the fact that energy distributions are never perfectly Gaussian, [59] proposes a non-

parametric statistical algorithm to monitor the energy performance of photovoltaic plants 

and detect anomalies. Through KDE, statistical-based fault detection attempts to identify 

outliers in measurement data [60]. Since voltage is not strongly affected by changes in 

irradiance [61], these tools rely mainly on the deviation between the observed and 

expected data. A comparison was conducted between normalized and non-parametric 

statistics for the distribution of k-nearest neighbor distances, with better results obtained 

when calculations were made with KDE for fault detection [62]. For shading or dust 

problems, [63] highlights non-parametric detection thresholds’ superiority over 

conventional parametric methods.  

Other techniques require threshold values for proper fault detection, as shown in Fig. 2.3, 

indicating voltage, current, or power failures by defining a threshold boundary. The 

probability distribution model is constructed using non-parametric statistics [64]. Despite 

this, [65] uses a rule-based method to detect and classify faults without setting a threshold. 
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Fig. 2.3 Using the PDF as a guide to determine the upper and lower boundaries Image 

taken from [66] 

 

Other Applications  

[67] suggests that KDE is a powerful tool for dealing with skewed or unbalanced datasets 

since it generates new experimental samples naturally and statistically. For the calculation 

of probabilistic power flow for unbalanced power distribution, a non-parametric 

algorithm is used to analyze certain energy generation and load [41]. 

A concept known as the ‘Duck Curve’ is important in the operation and planning of 

electrical systems. It describes electricity's net load curve. The uncertainty and variability 

of electricity's net charge must therefore be accurately modeled, which is accomplished 

with the probabilistic Duck Curve. KDE produces the best estimate of probability 

distributions compared to beta, normal, Weibull function, and data histogram [68]. To 

identify generation patterns that vary seasonally and diurnally in [69], a KDE-based 

model was used, which allowed KDE to identify different PDFs based on the season and 

time of day. 
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Fig. 2.4. (a) Temperature-corrected DC power versus irradiance for a sunny day with 

ideal conditions (18.04.2018). The hysteresis effect is observable. Data for probability 

density analysis is marked in red. (b) Corresponding histogram of the instantaneous 

nominal power values 𝑃!	< calculated for irradiances > 800 W/m2. The black arrows 

indicate the three local maxima of this histogram.  

 

2.4 Proposed Procedure 
The computation of the nominal power with the reference procedure requires the indirect 

application of parametric statistics since the error distribution is assumed to be normal or 

Gaussian. In order to overcome the weather limitations of the standard method of 

calculating nominal power under ideal conditions, a new method based on non-parametric 

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

102 104 106 108 110 112 114
0

30

60

90

120

150

180

210

 

 

C
ou

nt

Instantaneous nominal power, PiM  (kW)

18.04.2018 (ideal day)
 Pi

M

data for PDF

18.04.2018 (ideal day)
 Data < 800 W/m2

 Data > 800 W/m2

P (
G
, T

 →
 2

5°
C)

 (k
W

)

G (W/m2)

(a)

(b)

afternoon

morning



 
22 

statistics is proposed. Compared to previous applications in photovoltaics, this one offers 

a new approach. To begin with, let us define the instantaneous nominal power 𝑃=	2  for an 

i-th data set: 

𝑃=	2 = 𝑃(C,D→&'℃),2 ×
𝐺∗

𝐺2
 (2.21) 

In Fig. 2.4. (a), the temperature-corrected DC power	𝑃(𝐺,𝑇→25℃) over the POA irradiance 

𝐺 for the exemplary ideal day (18.04.2018) is depicted. There is one effect that will be 

discussed in detail chapter III, which is the hysteresis. According to eq. (2.21), local 

nominal power 𝑃!	<  for each set of data points 𝑖 is calculated, but only for irradiances > 

800 W/m2 where the most linear behavior is expected. Fig. 2.4 (b) presents the histogram 

of the resulting values	𝑃=	2  for this particular day. The histogram has multiple distribution 

nodes or peaks, indicated by black arrows. Thus, it becomes evident that a method is 

required to calculate unknown or non-parametric probability distributions based on the 

parameters discussed, such as the kernel, bandwidth, and sampling algorithm (FFT). 

Using eq. (2.21) the respective local nominal power 𝑃!	<  for each set of data points 𝑖 is 

calculated, but, only for irradiance values > 800 W/m2 where a linear power response is 

expected. From eq. (2.6) The KDE is expressed as: 

𝑓C(H) =
0
1:
∑ 𝐾 WH8H!

:
X1

2;0   (2.22) 

Where 𝑝< is the random variable, and 𝑝 is the mean of the set of values in 𝑛. Then, the 

Gaussian kernel (𝐾(𝑧)) is considered due to its ability to adequately smooth the PDF 

curve and for ℎ, when the distribution is multimodal, the previously described ISJ method 

is particularly useful. For a large data set [70], the Fast Fourier Transformer technique is 

used to perform the calculation.  
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Fig. 2.5. For irradiances above 800 W/m2, PDF probability density functions with three 

different bandwidths were applied to the same data set. PDF with optimal bandwidth 

h =0.115 kW is generated using the ISJ algorithm. The red arrow indicates the mode 

of the photovoltaic generator for that particular day, which represents the nominal 

power.  

 

Based on the above, calculating the PDF and determining its main peak or mode can be 

done. As shown in Fig. 2.5, the nominal power 𝑃=	∗  is the value with the highest probability 

density, highlighted with red arrow. 

For this particular clear sky day (18.04.2018), three values are shown to illustrate the 

effect of bandwidth. A low bandwidth (e.g. ℎ = 0.02	kW ) does not correctly represent 

the underlying data and generates many oscillations in the PDF. Using high bandwidths 

(e.g. ℎ = 2.00	kW) might remove peaks from the underlying data distribution, making it 

even more challenging to identify them. The ISJ algorithm finds a bandwidth (ℎ	 =

0.115	kW) that balances overestimating and underestimating, demonstrating higher 

reliability in the automated calculation of the PDF and, thus, the nominal power 

estimations.	  
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The nominal power calculated with Reference Procedure (𝑃!∗ = 104.01	𝑘𝑊) for the 

same day (18.04.2018) is close to that calculated in fig. 2.4 (𝑃!∗ = 103.96	𝑘𝑊), making 

the proposed method reliable for the same set of evaluated data. Due to the process of 

calculating the nominal power of the entire generator, different sources of error can occur 

during measurement. Minor peaks are usually associated with noise, outliers, and/or 

uncertainty. Non-Parametric Kernel Density Estimation (NPKDE) can be referred to as 

the proposed methodology and a detailed discussion of days under non-ideal conditions 

follows in the next chapter. 
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Chapter III: 

Nominal Power of a PV Generator 
The purpose of this chapter is to present the results of calculating the nominal power of a 

utility-scale PV generator following the Non-Parametric Kernel Density Estimation 

(NPKDE) methodology described in section 2. Firstly, a description of the PV generator 

and the measurement equipment used for the measurement analysis is given. Challenges 

when measuring a large PV generator, giving rise to the phenomenon called ‘hysteresis,’ 

are identified. A detailed description and discussion of the hysteresis are given, evaluating 

the reliability of the methodology to calculate the nominal power in these experimental 

conditions. The results obtained using the NPKDE methodology are compared with those 

obtained using the standard reference method described in the introduction under ideal 

measurement conditions. 

3.1 Experimental Details 
A 109.44 kW PV generator, which has been in operation since 2008, is analyzed to 

calculate its nominal power at working conditions. Fig. 3.1 shows the ground view (top) 

and the satellite image (bottom) of the PV system under study. Table 3.1 summarizes the 

main electrical characteristics of the generator. 

At the beginning of its operation, the photovoltaic arrays operated with a two-axis tracker 

for higher annual production, resulting in economic benefits [71]. However, due to 

internal decisions of the owner, tracking was stopped, and all arrays were oriented south 

and tilted at 30º degrees [72] during the experimental campaign,. Most arrays are aligned 

and coplanar, as shown in the satellite image; however, some arrays are not aligned and 

coplanar. This misalignment is caused by uncertainties in the axes' mechanical 

positioning and uneven mounting ground. 
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Fig. 3.1. The photovoltaic plant under study in Granada, Spain, has a datasheet 

nominal power of 109.44 kW. Top: Photo taken at ground level. Bottom: Satellite 

Image (Latitude: 37.287, Longitude: -3.057). 

 

Table 3.1. Main characteristics of the PV generator with DC parameters at STC, 

according to the module datasheet. 

Characteristics of the PV generator  

Current at the maximum power point (A) 257.60 

Voltage at the maximum power point (V) 574.20 

Power at maximum power point (kW) 109.44 

Power temperature coefficient (%/°C) -0.43 

Number of modules per string connected in 
series  

18 

Number of strings connected in parallel 32 

 

The PV generator is monitored by measuring its operating conditions (irradiance and 

module temperature) and DC power at maximum power point (MPP) at the inverter. The 

Maps Data: Google, ©2021 CNES / Airbus, Maxar Technologies  

Calibrated PV module 

Maps Data: Google, ©2021 CNES / Airbus, Maxar Technologies  

Calibrated PV module 
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irradiance measurement was done with a calibrated PV module of the same technology 

and spectral response as the PV modules installed in the PV generator under study [32]. 

In addition, the PV module was installed at the same angle and orientation as the adjacent 

string. In Fig. 3.1, an arrow indicates the position of the calibrated module aligned with 

the adjacent string. 

Despite cloudy or partially sunny irradiance days, the photovoltaic irradiance sensor can 

accurately measure solar irradiance for PV performance analysis [73]. Several factors 

affect the irradiance measurement quality in the PV generator, including the uncertainty 

related to the short-circuit current of the calibrated PV module (1.8%, according to the 

calibration certificate) and the uncertainty related to the shunt resistance (0.5%, according 

to manufacturers' specifications). The uncertainty introduced by the resolution of the 

datalogger (analog-digital conversion-16 bits, with a full scale of 100 mV) and the 

accuracy of this device (0.1% of a 100 mV-full scale) is negligible in this uncertainty 

budget. If a calibrated solar module is available, using a module is preferable to using a 

pyranometer. 

Indirect measurements of module temperature can be obtained by measuring the open-

circuit voltage of calibrated modules [74], or by sensors (PT100 or thermocouple) on the 

module's backside [75]. To measure 𝑇A	under operating conditions for the PV generator 

in this work, a J-type thermocouple was placed on the backside of a PV module [72]. 

𝑇A measurements are affected both by uncertainty associated with the accuracy of J-type 

thermocouples (±1.5 ºC, according to the manufacturer’s specifications), and the 

uncertainty due to the accuracy of the datalogger (±1.7 ºC, according to the 

manufacturer’s specifications). 

Temperature and irradiance measurements were made with a photovoltaic module 

attached to the string adjacent to the irradiance sensor near the geometric center of the 
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photovoltaic generator, see photo in Fig. 3.1. Throughout the experiment, temperature 

and irradiance measurements were made with the same module under the same operating 

conditions. 

A calibrated YOKOGAWA WT1600 wattmeter (uncertainty of less than 0.5%) was used 

to measure the DC power at the inverter input. From March 27th to September 30th, 2018, 

the irradiance, module temperature, and DC power were recorded every 30 seconds, as 

recommended in [29].  

3.2 Identified Challenges in PV Generator Monitoring 
Different challenges were identified in monitoring the operating conditions during the 

experimental campaign, which contributed to uncertainties in evaluating the PV 

generator's operating conditions and electrical parameters. One of the biggest challenges 

in PV monitoring is measuring the operating temperature. Module temperature analysis 

and modeling revealed a temperature difference of up to 2.5ºC between the cell and the 

back-side of the module [76], giving uncertainty of the actual temperature of the PV 

system. Furthermore, a single module’s temperature may not represent the operating 

temperature for the entire plant. When wind speed increases, the difference between cell 

and ambient temperature decreases [77]. It has been demonstrated that wind speeds and 

directions change randomly, resulting in operating temperature inhomogeneities or 

temperature gradients up to 10 °C in a PV plant [78]. Due to this, a single local 

temperature measurement in a PV generator rarely represents its average temperature, 

increasing the uncertainty of the measurement. 

Further inhomogeneities in a PV generator derive from slightly different aligned strings. 

Such misalignments may arise from the uneven ground or slightly different mounting 

structures, as in most plants such as the one under investigation in Fig. 3.2. Consequently, 

different strings may capture distinct levels of plane-of-array irradiance (POA) 
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simultaneously. Therefore, the local irradiance measurements in a PV generator may not 

represent the irradiance captured by the entire generator, thus, introducing an additional 

source of uncertainty. 

 

Fig. 3.2. For a sunny day with ideal conditions (18.04.2018), (a) Plane-of-array irradiance, 

module temperature, and DC power. (b) DC power versus irradiance shows a hysteresis effect 

in the morning and afternoon due to linear and non-linear behavior. 

 

An exemplary day with ideal operating conditions is shown in Fig. 3.2 (POA irradiance, 

module temperature, and DC power). During morning hours, DC power and irradiance 

data appear to be aligned. During afternoon hours, there is a temporal delay between these 

two parameters. The delay is likely caused by the misalignment of the irradiance sensor 
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and some strings. Fig. 3.1 shows that the string used to align the calibrated module is 

slightly different from other PV strings. The irradiance sensor was placed in this mean 

orientation to minimize the impact of this misalignment. Nevertheless, this experimental 

campaign followed exactly the protocol proposed in [29] in order to investigate the 

validity of that protocol when applied to PV plants with non-ideal characteristics during 

an extended campaign that involved applications under very different weather conditions 

during an extended campaign. Additionally, this drawback allowed to test the robustness 

of the proposed experimental analysis method in chapter 2. Therefore, the string that 

occupies the geometric center of the PV generator was installed with both the irradiance 

sensor and the temperature sensor. 

Fig. 3.2 (a) also shows a temporary delay in module temperature registering higher 

operating temperatures during the afternoon at the same irradiance levels as the morning. 

During the morning and afternoon. Different wind conditions and different heating and 

cooling speeds can cause this temporal asymmetry of the module's temperature. One 

irradiance sensor and one module temperature sensor may not provide a complete 

characterization of the PV generator's actual operating conditions. There is a possibility 

that this limitation may have an impact on the relationship between the PV plant's power 

and the measured operating conditions. Fig. 3.3 (b) shows, for example, a quasi-linear 

response to irradiance from morning to noon and a counterclockwise hysteresis response 

in the afternoon. 

As a result of a hysteresis effect attributed to temporal delays in responding to temperature 

changes (cooling and heating) during the morning and afternoon, [79] demonstrated 

nonlinear behavior for averaged irradiance, ambient temperature, and power values on a 

small system level (3 kW). For the case under study, however, if temperature were the 
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dominant factor in hysteresis formation, DC power values at the same irradiances would 

be lower in the afternoon for higher temperature values.  

As suggested in [29], one of the PV modules located in a strategic position in the plant 

could approximate the operating temperature of the entire PV generator. In this case, 

hysteresis would be clockwise. As shown in Fig. 3.2 (b), the observed hysteresis is 

counterclockwise. It seems reasonable to speculate that in this particular case, the 

hysteresis formation is primarily caused by the uncertainty in the irradiance measurement 

due to the misalignment of the PV strings. Consequently, there are different angles of 

incidence between some of the photovoltaic arrays and our irradiance sensor [80]. Since 

the values registered by the single sensor cannot take into account possible 

inhomogeneities in the temperatures of the modules that compose the entire PV generator, 

the hysteresis may be slightly affected by temperature as well. However, the hypothesis 

is that the main cause of hysteresis is the misalignment of the generator with the irradiance 

sensor. By simulating the output power, the hypothesis can be verified. A photovoltaic 

simulation program known as PVLib was used. PVLIB is an online database for Python 

developed by Sandia National Laboratories. It contains a repository with weather data to 

model PV systems [81] and the quality of the package is comparable to that of commercial 

packages like PVsyst [82]. PVlib's particular features make it an excellent package for 

modeling PV system performance [83]. In this sense, the software allows a number of 

azimuths to be simulated for irradiance and also calculate the DC output power for each 

of these azimuths based on the irradiance values. 

Fig. 3.3 (a) depicts the RMSE calculated from experimental irradiance sensor and 

simulated irradiance as a function of the azimuth for four exemplary days. A a minimum 

RMSE around 175° is observed, indicating that the PV panel for irradiance measurement 
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is misaligned by -5° to -7°. In Fig. 3.3 (b) the RMSE calculated from the experimentally 

measured DC power and the power calculated with the simulated irradiance in PVLib.  

 

Fig. 3.3. PVLib simulation, (a) Irradiance, and (b) DC power simulated for four days with 
different azimuths. 

 

Here, the minimum can be found between 180º and 185º, indicating that the average 

orientation of the arrays is misaligned by 0° to 5°. 

For irradiances above 800 W/m2, only the quasi-linear region of the output power is 

considered for calculating the nominal power according to the introduction section. Since 

the afternoon data may not represent the correct operation of the PV plant, hysteresis data 

must be omitted for this nominal power estimation procedure.  
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3.3 Nominal Power following Reference Procedure  
According to the datasheet of the module manufacturer, the generator's nominal power is 

109.44 kW at STC. In [84], each string of this PV generator was characterized through I-

V curve measurements. Based on the IEC 61829 2015, the 𝑃!	∗  of the entire plant was 

estimated at 103.90 kW, with a standard deviation of 1.2%. When compared to the 

manufacturer's value, the theoretical loss decreased by 4.9% after 10 years. [85], [86] 

proposed a number of explanations for this difference, including annual polycrystalline 

panel degradation of ~ 0.5 %, resistive wiring losses, and module/string mismatch [87]. 

A total of 39 out of 135 days with reliable monitoring data met the operational conditions 

for the reference procedure [29] during the six-month monitoring period. In Fig. 3.4, the 

actual daily nominal power estimations are shown along with their deviation in % from 

their mean value. For the 39 days, the mean nominal value was 103.97 kW with a standard 

deviation of 0.77 kW. As a result, the deviations from the mean value are less than 2%. 

This is in agreement with what was reported in [84]. 

 

Fig. 3.4 Values of daily nominal power according to Reference Procedure [29]. For 

the 39 days analyzed, the mean value is shown together with the standard deviation. 
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3.4 Nominal power following NPKDE Procedure 
A total of 96 days with reliable monitoring data did not meet the operating conditions 

required by the reference procedure in [29]. An exemplary partly cloudy day with 

relatively few instances of high irradiance was used in this work to demonstrate the 

applicability of the proposed procedure for these 96 days with non-ideal operational 

conditions.   

 

Fig. 3.5. An exemplary case of a partially cloudy, non-ideal day (30.04.2018). In (a), the 

plane-of-array irradiation, module temperature, and DC power are shown for the entire day. 

(b) The temperature-corrected DC power versus irradiance, red indicates data sets with 

irradiances > 800 W/m2 for PDF analysis. 

 

Fig. 3.5(a) shows the plane-of-array irradiance, module temperature, and DC power for 

such a predominantly cloudy day. Occasionally, high irradiance values (G > 800 W/m2) 
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have been observed. As a result of the cloud crossing, irradiance and module temperatures 

are likely to vary, and there are likely to be additional variations in POA irradiance 

between strings and the irradiance sensor. In Fig. 3.5(b), there is considerable noise in the 

relation between 𝑃(B,C→01℃) and 𝐺. Clearly, this data cannot be represented by a single 

linear regression, so the procedure described by [29] will not work.  

Fig. 3.6 (a) shows a non-parametric KDE for this exemplary day with non-ideal weather 

conditions (30.04.2018), which indicates that after completing the steps of the PDF 

calculation described above for this day, the resulting PDF shows a mode with a value of 

𝑃!∗ = 103.53	kW.  

The calculated value is very similar to that for the clear-sky day (18.04.2018), 𝑃!∗ =

103.96	𝑘𝑊. A day with non-ideal conditions has a much broader probability density 

distribution than a day with ideal conditions due to cloud noise. The difference between 

these two 𝑃!∗  values is 0.43 kW (0.41%), which is within the standard deviation calculated 

under clear sky conditions of 0.77 kW (0.74 %) and is less than the uncertainty of the 

power measurement of 0.5%. As can be seen from this slight difference, the proposed 

procedure can be used with great accuracy to estimate  𝑃!∗  on this particular non-ideal 

day. 

Fig. 3.6 (b) shows the nominal power calculated according to the procedure proposed in 

this thesis for each of the 135 days. The 𝑃!∗  values are shown in black for non-ideal 

weather conditions and in red for ideal weather conditions. Note that both ideal and non-

ideal cases have hysteresis data, the only restriction being G > 800 W/m2. A deviation in 

% from 𝑃!∗ = 103.97	kW resulting from [29] reference procedure is given. Based on the 

mean value of 𝑃!∗ , the values of 𝑃!∗  are centered around this value. According to the 

standard deviation of 0.77 kW (0.74%), most of the results are within the limits of the 

standard deviation. Some values can deviate by up to 2.5% from the mean of 𝑃!∗ , 
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depending on the conditions on the day, for days with and without ideal conditions. 

Assuming that measurement uncertainties are taken into account, these deviations are 

within a reasonable range, and following the reference procedure for ideal days produces 

uncertainties of up to 2% in Fig. 3.4. 

 

Fig. 3.6. The probability density function (PDF) for a clear-sky day (18.04.2018) compared 

to a partially cloudy day (30.04.2018). A mode marked by an arrow represents the nominal 

power with the highest probability. For ideal and non-ideal conditions, in (b) daily nominal 

power values with the highest probability (modes) 

 

A statistical analysis of the daily nominal power values resulting from the photovoltaic 

plant can be seen in Fig. 3.7. Table 2 summarizes the main statistical parameters of the 

plant. The statistical analysis of three cases is presented. 
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For the reference procedure or case (1), the method already established by Martinez et al. 

[29] requires the omission of non-linear data from the hysteresis and can only be applied 

on clear sky days under ideal conditions. In case (2), the proposed procedure with the 

non-parametric filter is tested on the same data set for clear sky days. This case does not 

require omitting the nonlinear data related to the hysteresis effect. As case (3), the 

NPKDE proposed procedure is also statistically evaluated for partly cloudy days in non-

ideal conditions. 

 

Fig. 3.7. For each of the three cases (1), (2), and (3) under analysis, box plots depict 

the nominal power values for every single day. 

 

The black points in case (1) show the 𝑃!∗  values for the 39 days in ideal conditions. 

According to the black line, daily values follow a Gaussian or normal distribution, as 

shown by the similar mean and median 𝑃!∗ 	values in Table 3.2. As a result, the mean of 

𝑃!∗  values for case (1) is (103.97 ± 0.77) kW. An estimate of the measurement's 

uncertainty is made by calculating the interquartile range (Q3-Q1). In this range, 50% of 

the values are distributed. The respective IQR is 1.03 kW which indicates a low level of 

uncertainty. In PV systems, 2.5% to 5% uncertainty has been reported [88]. Despite a 

standard deviation of 0.74%, the uncertainty presented in Table 3.2 does not exceed 0.5%. 
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Essentially, these low uncertainty values are the result of uncertainty in the measurement 

of irradiance and temperature, which can only be controlled in a laboratory setting [86]. 

As shown in Fig. 3.7, the daily 𝑃!∗  values for case (2) are distributed similarly to those in 

case (1). According to Table 3.2, the mean 𝑃!∗  value of (104.04 ± 0.82) kW and IQR are 

both very similar to those of case (1). Under these ideal conditions, both procedures have 

statistically equivalent results, validating the results of the non-parametric KDE 

procedure. 

Table 3.2. Analysis of the nominal power estimation procedures from a statistical 

perspective 

Case Days Median 𝑃"∗  
(kW) 

Mean 𝑃"∗  
(kW) 

Standard 
deviation (kW) 

Q1  

(kW) 

Q3  

(kW) 

Q3-Q1  

(kW) 

Case (1):  
Martinez et al. 

[29], 
ideal conditions 

39 104.00 103.97 0.77 103.42 104.45 1.03 

Case (2): This 
work, ideal 

conditions with 
hysteresis data 

39 103.98 104.04 0.82 103.32 104.64 1.32 

Case (3): This 
work, non-ideal 

conditions 
96 103.66 103.77 0.99 103.18 104.54 1.36 

 

The dispersion of the daily 𝑃!∗  values is slightly higher for case (3) in Fig. 3.7 compared 

to the other two cases. As can be seen from Table 3.2, the standard deviation is slightly 

higher, and the IQR is 1.36 kW. The mode may be affected by noise, i.e., the probability 

density function's most probable 𝑃!∗  value. Nevertheless, the mean 𝑃!∗  value of (103.77 

± 0.99) kW for case (3) is still within the range of the other two cases where the nominal 

PV plant power would be expected. 

The results obtained in both procedures have two important aspects to consider. Firstly, 

procedures get statistically indifferent mean values for nominal power values for days 

with clear skies under ideal conditions. Secondly, the Non-Parametric filter procedure 

estimates the nominal power without removing non-linear data from the hysteresis effect 
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manually. The NPKDE procedure inherently filters out the hysteresis effect on the 𝑃!∗  

estimation.   
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Chapter IV: 

Nominal Power of Small PV Generators 
It was demonstrated in chapter III that, under partially cloudy sky conditions, the NPKDE 

method is valid for evaluating a utility-scale photovoltaic generator. For these non-ideal 

conditions, the 𝑃!∗  can be calculated with a low degree of uncertainty [89].  

In order to test the validity of the NPKDE methodology on small-size PV generators and 

under different climatic conditions, two geographic locations (Chachapoyas and Lima) 

with grid-connected 1.5 kW PV systems were selected. The locations have entirely 

different climates, Chachapoyas with a tropical climate and Lima with a coastal desert-

like climate. The systems’ modules are based on Passivated Emitter and Rear Cell 

(PERC) technology. The motivation for studying PERC technology is due to the new 

generation of solar modules using PERC technology that has become the standard for cell 

technology representing the new mainstream of the market [90]. 

In both locations, the PERC array has a nominal power of 1675 W according to the 

datasheet and is installed on a fixed north-oriented structure with a tilt angle of 15°. 

Additionally, the array is connected to a 1.5 kW inverter (Sunny Boy 1.5). For more 

technical details, a brief description of the main characteristics of PV module at STC can 

be found in Table 4.1.  

Table 4.1 Main characteristics of the PV array at STC 
Characteristics of the PV generator PERC 

Current at the maximum power point (A) 8.96 

Voltage at the maximum power point (V) 37.4 

Power at maximum power point (W) 335 

Power temperature coefficient (%/°C) -0.37 

Number of modules per string connected in 
series  

5 

Number of strings connected in parallel 1 
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4.1 Location 1: Chachapoyas  
Chachapoyas, Peru (6.234632 S, 77.854394 W), is the first place under analysis. This city 

is the capital of the Amazonas Department, where the annual average temperature is 

15.6 °C [91], and the lowest minimum temperatures are reported from June to August. 

The rainfall varies widely from 1,000 to 2,500 mm over the year [91]. Rainfall is reported 

every month [92], so this rain creates self-cleaning in the modules, which prevents dust 

from affecting them. According to a model proposed in [93], wind shear also helps 

remove particles with diameters between 0.1 and 100 µm.  

In Fig. 4.1, the PERC photovoltaic system is shown on the bottom left array. 𝑮, 𝑻𝐦 and 

𝑷𝑫𝑪 values were monitored to apply the procedure in section 2. The values were obtained 

by using an EKO- MS-80 pyranometer, module temperature was measured using two 

PT100 sensor mounted on the back, one in the center, the other at the border of the PV 

module, and the DC power was obtained from the Sunny Boy 1.5 inverter. The parameters 

were measured every minute almost a year from 25.01.2021 to 31.12.2021.  

 
Fig. 4.1 Top view, at the bottom left is the PERC array under analysis at 

Chachapoyas. 

 

Chachapoyas’s weather is rainy and cloudy, but it also has high irradiance. On-site, an    

was measured in one year of monitoring time. Due to the almost continuous presence of 

clouds, the nominal power can be challenging to estimate for due diligence purposes. 
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During the monitoring year, only four days were identified with ideal conditions, which 

would allow calculating the nominal power considering the standard procedure in the 

introduction part. Hence, it is evident that the nominal power calculation for this location 

can more suitably be estimated using the NPKDE methodology. 

Based on the entire data set, a typical day in Chachapoyas can be observed in Fig. 4.2. 

Despite the clouds’ impact, the KDE can calculate the PDF that identifies the nominal 

power value. Nevertheless, clouds significantly impact the amount of data with 

irradiances above 800 W/m2 (high irradiances). High irradiance values are present for 

short periods only during the day. The nominal power estimation becomes more reliable 

when more accumulated data is available with the PV system exposed to high irradiance. 

High levels of irradiance must be sufficiently present during the day. For instance, the 

nominal power estimated from data collected over 30 accumulated minutes with high 

irradiance differs from that collected over 3 accumulated hours. To decrease the 

uncertainty in the nominal power estimation, the amount of time or data required to 

generate a reliable KDE should be determined. 

 
Fig. 4.2. An example of two days with irradiance and DC power output measured every 

minute. There is predominantly cloudy weather during the day. 
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Fig. 4.3 Boxplot analysis when setting the minimum data required in one day 

 

A minimum monitoring time can be set to ensure that the photovoltaic system receives 

enough accumulated time with high irradiance levels. Fig. 4.3 presents the boxplot 

analysis of the daily 𝑃!∗  for four different time periods. For instance, if the minimum 

monitoring time is set to 30 minutes, the photovoltaic system will be at high irradiance 

for at least 30 accumulated minutes daily. Similarly, the same limits would apply for one, 

two, and three hours of accumulated time with high irradiances with the corresponding 

box plot. 

The nominal power at STC for PERC system is 1675 W. The first boxplot shows the case 

of 30 minutes. The nominal power values are scattered with a median of 1553.6 W and a 

mean of 1557.6 W. A difference of almost 7% to the nominal power at STC can be 

attributed to various factors, including mismatches between panels, wiring losses, 

irradiance sensor and arrays do not have the same spectral response [94], among others. 

The data dispersion is evidenced in the uncertainty up to 27.4 W (1.76%) or in the total 

interquartile range of 39.4 W (2.52%). The number of days when high irradiance was 

measured was 202. Of these days, only 110 meet the condition of presenting at least 30 

accumulated minutes of data at high irradiance, as seen Table 4.2. 
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Setting the limit to one accumulated hour of high irradiances, the number of days that 

comply decreases to 48, but the standard deviation (26.4 W) remains similar to the one 

for 30 min. The mean and median values are also similar at 1546.2 W and 1548.4 W, 

respectively. Therefore, its nominal power distribution is normal. 

By increasing the filter for an accumulated time of high irradiance to 2 hours, the standard 

deviation decreases to 20 W (1.29 %). As accumulated monitoring time increases, the 

standard deviation of the daily nominal power decreases. This tendency is most 

pronounced when the monitoring time is increased to 3 hours, where the standard 

deviation decreases to 3 W. However, this only occurs on 6 out of the 202 days under 

analysis. By restricting one day to three hours or 180 data at high irradiances, it becomes 

difficult to estimate the nominal power for this geographical location. 

A comparison of all the mean values for each case of accumulated monitoring time shows 

no significant differences. However, a minimum of three hours of data collection could 

be recommended if a higher certainty for value for the nominal power is required. KDE 

provides more reliable PDF calculations for cloudy conditions the more days, or 

experimental data points are available with high irradiances. 

 

Table 4.2. Analysis of the nominal power estimation procedures from a statistical 

perspective 

Case Days Median 𝑃"∗  
(W) 

Mean 𝑃"∗  
(W) 

Standard 
deviation (W) 

Q1  

(W) 

Q3  

(W) 

Q3-Q1  

(W) 

30 m 110 1553.6 1557.6 27.4 1537.4 1576.8 39.4 

1 H 48 1546.2 1548.4 26.4 1528.6 1570.4 41.8 

2 H 15 1544.0 1538.7 20.0 1526.1 1552.7 26.6 

3 H 6 1552.4 1553.2 3.0 1551.5 1553.5 2.0 

 

Fig. 4.4 below shows the nominal daily power for all twelve months under study. The 

ideal situation would be to have a large sample size to generate a more accurate KDE, but 
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10 minutes or 10 experimental data points have been considered sufficient for this 

calculation. The daily estimation of the nominal power may allow for identifying more 

quickly if the values are not within the expected range [95]. 

 
Fig. 4.4. Estimation of the daily nominal power for the year under consideration 

 

The 𝑃!∗ 	 calculated for the 202 days with high irradiances indicates a slight nominal power 

loss during the months of July to December. This loss may be due to the dry season in 

this region from June to August [92], when rainfall decreases causing a decrease of 𝑃!∗  

due to dust deposition. In terms of maintenance costs, these otherwise self-cleaning 

effects are essential [96]. In Lima's case, dust deposition's effect will play an essential 

role in estimating the nominal power. 

PV systems require continuous outdoor monitoring to assess their long-term reliability 

and performance. Mitigating the economic risk associated with installing new PV 

technologies [99] and accurately analyzing outdoor performance and degradation is 

essential. The results of this chapter demonstrated that the nominal power under these 

conditions could be used to assess long-term degradation.  
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4.2 Location 2: Lima, Dust Effect 
Lima's urbanization, large consumer base, and growing industrial and commercial 

capacity present significant potential for distributed generation through small-medium 

PV systems [97]. Lima city has an annual reference yield greater than 1,541.5 kWh / kW 

or an average daily reference yield of 4.36 kWh / kW. This city is considered, after Cairo, 

the second largest city located in a desert [98] with rainfall of only 9 mm per year. August 

recorded a minimum average temperature of 14.7°C, while February recorded a 

maximum average of 27.3°C [99]. Moreover, this city presents microclimates that make 

estimating the PV power potential challenging. Despite its solar resources, its location in 

the desert makes the soiling or dust deposition a factor required to consider. 

Consequently, the PV system can considerably suffer from lower performance due to 

higher levels of dirt and pollutants. 

Different factors can affect the deposition of dust on a PV module, such as the amount of 

dust in the atmosphere, wind, humidity, temperature levels, and the tilt angle of the 

module [100]. The site where the module is installed also plays a role, as does the 

elevation [101]. All these elements can affect the dust deposition on the surface of the PV 

module, which can impact its output power.   

The dust effect on photovoltaic panels' electrical and thermal behavior is essential when 

operating these systems. Dust can accumulate on the bottom edging of solar panels and 

cause inhomogeneities on the panel surface and, thus, losses in power output [102]. The 

mechanism by which dust bonds to PV surfaces is by adhesion forces. Capillary, van der 

Waal, electrostatic, and gravitational forces are the fundamental adhesion forces [103]. 

The humidity in the air can significantly impact how much dust sticks to the surface of 

solar panels. The humidity of a location significantly affects the adhesion force between 

dust particles and the surface of a PV module [104]. An increase in relative humidity from 

40% to 80% leads to an increase in adhesion by approximately 80% [105]. 
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In Lima, dust accumulation is one of the main factors that cause losses in the efficiency 

of the PV system. This effect must be characterized in the installation location since 

environmental factors cannot be estimated or predicted (e.g., wind speed, relative 

humidity, degree of pollutants in the air, etc.). 

According to [109], dust depositions depend on the city's degree of pollution, the soil's 

nature, the type of dust, and installation factors. In [102] it was found that dust deposition 

reduces performance in terms of power output by up to 50% over six months. Therefore, 

module cleaning schedules are also influenced by economic factors which are based on 

local costs [106]. Additionally, depending on environmental conditions, dust 

accumulation rates may vary between seasons [107]. 

In regions with arid or desert climates and low rainfall, there is much effort to optimize 

and determine cleaning frequency; since they cannot self-clean naturally due to low wind 

speed and lack of rain. In [108] the authors show that in controlled chambers, there is a 

linear relationship between the accumulated dust density and the normalized power loss 

(1.7% per g/m2). Over six months, dirty solar PV modules can lose up to 50% of their 

power output in desert regions [109]. For instance, a super-hydrophobic film can reduce 

the dust deposition's impact on solar PV module efficiency [113]. This type of film creates 

a barrier that prevents dust from settling on the surface of PV modules, keeping them 

clean and efficient. 

The PV installation under study in Lima is shown in Fig. 4.5. Both facilities are identical, 

and the same modules and inverters were installed as in Chachapoyas. Considering Lima's 

high relative humidity and pollution levels, calculating the nominal power is essential for 

determining cleaning time. 
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Fig. 4.5. Array in the upper row is the PERC generator in Lima. 

 

Fig. 4.6 shows the calculation of the daily nominal power for six months, during the 

summer and autumn, when high irradiances (>800 W/m2) frequently occur in Lima. Two 

different irradiance sensors were used: a pyranometer and a calibrated mini-module. At 

the beginning of measurements in January, the 𝑃!∗  using both sensors are very similar. In 

both cases, there is a general drop in nominal power over the following months. The 

vertical lines represent dates when the PV modules were manually cleaned. After 

cleaning, the nominal power returned to its initial value. In two instances, at the end of 

February and the end of March, only the pyranometer was cleaned, causing a sudden drop 

of the 𝑃!∗  calculated with the irradiance from the pyranometer. Note that calculating 𝑃!∗  

with irradiance data from the pyranometer and the mini-module results in different slopes 

of the temporal evolution of the 𝑃!∗ . The dome of the pyranometer accumulates less dust 

than the PV module and the mini-module, and, hence, measures higher irradiance values 

than effectively reach the solar cells in the PV modules. Hence, the slope of the 𝑃!∗  

calculated using the pyranometer is larger than when using the mini-module. Three 
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regions with linear losses are highlighted with slopes m1, m2, and m3. Losses range from 

2-3 W per day. The lower slope observed when calculating 𝑃!∗  with irradiance data from 

the calibrated mini-module indicates that the dust deposition rates on the surfaces of the 

PV modules and the mini-module differ, with a lower rate on the mini-module.  

 
Fig. 4.6. A pyranometer and a calibrated module are used to estimate nominal power. Dust 

effects are taken into account. 

 

These results allow for determining and monitoring the impacts of the maintenance on 

the PV system. During the six months, the most prolonged period without cleaning the 

PV modules was between February and mid-April. During these 2.5 months, the nominal 

power dropped from about 1500 W to 1150 W, a loss of about 23%. The findings are in 

agreement with those of other desert locations [109]. For instance, PV panels in desert 

regions (Bahawalpur, Pakistan) have been studied extensively to determine the best 

frequency of cleaning [110]. The smallest particle blocks the most sunlight [111] and 

when the power output reduction and particle concentration are equal to 5% and 100 

µg/m3, the frequency of PV module cleaning was fixed at approximately 20 days.  
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Conclusions 

 
In the literature, different procedures exist for obtaining the nominal power of medium- 

and large-scale PV generators that are in outdoor operation. Applying these procedures 

requires ideal weather conditions with clear-sky days, which, depending on the locations 

and weather, can sometimes make these procedures non-applicable. By utilizing non-

parametric data processing statistics, this Doctoral Thesis proposes new approaches to 

the characterization of PV generators under ideal and non-ideal conditions. This new 

approach can be applied by integrating intermediate steps into the reported procedures 

for the characterization of photovoltaic generators. Mainly in the nominal power of 

photovoltaic generators, reducing the restrictions imposed and associated uncertainty.  

The new procedure estimates the nominal power of a photovoltaic generator under 

outdoor conditions regardless of its size, particularly monitoring in partly cloudy 

conditions. The procedure was validated fo rthree different cases: 

1. First, the procedure enabled the characterization of a utility-scale PV generator of 

109.40 kW. This PV plant presented a hysteresis effect due to the linear and non-

linear behavior of the DC power data versus irradiance. The most likely causes of 

this effect were spatial inhomogeneities of module temperatures and the plane-of-

array irradiance. The latter was due to inevitable string misalignments evidencing 

the challenges of monitoring large PV plants.   

Additionally, under non-ideal operating conditions on partially cloudy days 

caused noise in the DC power versus irradiance data, most likely due to partial 

shadowing in the PV generator. Standard characterization procedures for the PV 

nominal power are not applicable under such conditions. The new proposed 

procedure presents an advance in both regards, demonstrating robustness towards 
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such monitoring challenges and non-ideal operating conditions. The procedure 

was validated through a 135-day experimental campaign with high-precision 

instrumentation for monitoring. The Reference Procedure was applied to estimate 

the PV plant's nominal power, resulting in a mean daily nominal power of (103.97 

± 0.77) kW. It was applicable only in 29% of the studied days, which offered ideal 

meteorological conditions (full clear sky). Furthermore, it required excluding non-

linear data from the hysteresis effect. The proposed procedure applied to these 

same days with ideal operating conditions resulted in a mean nominal power of 

(104.04 ± 0.82) kW, with no statistically significant difference to the Reference. 

Unlike previous procedures, this new method did not require non-linear data to be 

excluded from the hysteresis effect.   

Furthermore, applying the same procedure to the remaining 71% of monitoring 

days, which presented non-ideal conditions (partially cloudy sky), resulted in a 

mean nominal power of (103.77 ± 0.99) kW. This result is in good agreement with 

the previous results for ideal days. Therefore, the proposed non-parametric KDE 

procedure is suitable for ideal and non-ideal operating conditions and can reliably 

estimate the nominal power for a single monitoring day.  

2. In addition to large generators, small DC power generators of 1675 W were also 

tested. Chachapoyas, the first location, is characterized by days with high cloud 

cover. Only 6 of the 202 monitoring days had ideal monitoring conditions. Hence, 

determining the minimum monitoring time is essential in order to obtain a reliable 

value under non-ideal conditions. For obtaining the nominal power with a low 

degree of uncertainty, three hours or 180 data points should be taken. The 

necessary amount of data can be collected over several days. Furthermore, the 
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panels are self-cleaning due to high precipitation, which minimizes the effect of 

dust. 

3. As a final evaluation, the methodology was applied to the same PV system located 

in Lima, where soiling and humidity levels are high. High dust deposition rates 

were observed in the system. Since the dust deposition rate in the pyranometer 

and the array is different, it was possible to estimate the cleaning scheme by 

calculating the nominal power. Calculations indicate a cleaning interval of at least 

two weeks based on 2-5 W/day losses. Based on similar environmental conditions, 

these results are in agreement with those reported by other authors. By 

determining the nominal power, the cleaning protocol can be determined. 
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Future Lines 

 
Three photovoltaic generators were characterized, resulting in results that will serve as a 

starting point for future work. Here are four research lines that can be pursued: 

1. The new methodology can be used to characterize a larger sample of photovoltaic 

generators. In Peru there is currently a project: “Evaluación energética y técnico-

económica de la generación de energía eléctrica renovable con nuevas tecnologías 

fotovoltaicas en diferentes zonas climáticas del Perú". A total of three 

photovoltaic technologies are being monitored at six different locations in Peru as 

part of this project. The analysis of this procedure under high irradiance conditions 

makes it very interesting. Furthermore, it would be beneficial to install a 

monitoring system for large solar plants of the MW order and to identify the 

challenges that may arise during the characterization process. 

2. To improve the precision of the nominal power calculation, hysteresis in 

photovoltaic generators must be studied in more detail. DC power simulations can 

be used to determine the ideal position of the generator in order to minimize 

misalignment between the irradiance sensor and the generator. The temperature 

and its homogeneity throughout a large generator should also be studied more 

deeply to determine how it contributes to the hysteresis. 

3. An alert system can be implemented through daily monitoring to identify when a 

system is not operating at its nominal power or to verify that the algorithm can be 

used effectively as an indicator of cleaning due to dust effects. Additionally, long-

term monitoring can describe a technology's global degradation. 

4. Although the methodology has excellent results, there is still an important 

restriction: the irradiance must be greater than 800 W/m2. As a result of this 
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limitation, only certain seasons can be monitored during the year at locations 

where there are frequent high irradiance occurrences. At low irradiances, a new 

characteristic parameter would be essential or define it.  
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