Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 207 (2022) 887896

www.elsevier.com/locate/procedia

26th International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems (KES 2022)

Reduced precision discretization based on information theory

Brais Ares?, Laura Mordn-FerndndezP, Verénica Bol6n-Canedo®*

%Gradiant, Estrada do Vilar 56 (Vigo), Pontevedra, Spain
bCITIC, Universidade da Corufia, A Coruiia, Spain

Abstract

In recent years, new technological areas have emerged and proliferated, such as the Internet of Things or embedded systems
in drones, which are usually characterized by making use of devices with strict requirements of weight, size, cost and power
consumption. As a consequence, there has been a growing interest in the implementation of machine learning algorithms with
reduced precision that can be embedded in these constrained devices. These algorithms cover not only learning, but they can also
be applied to other stages such as feature selection or data discretization. In this work we study the behavior of the Minimum
Description Length Principle (MDLP) discretizer, proposed by Fayyad and Irani, when reduced precision is used, and how much it
affects to a typical machine learning pipeline. Experimental results show that the use of fixed-point format is sufficient to achieve
performances similar to those obtained when using double-precision format, which opens the door to the use of reduced-precision
discretizers in embedded systems, minimizing energy consumption and carbon emissions.

© 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 26th International Conference on Knowledge-Based and
Intelligent Information & Engineering Systems (KES 2022)

Keywords: Reduced precision; discretization; preprocessing; mutual information; machine learning

1. Introduction

Discretization of numerical data is one of the most influential data preprocessing tasks in knowledge discovery
and data mining. The discretization process aims to find a concise representation of the input data into categories that
are better suited for the learning task, while retaining as much information as possible from the original continuous
attributes. One of the most famous discretization methods is the discretizer based on the Minimum Description Length
Principle (MDLP) proposed by Fayyad and Irani [3]. This method uses information from the class to control the
partitioning process, taking into account the entropy gain of each possible partition.

Usually, the discretization process is run on machines that fully support double-precision floating-point format (64
bits), trying to make use of all available resources (powerful processors, large amount of memory, hardware support,
etc.). However, this kind of resources may not be present when working with embedded systems, low-power devices

* Corresponding author. Tel.: +34-981167000.
E-mail address: bares@ gradiant.org; laura.moranf@udc.es; veronica.bolon@udc.es

1877-0509 © 2022 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses /by-ne-nd /4.0)

Peer-review under responsibility of the scientific committee of the 26th International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems (KES 2022)

10.1016/j.procs.2022.09.144

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2022.09.144&domain=pdf

888 Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896

or ad-hoc solutions that need to minimize and optimize the use of hardware components. The objective of this work
is to redesign the MDLP algorithm so that it uses reduced precision (i.e. limiting the number of bits) to run the
discretization process. The reduced precision affects both the way the numerical data is represented as well as the
math operations themselves when computing the algorithm.

Taking an algorithm that was originally intended to work with floating point arithmetic and adapting it to fixed-
point format, in which the number of bits is reduced, is not something new. In many scenarios, the potential loss of
precision that this adaptation may entail is negligible, yet a series of substantial advantages are obtained in return,
such as: reduction of computational requirements, lower power consumption, faster execution, etc. In much of the
existing literature one can find several studies on the effect of using reduced precision for learning algorithms, most
of them based on neural networks [11]. Han et al. [6] propose an energy-efficient engine that performs inference in
deep neural networks and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Hubara et
al. [7] introduce a method for training Quantized Neural Networks (QNN) in which weights and activations have very
low precision. Jacob et al. [8] propose a quantization scheme for the approximation of floating-point computations in
a neural network. The authors built on previous research by Gupta et al. [4], which proposed the use of fixed-point
arithmetic with reduced precision to speed up the training process of convolutional neural networks. In the area of
Bayesian networks, the work of Tschiatschek and Pernkopf [15] proposes to perform online learning with reduced-
precision parameters. All these authors have managed to obtain very similar results to Bayesian network classifiers
that use traditional algorithms for parameter learning with double-precision floating-point representation.

Although the use of reduced precision in other stages of machine learning is not as popular as in classification, sev-
eral experiments can be found that show the applicability of these techniques in previous stages. For example, Sharma
et al. [14] propose a fixed-point version of the Principal Component Analysis (PCA) algorithm to perform feature
extraction of a set of DNA gene microarrays, in the field of human cancer, obtaining similar results to the original
version. Moran-Fernédndez et al. [10] also proposes the simplification of certain feature selection methods by means
of a fixed-point version for calculating the mutual information. Experimental results show that 16 bits are sufficient
for the algorithm to retrieve the same features as a 64-bit representation does. However, no work has been found in
the state-of-the-art that attempts to perform a discretization process using an algorithm with fixed-point arithmetic. It
is known that applying a discretization process on the input data can greatly relax the computational requirements of
the following learning stages, and in many cases even improve the results obtained in classification accuracy [9, 5].
Moreover, there are certain algorithms which simply do not support continuous variables and require prior discretiza-
tion of the input data. For all these reasons, the goal of this work is to adapt a widely-known discretization algorithm
to fixed-point format and then compare the obtained results with the original double-precision (64-bit) floating-point
version. In order to test how this discretization process affects other steps of a typical machine learning pipeline, the
use of two classifiers and one feature selection method are proposed for the experiments.

The reminder of this document is organized as follows: Section 2 describes in detail the concepts of discretization
and fixed-point representation. Section 3 enumerates the different datasets and algorithms used during this work.
Section 4 details how the adaptation of the MDLP algorithm was implemented and describes the experiments. Section
5 shows and analyzes the results of the experimentation. Finally, section 6 draws the conclusions of this study and
outlines possible future lines of work.

2. Background
2.1. Discretization process

Continuous numerical variables may sometimes exhibit large biases or non-standard distributions, which can be
caused by anomalies in the data (outliers), multimodal or exponential distributions, etc. These conditions can degrade
the performance of machine learning algorithms, which tend to perform better when the input data follows a Gaussian
probability distribution. Thus, the discretization process transforms continuous variables into discrete values, creating
groups of contiguous intervals (partitions or bins) over which the input data is mapped. Although part of the infor-
mation present in the data is lost in the discretization process, it provides several important advantages: it simplifies
the problem, reduces the effect of outliers, limits the degrees of freedom of the input data, and filters the noise of the
samples, among others. In addition, there are some algorithms that are incompatible with continuous variables and

Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896 889

require discrete input data, as in the case of a Naive Bayes classifier or the Mutual Information Maximization feature
selection method.

There are several popular discretization techniques, but they all work under the same premise: to find the best
cutpoints, based on a certain metric, that divide the range of a continuous variable into multiple partitions. A typical
discretization process has three steps: sort the continuous values of the variable to be discretized, evaluate different
cutpoints according to a given criterion and finally terminate the search when some stop condition is met. Among
the different discretization algorithms in the literature, entropy-based algorithms have usually achieved remarkable
results [13]. One of the most popular methods is the one proposed by Fayyad and Irani [3] that uses a stopping
criterion based on the Minimum Description Length Principle (MDLP). This method provides good results especially
for environments where Naive Bayes classifiers or decision trees are used.

In this work, the aforementioned MDLP-based discretization method has been selected to evaluate how using a
fixed-point representation may affect the results, also considering different formats (number of bits) in this study.
Given a set § of instances, an attribute A, and a cutpoint T (responsible of dividing the set into two subsets), the class
information entropy of the partition induced by T, denoted as E(A, T; S), is defined as:

E(A,T;S):%-Em(&)+%u€m(5’g) (1)

where Ent(S;) is the class entropy of the subset S; defined as:

Ent(S;) = -

k
P(C}.S;) - log(P(C;. S 1)) ()

j=1

where there are k clases Cy, ..., Cy and P(C;, S;) is the proportion of examples in S; that belong to class C;. For
an attribute A, the MDLP method selects a cutpoint T4 for which E(A,T,;S) is minimal among all the boundary
points. The training set is then split into two subsets by the cutpoint. Subsequent cutpoints are selected by recursively
applying the same binary discretization method to each of the newly generated subsets until the following condition
is achieved:

logs(N - 1) N AA,T:S)

Gain(A,T:5) <
ain(A,T;§) < N N

(3)
where:

N is the number of examples in §

Gain(A,T;S) = Ent(S) - E(A,T;S)

A(A,T:S)=logy(3* = 2) — [k - Ent(S) — ky - Ent(S 1) — ky - Ent(S7)]

k, ki and k; are the number of classes represented in the sets S, S| and S, respectively

2.2. Fixed-point representation

Nowadays, floating point is the most widely used format in practically any application, whether or not they are
related to the area of artificial intelligence, and is commonly used to represent real values. But sometimes there are
applications that have strict requirements of size, power consumption, memory, weight, etc. In this kind of context, it
may be necessary to make use of a lighter format.

The fixed-point format consists of a signed mantissa and a scaling factor that defines the placement of the point that
separates the integer part of the decimal part, known as radix-point. Reducing the scaling factor would be equivalent to
moving decimal point to the right, which would increase the number of bits dedicated to the integer part and decrease
the bits for the decimal part. This increases the range at the cost of reducing precision. There are several ways to
represent a fixed-point format with a given radix-point. One of the most widespread notations is < IL, FL >, where
IL is the number of bits for the integer part and F L is the number of bits for the fractional part. Thus the range would
be defined as [-2/L-1, 2/L-1 — 2=FL] and the precision, or epsilon, would be equal to 2-FL.

890 Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896

Fixed-point format is typically found in embedded systems that do not have an FPU (Floating Point Unit), such as
microcontrollers, microprocessors or certain models of FPGAs!. In addition, there are also other situations in which,
even with the possibility of using floating-point operations, it may be preferred to use fixed-point format because of
the advantages it offers. These advantages are mainly the lower use of memory and a higher speed of calculations,
from which other advantages arise as a consequence: lower consumption, lower hardware cost, reduction of carbon
emissions, etc. Sometimes these circumstances can even be a requirement, as in Internet of Things applications,
embedded systems (drones, satellites, ...), aeronautics or industrial sector, to give a few examples.

3. Materials and methods

This section introduces the different materials used during the development and the experimentation. These mate-
rials are: the datasets, the discretization library and some complementary algorithms. All experiments were conducted
on a laptop with the following technical characteristics: Intel i7-10510U CPU @ 2.30 GHz, 16 GB of RAM and
Windows 10 Pro OS.

3.1. Datasets
In this work, a total of five datasets have been used, where three of them are binary and the other two are multiclass.

Also, three of them are microarrays, characterized by having a very high number of features with respect to the number
of samples. Table 1 displays an overview of these datasets.

Table 1. Characteristics of the datasets

Dataset #Features #Samples #Classes Reference

breast-cancer 30 569 2 nttps://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
madelon 500 2400 2 https://archive.ics.uci.edu/ml/datasets/madelon

colon-cancer 2000 62 2 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
leukemial 5327 72 3 https://portals.broadinstitute.org/cgi-bin/cancer/datasets.cgi

TOX-171 5748 171 4 nttps://jundongl.github.io/scikit-feature/datasets.html

3.2, Algorithms and libraries

The present state of the art has been reviewed in pursuit of any open-source library of MDLP algorithm and any
other auxiliary library with the goal of reusing and adapting their code, in order to fasten the development. Different
libraries have been identified and tested, and eventually the following libraries were chosen for the development of
this study:

o navicto/Discretization-MDLPC was implemented in 2018 and based on Fayyad-Iranis’s publication on MDLP
discretizer [3]. It is capable of calculate the optimal cutpoints for a given dataset and also obtain the correspond-
ing partitions. The behaviour of the library was validated against the existing R package for MDLP algorithm
(R/mdIp.R?).

e Naive Bayes [1]: Probabilistic classifier based on the application of Bayes’ theorem assuming conditional in-
dependence between each pair of predictor variables. This assumption makes the algorithm very fast at the cost
of losing accuracy when such independence is not given. This algorithm supports discrete variables and works
really well on high dimensionality data, such as microarrays.

! Acronym for Field Programmable Gate Array. FPGAs are semiconductor devices based around a matrix of configurable logic blocks (CLBs)
connected via programmable interconnects. FPGAs can be reprogrammed to desired application or functionality requirements after manufacturing.
2 https://rdrr.io/cran/discretization/src/R/mdlp.R

Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896 891

e Decision tree [2]: Non-parametric supervised learning method for classification and regression. The algorithm
creates a model that is able to predict the class based on simple decision rules inferred during training. This
algorithm is fast and low complexity, and also supports discrete variables.

e mRMR [12]: Feature selection method that selects those features that have the highest relevance with respect to
the target class and also show a higher intervariable dependency. The optimization criterion is called minimum-
redundancy-maximum-relevance (hence the name mRMR) and is based on mutual information. The intention
behind using this algorithm is to analyze how fixed-point discretization affects other algorithm apart from the
classification ones.

e francof2a/fxpmath’: Among the different open source libraries available online for the implementation of fixed-
point operations, this library was found to be the best suited for this study. It supports various arithmetic oper-
ations, bit-level manipulation and configuration of the radix-point. It gives the necessary support to convert all
arithmetic operations that appear in the MDLP algorithm to fixed-point precision.

All these libraries, aside from ravicto and fxpmath, can be found under the scikit-learn and PymRMR packages.

4. Methodology

This section summarizes the main contributions that have been made during the development of this work. The
first subsection presents the key features of the selected MDLP library, as well as what has been done to adapt it to
fixed-point format. The second subsection describes the testing setup and the experiments.

4.1. Adapting MDLP algorithm to fixed-point format

Different types of operations can be found within the source code of the navicto library, but only a few of them
affects the accuracy of the results: arithmetic and logarithmic operations. All other operations make use of the data,
but neither modify it nor have any implication on the accuracy.

4.1.1. Adapting arithmetic operations

The process of adapting arithmetic operations to fixed-point is a simple but tedious process. The first thing to do is
to define a fixed-point format template, which will be used to adapt all operations to the selected format, named FMT
from here onwards.

Once this template is defined, the adaptation process consists in taking each line of code in which an arithmetic
operation is performed and replacing it with the fixed-point version from the fxpmath library. In those cases where there
are more than two elements in an arithmetic operation, it is necessary to always convert the intermediate operations,
one by one, to the selected format, to prevent the library from automatically adjusting the format during partial
calculations. For example, the X = A + B + C operation would be converted as:

e A fxp = A.1like(FMT); B_fxp = B.like(FMT); C_fxp = C.like(FMT)
e partial = (A_fxp + B_fxp).like(FMT)
e X = (partial + C_fxp).like(FMT)

4.1.2. Adapting logarithmic operations

Three operations with logarithms can be found in the code, but fxpmath library does not offer support for logarith-
mic operations, so it is necessary to find an alternative solution. Two of these logarithmic operations appear during
the calculation of the MDLP criterion, by which a cutpoint is accepted or discarded:

log,(3) “4)

log, (size(partition) — 1) (5)

3 https://github.com/francof2a/fxpmath

892 Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896

While the third appears during entropy calculation:

size(partition)
_— 6
82 (#tota!_fxamples) ©
In the Equation (4) the variable k represents the number of total classes, which is part of the equation (3) shown in

section 2.1. This equation has an algebraic identity that transforms it into an arithmetic operation:
log,(3%) = k- log,(3) = k - 1.585 N

Whereas to implement the Equations (5) and (6) in fixed-point the most typical solution is to make use of lookup
tables that have been precomputed and stored in memory. Thus to obtain the result of an operation, such as log(x), the
calculation is not performed, but the result is taken directly from memory using the value of x for indexing. Equation
(5) is the simplest since the argument only takes integer values, so it is sufficient to compute and store in memory
the logarithms of integers from O to the total number of data samples. In Equation (6) the argument is the division of
two integer values, the result being a decimal number. In this case the table has to be two-dimensional, and it will be
indexed based on the number of occurrences of an event (partition size) and the total number of events (total number
of samples). Again, the values are precomputed and stored in memory in reduced precision.

4.2. Experimental setup

The workflow used during the experiments is presented in Figure 1. The figure shows only the classification sce-
nario, where an algorithm is trained with the training set and the resulting model is used for classification of the
test set. In the case of feature selection the diagram would be similar, but using the mRMR algorithm right after the
discretization process, instead of a classifier.

T0%

Data .| Training
partition Data

MDLP MDLP Classifiar

Halee il Training | *| Discretization | Training

» Scaling

Parameters Model Model

30% *
L Test \ woe | : | Result
o i * Sealing * Discretzanon g G Evaluation

Fig. 1. Workflow during the experiments (only the classification scenario is represented)

Scaling MOLP Classifier J

The pipeline starts from a dataset (with no missing values), which is partitioned in a ratio of 70% and 30% for
training and test respectively. To ensure reproducibility of the results, the same static seed is used for the partitioner
in all executions. Next, the input data is standardized so that it has zero mean and unit variance. This is especially
important when using fixed-point format to take better advantage of the range and precision offered by the number of
bits being used. The mean and scaling values obtained on the training set are used for the standardization of the test
set.

In the next step, the MDLP algorithm is trained on the training set. The output of this block is the model with the
optimal cutpoints found by the algorithm. These cutpoints are then used to discretize both the training set and the
test set. Lastly, one of the algorithms proposed in the 3.2 subsection (Naive Bayes classifier, decision tree or mRMR
feature selection) is applied in order to evaluate the results of the discretization process.

Based on this workflow, the following experiments are performed:

e Cutpoints: The aim is to analyze how the results differ at the output of the fixed-point version of MDLP
compared to the floating-point version. Once the number of cutpoints is known, the number of total partitions
can be calculated as #partitions = #cutpoints + #features. Unlike the following experiments this is a direct
measure of the performance of the MDLP algorithm.

¢ Classification accuracy: Analysis of the accuracy results obtained by Naive Bayes and decision tree classifiers
when the data has been previously discretized by either the MDLP original version (double floating-point) or
its fixed-point adaptation.

Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896 893

¢ Similarity rate in feature selection: This experiment uses the mnRMR algorithm to identify the 10 most relevant
features. The mRMR algorithm is applied right after MDLP discretization for both the fixed-point and the
original version (double-precision). The similarity rate, in percentage, is defined as the number of features
selected by mRMR that match in both scenarios.

e Training time and carbon emissions: It measures the MDLP algorithm training time and how much is the
carbon emission (in kilograms) of this process. This last measurement is obtained by using codecarbon* library.

Each of the experiments is repeated for different fixed-point formats: sizes of 12, 16 and 32 bits. For each given
size, half of the bits are assigned to the fractional part (that is, 6, 8 and 16 bits respectively), while the other half
is allocated to the integer part and the sign. Given the Fxp naming convention, these formats can be represented as

Jxp-532/16, fxp-s16/8 and fxp-s12/6.

5. Experimental results

This section presents the results of the experiments that have been defined in the subsection 4.2. The initial goal
in conducting these experiments was to be able to perform exhaustive tests with different scenarios: bit number and
raxid-point sweeps, cross-validation, statistical tests, etc. However, the fxpmath library is far from optimized and it
was only viable to run a single execution of each experiment within the scope of this work.

5.1. Cutpoints and number of bins

Table 2 shows the resulting number of cutpoints and partitions after running both the original MDLP algorithm and
the fixed-point version when using different bit sizes (12, 16 and 32 bits). As mentioned in subsection 4.2, there is a
direct relationship between cutpoints and partitions, so conclusions can be drawn by the results shown in this table.

Table 2. Number of cutpoints and partitions returned by the MDLP algorithm

Number of cutpoints Number of partitions

Dataset 64-bit fixed point (#bits) 64-bit fixed point (#bits)

floating point | 32 16 12 | floating point | 32 16 12
breast-cancer 27 26 19 11 57 56 49 41
madelon 12 12 0 0 512 512 500 | 500
colon-cancer 89 89 88 25 2089 2089 | 2088 | 2025
leukemial 626 626 | 627 | 181 5953 5953 | 5954 | 5508
TOX-171 1023 1023 | 1047 9 6771 6771 | 6795 | 5757

At first glance, the results for 32 bits (fixed-point) are particularly noteworthy since they are practically identical
to the original version. There is only one case, breast-cancer, where the number of cutpoints differs by one unit. This
result alone can be considered highly relevant, since it reflects that the original algorithm (double precision) can be
adapted to fixed-point barely affecting the resulting partitions, with all the benefits this format provides.

When 16 bits are used, the results start to show minor differences. For some datasets the number of resulting
cutpoints is reduced, as in breast-cancer or madelon, even not finding any cutpoint in the latter case (notice that this
is a very challenging dataset for machine learning researchers used in competitions). For TOX-171 the opposite effect
occurs, where the fixed-point algorithm obtains more cutpoints, a mere side effect of the loss of precision due to the
use of fewer bits. Finally, when the bits are limited to 12, the number of cutpoints are drastically reduced for all
datasets. This, per se, is not necessarily a negative result, as there may be classifiers that perform better with simpler
partitions, as will be seen next.

4 https://github.com/mlco2/codecarbon

894 Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896

5.2, Classification accuracy for Naive Bayes and Decision Tree algorithms
Table 3 shows the accuracy results for the Naive Bayes and Decision Tree classifiers when the data has been

previously discretized by the MDLP algorithm, using either its original version or the fixed-point adaptation (12, 16
and 32 bits).

Table 3. Classification accuracy (%) for Naive Bayes and Decision Tree algorithms (best result for each dataset is highlighted in bold)

Naive Bayes Decision Tree
Dataset 64-bit fixed point (#bits) 64-bit fixed point (#bits)
floating point 32 16 12 floating point 32 16 12
breast-cancer 95.91 08.25 | 98.25 | 95.91 96.49 96.49 | 97.08 | 94.74
madelon 71.81 71.81 | 49.58 | 49.58 80.00 80.14 | 49.58 | 49.58
colon-cancer 57.89 57.89 | 57.89 | 63.16 52.63 52.63 | 52.63 | 73.68
leukemial 77.27 71.27 | 77.27 | 81.82 81.82 90.91 | 86.36 | 86.36
TOX-171 75.00 75.00 | 75.00 | 44.23 55.77 51.92 | 51.92 | 48.08

As in the previous section, the accuracy results using 32 bits are practically identical to those of double precision.
In fact, for breast-cancer, using one cutpoint fewer gives more accuracy for Naive Bayes, increasing from 95.91% to
98.25%. Since these results correspond to a single run of the experiment, this difference might be due to the fact that
the random distribution of the partitions has in this case benefited the fixed-point version of the algorithm.

When the Decision Tree classifier is used, the most notable difference appears for leukemial using 32 bits, which
obtains a much higher precision value than the original (90.91% vs. 81.82%). The cause of this effect is that this
dataset is a microarray, with only 72 samples (50 for training, 22 for testing). This means that a successful classification
increases the accuracy by 1/22 = 4.545%. Therefore, the difference observed for 32 bits with respect to the original
version (+9.09%) implies that the former has two more correct results than the latter. This effect can occur when the
samples are extremely close to a certain cutpoint found by MDLP, so that any perturbation, however small, can cause
them to fall into a contiguous partition. In this case, the use of reduced precision is the cause of this small perturbation.

The results for 16 bits are interesting, since although the number of cutpoints varied slightly compared to the 32
bits version, the accuracy values remain quite the same. The only notable exception occurs for madelon, which, as
it did not find any cutpoint, the discretization process does not generate any partition, making it innefective to use.
In the case of using 12 bits the results vary greatly, given that MDLP algorithm in this case returns drastically fewer
cutpoints for all datasets.

5.3. Similarity rate in feature selection
The 10 variables selected by the mRMR algorithm after discretizing the input data with the fixed-point MDLP
algorithm are compared with those obtained when the original MDLP was used instead. The similarity rate of the

selected features between both cases is given in Table 4.

Table 4. Similarity rate (%) in mRMR feature selection method

64-bit fixed point (#bits)
Dataset floating point [32 612
breast-cancer baseline 100 | 70 70
madelon baseline 100 | 100 | 100
colon-cancer baseline 100 | 100 | 100
leukemial baseline 100 | 100 | 100
TOX-171 baseline 100 | 70 90

Once more, it can be seen that the 32-bit fixed-point version gets identical results to the original algorithm. For
16-bit and 12-bit, depending on the dataset, some minor differences show up. In particular, while 32-bit and 12-bit
versions for TOX-171 practically match the original version, there are three selected features that differ with respect

Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896 895

to the 16-bit version, what may seem counterintuitive. Here, again, something similiar to the previous subsections
occurs: this dataset is a microarray with very few examples (171) and too many features (5748). Different fixed-point
formats can generate slightly different partitions causing the features to climb up or down within the ranker. Thus,
any other of the many features may be detected as more relevant. In addition, microarray datasets usually have many
redundant features and they can be swapped without altering the classification results.

5.4. Training time and carbon emissions

Training times were measured for the double-precision and fixed-point (32-bit) versions for all datasets. The results
showed that the fixed-point version takes between 2 and 3 orders of magnitude longer than the original version, which
can be counterintuitive. The main issue is that fxpmath library emulates the behavior of fixed-point arithmetic by using
complex structures and updating some state information after each operation, which is costly both in memory and
computational resources. It is important to note that implementing the fixed-point algorithm for a real environment,
such as in a microcontroller, would deliver an opposite outcome: memory used would be proportional to the bitwidth
used (e.g. 16-bit fixed-point format would need four times less memory than double precision format) and also the
training time would be reduced in a similar ratio.

Although comparing the training time between the two versions does not yield useful results in this case, what may
be enlightening is to measure how much the computation time decreases as the number of bits used for fixed-point
operations is reduced. To do this, breast-cancer dataset is taken as an example and the training times for different bit
sizes are measured. Figure 2 shows these results, where it can be seen that the training time grows almost linearly with
the number of bits. This information can be extrapolated, for example, to a microcontroller supporting 8, 16 and 32
bit operations, in which a similar behaviour could be expected.

200 4,50E-04
—. 1s0 4,00E-04
- -
£ 160 3,50e-04 2
(-]
g 140 3,00E-04 £
w120 2
T 250604 B
2 S B
15 6 2,00E-04 o
o 60 =O— Training time 1,50E-04 §
.E £
£ 0 8
E 40 Carbon emissions 1.00E204 8

5,00E-05
0,00E+00

20
o
2 4 6 8 12 16 20 24 28 32

bitwidth

Fig. 2. Training time and carbon emissions for the breast-cancer dataset

In Figure 2, the vertical axis on the right represents the carbon emissions in kilograms as reported by the codecarbon
library. This library uses processor computation time to draw these results, so they are expected to show a high
correlation with regard to the training time. In any case, it can be observed that carbon emissions also decrease as
the number of bits is reduced. For the same reasons discussed above, in a real environment these emissions would be
reduced by several orders of magnitude. For reference, using the double precision discretizer for this same data, the
value of carbon emissions is 1.58 - 107 kilograms.

6. Conclusions and future work

This work constitutes a first milestone in the use of fixed-point arithmetic in the discretization stage within a
machine learning pipeline. The results show that it is totally plausible to replace algorithms that operate in double
precision with reduced precision. The following conclusions can be derived from the different experiments:

e A double precision version of the MDLP discretization algorithm was found online and its code was adapted to
work with reduced precision. This implementation serves as a point of reference for any experiment that seeks
to emulate the behavior of the fixed-point MDLP algorithm on low-performance devices.

896 Brais Ares et al. / Procedia Computer Science 207 (2022) 887-896

o It has been found that, at least for the MDLP algorithm and for the datasets chosen for this study, the results
are practically the same either using the original version of the algorithm, in double precision, or using the 32-
bit fixed-point version. Furthermore, depending on the input dataset 16-bit and 12-bit versions can also return
acceptable results.

¢ By emulating fixed-point operations with the fxpmath library, it has been observed that reducing the number of
bits for arithmetic operations has a direct implication on the training time and, as a consequence, also in the
amount of carbon emissions generated by the device which runs the algorithm.

Certainly, the use of reduced precision in discretization algorithms is an area of research in which there is still
a long way to go. As future work, we plan to use look-up tables for logarithmic operations [15] in order to reduce
memory space, and to migrate our algorithm to a real environment, such as a microcontroller or FPGA, so that actual
accurate measures can be obtained.

Acknowledgements

This work has been supported by the grant Machine Learning on the Edge - Ayudas Fundacién BBVA a Equipos
de Investigacion Cientifica 2019. 1t has also been possible thanks to the support received by the National Plan for
Scientific and Technical Research and Innovation of the Spanish Government (Grant PID2019-109238GB-C2), and
by the Xunta de Galicia (Grant ED431C 2018/34) with the European Union ERDF funds. CITIC, as Research Center
accredited by Galician University System, is funded by “Conselleria de Cultura, Educacion e Universidades from
Xunta de Galicia”, supported in an 80% through ERDF Funds, ERDF Operational Programme Galicia 2014-2020,
and the remaining 20% by “Secretaria Xeral de Universidades” (Grant ED431G 2019/01).

References

[1] Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances. Philosophical transactions of the Royal Society of London ,
370-418.

[2] Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 2017. Classification and regression trees. Routledge.

[3] Fayyad, U., Irani, K., 1993. Multi-interval discretization of continuous-valued attributes for classification learning .

[4] Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P., 2015. Deep learning with limited numerical precision, in: International conference

on machine learning, PMLR. pp. 1737-1746.

Hacibeyoglu, M., Arslan, A., Kahramanli, S., 2011. Improving classification accuracy with discretization on data sets including continuous

valued features. Ionosphere 34, 2.

[6] Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A., Dally, W.1., 2016. Eie: Efficient inference engine on compressed deep neural

network. ACM SIGARCH Computer Architecture News 44, 243-254.

Hubara, 1., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y., 2017. Quantized neural networks: Training neural networks with low

precision weights and activations. The Journal of Machine Learning Research 18, 6869—6898.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., Kalenichenko, D., 2018. Quantization and training of neural

networks for efficient integer-arithmetic-only inference, in: Proceedings of the IEEE conference on computer vision and pattern recognition,

pp- 2704-2713.

Lustgarten, J.L., Gopalakrishnan, V., Grover, H., Visweswaran, S., 2008. Improving classification performance with discretization on biomed-

ical datasets, in: AMIA annual symposium proceedings, American Medical Informatics Association. p. 445.

[10] Moran-Fernandez, L., Sechidis, K., Bolén-Canedo, V., Alonso-Betanzos, A., Brown, G., 2020. Feature selection with limited bit depth mutual
information for portable embedded systems. Knowledge-Based Systems 197, 105885.

[11] Murshed, M., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., Hussain, E, 2019. Machine learning at the network edge: A survey.
arXiv preprint arXiv:1908.00080 .

[12] Peng, H., Long, E, Ding, C., 2005. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine intelligence 27, 1226-1238.

[13] Rabaséda-Loudcher, S., Sebban, M., Rakotomalala, R., 1996. Discretization of continuous attributes: a survey of methods, in: Proceedings of
the 2nd annual Joint Conference on Information Sciences, pp. 164-166.

[14] Sharma, A., Paliwal, K.K., Imoto, S., Miyano, S., Sharma, V., Ananthanarayanan, R., 2014. A feature selection method using fixed-point
algorithm for dna microarray gene expression data. International Journal of Knowledge-Based and Intelligent Engineering Systems 18, 55-59.

[15] Tschiatschek, S., Pernkopf, F., 2015. Parameter learning of bayesian network classifiers under computational constraints, in: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, Springer. pp. 86-101.

[5

[7

[8

9

